51
|
Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1078-88. [PMID: 22562055 DOI: 10.1016/j.bbalip.2012.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/15/2012] [Accepted: 04/13/2012] [Indexed: 11/23/2022]
Abstract
The mammalian Golgi complex is a highly dynamic organelle consisting of stacks of flattened cisternae with associated coated vesicles and membrane tubules that contribute to cargo import and export, intra-cisternal trafficking, and overall Golgi architecture. At the morphological level, all of these structures are continuously remodeled to carry out these trafficking functions. Recent advances have shown that continual phospholipid remodeling by phospholipase A (PLA) and lysophospholipid acyltransferase (LPAT) enzymes, which deacylate and reacylate Golgi phospholipids, respectively, contributes to this morphological remodeling. Here we review the identification and characterization of four cytoplasmic PLA enzymes and one integral membrane LPAT that participate in the dynamic functional organization of the Golgi complex, and how some of these enzymes are integrated to determine the relative abundance of COPI vesicle and membrane tubule formation. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
52
|
Moore KD, Chen R, Cilluffo M, Golden JA, Phelps PE. Lis1 reduction causes tangential migratory errors in mouse spinal cord. J Comp Neurol 2012; 520:1198-211. [PMID: 21935943 PMCID: PMC4079006 DOI: 10.1002/cne.22768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in human LIS1 cause abnormal neuronal migration and a smooth brain phenotype known as lissencephaly. Lis1+/− (Pafah1b1) mice show defective lamination in the cerebral cortex and hippocampal formation, whereas homozygous mutations result in embryonic lethality. Given that Lis1 is highly expressed in embryonic neurons, we hypothesized that sympathetic and parasympathetic preganglionic neurons (SPNs and PPNs) would exhibit migratory defects in Lis1+/− mice. The initial radial migration of SPNs and PPNs that occurs together with somatic motor neurons appeared unaffected in Lis1+/− mice. The subsequent dorsally directed tangential migration, however, was aberrant in a subset of these neurons. At all embryonic ages analyzed, the distribution of SPNs and PPNs in Lis1+/− mice was elongated dorsoventrally compared with Lis1+/+ mice. Individual cell bodies of ectopic preganglionic neurons were found in the ventral spinal cord with their leading processes oriented along their dorsal migratory trajectory. By birth, Lis1+/− SPNs and PPNs were separated into distinct groups, those that were correctly, and those incorrectly positioned in the intermediate horn. As mispositioned SPNs and PPNs still were detected in P30 Lis1+/− mice, we conclude that these neurons ceased migration prematurely. Additionally, we found that a dorsally located group of somatic motor neurons in the lumbar spinal cord, the retrodorsolateral nucleus, showed delayed migration in Lis1+/− mice. These results suggest that Lis1 is required for the dorsally directed tangential migration of many sympathetic and parasympathetic preganglionic neurons and a subset of somatic motor neurons.
Collapse
Affiliation(s)
- Katherine D. Moore
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California 90095-7239
| | - Renee Chen
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California 90095-7239
| | - Marianne Cilluffo
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California 90095-7239
| | - Jeffrey A. Golden
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Patricia E. Phelps
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California 90095-7239
| |
Collapse
|
53
|
The epilepsies. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
54
|
|
55
|
Ye S, Fowler TW, Pavlos NJ, Ng PY, Liang K, Feng Y, Zheng M, Kurten R, Manolagas SC, Zhao H. LIS1 regulates osteoclast formation and function through its interactions with dynein/dynactin and Plekhm1. PLoS One 2011; 6:e27285. [PMID: 22073305 PMCID: PMC3207863 DOI: 10.1371/journal.pone.0027285] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
Microtubule organization and lysosomal secretion are both critical for the activation and function of osteoclasts, highly specialized polykaryons that are responsible for bone resorption and skeletal homeostasis. Here, we have identified a novel interaction between microtubule regulator LIS1 and Plekhm1, a lysosome-associated protein implicated in osteoclast secretion. Decreasing LIS1 expression by shRNA dramatically attenuated osteoclast formation and function, as shown by a decreased number of mature osteoclasts differentiated from bone marrow macrophages, diminished resorption pits formation, and reduced level of CTx-I, a bone resorption marker. The ablated osteoclast formation in LIS1-depleted macrophages was associated with a significant decrease in macrophage proliferation, osteoclast survival and differentiation, which were caused by reduced activation of ERK and AKT by M-CSF, prolonged RANKL-induced JNK activation and declined expression of NFAT-c1, a master transcription factor of osteoclast differentiation. Consistent with its critical role in microtubule organization and dynein function in other cell types, we found that LIS1 binds to and colocalizes with dynein in osteoclasts. Loss of LIS1 led to disorganized microtubules and aberrant dynein function. More importantly, the depletion of LIS1 in osteoclasts inhibited the secretion of Cathepsin K, a crucial lysosomal hydrolase for bone degradation, and reduced the motility of osteoclast precursors. These results indicate that LIS1 is a previously unrecognized regulator of osteoclast formation, microtubule organization, and lysosomal secretion by virtue of its ability to modulate dynein function and Plekhm1.
Collapse
Affiliation(s)
- Shiqiao Ye
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lee S, Lee WH, Lee MS, Mori K, Suk K. Regulation by lipocalin-2 of neuronal cell death, migration, and morphology. J Neurosci Res 2011; 90:540-50. [PMID: 22038922 DOI: 10.1002/jnr.22779] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/21/2011] [Accepted: 07/27/2011] [Indexed: 11/11/2022]
Abstract
A secreted protein, lipocalin-2 (LCN2), has been previously shown to regulate a variety of cellular phenotypes such as cell death, migration, and morphology. The role of LCN2, however, appears to be different depending on the cellular context. Here, we investigated how LCN2 influences neuronal phenotypes by using primary cortical neuronal cell cultures and neuroblastoma cell lines as a model. When exposed to LCN2 protein, neurons and neuroblastoma cells were sensitized to cell death evoked by nitric oxide, oxidative stress, and tumor necrosis factor-α (TNF-α). A forced expression of lcn2 in glia enhanced neuronal cell death in cocultures of glia and neurons, indicating that both exogenous protein addition and endogenous expression of lcn2 give rise to similar results. Iron and BCL2-interacting mediator of cell death (BIM) protein were involved in LCN2-induced cell death sensitization, based on the studies using iron donor, chelator, siderophore, and short hairpin RNA (shRNA)-mediated knockdown of bim expression. Furthermore, cell migration assay and immunofluorescence microscopic observation revealed that LCN2 accelerated neuronal motility and process extension, suggesting multiple roles for LCN2 in the regulation of neuronal cell death, migration, and morphology.
Collapse
Affiliation(s)
- Shinrye Lee
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | |
Collapse
|
57
|
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111:6130-85. [PMID: 21910409 PMCID: PMC3196595 DOI: 10.1021/cr200085w] [Citation(s) in RCA: 865] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
58
|
Zheng M, Cierpicki T, Burdette AJ, Utepbergenov D, Jańczyk PŁ, Derewenda U, Stukenberg TP, Caldwell KA, Derewenda ZS. Structural features and chaperone activity of the NudC protein family. J Mol Biol 2011; 409:722-41. [PMID: 21530541 PMCID: PMC3159028 DOI: 10.1016/j.jmb.2011.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 11/19/2022]
Abstract
The NudC family consists of four conserved proteins with representatives in all eukaryotes. The archetypal nudC gene from Aspergillus nidulans is a member of the nud gene family that is involved in the maintenance of nuclear migration. This family also includes nudF, whose human orthologue, Lis1, codes for a protein essential for brain cortex development. Three paralogues of NudC are known in vertebrates: NudC, NudC-like (NudCL), and NudC-like 2 (NudCL2). The fourth distantly related member of the family, CML66, contains a NudC-like domain. The three principal NudC proteins have no catalytic activity but appear to play as yet poorly defined roles in proliferating and dividing cells. We present crystallographic and NMR studies of the human NudC protein and discuss the results in the context of structures recently deposited by structural genomics centers (i.e., NudCL and mouse NudCL2). All proteins share the same core CS domain characteristic of proteins acting either as cochaperones of Hsp90 or as independent small heat shock proteins. However, while NudC and NudCL dimerize via an N-terminally located coiled coil, the smaller NudCL2 lacks this motif and instead dimerizes as a result of unique domain swapping. We show that NudC and NudCL, but not NudCL2, inhibit the aggregation of several target proteins, consistent with an Hsp90-independent heat shock protein function. Importantly, and in contrast to several previous reports, none of the three proteins is able to form binary complexes with Lis1. The availability of structural information will be of help in further studies on the cellular functions of the NudC family.
