51
|
Tangen IL, Kopperud RK, Visser NC, Staff AC, Tingulstad S, Marcickiewicz J, Amant F, Bjørge L, Pijnenborg JM, Salvesen HB, Werner HM, Trovik J, Krakstad C. Expression of L1CAM in curettage or high L1CAM level in preoperative blood samples predicts lymph node metastases and poor outcome in endometrial cancer patients. Br J Cancer 2017; 117:840-847. [PMID: 28751757 PMCID: PMC5589986 DOI: 10.1038/bjc.2017.235] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Several studies have identified L1 cell adhesion molecule (L1CAM) as a strong prognostic marker in endometrial cancer. To further underline the clinical usefulness of this biomarker, we investigated L1CAM as a predictive marker for lymph node metastases and its prognostic impact in curettage specimens and preoperative plasma samples. In addition, we aimed to validate the prognostic value of L1CAM in hysterectomy specimen. METHODS Immunohistochemical staining of L1CAM was performed for 795 hysterectomy and 1134 curettage specimen from endometrial cancer patients. The L1CAM level in preoperative blood samples from 372 patients was determined using ELISA. RESULTS Expression of L1CAM in curettage specimen was significantly correlated to L1CAM level in corresponding hysterectomy specimen (P<0.001). Both in curettage and preoperative plasma samples L1CAM upregulation was significantly associated with features of aggressive disease and poor outcome (P<0.001). The L1CAM was an independent predictor of lymph node metastases, after correction for curettage histology, both in curettage specimen (P=0.002) and plasma samples (P=0.048). In the hysterectomy samples L1CAM was significantly associated with poor outcome (P<0.001). CONCLUSIONS We demonstrate that preoperative evaluation of L1CAM levels, both in curettage or plasma samples, predicts lymph node metastases and adds valuable information on patient prognosis.
Collapse
Affiliation(s)
- Ingvild L Tangen
- Department of Gynaecology and Obstetrics, Haukeland University Hospital, 5053 Bergen, Norway.,Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Reidun K Kopperud
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Nicole Cm Visser
- Department of Pathology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Anne C Staff
- Department of Gynaecology, Oslo University Hospital, 0424 Oslo, Norway.,Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Solveig Tingulstad
- Department of Gynaecology, St. Olav's Hospital, 7006 Trondheim, Norway.,Department of Laboratory Medicine, Children's and Women's Health (LBK), Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Janusz Marcickiewicz
- Department of Obstetrics and Gynaecology, Halland's Hospital Varberg, 43281 Varberg, Sweden
| | - Frédéric Amant
- Department of Oncology and Gynaecologic Oncology, Leuven Cancer Institute, 3000 Leuven, Belgium.,Center for Gynaecologic Oncology Amsterdam (CGOA), Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | - Line Bjørge
- Department of Gynaecology and Obstetrics, Haukeland University Hospital, 5053 Bergen, Norway.,Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Johanna Ma Pijnenborg
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Helga B Salvesen
- Department of Gynaecology and Obstetrics, Haukeland University Hospital, 5053 Bergen, Norway.,Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Henrica Mj Werner
- Department of Gynaecology and Obstetrics, Haukeland University Hospital, 5053 Bergen, Norway.,Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Jone Trovik
- Department of Gynaecology and Obstetrics, Haukeland University Hospital, 5053 Bergen, Norway.,Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Camilla Krakstad
- Department of Gynaecology and Obstetrics, Haukeland University Hospital, 5053 Bergen, Norway.,Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
52
|
Xu YW, Peng YH, Ran LQ, Zhai TT, Guo HP, Qiu SQ, Chen HL, Wu ZY, Li EM, Xie JJ. Circulating levels of autoantibodies against L1-cell adhesion molecule as a potential diagnostic biomarker in esophageal squamous cell carcinoma. Clin Transl Oncol 2017; 19:898-906. [PMID: 28181176 DOI: 10.1007/s12094-017-1623-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/28/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a common malignant disease worldwide, especially in China. We aimed to determine the level of autoantibodies against L1CAM in patients with ESCC. METHODS Levels of circulating autoantibodies against L1CAM antigens were determined by an enzyme-linked immunosorbent assay in cohort 1 (191 patients with ESCC and 94 normal controls) and validated in cohort 2 (47 patients with ESCC and 47 normal controls). Receiver-operating characteristics were employed to calculate diagnostic accuracy. Cumulative survival time was calculated by the Kaplan-Meier method and analyzed by the log-rank test. RESULTS In cohorts 1 and 2, levels of autoantibodies against L1CAM were all significantly higher in sera of patients with ESCC compared to normal controls (P < 0.05). Detection of autoantibodies against L1CAM provided a sensitivity of 26.2%, a specificity of 90.4%, and an area under the curve (AUC) of 0.603 (95% CI 0.535-0.672) in diagnosing ESCC in cohort 1, and a sensitivity of 27.7%, a specificity of 91.5%, and an AUC of 0.628 (95% CI 0.516-0.741). Similar results were observed in the diagnosis of early stage ESCC (25.2% sensitivity, 90.4% specificity, and an AUC of 0.611 (95% CI 0.533-0.689) in cohort 1, and 33.3% sensitivity, 91.5% specificity, and an AUC of 0.636 (95% CI 0.439-0.832) in cohort 2). Moreover, positive rates of autoantibodies against L1CAM had no statistical correlation with clinical outcome of ESCC (P > 0.05). CONCLUSIONS Our results suggest that circulating autoantibodies against L1CAM is a potential biomarker for the early detection of ESCC.
Collapse
Affiliation(s)
- Y-W Xu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Y-H Peng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - L-Q Ran
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - T-T Zhai
- Department of Radiation Oncology, The Cancer Hospital of Shantou University Medical College, Shantou, China
| | - H-P Guo
- Department of Head and Neck Surgery, The Cancer Hospital of Shantou University Medical College, Shantou, China
| | - S-Q Qiu
- The Breast Center, The Cancer Hospital of Shantou University Medical College, Shantou, China
| | - H-L Chen
- Department of Surgical Oncology, Shantou Central Hospital, Shantou, China
| | - Z-Y Wu
- Department of Surgical Oncology, Shantou Central Hospital, Shantou, China
| | - E-M Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China.
| | - J-J Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China.
| |
Collapse
|
53
|
|
54
|
Soovares P, Pasanen A, Bützow R, Lassus H. L1CAM expression associates with poor outcome in endometrioid, but not in clear cell ovarian carcinoma. Gynecol Oncol 2017. [PMID: 28625395 DOI: 10.1016/j.ygyno.2017.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Our aim was to study the expression of L1CAM in endometrioid and clear cell ovarian carcinomas and to evaluate its correlation with clinical parameters and patient prognosis. METHODS Tissue microarray -based immunohistochemical analysis of L1CAM expression was performed in 249 endometrioid and 140 clear cell ovarian carcinomas. Concurrent endometrial carcinoma was found in 57 of these patients. RESULTS L1CAM expression was found in 15% of endometrioid and 23% of clear cell ovarian carcinomas. L1CAM expression was strongly associated with poor disease-specific overall survival and poor disease-free survival in endometrioid (p<0.0001, p=0.0005), but not in clear cell ovarian carcinomas. Significant association of L1CAM expression with poor overall survival was observed in grade 1-2 carcinomas (p<0.0001), but not in grade 3 tumors. In endometrioid ovarian carcinomas, L1CAM expression was associated with aggressive tumor characteristics, such as higher grade and stage, and incomplete response to primary therapy. However, L1CAM expression was not an independent prognostic factor for overall or disease-free survival. Of the 57 patients with concurrent endometrial carcinoma L1CAM positivity was found in 4 cases both in the ovarian and endometrial tumors, and in 3 cases only in the endometrial tumor. All these seven patients with L1CAM positive tumors had poor outcome. CONCLUSIONS L1CAM expression could serve as a biomarker for predicting clinical outcome and response to therapy in patients with endometrioid ovarian carcinoma, but not in clear cell carcinomas. L1CAM positivity also predicts poor outcome in patients with concurrent endometrioid ovarian and endometrial carcinomas.
Collapse
Affiliation(s)
- Piret Soovares
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, Haartmaninkatu 2, PO Box 140, 00290 Helsinki, Finland.
| | - Annukka Pasanen
- Department of Pathology, University of Helsinki, Helsinki University Hospital, Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Ralf Bützow
- Department of Pathology, University of Helsinki, Helsinki University Hospital, Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Heini Lassus
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, Haartmaninkatu 2, PO Box 140, 00290 Helsinki, Finland.
| |
Collapse
|
55
|
C1QBP suppresses cell adhesion and metastasis of renal carcinoma cells. Sci Rep 2017; 7:999. [PMID: 28428626 PMCID: PMC5430506 DOI: 10.1038/s41598-017-01084-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/23/2017] [Indexed: 11/09/2022] Open
Abstract
Complement component 1q subcomponent binding protein (C1QBP) is a ubiquitously expressed cellular protein and can be upregulated or activated in a variety of malignant tumors, including those from thyroid, colon and breast, but its role remains unclear in renal cell carcinoma (RCC). In this study, C1QBP knockdown in RCC cell influenced expression of multiple genes associated with cell adhesion, among which L1 cell adhesion molecule (L1CAM) was significantly higher upon a reduction of C1QBP. In turn, cell adhesion and invasion abilities were significantly increased with increased metastasis to lung and liver in vivo. C1QBP may regulate RCC cell adhesion and invasion through influencing the p-GSK3/β-Catenin/L1CAM expression. Over all, our study demonstrated that C1QBP could regulate RCC metastasis by regulating the GSK3/β-Catenin/L1CAM signaling pathway.
