51
|
Leitao SM, Navikas V, Miljkovic H, Drake B, Marion S, Pistoletti Blanchet G, Chen K, Mayer SF, Keyser UF, Kuhn A, Fantner GE, Radenovic A. Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds. NATURE NANOTECHNOLOGY 2023; 18:1078-1084. [PMID: 37337057 DOI: 10.1038/s41565-023-01412-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/02/2023] [Indexed: 06/21/2023]
Abstract
In current nanopore-based label-free single-molecule sensing technologies, stochastic processes influence the selection of translocating molecule, translocation rate and translocation velocity. As a result, single-molecule translocations are challenging to control both spatially and temporally. Here we present a method using a glass nanopore mounted on a three-dimensional nanopositioner to spatially select molecules, deterministically tethered on a glass surface, for controlled translocations. By controlling the distance between the nanopore and glass surface, we can actively select the region of interest on the molecule and scan it a controlled number of times and at a controlled velocity. Decreasing the velocity and averaging thousands of consecutive readings of the same molecule increases the signal-to-noise ratio by two orders of magnitude compared with free translocations. We demonstrate the method's versatility by assessing DNA-protein complexes, DNA rulers and DNA gaps, achieving down to single-nucleotide gap detection.
Collapse
Affiliation(s)
- S M Leitao
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - V Navikas
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - H Miljkovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - B Drake
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - S Marion
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - G Pistoletti Blanchet
- Laboratory of Molecular Biology, Institute of Life Technologies, School of Engineering, HES-SO Valais-Wallis, Sion, Switzerland
- Central Environmental Laboratory, Institute of Environmental Engineering, ENAC, EPFL, Sion, Switzerland
| | - K Chen
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - S F Mayer
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - U F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - A Kuhn
- Laboratory of Molecular Biology, Institute of Life Technologies, School of Engineering, HES-SO Valais-Wallis, Sion, Switzerland
| | - G E Fantner
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland.
| | - A Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
52
|
Salehirozveh M, Kure Larsen AK, Stojmenovic M, Thei F, Dong M. In-situ PLL-g-PEG Functionalized Nanopore for Enhancing Protein Characterization. Chem Asian J 2023; 18:e202300515. [PMID: 37497831 DOI: 10.1002/asia.202300515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Single-molecule nanopore detection technology has revolutionized proteomics research by enabling highly sensitive and label-free detection of individual proteins. Herein, we designed a small, portable, and leak-free flowcell made of PMMA for nanopore experiments. In addition, we developed an in situ functionalizing PLL-g-PEG approach to produce non-sticky nanopores for measuring the volume of diseases-relevant biomarker, such as the Alpha-1 antitrypsin (AAT) protein. The in situ functionalization method allows continuous monitoring, ensuring adequate functionalization, which can be directly used for translocation experiments. The functionalized nanopores exhibit improved characteristics, including an increased nanopore lifetime and enhanced translocation events of the AAT proteins. Furthermore, we demonstrated the reduction in the translocation event's dwell time, along with an increase in current blockade amplitudes and translocation numbers under different voltage stimuli. The study also successfully measures the single AAT protein volume (253 nm3 ), which closely aligns with the previously reported hydrodynamic volume. The real-time in situ PLL-g-PEG functionalizing method and the developed nanopore flowcell hold great promise for various nanopores applications involving non-sticky single-molecule characterization.
Collapse
Affiliation(s)
- Mostafa Salehirozveh
- Department Of Physics And Astronomy, University of Bologna, Bologna, Italy
- Elements srl, Cesena, Italy
| | - Anne-Kathrine Kure Larsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Sino-Danish Center for Education and Research, Aarhus, Denmark
- University of the Chinese Academy of Sciences, Beijing, China
| | | | | | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Department of Biology - Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
53
|
Xing Y, Rottensteiner A, Ciccone J, Howorka S. Functional Nanopores Enabled with DNA. Angew Chem Int Ed Engl 2023; 62:e202303103. [PMID: 37186432 DOI: 10.1002/anie.202303103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
Membrane-spanning nanopores are used in label-free single-molecule sensing and next-generation portable nucleic acid sequencing, and as powerful research tools in biology, biophysics, and synthetic biology. Naturally occurring protein and peptide pores, as well as synthetic inorganic nanopores, are used in these applications, with their limitations. The structural and functional repertoire of nanopores can be considerably expanded by functionalising existing pores with DNA strands and by creating an entirely new class of nanopores with DNA nanotechnology. This review outlines progress in this area of functional DNA nanopores and outlines developments to open up new applications.
Collapse
Affiliation(s)
- Yongzheng Xing
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Alexia Rottensteiner
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Jonah Ciccone
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Stefan Howorka
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
54
|
Awasthi S, Ying C, Li J, Mayer M. Simultaneous Determination of the Size and Shape of Single α-Synuclein Oligomers in Solution. ACS NANO 2023; 17:12325-12335. [PMID: 37327131 PMCID: PMC10339783 DOI: 10.1021/acsnano.3c01393] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Soluble oligomers of amyloid-forming proteins are implicated as toxic species in the context of several neurodegenerative diseases. Since the size and shape of these oligomers influence their toxicity, their biophysical characterization is essential for a better understanding of the structure-toxicity relationship. Amyloid oligomers are difficult to characterize by conventional approaches due to their heterogeneity in size and shape, their dynamic aggregation process, and their low abundance. This work demonstrates that resistive pulse measurements using polymer-coated solid-state nanopores enable single-particle-level characterization of the size and shape of individual αSyn oligomers in solution within minutes. A comparison of the resulting size distribution with single-particle analysis by transmission electron microscopy and mass photometry reveals good agreement with superior resolution by nanopore-based characterization. Moreover, nanopore-based analysis has the capability to combine rapid size analysis with an approximation of the oligomer shape. Applying this shape approximation to putatively toxic oligomeric species that range in size from 18 ± 7 aggregated monomers (10S) to 29 ± 10 aggregated monomers (15S) and in concentration from picomolar to nanomolar revealed oligomer shapes that agree well with previous estimates by cryo-EM with the added advantage that nanopore-based analysis occurs rapidly, in solution, and has the potential to become a widely accessible technique.
Collapse
Affiliation(s)
- Saurabh Awasthi
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Cuifeng Ying
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Jiali Li
- University
of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
55
|
Zhang X, Lin M, Dai Y, Xia F. Stochastic Sensing of Dynamic Interactions and Chemical Reactions with Nanopores/Nanochannels. Anal Chem 2023. [PMID: 37413795 DOI: 10.1021/acs.analchem.3c00543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Nanopore sensing technology is an emerging analysis method with the advantages of simple operation, high sensitivity, fast output and being label free, and it is widely used in protein analysis, gene sequencing, biomarker detection, and other fields. The confined space of the nanopore provides a place for dynamic interactions and chemical reactions between substances. The use of nanopore sensing technology to track these processes in real time is helpful to understand the interaction/reaction mechanism at the single-molecule level. According to nanopore materials, we summarize the development of biological nanopores and solid-state nanopores/nanochannels in the stochastic sensing of dynamic interactions and chemical reactions. The goal of this paper is to stimulate the interest of researchers and promote the development of this field.
Collapse
Affiliation(s)
- Xiaojin Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
56
|
Saharia J, Bandara YMNDY, Karawdeniya BI, Dwyer JR, Kim MJ. Over One Million DNA and Protein Events Through Ultra-Stable Chemically-Tuned Solid-State Nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300198. [PMID: 37026669 PMCID: PMC10524034 DOI: 10.1002/smll.202300198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Stability, long lifetime, resilience against clogging, low noise, and low cost are five critical cornerstones of solid-state nanopore technology. Here, a fabrication protocol is described wherein >1 million events are obtained from a single solid-state nanopore with both DNA and protein at the highest available lowpass filter (LPF, 100 kHz) of the Axopatch 200B-the highest event count mentioned in literature. Moreover, a total of ≈8.1 million events are reported in this work encompassing the two analyte classes. With the 100 kHz LPF, the temporally attenuated population is negligible while with the more ubiquitous 10 kHz, ≈91% of the events are attenuated. With DNA experiments, the pores are operational for hours (typically >7 h) while the average pore growth is merely ≈0.16 ± 0.1 nm h-1 . The current noise is exceptionally stable with traces typically showing <10 pA h-1 increase in noise. Furthermore, a real-time method to clean and revive pores clogged with analyte with the added benefit of minimal pore growth during cleaning (< 5% of the original diameter) is showcased. The enormity of the data collected herein presents a significant advancement to solid-state pore performance and will be useful for future ventures such as machine learning where large amounts of pristine data are a prerequisite.
