51
|
Stratton MT, Albracht-Schulte K, Harty PS, Siedler MR, Rodriguez C, Tinsley GM. Physiological responses to acute fasting: implications for intermittent fasting programs. Nutr Rev 2022; 80:439-452. [PMID: 35142356 DOI: 10.1093/nutrit/nuab094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intermittent fasting (IF) is a dietary strategy that involves alternating periods of abstention from calorie consumption with periods of ad libitum food intake. There is significant interest in the body of literature describing longitudinal adaptations to IF. Less attention has been given to the acute physiological responses that occur during the fasting durations that are commonly employed by IF practitioners. Thus, the purpose of this review was to examine the physiological responses - including alterations in substrate metabolism, systemic hormones, and autophagy - that occur throughout an acute fast. Literature searches were performed to locate relevant research describing physiological responses to acute fasting and short-term starvation. A single fast demonstrated the ability to alter glucose and lipid metabolism within the initial 24 hours, but variations in protein metabolism appeared to be minimal within this time frame. The ability of an acute fast to elicit significant increases in autophagy is still unknown. The information summarized in this review can be used to help contextualize existing research and better inform development of future IF interventions.
Collapse
Affiliation(s)
- Matthew T Stratton
- Energy Balance and Body Composition Laboratory; Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Kembra Albracht-Schulte
- Energy Balance and Body Composition Laboratory; Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Patrick S Harty
- Energy Balance and Body Composition Laboratory; Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Madelin R Siedler
- Energy Balance and Body Composition Laboratory; Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Christian Rodriguez
- Energy Balance and Body Composition Laboratory; Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Grant M Tinsley
- Energy Balance and Body Composition Laboratory; Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
52
|
Maffei M, Giordano A. Leptin, the brain and energy homeostasis: From an apparently simple to a highly complex neuronal system. Rev Endocr Metab Disord 2022; 23:87-101. [PMID: 33822303 DOI: 10.1007/s11154-021-09636-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Leptin, produced and secreted by white adipose tissue in tight relationship with adipose mass, informs the brain about the status of the energy stores serving as the main peripheral signal for energy balance regulation through interaction with a multitude of highly interconnected neuronal populations. Most obese patients display resistance to the anorectic effect of the hormone. The present review unravels the multiple levels of complexity that trigger hypothalamic response to leptin with the objective of highlighting those critical hubs that, mainly in the hypothalamic arcuate nucleus, may undergo obesity-induced alterations and create an obstacle to leptin action. Several mechanisms underlying leptin resistance have been proposed, possibly representing useful targets to empower leptin effects. Among these, a special focus is herein dedicated to detail how leptin gains access into the brain and how neuronal plasticity may interfere with leptin function.
Collapse
Affiliation(s)
- Margherita Maffei
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124, Pisa, Italy.
- Obesity and Lipodystrophy Center, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020, Ancona, Italy.
| |
Collapse
|
53
|
Erichsen JM, Fadel JR, Reagan LP. Peripheral versus central insulin and leptin resistance: Role in metabolic disorders, cognition, and neuropsychiatric diseases. Neuropharmacology 2022; 203:108877. [PMID: 34762922 PMCID: PMC8642294 DOI: 10.1016/j.neuropharm.2021.108877] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Insulin and leptin are classically regarded as peptide hormones that play key roles in metabolism. In actuality, they serve several functions in both the periphery and central nervous system (CNS). Likewise, insulin and leptin resistance can occur both peripherally and centrally. Metabolic disorders such as diabetes and obesity share several key features including insulin and leptin resistance. While the peripheral effects of these disorders are well-known (i.e. cardiovascular disease, hypertension, stroke, dyslipidemia, etc.), the CNS complications of leptin and insulin resistance have come into sharper focus. Both preclinical and clinical findings have indicated that insulin and leptin resistance are associated with cognitive deficits and neuropsychiatric diseases such as depression. Importantly, these studies also suggest that these deficits in neuroplasticity can be reversed by restoration of insulin and leptin sensitivity. In view of these observations, this review will describe, in detail, the peripheral and central functions of insulin and leptin and explain the role of insulin and leptin resistance in various metabolic disorders, cognition, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA.
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA; Columbia VA Health Care System, Columbia, SC, 29208, USA
| |
Collapse
|
54
|
Jeong B, Kim KK, Lee TH, Kim HR, Park BS, Park JW, Jeong JK, Seong JY, Lee BJ. Spexin Regulates Hypothalamic Leptin Action on Feeding Behavior. Biomolecules 2022; 12:biom12020236. [PMID: 35204737 PMCID: PMC8961618 DOI: 10.3390/biom12020236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Spexin (SPX) is a recently identified neuropeptide that is believed to play an important role in the regulation of energy homeostasis. Here, we describe a mediating function of SPX in hypothalamic leptin action. Intracerebroventricular (icv) SPX administration induced a decrease in food intake and body weight gain. SPX was found to be expressed in cells expressing leptin receptor ObRb in the mouse hypothalamus. In line with this finding, icv leptin injection increased SPX mRNA in the ObRb-positive cells of the hypothalamus, which was blocked by treatment with a STAT3 inhibitor. Leptin also increased STAT3 binding to the SPX promoter, as measured by chromatin immunoprecipitation assays. In vivo blockade of hypothalamic SPX biosynthesis with an antisense oligodeoxynucleotide (AS ODN) resulted in a diminished leptin effect on food intake and body weight. AS ODN reversed leptin’s effect on the proopiomelanocortin (POMC) mRNA expression and, moreover, decreased leptin-induced STAT3 binding to the POMC promoter sequence. These results suggest that SPX is involved in leptin’s action on POMC gene expression in the hypothalamus and impacts the anorexigenic effects of leptin.
Collapse
Affiliation(s)
- Bora Jeong
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Kwang-Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Tae-Hwan Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Han-Rae Kim
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC 22037, USA; (H.-R.K.); (J.-K.J.)
| | - Byong-Seo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Jeong-Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Jin-Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC 22037, USA; (H.-R.K.); (J.-K.J.)
| | - Jae-Young Seong
- Graduate School of Medicine, Korea University, Seoul 02841, Korea
- Correspondence: (J.-Y.S.); (B.-J.L.)
| | - Byung-Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
- Correspondence: (J.-Y.S.); (B.-J.L.)
| |
Collapse
|
55
|
Leptin enhances social motivation and reverses chronic unpredictable stress-induced social anhedonia during adolescence. Mol Psychiatry 2022; 27:4948-4958. [PMID: 36138127 PMCID: PMC9763124 DOI: 10.1038/s41380-022-01778-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 01/19/2023]
Abstract
Social anhedonia, a loss of interest and pleasure in social interactions, is a common symptom of major depression as well as other psychiatric disorders. Depression can occur at any age, but typically emerges in adolescence or early adulthood, which represents a sensitive period for social interaction that is vulnerable to stress. In this study, we evaluated social interaction reward using a conditioned place preference (CPP) paradigm in adolescent male and female mice. Adolescent mice of both sexes exhibited a preference for the social interaction-associated context. Chronic unpredictable stress (CUS) impaired the development of CPP for social interaction, mimicking social anhedonia in depressed adolescents. Conversely, administration of leptin, an adipocyte-derived hormone, enhanced social interaction-induced CPP in non-stressed control mice and reversed social anhedonia in CUS mice. By dissecting the motivational processes of social CPP into social approach and isolation avoidance components, we demonstrated that leptin treatment increased isolation aversion without overt social reward effect. Further mechanistic exploration revealed that leptin stimulated oxytocin gene transcription in the paraventricular nucleus of the hypothalamus, while oxytocin receptor blockade abolished the leptin-induced enhancement of socially-induced CPP. These results establish that chronic unpredictable stress can be used to study social anhedonia in adolescent mice and provide evidence that leptin modulates social motivation possibly via increasing oxytocin synthesis and oxytocin receptor activation.
Collapse
|
56
|
López-Soldado I, Guinovart JJ, Duran J. Hepatic overexpression of protein targeting to glycogen attenuates obesity and improves hyperglycemia in db/db mice. Front Endocrinol (Lausanne) 2022; 13:969924. [PMID: 36157460 PMCID: PMC9500150 DOI: 10.3389/fendo.2022.969924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Increased liver glycogen content has been shown to reduce food intake, attenuate obesity, and improve glucose tolerance in a mouse model of high-fat diet (HFD)-induced obesity. Here we studied the contribution of liver glycogen to the regulation of obesity and glucose metabolism in a model of type 2 diabetes and obesity, namely the db/db mouse. To this end, we crossed db/db mice with animals overexpressing protein targeting to glycogen (PTG) in the liver to generate db/db mice with increased liver glycogen content (db/db-PTG). Hepatic PTG overexpression reduced food intake and fat weight and attenuated obesity and hyperglycemia in db/db mice. Db/db-PTG mice showed similar energy expenditure and physical activity to db/db mice. PTG overexpression reduced liver phosphoenolpyruvate carboxykinase (PEPCK) protein levels and repressed hepatic glucose production in db/db mice. Moreover, increased liver glycogen elevated hepatic ATP content in these animals. However, lipid metabolism was not modified by PTG overexpression. In conclusion, increased liver glycogen content ameliorates the diabetic and obesity phenotype in db/db mice.