Collapse
|
56
|
Wojciechowski M, Głowacka E, Wilczyński M, Pękala-Wojciechowska A, Malinowski A. The sL1CAM in sera of patients with endometrial and ovarian cancers. Arch Gynecol Obstet 2017; 295:225-232. [PMID: 27832351 PMCID: PMC5225192 DOI: 10.1007/s00404-016-4226-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/02/2016] [Indexed: 10/25/2022]
Abstract
PURPOSE L1CAM is a cell adhesion molecule suspected to play an important role in carcinogenesis. The objective of the study was to evaluate the level of soluble L1CAM in the sera of patients with endometrial and ovarian carcinomas and verify the feasibility of the sL1CAM as a marker of these carcinomas. METHODS 35 endometrial and 18 ovarian cancer patients were enrolled in the study. 43 patients with benign gynecological conditions constituted a control group. The sL1CAM serum level was measured with ELISA test in each patient and it was referred to the data from the surgical staging of the cancers. RESULTS The sL1CAM serum level was significantly lower in patients with endometrial cancer than in healthy women and slightly lower in the ovarian cancer group than in the control group. In the endometrial cancer group there was no correlation between sL1CAM concentration and cancer histopathology, stage or grade. sL1CAM concentration positively correlated with ovarian cancer stage and (not significantly) with grade. CONCLUSIONS Despite the increasing data about the possible role of L1CAM as a strong prognostic factor of poor outcome in many cancers, we did not find evidence supporting the use of sL1CAM as a marker of endometrial or ovarian cancers.
Collapse
Affiliation(s)
- Michał Wojciechowski
- Department of Surgical, Endoscopic Gynecology and Oncology, Polish Mother's Memorial Hospital-Research Institute, 281/283 Rzgowska St., 93-338, Łódź, Poland.
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Łódź, Poland.
| | - Ewa Głowacka
- Department of Laboratory Diagnostics, Polish Mother's Memorial Hospital-Research Institute, Łódź, Poland
| | - Miłosz Wilczyński
- Department of Surgical, Endoscopic Gynecology and Oncology, Polish Mother's Memorial Hospital-Research Institute, 281/283 Rzgowska St., 93-338, Łódź, Poland
| | | | - Andrzej Malinowski
- Department of Surgical, Endoscopic Gynecology and Oncology, Polish Mother's Memorial Hospital-Research Institute, 281/283 Rzgowska St., 93-338, Łódź, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
57
|
Shi G, Du Y, Li Y, An Y, He Z, Lin Y, Zhang R, Yan X, Zhao J, Yang S, Brendan PNK, Liu F. Cell Recognition Molecule L1 Regulates Cell Surface Glycosylation to Modulate Cell Survival and Migration. Int J Med Sci 2017; 14:1276-1283. [PMID: 29104485 PMCID: PMC5666562 DOI: 10.7150/ijms.20479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/12/2017] [Indexed: 01/14/2023] Open
Abstract
Background: Cell recognition molecule L1 (L1) plays an important role in cancer cell differentiation, proliferation, migration and survival, but its mechanism remains unclear. Methodology/Principal: Our previous study has demonstrated that L1 enhanced cell survival and migration in neural cells by regulating cell surface glycosylation. In the present study, we show that L1 affected cell migration and survival in CHO (Chinese hamster ovary) cell line by modulation of sialylation and fucosylation at the cell surface via the PI3K (phosphoinositide 3-kinase) and Erk (extracellularsignal-regulated kinase) signaling pathways. Flow cytometry analysis indicated that L1 modulated cell surface sialylation and fucosylation in CHO cells. Activated L1 upregulated the protein expressions of ST6Gal1 (β-galactoside α-2,6-sialyltransferase 1) and FUT9 (Fucosyltransferase 9) in CHO cells. Furthermore, activated L1 promoted CHO cells migration and survival as shown by transwell assay and MTT assay. Inhibitors of sialylation and fucosylation blocked L1-induced cell migration and survival, while decreasing FUT9 and ST6Gal1 expressions via the PI3K-dependent and Erk-dependent signaling pathways. Conclusion : L1 modulated cell migration and survival by regulation of cell surface sialylation and fucosylation via the PI3K-dependent and Erk-dependent signaling pathways.
Collapse
Affiliation(s)
- Gang Shi
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Yue Du
- Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yali Li
- National University Hospital, Singapore 119074, Singapore
| | - Yue An
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Zhenwei He
- Department of Neurology, Forth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Yingwei Lin
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Xiaofei Yan
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Jianfeng Zhao
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Shihua Yang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | | | - Fang Liu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| |
Collapse
|
58
|
Vinci M, Falco M, Castiglia L, Grillo L, Spalletta A, Sturnio M, Galesi O, Salemi M, Gloria A, Amata S, Piccione M, Antona V, Vitello GA, Fichera M. Identification of novel mutations in L1CAM gene by a DHPLC-based assay. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
59
|
Samatov TR, Wicklein D, Tonevitsky AG. L1CAM: Cell adhesion and more. ACTA ACUST UNITED AC 2016; 51:25-32. [DOI: 10.1016/j.proghi.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
|
60
|
Abstract
The local extension of cancer cells along nerves is a frequent clinical finding for various tumours. Traditionally, nerve invasion was assumed to occur via the path of least resistance; however, recent animal models and human studies have revealed that cancer cells have an innate ability to actively migrate along axons in a mechanism called neural tracking. The tendency of cancer cells to track along nerves is supported by various cell types in the perineural niche that secrete multiple growth factors and chemokines. We propose that the perineural niche should be considered part of the tumour microenvironment, describe the molecular cues that facilitate neural tracking and suggest methods for its inhibition.
Collapse
Affiliation(s)
- Moran Amit
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| | - Shorook Na'ara
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| | - Ziv Gil
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| |
Collapse
|
61
|
Ferese R, Zampatti S, Griguoli AMP, Fornai F, Giardina E, Barrano G, Albano V, Campopiano R, Scala S, Novelli G, Gambardella S. A New Splicing Mutation in the L1CAM Gene Responsible for X-Linked Hydrocephalus (HSAS). J Mol Neurosci 2016; 59:376-81. [DOI: 10.1007/s12031-016-0754-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/08/2016] [Indexed: 01/30/2023]
|
62
|
Haase G, Gavert N, Brabletz T, Ben-Ze'ev A. The Wnt Target Gene L1 in Colon Cancer Invasion and Metastasis. Cancers (Basel) 2016; 8:cancers8050048. [PMID: 27187476 PMCID: PMC4880865 DOI: 10.3390/cancers8050048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/26/2016] [Accepted: 05/06/2016] [Indexed: 11/16/2022] Open
Abstract
The Wnt-β-catenin signaling pathway is highly conserved during evolution and determines normal tissue homeostasis. Hyperactivation of Wnt-β-catenin signaling is a characteristic feature of colorectal cancer (CRC) development. β-catenin is a major transducer of the Wnt signal from the cytoplasm into the nucleus where it acts as a co-transcriptional activator of β-catenin-TCF target genes. β-catenin is also required for linking cadherin type cell-cell adhesion receptors to the cytoskeleton, and consequently Wnt-β-catenin signaling is an attractive system for investigating the role of adhesion-mediated signaling in both normal intestinal tissue homeostasis and CRC development. In this review, we summarize our studies on one Wnt-β-catenin target gene, L1, a member of the immunoglobulin-like cell adhesion transmembrane receptor family. We describe the mechanisms of L1-mediated signaling in CRC cells, its exclusive localization in invasive areas of CRC tissue, and its ability to increase cell motility and confer metastasis to the liver. We discuss the activation (by L1) of genes via an ezrin-NF-κB pathway and the induction of genes also found in the intestinal stem cell signature. By studying L1 (adhesion)-mediated signaling, we expect to learn about mechanisms regulating both normal intestinal homeostasis and CRC development.