Collapse
Affiliation(s)
- Jugal Saharia
- Department of Mechanical Engineering, Southern Methodist University, TX 75275, USA
- Department of Mechanical Engineering, The University of Texas Permian Basin, Odessa, TX 79762, USA
| | | | - Buddini I. Karawdeniya
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601 Australia
| | - Jason R. Dwyer
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI 02881, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, TX 75275, USA
| |
Collapse
|
57
|
Hong H, Wei J, Lei X, Chen H, Sarro PM, Zhang G, Liu Z. Study on the controllability of the fabrication of single-crystal silicon nanopores/nanoslits with a fast-stop ionic current-monitored TSWE method. MICROSYSTEMS & NANOENGINEERING 2023; 9:63. [PMID: 37206700 PMCID: PMC10188523 DOI: 10.1038/s41378-023-00532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/28/2023] [Indexed: 05/21/2023]
Abstract
The application of single-crystal silicon (SCS) nanopore structures in single-molecule-based analytical devices is an emerging approach for the separation and analysis of nanoparticles. The key challenge is to fabricate individual SCS nanopores with precise sizes in a controllable and reproducible way. This paper introduces a fast-stop ionic current-monitored three-step wet etching (TSWE) method for the controllable fabrication of SCS nanopores. Since the nanopore size has a quantitative relationship with the corresponding ionic current, it can be regulated by controlling the ionic current. Thanks to the precise current-monitored and self-stop system, an array of nanoslits with a feature size of only 3 nm was obtained, which is the smallest size ever reported using the TSWE method. Furthermore, by selecting different current jump ratios, individual nanopores of specific sizes were controllably prepared, and the smallest deviation from the theoretical value was 1.4 nm. DNA translocation measurement results revealed that the prepared SCS nanopores possessed the excellent potential to be applied in DNA sequencing.
Collapse
Affiliation(s)
- Hao Hong
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| | - Jiangtao Wei
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| | - Xin Lei
- School of Chemistry, Beihang University, 100084 Beijing, China
| | - Haiyun Chen
- School of Electronic and Information Engineering, Beijing Jiaotong University, 100084 Beijing, China
| | - Pasqualina M. Sarro
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Guoqi Zhang
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Zewen Liu
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
58
|
Xu L, Rymzhanov RA, Zhai P, Zhang S, Hu P, Meng X, Zeng J, Sun Y, Liu J. Direct Fabrication of Sub-10 nm Nanopores in WO 3 Nanosheets Using Single Swift Heavy Ions. NANO LETTERS 2023; 23:4502-4509. [PMID: 37171532 DOI: 10.1021/acs.nanolett.3c00884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extending the fabrication methodology of solid-state nanopores in a wide range of materials is significant in the fields of single molecule detection, nanofluidic devices, and nanofiltration membranes. Here, we demonstrate a new method to directly fabricate size- and density-controllable sub-10 nm nanopores in WO3 nanosheets using single swift heavy ions (SHIs) without any chemical etching process. By selecting ions of different electronic energy losses (Se), nanopores with sizes from 1.8 to 7.4 nm can be created in WO3 nanosheets. The creation efficiency of nanopores achieves ∼100% for Se > 20 keV/nm, and there exists a critical thickness below which nanopores can be created. Combined with molecular dynamics simulations, we propose that the viscosity and surface tension of the transient molten phase caused by SHIs are the key factors for the formation of nanopores. This method paves a way to fabricate solid-state nanopores in materials with a low viscosity and surface tension.
Collapse
Affiliation(s)
- Lijun Xu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ruslan A Rymzhanov
- Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna 141980, Russia
- The Institute of Nuclear Physics, Ibragimov St. 1, Almaty 050032, Kazakhstan
| | - Pengfei Zhai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxia Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peipei Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xuan Meng
- Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Jian Zeng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youmei Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
59
|
Singh SL, Chauhan K, Bharadwaj AS, Kishore V, Laux P, Luch A, Singh AV. Polymer Translocation and Nanopore Sequencing: A Review of Advances and Challenges. Int J Mol Sci 2023; 24:6153. [PMID: 37047125 PMCID: PMC10094227 DOI: 10.3390/ijms24076153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Various biological processes involve the translocation of macromolecules across nanopores; these pores are basically protein channels embedded in membranes. Understanding the mechanism of translocation is crucial to a range of technological applications, including DNA sequencing, single molecule detection, and controlled drug delivery. In this spirit, numerous efforts have been made to develop polymer translocation-based sequencing devices, these efforts include findings and insights from theoretical modeling, simulations, and experimental studies. As much as the past and ongoing studies have added to the knowledge, the practical realization of low-cost, high-throughput sequencing devices, however, has still not been realized. There are challenges, the foremost of which is controlling the speed of translocation at the single monomer level, which remain to be addressed in order to use polymer translocation-based methods for sensing applications. In this article, we review the recent studies aimed at developing control over the dynamics of polymer translocation through nanopores.
Collapse
Affiliation(s)
- Swarn Lata Singh
- Department of Physics, Mahila Mahavidyalaya (MMV), Banaras Hindu University, Varanasi 221005, UP, India
| | - Keerti Chauhan
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Atul S. Bharadwaj
- Department of Physics, CMP Degree College, University of Allahabad, Prayagraj 211002, UP, India
| | - Vimal Kishore
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
60
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
61
|
Siwy ZS, Bruening ML, Howorka S. Nanopores: synergy from DNA sequencing to industrial filtration - small holes with big impact. Chem Soc Rev 2023; 52:1983-1994. [PMID: 36794856 DOI: 10.1039/d2cs00894g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Nanopores in thin membranes play important roles in science and industry. Single nanopores have provided a step-change in portable DNA sequencing and understanding nanoscale transport while multipore membranes facilitate food processing and purification of water and medicine. Despite the unifying use of nanopores, the fields of single nanopores and multipore membranes differ - to varying degrees - in terms of materials, fabrication, analysis, and applications. Such a partial disconnect hinders scientific progress as important challenges are best resolved together. This Viewpoint suggests how synergistic crosstalk between the two fields can provide considerable mutual benefits in fundamental understanding and the development of advanced membranes. We first describe the main differences including the atomistic definition of single pores compared to the less defined conduits in multipore membranes. We then outline steps to improve communication between the two fields such as harmonizing measurements and modelling of transport and selectivity. The resulting insight is expected to improve the rational design of porous membranes. The Viewpoint concludes with an outlook of other developments that can be best achieved by collaboration across the two fields to advance the understanding of transport in nanopores and create next-generation porous membranes tailored for sensing, filtration, and other applications.
Collapse
Affiliation(s)
- Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, Irvine, USA.
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, USA.
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, UK.
| |
Collapse
|
62
|
Dutt S, Karawdeniya BI, Bandara YMNDY, Afrin N, Kluth P. Ultrathin, High-Lifetime Silicon Nitride Membranes for Nanopore Sensing. Anal Chem 2023; 95:5754-5763. [PMID: 36930050 DOI: 10.1021/acs.analchem.3c00023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Thin membranes are highly sought-after for nanopore-based single-molecule sensing, and fabrication of such membranes becomes challenging in the ≲10 nm thickness regime where a plethora of useful molecule information can be acquired by nanopore sensing. In this work, we present a scalable and controllable method to fabricate silicon nitride (SixNy) membranes with effective thickness down to ∼1.5 nm using standard silicon processing and chemical etching using hydrofluoric acid (HF). Nanopores were fabricated using the controlled breakdown method with estimated pore diameters down to ∼1.8 nm yielding events >500,000 and >1,800,000 from dsDNA and bovine serum albumin (BSA) protein, respectively, demonstrating the high-performance and extended lifetime of the pores fabricated through our membranes. We used two different compositions of SixNy for membrane fabrication (near-stoichiometric and silicon-rich SixNy) and compared them against commercial membranes. The final thicknesses of the membranes were measured using ellipsometry and were in good agreement with the values calculated from the bulk etch rates and DNA translocation characteristics. The stoichiometry and the density of the membrane layers were characterized with Rutherford backscattering spectrometry while the nanopores were characterized using pH-conductance, conductivity-conductance, and power spectral density (PSD) graphs.