Collapse
Affiliation(s)
- Meiying Zheng
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Tomasz Cierpicki
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alexander J. Burdette
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL and Department of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL
| | - Darkhan Utepbergenov
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Paweł. Ł. Jańczyk
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Urszula Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Todd P. Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Kim A. Caldwell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL and Department of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL
| | - Zygmunt S. Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
59
|
Abstract
The architectonics of the mammalian brain arise from a remarkable range of directed cell migrations, which orchestrate the emergence of cortical neuronal layers and pattern brain circuitry. At different stages of cortical histogenesis, specific modes of cell motility are essential to the stepwise formation of cortical architecture. These movements range from interkinetic nuclear movements in the ventricular zone, to migrations of early-born, postmitotic polymorphic cells into the preplate, to the radial migration of precursors of cortical output neurons across the thickening cortical wall, and the vast, tangential migrations of interneurons from the basal forebrain into the emerging cortical layers. In all cases, actomyosin motors act in concert with cell adhesion receptor systems to provide the force and traction needed for forward movement. As key regulators of actin and microtubule cytoskeletons, cell polarity, and adhesion, the Rho GTPases play critical roles in CNS neuronal migration. This review will focus on the different types of migration in the developing neocortex and cerebellar cortex, and the role of the Rho GTPases, their regulators and effectors in these CNS migrations, with particular emphasis on their involvement in radial migration.
Collapse
Affiliation(s)
- Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, NY 10065, USA
| | | | | |
Collapse
|
60
|
Namba T, Ming GL, Song H, Waga C, Enomoto A, Kaibuchi K, Kohsaka S, Uchino S. NMDA receptor regulates migration of newly generated neurons in the adult hippocampus via Disrupted-In-Schizophrenia 1 (DISC1). J Neurochem 2011; 118:34-44. [PMID: 21517847 DOI: 10.1111/j.1471-4159.2011.07282.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the mammalian brain, new neurons are continuously generated throughout life in the dentate gyrus (DG) of the hippocampus. Previous studies have established that newborn neurons migrate a short distance to be integrated into a pre-existing neuronal circuit in the hippocampus. How the migration of newborn neurons is governed by extracellular signals, however, has not been fully understood. Here, we report that NMDA receptor (NMDA-R)-mediated signaling is essential for the proper migration and positioning of newborn neurons in the DG. An intraperitoneal injection of the NMDA-R antagonists, memantine, or 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) into adult male mice caused the aberrant positioning of newborn neurons, resulting in the overextension of their migration in the DG. Interestingly, we revealed that the administration of NMDA-R antagonists leads to a decrease in the expression of Disrupted-In-Schizophrenia 1 (DISC1), a candidate susceptibility gene for major psychiatric disorders such as schizophrenia, which is also known as a critical regulator of neuronal migration in the DG. Furthermore, the overextended migration of newborn neurons induced by the NMDA-R antagonists was significantly rescued by exogenous expression of DISC1. Collectively, these results suggest that the NMDA-R signaling pathway governs the migration of newborn neurons via the regulation of DISC1 expression in the DG.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Neurochemistry, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Reddy SS, Connor TE, Weeber EJ, Rebeck W. Similarities and differences in structure, expression, and functions of VLDLR and ApoER2. Mol Neurodegener 2011; 6:30. [PMID: 21554715 PMCID: PMC3113299 DOI: 10.1186/1750-1326-6-30] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/09/2011] [Indexed: 11/29/2022] Open
Abstract
Very Low Density Lipoprotein Receptor (VLDLR) and Apolipoprotein E Receptor 2 (ApoER2) are important receptors in the brain for mediating the signaling effects of the extracellular matrix protein Reelin, affecting neuronal function in development and in the adult brain. VLDLR and ApoER2 are members of the low density lipoprotein family, which also mediates the effects of numerous other extracellular ligands, including apolipoprotein E. Although VLDLR and ApoER2 are highly homologous, they differ in a number of ways, including structural differences, expression patterns, alternative splicing, and binding of extracellular and intracellular proteins. This review aims to summarize important aspects of VLDLR and ApoER2 that may account for interesting recent findings that highlight the unique functions of each receptor.
Collapse
Affiliation(s)
- Sunil S Reddy
- Department of Neuroscience; Georgetown University Medical Center, 3970 Reservoir Rd, NW, Washington, DC, 20007, USA.
| | | | | | | |
Collapse
|
62
|
Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly. Acta Neuropathol 2011; 121:149-70. [PMID: 21046408 PMCID: PMC3037170 DOI: 10.1007/s00401-010-0768-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/01/2010] [Accepted: 10/23/2010] [Indexed: 01/24/2023]
Abstract
Type I lissencephaly or agyria-pachygyria is a rare developmental disorder which results from a defect of neuronal migration. It is characterized by the absence of gyri and a thickening of the cerebral cortex and can be associated with other brain and visceral anomalies. Since the discovery of the first genetic cause (deletion of chromosome 17p13.3), six additional genes have been found to be responsible for agyria–pachygyria. In this review, we summarize the current knowledge concerning these genetic disorders including clinical, neuropathological and molecular results. Genetic alterations of LIS1, DCX, ARX, TUBA1A, VLDLR, RELN and more recently WDR62 genes cause migrational abnormalities along with more complex and subtle anomalies affecting cell proliferation and differentiation, i.e., neurite outgrowth, axonal pathfinding, axonal transport, connectivity and even myelination. The number and heterogeneity of clinical, neuropathological and radiological defects suggest that type I lissencephaly now includes several forms of cerebral malformations. In vitro experiments and mutant animal studies, along with neuropathological abnormalities in humans are of invaluable interest for the understanding of pathophysiological mechanisms, highlighting the central role of cytoskeletal dynamics required for a proper achievement of cell proliferation, neuronal migration and differentiation.
Collapse
|
63
|
van Haagen HHHBM, 't Hoen PAC, de Morrée A, van Roon-Mom WMC, Peters DJM, Roos M, Mons B, van Ommen GJ, Schuemie MJ. In silico discovery and experimental validation of new protein-protein interactions. Proteomics 2011; 11:843-53. [DOI: 10.1002/pmic.201000398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/17/2010] [Accepted: 11/25/2010] [Indexed: 01/27/2023]
|
64
|
Zhao S, Frotscher M. Go or stop? Divergent roles of Reelin in radial neuronal migration. Neuroscientist 2011; 16:421-34. [PMID: 20817919 DOI: 10.1177/1073858410367521] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuronal migration is an essential step of brain development and is controlled by a variety of cellular proteins and extracellular matrix molecules. Reelin, an extracellular matrix protein, is required for neuronal migration. Over the past 10 years, the Reelin signaling cascade has been studied intensively. However, the role of Reelin in neuronal migration has remained unclear. Different Reelin fragments and different Reelin receptors suggest multiple functions of Reelin. In this review, the authors focus on Reelin effects on the actin cytoskeleton of migrating neurons.
Collapse
Affiliation(s)
- Shanting Zhao
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
65
|
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res 2010; 50:152-92. [PMID: 21185866 DOI: 10.1016/j.plipres.2010.12.001] [Citation(s) in RCA: 389] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A₂s (PLA₂s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA₂s (sPLA₂s), Ca²+-dependent cytosolic PLA₂s (cPLA₂s), Ca²+-independent PLA₂s (iPLA₂s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA₂s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA₂ and iPLA₂ families and the extracellular sPLA₂ family are recognized as the "big three". From a general viewpoint, cPLA₂α (the prototypic cPLA₂ plays a major role in the initiation of arachidonic acid metabolism, the iPLA₂ family contributes to membrane homeostasis and energy metabolism, and the sPLA₂ family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA₂ family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA₂ and sPLA₂ families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA₂ enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA₂ genes. This review focuses on current understanding of the emerging biological functions of PLA₂s and related enzymes.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Neuronal migration is, along with axon guidance, one of the fundamental mechanisms underlying the wiring of the brain. As other organs, the nervous system has acquired the ability to grow both in size and complexity by using migration as a strategy to position cell types from different origins into specific coordinates, allowing for the generation of brain circuitries. Guidance of migrating neurons shares many features with axon guidance, from the use of substrates to the specific cues regulating chemotaxis. There are, however, important differences in the cell biology of these two processes. The most evident case is nucleokinesis, which is an essential component of migration that needs to be integrated within the guidance of the cell. Perhaps more surprisingly, the cellular mechanisms underlying the response of the leading process of migrating cells to guidance cues might be different to those involved in growth cone steering, at least for some neuronal populations.