Collapse
Affiliation(s)
- Gal Haase
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Thomas Brabletz
- Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nuerenberg, Erlangen, 91054, Germany.
| | - Avri Ben-Ze'ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
63
|
Anderson HJ, Galileo DS. Small-molecule inhibitors of FGFR, integrins and FAK selectively decrease L1CAM-stimulated glioblastoma cell motility and proliferation. Cell Oncol (Dordr) 2016; 39:229-42. [PMID: 26883759 DOI: 10.1007/s13402-016-0267-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The cell adhesion/recognition protein L1CAM (L1; CD171) has previously been shown to act through integrin, focal adhesion kinase (FAK) and fibroblast growth factor receptor (FGFR) signaling pathways to increase the motility and proliferation of glioblastoma cells in an autocrine/paracrine manner. Here, we investigated the effects of clinically relevant small-molecule inhibitors of the integrin, FAK and FGFR signaling pathways on glioblastoma-derived cells to determine their effectiveness and selectivity for diminishing L1-mediated stimulation. METHODS The effects of the FGFR inhibitor PD173074, the FAK inhibitors PF431396 and Y15 and the αvβ3/αvβ5 integrin inhibitor cilengitide were assessed in L1-positive and L1-negative variants of the human glioblastoma-derived cell lines T98G and U-118 MG. Their motility and proliferation were quantified using time-lapse microscopy and DNA content/cell cycle analyses, respectively. RESULTS The application of all four inhibitors resulted in reductions in L1-mediated motility and proliferation rates of L1-positive glioblastoma-derived cells, down to the level of L1-negative cells when used at nanomolar concentrations, whereas no or much smaller reductions in these rates were obtained in L1-negative cells. In addition, we found that single inhibitor treatment resulted in maximum effects (i.e., combinations of FAK or integrin inhibitors with the FGFR inhibitor were rarely more effective). These results suggest that FAK may act as a point of convergence between the integrin and FGFR signaling pathways stimulated by L1 in these cells. CONCLUSIONS We here show for the first time that small-molecule inhibitors of FGFR, integrins and FAK effectively and selectively abolish L1-stimulated migration and proliferation of glioblastoma-derived cells. Our results suggest that these inhibitors have the potential to reduce the aggressiveness of high-grade gliomas expressing L1.
Collapse
Affiliation(s)
- Hannah J Anderson
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA. .,Helen F. Graham Cancer Center and Research Institute, Christiana Care Health System, Newark, DE, 19713, USA.
| |
Collapse
|
64
|
Abstract
L1 cell adhesion molecule (L1CAM) is the prototype member of the L1-family of closely related neural adhesion molecules. L1CAM is differentially expressed in the normal nervous system as well as pathological tissues and displays a wide range of biological activities. In human malignancies, L1CAM plays a vital role in tumor growth, invasion and metastasis. Recently, increasing evidence has suggested that L1CAM exerts a variety of functions at different steps of tumor progression through a series of signaling pathways. In addition, L1CAM has been identified as a promising target for cancer therapy by using synthetic and natural inhibitors. In this review, we provide an up-to-date overview of the role of L1CAM involved in cancers and the rationale for L1CAM as a novel molecular target for cancer therapy.
Collapse
Affiliation(s)
- Xinzhe Yu
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| | - Feng Yang
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| | - De-Liang Fu
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| | - Chen Jin
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| |
Collapse
|
65
|
Heterozygous L1-deficient mice express an autism-like phenotype. Behav Brain Res 2015; 292:432-42. [DOI: 10.1016/j.bbr.2015.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 01/04/2023]
|
66
|
Altevogt P, Doberstein K, Fogel M. L1CAM in human cancer. Int J Cancer 2015; 138:1565-76. [DOI: 10.1002/ijc.29658] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/19/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology; University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg; Mannheim Germany
| | - Kai Doberstein
- Ovarian Cancer Research Center, Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA
| | - Mina Fogel
- Central Laboratories; Kaplan Medical Center; Rehovot Israel
| |
Collapse
|
67
|
Shaw M, Yap TY, Henden L, Bahlo M, Gardner A, Kalscheuer VM, Haan E, Christie L, Hackett A, Gecz J. Identical by descent L1CAM mutation in two apparently unrelated families with intellectual disability without L1 syndrome. Eur J Med Genet 2015; 58:364-8. [DOI: 10.1016/j.ejmg.2015.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
|
68
|
Tang DY, Yu Y, Zhao XJ, Schachner M, Zhao WJ. Single chain fragment variable antibodies developed by using as target the 3rd fibronectin type III homologous repeat fragment of human neural cell adhesion molecule L1 promote cell migration and neuritogenesis. Exp Cell Res 2015; 330:336-345. [PMID: 25447207 DOI: 10.1016/j.yexcr.2014.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 02/05/2023]
Abstract
L1CAM plays important roles during ontogeny, including promotion of neuronal cell migration and neuritogenesis, and stimulation of axonal outgrowth, fasciculation and myelination. These functions are at least partially exerted through a 16-mer amino acid sequence in the third fibronectin type III-like repeat of L1, which associates with several interaction partners, including integrins, other adhesion molecules and growth factor receptors. Here, using the Tomlinson I library for phage display, we obtained two single-chain variable fragment antibodies (scFvs) against this peptide sequence of human L1, hereafter called H3 peptide. Both scFvs recognize the H3 peptide and the extracellular domain of L1, as tested by enzyme-linked immunosorbent assay (ELISA), Western blot analysis and immunofluorescence staining of L1 expresssing cells. Furthermore, both scFvs reduce U-87 MG cell adhesion to fibronectin, while stimulating cell migration. Application of scFvs to human neuroblastoma SK-N-SH cells promote process outgrowth. Similar to triggering of endogenous L1 functions at the cell surface, both scFvs activate the signal transducers Erk and Src in these cells. Our results indicate that scFvs against a functionally pivotal domain in L1 trigger its regeneration-beneficial functions in vitro, encouraging thoughts on therapy of neurodegenerative diseases in the hope to ameliorate human nervous system diseases.
Collapse
Affiliation(s)
- Dan-Yang Tang
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Jinping District, Shantou, Guangdong 515041, People׳s Republic of China
| | - Yang Yu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Jinping District, Shantou, Guangdong 515041, People׳s Republic of China
| | - Xuan-Jun Zhao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Jinping District, Shantou, Guangdong 515041, People׳s Republic of China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Jinping District, Shantou, Guangdong 515041, People׳s Republic of China.
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Jinping District, Shantou, Guangdong 515041, People׳s Republic of China.
| |
Collapse
|
69
|
Cherry JF, Bennett NK, Schachner M, Moghe PV. Engineered N-cadherin and L1 biomimetic substrates concertedly promote neuronal differentiation, neurite extension and neuroprotection of human neural stem cells. Acta Biomater 2014; 10:4113-26. [PMID: 24914828 DOI: 10.1016/j.actbio.2014.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/26/2014] [Accepted: 06/01/2014] [Indexed: 02/05/2023]
Abstract
We investigated the design of neurotrophic biomaterial constructs for human neural stem cells, guided by neural developmental cues of N-cadherin and L1 adhesion molecules. Polymer substrates fabricated either as two-dimensional (2-D) films or three-dimensional (3-D) microfibrous scaffolds were functionalized with fusion chimeras of N-cadherin-Fc alone and in combination with L1-Fc, and the effects on differentiation, neurite extension and survival of H9 human-embryonic-stem-cell-derived neural stem cells (H9-NSCs) were quantified. Combinations of N-cadherin and L1-Fc co-operatively enhanced neuronal differentiation profiles, indicating the critical nature of the two complementary developmental cues. Notably, substrates presenting low levels of N-cadherin-Fc concentrations, combined with proportionately higher L1-Fc concentration, most enhanced neurite outgrowth and the degree of MAP2+ and neurofilament-M+ H9-NSCs. Low N-cadherin-Fc alone promoted improved cell survival following oxidative stress, compared to higher concentrations of N-cadherin-Fc alone or combinations with L1-Fc. Pharmacological and antibody blockage studies revealed that substrates presenting low levels of N-cadherin are functionally competent so long as they elicit a threshold signal mediated by homophilic N-cadherin and fibroblast growth factor signaling. Overall, these studies highlight the ability of optimal combinations of N-cadherin and L1 to recapitulate a "neurotrophic" microenvironment that enhances human neural stem cell differentiation and neurite outgrowth. Additionally, 3-D fibrous scaffolds presenting low N-cadherin-Fc further enhanced the survival of H9-NSCs compared to equivalent 2-D films. This indicates that similar biofunctionalization approaches based on N-cadherin and L1 can be translated to 3-D "transplantable" scaffolds with enhanced neurotrophic behaviors. Thus, the insights from this study have fundamental and translational impacts for neural-stem-cell-based regenerative medicine.