Collapse
Affiliation(s)
- Shankar Dutt
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Buddini I Karawdeniya
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Y M Nuwan D Y Bandara
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia.,Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Nahid Afrin
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Patrick Kluth
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
63
|
Hu G, Yan H, Xi G, Gao Z, Wu Z, Lu Z, Tu J. Nanopore sensors for single molecular protein detection: Research progress based on computer simulations. IET Nanobiotechnol 2023; 17:257-268. [PMID: 36924083 DOI: 10.1049/nbt2.12124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
As biological macromolecules, proteins are involved in important cellular functions ranging from DNA replication and biosynthesis to metabolic signalling and environmental sensing. Protein sequencing can help understand the relationship between protein function and structure, and provide key information for disease diagnosis and new drug design. Nanopore sensors are a novel technology to achieve the goal of label-free and high-throughput protein sequencing. In recent years, nanopore-based biosensors have been widely used in the detection and analysis of biomolecules such as DNA, RNA, and proteins. At the same time, computer simulations can describe the transport of proteins through nanopores at the atomic level. This paper reviews the applications of nanopore sensors in protein sequencing over the past decade and the solutions to key problems from a computer simulation perspective, with the aim of pointing the way to the future of nanopore protein sequencing.
Collapse
Affiliation(s)
- Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Han Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Guohao Xi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhuwei Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ziqing Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
64
|
Guan X, Li H, Chen L, Qi G, Jin Y. Glass Capillary-Based Nanopores for Single Molecule/Single Cell Detection. ACS Sens 2023; 8:427-442. [PMID: 36670058 DOI: 10.1021/acssensors.2c02102] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A glass capillary-based nanopore (G-nanopore), due to its tapered tip, easy tunability in orifice size, and especially its flexible surface modifications that can be tailored to effectively capture and enhance the ionic current signal of single entities (single molecules, single cells, and single particles), offers a powerful and nanoconfined sensing platform for diverse biological measurements of single cells and single molecules. Compared with other artificial two-dimensional solid-state nanopores, its conical tip and high spatial and temporal resolution characteristics facilitate noninvasive single molecule and selected area (subcellular) single cell detections (e.g., DNA mutations, highly expressed proteins, and small molecule markers that reflect the change characteristics of the tumor), as a small G-nanopore (≤100 nm) does negligible damage to cell functions and cell membrane integrity when inserted through the cell membrane. In this brief review, we summarize the preparation of G-nanopores and discuss the advantages of them as solid-state sensing platforms for single molecule and single cell detection applications as well as for cancer diagnosis and treatment applications. We also describe the current bottlenecks that limit the widespread use of G-nanopores in clinical applications and provide an outlook on future developments. The brief review will provide the reader with a quick survey of this field and facilitate the rapid development of a G-nanopore sensing platform for future tumor diagnosis and personalized medicine based on single-molecule/single-cell bioassay.
Collapse
Affiliation(s)
- Xin Guan
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Limei Chen
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin, P. R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
65
|
MacKenzie M, Argyropoulos C. An Introduction to Nanopore Sequencing: Past, Present, and Future Considerations. MICROMACHINES 2023; 14:459. [PMID: 36838159 PMCID: PMC9966803 DOI: 10.3390/mi14020459] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
There has been significant progress made in the field of nanopore biosensor development and sequencing applications, which address previous limitations that restricted widespread nanopore use. These innovations, paired with the large-scale commercialization of biological nanopore sequencing by Oxford Nanopore Technologies, are making the platforms a mainstay in contemporary research laboratories. Equipped with the ability to provide long- and short read sequencing information, with quick turn-around times and simple sample preparation, nanopore sequencers are rapidly improving our understanding of unsolved genetic, transcriptomic, and epigenetic problems. However, there remain some key obstacles that have yet to be improved. In this review, we provide a general introduction to nanopore sequencing principles, discussing biological and solid-state nanopore developments, obstacles to single-base detection, and library preparation considerations. We present examples of important clinical applications to give perspective on the potential future of nanopore sequencing in the field of molecular diagnostics.
Collapse
Affiliation(s)
- Morgan MacKenzie
- Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Christos Argyropoulos
- Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Clinical & Translational Science Center, Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
66
|
Chen P, Sun Z, Wang J, Liu X, Bai Y, Chen J, Liu A, Qiao F, Chen Y, Yuan C, Sha J, Zhang J, Xu LQ, Li J. Portable nanopore-sequencing technology: Trends in development and applications. Front Microbiol 2023; 14:1043967. [PMID: 36819021 PMCID: PMC9929578 DOI: 10.3389/fmicb.2023.1043967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
Sequencing technology is the most commonly used technology in molecular biology research and an essential pillar for the development and applications of molecular biology. Since 1977, when the first generation of sequencing technology opened the door to interpreting the genetic code, sequencing technology has been developing for three generations. It has applications in all aspects of life and scientific research, such as disease diagnosis, drug target discovery, pathological research, species protection, and SARS-CoV-2 detection. However, the first- and second-generation sequencing technology relied on fluorescence detection systems and DNA polymerization enzyme systems, which increased the cost of sequencing technology and limited its scope of applications. The third-generation sequencing technology performs PCR-free and single-molecule sequencing, but it still depends on the fluorescence detection device. To break through these limitations, researchers have made arduous efforts to develop a new advanced portable sequencing technology represented by nanopore sequencing. Nanopore technology has the advantages of small size and convenient portability, independent of biochemical reagents, and direct reading using physical methods. This paper reviews the research and development process of nanopore sequencing technology (NST) from the laboratory to commercially viable tools; discusses the main types of nanopore sequencing technologies and their various applications in solving a wide range of real-world problems. In addition, the paper collates the analysis tools necessary for performing different processing tasks in nanopore sequencing. Finally, we highlight the challenges of NST and its future research and application directions.
Collapse
Affiliation(s)
- Pin Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zepeng Sun
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Jiawei Wang
- School of Computer Science and Technology, Southeast University, Nanjing, China
| | - Xinlong Liu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Yun Bai
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jiang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Anna Liu
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Feng Qiao
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Yang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Chenyan Yuan
- Clinical Laboratory, Southeast University Zhongda Hospital, Nanjing, China
| | - Jingjie Sha
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Jinghui Zhang
- School of Computer Science and Technology, Southeast University, Nanjing, China
| | - Li-Qun Xu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China,*Correspondence: Li-Qun Xu, ✉
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China,Jian Li, ✉
| |
Collapse
|
67
|
Liu H, Zhou Q, Wang W, Fang F, Zhang J. Solid-State Nanopore Array: Manufacturing and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205680. [PMID: 36470663 DOI: 10.1002/smll.202205680] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Nanopore brings extraordinary properties for a variety of potential applications in various industrial sectors. Since manufacturing of solid-state nanopore is first reported in 2001, solid-state nanopore has become a hot topic in the recent years. An increasing number of manufacturing methods have been reported, with continuously decreased sizes from hundreds of nanometers at the beginning to ≈1 nm until recently. To enable more robust, sensitive, and reliable devices required by the industry, researchers have started to explore the possible methods to manufacture nanopore array which presents unprecedented challenges on the fabrication efficiency, accuracy and repeatability, applicable materials, and cost. As a result, the exploration of fabrication of nanopore array is still in the fledging period with various bottlenecks. In this article, a wide range of methods of manufacturing nanopores are summarized along with their achievable morphologies, sizes, inner structures for characterizing the main features, based on which the manufacturing of nanopore array is further addressed. To give a more specific idea on the potential applications of nanopore array, some representative practices are introduced such as DNA/RNA sequencing, energy conversion and storage, water desalination, nanosensors, nanoreactors, and dialysis.
Collapse
Affiliation(s)
- Hongshuai Liu
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Qin Zhou
- College of Basic Medicine, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, China
| | - Wei Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, Chengdu, Sichuan, 611731, China
| | - Fengzhou Fang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
- State Key Laboratory of Precision Measuring Technology and Instruments, Laboratory of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, Tianjin, 300072, China
| | - Jufan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
| |
Collapse
|
68
|
Takashima Y, Komoto Y, Ohshiro T, Nakatani K, Taniguchi M. Quantitative Microscopic Observation of Base-Ligand Interactions via Hydrogen Bonds by Single-Molecule Counting. J Am Chem Soc 2023; 145:1310-1318. [PMID: 36597667 DOI: 10.1021/jacs.2c11260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chemical properties have been based on statistical averages since the introduction of Avogadro's number. The lack of suitable methods for counting identified single molecules has posed challenges to counting statistics. The selectivity, affinity, and mode of hydrogen bonding between base and small molecules that make up DNA, which is vital for living organisms, have not yet been revealed at the single molecule level. Here, we show the quantitation of the above-mentioned parameters via single-molecule counting based on the combination of single-molecule electrical measurements and AI. The binding selectivity values of five ligands to four different base molecules were evaluated quantitatively by determining the ratio of the number of aggregates in a solution mixture of base molecules and a ligand. In addition, we show the ligand dependence of the mode and number of microscopic hydrogen bonds via single-molecule counting and quantum chemical calculations.