Collapse
Affiliation(s)
- Iliana López-Soldado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
- *Correspondence: Iliana López-Soldado,
| | - Joan J. Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
57
|
Ullah H, Khan AS, Murtaza B, Hichami A, Khan NA. Tongue Leptin Decreases Oro-Sensory Perception of Dietary Fatty Acids. Nutrients 2021; 14:nu14010197. [PMID: 35011070 PMCID: PMC8746778 DOI: 10.3390/nu14010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 11/16/2022] Open
Abstract
Leptin, an anorectic hormone, regulates food intake, energy expenditure and body weight. We assessed the implication of tongue leptin in the modulation of oro-sensory detection of dietary fatty acids in mice. The RT-PCR analysis showed that mRNA encoding leptin and leptin receptor (Ob-Rb) was expressed in mice taste bud cells (TBC). Confocal microscopic studies showed that the lipid sensor CD36 was co-expressed with leptin in mice TBC. Silencing of leptin or Ob-Rb mRNA in tongue papillae upregulated preference for a long-chain fatty acid (LCFA), i.e., linoleic acid (LA), in a two-bottle paradigm in mice. Furthermore, tongue leptin application decreased the preference for the LCFA. These results suggest that tongue leptin exerts an inhibitory action on fatty acid preference. In isolated mice TBC, leptin decreased LCFA-induced increases in free intracellular calcium concentrations, [Ca2+]i. Leptin and LCFA induced the phosphorylation of ERK1/2 and STAT-3 and there were no additive or opposite effects of the two agents on the degree of phosphorylation. However, leptin, but not the LCFA, induced phosphoinositide-3-kinase (PI-3-K)-dependent Akt phosphorylation in TBC. Furthermore, leptin induced hyperpolarization, whereas LCFA induced depolarization in TBC. Our study demonstrates that tongue leptin exerts an inhibitory action on oro-sensory detection of a dietary fatty acid by interfering with Ca2+ signaling and membrane potential in mice TBC.
Collapse
|
58
|
The Cholesterol Metabolite Cholest-5-en-3-One Alleviates Hyperglycemia and Hyperinsulinemia in Obese ( db/ db) Mice. Metabolites 2021; 12:metabo12010026. [PMID: 35050148 PMCID: PMC8779233 DOI: 10.3390/metabo12010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Dietary sterols are catabolized into various substances in the intestinal tract. Dietary 3-oxo derivatives of cholesterol and plant sterols (e.g., cholest-4-en-3-one and campest-5-en-3-one) have been shown to have anti-obesity effects. In this study, we tested whether feeding cholest-5-en-3-one (5-cholestenone), a cholesterol metabolite, to db/db mice protects them from obesity-associated metabolic disorders. In db/db mice, dietary 5-cholestenone significantly alleviated hepatomegaly and elevated serum triglyceride levels; however, the effect was not sufficient to improve hepatic steatosis and obesity. On the other hand, hyperglycemia and severe hyperinsulinemia in control db/db mice were markedly attenuated in 5-cholestenone-fed db/db mice. The production of inflammatory cytokines, such as monocyte chemoattractant protein-1, interleukin-6, and tumor necrosis factor-alpha (TNFα), was decreased, suggesting that the suppressive actions of 5-cholestenone were attributable to the alleviation of chronic inflammation in db/db mice. Additionally, 5-cholestenone showed an inhibitory effect on TNFα-induced nuclear factor kappa B (NFκB) activation in the NFκB luciferase gene reporter assay. These results suggest that obesity-induced abnormal glucose metabolism could be alleviated in 5-cholestenone-fed db/db mice by reducing the production of inflammatory cytokines through suppression of the NFκB signaling pathway.
Collapse
|
59
|
The role of the nucleus accumbens and ventral pallidum in feeding and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110394. [PMID: 34242717 DOI: 10.1016/j.pnpbp.2021.110394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/31/2021] [Accepted: 06/29/2021] [Indexed: 02/04/2023]
Abstract
Obesity is a growing global epidemic that stems from the increasing availability of highly-palatable foods and the consequent enhanced calorie consumption. Extensive research has shown that brain regions that are central to reward seeking modulate feeding and evidence linking obesity to pathology in such regions have recently started to accumulate. In this review we focus on the contribution of two major interconnected structures central to reward processing, the nucleus accumbens and the ventral pallidum, to obesity. We first review the known literature linking these structures to feeding behavior, then discuss recent advances connecting pathology in the nucleus accumbens and ventral pallidum to obesity, and finally examine the similarities and differences between drug addiction and obesity in the context of these two structures. The understanding of how pathology in brain regions involved in reward seeking and consumption may drive obesity and how mechanistically similar obesity and addiction are, is only now starting to be revealed. We hope that future research will advance knowledge in the field and open new avenues to studying and treating obesity.
Collapse
|
60
|
Ghaderpour S, Ghiasi R, Heydari H, Keyhanmanesh R. The relation between obesity, kisspeptin, leptin, and male fertility. Horm Mol Biol Clin Investig 2021; 43:235-247. [PMID: 34931507 DOI: 10.1515/hmbci-2021-0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022]
Abstract
Over the past decades, obesity and infertility in men increased in parallel, and the association between both phenomena have been examined by several researchers. despite the fact that there is no agreement, obesity appears to affect the reproductive potential of men through various mechanisms, such as changes in the hypothalamic-pituitary-testicular (HPT) axis, spermatogenesis, sperm quality and/or alteration of sexual health. Leptin is a hormone produced by the adipose tissue, and its production elevates with increasing body fat. Many studies have supported the relationship between raised leptin production and reproductive function regulation. In fact, Leptin acts on the HPT axis in men at all levels. However, most obese men are insensitive to increased production of endogenous leptin and functional leptin resistance development. Recently, it has been recommended that Kisspeptin neurons mediate the leptin's effects on the reproductive system. Kisspeptin binding to its receptor on gonadotropin-releasing hormone (GnRH) neurons, activates the mammal's reproductive axis and stimulates GnRH release. Increasing infertility associated with obesity is probably mediated by the Kisspeptin-GnRH pathway. In this review, the link between obesity, kisspeptin, leptin, and male fertility will be discussed.
Collapse
Affiliation(s)
- Saber Ghaderpour
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafighe Ghiasi
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Heydari
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
61
|
Shinjyo N, Kita K. Infection and Immunometabolism in the Central Nervous System: A Possible Mechanistic Link Between Metabolic Imbalance and Dementia. Front Cell Neurosci 2021; 15:765217. [PMID: 34795562 PMCID: PMC8592913 DOI: 10.3389/fncel.2021.765217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndromes are frequently associated with dementia, suggesting that the dysregulation of energy metabolism can increase the risk of neurodegeneration and cognitive impairment. In addition, growing evidence suggests the link between infections and brain disorders, including Alzheimer's disease. The immune system and energy metabolism are in an intricate relationship. Infection triggers immune responses, which are accompanied by imbalance in cellular and organismal energy metabolism, while metabolic disorders can lead to immune dysregulation and higher infection susceptibility. In the brain, the activities of brain-resident immune cells, including microglia, are associated with their metabolic signatures, which may be affected by central nervous system (CNS) infection. Conversely, metabolic dysregulation can compromise innate immunity in the brain, leading to enhanced CNS infection susceptibility. Thus, infection and metabolic imbalance can be intertwined to each other in the etiology of brain disorders, including dementia. Insulin and leptin play pivotal roles in the regulation of immunometabolism in the CNS and periphery, and dysfunction of these signaling pathways are associated with cognitive impairment. Meanwhile, infectious complications are often comorbid with diabetes and obesity, which are characterized by insulin resistance and leptin signaling deficiency. Examples include human immunodeficiency virus (HIV) infection and periodontal disease caused by an oral pathogen Porphyromonas gingivalis. This review explores potential interactions between infectious agents and insulin and leptin signaling pathways, and discuss possible mechanisms underlying the relationship between infection, metabolic dysregulation, and brain disorders, particularly focusing on the roles of insulin and leptin.
Collapse
Affiliation(s)
- Noriko Shinjyo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
62
|
Alterations in Leptin Signaling in Amyotrophic Lateral Sclerosis (ALS). Int J Mol Sci 2021; 22:ijms221910305. [PMID: 34638645 PMCID: PMC8508891 DOI: 10.3390/ijms221910305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Leptin has been suggested to play a role in amyotrophic lateral sclerosis (ALS), a fatal progressive neurodegenerative disease. This adipokine has previously been shown to be associated with a lower risk of ALS and to confer a survival advantage in ALS patients. However, the role of leptin in the progression of ALS is unknown. Indeed, our understanding of the mechanisms underlying leptin's effects in the pathogenesis of ALS is very limited, and it is fundamental to determine whether alterations in leptin's actions take place in this neurodegenerative disease. To characterize the association between leptin signaling and the clinical course of ALS, we assessed the mRNA and protein expression profiles of leptin, the long-form of the leptin receptor (Ob-Rb), and leptin-related signaling pathways at two different stages of the disease (onset and end-stage) in TDP-43A315T mice compared to age-matched WT littermates. In addition, at selected time-points, an immunoassay analysis was conducted to characterize plasma levels of total ghrelin, the adipokines resistin and leptin, and metabolic proteins (plasminogen activator inhibitor type 1 (PAI-1), gastric inhibitory peptide (GIP), glucagon-like peptide 1 (GLP-1), insulin and glucagon) in TDP-43A315T mice compared to WT controls. Our results indicate alterations in leptin signaling in the spinal cord and the hypothalamus on the backdrop of TDP-43-induced deficits in mice, providing new evidence about the pathways that could link leptin signaling to ALS.
Collapse
|
63
|
Ikegami H, Babaya N, Noso S. β-Cell failure in diabetes: Common susceptibility and mechanisms shared between type 1 and type 2 diabetes. J Diabetes Investig 2021; 12:1526-1539. [PMID: 33993642 PMCID: PMC8409822 DOI: 10.1111/jdi.13576] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus is etiologically classified into type 1, type 2 and other types of diabetes. Despite distinct etiologies and pathogenesis of these subtypes, many studies have suggested the presence of shared susceptibilities and underlying mechanisms in β-cell failure among different types of diabetes. Understanding these susceptibilities and mechanisms can help in the development of therapeutic strategies regardless of the diabetes subtype. In this review, we discuss recent evidence indicating the shared genetic susceptibilities and common molecular mechanisms between type 1, type 2 and other types of diabetes, and highlight the future prospects as well.