Collapse
Affiliation(s)
- Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain.
| | | | | | | |
Collapse
|
67
|
Yamada M, Hirotsune S, Wynshaw-Boris A. A novel strategy for therapeutic intervention for the genetic disease: preventing proteolytic cleavage using small chemical compound. Int J Biochem Cell Biol 2010; 42:1401-7. [PMID: 20541031 PMCID: PMC4516280 DOI: 10.1016/j.biocel.2010.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 05/28/2010] [Accepted: 05/28/2010] [Indexed: 11/24/2022]
Abstract
Haploinsufficiency is a state of genetic disease, which is caused by hemizygous mutations of functional alleles. Lissencephaly is a typical example of haploinsufficiency disorders characterized by a smooth cerebral surface, thick cortex and dilated lateral ventricules associated with mental retardation and seizures due to defective neuronal migration. LIS1 was the first gene cloned in an organism, which was deleted or mutated in patients with lissencephaly in a heterozygous fashion. Series of studies uncovered that LIS1 is an essential regulator of cytoplasmic dynein. In particular, we reported that LIS1 is essential for dynein transport to the plus-end of microtubules by kinesin, which is essential for maintaining proper distribution of cytoplasmic dynein within the cell. Fortuitously, we found that a substantial fraction of LIS1 is degraded by the cystein protease, calpain after reaching the plus-end of microtubules. We further demonstrated that inhibition of calpain-mediated LIS1 degradation increased LIS1 level at the cortex of the cell, resulting in therapeutic benefit using genetic mouse models with reduced levels of LIS1. Our work might provide a potential therapeutic approach for the treatment of a fraction of haploinsufficiency disorders through augmenting reduced proteins by the targeting inhibition of degradation machinery.
Collapse
Affiliation(s)
- Masami Yamada
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3 Abeno, Osaka 545-8585, Japan
| | | | | |
Collapse
|
68
|
Bechler ME, Doody AM, Racoosin E, Lin L, Lee KH, Brown WJ. The phospholipase complex PAFAH Ib regulates the functional organization of the Golgi complex. ACTA ACUST UNITED AC 2010; 190:45-53. [PMID: 20624900 PMCID: PMC2911670 DOI: 10.1083/jcb.200908105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report that platelet-activating factor acetylhydrolase (PAFAH) Ib, comprised of two phospholipase A(2) (PLA(2)) subunits, alpha1 and alpha2, and a third subunit, the dynein regulator lissencephaly 1 (LIS1), mediates the structure and function of the Golgi complex. Both alpha1 and alpha2 partially localize on Golgi membranes, and purified catalytically active, but not inactive alpha1 and alpha2 induce Golgi membrane tubule formation in a reconstitution system. Overexpression of wild-type or mutant alpha1 or alpha2 revealed that both PLA(2) activity and LIS1 are important for maintaining Golgi structure. Knockdown of PAFAH Ib subunits fragments the Golgi complex, inhibits tubule-mediated reassembly of intact Golgi ribbons, and slows secretion of cargo. Our results demonstrate a cooperative interplay between the PLA(2) activity of alpha1 and alpha2 with LIS1 to facilitate the functional organization of the Golgi complex, thereby suggesting a model that links phospholipid remodeling and membrane tubulation to dynein-dependent transport.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
69
|
Kumar RA, Pilz DT, Babatz TD, Cushion TD, Harvey K, Topf M, Yates L, Robb S, Uyanik G, Mancini GM, Rees MI, Harvey RJ, Dobyns WB. TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Hum Mol Genet 2010; 19:2817-27. [PMID: 20466733 PMCID: PMC2893812 DOI: 10.1093/hmg/ddq182] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/30/2010] [Indexed: 11/12/2022] Open
Abstract
We previously showed that mutations in LIS1 and DCX account for approximately 85% of patients with the classic form of lissencephaly (LIS). Some rare forms of LIS are associated with a disproportionately small cerebellum, referred to as lissencephaly with cerebellar hypoplasia (LCH). Tubulin alpha1A (TUBA1A), encoding a critical structural subunit of microtubules, has recently been implicated in LIS. Here, we screen the largest cohort of unexplained LIS patients examined to date to determine: (i) the frequency of TUBA1A mutations in patients with lissencephaly, (ii) the spectrum of phenotypes associated with TUBA1A mutations and (iii) the functional consequences of different TUBA1A mutations on microtubule function. We identified novel and recurrent TUBA1A mutations in approximately 1% of children with classic LIS and in approximately 30% of children with LCH, making this the first major gene associated with the rare LCH phenotype. We also unexpectedly found a TUBA1A mutation in one child with agenesis of the corpus callosum and cerebellar hypoplasia without LIS. Thus, our data demonstrate a wider spectrum of phenotypes than previously reported and allow us to propose new recommendations for clinical testing. We also provide cellular and structural data suggesting that LIS-associated mutations of TUBA1A operate via diverse mechanisms that include disruption of binding sites for microtubule-associated proteins (MAPs).
Collapse
Affiliation(s)
| | - Daniela T. Pilz
- Institute of Medical Genetics, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | | | - Thomas D. Cushion
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park SA2 8PP, UK
| | - Kirsten Harvey
- Department of Pharmacology, The School of Pharmacy, London WC1N 1AX, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Laura Yates
- Institute of Human Genetics, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Stephanie Robb
- The Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London WC1N 3JN, UK
| | - Gökhan Uyanik
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany and
| | - Gracia M.S. Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Mark I. Rees
- Institute of Medical Genetics, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park SA2 8PP, UK
| | - Robert J. Harvey
- Department of Pharmacology, The School of Pharmacy, London WC1N 1AX, UK
| | - William B. Dobyns
- Department of Human Genetics
- Department of Neurology and
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
70
|
Martijn C, Wiklund L. Effect of methylene blue on the genomic response to reperfusion injury induced by cardiac arrest and cardiopulmonary resuscitation in porcine brain. BMC Med Genomics 2010; 3:27. [PMID: 20594294 PMCID: PMC2904268 DOI: 10.1186/1755-8794-3-27] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 07/01/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury is a common secondary effect of cardiac arrest which is largely responsible for postresuscitative mortality. Therefore development of therapies which restore and protect the brain function after cardiac arrest is essential. Methylene blue (MB) has been experimentally proven neuroprotective in a porcine model of global ischemia-reperfusion in experimental cardiac arrest. However, no comprehensive analyses have been conducted at gene expression level. METHODS Pigs underwent either untreated cardiac arrest (CA) or CA with subsequent cardiopulmonary resuscitation (CPR) accompanied with an infusion of saline or an infusion of saline with MB. Genome-wide transcriptional profiling using the Affymetrix porcine microarray was performed to 1) gain understanding of delayed neuronal death initiation in porcine brain during ischemia and after 30, 60 and 180 min following reperfusion, and 2) identify the mechanisms behind the neuroprotective effect of MB after ischemic injury (at 30, 60 and 180 min). RESULTS Our results show that restoration of spontaneous circulation (ROSC) induces major transcriptional changes related to stress response, inflammation, apoptosis and even cytoprotection. In contrast, the untreated ischemic and anoxic insult affected only few genes mainly involved in intra-/extracellular ionic balance. Furthermore, our data show that the neuroprotective role of MB is diverse and fulfilled by regulation of the expression of soluble guanylate cyclase and biological processes accountable for inhibition of apoptosis, modulation of stress response, neurogenesis and neuroprotection. CONCLUSIONS Our results support that MB could be a valuable intervention and should be investigated as a therapeutic agent against neural damage associated with I/R injury induced by cardiac arrest.
Collapse
Affiliation(s)
- Cécile Martijn
- Department of Surgical Sciences/Anaesthesiology and Intensive Care Medicine, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| | - Lars Wiklund
- Department of Surgical Sciences/Anaesthesiology and Intensive Care Medicine, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| |
Collapse
|
71
|
Kara S, Jissendi-Tchofo P, Barkovich AJ. Developmental differences of the major forebrain commissures in lissencephalies. AJNR Am J Neuroradiol 2010; 31:1602-7. [PMID: 20522570 DOI: 10.3174/ajnr.a2133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE Changes of the major forebrain commissures in lissencephaly have not been systematically studied. We investigated the developmental differences of the commissures in patients with varying types of lissencephaly to determine whether specific commissural features may help in distinguishing lissencephaly phenotypes. MATERIALS AND METHODS MR imaging of 124 patients was retrospectively reviewed. Patients were classified as having cLIS, vLIS, and CBSC, according to cortical phenotype; few patients had genetic diagnoses. Abnormalities of the CC, AC, and HC were recorded, and the overall shape was regarded as hypogenetic, hypoplastic, dysmorphic, a thin flat callosal body with a vertical splenium, and a convex upward callosal body, compared with age-matched controls. Correlations between commissural characteristics and cortical patterns were analyzed by using the Monte Carlo simulation of χ(2), extension to m × n table, and Fisher exact tests as appropriate (P < .05). RESULTS Patients were classified as having cLIS (57.4%), vLIS (38.4%), or CBSC (4.2%). The most common callosal developmental anomaly was hypogenesis with an absent rostrum, a small inferior genu, and a small splenium. An angled (90°) splenium was found to be significantly associated with cLIS, as was an excessively convex upward callosal body with VLDLR. ACC with an enlarged AC was found in all cases of ARX. CONCLUSIONS Specific patterns of the commissure anomalies were associated with certain types of lissencephaly. Callosal anomalies were more common than those of the AC or HC. Developmental variations of commissures may be useful as an imaging criterion in differentiating the groups of lissencephalies and may give insight into the processes causing these malformations.