Collapse
Affiliation(s)
- Jocie F Cherry
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Neal K Bennett
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Melitta Schachner
- W.M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou 515041, People's Republic of China
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
70
|
Doberstein K, Harter PN, Haberkorn U, Bretz NP, Arnold B, Carretero R, Moldenhauer G, Mittelbronn M, Altevogt P. Antibody therapy to human L1CAM in a transgenic mouse model blocks local tumor growth but induces EMT. Int J Cancer 2014; 136:E326-39. [DOI: 10.1002/ijc.29222] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/18/2014] [Accepted: 09/09/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Doberstein
- Translational Immunology, D015, Tumor Immunology Programme German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Patrick N. Harter
- Edinger Institute (Neurological Institute), Goethe University Frankfurt; Frankfurt Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine; University Hospital Heidelberg; Heidelberg Germany
| | - Niko P. Bretz
- Translational Immunology, D015, Tumor Immunology Programme German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Bernd Arnold
- Molecular Immunology, D050, Tumor Immunology Programme German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Rafael Carretero
- Molecular Immunology, D050, Tumor Immunology Programme German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Gerhard Moldenhauer
- Translational Immunology, D015, Tumor Immunology Programme German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Michel Mittelbronn
- Edinger Institute (Neurological Institute), Goethe University Frankfurt; Frankfurt Germany
| | - Peter Altevogt
- Translational Immunology, D015, Tumor Immunology Programme German Cancer Research Center (DKFZ); Heidelberg Germany
| |
Collapse
|
71
|
Magrini E, Villa A, Angiolini F, Doni A, Mazzarol G, Rudini N, Maddaluno L, Komuta M, Topal B, Prenen H, Schachner M, Confalonieri S, Dejana E, Bianchi F, Mazzone M, Cavallaro U. Endothelial deficiency of L1 reduces tumor angiogenesis and promotes vessel normalization. J Clin Invest 2014; 124:4335-50. [PMID: 25157817 DOI: 10.1172/jci70683] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/17/2014] [Indexed: 01/11/2023] Open
Abstract
While tumor blood vessels share many characteristics with normal vasculature, they also exhibit morphological and functional aberrancies. For example, the neural adhesion molecule L1, which mediates neurite outgrowth, fasciculation, and pathfinding, is expressed on tumor vasculature. Here, using an orthotopic mouse model of pancreatic carcinoma, we evaluated L1 functionality in cancer vessels. Tumor-bearing mice specifically lacking L1 in endothelial cells or treated with anti-L1 antibodies exhibited decreased angiogenesis and improved vascular stabilization, leading to reduced tumor growth and metastasis. In line with these dramatic effects of L1 on tumor vasculature, the ectopic expression of L1 in cultured endothelial cells (ECs) promoted phenotypical and functional alterations, including proliferation, migration, tubulogenesis, enhanced vascular permeability, and endothelial-to-mesenchymal transition. L1 induced global changes in the EC transcriptome, altering several regulatory networks that underlie endothelial pathophysiology, including JAK/STAT-mediated pathways. In particular, L1 induced IL-6-mediated STAT3 phosphorylation, and inhibition of the IL-6/JAK/STAT signaling axis prevented L1-induced EC proliferation and migration. Evaluation of patient samples revealed that, compared with that in noncancerous tissue, L1 expression is specifically enhanced in blood vessels of human pancreatic carcinomas and in vessels of other tumor types. Together, these data indicate that endothelial L1 orchestrates multiple cancer vessel functions and represents a potential target for tumor vascular-specific therapies.
Collapse
|
72
|
Weledji EP, Assob JC. The ubiquitous neural cell adhesion molecule (N-CAM). Ann Med Surg (Lond) 2014; 3:77-81. [PMID: 25568792 PMCID: PMC4284440 DOI: 10.1016/j.amsu.2014.06.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/18/2014] [Accepted: 06/28/2014] [Indexed: 11/08/2022] Open
Abstract
Adhesive interactions are important for cell trafficking, differentiation, function and tissue differentiation. Neural cell adhesion molecule (NCAM) is involved in a diverse range of contact-mediated interactions among neurons, astrocytes, oligodendrocytes, and myotubes. It is widely but transiently expressed in many tissues early in embryogenesis. Four main isoforms exist but there are many other variants resulting from alternative splicing and post-translational modifications. This review discusses the actions and association of N-CAM and variants, PSA CAM. L1CAM and receptor tyrosine kinase. Their interactions with the interstitial cells of Cajal – the pacemaker cells of the gut in the manifestation of gut motility disorders, expression in carcinomas and mesenchymal tumours are discussed.
Collapse
Affiliation(s)
- Elroy P Weledji
- Department of Surgery, Faculty of Health Sciences, University of Buea, Cameroon
| | - Jules C Assob
- Biochemistry, Faculty of Health Sciences, University of Buea, Cameroon
| |
Collapse
|
73
|
Yang X, Hou D, Jiang W, Zhang C. Intercellular protein-protein interactions at synapses. Protein Cell 2014; 5:420-44. [PMID: 24756565 PMCID: PMC4026422 DOI: 10.1007/s13238-014-0054-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/23/2014] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.
Collapse
Affiliation(s)
- Xiaofei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
| | - Dongmei Hou
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Wei Jiang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Chen Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| |
Collapse
|
74
|
Gallistel CR, Tucci V, Nolan PM, Schachner M, Jakovcevski I, Kheifets A, Barboza L. Cognitive assessment of mice strains heterozygous for cell-adhesion genes reveals strain-specific alterations in timing. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120464. [PMID: 24446498 PMCID: PMC3895989 DOI: 10.1098/rstb.2012.0464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision. These effects are functionally specific, because many other measures made on the same mice are unaffected, namely: the accuracy of matching temporal investment ratios to income ratios in a matching protocol, the rate of instrumental and classical conditioning, the latency to initiate a cued instrumental response, the trials on task and the impulsivity in a switch paradigm, the accuracy with which mice adjust timed switches to changes in the temporal constraints, the days to acquisition, and mean onset time and onset variability in the circadian anticipation of food availability.
Collapse
Affiliation(s)
| | - Valter Tucci
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, Genova 16163, Italy
| | - Patrick M. Nolan
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Melitta Schachner
- Departments of Genetics and Neurobiology, D251 Nelson Labs, 604 Allison Road, Piscataway, NJ 08854-6999, USA
| | - Igor Jakovcevski
- Zentrum für Molekulare Neurobiologie, Universitaetskrankenhaus Hamburg-Eppendorf, Falkenried 94, Hamburg D20251, Germany
| | - Aaron Kheifets
- Department of Psychology, Rutgers University, 152 Frelinghuysen Rd, Piscataway, NJ 08854-8020, USA
| | - Luendro Barboza
- Department of Psychology, Rutgers University, 152 Frelinghuysen Rd, Piscataway, NJ 08854-8020, USA
| |
Collapse
|
75
|
Nagaraj K, Mualla R, Hortsch M. The L1 Family of Cell Adhesion Molecules: A Sickening Number of Mutations and Protein Functions. ADVANCES IN NEUROBIOLOGY 2014; 8:195-229. [DOI: 10.1007/978-1-4614-8090-7_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
76
|
Ito T, Yamada S, Tanaka C, Ito S, Murai T, Kobayashi D, Fujii T, Nakayama G, Sugimoto H, Koike M, Nomoto S, Fujiwara M, Kodera Y. Overexpression of L1CAM is associated with tumor progression and prognosis via ERK signaling in gastric cancer. Ann Surg Oncol 2013; 21:560-8. [PMID: 24046108 DOI: 10.1245/s10434-013-3246-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND L1 cell adhesion molecule (L1CAM), which belongs to the immunoglobulin superfamily, has recently been observed in a variety of human malignancies. However, its clinical implication in gastric cancer remains unclear. The aim of this study was to explore the role of L1CAM in gastric cancer and to analyze its correlation with tumor progression and prognosis. METHODS L1CAM expression was measured in human gastric cancer cell lines and knockdown was conducted using siRNA. Cell proliferation, invasion and migration ability was assessed in vitro. The downstream pathway of L1CAM was explored by western blot analysis. L1CAM expression was measured in 112 pairs of human gastric cancer and adjacent noncancerous tissues using real-time quantitative RT-PCR, and the correlation with clinicopathological features and prognosis was analyzed. RESULTS L1CAM downregulation by siRNA significantly decreased cell proliferation, migration, and invasion in gastric cancer cell lines. Phosphorylated ERK levels began to decline more rapidly in L1CAM knockdown cells compared with parental cells. L1CAM overexpression was significantly correlated with local tumor cell growth (P = 0.041), distant metastasis (P = 0.047), and tumor stage (P = 0.031). The overall survival in patients with high L1CAM expression was significantly shorter than that of patients with low L1CAM expression (P = 0.02). CONCLUSIONS L1CAM overexpression may be a critical prognostic factor in patients with gastric cancer, and was strongly associated with tumor proliferation, migration, and invasion through the ERK pathway. L1CAM might be an attractive therapeutic molecular target for the treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Takeshi Ito
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Chen DL, Zeng ZL, Yang J, Ren C, Wang DS, Wu WJ, Xu RH. L1cam promotes tumor progression and metastasis and is an independent unfavorable prognostic factor in gastric cancer. J Hematol Oncol 2013; 6:43. [PMID: 23806079 PMCID: PMC3717076 DOI: 10.1186/1756-8722-6-43] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/24/2013] [Indexed: 11/10/2022] Open
Abstract
Background Previous reports have demonstrated that L1cam is aberrantly expressed in various tumors. The potential role of L1cam in the progression and metastasis of gastric cancer is still not clear and needs exploring. Methods Expression of L1cam was evaluated in gastric cancer tissues and cell lines by immunohistochemistry and Western blot. The relationship between L1cam expression and clinicopathological characteristics was analyzed. The effects of L1cam on cell proliferation, migration and invasion were investigated in gastric cancer cell lines both in vitro and in vivo. The impact of L1cam on PI3K/Akt pathway was also evaluated. Results L1cam was overexpressed in gastric cancer tissues and cell lines. L1cam expression was correlated with aggressive tumor phenotype and poor overall survival in gastric cancer patients. Ectopic expression of L1cam in gastric cell lines significantly promoted cell proliferation, migration and invasion whereas knockdown of L1cam inhibited cell proliferation, migration and invasion in vitro as well as tumorigenesis and metastasis in vivo. The low level of phosphorylated Akt in HGC27 cells was up-regulated after ectopic expression of L1cam, whereas the high level of phosphorylated Akt in SGC7901 cells was suppressed by knockdown of L1cam. Moreover, the migration and invasion promoted by L1cam overexpression in gastric cancer cells could be abolished by either application of LY294002 (a phosphoinositide-3-kinase inhibitor) or knockdown of endogenous Akt by small interfering RNA. Conclusions Our study demonstrated that L1cam, overexpressed in gastric cancer and associated with poor prognosis, plays an important role in the progression and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Dong-liang Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dong Feng East Load, Guangzhou 510060, China
| | | | | | | | | | | | | |
Collapse
|
78
|
Xu H, Yang Y, Tang X, Zhao M, Liang F, Xu P, Hou B, Xing Y, Bao X, Fan X. Bergmann glia function in granule cell migration during cerebellum development. Mol Neurobiol 2013; 47:833-44. [PMID: 23329344 DOI: 10.1007/s12035-013-8405-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/07/2013] [Indexed: 12/17/2022]
Abstract
Granule cell migration influences the laminar structure of the cerebellum and thereby affects cerebellum function. Bergmann glia are derived from radial glial cells and aid in granule cell radial migration by providing a scaffold for migration and by mediating interactions between Bergmann glia and granule cells. In this review, we summarize Bergmann glia characteristics and the mechanisms underlying the effect of Bergmann glia on the radial migration of granule neurons in the cerebellum. Furthermore, we will focus our discussion on the important factors involved in glia-mediated radial migration so that we may elucidate the possible mechanistic pathways used by Bergmann glia to influence granule cell migration during cerebellum development.