Collapse
Affiliation(s)
- Hiroshi Ikegami
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsaka‐sayama, OsakaJapan
| | - Naru Babaya
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsaka‐sayama, OsakaJapan
| | - Shinsuke Noso
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsaka‐sayama, OsakaJapan
| |
Collapse
|
64
|
Powell DR, Revelli JP, Doree DD, DaCosta CM, Desai U, Shadoan MK, Rodriguez L, Mullens M, Yang QM, Ding ZM, Kirkpatrick LL, Vogel P, Zambrowicz B, Sands AT, Platt KA, Hansen GM, Brommage R. High-Throughput Screening of Mouse Gene Knockouts Identifies Established and Novel High Body Fat Phenotypes. Diabetes Metab Syndr Obes 2021; 14:3753-3785. [PMID: 34483672 PMCID: PMC8409770 DOI: 10.2147/dmso.s322083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Obesity is a major public health problem. Understanding which genes contribute to obesity may better predict individual risk and allow development of new therapies. Because obesity of a mouse gene knockout (KO) line predicts an association of the orthologous human gene with obesity, we reviewed data from the Lexicon Genome5000TM high throughput phenotypic screen (HTS) of mouse gene KOs to identify KO lines with high body fat. MATERIALS AND METHODS KO lines were generated using homologous recombination or gene trapping technologies. HTS body composition analyses were performed on adult wild-type and homozygous KO littermate mice from 3758 druggable mouse genes having a human ortholog. Body composition was measured by either DXA or QMR on chow-fed cohorts from all 3758 KO lines and was measured by QMR on independent high fat diet-fed cohorts from 2488 of these KO lines. Where possible, comparisons were made to HTS data from the International Mouse Phenotyping Consortium (IMPC). RESULTS Body fat data are presented for 75 KO lines. Of 46 KO lines where independent external published and/or IMPC KO lines are reported as obese, 43 had increased body fat. For the remaining 29 novel high body fat KO lines, Ksr2 and G2e3 are supported by data from additional independent KO cohorts, 6 (Asnsd1, Srpk2, Dpp8, Cxxc4, Tenm3 and Kiss1) are supported by data from additional internal cohorts, and the remaining 21 including Tle4, Ak5, Ntm, Tusc3, Ankk1, Mfap3l, Prok2 and Prokr2 were studied with HTS cohorts only. CONCLUSION These data support the finding of high body fat in 43 independent external published and/or IMPC KO lines. A novel obese phenotype was identified in 29 additional KO lines, with 27 still lacking the external confirmation now provided for Ksr2 and G2e3 KO mice. Undoubtedly, many mammalian obesity genes remain to be identified and characterized.
Collapse
Affiliation(s)
- David R Powell
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Jean-Pierre Revelli
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Deon D Doree
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Christopher M DaCosta
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Urvi Desai
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Melanie K Shadoan
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Lawrence Rodriguez
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Michael Mullens
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Qi M Yang
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Zhi-Ming Ding
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Laura L Kirkpatrick
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Peter Vogel
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Brian Zambrowicz
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Arthur T Sands
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Kenneth A Platt
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Gwenn M Hansen
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Robert Brommage
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| |
Collapse
|
65
|
Koerber-Rosso I, Brandt S, von Schnurbein J, Fischer-Posovszky P, Hoegel J, Rabenstein H, Siebert R, Wabitsch M. A fresh look to the phenotype in mono-allelic likely pathogenic variants of the leptin and the leptin receptor gene. Mol Cell Pediatr 2021; 8:10. [PMID: 34448070 PMCID: PMC8390564 DOI: 10.1186/s40348-021-00119-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Leptin (LEP) and leptin receptor (LEPR) play a major role in energy homeostasis, metabolism, and reproductive function. While effects of biallelic likely pathogenic variants (-/-) on the phenotype are well characterized, effects of mono-allelic likely pathogenic variants (wt/-) in the LEP and LEPR gene on the phenotype compared to wild-type homozygosity (wt/wt) have not been systematically investigated. We identified in our systematic review 44 animal studies (15 on Lep, 29 on Lepr) and 39 studies in humans reporting on 130 mono-allelic likely pathogenic variant carriers with 20 distinct LEP variants and 108 heterozygous mono-allelic likely pathogenic variant carriers with 35 distinct LEPR variants. We found indications for a higher weight status in carriers of mono-allelic likely pathogenic variant in the leptin and in the leptin receptor gene compared to wt/wt, in both animal and human studies. In addition, animal studies showed higher body fat percentage in Lep and Lepr wt/- vs wt/wt. Animal studies provided indications for lower leptin levels in Lep wt/- vs. wt/wt and indications for higher leptin levels in Lepr wt/- vs wt/wt. Data on leptin levels in human studies was limited. Evidence for an impaired metabolism in mono-allelic likely pathogenic variants of the leptin and in leptin receptor gene was not conclusive (animal and human studies). Mono-allelic likely pathogenic variants in the leptin and in leptin receptor gene have phenotypic effects disposing to increased body weight and fat accumulation.
Collapse
Affiliation(s)
- Ingrid Koerber-Rosso
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Stephanie Brandt
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Julia von Schnurbein
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Josef Hoegel
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Hannah Rabenstein
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
66
|
Berger C, Heyne HO, Heiland T, Dommel S, Höfling C, Guiu-Jurado E, Roßner S, Dannemann M, Kelso J, Kovacs P, Blüher M, Klöting N. A novel compound heterozygous leptin receptor mutation causes more severe obesity than in Lepr db/db mice. J Lipid Res 2021; 62:100105. [PMID: 34390703 PMCID: PMC8450258 DOI: 10.1016/j.jlr.2021.100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023] Open
Abstract
The leptin receptor (Lepr) pathway is important for food intake regulation, energy expenditure, and body weight. Mutations in leptin and the Lepr have been shown to cause early-onset severe obesity in mice and humans. In studies with C57BL/6NCrl mice, we found a mouse with extreme obesity. To identify a putative spontaneous new form of monogenic obesity, we performed backcross studies with this mouse followed by a quantitative trait locus (QTL) analysis and sequencing of the selected chromosomal QTL region. We thereby identified a novel Lepr mutation (C57BL/6N-LeprL536Hfs*6-1NKB), which is located at chromosome 4, exon 11 within the CRH2-leptin-binding site. Compared with C57BL/6N mice, LeprL536Hfs*6 develop early onset obesity and their body weight exceeds that of Leprdb/db mice at an age of 30 weeks. Similar to Leprdb/db mice, the LeprL536Hfs*6 model is characterized by hyperphagia, obesity, lower energy expenditure and activity, hyperglycemia, and hyperinsulinemia compared with C57BL/6N mice. Crossing Leprdb/wt with LeprL536Hfs*6/wt mice results in compound heterozygous LeprL536Hfs*6/db mice, which develop even higher body weight and fat mass than both homozygous Leprdb/db and LeprL536Hfs*6 mice. Compound heterozygous Lepr deficiency affecting functionally different regions of the Lepr causes more severe obesity than the parental homozygous mutations.
Collapse
Affiliation(s)
- Claudia Berger
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, Leipzig, Germany
| | - Henrike O Heyne
- Medical Department, Institute for Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Institute for Molecular Medicine Finland: FIMM, Helsinki, Finland; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Tina Heiland
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Sebastian Dommel
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, Leipzig, Germany
| | - Corinna Höfling
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Esther Guiu-Jurado
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, Leipzig, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Leipzig, Germany
| | - Steffen Roßner
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Michael Dannemann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Leipzig, Germany
| | - Nora Klöting
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Leipzig, Germany.
| |
Collapse
|
67
|
Bakshi A, Singh R, Rai U. Trajectory of leptin and leptin receptor in vertebrates: Structure, function and their regulation. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110652. [PMID: 34343670 DOI: 10.1016/j.cbpb.2021.110652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The present review provides a comparative insight into structure, function and control of leptin system in fishes, herptiles, birds and mammals. In general, leptin acts as an anorexigenic hormone since its administration results in decrease of food intake in vertebrates. Nonetheless, functional paradox arises in fishes from contradictory observations on level of leptin during fasting and re-feeding. In addition, leptin is shown to modulate metabolic functions in fishes, reptiles, birds and mammals. Leptin also regulates reproductive and immune functions though more studies are warranted in non-mammalian vertebrates. The expression of leptin and its receptor is influenced by numerous factors including sex steroids, stress and stress-induced catecholamines and glucocorticoids though their effect in non-mammalian vertebrates is hard to be generalized due to limited studies.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Rajeev Singh
- Satyawati College, University of Delhi, Delhi 110052, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
68
|
Li C, Meng F, Lei Y, Liu J, Liu J, Zhang J, Liu F, Liu C, Guo M, Lu XY. Leptin regulates exon-specific transcription of the Bdnf gene via epigenetic modifications mediated by an AKT/p300 HAT cascade. Mol Psychiatry 2021; 26:3701-3722. [PMID: 33106599 PMCID: PMC8550971 DOI: 10.1038/s41380-020-00922-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/17/2023]
Abstract
Leptin is an adipocyte-derived hormone with pleiotropic functions affecting appetite and mood. While leptin's role in the regulation of appetite has been extensively studied in hypothalamic neurons, its function in the hippocampus, where it regulates mood-related behaviors, is poorly understood. Here, we show that the leptin receptor (LepRb) colocalizes with brain-derived neurotrophic factor (BDNF), a key player in the pathophysiology of major depression and the action of antidepressants, in the dentate gyrus of the hippocampus. Leptin treatment increases, whereas deficiency of leptin or leptin receptors decreases, total Bdnf mRNA levels, with distinct expression profiles of specific exons, in the hippocampus. Epigenetic analyses reveal that histone modifications, but not DNA methylation, underlie exon-specific transcription of the Bdnf gene induced by leptin. This is mediated by stimulation of AKT signaling, which in turn activates histone acetyltransferase p300 (p300 HAT), leading to changes in histone H3 acetylation and methylation at specific Bdnf promoters. Furthermore, deletion of Bdnf in the dentate gyrus, or specifically in LepRb-expressing neurons, abolishes the antidepressant-like effects of leptin. These findings indicate that leptin, acting via an AKT-p300 HAT epigenetic cascade, induces exon-specific Bdnf expression, which in turn is indispensable for leptin-induced antidepressant-like effects.