Collapse
Affiliation(s)
- S Kara
- Department of Radiology and Biomedical Imaging, Section of Neuroradiology, University of California at San Francisco, CA, USA.
| | | | | |
Collapse
|
72
|
Mineyko A, Doja A, Hurteau J, Dobyns WB, Das S, Boycott KM. A novel missense mutation in LIS1 in a child with subcortical band heterotopia and pachygyria inherited from his mildly affected mother with somatic mosaicism. J Child Neurol 2010; 25:738-41. [PMID: 19808989 DOI: 10.1177/0883073809343312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mutations in the LIS1 gene result in isolated lissencephaly or subcortical band heterotopia. We report a 5-year-old male who presented with seizures and global developmental delay. Magnetic resonance imaging (MRI) demonstrated posteriorly predominant pachygyria and subcortical band heterotopia. His mother had a history of epilepsy, with onset in her teenage years. Her MRI revealed no abnormalities. Sequence analysis of the LIS1 gene identified a novel p.H389Y mutation in exon 11 (c.1165C>T). The child's mother was found to have the identical mutation as her son, with the signal intensity of the mutant allele being much lower than the normal allele, suggesting somatic mosaicism. This patient is one of only a few reported with a missense mutation in LIS1 associated with subcortical band heterotopia, and this is the first report of a mosaic individual having an affected child.
Collapse
Affiliation(s)
- Aleksandra Mineyko
- Department of Pediatrics, Division of Neurology, Children's Hospital of Eastern Ontario, Ottawa, Canada K1H 8L1.
| | | | | | | | | | | |
Collapse
|
73
|
NudC-like protein 2 regulates the LIS1/dynein pathway by stabilizing LIS1 with Hsp90. Proc Natl Acad Sci U S A 2010; 107:3499-504. [PMID: 20133715 DOI: 10.1073/pnas.0914307107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type I lissencephaly gene product LIS1, a key regulator of cytoplasmic dynein, is critical for cell proliferation, survival, and neuronal migration. However, little is known about the regulation of LIS1. Here, we identify a previously uncharacterized mammalian homolog of Aspergillus NudC, NudCL2 (NudC-like protein 2), as a regulator of LIS1. NudCL2 is localized to the centrosome in interphase, and spindle poles and kinetochores during mitosis, a pattern similar to the localization of LIS1 and cytoplasmic dynein. Depletion of NudCL2 destabilized LIS1 and led to phenotypes resembling those of either dynein or LIS1 deficiency. NudCL2 complexed with and enhanced the interaction between LIS1 and Hsp90. Either disruption of the LIS1-Hsp90 interaction with the C terminus of NudCL2 or inhibition of Hsp90 chaperone function by geldanamycin decreased LIS1 stability. Thus, our results suggest that NudCL2 regulates the LIS1/dynein pathway by stabilizing LIS1 with Hsp90 chaperone. This represents a hitherto undescribed mechanism of the LIS1/dynein regulation in mammalian cells.
Collapse
|
74
|
Abstract
Eukaryotic cells use cytoskeletal motor proteins to transport many different intracellular cargos. Numerous kinesins and myosins have evolved to cope with the various transport needs that have arisen during eukaryotic evolution. Surprisingly, a single cytoplasmic dynein (a minus end-directed microtubule motor) carries out similarly diverse transport activities as the many different types of kinesin. How is dynein coupled to its wide range of cargos and how is it spatially and temporally regulated? The answer could lie in the several multifunctional adaptors, including dynactin, lissencephaly 1, nuclear distribution protein E (NUDE) and NUDE-like, Bicaudal D, Rod-ZW10-Zwilch and Spindly, that regulate dynein function and localization.
Collapse
|
75
|
Morimura T, Ogawa M. Relative importance of the tyrosine phosphorylation sites of Disabled-1 to the transmission of Reelin signaling. Brain Res 2009; 1304:26-37. [DOI: 10.1016/j.brainres.2009.09.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 08/22/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
76
|
Bilguvar K, Ozturk AK, Bayrakli F, Guzel A, DiLuna ML, Bayri Y, Tatli M, Tekes S, Arlier Z, Yasuno K, Mason CE, Lifton RP, State MW, Gunel M. The syndrome of pachygyria, mental retardation, and arachnoid cysts maps to 11p15. Am J Med Genet A 2009; 149A:2569-72. [DOI: 10.1002/ajmg.a.33063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
77
|
Gopal PP, Simonet JC, Shapiro W, Golden JA. Leading process branch instability in Lis1+/- nonradially migrating interneurons. ACTA ACUST UNITED AC 2009; 20:1497-505. [PMID: 19861636 DOI: 10.1093/cercor/bhp211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mammalian forebrain development requires extensive migration, yet the mechanisms through which migrating neurons sense and respond to guidance cues are not well understood. Similar to the axon growth cone, the leading process and branches of neurons may guide migration, but the cytoskeletal events that regulate branching are unknown. We have previously shown that loss of microtubule-associated protein Lis1 reduces branching during migration compared with wild-type neurons. Using time-lapse imaging of Lis1(+/-) and Lis1(+/+) cells migrating from medial ganglionic eminence explant cultures, we show that the branching defect is not due to a failure to initiate branches but a defect in the stabilization of new branches. The leading processes of Lis1(+/-) neurons have reduced expression of stabilized, acetylated microtubules compared with Lis1(+/+) neurons. To determine whether Lis1 modulates branch stability through its role as the noncatalytic beta regulatory subunit of platelet-activating factor (PAF) acetylhydrolase 1b, exogenous PAF was applied to wild-type cells. Excess PAF added to wild-type neurons phenocopies the branch instability observed in Lis1(+/-) neurons, and a PAF antagonist rescues leading process branching in Lis1(+/-) neurons. These data highlight a role for Lis1, acting through the PAF pathway, in leading process branching and microtubule stabilization.
Collapse
Affiliation(s)
- Pallavi P Gopal
- University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
78
|
Yamada M, Yoshida Y, Mori D, Takitoh T, Kengaku M, Umeshima H, Takao K, Miyakawa T, Sato M, Sorimachi H, Wynshaw-Boris A, Hirotsune S. Inhibition of calpain increases LIS1 expression and partially rescues in vivo phenotypes in a mouse model of lissencephaly. Nat Med 2009; 15:1202-7. [PMID: 19734909 PMCID: PMC2759411 DOI: 10.1038/nm.2023] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 07/30/2009] [Indexed: 12/17/2022]
Abstract
Lissencephaly is a devastating neurological disorder due to defective neuronal migration. LIS1 (or PAFAH1B1) was identified as the gene mutated in lissencephaly patients, and was found to regulate cytoplasmic dynein function and localization. Here, we show that more than half of LIS1 is degraded via calpain-dependent proteolysis, and that inhibition or knockdown of calpains protects LIS1 from proteolysis, resulting in the augmentation of LIS1 levels in Lis1+/− mouse embryonic fibroblast (MEF) cells, which leads to rescue of the aberrant distribution of cytoplasmic dynein, mitochondria and β-COP positive vesicles. We also show that calpain inhibitors improve neuronal migration of Lis1+/− cerebellar granular neurons. Intra-peritoneal injection of ALLN to pregnant Lis1+/− dams rescued apoptotic neuronal cell death and neuronal migration defects in Lis1+/− offspring. Furthermore, in utero knockdown of calpain by shRNA rescued defective cortical layering in Lis1+/− mice. Thus, the inhibition of calpain is a potential therapeutic intervention for lissencephaly.
Collapse
Affiliation(s)
- Masami Yamada
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Sun C, Xu M, Xing Z, Wu Z, Li Y, Li T, Zhao M. Expression and function on embryonic development of lissencephaly-1 genes in zebrafish. Acta Biochim Biophys Sin (Shanghai) 2009; 41:677-88. [PMID: 19657569 DOI: 10.1093/abbs/gmp056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lissencephaly is a severe disease characterized by brain malformation. The main causative gene of lissencephaly is LIS1. Mutation or deletion of LIS1 leads to proliferation and migration deficiency of neurons in brain development. However, little is known about its biological function in embryonic development. In this article, we identified the expression patterns of zebrafish LIS1 gene and investigated its function in embryonic development. We demonstrated that zebrafish consisted of two LIS1 genes, LIS1a and LIS1b. Bioinformatics analysis revealed that LIS1 genes were conserved in evolution both in protein sequences and genomic structures. The expression patterns of zebrafish LIS1a and LIS1b showed that both transcripts were ubiquitously expressed at all embryonic developmental stages and in adult tissues examined. At the protein level, the LIS1 products mainly exist in brain tissue and in embryos at early stages as shown by western blotting analysis. The whole-mount immunostaining data showed that LIS1 proteins were distributed all over the embryos from 1-cell stage to 5 day post-fertilization. Knockdown of LIS1 protein expression through morpholino antisense oligonucleotides resulted in many developmental deficiencies in zebrafish, including brain malformation, circulation abnormality, and body curl. Taken together, our study suggested that zebrafish LIS1 plays a very important role in embryonic development.