Collapse
Affiliation(s)
- Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Xu H, Yang Y, Tang X, Zhao M, Liang F, Xu P, Hou B, Xing Y, Bao X, Fan X. Bergmann glia function in granule cell migration during cerebellum development. Mol Neurobiol 2013. [PMID: 23329344 DOI: 10.1007/s12035‐013‐8405‐y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Granule cell migration influences the laminar structure of the cerebellum and thereby affects cerebellum function. Bergmann glia are derived from radial glial cells and aid in granule cell radial migration by providing a scaffold for migration and by mediating interactions between Bergmann glia and granule cells. In this review, we summarize Bergmann glia characteristics and the mechanisms underlying the effect of Bergmann glia on the radial migration of granule neurons in the cerebellum. Furthermore, we will focus our discussion on the important factors involved in glia-mediated radial migration so that we may elucidate the possible mechanistic pathways used by Bergmann glia to influence granule cell migration during cerebellum development.
Collapse
Affiliation(s)
- Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Wang Y, Loers G, Pan HC, Gouveia R, Zhao WJ, Shen YQ, Kleene R, Costa J, Schachner M. Antibody fragments directed against different portions of the human neural cell adhesion molecule L1 act as inhibitors or activators of L1 function. PLoS One 2012; 7:e52404. [PMID: 23272240 PMCID: PMC3525558 DOI: 10.1371/journal.pone.0052404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/16/2012] [Indexed: 02/05/2023] Open
Abstract
The neural cell adhesion molecule L1 plays important roles in neuronal migration and survival, neuritogenesis and synaptogenesis. L1 has also been found in tumors of different origins, with levels of L1 expression correlating positively with the metastatic potential of tumors. To select antibodies targeting the varied functions of L1, we screened the Tomlinson library of recombinant human antibody fragments to identify antibodies binding to recombinant human L1 protein comprising the entire extracellular domain of human L1. We obtained four L1 binding single-chain variable fragment antibodies (scFvs), named I4, I6, I13, and I27 and showed by enzyme-linked immunosorbent assay (ELISA) that scFvs I4 and I6 have high affinity to the immunoglobulin-like (Ig) domains 1-4 of L1, while scFvs I13 and I27 bind strongly to the fibronectin type III homologous (Fn) domains 1-3 of L1. Application of scFvs I4 and I6 to human SK-N-SH neuroblastoma cells reduced proliferation and transmigration of these cells. Treatment of SK-N-SH cells with scFvs I13 and I27 enhanced cell proliferation and migration, neurite outgrowth, and protected against the toxic effects of H(2)O(2) by increasing the ratio of Bcl-2/Bax. In addition, scFvs I4 and I6 inhibited and scFvs I13 and I27 promoted phosphorylation of src and Erk. Our findings indicate that scFvs reacting with the immunoglobulin-like domains 1-4 inhibit L1 functions, whereas scFvs interacting with the fibronectin type III domains 1-3 trigger L1 functions of cultured neuroblastoma cells.
Collapse
Affiliation(s)
- Yan Wang
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany
| | - Hong-Chao Pan
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Ricardo Gouveia
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Yan-Qin Shen
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany
| | - Julia Costa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
81
|
Mohanan V, Temburni MK, Kappes JC, Galileo DS. L1CAM stimulates glioma cell motility and proliferation through the fibroblast growth factor receptor. Clin Exp Metastasis 2012; 30:507-20. [DOI: 10.1007/s10585-012-9555-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/17/2012] [Indexed: 02/07/2023]
|
82
|
Schmid JS, Bernreuther C, Nikonenko AG, Ling Z, Mies G, Hossmann KA, Jakovcevski I, Schachner M. Heterozygosity for the mutated X-chromosome-linked L1 cell adhesion molecule gene leads to increased numbers of neurons and enhanced metabolism in the forebrain of female carrier mice. Brain Struct Funct 2012. [PMID: 23196656 DOI: 10.1007/s00429-012-0463-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in the X-chromosomal L1CAM gene lead to severe neurological deficits. In this study, we analyzed brains of female mice heterozygous for L1 (L1+/-) to gain insights into the brain structure of human females carrying one mutated L1 allele. From postnatal day 7 onward into adulthood, L1+/- female mice show an increased density of neurons in the neocortex and basal ganglia in comparison to wild-type (L1+/+) mice, correlating with enhanced metabolic parameters as measured in vivo. The densities of astrocytes and parvalbumin immunoreactive interneurons were not altered. No significant differences between L1+/- and L1+/+ mice were seen for cell proliferation in the cortex during embryonic days 11.5-15.5. Neuronal differentiation as estimated by analysis of doublecortin-immunoreactive cortical cells of embryonic brains was similar in L1+/- and L1+/+ mice. Interestingly, at postnatal days 3 and 5, apoptosis was reduced in L1+/- compared to L1+/+ mice. We suggest that reduced apoptosis leads to increased neuronal density in adult L1+/- mice. In conclusion, L1+/- mice display an unexpected phenotype that is not an intermediate between L1+/+ mice and mice deficient in L1 (L1-/y), but a novel phenotype which is challenging to understand regarding its underlying molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Janinne Sylvie Schmid
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Littner Y, Tang N, He M, Bearer CF. L1 cell adhesion molecule signaling is inhibited by ethanol in vivo. Alcohol Clin Exp Res 2012; 37:383-9. [PMID: 23050935 DOI: 10.1111/j.1530-0277.2012.01944.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND Fetal alcohol spectrum disorder is an immense public health problem. In vitro studies support the hypothesis that L1 cell adhesion molecule (L1) is a target for ethanol (EtOH) developmental neurotoxicity. L1 is critical for the development of the central nervous system. It functions through signal transduction leading to phosphorylation and dephosphorylation of tyrosines on its cytoplasmic domain. The function of L1 is also dependent on trafficking through lipid rafts (LRs). Our hypothesis is that L1 is a target for EtOH neurotoxicity in vivo. Our objective is to demonstrate changes in L1 phosphorylation/dephosphorylation and LR association in vivo. METHODS Rat pups on postnatal day 6 are administered 4.5, 5.25, and 6 g/kg of EtOH divided into 2 doses 2 hours apart, then killed. Cerebella are rapidly frozen for assay. Blood is analyzed for blood EtOH concentration. L1 tyrosine phosphorylation is determined by immunoprecipitation and dephosphorylation of tyrosine 1176 determined by immunoblot. LRs are isolated by sucrose density gradient, and the distribution of L1 in LRs is determined. RESULTS EtOH at all doses reduced the relative amount of Y1176 dephosphorylation as well as the relative amount of L1 phosphorylated on other tyrosines. The proportion of L1 present in LRs is significantly increased in pups who received 6 g/kg EtOH compared to intubated controls. CONCLUSIONS L1 is a target for EtOH developmental neurotoxicity in vivo.
Collapse
Affiliation(s)
- Yoav Littner
- Department of Neuroscience, Lerner Research Institute, Children's Hospital, The Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
84
|
Mualla R, Nagaraj K, Hortsch M. A phylogenetic analysis of the L1 family of neural cell adhesion molecules. Neurochem Res 2012; 38:1196-207. [PMID: 23011207 DOI: 10.1007/s11064-012-0892-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 11/25/2022]
Abstract
L1-type genes form one of several distinct gene families that encode adhesive proteins, which are predominantly expressed in developing and mature metazoan nervous systems. These proteins have a multitude of different important cellular functions in neuronal and glial cells. L1-type gene products are transmembrane proteins with a characteristic extracellular domain structure consisting of six immunoglobulin and three to five fibronectin type III protein folds. As reported here, L1-type proteins can be identified in most metazoan phyla with the notable exception of Porifera (sponges). This puts the origin of L1-type genes at a point in time when primitive cellular neural networks emerged, approximately 1,200 to 1,500 million years ago. Subsequently, several independent gene duplication events generated multiple paralogous L1-type genes in some phyla, allowing for a considerable diversification of L1 structures and the emergence of new functional features and molecular interactions. One such evolutionary newer feature is the appearance of RGD integrin-binding motifs in some vertebrate L1 family members.