Collapse
Affiliation(s)
- Chen Li
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Shandong, China.
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| | - Fantao Meng
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Shandong, China
| | - Yun Lei
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jing Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jing Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Shandong, China
| | - Jingyan Zhang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Fang Liu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Cuilan Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Shandong, China
| | - Ming Guo
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
69
|
Gonzalez A, Cheung WW, Perens EA, Oliveira EA, Gertler A, Mak RH. A Leptin Receptor Antagonist Attenuates Adipose Tissue Browning and Muscle Wasting in Infantile Nephropathic Cystinosis-Associated Cachexia. Cells 2021; 10:1954. [PMID: 34440723 PMCID: PMC8393983 DOI: 10.3390/cells10081954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Mice lacking the functional cystinosin gene (Ctns-/-), a model of infantile nephropathic cystinosis (INC), exhibit the cachexia phenotype with adipose tissue browning and muscle wasting. Elevated leptin signaling is an important cause of chronic kidney disease-associated cachexia. The pegylated leptin receptor antagonist (PLA) binds to but does not activate the leptin receptor. We tested the efficacy of this PLA in Ctns-/- mice. We treated 12-month-old Ctns-/- mice and control mice with PLA (7 mg/kg/day, IP) or saline as a vehicle for 28 days. PLA normalized food intake and weight gain, increased fat and lean mass, decreased metabolic rate and improved muscle function. It also attenuated perturbations of energy homeostasis in adipose tissue and muscle in Ctns-/- mice. PLA attenuated adipose tissue browning in Ctns-/- mice. PLA increased gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in Ctns-/- mice. This was accompanied by correcting the increased expression of muscle wasting signaling while promoting the decreased expression of myogenesis in gastrocnemius of Ctns-/- mice. PLA attenuated aberrant expressed muscle genes that have been associated with muscle atrophy, increased energy expenditure and lipolysis in Ctns-/- mice. Leptin antagonism may represent a viable therapeutic strategy for adipose tissue browning and muscle wasting in INC.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Animals
- Body Composition/drug effects
- Cachexia/etiology
- Cachexia/metabolism
- Cachexia/pathology
- Cachexia/prevention & control
- Cystinosis/complications
- Cystinosis/drug therapy
- Cystinosis/metabolism
- Cystinosis/pathology
- Disease Models, Animal
- Hormone Antagonists/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/etiology
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Atrophy/prevention & control
- Receptors, Leptin/antagonists & inhibitors
- Receptors, Leptin/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Alex Gonzalez
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
| | - Wai W. Cheung
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
| | - Elliot A. Perens
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
| | - Eduardo A. Oliveira
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
- Health Sciences Postgraduate Program, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Arieh Gertler
- Institute of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Robert H. Mak
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
| |
Collapse
|
70
|
Oral Supplementation with Benzylamine Delays the Onset of Diabetes in Obese and Diabetic db-/- Mice. Nutrients 2021; 13:nu13082622. [PMID: 34444782 PMCID: PMC8401126 DOI: 10.3390/nu13082622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
Substrates of semicarbazide-sensitive amine oxidase (SSAO) exert insulin-like actions in adipocytes. One of them, benzylamine (Bza) exhibits antihyperglycemic properties in several rodent models of diabetes. To further study the antidiabetic potential of this naturally occurring amine, a model of severe type 2 diabetes, the obese db-/- mouse, was subjected to oral Bza administration. To this end, db-/- mice and their lean littermates were treated at 4 weeks of age by adding 0.5% Bza in drinking water for seven weeks. Body mass, fat content, blood glucose and urinary glucose output were followed while adipocyte insulin responsiveness and gene expression were checked at the end of supplementation, together with aorta nitrites. Bza supplementation delayed the appearance of hyperglycemia, abolished polydypsia and glycosuria in obese/diabetic mice without any detectable effect in lean control, except for a reduction in food intake observed in both genotypes. The improvement of glucose homeostasis was observed in db-/- mice at the expense of increased fat deposition, especially in the subcutaneous white adipose tissue (SCWAT), without sign of worsened inflammation or insulin responsiveness and with lowered circulating triglycerides and uric acid, while NO bioavailability was increased in aorta. The higher capacity of SSAO in oxidizing Bza in SCWAT, found in the obese mice, was unaltered by Bza supplementation and likely involved in the activation of glucose utilization by adipocytes. We propose that Bza oxidation in tissues, which produces hydrogen peroxide mainly in SCWAT, facilitates insulin-independent glucose utilization. Bza could be considered as a potential agent for dietary supplementation aiming at preventing diabetic complications.
Collapse
|
71
|
Butiaeva LI, Slutzki T, Swick HE, Bourguignon C, Robins SC, Liu X, Storch KF, Kokoeva MV. Leptin receptor-expressing pericytes mediate access of hypothalamic feeding centers to circulating leptin. Cell Metab 2021; 33:1433-1448.e5. [PMID: 34129812 DOI: 10.1016/j.cmet.2021.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/19/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Knowledge of how leptin receptor (LepR) neurons of the mediobasal hypothalamus (MBH) access circulating leptin is still rudimentary. Employing intravital microscopy, we found that almost half of the blood-vessel-enwrapping pericytes in the MBH express LepR. Selective disruption of pericytic LepR led to increased food intake, increased fat mass, and loss of leptin-dependent signaling in nearby LepR neurons. When delivered intravenously, fluorescently tagged leptin accumulated at hypothalamic LepR pericytes, which was attenuated upon pericyte-specific LepR loss. Because a paracellular tracer was also preferentially retained at LepR pericytes, we pharmacologically targeted regulators of inter-endothelial junction tightness and found that they affect LepR neuronal signaling and food intake. Optical imaging in MBH slices revealed a long-lasting, tonic calcium increase in LepR pericytes in response to leptin, suggesting pericytic contraction and vessel constriction. Together, our data indicate that LepR pericytes facilitate localized, paracellular blood-brain barrier leaks, enabling MBH LepR neurons to access circulating leptin.
Collapse
Affiliation(s)
- Liliia I Butiaeva
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Tal Slutzki
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Hannah E Swick
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Clément Bourguignon
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Sarah C Robins
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada
| | - Xiaohong Liu
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada
| | - Kai-Florian Storch
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal QC H4H 1R3, Canada
| | - Maia V Kokoeva
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada.
| |
Collapse
|
72
|
Barton JR, Snook AE, Waldman SA. From leptin to lasers: the past and present of mouse models of obesity. Expert Opin Drug Discov 2021; 16:777-790. [PMID: 33472452 PMCID: PMC8243785 DOI: 10.1080/17460441.2021.1877654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Introduction: Obesity is a prevalent condition that accounts for significant morbidity and mortality across the globe. Despite substantial effort, most obesity pharmacotherapies have proven unsafe or ineffective. The use of obese mouse models provides unique insight into the hormones and mechanisms that regulate appetite and metabolism. Paramount among these models are the 'obese' and 'diabetic' mice that revealed the powerful satiety hormone leptin, revolutionizing obesity research.Areas Covered: In this article, the authors discuss work on leptin therapy, and the clinical response to leptin in humans. The authors describe the use of modern mouse genetics to study targetable mechanisms for genetic forms of human obesity. Additionally, they describe mouse models of neuromodulation and their utility in unraveling neural circuits that govern appetite and metabolism.Expert opinion: Combining past and present models of obesity is required for the development of safe, effective, and impactful obesity therapy. Current research in obesity can benefit from repositories of genetically engineered mouse models to discover interactions between appetitive systems and circuits. Combining leptin therapy with other satiety signals comprising the gut-brain axis is a promising approach to induce significant enduring weight loss.
Collapse
Affiliation(s)
- Joshua R. Barton
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E. Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A. Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
73
|
Chauhdary Z, Rehman K, Akash MSH. The composite alliance of FTO locus with obesity-related genetic variants. Clin Exp Pharmacol Physiol 2021; 48:954-965. [PMID: 33735452 DOI: 10.1111/1440-1681.13498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Obesity has become a genuine global pandemic due to lifestyle and environmental modifications, and is associated with chronic lethal comorbidities. Various environmental factors such as lack of physical activity due to modernization and higher intake of energy-rich diets are primary obesogenic factors in pathogenesis of obesity. Genome-wide association study has identified the crucial role of FTO (fat mass and obesity) in human obesity. A bunch of SNPs in the first intron of FTO has been identified and subsequently correlated to body mass index and body composition. Findings of in silico, in vitro, and in vivo studies have manifested the robust role of FTO in regulation of energy expenditure and food consumption. Numerous studies have highlighted the mechanistic pathways behind the concomitant functions of FTO in adipogenesis and body size. Current investigation has also revealed the link of FTO neighbouring genes i.e., RPGRIP1L, IRX3 and IRX5 and epigenetic factors with obesity phenotypes. The motive behind this review is to cite the consequences of FTO on obesity vulnerability.