Collapse
Affiliation(s)
- Chengfu Sun
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
80
|
Ding C, Liang X, Ma L, Yuan X, Zhu X. Opposing effects of Ndel1 and alpha1 or alpha2 on cytoplasmic dynein through competitive binding to Lis1. J Cell Sci 2009; 122:2820-7. [PMID: 19622634 DOI: 10.1242/jcs.048777] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lis1 is an essential protein whose insufficiency causes aberrant neuronal positioning during neocortical development. It is believed to regulate both cytoplasmic dynein, a microtubule minus-end-directed motor, through direct interaction, and platelet-activating factor acetylhydrolase (PAF-AH) Ib by complexing with the catalytic subunits alpha1 and alpha2. Although alpha1 and alpha2 are highly expressed in brain, their deficiencies fail to cause brain abnormality. Here, we show that overexpression of alpha2 or alpha1 results in inactivation of dynein characterized by Golgi and endosome dispersion and mitotic delay. Further overexpression of Lis1 or Ndel1, a Lis1- and dynein-binding protein that is also crucial for dynein function, restored Golgi and endosome distribution. Biochemical assays showed that alpha1 and especially alpha2, were able to compete against Ndel1 and dynein for Lis1 binding in a dose-dependent manner. Overexpression of alpha2 in developing rat brain repressed the radial migration of neurons and mitotic progression of neuroprogenitors. By contrast, a Lis1-binding-defective point mutant, alpha2(E39D), was ineffective in the above assays. These results indicate an antagonistic effect of alpha1, alpha2 and Ndel1 for Lis1 binding, probably to modulate dynein functions in vivo. They also help to explain why brain development is particularly sensitive to a decrease in Lis1 levels.
Collapse
Affiliation(s)
- Chong Ding
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
81
|
Riera J, Lazo PS. The mammalian NudC-like genes: a family with functions other than regulating nuclear distribution. Cell Mol Life Sci 2009; 66:2383-90. [PMID: 19381437 PMCID: PMC11115750 DOI: 10.1007/s00018-009-0025-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/25/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022]
Abstract
Nuclear distribution gene C homolog (NudC) is a highly conserved gene. It has been identified in different species from fungi to mammals. The high degree of conservation, in special in the nudC domain, suggests that they are genes with essential functions. Most of the identified genes in the family have been implicated in cell division through the regulation of cytoplasmic dynein. As for mammalian genes, human NUDC has been implicated in the migration and proliferation of tumor cells and has therefore been considered a possible therapeutic target. There is evidence suggesting that mammalian NudC is also implicated in the regulation of the inflammatory response and in thrombopoiesis. The presence of these other functions not related to the interaction with molecular motors agrees with that these genes and their products are larger in size than their microbial orthologous, indicating that they have evolved to convey additional features.
Collapse
Affiliation(s)
- José Riera
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Campus del Cristo, 33071 Oviedo, Spain
| | - Pedro S. Lazo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Campus del Cristo, 33071 Oviedo, Spain
| |
Collapse
|
82
|
Molecular regulation of neuronal migration during neocortical development. Mol Cell Neurosci 2009; 42:11-22. [PMID: 19523518 DOI: 10.1016/j.mcn.2009.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 06/03/2009] [Indexed: 11/21/2022] Open
Abstract
Neocortex, a distinct six-layered neural structure, is one of the most exquisite nerve tissues in the human body. Proper assembly of neocortex requires precise regulation of neuronal migration and abnormalities can result in severe neurological diseases. Three major types of neuronal migration have been implicated in corticogenesis: radial migration of excitatory neuron precursors and tangential migration of interneurons as well as Cajal-Retzius cells. In the past several years, significant progress has been made in understanding how these parallel events are regulated and coordinated during corticogenesis. New insights have been gained into regulation of radial neuron migration by the well-known Reelin signal. New pathways have also been identified that regulate radial as well as tangential migration. Equally important, better understandings have been obtained on the cellular and molecular mechanics of cell migration by both projection neurons and interneurons. These findings have not only enhanced our understanding of normal neuron migration but also revealed insights into the etiologies of several neurological diseases where these processes go awry.
Collapse
|
83
|
Zhang G, Assadi AH, Roceri M, Clark GD, D’Arcangelo G. Differential interaction of the Pafah1b alpha subunits with the Reelin transducer Dab1. Brain Res 2009; 1267:1-8. [PMID: 19272360 PMCID: PMC2673792 DOI: 10.1016/j.brainres.2009.02.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 02/04/2023]
Abstract
The Reelin signaling pathway controls radial neuronal migration and maturation in the developing brain. The platelet activating factor (PAF) acetyl hydrolase 1b (Pafah1b) complex is also involved in multiple aspects of brain development. We previously showed that the Reelin pathway and the Pafah1b complex interact genetically and biochemically. Lis1, the regulatory subunit of Pafah1b interacts with phosphoDab1, an essential mediator of Reelin signaling. Compound mutants carrying mutations in both, the Reelin pathway and Lis1 exhibit hydrocephalus, a phenotype that is suppressed by mutations in the gene encoding the Alpha2 subunit of Pafah1b. This subunit, like the Alpha1 catalytic subunit of Pafah1b also binds the Reelin receptor VLDLR. Here we investigated the molecular interactions of the Pafah1b catalytic subunits with Dab1. We found that Alpha2 coprecipitates with Dab1 from brain extracts of normal and reeler mutant mice lacking Reelin, and from cell-free extracts containing normal or a phosphorylation mutant form of Dab1, suggesting that Dab1 phosphorylation is not necessary for binding to Alpha2. This interaction is specific for Alpha2 and not Alpha1, and depends on a unique tyrosine residue of Alpha2. Biochemical assays using mutant mice lacking Alpha2 further demonstrated that this subunit is not required for Reelin-induced Dab1 phosphorylation. However, increasing amounts of Alpha2 in a cell-free system disrupted the formation of Dab1-Lis1 complexes without affecting the association of Dab1 with VLDLR. Our data suggest that the Alpha2 subunit may play a modulatory role in the formation of protein complexes that affect brain development and hydrocephalus.
Collapse
Affiliation(s)
- Guangcheng Zhang
- The Cain Foundation Laboratories, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Amir H. Assadi
- The Cain Foundation Laboratories, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Mila Roceri
- The Cain Foundation Laboratories, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Gary D. Clark
- The Cain Foundation Laboratories, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Gabriella D’Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
84
|
Gu W, Lupski JR. CNV and nervous system diseases--what's new? Cytogenet Genome Res 2009; 123:54-64. [PMID: 19287139 DOI: 10.1159/000184692] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2008] [Indexed: 11/19/2022] Open
Abstract
Several new genomic disorders caused by copy number variation (CNV) of genes whose dosage is critical for the physiological function of the nervous system have been recently identified. Dup(7)(q11.23) patients carry duplications of the genomic region deleted in Williams-Beuren syndrome, they are characterized by prominent speech delay. The phenotypes of Potocki-Lupski syndrome and MECP2 duplication syndrome were neuropsychologically examined in detail, which revealed autism as an endophenotype and a prominent behavioral feature of these disorders. Tandem duplication of LMNB1 was reported to cause adult-onset autosomal dominant leukodystrophy. PAFAH1B1/LIS1 and YWHAE, which were deleted in isolated lissencephaly (PAFAH1B1/LIS1 alone) and Miller-Dieker syndrome (both genes), were found to be duplicated in patients with developmental delay. Finally, two novel microdeletion syndromes affecting 17q21.31 and 15q13.3, as well as their reciprocal duplications, were also identified. In this review, we provide an overview of the phenotypic manifestation of these syndromes and the rearrangements causing them.