Collapse
Affiliation(s)
- Rula Mualla
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
85
|
Lee ES, Jeong MS, Singh R, Jung J, Yoon H, Min JK, Kim KH, Hong HJ. A chimeric antibody to L1 cell adhesion molecule shows therapeutic effect in an intrahepatic cholangiocarcinoma model. Exp Mol Med 2012; 44:293-302. [PMID: 22248567 PMCID: PMC3349911 DOI: 10.3858/emm.2012.44.4.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC), a malignant tumor derived from the intrahepatic bile duct epithelium, has a poor prognosis and is refractory to conventional chemotherapy and radiation therapy. Thus, there is an urgent need to develop new effective therapeutic strategies for this disease. We previously found that L1 cell adhesion molecule (L1CAM) plays an important role in tumor progression of ICC, and we generated a murine mAb, A10-A3 (IgG1), that binds to the Ig1 domain of L1CAM. In the present study, we further characterized A10-A3, constructed a chimeric A10-A3 antibody (cA10-A3) containing the constant regions of human IgG1, and evaluated the therapeutic potential in a human ICC xenograft nude mice model. The affinities (KD) of A10-A3 and cA10-A3 for soluble L1CAM were 1.8 nM and 1.9 nM, respectively, as determined by competition ELISA. A10-A3 inhibited L1CAM homophilic binding and was slowly internalized into the tumor cells, but it did not significantly inhibit proliferation of ICC cells in vitro. cA10-A3 mediated antibody- dependent cell-mediated cytotoxicity in vitro and displayed anti-tumor activity in the ICC animal model. These results suggest that the humanized A10-A3 antibody may have potential as an anticancer agent for the treatment of ICC.
Collapse
Affiliation(s)
- Eung Suk Lee
- Department of Systems Immunology and Institute of Antibody Research, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Kiefel H, Bondong S, Pfeifer M, Schirmer U, Erbe-Hoffmann N, Schäfer H, Sebens S, Altevogt P. EMT-associated up-regulation of L1CAM provides insights into L1CAM-mediated integrin signalling and NF-κB activation. Carcinogenesis 2012; 33:1919-29. [PMID: 22764136 DOI: 10.1093/carcin/bgs220] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of L1 cell adhesion molecule (L1CAM) is associated with poor prognosis in a variety of human carcinomas including breast, ovarian and pancreatic ductal adenocarcinoma (PDAC). Recently we reported that L1CAM induces sustained nuclear factor kappa B (NF-κB) activation by augmenting the autocrine production of interleukin 1 beta (IL-1β), a process dependent on interaction of L1CAM with integrins. In the present study, we demonstrate that transforming growth factor β1 (TGF-β1) treatment of breast carcinoma (MDA-MB231) and PDAC (BxPc3) cell lines induces an EMT (epithelial to mesenchymal transition)-like phenotype and leads to the expression of L1CAM. In MDA-MB231 cells, up-regulation of L1CAM augmented expression of IL-1β and NF-κB activation, which was reversed by depletion of L1CAM, L1CAM-binding membrane cytoskeleton linker protein ezrin, β1-integrin or focal adhesion kinase (FAK). Over-expression of L1CAM not only induced NF-κB activation but also mediated the phosphorylation of FAK and Src. Phosphorylation was not induced in cells expressing a mutant form of L1CAM (L1-RGE) devoid of the integrin-binding site. FAK- and Src-phosphorylation were inhibited by knock-down of various components of the integrin signalling pathway such as β1- and α5-integrins, integrin-linked kinase (ILK), FAK and the phosphoinositide 3-kinase (PI3K) subunit p110β. In summary, these results reveal that during EMT, L1CAM promotes IL-1β expression through a process dependent on integrin signalling and supports a motile and invasive tumour cell phenotype. We also identify important novel downstream effector molecules of the L1CAM-integrin signalling crosstalk that help to understand the molecular mechanisms underlying L1CAM-promoted tumour progression.
Collapse
Affiliation(s)
- Helena Kiefel
- German Cancer Research CenterIm Neuenheimer Feld 280, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Kiefel H, Bondong S, Hazin J, Ridinger J, Schirmer U, Riedle S, Altevogt P. L1CAM: a major driver for tumor cell invasion and motility. Cell Adh Migr 2012; 6:374-84. [PMID: 22796939 DOI: 10.4161/cam.20832] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The L1 cell adhesion molecule (L1CAM) plays a major role in the development of the nervous system and in the malignancy of human tumors. In terms of biological function, L1CAM comes along in two different flavors: (1) a static function as a cell adhesion molecule that acts as a glue between cells; (2) a motility promoting function that drives cell migration during neural development and supports metastasis of human cancers. Important factors that contribute to the switch in the functional mode of L1CAM are: (1) the cleavage from the cell surface by membrane proximal proteolysis and (2) the ability to change binding partners and engage in L1CAM-integrin binding. Recent studies have shown that the cleavage of L1CAM by metalloproteinases and the binding of L1CAM to integrins via its RGD-motif in the sixth Ig-domain activate signaling pathways distinct from the ones elicited by homophilic binding. Here we highlight important features of L1CAM proteolysis and the signaling of L1CAM via integrin engagement. The novel insights into L1CAM downstream signaling and its regulation during tumor progression and epithelial-mesenchymal transition (EMT) will lead to a better understanding of the dualistic role of L1CAM as a cell adhesion and/or motility promoting cell surface molecule.
Collapse
Affiliation(s)
- Helena Kiefel
- Translational Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
88
|
Dai J, Dalal JS, Thakar S, Henkemeyer M, Lemmon VP, Harunaga JS, Schlatter MC, Buhusi M, Maness PF. EphB regulates L1 phosphorylation during retinocollicular mapping. Mol Cell Neurosci 2012; 50:201-10. [PMID: 22579729 DOI: 10.1016/j.mcn.2012.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/10/2012] [Accepted: 05/02/2012] [Indexed: 01/24/2023] Open
Abstract
Interaction of the cell adhesion molecule L1 with the cytoskeletal adaptor ankyrin is essential for topographic mapping of retinal ganglion cell (RGC) axons to synaptic targets in the superior colliculus (SC). Mice mutated in the L1 ankyrin-binding motif (FIGQY(1229)H) display abnormal mapping of RGC axons along the mediolateral axis of the SC, resembling mouse mutant phenotypes in EphB receptor tyrosine kinases. To investigate whether L1 functionally interacts with EphBs, we investigated the role of EphB kinases in phosphorylating L1 using a phospho-specific antibody to the tyrosine phosphorylated FIGQY(1229) motif. EphB2, but not an EphB2 kinase dead mutant, induced tyrosine phosphorylation of L1 at FIGQY(1229) and perturbed ankyrin recruitment to the membrane in L1-transfected HEK293 cells. Src family kinases mediated L1 phosphorylation at FIGQY(1229) by EphB2. Other EphB receptors that regulate medial-lateral retinocollicular mapping, EphB1 and EphB3, also mediated phosphorylation of L1 at FIGQY(1229). Tyrosine(1176) in the cytoplasmic domain of L1, which regulates AP2/clathrin-mediated endocytosis and axonal trafficking, was not phosphorylated by EphB2. Accordingly mutation of Tyr(1176) to Ala in L1-Y(1176)A knock-in mice resulted in normal retinocollicular mapping of ventral RGC axons. Immunostaining of the mouse SC during retinotopic mapping showed that L1 colocalized with phospho-FIGQY in RGC axons in retinorecipient layers. Immunoblotting of SC lysates confirmed that L1 was phosphorylated at FIGQY(1229) in wild type but not L1-FIGQY(1229)H (L1Y(1229)H) mutant SC, and that L1 phosphorylation was decreased in the EphB2/B3 mutant SC. Inhibition of ankyrin binding in L1Y(1229)H mutant RGCs resulted in increased neurite outgrowth compared to WT RGCs in retinal explant cultures, suggesting that L1-ankyrin binding serves to constrain RGC axon growth. These findings are consistent with a model in which EphB kinases phosphorylate L1 at FIGQY(1229) in retinal axons to modulate L1-ankyrin binding important for mediolateral retinocollicular topography.
Collapse
Affiliation(s)
- Jinxia Dai
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Cherry JF, Carlson AL, Benarba FL, Sommerfeld SD, Verma D, Loers G, Kohn J, Schachner M, Moghe PV. Oriented, multimeric biointerfaces of the L1 cell adhesion molecule: an approach to enhance neuronal and neural stem cell functions on 2-D and 3-D polymer substrates. Biointerphases 2012; 7:22. [PMID: 22589065 DOI: 10.1007/s13758-012-0022-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 02/07/2012] [Indexed: 12/17/2022] Open
Abstract
This article focuses on elucidating the key presentation features of neurotrophic ligands at polymer interfaces. Different biointerfacial configurations of the human neural cell adhesion molecule L1 were established on two-dimensional films and three-dimensional fibrous scaffolds of synthetic tyrosine-derived polycarbonate polymers and probed for surface concentrations, microscale organization, and effects on cultured primary neurons and neural stem cells. Underlying polymer substrates were modified with varying combinations of protein A and poly-D-lysine to modulate the immobilization and presentation of the Fc fusion fragment of the extracellular domain of L1 (L1-Fc). When presented as an oriented and multimeric configuration from protein A-pretreated polymers, L1-Fc significantly increased neurite outgrowth of rodent spinal cord neurons and cerebellar neurons as early as 24 h compared to the traditional presentation via adsorption onto surfaces treated with poly-D-lysine. Cultures of human neural progenitor cells screened on the L1-Fc/polymer biointerfaces showed significantly enhanced neuronal differentiation and neuritogenesis on all protein A oriented substrates. Notably, the highest degree of βIII-tubulin expression for cells in 3-D fibrous scaffolds were observed in protein A oriented substrates with PDL pretreatment, suggesting combined effects of cell attachment to polycationic charged substrates with subcellular topography along with L1-mediated adhesion mediating neuronal differentiation. Together, these findings highlight the promise of displays of multimeric neural adhesion ligands via biointerfacially engineered substrates to "cooperatively" enhance neuronal phenotypes on polymers of relevance to tissue engineering.