Collapse
Affiliation(s)
- Yusuke Takashima
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka567-0047, Japan
| | - Yuki Komoto
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka567-0047, Japan.,Artificial Intelligence Research Center, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka567-0047, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), OsakaUniversity, 8-1 Mihogaoka, Ibaraki, Osaka567-0047, Japan
| | - Takahito Ohshiro
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka567-0047, Japan
| | - Kazuhiko Nakatani
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka567-0047, Japan
| | | |
Collapse
|
69
|
Salehirozveh M, Porro A, Thei F. Large-scale production of polyimide micropore-based flow cells for detecting nano-sized particles in fluids. RSC Adv 2023; 13:873-880. [PMID: 36686911 PMCID: PMC9811244 DOI: 10.1039/d2ra07423k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
In diagnostic and sequencing applications, solid-state nanopores hold significant promise as a single-molecule sensing platform. The fabrication of precisely sized pores has traditionally been challenging, laborious, expensive, and inefficient, which has limited its applications until recently. To overcome this problem, this paper proposes a novel, reliable, cost-effective, portable, mass-productive, robust, and ease-of-use micropore flow cell that works based on the resistive pulse sensor (RPS) technique in order to distinguish the different sizes of c nanoparticles. RPS is a robust and informative technique that can provide valuable details of the size, shape, charge, and individual particle concentrations in the media. By femtosecond laser drilling of a polyimide substrate as an alternate material, translocation of 100, 300, and 350 nm polystyrene nanoparticles in PBS buffer was distinguished by 0.1, 1, and 2 nA current blockade levels, respectively. This is the first time a micropore has been opened in a polyimide membrane using a femtosecond laser in a single step. The experimental and theoretical investigation, scanning electron microscopy and focused ion beam spectroscopy were performed to comprehensively explain the micropore's performance. We showed that our innovative micropore-based flow cell could distinguish nano-sized particles in fluids, and it can be used in large-scale production because of its simplicity and cost-effectiveness.
Collapse
Affiliation(s)
- Mostafa Salehirozveh
- Department Of Physics And Astronomy, University of BolognaBolognaItaly,Elements SRLCesenaItaly
| | - Alessandro Porro
- Department of Biosciences, University of MilanMilanItaly,Elements SRLCesenaItaly
| | | |
Collapse
|
70
|
Wang Y, Zhu Z, Yu C, Wu R, Zhu J, Li B. Lego-Like Catalytic Hairpin Assembly Enables Controllable DNA-Oligomer Formation and Spatiotemporal Amplification in Single Molecular Signaling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206283. [PMID: 36436946 DOI: 10.1002/smll.202206283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
While the solid-state nanopore shows increasing potential during sensitive and label-free single molecular analysis, target concentration and signal amplification method is in urgent need. In this article, a solution via designing a model nucleic acid circuit reaction that can produce "Y" shape-structure three-way DNA oligomers with controllable size and polymerization degree is proposed. Such a so-called lego-like three-way catalytic hairpin assembly (LK-3W-CHA) can provide both concentration amplification (via CHA circuit) and programmable size control (via lego-like building mode) to enhance spatiotemporal resolution in single molecular sensing of solid-state nanopore. Oligomers containing 1-4 DNA three-way junctions (Y monomers, Y1-Y4) are designed in proof-of-concept experiments and applications. When the oligomers are applied to direct translocation measurements, Y2-Y4 can significantly increase the signal resolution and stability than that of Y1. Meanwhile, Y1 to Y4 can be used as the tags on the long DNA carrier to provide very legible secondary signals for specific identification, multiple assays, and information storage. Compared with other possible tags, Y1-Y4 provides higher signal density and amplitude, and quasi-linear "inner reference" for each other, which may provide more systematic, reliable, and controllable experimental results.
Collapse
Affiliation(s)
- Yesheng Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhentong Zhu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Chunmiao Yu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ruiping Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinbo Zhu
- Cavendish Lab, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
71
|
Mojtabavi M, Greive SJ, Antson AA, Wanunu M. High-Voltage Biomolecular Sensing Using a Bacteriophage Portal Protein Covalently Immobilized within a Solid-State Nanopore. J Am Chem Soc 2022; 144:22540-22548. [PMID: 36455212 DOI: 10.1021/jacs.2c08514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The application of nanopores as label-free, single-molecule biosensors for electrical or optical probing of structural features in biomolecules has been widely explored. While biological nanopores (membrane proteins and bacteriophage portal proteins) and solid-state nanopores (thin films and two-dimensional materials) have been extensively employed, the third class of nanopores known as hybrid nanopores, where an artificial membrane substitutes the organic support membrane of proteins, has been only sparsely studied due to challenges in implementation. G20c portal protein contains a natural DNA pore that is used by viruses for filling their capsid with viral genomic DNA. We have previously developed a lipid-free hybrid nanopore by "corking" the G20c portal protein into a SiNx nanopore. Herein, we demonstrate that through chemical functionalization of the synthetic nanopore, covalent linkage between the solid-state pore and the G20c portal protein considerably improves the hybrid pore stability, lifetime, and voltage resilience. Moreover, we demonstrate electric-field-driven and motor protein-mediated transport of DNA molecules through this hybrid nanopore. Our integrated protein/solid-state device can serve as a robust and durable framework for sensing and sequencing at high voltages, potentially providing higher resolution, higher signal-to-noise ratio, and higher throughput compared to the more conventional membrane-embedded protein platforms.
Collapse
Affiliation(s)
- Mehrnaz Mojtabavi
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sandra J Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
72
|
Ma J, Wang S, Wan X, Ma D, Xiao Y, Hao Q, Yang N. The unrevealed 3D morphological evolution of annealed nanoporous thin films. NANOSCALE 2022; 14:17072-17079. [PMID: 36373437 DOI: 10.1039/d2nr04014j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanoporous materials (sub-10 nm in diameter) have potential applications in chips, biosensors, thermoelectrics, desalination and other fields due to their large surface-to-volume ratio. Thermal annealing is a preferred technique to precisely control the ultra-fine nanopore size. Here, the 3D morphological evolution of a membrane with periodic nanopores by thermal annealing is studied. It is found that the evolution is determined by the combination of the membrane thickness, the initial nanopore radius and the periodic length of the porous pattern, rather than the previously suggested ratio between the membrane thickness and pore radius. High-temperature annealing experiments and molecular dynamics simulations are performed to confirm the rationality of the newly proposed model. Energy analysis demonstrates that surface energy minimization is the driving force of the morphological evolution. The local minimum of energy in the new model provides the possibility of thermal stability of nanoporous silicon as a thermoelectric material. This study provides guidance for the mass production of nanoporous membranes with high-temperature annealing.
Collapse
Affiliation(s)
- Jianqiang Ma
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Sien Wang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721-0119, USA.
| | - Xiao Wan
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Dengke Ma
- NNU-SULI Thermal Energy Research Center (NSTER) & Center for Quantum Transport and Thermal Energy Science (CQTES), School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yue Xiao
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721-0119, USA.
| | - Qing Hao
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721-0119, USA.
| | - Nuo Yang
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
73
|
Xia Z, Scott A, Keneipp R, Chen J, Niedzwiecki DJ, DiPaolo B, Drndić M. Silicon Nitride Nanopores Formed by Simple Chemical Etching: DNA Translocations and TEM Imaging. ACS NANO 2022; 16:18648-18657. [PMID: 36251751 DOI: 10.1021/acsnano.2c07240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We demonstrate DNA translocations through silicon nitride pores formed by simple chemical etching on glass substrates using microscopic amounts of hydrofluoric acid. DNA translocations and transmission electron microscopy (TEM) prove the fabrication of nanopores and allow their characterization. From ionic measurements on 318 chips, we report the effective pore diameters ranging from zero (pristine membranes) and sub-nm to over 100 nm, within 50 μm diameter membranes. The combination of ionic conductance, DNA current blockades, TEM imaging, and electron energy loss spectroscopy (EELS) provides comprehensive information about the pore area and number, from single to few pores, and pore structure. We also show the formation of thinned membrane regions as precursors of pores. The average pore density, about 5 × 10-4 pores/μm2, allows pore number adjustment statistically (0, 1, or more). This simple and affordable chemical method for making solid-state nanopores accelerates their adoption for DNA sensing and characterization applications.