Collapse
Affiliation(s)
- W Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
85
|
Assadi AH, Zhang G, McNeil R, Clark GD, D’Arcangelo G. Pafah1b2 mutations suppress the development of hydrocephalus in compound Pafah1b1; Reln and Pafah1b1; Dab1 mutant mice. Neurosci Lett 2008; 439:100-5. [PMID: 18514414 PMCID: PMC2680094 DOI: 10.1016/j.neulet.2008.04.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 11/29/2022]
Abstract
Reelin, an extracellular protein that signals through the Dab1 adapter protein, and Lis1 regulate neuronal migration and cellular layer formation in the brain. Loss of Reelin and reduction in Lis1 activity in mice or humans results in the disorganization of cortical structures. Lis1, the product of the Pafah1b1 gene associates with Alpha1 (the product of the Pafah1b3 gene) and Alpha2 (the product of the Pafah1b2 gene) to form the Pafah1b heterotrimeric complex. This complex interacts biochemically and genetically with the Reelin pathway, however, the role of Alpha1 and Alpha2 in brain development is poorly understood. We previously demonstrated that compound mutations of Pafah1b1 with genes in Reelin pathway result in layering defects and the appearance of hydrocephalus in double mutant mice. Here, we generate triple mouse mutants to investigate the effect of individual Pafah1b Alpha subunits on cellular layer formation and hydrocephalus. We found that Pafah1b3 mutations exacerbate the layering defects, whereas Pafah1b2 mutations strongly suppress the hydrocephalus phenotype of compound mutant mice. The data indicate that the two Pafah1b Alpha subunits have profoundly different effects on brain development and interact in a significantly different manner with the Reelin signaling pathway.
Collapse
Affiliation(s)
- Amir H. Assadi
- The Cain Foundation Laboratories, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Guangcheng Zhang
- The Cain Foundation Laboratories, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Robert McNeil
- The Cain Foundation Laboratories, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Gary D. Clark
- The Cain Foundation Laboratories, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Gabriella D’Arcangelo
- The Cain Foundation Laboratories, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
86
|
Pawlisz AS, Mutch C, Wynshaw-Boris A, Chenn A, Walsh CA, Feng Y. Lis1-Nde1-dependent neuronal fate control determines cerebral cortical size and lamination. Hum Mol Genet 2008; 17:2441-55. [PMID: 18469343 PMCID: PMC2486443 DOI: 10.1093/hmg/ddn144] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neurons in the cerebral cortex originate predominantly from asymmetrical divisions of polarized radial glial or neuroepithelial cells. Fate control of neural progenitors through regulating cell division asymmetry determines the final cortical neuronal number and organization. Haploinsufficiency of human LIS1 results in type I lissencephaly (smooth brain) with severely reduced surface area and laminar organization of the cerebral cortex. Here we show that LIS1 and its binding protein Nde1 (mNudE) regulate the fate of radial glial progenitors collaboratively. Mice with an allelic series of Lis1 and Nde1 double mutations displayed a striking dose-dependent size reduction and de-lamination of the cerebral cortex. The neocortex of the Lis1–Nde1 double mutant mice showed over 80% reduction in surface area and inverted neuronal layers. Dramatically increased neuronal differentiation at the onset of corticogenesis in the mutant led to overproduction and abnormal development of earliest-born preplate neurons and Cajal–Retzius cells at the expense of progenitors. While both Lis1 and Nde1 are known to regulate the mitotic spindle orientation, only a moderate alteration in mitotic cleavage orientation was detected in the Lis1–Nde1 double deficient progenitors. Instead, a striking change in the morphology of metaphase progenitors with reduced apical attachment to the ventricular surface and weakened lateral contacts to neighboring cells appear to hinder the accurate control of cell division asymmetry and underlie the dramatically increased neuronal differentiation. Our data suggest that maintaining the shape and cell–cell interactions of radial glial neuroepithelial progenitors by the Lis1–Nde1 complex is essential for their self renewal during the early phase of corticogenesis.
Collapse
Affiliation(s)
- Ashley S Pawlisz
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
87
|
Burke B, Stewart CL. The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annu Rev Genomics Hum Genet 2008; 7:369-405. [PMID: 16824021 DOI: 10.1146/annurev.genom.7.080505.115732] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most inherited diseases are associated with mutations in a specific gene. Often, mutations in two or more different genes result in diseases with a similar phenotype. Rarely do different mutations in the same gene result in a multitude of seemingly different and unrelated diseases. Mutations in the Lamin A gene (LMNA), which encodes largely ubiquitously expressed nuclear proteins (A-type lamins), are associated with at least eight different diseases, collectively called the laminopathies. Studies examining how different tissue-specific diseases arise from unique LMNA mutations are providing unanticipated insights into the structural organization of the nucleus, and how disruption of this organization relates to novel mechanisms of disease.
Collapse
Affiliation(s)
- Brian Burke
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610
| | | |
Collapse
|
88
|
Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H. Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem 2008; 283:14469-78. [PMID: 18378689 DOI: 10.1074/jbc.m708919200] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the developing forebrain, the migration and positioning of neural progenitor cells (NPCs) are regulated coordinately by various molecules. Mutation of these molecules, therefore, causes cortical malformation. GPR56 has been reported as a cortical malformation-related gene that is mutated in patients with bilateral frontoparietal polymicrogyria. GPR56 encodes an orphan G protein-coupled receptor, and its mutations reduce the cell surface expression. It has also been reported that the expression level of GPR56 is involved in cancer cell adhesion and metastasis. However, it remains to be clarified how GPR56 functions in brain development and which signaling pathways are activated by GPR56. In this study, we showed that GPR56 is highly expressed in NPCs and has the ability to inhibit NPC migration. We found that GPR56 coupled with Galpha(12/13) and induced Rho-dependent activation of the transcription mediated through a serum-responsive element and NF-kappaB-responsive element and actin fiber reorganization. The transcriptional activation and actin reorganization were inhibited by an RGS domain of the p115 Rho-specific guanine nucleotide exchange factor (p115 RhoGEF RGS) and dominant negative form of Rho. Moreover, we have demonstrated that a functional anti-GPR56 antibody, which has an agonistic activity, inhibited NPC migration. This inhibition was attenuated by p115 RhoGEF RGS, C3 exoenzyme, and GPR56 knockdown. These results indicate that GPR56 participates in the regulation of NPC movement through the Galpha(12/13) and Rho signaling pathway, suggesting its important role in the development of the central nervous system.
Collapse
Affiliation(s)
- Tokuichi Iguchi
- Department of Cell Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | | | | | |
Collapse
|
89
|
Reiner O, Sapoznik S, Sapir T. Lissencephaly 1 linking to multiple diseases: mental retardation, neurodegeneration, schizophrenia, male sterility, and more. Neuromolecular Med 2008; 8:547-65. [PMID: 17028375 DOI: 10.1385/nmm:8:4:547] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Revised: 01/27/2006] [Accepted: 01/29/2006] [Indexed: 12/11/2022]
Abstract
Lissencephaly 1 (LIS1) was the first gene implicated in the pathogenesis of type-1 lissencephaly. More than a decade of research by multiple laboratories has revealed that LIS1 is a key node protein, which participates in several pathways, including association with the molecular motor cytoplasmic dynein, the reelin signaling pathway, and the platelet-activating factor pathway. Mutations in LIS1-interacting proteins, either in human, or in mouse models has suggested that LIS1 might play a role in the pathogenesis of numerous diseases such as male sterility, schizophrenia, neuronal degeneration, and viral infections.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | | | |
Collapse
|
90
|
Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK. The DISC locus in psychiatric illness. Mol Psychiatry 2008; 13:36-64. [PMID: 17912248 DOI: 10.1038/sj.mp.4002106] [Citation(s) in RCA: 442] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 12/11/2022]
Abstract
The DISC locus is located at the breakpoint of a balanced t(1;11) chromosomal translocation in a large and unique Scottish family. This translocation segregates in a highly statistically significant manner with a broad diagnosis of psychiatric illness, including schizophrenia, bipolar disorder and major depression, as well as with a narrow diagnosis of schizophrenia alone. Two novel genes were identified at this locus and due to the high prevalence of schizophrenia in this family, they were named Disrupted-in-Schizophrenia-1 (DISC1) and Disrupted-in-Schizophrenia-2 (DISC2). DISC1 encodes a novel multifunctional scaffold protein, whereas DISC2 is a putative noncoding RNA gene antisense to DISC1. A number of independent genetic linkage and association studies in diverse populations support the original linkage findings in the Scottish family and genetic evidence now implicates the DISC locus in susceptibility to schizophrenia, schizoaffective disorder, bipolar disorder and major depression as well as various cognitive traits. Despite this, with the exception of the t(1;11) translocation, robust evidence for a functional variant(s) is still lacking and genetic heterogeneity is likely. Of the two genes identified at this locus, DISC1 has been prioritized as the most probable candidate susceptibility gene for psychiatric illness, as its protein sequence is directly disrupted by the translocation. Much research has been undertaken in recent years to elucidate the biological functions of the DISC1 protein and to further our understanding of how it contributes to the pathogenesis of schizophrenia. These data are the main subject of this review; however, the potential involvement of DISC2 in the pathogenesis of psychiatric illness is also discussed. A detailed picture of DISC1 function is now emerging, which encompasses roles in neurodevelopment, cytoskeletal function and cAMP signalling, and several DISC1 interactors have also been defined as independent genetic susceptibility factors for psychiatric illness. DISC1 is a hub protein in a multidimensional risk pathway for major mental illness, and studies of this pathway are opening up opportunities for a better understanding of causality and possible mechanisms of intervention.