Collapse
Affiliation(s)
- Jocie F Cherry
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Hai J, Zhu CQ, Bandarchi B, Wang YH, Navab R, Shepherd FA, Jurisica I, Tsao MS. L1 cell adhesion molecule promotes tumorigenicity and metastatic potential in non-small cell lung cancer. Clin Cancer Res 2012; 18:1914-24. [PMID: 22307136 DOI: 10.1158/1078-0432.ccr-11-2893] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is a highly metastatic cancer with limited treatment options, thus requiring development of novel targeted therapies. Our group previously identified L1 cell adhesion molecule (L1CAM) expression as a member of a prognostic multigene expression signature for NSCLC patients. However, there is little information on the biologic function of L1CAM in lung cancer cells. This study investigates the functional and prognostic role of L1CAM in NSCLC. EXPERIMENTAL DESIGN Cox proportional hazards regression analysis was done on four independent published mRNA expression datasets of primary NSCLCs. L1CAM expression was suppressed by short-hairpin RNA (shRNA)-mediated silencing in human NSCLC cell lines. Effects were assessed by examining in vitro migration and invasion, in vivo tumorigenicity in mice, and metastatic potential using an orthotopic xenograft rat model of lung cancer. RESULTS L1CAM is an independent prognostic marker in resected NSCLC patients, with overexpression strongly associated with worse prognosis. L1CAM downregulation significantly decreased cell motility and invasiveness in lung cancer cells and reduced tumor formation and growth in mice. Cells with L1CAM downregulation were deficient in constitutive extracellular signal-regulated kinase (Erk) activation. Orthotopic studies showed that L1CAM suppression in highly metastatic lung cancer cells significantly decreases spread to distant organs, including bone and kidney. CONCLUSION L1CAM is a novel prometastatic gene in NSCLC, and its downregulation may effectively suppress NSCLC tumor growth and metastasis. Targeted inhibition of L1CAM may be a novel therapy for NSCLC.
Collapse
Affiliation(s)
- Josephine Hai
- Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Bondong S, Kiefel H, Hielscher T, Zeimet AG, Zeillinger R, Pils D, Schuster E, Castillo-Tong DC, Cadron I, Vergote I, Braicu I, Sehouli J, Mahner S, Fogel M, Altevogt P. Prognostic significance of L1CAM in ovarian cancer and its role in constitutive NF-κB activation. Ann Oncol 2012; 23:1795-802. [PMID: 22228447 DOI: 10.1093/annonc/mdr568] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Overexpression of L1-cell adhesion molecule (L1CAM) has been observed for various carcinomas and correlates with poor prognosis and late-stage disease. In vitro, L1CAM enhances proliferation, cell migration, adhesion and chemoresistance. We tested L1CAM and interleukin-1 beta (IL-1β) expression in tumor samples and ascitic fluid from ovarian carcinoma patients to examine its role as a prognostic marker. PATIENTS AND METHODS We investigated tumor samples and ascitic fluid from 232 serous ovarian carcinoma patients for L1CAM by enzyme-linked immunosorbent assay. L1CAM expression was correlated with pathoclinical parameters and patients' outcome. IL-1β levels were measured in tumor cell lysates. Ovarian cancer cell lines were analyzed for the contribution of L1CAM to IL-1β production and nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) activation. RESULTS We observed that L1CAM-expressing tumors show a highly invasive phenotype associated with restricted tumor resectability at primary debulking surgery and increased lymphogenic spread. Soluble L1CAM proved to be a marker for poor progression-free survival and chemoresistance. In ovarian carcinoma cell lines, the specific knock-down of L1CAM reduces IL-1β expression and NF-κB activity. CONCLUSIONS L1CAM expression contributes to the invasive and metastatic phenotype of serous ovarian carcinoma. L1CAM expression and shedding in the tumor microenvironment could contribute to enhanced invasion and tumor progression through increased IL-1β production and NF-κB activation.
Collapse
Affiliation(s)
- S Bondong
- Department of Translational Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Li Z, Lee JW, Mukherjee D, Ji J, Jeswani SP, Black KL, Yu JS. Immunotherapy targeting glioma stem cells--insights and perspectives. Expert Opin Biol Ther 2011; 12:165-78. [PMID: 22200324 DOI: 10.1517/14712598.2012.648180] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most aggressive and lethal primary malignant brain tumor. Although progress has been made in current conventional therapies for GBM patients, the effect of these advances on clinical outcomes has been disappointing. Recent research into the origin of cancers suggest that GBM cancer stem cells (GSC) are the source of initial tumor formation, resistance to current conventional therapeutics and eventual patient relapse. Currently, there are very few studies that apply immunotherapy to target GSC. AREAS COVERED CD133, a cell surface protein, is used extensively as a surface marker to identify and isolate GSC in malignant glioma. We discuss biomarkers such as CD133, L1-cell adhesion molecule (L1-CAM), and A20 of GSC. We review developing novel treatment modalities, including immunotherapy strategies, to target GSC. EXPERT OPINION There are very few reports of preclinical studies targeting GSC. Identification and validation of unique molecular signatures and elucidation of signaling pathways involved in survival, proliferation and differentiation of GSC will significantly advance this field and provide a framework for the rational design of a new generation of antigen-specific, anti-GSC immunotherapy- and nanotechnology-based targeted therapyies. Combined with other therapeutic avenues, GSC-targeting therapies may represent a new paradigm to treat GBM patients.
Collapse
Affiliation(s)
- Zhenhua Li
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8361 West Third Street, Suite 800 E, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Yoon H, Min JK, Lee DG, Kim DG, Koh SS, Hong HJ. L1 cell adhesion molecule and epidermal growth factor receptor activation confer cisplatin resistance in intrahepatic cholangiocarcinoma cells. Cancer Lett 2011; 316:70-6. [PMID: 22088438 DOI: 10.1016/j.canlet.2011.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/27/2011] [Accepted: 10/18/2011] [Indexed: 12/26/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is refractory to conventional chemotherapy. We previously generated chemoresistant ICC (SCK(R)) cells and showed that AKT and ERK signaling conferred cisplatin resistance. Here, we report that epidermal growth factor receptor (EGFR) signaling and L1 cell adhesion molecule (L1CAM) conferred cisplatin resistance in SCK(R) cells in an additive fashion. Activation of EGFR connected to AKT and ERK signaling pathways may induce anti-apoptosis and promote cell proliferation, while L1CAM promoted cell proliferation by mainly activating ERK signaling. Inhibition of EGFR activation or L1ACM greatly sensitized the cells to cisplatin. EGFR and L1CAM may be important targets for ICC therapy.
Collapse
Affiliation(s)
- Hyunho Yoon
- Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
94
|
L1CAM protein expression is associated with poor prognosis in non-small cell lung cancer. Mol Cancer 2011; 10:127. [PMID: 21985405 PMCID: PMC3198986 DOI: 10.1186/1476-4598-10-127] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 10/10/2011] [Indexed: 11/10/2022] Open
Abstract
Background The L1 cell adhesion molecule (L1CAM) is potentially involved in epithelial-mesenchymal transition (EMT). EMT marker expression is of prognostic significance in non-small cell lung cancer (NSCLC). The relevance of L1CAM for NSCLC is unclear. We investigated the protein expression of L1CAM in a cohort of NSCLC patients. L1CAM protein expression was correlated with clinico-pathological parameters including survival and markers of epithelial-mesenchymal transition. Results L1CAM protein expression was found in 25% of squamous cell carcinomas and 24% of adenocarcinomas and correlated with blood vessel invasion and metastasis (p < 0.05). L1CAM was an independent predictor of survival in a multivariate analysis including pT, pN, and pM category, and tumor differentiation grade. L1CAM expression positively correlated with vimentin, beta-catenin, and slug, but inversely with E-cadherin (all p-values < 0.05). E-cadherin expression was higher in the tumor center than in the tumor periphery, whereas L1CAM and vimentin were expressed at the tumor-stroma interface. In L1CAM-negative A549 cells the L1CAM expression was upregulated and matrigel invasion was increased after stimulation with TGF-beta1. In L1CAM-positive SK-LU-1 and SK-LC-LL cells matrigel invasion was decreased after L1CAM siRNA knockdown. Conclusions A subset of NSCLCs with vessel tropism and increased metastasis aberrantly expresses L1CAM. L1CAM is a novel prognostic marker for NSCLCs that is upregulated by EMT induction and appears to be instrumental for enhanced cell invasion.