Collapse
Affiliation(s)
- Zehui Xia
- Goeppert LLC, Philadelphia, Pennsylvania 19146, United States
| | - Andre Scott
- Goeppert LLC, Philadelphia, Pennsylvania 19146, United States
| | - Rachael Keneipp
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joshua Chen
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Brian DiPaolo
- Goeppert LLC, Philadelphia, Pennsylvania 19146, United States
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
74
|
Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown. Chem Asian J 2022; 17:e202200888. [DOI: 10.1002/asia.202200888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Indexed: 11/19/2022]
|
75
|
Lin CY, Fotis R, Xia Z, Kavetsky K, Chou YC, Niedzwiecki DJ, Biondi M, Thei F, Drndić M. Ultrafast Polymer Dynamics through a Nanopore. NANO LETTERS 2022; 22:8719-8727. [PMID: 36315497 DOI: 10.1021/acs.nanolett.2c03546] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrathin nanopore sensors allow single-molecule and polymer measurements at sub-microsecond time resolution enabled by high current signals (∼10-30 nA). We demonstrate for the first time the experimental probing of the ultrafast translocation and folded dynamics of double-stranded DNA (dsDNA) through a nanopore at 10 MHz bandwidth with acquisition of data points per 25 ns (150 MB/s). By introducing a rigorous algorithm, we are able to accurately identify each current level present within translocation events and elucidate the dynamic folded and unfolded behaviors. The remarkable sensitivity of this system reveals distortions of short-lived folded states at a lower bandwidth. This work revisits probing of dsDNA as a model polymer and develops broadly applicable methods. The combined improvements in sensor signals, instrumentation, and large data analysis methods uncover biomolecular dynamics at unprecedentedly small time scales.
Collapse
Affiliation(s)
- Chih-Yuan Lin
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Riley Fotis
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zehui Xia
- Goeppert LLC, Philadelphia, Pennsylvania 19146, United States
| | - Kyril Kavetsky
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Material Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yung-Chien Chou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
76
|
Ying YL, Hu ZL, Zhang S, Qing Y, Fragasso A, Maglia G, Meller A, Bayley H, Dekker C, Long YT. Nanopore-based technologies beyond DNA sequencing. NATURE NANOTECHNOLOGY 2022; 17:1136-1146. [PMID: 36163504 DOI: 10.1038/s41565-022-01193-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/02/2022] [Indexed: 06/16/2023]
Abstract
Inspired by the biological processes of molecular recognition and transportation across membranes, nanopore techniques have evolved in recent decades as ultrasensitive analytical tools for individual molecules. In particular, nanopore-based single-molecule DNA/RNA sequencing has advanced genomic and transcriptomic research due to the portability, lower costs and long reads of these methods. Nanopore applications, however, extend far beyond nucleic acid sequencing. In this Review, we present an overview of the broad applications of nanopores in molecular sensing and sequencing, chemical catalysis and biophysical characterization. We highlight the prospects of applying nanopores for single-protein analysis and sequencing, single-molecule covalent chemistry, clinical sensing applications for single-molecule liquid biopsy, and the use of synthetic biomimetic nanopores as experimental models for natural systems. We suggest that nanopore technologies will continue to be explored to address a number of scientific challenges as control over pore design improves.
Collapse
Affiliation(s)
- Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Zheng-Li Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Shengli Zhang
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Yujia Qing
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Alessio Fragasso
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| | - Amit Meller
- Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel.
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
77
|
Cao Z, Yadav P, Barati Farimani A. Which 2D Material is Better for DNA Detection: Graphene, MoS 2, or MXene? NANO LETTERS 2022; 22:7874-7881. [PMID: 36165777 DOI: 10.1021/acs.nanolett.2c02603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite much research on characterizing 2D materials for DNA detection with nanopore technology, a thorough comparison between the performance of different 2D materials is currently lacking. In this work, using extensive molecular dynamics simulations, we compare nanoporous graphene, MoS2 and titanium carbide MXene (Ti3C2) for their DNA detection performance and sensitivity. The ionic current and residence time of DNA are characterized in each nanoporous materials by performing hundreds of simulations. We devised two statistical measures including the Kolmogorov-Smirnov test and the absolute pairwise difference to compare the performance of nanopores. We found that graphene nanopore is the most sensitive membrane for distinguishing DNA bases. The MoS2 is capable of distinguishing the A and T bases from the C and G bases better than graphene and MXene. Physisorption and the orientation of DNA in nanopores are further investigated to provide molecular insight into the performance characteristics of different nanopores.
Collapse
Affiliation(s)
- Zhonglin Cao
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Prakarsh Yadav
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Amir Barati Farimani
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
78
|
Yang L, Hu J, Li MC, Xu M, Gu ZY. Solid-state nanopore: chemical modifications, interactions, and functionalities. Chem Asian J 2022; 17:e202200775. [PMID: 36071031 DOI: 10.1002/asia.202200775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Indexed: 11/08/2022]
Abstract
Nanopore technology is a burgeoning detection technology for single-molecular sensing and ion rectification. Solid-state nanopores have attracted more and more attention because of their higher stability and tunability than biological nanopores. However, solid-state nanopores still suffer the drawbacks of low signal-to-noise ratio and low resolution, which hinders their practical applications. Thus, developing operatical and useful methods to overcome the shortages of solid-state nanopores is urgently needed. Here, we summarize the recent research on nanopore modification to achieve this goal. Modifying solid-state nanopores with different coating molecules can improve the selectivity, sensitivity, and stability of nanopores. The modified molecules can introduce different functions into the nanopores, greatly expanding the applications of this novel detection technology. We hope that this review of nanopore modification will provide new ideas for this field.
Collapse
Affiliation(s)
- Lei Yang
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Jun Hu
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Min-Chao Li
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Ming Xu
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Zhi-Yuan Gu
- Nanjing Normal University, College of Chemistry and Materials Science, 1 Wenyuan Rd, 210023, Nanjing, CHINA
| |
Collapse
|
79
|
Dhanasekar NN, Thiyagarajan D, Bhatia D. DNA origami in the quest for membrane piercing. Chem Asian J 2022; 17:e202200591. [PMID: 35947734 DOI: 10.1002/asia.202200591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Indexed: 11/09/2022]
Abstract
The tool kit for label-free single-molecule sensing, nucleic acid sequencing (DNA, RNA and protein) and other biotechnological applications has been significantly broadened due to the wide range of available nanopore-based technologies. Currently, various sources of nanopores, including biological, fabricated solid-state, hybrid and recently de novo chemically synthesized ion-like channels have put in use for rapid single-molecule sensing of biomolecules and other diagnostic applications. At length scales of hundreds of nanometers, DNA nanotechnology, particularly DNA origami-based devices, enables the assembly of complex and dynamic 3-dimensional nanostructures, including nanopores with precise control over the size/shape. DNA origami technology has enabled to construct nanopores by DNA alone or hybrid architects with solid-state nanopore devices or nanocapillaries. In this review, we briefly discuss the nanopore technique that uses DNA nanotechnology to construct such individual pores in lipid-based systems or coupled with other solid-state devices, nanocapillaries for enhanced biosensing function. We summarize various DNA-based design nanopores and explore the sensing properties of such DNA channels. Apart from DNA origami channels we also pointed the design principles of RNA nanopores for peptide sensing applications.