Collapse
Affiliation(s)
- J E Chubb
- Medical Genetics Section, The Centre for Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | |
Collapse
|
91
|
Poirier K, Keays DA, Francis F, Saillour Y, Bahi N, Manouvrier S, Fallet-Bianco C, Pasquier L, Toutain A, Tuy FPD, Bienvenu T, Joriot S, Odent S, Ville D, Desguerre I, Goldenberg A, Moutard ML, Fryns JP, van Esch H, Harvey RJ, Siebold C, Flint J, Beldjord C, Chelly J. Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A). Hum Mutat 2007; 28:1055-64. [PMID: 17584854 DOI: 10.1002/humu.20572] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have recently reported a missense mutation in exon 4 of the tubulin alpha 1A (Tuba1a) gene in a hyperactive N-ethyl-N-nitrosourea (ENU) induced mouse mutant with abnormal lamination of the hippocampus. Neuroanatomical similarities between the Tuba1a mutant mouse and mice deficient for Doublecortin (Dcx) and Lis1 genes, and the well-established functional interaction between DCX and microtubules (MTs), led us to hypothesize that mutations in TUBA1A (TUBA3, previous symbol), the human homolog of Tuba1a, might give rise to cortical malformations. This hypothesis was subsequently confirmed by the identification of TUBA1A mutations in two patients with lissencephaly and pachygyria, respectively. Here we report additional TUBA1A mutations identified in six unrelated patients with a large spectrum of brain dysgeneses. The de novo occurrence was shown for all mutations, including one recurrent mutation (c.790C>T, p.R264C) detected in two patients, and two mutations that affect the same amino acid (c.1205G>A, p.R402H; c.1204C>T, p.R402C) detected in two other patients. Retrospective examination of MR images suggests that patients with TUBA1A mutations share not only cortical dysgenesis, but also cerebellar, hippocampal, corpus callosum, and brainstem abnormalities. Interestingly, the specific high level of Tuba1a expression throughout the period of central nervous system (CNS) development, shown by in situ hybridization using mouse embryos, is in accordance with the brain-restricted developmental phenotype caused by TUBA1A mutations. All together, these results, in combination with previously reported data, strengthen the relevance of the known interaction between MTs and DCX, and highlight the importance of the MTs/DCX complex in the neuronal migration process.
Collapse
Affiliation(s)
- Karine Poirier
- Institut Cochin, Université Paris Descartes, Centre national de la recherche scientifique Unité Mixte de Recherche 8104, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Cina C, Bechberger JF, Ozog MA, Naus CCG. Expression of connexins in embryonic mouse neocortical development. J Comp Neurol 2007; 504:298-313. [PMID: 17640036 DOI: 10.1002/cne.21426] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During embryonic development, young neurons migrate from the ventricular zone to the cortical plate of the cerebral cortex. Disturbances in this neuronal migration have been associated with numerous diseases such as mental retardation, double cortex, Down syndrome, and epilepsy. One possible cause of these neuropathologies is an aberration in normal gap junctional communication. At least 20 connexin (Cx) genes encode gap junction proteins in mice and humans. A proper understanding of the role of specific connexins in the developing brain requires the characterization of their spatial and temporal pattern of expression. In the current study we performed all the experiments on mouse developing cortex at embryonic days (E) 14, 16, and 18, timepoints that are highly active with regard to cortical development. Using reverse transcription-polymerase chain reaction, Western blot analysis, and immunohistochemistry, we found that among the family of gap junction proteins, Cx26, Cx36, Cx37, Cx43, and Cx45 were expressed in the developing cortex of mice, Cx30 and Cx32 were absent, while Cx40 was expressed at a very low level. Our results demonstrate that Cx26 and Cx37 were evenly distributed in the cortical layers of developing brain, while Cx36 and Cx43 were more abundant in the ventricular zone and cortical plate. Cx45 distribution appeared to be more abundant at E18 compared to the other timepoints (E14 and E16). Thus, the present study provides identification and the distribution pattern for Cxs associated with cortical development during normal neuronal migration.
Collapse
Affiliation(s)
- Cima Cina
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | | | |
Collapse
|
93
|
Guzel A, Tatli M, Bilguvar K, Diluna ML, Bakkaloglu B, Ozturk AK, Bayrakli F, Gunel M. Apparently novel genetic syndrome of pachygyria, mental retardation, seizure, and arachnoid cysts. Am J Med Genet A 2007; 143A:672-7. [PMID: 17343267 DOI: 10.1002/ajmg.a.31640] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report on an apparently new syndrome in a consanguineous family with seven members, three of whom have cerebral anomalies including pachygyria and arachnoid cysts along with mental retardation and seizures. The two patients with seizure disorders also had multiple enlarged perivascular spaces seen in the white matter of the centrum semiovale. Our data provide a contribution to the accumulating knowledge on familial cerebral anomalies including arachnoid cysts and lissencephaly. Given the lack of mutation in known lissencephaly genes such as LIS1, 14-3-3epsilon, and DCX, this syndrome may constitute a new phenotype with autosomal recessive inheritance.
Collapse
Affiliation(s)
- Aslan Guzel
- Department of Neurosurgery, Dicle University, Diyarbakir, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Yamaguchi N, Koizumi H, Aoki J, Natori Y, Nishikawa K, Natori Y, Takanezawa Y, Arai H. Type I platelet-activating factor acetylhydrolase catalytic subunits over-expression induces pleiomorphic nuclei and centrosome amplification. Genes Cells 2007; 12:1153-61. [PMID: 17903175 DOI: 10.1111/j.1365-2443.2007.01126.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LIS1, a causative gene product for type I lissencephaly, binds to and regulates the dynein motor and the centrosome. LIS1 also forms a complex with the catalytic subunits alpha1 and alpha2 of type I platelet-activating factor acetylhydrolase [PAF-AH (I)]. However, the cellular function of the catalytic subunits remains unknown. In this study, we showed that over-expression of the catalytic subunits, especially alpha2, in cultured cells induced dramatic phenotypical changes including nuclear shape change, centrosomal amplification and microtubule disorganization. We examined if these effects were due to the catalytic activity and/or binding of alpha2 to LIS1. Substitution of a single amino acid Glu39 of murine alpha1 and alpha2 by Asp (alpha2-E39D) did not affect catalytic activity but completely abolished LIS1 binding. Over-expression of either alpha2-E39D or the catalytically inactive alpha2-S48C revealed that alpha2-E39D, but not alpha2-S48C, lost its ability to induce above-mentioned phenotypic changes. Biochemical analyses showed that LIS1 present in the precipitate fraction of murine brain homogenates could be translocated to the soluble fraction by alpha2, but not by alpha2-E39D. These results suggest that over-expression of the PAF-AH (I) catalytic subunits induces centrosomal amplification and microtubule disorganization by disturbing intracellular localization of LIS1.
Collapse
Affiliation(s)
- Noritaka Yamaguchi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Wynshaw-Boris A. Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development. Clin Genet 2007; 72:296-304. [PMID: 17850624 DOI: 10.1111/j.1399-0004.2007.00888.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Lissencephaly is a severe human neuronal migration defect characterized by a smooth cerebral surface, mental retardation and seizures. LIS1 was first gene cloned in an organism important for neuronal migration, as it was deleted or mutated in patients with lissencephaly in a heterozygous fashion. Studies in model organisms, particularly Aspergillus nidulans, as well as those in the mouse, have uncovered an evolutionarily conserved pathway that involves LIS1 and cytoplasmic dynein. This pathway codes for proteins in a complex with cytoplasmic dynein and positively regulates its conserved function in nuclear migration. This complex appears to be important for proliferation and neuronal survival as well as neuronal migration. One of the components of this complex, NDEL1, is a phosphoprotein that is a substrate for CDK5 (or CDK2 in fibroblasts) and Aurora-A, two mitotic kinases. CDK5-phosphorylated NDEL1 binds to 14-3-3epsilon, which protects it from phosphatase attack. Interestingly, 14-3-3epsilon is located 1 Mb from LIS1 and is heterozygously deleted with LIS1 in patients with a severe form of lissencephaly, Miller-Dieker syndrome. Mouse models confirm that 14-3-3epsilon plays an important role in neuronal migration, and mice that are double heterozygotes for mutations in Lis1 and 14-3-3epsilon, display more severe neuronal migration defects. The identification of LIS1 as the first lissencephaly gene, and the first gene required for neuronal migration has revealed the importance of the regulation of cytoplasmic dynein in the control of neuronal migration by modulating nuclear migration in a pathway conserved in virtually all eukaryotes.