Collapse
|
95
|
Dihné M, Hartung HP, Seitz RJ. Restoring neuronal function after stroke by cell replacement: anatomic and functional considerations. Stroke 2011; 42:2342-50. [PMID: 21737804 DOI: 10.1161/strokeaha.111.613422] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE A major challenge to effective treatment after stroke is the restoration of neuronal function. In recent years, cell-based therapies for stroke have been explored in experimental animal models, and the results have suggested behavioral improvements. However, the anatomic targets of a cell-based stroke therapy and the relationship of cell grafts to post stroke reorganization are poorly understood, which results in difficulties defining strategies for neuronal substitution. Given that stroke causes a variety of secondary changes at locations beyond the infarct lesion, overcoming these difficulties is even more important. SUMMARY OF REVIEW We describe which brain structures and cell types are candidates for substitution and how new neuronal functionality could be implemented in a damaged brain by capitalizing on current concepts of post stroke plasticity.
Collapse
Affiliation(s)
- Marcel Dihné
- Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | |
Collapse
|
96
|
Zander H, Rawnaq T, von Wedemeyer M, Tachezy M, Kunkel M, Wolters G, Bockhorn M, Schachner M, Izbicki JR, Kaifi J. Circulating levels of cell adhesion molecule L1 as a prognostic marker in gastrointestinal stromal tumor patients. BMC Cancer 2011; 11:189:1-7. [PMID: 21600041 PMCID: PMC3128003 DOI: 10.1186/1471-2407-11-189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 05/22/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND L1 cell adhesion molecule (CD171) is expressed in many malignant tumors and its expression correlates with unfavourable outcome. It thus represents a target for tumor diagnosis and therapy. An earlier study conducted by our group identified L1 expression levels in primary gastrointestinal stromal tumors (GIST) as a prognostic marker. The aim of the current study was to compare L1 serum levels of GIST patients with those of healthy controls and to determine whether levels of soluble L1 in sera could serve as a prognostic marker. METHODS Using a sensitive enzyme-linked immunosorbent assay (ELISA), soluble L1 was measured in sera of 93 GIST patients und 151 healthy controls. Soluble L1 levels were then correlated with clinicopathological data. RESULTS Median levels of soluble L1 were significantly higher (p < 0.001; Mann-Whitney U test) in sera of GIST patients compared to healthy individuals. Median soluble L1 levels were particularly elevated in patients with recurrence and relapse (p < 0.05; Mann Whitney U test). CONCLUSION These results suggest that high soluble L1 levels predict poor prognosis and may thus be a promising tumor marker that can contribute to individualise therapy.
Collapse
Affiliation(s)
- Hilke Zander
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Full-length L1CAM and not its Δ2Δ27 splice variant promotes metastasis through induction of gelatinase expression. PLoS One 2011; 6:e18989. [PMID: 21541352 PMCID: PMC3081839 DOI: 10.1371/journal.pone.0018989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/24/2011] [Indexed: 01/09/2023] Open
Abstract
Tumour-specific splicing is known to contribute to cancer progression. In the case of the L1 cell adhesion molecule (L1CAM), which is expressed in many human tumours and often linked to bad prognosis, alternative splicing results in a full-length form (FL-L1CAM) and a splice variant lacking exons 2 and 27 (SV-L1CAM). It has not been elucidated so far whether SV-L1CAM, classically considered as tumour-associated, or whether FL-L1CAM is the metastasis-promoting isoform. Here, we show that both variants were expressed in human ovarian carcinoma and that exposure of tumour cells to pro-metastatic factors led to an exclusive increase of FL-L1CAM expression. Selective overexpression of one isoform in different tumour cells revealed that only FL-L1CAM promoted experimental lung and/or liver metastasis in mice. In addition, metastasis formation upon up-regulation of FL-L1CAM correlated with increased invasive potential and elevated Matrix metalloproteinase (MMP)-2 and -9 expression and activity in vitro as well as enhanced gelatinolytic activity in vivo. In conclusion, we identified FL-L1CAM as the metastasis-promoting isoform, thereby exemplifying that high expression of a so-called tumour-associated variant, here SV-L1CAM, is not per se equivalent to a decisive role of this isoform in tumour progression.
Collapse
|
98
|
L1 cell adhesion molecule as a novel independent poor prognostic factor in gallbladder carcinoma. Hum Pathol 2011; 42:1476-83. [PMID: 21496863 DOI: 10.1016/j.humpath.2011.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/30/2010] [Accepted: 01/13/2011] [Indexed: 12/16/2022]
Abstract
Gallbladder carcinoma is a lethal malignancy and is hard to cure by current treatment. Thus, identification of molecular prognostic markers to predict gallbladder carcinoma as therapeutic targets is urgently needed. Recent studies have demonstrated that L1 cell adhesion molecule is associated with the prognosis of variable malignancy. Here, we investigated L1 cell adhesion molecule expression in gallbladder carcinoma and its prognostic significance. In this study, we examined L1 cell adhesion molecule expression in tumor specimens from 69 patients with gallbladder carcinoma by immunohistochemistry and analyzed the correlation between L1 cell adhesion molecule expression and clinicopathologic factors or survival. L1 cell adhesion molecule was not expressed in the normal epithelium of the gallbladder but in 63.8% of gallbladder carcinomas, remarkably at the invasive front of the tumors. In addition, L1 cell adhesion molecule expression was significantly associated with high histologic grade, advanced pathologic T stage and clinical stage, and positive venous/lymphatic invasion. Multivariate analyses showed that L1 cell adhesion molecule expression (hazard ratio, 3.503; P = .028) and clinical stage (hazard ratio, 3.091; P = .042) were independent risk factor for disease-free survival. L1 cell adhesion molecule expression in gallbladder carcinoma was significantly correlated with tumor progression and unfavorable clinicopathologic features. L1 cell adhesion molecule expression was an independent poor prognostic factor for disease-free survival in patients with gallbladder carcinoma. Taken together, our findings suggest that L1 cell adhesion molecule expression could be used as a novel prognostic factor for patient survival and might be a potential therapeutic target in gallbladder carcinomas.
Collapse
|
99
|
Cui YF, Xu JC, Hargus G, Jakovcevski I, Schachner M, Bernreuther C. Embryonic stem cell-derived L1 overexpressing neural aggregates enhance recovery after spinal cord injury in mice. PLoS One 2011; 6:e17126. [PMID: 21445247 PMCID: PMC3060805 DOI: 10.1371/journal.pone.0017126] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/21/2011] [Indexed: 12/26/2022] Open
Abstract
An obstacle to early stem cell transplantation into the acutely injured spinal cord is poor survival of transplanted cells. Transplantation of embryonic stem cells as substrate adherent embryonic stem cell-derived neural aggregates (SENAs) consisting mainly of neurons and radial glial cells has been shown to enhance survival of grafted cells in the injured mouse brain. In the attempt to promote the beneficial function of these SENAs, murine embryonic stem cells constitutively overexpressing the neural cell adhesion molecule L1 which favors axonal growth and survival of grafted and imperiled cells in the inhibitory environment of the adult mammalian central nervous system were differentiated into SENAs and transplanted into the spinal cord three days after compression lesion. Mice transplanted with L1 overexpressing SENAs showed improved locomotor function when compared to mice injected with wild-type SENAs. L1 overexpressing SENAs showed an increased number of surviving cells, enhanced neuronal differentiation and reduced glial differentiation after transplantation when compared to SENAs not engineered to overexpress L1. Furthermore, L1 overexpressing SENAs rescued imperiled host motoneurons and parvalbumin-positive interneurons and increased numbers of catecholaminergic nerve fibers distal to the lesion. In addition to encouraging the use of embryonic stem cells for early therapy after spinal cord injury L1 overexpression in the microenvironment of the lesioned spinal cord is a novel finding in its functions that would make it more attractive for pre-clinical studies in spinal cord regeneration and most likely other diseases of the nervous system.
Collapse
Affiliation(s)
- Yi-Fang Cui
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätskrankenhaus Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jin-Chong Xu
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätskrankenhaus Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
| | - Gunnar Hargus
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätskrankenhaus Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
| | - Igor Jakovcevski
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätskrankenhaus Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätskrankenhaus Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Jersey, United States of America
- * E-mail: (MS); (CB)
| | - Christian Bernreuther
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätskrankenhaus Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (MS); (CB)
| |
Collapse
|
100
|
Yang M, Li Y, Chilukuri K, Brady OA, Boulos MI, Kappes JC, Galileo DS. L1 stimulation of human glioma cell motility correlates with FAK activation. J Neurooncol 2011; 105:27-44. [PMID: 21373966 DOI: 10.1007/s11060-011-0557-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 02/21/2011] [Indexed: 11/25/2022]
Abstract
The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass upregulate ADAM10 to proteolyze surface L1 and the resultant ectodomain increases human glioma cell migration and invasion by binding to integrin receptors, activating FAK, and increasing turnover of focal complexes.
Collapse
Affiliation(s)
- Muhua Yang
- Department of Biological Sciences, University of Delaware, Wolf Hall, Newark, DE 19716, USA.
| | | | | | | | | | | | | |
Collapse
|