Collapse
Affiliation(s)
- Naresh Niranjan Dhanasekar
- Johns Hopkins University, Chemical and Biomolecular Engineering, 3400 North Charles Street, 21218, Baltimore, UNITED STATES
| | - Durairaj Thiyagarajan
- Helmholtz-Zentrum fur Infektionsforschung GmbH, Pharmacy and Infections, 66123, Saarbrücken, GERMANY
| | - Dhiraj Bhatia
- Indian Institute of Technology Gandhinagar, Biological Engineering, 382355, Gandhi Nagar, INDIA
| |
Collapse
|
80
|
Jeong KB, Kim JS, Dhanasekar NN, Lee MK, Chi SW. Application of nanopore sensors for biomolecular interactions and drug discovery. Chem Asian J 2022; 17:e202200679. [PMID: 35929410 DOI: 10.1002/asia.202200679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 11/07/2022]
Abstract
Biomolecular interactions, including protein-protein, protein-nucleic acid, and protein/nucleic acid-ligand interactions, play crucial roles in various cellular signaling and biological processes, and offer attractive therapeutic targets in numerous human diseases. Currently, drug discovery is limited by the low efficiency and high cost of conventional ensemble-averaging-based techniques for biomolecular interaction analysis and high-throughput drug screening. Nanopores are an emerging technology for single-molecule sensing of biomolecules. Owing to the robust advantages of single-molecule sensing, nanopore sensors have contributed tremendously to nucleic acid sequencing and disease diagnostics. In this minireview, we summarize the recent developments and outlooks in single-molecule sensing of various biomolecular interactions for drug discovery applications using biological and solid-state nanopore sensors.
Collapse
Affiliation(s)
- Ki-Baek Jeong
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Naresh Niranjan Dhanasekar
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
| | - Mi-Kyung Lee
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| |
Collapse
|
81
|
Sun Z, Ahmad M, Wang S. Ion transport property, structural features, and applications of cellulose-based nanofluidic platforms — A review. Carbohydr Polym 2022; 289:119406. [DOI: 10.1016/j.carbpol.2022.119406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/02/2022]
|
82
|
Ying C, Ma T, Xu L, Rahmani M. Localized Nanopore Fabrication via Controlled Breakdown. NANOMATERIALS 2022; 12:nano12142384. [PMID: 35889608 PMCID: PMC9323289 DOI: 10.3390/nano12142384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022]
Abstract
Nanopore sensors provide a unique platform to detect individual nucleic acids, proteins, and other biomolecules without the need for fluorescent labeling or chemical modifications. Solid-state nanopores offer the potential to integrate nanopore sensing with other technologies such as field-effect transistors (FETs), optics, plasmonics, and microfluidics, thereby attracting attention to the development of commercial instruments for diagnostics and healthcare applications. Stable nanopores with ideal dimensions are particularly critical for nanopore sensors to be integrated into other sensing devices and provide a high signal-to-noise ratio. Nanopore fabrication, although having benefited largely from the development of sophisticated nanofabrication techniques, remains a challenge in terms of cost, time consumption and accessibility. One of the latest developed methods—controlled breakdown (CBD)—has made the nanopore technique broadly accessible, boosting the use of nanopore sensing in both fundamental research and biomedical applications. Many works have been developed to improve the efficiency and robustness of pore formation by CBD. However, nanopores formed by traditional CBD are randomly positioned in the membrane. To expand nanopore sensing to a wider biomedical application, controlling the localization of nanopores formed by CBD is essential. This article reviews the recent strategies to control the location of nanopores formed by CBD. We discuss the fundamental mechanism and the efforts of different approaches to confine the region of nanopore formation.
Collapse
Affiliation(s)
- Cuifeng Ying
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
- Correspondence:
| | - Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China;
| | - Lei Xu
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| | - Mohsen Rahmani
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| |
Collapse
|
83
|
Xie L, Tian Y, Shi F, Song C, Tie G, Zhou G, Shao J, Liu S. Nonlinear Effects of Pulsed Ion Beam in Ultra-High Resolution Material Removal. MICROMACHINES 2022; 13:mi13071097. [PMID: 35888914 PMCID: PMC9321010 DOI: 10.3390/mi13071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Ion beam sputtering is widely utilized in the area of ultra-high precision fabrication, coating, and discovering the microworld. A pulsed ion beam (PIB) can achieve higher material removal resolution while maintaining traditional ion beam removal performance and macro removal efficiency. In this paper, a 0.01 s pulse width beam is used to sputter atom layer deposition (ALD) coated samples. The nano-scale phenomenon is observed by high-resolution TEM. The results show that when the cumulative sputtering time is less than 1.7 s, the sputtering removal of solid by ion beam is accompanied by a nonlinear effect. Furthermore, the shortest time (0.05 s) and lowest thickness (0.35 nm) necessary to remove a uniform layer of material were established. The definition of its nonlinear effect under a very small removal amount guides industrial ultra-high precision machining. It reveals that PIB not only has high removal resolution on nanoscale, but can also realize high volume removal efficiency and large processing diameter at the same time. These features make PIB promising in the manufacturing of high power/energy laser optics, lithography objective lens, MEMS, and other ultra-high precision elements.
Collapse
Affiliation(s)
- Lingbo Xie
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (L.X.); (F.S.); (C.S.); (G.T.); (G.Z.)
- Hunan Key Laboratory of Ultra-Precision Machining Technology, Changsha 410073, China
- Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China
| | - Ye Tian
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (L.X.); (F.S.); (C.S.); (G.T.); (G.Z.)
- Hunan Key Laboratory of Ultra-Precision Machining Technology, Changsha 410073, China
- Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; (J.S.); (S.L.)
- Correspondence: ; Tel.: +86-158-7414-6066
| | - Feng Shi
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (L.X.); (F.S.); (C.S.); (G.T.); (G.Z.)
- Hunan Key Laboratory of Ultra-Precision Machining Technology, Changsha 410073, China
- Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China
| | - Ci Song
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (L.X.); (F.S.); (C.S.); (G.T.); (G.Z.)
- Hunan Key Laboratory of Ultra-Precision Machining Technology, Changsha 410073, China
- Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China
| | - Guipeng Tie
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (L.X.); (F.S.); (C.S.); (G.T.); (G.Z.)
- Hunan Key Laboratory of Ultra-Precision Machining Technology, Changsha 410073, China
- Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China
| | - Gang Zhou
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (L.X.); (F.S.); (C.S.); (G.T.); (G.Z.)
- Hunan Key Laboratory of Ultra-Precision Machining Technology, Changsha 410073, China
- Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China
| | - Jianda Shao
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; (J.S.); (S.L.)
| | - Shijie Liu
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; (J.S.); (S.L.)
| |
Collapse
|
84
|
Controllable Shrinking Fabrication of Solid-State Nanopores. MICROMACHINES 2022; 13:mi13060923. [PMID: 35744537 PMCID: PMC9228871 DOI: 10.3390/mi13060923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
Nanopores have attracted widespread attention in DNA sequencing and protein or biomarker detection, owning to the single-molecule-scale detection accuracy. Despite the most use of naturally biological nanopores before, solid-state nanopores are widely developed with strong robustness, controllable sizes and geometries, a wide range of materials available, as well as flexible manufacturing. Therefore, various techniques typically based on focused ion beam or electron beam have been explored to drill nanopores directly on free-standing nanofilms. To further reduce and sculpt the pore size and shape for nano or sub-nano space-time sensing precision, various controllable shrinking technologies have been employed. Correspondingly, high-energy-beam-induced contraction with direct visual feedback represents the most widely used. The ability to change the pore diameter was attributed to surface tension induced original material migration into the nanopore center or new material deposition on the nanopore surface. This paper reviews typical solid-state nanopore shrinkage technologies, based on the careful summary of their principles and characteristics in particularly size and morphology changes. Furthermore, the advantages and disadvantages of different methods have also been compared completely. Finally, this review concludes with an optimistic outlook on the future of solid-state nanopores.
Collapse
|
85
|
Tan X, Lv C, Chen H. Advances of nanopore-based sensing techniques for contaminants evaluation of food and agricultural products. Crit Rev Food Sci Nutr 2022; 63:10866-10879. [PMID: 35687354 DOI: 10.1080/10408398.2022.2085238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food safety assurance systems are becoming more stringent in response to the growing food safety problems. Rapid, sensitive, and reliable detection technology is a prerequisite for the establishment of food safety assurance systems. Nanopore technology has been taken as one of the emerging technology capable of dealing with the detection of harmful contaminants as efficiently as possible due to the advantage of label-free, high-throughput, amplification-free, and rapid detection features. Start with the history of nanopore techniques, this review introduced the underlying knowledge of detection mechanism of nanopore-based sensing techniques. Meanwhile, sensing interfaces for the construction of nanopore sensors are comprehensively summarized. Moreover, this review covers the current advances of nanopore techniques in the application of food safety screening. Currently, the establishment of nanopore sensing devices is mainly based on the blocking current phenomenon. Sensing interfaces including biological nanopores, solid-state nanopores, DNA origami, and de novo designed nanopores can be used in the manufacture of sensing devices. Food harmful substances, including heavy metals, veterinary drugs, pesticide residues, food toxins, and other harmful substances can be quickly determined by nanopore-based sensors. Moreover, the combination of nanopore techniques with advanced materials has become one of the most effective methods to improve sensing properties.