Collapse
Affiliation(s)
- Zunera Chauhdary
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
74
|
Ikushima YM, Awazawa M, Kobayashi N, Osonoi S, Takemiya S, Kobayashi H, Suwanai H, Morimoto Y, Soeda K, Adachi J, Muratani M, Charron J, Mizukami H, Takahashi N, Ueki K. MEK/ERK Signaling in β-Cells Bifunctionally Regulates β-Cell Mass and Glucose-Stimulated Insulin Secretion Response to Maintain Glucose Homeostasis. Diabetes 2021; 70:1519-1535. [PMID: 33906910 DOI: 10.2337/db20-1295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022]
Abstract
In diabetic pathology, insufficiency in β-cell mass, unable to meet peripheral insulin demand, and functional defects of individual β-cells in production of insulin are often concurrently observed, collectively causing hyperglycemia. Here we show that the phosphorylation of ERK1/2 is significantly decreased in the islets of db/db mice as well as in those of a cohort of subjects with type 2 diabetes. In mice with abrogation of ERK signaling in pancreatic β-cells through deletion of Mek1 and Mek2, glucose intolerance aggravates under high-fat diet-feeding conditions due to insufficient insulin production with lower β-cell proliferation and reduced β-cell mass, while in individual β-cells dampening of the number of insulin exocytosis events is observed, with the molecules involved in insulin exocytosis being less phosphorylated. These data reveal bifunctional roles for MEK/ERK signaling in β-cells for glucose homeostasis, i.e., in regulating β-cell mass as well as in controlling insulin exocytosis in individual β-cells, thus providing not only a novel perspective for the understanding of diabetes pathophysiology but also a potential clue for new drug development for diabetes treatment.
Collapse
Affiliation(s)
- Yoshiko Matsumoto Ikushima
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Motoharu Awazawa
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Naoki Kobayashi
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Seiichi Takemiya
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hirotsugu Suwanai
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Medical University, Tokyo, Japan
| | - Yuichi Morimoto
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kotaro Soeda
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, L'Hôtel-Dieu de Québec, Quebec City, Quebec, Canada
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Noriko Takahashi
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kohjiro Ueki
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Molecular Diabetology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
75
|
Huang Z, Tatti R, Loeven AM, Landi Conde DR, Fadool DA. Modulation of Neural Microcircuits That Control Complex Dynamics in Olfactory Networks. Front Cell Neurosci 2021; 15:662184. [PMID: 34239417 PMCID: PMC8259627 DOI: 10.3389/fncel.2021.662184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromodulation influences neuronal processing, conferring neuronal circuits the flexibility to integrate sensory inputs with behavioral states and the ability to adapt to a continuously changing environment. In this original research report, we broadly discuss the basis of neuromodulation that is known to regulate intrinsic firing activity, synaptic communication, and voltage-dependent channels in the olfactory bulb. Because the olfactory system is positioned to integrate sensory inputs with information regarding the internal chemical and behavioral state of an animal, how olfactory information is modulated provides flexibility in coding and behavioral output. Herein we discuss how neuronal microcircuits control complex dynamics of the olfactory networks by homing in on a special class of local interneurons as an example. While receptors for neuromodulation and metabolic peptides are widely expressed in the olfactory circuitry, centrifugal serotonergic and cholinergic inputs modulate glomerular activity and are involved in odor investigation and odor-dependent learning. Little is known about how metabolic peptides and neuromodulators control specific neuronal subpopulations. There is a microcircuit between mitral cells and interneurons that is comprised of deep-short-axon cells in the granule cell layer. These local interneurons express pre-pro-glucagon (PPG) and regulate mitral cell activity, but it is unknown what initiates this type of regulation. Our study investigates the means by which PPG neurons could be recruited by classical neuromodulators and hormonal peptides. We found that two gut hormones, leptin and cholecystokinin, differentially modulate PPG neurons. Cholecystokinin reduces or increases spike frequency, suggesting a heterogeneous signaling pathway in different PPG neurons, while leptin does not affect PPG neuronal firing. Acetylcholine modulates PPG neurons by increasing the spike frequency and eliciting bursts of action potentials, while serotonin does not affect PPG neuron excitability. The mechanisms behind this diverse modulation are not known, however, these results clearly indicate a complex interplay of metabolic signaling molecules and neuromodulators that may fine-tune neuronal microcircuits.
Collapse
Affiliation(s)
- Zhenbo Huang
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Roberta Tatti
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Ashley M Loeven
- Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Daniel R Landi Conde
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Debra Ann Fadool
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
76
|
Kennon AM, Stewart JA. RAGE Differentially Altered in vitro Responses in Vascular Smooth Muscle Cells and Adventitial Fibroblasts in Diabetes-Induced Vascular Calcification. Front Physiol 2021; 12:676727. [PMID: 34163373 PMCID: PMC8215351 DOI: 10.3389/fphys.2021.676727] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
The Advanced Glycation End-Products (AGE)/Receptor for AGEs (RAGE) signaling pathway exacerbates diabetes-mediated vascular calcification (VC) in vascular smooth muscle cells (VSMCs). Other cell types are involved in VC, such as adventitial fibroblasts (AFBs). We hope to elucidate some of the mechanisms responsible for differential signaling in diabetes-mediated VC with this work. This work utilizes RAGE knockout animals and in vitro calcification to measure calcification and protein responses. Our calcification data revealed that VSMCs calcification was AGE/RAGE dependent, yet AFBs calcification was not an AGE-mediated RAGE response. Protein expression data showed VSMCs lost their phenotype marker, α-smooth muscle actin, and had a higher RAGE expression over non-diabetics. RAGE knockout (RKO) VSMCs did not show changes in phenotype markers. P38 MAPK, a downstream RAGE-associated signaling molecule, had significantly increased activation with calcification in both diabetic and diabetic RKO VSMCs. AFBs showed a loss in myofibroblast marker, α-SMA, due to calcification treatment. RAGE expression decreased in calcified diabetic AFBs, and P38 MAPK activation significantly increased in diabetic and diabetic RKO AFBs. These findings point to potentially an alternate receptor mediating the calcification response in the absence of RAGE. Overall, VSMCs and AFBs respond differently to calcification and the application of AGEs.
Collapse
Affiliation(s)
- Amber M Kennon
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, MS, United States
| | - James A Stewart
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, MS, United States
| |
Collapse
|
77
|
Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, Gojobori T, Isenovic ER. Leptin and Obesity: Role and Clinical Implication. Front Endocrinol (Lausanne) 2021; 12:585887. [PMID: 34084149 PMCID: PMC8167040 DOI: 10.3389/fendo.2021.585887] [Citation(s) in RCA: 450] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
The peptide hormone leptin regulates food intake, body mass, and reproductive function and plays a role in fetal growth, proinflammatory immune responses, angiogenesis and lipolysis. Leptin is a product of the obese (ob) gene and, following synthesis and secretion from fat cells in white adipose tissue, binds to and activates its cognate receptor, the leptin receptor (LEP-R). LEP-R distribution facilitates leptin's pleiotropic effects, playing a crucial role in regulating body mass via a negative feedback mechanism between adipose tissue and the hypothalamus. Leptin resistance is characterized by reduced satiety, over-consumption of nutrients, and increased total body mass. Often this leads to obesity, which reduces the effectiveness of using exogenous leptin as a therapeutic agent. Thus, combining leptin therapies with leptin sensitizers may help overcome such resistance and, consequently, obesity. This review examines recent data obtained from human and animal studies related to leptin, its role in obesity, and its usefulness in obesity treatment.
Collapse
Affiliation(s)
- Milan Obradovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Soskic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Swati Arya
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
78
|
A step towards glucose control with a novel nanomagnetic-insulin for diabetes care. Int J Pharm 2021; 601:120587. [PMID: 33845153 DOI: 10.1016/j.ijpharm.2021.120587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/28/2021] [Accepted: 04/04/2021] [Indexed: 01/06/2023]
Abstract
Massive efforts have been devoted to insulin delivery for diabetes care. Achieving a long-term tight-regulated blood glucose level with a low risk of hypoglycemia remains a great challenge. In this study we propose a novel strategy to efficiently regulate insulin action after insulin is injected or released into patient body aiming to achieve better glycemic control, which is achieved by the administration of insulin-conjugated magnetic nanoparticles (MNPs-Ins). We show that the locomotion of MNPs-Ins can be controlled to reach a target site on an in vitro microfluidic platform, which may open a way to modulate the physiological effect of insulin in a remote-control manner. Most importantly, the in vivo blood glucose regulation of the MNPs-Ins was performed on diabetic mice to understand the glycemic control performance. The results showed that the MNPs-Ins can achieve a better glycemic control with longer effective drug duration while not causing hypoglycemia and a magnetic-modulated hypoglycemic dynamics. Moreover, the in vivo histochemistry experiments confirmed the good biocompatibility of MNPs-Ins. Along with our on-going research on the possibility of the recycle and reuse of the MNPs-Ins, the finding presented in this paper may manifest a fascinating potential in insulin delivery in the near future.