Collapse
Affiliation(s)
- A Wynshaw-Boris
- Departments of Pediatrics and Medicine, UCSD School of Medicine, University of California-San Diego, La Jolla, CA, USA.
| |
Collapse
|
96
|
Pedersen LB, Rompolas P, Christensen ST, Rosenbaum JL, King SM. The lissencephaly protein Lis1 is present in motile mammalian cilia and requires outer arm dynein for targeting to Chlamydomonas flagella. J Cell Sci 2007; 120:858-67. [PMID: 17314247 DOI: 10.1242/jcs.03374] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lissencephaly is a developmental brain disorder characterized by a smooth cerebral surface, thickened cortex and misplaced neurons. Classical lissencephaly is caused by mutations in LIS1, which encodes a WD-repeat protein involved in cytoplasmic dynein regulation, mitosis and nuclear migration. Several proteins required for nuclear migration in Aspergillus bind directly to Lis1, including NudC. Mammalian NudC is highly expressed in ciliated epithelia, and localizes to motile cilia in various tissues. Moreover, a NudC ortholog is upregulated upon deflagellation in Chlamydomonas. We found that mammalian Lis1 localizes to motile cilia in trachea and oviduct, but is absent from non-motile primary cilia. Furthermore, we cloned a gene encoding a Lis1-like protein (CrLis1) from Chlamydomonas. CrLis1 is a approximately 37 kDa protein that contains seven WD-repeat domains, similar to Lis1 proteins from other organisms. Immunoblotting using an anti-CrLis1 antibody revealed that this protein is present in the flagellum and is depleted from flagella of mutants with defective outer dynein arm assembly, including one strain that lacks only the alpha heavy chain/light chain 5 thioredoxin complex. Biochemical experiments confirmed that CrLis1 associates with outer dynein arm components and revealed that CrLis1 binds directly to rat NudC. Our results suggest that Lis1 and NudC are present in cilia and flagella and may regulate outer dynein arm activity.
Collapse
Affiliation(s)
- Lotte B Pedersen
- Department of Molecular Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark.
| | | | | | | | | |
Collapse
|
97
|
Keays DA. Neuronal migration: unraveling the molecular pathway with humans, mice, and a fungus. Mamm Genome 2007; 18:425-30. [PMID: 17629745 PMCID: PMC1998879 DOI: 10.1007/s00335-007-9034-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 04/24/2007] [Indexed: 11/28/2022]
Abstract
This review highlights the utility of comparative genetics in understanding the molecular mechanisms that underlie neuronal migration. It is apparent from studies in humans, mice, and a fungus that nuclear migration is a key component of neuronal migration and that both are dependent on a dynamic microtubule network. In vertebrates regulation of this network involves a complex pathway that is dependent on extracellular guidance cues, membrane-bound receptors, intracellular signaling molecules, proteins associated with microtubules, and the components of microtubules themselves.
Collapse
Affiliation(s)
- David A Keays
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
98
|
Grabham PW, Seale GE, Bennecib M, Goldberg DJ, Vallee RB. Cytoplasmic dynein and LIS1 are required for microtubule advance during growth cone remodeling and fast axonal outgrowth. J Neurosci 2007; 27:5823-34. [PMID: 17522326 PMCID: PMC6672755 DOI: 10.1523/jneurosci.1135-07.2007] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent evidence has implicated dynein and its regulatory factors dynactin and LIS1 in neuronal and non-neuronal cell migration. In the current study we sought to test whether effects on neuronal cell motility might reflect, in part, a role for these proteins in the growth cone. In chick sensory neurons subjected to acute laminin treatment dynein, dynactin, and LIS1 were mobilized strikingly and rapidly to the leading edge of the growth cone, where they were seen to be associated with microtubules converging into the laminin-induced axonal outgrowths. To interfere acutely with LIS1 and dynein function and to minimize secondary phenotypic effects, we injected antibodies to these proteins just before axon initiation. Antibody to both proteins produced an almost complete block of laminin-induced growth cone remodeling and the underlying reorganization of microtubules. Penetration of microtubules into the peripheral zone of differentiating axonal growth cones was decreased dramatically by antibody injection, as judged by live analysis of enhanced green fluorescent protein-tubulin and the microtubule tip-associated EB3 (end-binding protein 3). Dynein and LIS1 inhibition had no detectable effect on microtubule assembly but reduced the ability of microtubules to resist retrograde actin flow. In hippocampal neurons dynein, dynactin, and LIS1 were enriched in axonal growth cones at stage 3, and both growth cone organization and axon elongation were altered by LIS1 RNA interference. Together, our data indicate that dynein and LIS1 play a surprisingly prominent role in microtubule advance during growth cone remodeling associated with axonogenesis. These data may explain, in part, the role of these proteins in brain developmental disease and support an important role in diverse aspects of neuronal differentiation and nervous system development.
Collapse
Affiliation(s)
- Peter W. Grabham
- Departments of Pharmacology and
- Centers for Radiological Research and
- Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Garrett E. Seale
- Pathology and Cell Biology, and
- Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Malika Bennecib
- Pathology and Cell Biology, and
- Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Daniel J. Goldberg
- Departments of Pharmacology and
- Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Richard B. Vallee
- Pathology and Cell Biology, and
- Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| |
Collapse
|
99
|
Buttner EA, Gil-Krzewska AJ, Rajpurohit AK, Hunter CP. Progression from mitotic catastrophe to germ cell death in Caenorhabditis elegans lis-1 mutants requires the spindle checkpoint. Dev Biol 2007; 305:397-410. [PMID: 17376425 PMCID: PMC2000799 DOI: 10.1016/j.ydbio.2007.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 12/23/2006] [Accepted: 02/16/2007] [Indexed: 01/31/2023]
Abstract
Deletion of the lissencephaly disease gene LIS-1 in humans causes an extreme disorganization of the brain associated with significant reduction in cortical neurons. Here we show that deletion or RNA interference (RNAi) of Caenorhabditis elegans lis-1 results in a reduction in germline nuclei and causes a variety of cellular, developmental, and neurological defects throughout development. Our analysis of the germline defects suggests that the reduction in nuclei number stems from dysfunctional mitotic spindles resulting in cell cycle arrest and eventually programmed cell death (apoptosis). Deletion of the spindle checkpoint gene mdf-1 blocks lis-1(lf)-induced cell cycle arrest and germline apoptosis, placing the spindle checkpoint pathway upstream of the programmed cell death pathway. These results suggest that apoptosis may contribute to the cell-sparse pathology of lissencephaly.
Collapse
Affiliation(s)
- Edgar A Buttner
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138-2020, USA.
| | | | | | | |
Collapse
|
100
|
Suzuki SO, McKenney RJ, Mawatari SY, Mizuguchi M, Mikami A, Iwaki T, Goldman JE, Canoll P, Vallee RB. Expression patterns of LIS1, dynein and their interaction partners dynactin, NudE, NudEL and NudC in human gliomas suggest roles in invasion and proliferation. Acta Neuropathol 2007; 113:591-9. [PMID: 17221205 DOI: 10.1007/s00401-006-0180-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 11/26/2006] [Accepted: 11/26/2006] [Indexed: 11/24/2022]
Abstract
Diffusely infiltrating gliomas are the most common type of primary intracranial neoplasm in humans. One of the major obstacles to the effective treatment of these tumors is their highly infiltrative growth. However, mechanisms controlling their migration and proliferation are poorly understood. Glioma cells resemble neural progenitors, and we hypothesize that gliomas recapitulate the capacity of migration and proliferation of progenitors that takes place during brain development. Based on recent evidence implicating cytoplasmic dynein and its regulatory proteins in neural progenitor migration and division, we conducted immunohistochemical evaluation of surgically resected human glioma samples for the presence and distribution of these proteins. We examined expression of LIS1, the gene responsible for type I lissencephaly, cytoplasmic dynein and the dynein- and LIS1-interacting factors dynactin, NudE/NudEL and NudC, which play significant roles in neural progenitor cell behavior. We found that each of these proteins is expressed in all histological types and grades of human neuroectodermal tumors examined. Immunohistochemical analysis revealed that the levels of expression varied from cell to cell within each tumor, ranging from very high to undetectable. This stands in contrast to the low levels of diffuse staining seen in non-neoplastic brain tissue. Of particular interest, we noted tumor cells infiltrating the white matter and tumor cells undergoing cell division amongst the cells with notably high expression levels. These findings are compatible with the idea that LIS1 and its interacting proteins play a role in glioma migration and proliferation analogous to their role during brain development.
Collapse
Affiliation(s)
- Satoshi O Suzuki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, 812-8582 Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|