Collapse
Affiliation(s)
- Xiaoyi Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hai Chen
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
86
|
Das N, Chakraborty B, RoyChaudhuri C. A review on nanopores based protein sensing in complex analyte. Talanta 2022; 243:123368. [DOI: 10.1016/j.talanta.2022.123368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/30/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
|
87
|
Recent Advances in Aptamer‐Based Nanopore Sensing at Single‐Molecule Resolution. Chem Asian J 2022; 17:e202200364. [DOI: 10.1002/asia.202200364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Indexed: 11/07/2022]
|
88
|
Zhang M, Harms ZD, Greibe T, Starr CA, Zlotnick A, Jacobson SC. In-Plane, In-Series Nanopores with Circular Cross Sections for Resistive-Pulse Sensing. ACS NANO 2022; 16:7352-7360. [PMID: 35500295 PMCID: PMC9626396 DOI: 10.1021/acsnano.1c08680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Resistive-pulse sensing with solid-state nanopores is a sensitive, label-free technique for analyzing single molecules in solution. To add functionality to resistive-pulse measurements, direct coupling of the nanopores to other pores and nanoscale fluidic elements, e.g., reactors, separators, and filters, in the same device is an important next step. One approach is monolithic fabrication of the fluidic elements in the plane of the substrate, but methods to generate pores with circular cross sections are needed to improve sensing performance with in-plane devices. Here, we report a fabrication method that directly patterns nanopores with circular cross sections in series and in plane with the substrate. A focused ion beam instrument is used to mill a lamella in a nanochannel and, subsequently, bore a nanopore through the lamella. The diameter and geometry of the nanopore are controlled by the current and dose of the ion beam and by the tilt angle and thickness of the lamella. We fabricated devices with vertical and tilted lamellae and nanopores with diameters from 40 to 90 nm in cylindrical and conical geometries. To test device performance, we conducted resistive-pulse measurements of hepatitis B virus capsids. Current pulses from T = 3 capsids (∼31 nm diameter) and T = 4 capsids (∼35 nm diameter) were well resolved and exhibited relative pulse amplitudes (Δi/i) up to 5 times higher than data obtained on nanopores with rectangular cross sections. For smaller pore diameters (<45 nm), which approach the diameters of the capsids, a dramatic increase in the pulse amplitude was observed for both T = 3 and T = 4 capsids. Two and three pores fabricated in series further improved the resolution between the relative pulse amplitude distributions for the T = 3 and T = 4 capsids by up to 2-fold.
Collapse
Affiliation(s)
- Mi Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States of America
| | - Zachary D. Harms
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States of America
| | - Tine Greibe
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States of America
| | - Caleb A. Starr
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7003, United States of America
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7003, United States of America
| | - Stephen C. Jacobson
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States of America
| |
Collapse
|
89
|
Hu YL, Hua Y, Pan ZQ, Qian JH, Yu XY, Bao N, Huo XL, Wu ZQ, Xia XH. PNP Nanofluidic Transistor with Actively Tunable Current Response and Ionic Signal Amplification. NANO LETTERS 2022; 22:3678-3684. [PMID: 35442043 DOI: 10.1021/acs.nanolett.2c00312] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inspired by electronic transistors, electric field gating has been adopted to manipulate ionic currents of smart nanofluidic devices. Here, we report a PNP nanofluidic bipolar junction transistor (nBJT) consisting of one polyaniline (PANI) layer sandwiched between two polyethylene terephthalate (PET) nanoporous membranes. The PNP nBJT exhibits three different responses of currents (quasi-linear, rectification, and sigmoid) due to the counterbalance between surface charge distribution and base voltage applied in the nanofluidic channels; thus, they can be switched by base voltage. Four operating modes (cutoff, active, saturation, and breakdown mode) occur in the collector response currents. Under optimal conditions, the PNP nBJT exhibits an average current gain of up to 95 in 100 mM KCl solution at a low base voltage of 0.2 V. The present nBJT is promising for fabrication of nanofluidic devices with logical-control functions for analysis of single molecules.
Collapse
Affiliation(s)
- Yu-Lin Hu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Hua
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Zhong-Qin Pan
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Jia-Han Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Yang Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Lei Huo
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Zeng-Qiang Wu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
90
|
Wu Y, Gooding JJ. The application of single molecule nanopore sensing for quantitative analysis. Chem Soc Rev 2022; 51:3862-3885. [PMID: 35506519 DOI: 10.1039/d1cs00988e] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanopore-based sensors typically work by monitoring transient pulses in conductance via current-time traces as molecules translocate through the nanopore. The unique property of being able to monitor single molecules gives nanopore sensors the potential as quantitative sensors based on the counting of single molecules. This review provides an overview of the concepts and fabrication of nanopore sensors as well as nanopore sensing with a view toward using nanopore sensors for quantitative analysis. We first introduce the classification of nanopores and highlight their applications in molecular identification with some pioneering studies. The review then shifts focus to recent strategies to extend nanopore sensors to devices that can rapidly and accurately quantify the amount of an analyte of interest. Finally, future prospects are provided and briefly discussed. The aim of this review is to aid in understanding recent advances, challenges, and prospects for nanopore sensors for quantitative analysis.
Collapse
Affiliation(s)
- Yanfang Wu
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
91
|
Abrao-Nemeir I, Zaki O, Meyer N, Lepoitevin M, Torrent J, Janot JM, Balme S. Combining ionic diode, resistive pulse and membrane for detection and separation of anti-CD44 antibody. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
92
|
Lin K, Chen C, Wang C, Lian P, Wang Y, Xue S, Sha J, Chen Y. Fabrication of solid-state nanopores. NANOTECHNOLOGY 2022; 33:272003. [PMID: 35349996 DOI: 10.1088/1361-6528/ac622b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Nanopores are valuable single-molecule sensing tools that have been widely applied to the detection of DNA, RNA, proteins, viruses, glycans, etc. The prominent sensing platform is helping to improve our health-related quality of life and accelerate the rapid realization of precision medicine. Solid-state nanopores have made rapid progress in the past decades due to their flexible size, structure and compatibility with semiconductor fabrication processes. With the development of semiconductor fabrication techniques, materials science and surface chemistry, nanopore preparation and modification technologies have made great breakthroughs. To date, various solid-state nanopore materials, processing technologies, and modification methods are available to us. In the review, we outline the recent advances in nanopores fabrication and analyze the virtues and limitations of various membrane materials and nanopores drilling techniques.
Collapse
Affiliation(s)
- Kabin Lin
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Congsi Wang
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Peiyuan Lian
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Yan Wang
- School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Song Xue
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
93
|
Chen X, Zhao X, Ma R, Hu Y, Cui C, Mi Z, Dou R, Pan D, Shan X, Wang L, Fan C, Lu X. Ionic Current Fluctuation and Orientation of Tetrahedral DNA Nanostructures in a Solid-State Nanopore. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107237. [PMID: 35092143 DOI: 10.1002/smll.202107237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Understanding the dynamic behavior of a nanostructure translocating through a nanopore is important for various applications. In this paper, the characteristics in ion current traces of tetrahedral DNA nanostructures (TDN) translocating through a solid-state nanopore are examined, by combined experimental and theoretical simulations. The results of finite element analysis reveal the correlation between orientation of TDN and the conductance blockade. The experimentally measured fluctuations in the conductance blockade, expressed as voltage-dependent histogram profiles, are consistent with the simulation, revealing the nature of a random distribution in orientation and weak influence of electrostatic and viscous torques. The step changes in orientation of a TDN during translocation are further explained by the collision with the nanopore, while the gradual changes in orientation illustrate the impact of a weak torque field in the nano-fluidic channel. The results demonstrate a general method and basic understanding in the dynamic behavior of nanostructures translocating through solid-state nanopores.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinjia Zhao
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruiping Ma
- Beijing Normal University, Beijing, 100088, China
| | - Ying Hu
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chengjun Cui
- Shanghai Frontier Innovation Research Institute, Shanghai, 201108, China
| | - Zhuang Mi
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruifen Dou
- Beijing Normal University, Beijing, 100088, China
| | - Dun Pan
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University Shanghai, Shanghai, 200030, China
| | - Xinyan Shan
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Lihua Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Center for Excellence in Topological Quantum Computation, Beijing, 100190, China
| |
Collapse
|
94
|
Review of the use of nanodevices to detect single molecules. Anal Biochem 2022; 654:114645. [DOI: 10.1016/j.ab.2022.114645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022]
|
95
|
Tsutsui M, Arima A, Yokota K, Baba Y, Kawai T. Ionic heat dissipation in solid-state pores. SCIENCE ADVANCES 2022; 8:eabl7002. [PMID: 35148181 PMCID: PMC8836805 DOI: 10.1126/sciadv.abl7002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Energy dissipation in solid-state nanopores is an important issue for their use as a sensor for detecting and analyzing individual objects in electrolyte solution by ionic current measurements. Here, we report on evaluations of heating via diffusive ion transport in the nanoscale conduits using thermocouple-embedded SiNx pores. We found a linear rise in the nanopore temperature with the input electrical power suggestive of steady-state ionic heat dissipation in the confined nanospace. Meanwhile, the heating efficiency was elucidated to become higher in a smaller pore due to a rapid decrease in the through-water thermal conduction for cooling the fluidic channel. The scaling law suggested nonnegligible influence of the heating to raise the temperature of single-nanometer two-dimensional nanopores by a few kelvins under the standard cross-membrane voltage and ionic strength conditions. The present findings may be useful in advancing our understanding of ion and mass transport phenomena in nanopores.