Collapse
|
79
|
de Candia P, Prattichizzo F, Garavelli S, Alviggi C, La Cava A, Matarese G. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J Exp Med 2021; 218:211994. [PMID: 33857282 PMCID: PMC8056770 DOI: 10.1084/jem.20191593] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The discovery of the archetypal adipocytokine leptin and how it regulates energy homeostasis have represented breakthroughs in our understanding of the endocrine function of the adipose tissue and the biological determinants of human obesity. Investigations on leptin have also been instrumental in identifying physio-pathological connections between metabolic regulation and multiple immunological functions. For example, the description of the promoting activities of leptin on inflammation and cell proliferation have recognized the detrimental effects of leptin in connecting dysmetabolic conditions with cancer and with onset and/or progression of autoimmune disease. Here we review the multiple biological functions and complex framework of operations of leptin, discussing why and how the pleiotropic activities of this adipocytokine still pose major hurdles in the development of effective leptin-based therapeutic opportunities for different clinical conditions.
Collapse
Affiliation(s)
- Paola de Candia
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | | | - Silvia Garavelli
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Carlo Alviggi
- Department of Neuroscience, Reproductive Science and Odontostomatology, Università di Napoli "Federico II," Naples, Italy
| | - Antonio La Cava
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy.,T reg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II," Naples, Italy
| |
Collapse
|
80
|
Kulkarni A, Bowers LW. The role of immune dysfunction in obesity-associated cancer risk, progression, and metastasis. Cell Mol Life Sci 2021; 78:3423-3442. [PMID: 33464384 PMCID: PMC11073382 DOI: 10.1007/s00018-020-03752-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Obesity has been linked to an increased risk of and a worse prognosis for several types of cancer. A number of interrelated mediators contribute to obesity's pro-tumor effects, including chronic adipose inflammation and other perturbations of immune cell development and function. Here, we review studies examining the impact of obesity-induced immune dysfunction on cancer risk and progression. While the role of adipose tissue inflammation in obesity-associated cancer risk has been well characterized, the effects of obesity on immune cell infiltration and activity within the tumor microenvironment are not well studied. In this review, we aim to highlight the impact of both adipose-mediated inflammatory signaling and intratumoral immunosuppressive signaling in obesity-induced cancer risk, progression, and metastasis.
Collapse
Affiliation(s)
- Aneesha Kulkarni
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47906, USA
| | - Laura W Bowers
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
81
|
Kurowska P, Mlyczyńska E, Dawid M, Sierpowski M, Estienne A, Dupont J, Rak A. Adipokines change the balance of proliferation/apoptosis in the ovarian cells of human and domestic animals: A comparative review. Anim Reprod Sci 2021; 228:106737. [PMID: 33756403 DOI: 10.1016/j.anireprosci.2021.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Adipose tissue secretes multiple hormones termed adipokines, which are important regulators of many processes. There are four types of evidence supporting an association between adipokines and female fertility which are effects that occur: centrally at the pituitary; peripherally and locally at the ovary and reproductive tract; directly on the oocyte/embryo and during pregnancy. In this review, there was a focus on the description of adipokines (leptin, apelin, resistin, chemerin, adiponectin, vaspin and visfatin) on ovarian cell proliferation, cell cycle progression and apoptosis in comparison to effects on human and domestic animal ovaries including pigs, cattle and chickens. Knowledge about molecules which regulate the balance between proliferation and apoptosis so that these processes are optimal for ovarian function is essential for understanding the physiology and reducing the incidence of infertility. Furthermore, oogenesis, folliculogenesis, oocyte loss/selection and atresia are important processes for optimal ovarian physiological functions. There, however, is ovulation from only a few follicles, while the majority undergo atresia that is induced by apoptosis.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Mateusz Sierpowski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anthony Estienne
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Joelle Dupont
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
82
|
McKimpson WM, Chen Y, Irving JA, Zheng M, Weinberger J, Tan WLW, Tiang Z, Jagger AM, Chua SC, Pessin JE, Foo RSY, Lomas DA, Kitsis RN. Conversion of the death inhibitor ARC to a killer activates pancreatic β cell death in diabetes. Dev Cell 2021; 56:747-760.e6. [PMID: 33667344 DOI: 10.1016/j.devcel.2021.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/28/2020] [Accepted: 02/09/2021] [Indexed: 01/06/2023]
Abstract
Loss of insulin-secreting pancreatic β cells through apoptosis contributes to the progression of type 2 diabetes, but underlying mechanisms remain elusive. Here, we identify a pathway in which the cell death inhibitor ARC paradoxically becomes a killer during diabetes. While cytoplasmic ARC maintains β cell viability and pancreatic architecture, a pool of ARC relocates to the nucleus to induce β cell apoptosis in humans with diabetes and several pathophysiologically distinct mouse models. β cell death results through the coordinate downregulation of serpins (serine protease inhibitors) not previously known to be synthesized and secreted by β cells. Loss of the serpin α1-antitrypsin from the extracellular space unleashes elastase, triggering the disruption of β cell anchorage and subsequent cell death. Administration of α1-antitrypsin to mice with diabetes prevents β cell death and metabolic abnormalities. These data uncover a pathway for β cell loss in type 2 diabetes and identify an FDA-approved drug that may impede progression of this syndrome.
Collapse
Affiliation(s)
- Wendy M McKimpson
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yun Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - James A Irving
- UCL Respiratory Medicine, University College London, London WC1E 6BN, UK; Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, UK
| | - Min Zheng
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeremy Weinberger
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wilson Lek Wen Tan
- Cardiovascular Research Institute, National University Health Systems, Singapore, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zenia Tiang
- Cardiovascular Research Institute, National University Health Systems, Singapore, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Alistair M Jagger
- UCL Respiratory Medicine, University College London, London WC1E 6BN, UK; Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, UK
| | - Streamson C Chua
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roger S-Y Foo
- Cardiovascular Research Institute, National University Health Systems, Singapore, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - David A Lomas
- UCL Respiratory Medicine, University College London, London WC1E 6BN, UK; Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, UK
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
83
|
Trinh T, Broxmeyer HE. Role for Leptin and Leptin Receptors in Stem Cells During Health and Diseases. Stem Cell Rev Rep 2021; 17:511-522. [PMID: 33598894 PMCID: PMC7889057 DOI: 10.1007/s12015-021-10132-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2021] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells (HSCs) give rise to all blood and immune cells in the body. These rare cells reside in the hypoxic niche of the bone marrow (BM) where they are subjected to a complex network of regulatory factors including cellular and molecular components. To sustain hematopoiesis over the lifetime of an individual, HSCs maintain distinctive metabolic programs, and in recent years nutritional factors have been increasingly recognized as critical regulators of HSC numbers and functions. Leptin (LEP), a neuroendocrine messenger, and its receptor (LEPR) are well-known for their immunomodulatory and energy balancing effects; yet, how LEP/LEPR signaling plays a role in hematopoiesis is under-appreciated. In this review, we summarize and highlight recent work that demonstrated involvement of LEP/LEPR in hematopoiesis under steady state or stress-associated situations as well as in pathological conditions such as cardiovascular diseases and malignancies. Although the field is only in its infancy, these studies suggest evidence of potential clinical applications and proof-of-principle for more in-depth future research.
Collapse
Affiliation(s)
- Thao Trinh
- Departments of Microbiology/Immunology, Indiana University School of Medicine, 950 West Walnut Street, Bldg. R2, Room 302, Indianapolis, IN, 46202-5121, USA
| | - Hal E Broxmeyer
- Departments of Microbiology/Immunology, Indiana University School of Medicine, 950 West Walnut Street, Bldg. R2, Room 302, Indianapolis, IN, 46202-5121, USA.
| |
Collapse
|
84
|
Abstract
A healthy nutritional state is required for all aspects of reproduction and is signaled by the adipokine leptin. Leptin acts in a relatively narrow concentration range: too much or too little will compromise fertility. The leptin signal timing is important to prepubertal development in both sexes. In the brain, leptin acts on ventral premammillary neurons which signal kisspeptin (Kiss1) neurons to stimulate gonadotropin releasing hormone (GnRH) neurons. Suppression of Kiss1 neurons occurs when agouti-related peptide neurons are activated by reduced leptin, because leptin normally suppresses these orexigenic neurons. In the pituitary, leptin stimulates production of GnRH receptors (GnRHRs) and follicle-stimulating hormone at midcycle, by activating pathways that derepress actions of the messenger ribonucleic acid translational regulatory protein Musashi. In females, rising estrogen stimulates a rise in serum leptin, which peaks at midcycle, synchronizing with nocturnal luteinizing hormone pulses. The normal range of serum leptin levels (10-20 ng/mL) along with gonadotropins and growth factors promote ovarian granulosa and theca cell functions and oocyte maturation. In males, the prepubertal rise in leptin promotes testicular development. However, a decline in leptin levels in prepubertal boys reflects inhibition of leptin secretion by rising androgens. In adult males, leptin levels are 10% to 50% of those in females, and high leptin inhibits testicular function. The obesity epidemic has elucidated leptin resistance pathways, with too much leptin in either sex leading to infertility. Under conditions of balanced nutrition, however, the secretion of leptin is timed and regulated within a narrow level range that optimizes its trophic effects.
Collapse
Affiliation(s)
- Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Correspondence: Gwen V. Childs, PhD, University of Arkansas for Medical Sciences, Little Rock, AR, USA. E-mail:
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
85
|
Solé E, Ros-Freixedes R, Tor M, Reixach J, Pena RN, Estany J. Antagonistic maternal and direct effects of the leptin receptor gene on body weight in pigs. PLoS One 2021; 16:e0246198. [PMID: 33508034 PMCID: PMC7842917 DOI: 10.1371/journal.pone.0246198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Maternal effects on offspring growth can impact survival and evolution of natural and domesticated populations. Genetic correlation estimates often support a negative relationship between direct and maternal effects. However, the genetic underpinnings whereby this antagonism operates are unclear. In pigs, sow feeding status and body composition condition piglet development and growth. We hypothesized that variants in genes impacting these traits may be causative of maternal influences that could be antagonistic to the direct effects for piglet growth. A recessive missense mutation (C>T) in the porcine leptin receptor (LEPR) gene (rs709596309) has been identified as the possible causal polymorphism for increased feed intake and fatness. Using data from a Duroc line, we show that the TT sows exerted a negative impact on the body weight of their offspring at the end of the growing period of similar extent to the positive direct effect of the TT genotype over each individual. Thus, TT pigs from TT dams were about as heavy as CC and CT (C–) pigs from C–dams, but TT pigs from C–dams were around 5% heavier than C–pigs from TT dams. In contrast, body composition was only influenced by LEPR direct effects. This antagonism is due to a higher propensity of TT pigs for self-maintenance rather than for offspring investment. We show that TT pigs consumed more feed, favored fatty acid uptake over release, and produced lighter piglets at weaning than their C–counterparts. We conclude that LEPR underlies a transgenerational mechanism for energy distribution that allocates resources to the sow or the offspring according to whether selective pressure is exerted before or after weaning.
Collapse
Affiliation(s)
- Emma Solé
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| | - Roger Ros-Freixedes
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| | - Marc Tor
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| | - Josep Reixach
- Selección Batallé S.A., Riudarenes, Catalonia, Spain
| | - Ramona N Pena
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| | - Joan Estany
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| |
Collapse
|
86
|
Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr Rev 2021; 42:1-28. [PMID: 33150398 PMCID: PMC7846142 DOI: 10.1210/endrev/bnaa027] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/18/2022]
Abstract
The discovery of leptin was intrinsically associated with its ability to regulate body weight. However, the effects of leptin are more far-reaching and include profound glucose-lowering and anti-lipogenic effects, independent of leptin's regulation of body weight. Regulation of glucose metabolism by leptin is mediated both centrally and via peripheral tissues and is influenced by the activation status of insulin signaling pathways. Ectopic fat accumulation is diminished by both central and peripheral leptin, an effect that is beneficial in obesity-associated disorders. The magnitude of leptin action depends upon the tissue, sex, and context being examined. Peripheral tissues that are of particular relevance include the endocrine pancreas, liver, skeletal muscle, adipose tissues, immune cells, and the cardiovascular system. As a result of its potent metabolic activity, leptin is used to control hyperglycemia in patients with lipodystrophy and is being explored as an adjunct to insulin in patients with type 1 diabetes. To fully understand the role of leptin in physiology and to maximize its therapeutic potential, the mechanisms of leptin action in these tissues needs to be further explored.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.,Department of Surgery, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
87
|
Han JC, Weiss R. Obesity, Metabolic Syndrome and Disorders of Energy Balance. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:939-1003. [DOI: 10.1016/b978-0-323-62520-3.00024-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
88
|
Santos JL, Cortés VA. Eating behaviour in contrasting adiposity phenotypes: Monogenic obesity and congenital generalized lipodystrophy. Obes Rev 2021; 22:e13114. [PMID: 33030294 DOI: 10.1111/obr.13114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Most known types of nonsyndromic monogenic obesity are caused by rare mutations in genes of the leptin-melanocortin pathway controlling appetite and adiposity. In contrast, congenital generalized lipodystrophy represents the most extreme form of leanness in humans caused by recessive mutations in four genes involved in phospholipid/triglyceride synthesis and lipid droplet/caveolae structure. In this disease, the inability to store triglyceride in adipocytes results in hypoleptinemia and ectopic hepatic and muscle fat accumulation leading to fatty liver, hypertriglyceridemia and severe insulin resistance. As a result of hypoleptinemia, patients with lipodystrophy show alterations in eating behaviour characterized by constant increased energy intake. As it occurs in obesity caused by genetic leptin deficiency, exogenous leptin rapidly reduces hunger scores in patients with congenital generalized lipodystrophy, with additional beneficial effects on glucose homeostasis and metabolic profile normalization. The melanocortin-4 receptor agonist setmelanotide has been used in the treatment of monogenic obesities. There is only one report on the effect of setmelanotide in a patient with partial lipodystrophy resulting in mild reductions in hunger scores, with no improvements in metabolic status. The assessment of contrasting phenotypes of obesity/leanness represents an adequate strategy to understand the pathophysiology and altered eating behaviour associated with adipose tissue excessive accumulation/paucity.
Collapse
Affiliation(s)
- José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Víctor A Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
89
|
Pandeya SR, Nagy JA, Riveros D, Semple C, Taylor RS, Mortreux M, Sanchez B, Kapur K, Rutkove SB. Predicting myofiber cross-sectional area and triglyceride content with electrical impedance myography: A study in db/db mice. Muscle Nerve 2021; 63:127-140. [PMID: 33063867 PMCID: PMC8891989 DOI: 10.1002/mus.27095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/02/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Electrical impedance myography (EIM) provides insight into muscle composition and structure. We sought to evaluate its use in a mouse obesity model characterized by myofiber atrophy. METHODS We applied a prediction algorithm, ie, the least absolute shrinkage and selection operator (LASSO), to surface, needle array, and ex vivo EIM data from db/db and wild-type mice and assessed myofiber cross-sectional area (CSA) histologically and triglyceride (TG) content biochemically. RESULTS EIM data from all three modalities provided acceptable predictions of myofiber CSA with average root mean square error (RMSE) of 15% in CSA (ie, ±209 μm2 for a mean CSA of 1439 μm2 ) and TG content with RMSE of 30% in TG content (ie, ±7.3 nmol TG/mg muscle for a mean TG content of 25.4 nmol TG/mg muscle). CONCLUSIONS EIM combined with a predictive algorithm provides reasonable estimates of myofiber CSA and TG content without the need for biopsy.
Collapse
Affiliation(s)
- Sarbesh R. Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Janice A. Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniela Riveros
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Carson Semple
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Rebecca S. Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah
| | - Kush Kapur
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
90
|
Lakhssassi K, Serrano M, Lahoz B, Sarto MP, Iguácel LP, Folch J, Alabart JL, Calvo JH. The LEPR Gene Is Associated with Reproductive Seasonality Traits in Rasa Aragonesa Sheep. Animals (Basel) 2020; 10:ani10122448. [PMID: 33371230 PMCID: PMC7766475 DOI: 10.3390/ani10122448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 01/23/2023] Open
Abstract
The aim of this study was to characterize and identify causative polymorphisms in the leptin receptor (LEPR) gene responsible for the seasonal variation of reproductive traits in sheep. Three reproductive seasonality traits were studied: the total days of anoestrous (TDA), the progesterone cycling months (P4CM) and the oestrous cycling months (OCM). In total, 18 SNPs were detected in 33 ewes with extreme values for TDA and OCM. Six SNPs were non-synonymous substitutions and two of them were predicted in silico as deleterious: rs596133197 and rs403578195. These polymorphisms were then validated in 239 ewes. The SNP rs403578195, located in exon 8 and leading to a change of alanine to glycine (Ala284Gly) in the extracellular domain of the protein, was associated with the OCM trait, being the G allele associated with a decrease of 12 percent of the OCM trait. Haplotype analyses also suggested the involvement of other non-synonymous SNP located in exon 20 (rs405459906). This SNP also produces an amino acid change (Lys1069Glu) in the intracellular domain of the protein and segregates independently of rs403578195. These results confirm for the first time the role of the LEPR gene in sheep reproductive seasonality.
Collapse
Affiliation(s)
- Kenza Lakhssassi
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2), CITA–Zaragoza University, 50059 Zaragoza, Spain; (K.L.); (B.L.); (M.P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - Malena Serrano
- Departamento de Mejora Genética Animal INIA, 28040 Madrid, Spain;
| | - Belén Lahoz
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2), CITA–Zaragoza University, 50059 Zaragoza, Spain; (K.L.); (B.L.); (M.P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - María Pilar Sarto
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2), CITA–Zaragoza University, 50059 Zaragoza, Spain; (K.L.); (B.L.); (M.P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - Laura Pilar Iguácel
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2), CITA–Zaragoza University, 50059 Zaragoza, Spain; (K.L.); (B.L.); (M.P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - José Folch
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2), CITA–Zaragoza University, 50059 Zaragoza, Spain; (K.L.); (B.L.); (M.P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - José Luis Alabart
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2), CITA–Zaragoza University, 50059 Zaragoza, Spain; (K.L.); (B.L.); (M.P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - Jorge Hugo Calvo
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2), CITA–Zaragoza University, 50059 Zaragoza, Spain; (K.L.); (B.L.); (M.P.S.); (L.P.I.); (J.F.); (J.L.A.)
- ARAID, 50018 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-716-471
| |
Collapse
|
91
|
Olea-Flores M, Juárez-Cruz JC, Zuñiga-Eulogio MD, Acosta E, García-Rodríguez E, Zacapala-Gomez AE, Mendoza-Catalán MA, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. New Actors Driving the Epithelial-Mesenchymal Transition in Cancer: The Role of Leptin. Biomolecules 2020; 10:E1676. [PMID: 33334030 PMCID: PMC7765557 DOI: 10.3390/biom10121676] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022] Open
Abstract
Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial-mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Juan C. Juárez-Cruz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Miriam D. Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Erika Acosta
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Eduardo García-Rodríguez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Ana E. Zacapala-Gomez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Miguel A. Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Carlos Ortuño-Pineda
- Laboratorio de Ácidos Nucleicos y Proteinas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico;
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| |
Collapse
|
92
|
Unraveling the Role of Leptin in Liver Function and Its Relationship with Liver Diseases. Int J Mol Sci 2020; 21:ijms21249368. [PMID: 33316927 PMCID: PMC7764544 DOI: 10.3390/ijms21249368] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Since its discovery twenty-five years ago, the fat-derived hormone leptin has provided a revolutionary framework for studying the physiological role of adipose tissue as an endocrine organ. Leptin exerts pleiotropic effects on many metabolic pathways and is tightly connected with the liver, the major player in systemic metabolism. As a consequence, understanding the metabolic and hormonal interplay between the liver and adipose tissue could provide us with new therapeutic targets for some chronic liver diseases, an increasing problem worldwide. In this review, we assess relevant literature regarding the main metabolic effects of leptin on the liver, by direct regulation or through the central nervous system (CNS). We draw special attention to the contribution of leptin to the non-alcoholic fatty liver disease (NAFLD) pathogenesis and its progression to more advanced stages of the disease as non-alcoholic steatohepatitis (NASH). Likewise, we describe the contribution of leptin to the liver regeneration process after partial hepatectomy, the mainstay of treatment for certain hepatic malignant tumors.