Collapse
Affiliation(s)
- Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Akihide Arima
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan
| | - Kazumichi Yokota
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
96
|
Xing XL, Liao QB, Ahmed SA, Wang D, Ren S, Qin X, Ding XL, Xi K, Ji LN, Wang K, Xia XH. Single Molecule DNA Analysis Based on Atomic-Controllable Nanopores in Covalent Organic Frameworks. NANO LETTERS 2022; 22:1358-1365. [PMID: 35080401 DOI: 10.1021/acs.nanolett.1c04633] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We explored the application of two-dimensional covalent organic frameworks (2D COFs) in single molecule DNA analysis. Two ultrathin COF nanosheets were exfoliated with pore sizes of 1.1 nm (COF-1.1) and 1.3 nm (COF-1.3) and covered closely on a quartz nanopipette with an orifice of 20 ± 5 nm. COF nanopores exhibited high size selectivity for fluorescent dyes and DNA molecules. The transport of long (calf thymus DNA) and short (DNA-80) DNA molecules through the COF nanopores was studied. Because of the strong interaction between DNA bases and the organic backbones of COFs, the DNA-80 was transported through the COF-1.1 nanopore at a speed of 270 μs/base, which is the slowest speed ever observed compared with 2D inorganic nanomaterials. This study shows that the COF nanosheet can work individually as a nanopore monomer with controllable pore size like its biological counterparts.
Collapse
Affiliation(s)
- Xiao-Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiao-Bo Liao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Saud Asif Ahmed
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dongni Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shibin Ren
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 317000, P. R. China
| | - Xiang Qin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kai Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Na Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
97
|
Hu R, Liu C, Lu W, Wei G, Yu D, Li W, Chen P, Li G, Zhao Q. Probing the Effect of Ubiquitinated Histone on Mononucleosomes by Translocation Dynamics Study through Solid-State Nanopores. NANO LETTERS 2022; 22:888-895. [PMID: 35060726 DOI: 10.1021/acs.nanolett.1c02978] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Post-translational modifications (PTMs), such as ubiquitination, are critically important in regulating genetic expressions by adjusting the nucleosome stability. A fast and label-free technology inspecting dynamic nucleosome structures can facilitate the interrogation of PTMs effects. Here we leverage the advantages of mechanically stable solid-state nanopores and detect the effect of a ubiquitinated histone on mononucleosomes at the single-molecule level. By comparing the translocation dynamics of natural and cross-linked mononucleosomes, we verified that the nucleosomal DNA unravelled from histones in natural mononucleosomes. Furthermore, we found that a turning point of voltage corresponds to the onset of nucleosome rupture. More importantly, we reveal that ubH2A stabilizes the nucleosome by shifting the turning point to a larger value and investigated the effect of ubiquitination on different histones (ubH2A and ubH2B). These findings open promising possibilities for developing a miniaturized and portable device for the fast screening of PTMs on nucleosomes.
Collapse
Affiliation(s)
- Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenlong Lu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Guanghao Wei
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Dapeng Yu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
- Institute for Quantum Science and Technology and Department of Physics, South University of Science and Technology of China (SUSTech), Shenzhen 518055, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ping Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
98
|
Choudhary A, Maffeo C, Aksimentiev A. Multi-resolution simulation of DNA transport through large synthetic nanostructures. Phys Chem Chem Phys 2022; 24:2706-2716. [PMID: 35050282 PMCID: PMC8855663 DOI: 10.1039/d1cp04589j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Modeling and simulation has become an invaluable partner in development of nanopore sensing systems. The key advantage of the nanopore sensing method - the ability to rapidly detect individual biomolecules as a transient reduction of the ionic current flowing through the nanopore - is also its key deficiency, as the current signal itself rarely provides direct information about the chemical structure of the biomolecule. Complementing experimental calibration of the nanopore sensor readout, coarse-grained and all-atom molecular dynamics simulations have been used extensively to characterize the nanopore translocation process and to connect the microscopic events taking place inside the nanopore to the experimentally measured ionic current blockades. Traditional coarse-grained simulations, however, lack the precision needed to predict ionic current blockades with atomic resolution whereas traditional all-atom simulations are limited by the length and time scales amenable to the method. Here, we describe a multi-resolution framework for modeling electric field-driven passage of DNA molecules and nanostructures through to-scale models of synthetic nanopore systems. We illustrate the method by simulating translocation of double-stranded DNA through a solid-state nanopore and a micron-scale slit, capture and translocation of single-stranded DNA in a double nanopore system, and modeling ionic current readout from a DNA origami nanostructure passage through a nanocapillary. We expect our multi-resolution simulation framework to aid development of the nanopore field by providing accurate, to-scale modeling capability to research laboratories that do not have access to leadership supercomputer facilities.
Collapse
Affiliation(s)
- Adnan Choudhary
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
99
|
Wang C, O'Hagan MP, Li Z, Zhang J, Ma X, Tian H, Willner I. Photoresponsive DNA materials and their applications. Chem Soc Rev 2022; 51:720-760. [PMID: 34985085 DOI: 10.1039/d1cs00688f] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoresponsive nucleic acids attract growing interest as functional constituents in materials science. Integration of photoisomerizable units into DNA strands provides an ideal handle for the reversible reconfiguration of nucleic acid architectures by light irradiation, triggering changes in the chemical and structural properties of the nanostructures that can be exploited in the development of photoresponsive functional devices such as machines, origami structures and ion channels, as well as environmentally adaptable 'smart' materials including nanoparticle aggregates and hydrogels. Moreover, photoresponsive DNA components allow control over the composition of dynamic supramolecular ensembles that mimic native networks. Beyond this, the modification of nucleic acids with photosensitizer functionality enables these biopolymers to act as scaffolds for spatial organization of electron transfer reactions mimicking natural photosynthesis. This review provides a comprehensive overview of these exciting developments in the design of photoresponsive DNA materials, and showcases a range of applications in catalysis, sensing and drug delivery/release. The key challenges facing the development of the field in the coming years are addressed, and exciting emergent research directions are identified.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ziyuan Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
100
|
Cairns-Gibson DF, Cockroft SL. Functionalised nanopores: chemical and biological modifications. Chem Sci 2022; 13:1869-1882. [PMID: 35308845 PMCID: PMC8848921 DOI: 10.1039/d1sc05766a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Nanopore technology has established itself as a powerful tool for single-molecule studies. By analysing changes in the ion current flowing through a single transmembrane channel, a wealth of molecular information can be elucidated. Early studies utilised nanopore technology for sensing applications, and subsequent developments have diversified its remit. Nanopores can be synthetic, solid-state, or biological in origin, but recent work has seen these boundaries blurred as hybrid functionalised pores emerge. The modification of existing pores and the construction of novel synthetic pores has been an enticing goal for creating systems with tailored properties and functionality. Here, we explore chemically functionalised biological pores and the bio-inspired functionalisation of solid-state pores, highlighting how the convergence of these domains provides enhanced functionality. The convergence of chemistry, biology, and solid-state approaches enables the construction hybrid nanopores with enhanced single-molecule applications.![]()
Collapse
Affiliation(s)
- Dominic F. Cairns-Gibson
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|