Collapse
|
93
|
Kořínková L, Pražienková V, Černá L, Karnošová A, Železná B, Kuneš J, Maletínská L. Pathophysiology of NAFLD and NASH in Experimental Models: The Role of Food Intake Regulating Peptides. Front Endocrinol (Lausanne) 2020; 11:597583. [PMID: 33324348 PMCID: PMC7726422 DOI: 10.3389/fendo.2020.597583] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity, diabetes, insulin resistance, sedentary lifestyle, and Western diet are the key factors underlying non-alcoholic fatty liver disease (NAFLD), one of the most common liver diseases in developed countries. In many cases, NAFLD further progresses to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and to hepatocellular carcinoma. The hepatic lipotoxicity and non-liver factors, such as adipose tissue inflammation and gastrointestinal imbalances were linked to evolution of NAFLD. Nowadays, the degree of adipose tissue inflammation was shown to directly correlate with the severity of NAFLD. Consumption of higher caloric intake is increasingly emerging as a fuel of metabolic inflammation not only in obesity-related disorders but also NAFLD. However, multiple causes of NAFLD are the reason why the mechanisms of NAFLD progression to NASH are still not well understood. In this review, we explore the role of food intake regulating peptides in NAFLD and NASH mouse models. Leptin, an anorexigenic peptide, is involved in hepatic metabolism, and has an effect on NAFLD experimental models. Glucagon-like peptide-1 (GLP-1), another anorexigenic peptide, and GLP-1 receptor agonists (GLP-1R), represent potential therapeutic agents to prevent NAFLD progression to NASH. On the other hand, the deletion of ghrelin, an orexigenic peptide, prevents age-associated hepatic steatosis in mice. Because of the increasing incidence of NAFLD and NASH worldwide, the selection of appropriate animal models is important to clarify aspects of pathogenesis and progression in this field.
Collapse
Affiliation(s)
- L. Kořínková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - V. Pražienková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - L. Černá
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - A. Karnošová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - B. Železná
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - J. Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
94
|
Trinh T, Ropa J, Aljoufi A, Cooper S, Sinn A, Srour EF, Broxmeyer HE. Leptin receptor, a surface marker for a subset of highly engrafting long-term functional hematopoietic stem cells. Leukemia 2020; 35:2064-2075. [PMID: 33159180 DOI: 10.1038/s41375-020-01079-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/08/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
Abstract
The hematopoietic system is sustained by a rare population of hematopoietic stem cells (HSCs), which emerge during early embryonic development and then reside in the hypoxic niche of the adult bone marrow microenvironment. Although leptin receptor (Lepr)-expressing stromal cells are well-studied as critical regulators of murine hematopoiesis, the biological implications of Lepr expression on HSCs remain largely unexplored. We hypothesized that Lepr+HSCs are functionally different from other HSCs. Using in vitro and in vivo experimental approaches, we demonstrated that Lepr further differentiates SLAM HSCs into two distinct populations; Lepr+HSCs engrafted better than Lepr-HSCs in primary transplant. Compared to Lepr-LSK cells, Lepr+LSK cells were highly enriched for extensively repopulating and self-renewing HSCs. Molecularly, Lepr+HSCs were characterized by a pro-inflammatory transcriptomic profile enriched for Type-I Interferon and Interferon-gamma (IFN-γ) response pathways, which are known to be critical for the emergence of HSCs in the embryo. We conclude that although Lepr+HSCs represent a minor subset of HSCs, they are highly engrafting cells that possess embryonic-like transcriptomic characteristics, and that Lepr can serve as a reliable marker for functional long-term HSCs, which may have potential clinical applicability.
Collapse
Affiliation(s)
- Thao Trinh
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - James Ropa
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Arafat Aljoufi
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Scott Cooper
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anthony Sinn
- In Vivo Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Edward F Srour
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,In Vivo Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hal E Broxmeyer
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
95
|
Matsumura S, Kurashima Y, Murasaki S, Morimoto M, Arai F, Saito Y, Katayama N, Kim D, Inagaki Y, Kudo T, Ernst PB, Shimizu T, Kiyono H. Stratified layer analysis reveals intrinsic leptin stimulates cryptal mesenchymal cells for controlling mucosal inflammation. Sci Rep 2020; 10:18351. [PMID: 33110098 PMCID: PMC7591933 DOI: 10.1038/s41598-020-75186-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal cells in the crypt play indispensable roles in the maintenance of intestinal epithelial homeostasis through their contribution to the preservation of stem cells. However, the acquisition properties of the production of stem cell niche factors by the mesenchymal cells have not been well elucidated, due to technical limitations regarding the isolation and subsequent molecular and cellular analyses of cryptal mesenchymal cells. To evaluate the function of mesenchymal cells located at the large intestinal crypt, we established a novel method through which cells are harvested according to the histologic layers of mouse colon, and we compared cellular properties between microenvironmental niches, the luminal mucosa and crypts. The gene expression pattern in the cryptal mesenchymal cells showed that receptors of the hormone/cytokine leptin were highly expressed, and we found a decrease in Wnt2b expression under conditions of leptin receptor deficiency, which also induced a delay in cryptal epithelial proliferation. Our novel stratified layer isolation strategies thus revealed new microenvironmental characteristics of colonic mesenchymal cells, including the intrinsic involvement of leptin in the control of mucosal homeostasis.
Collapse
Affiliation(s)
- Seiichi Matsumura
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan.,Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Pediatrics, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan. .,Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan. .,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan. .,Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA. .,Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, CA, 92093-0956, USA.
| | - Sayuri Murasaki
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Masako Morimoto
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Fujimi Arai
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yukari Saito
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Nana Katayama
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Dayoung Kim
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Takahiro Kudo
- Department of Pediatrics, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Peter B Ernst
- Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA.,Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, CA, 92093-0956, USA.,Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, CA, 92093-0956, USA
| | - Toshiaki Shimizu
- Department of Pediatrics, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroshi Kiyono
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA, 92093-0956, USA
| |
Collapse
|
96
|
Yu H, Thompson Z, Kiran S, Jones GL, Mundada L, Rubinstein M, Low MJ. Expression of a hypomorphic Pomc allele alters leptin dynamics during late pregnancy. J Endocrinol 2020; 245:115-127. [PMID: 32027603 DOI: 10.1530/joe-19-0576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC) are essential for normal energy homeostasis. Maximal ARC Pomc transcription is dependent on neuronal Pomc enhancer 1 (nPE1), located 12 kb upstream from the promoter. Selective deletion of nPE1 in mice decreases ARC Pomc expression by 70%, sufficient to induce mild obesity. Because nPE1 is located exclusively in the genomes of placental mammals, we questioned whether its hypomorphic mutation would also alter placental Pomc expression and the metabolic adaptations associated with pregnancy and lactation. We assessed placental development, pup growth, circulating leptin and expression of Pomc, Agrp and alternatively spliced leptin receptor (LepR) isoforms in the ARC and placenta of Pomc∆1/∆1 and Pomc+/+ dams. Despite indistinguishable body weights, lean mass, food intake, placental histology and Pomc expression and overall pregnancy outcomes between the genotypes, Pomc ∆1/∆1 females had increased pre-pregnancy fat mass that paradoxically decreased to control levels by parturition. However, Pomc∆1/∆1 dams had exaggerated increases in circulating leptin, up to twice of that of the typically elevated levels in Pomc+/+ mice at the end of pregnancy, despite their equivalent fat mass. Pomc∆1/∆1dams also had increased placental expression of soluble leptin receptor (LepRe), although the protein levels of LEPRE in circulation were the same as Pomc+/+ controls. Together, these data suggest that the hypomorphic Pomc∆1/∆1 allele is responsible for the perinatal super hyperleptinemia of Pomc∆1/∆1 dams, possibly due to upregulated leptin secretion from individual adipocytes.
Collapse
Affiliation(s)
- Hui Yu
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zoe Thompson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sylee Kiran
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,School of Literature, Science, and Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Graham L Jones
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Lakshmi Mundada
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | -
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marcelo Rubinstein
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos, Buenos Aires, Argentina
| | - Malcolm J Low
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
97
|
Yang Y, Xu Y. The central melanocortin system and human obesity. J Mol Cell Biol 2020; 12:785-797. [PMID: 32976556 PMCID: PMC7816681 DOI: 10.1093/jmcb/mjaa048] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of obesity and the associated comorbidities highlight the importance of understanding the regulation of energy homeostasis. The central melanocortin system plays a critical role in controlling body weight balance. Melanocortin neurons sense and integrate the neuronal and hormonal signals, and then send regulatory projections, releasing anorexigenic or orexigenic melanocortin neuropeptides, to downstream neurons to regulate the food intake and energy expenditure. This review summarizes the latest progress in our understanding of the role of the melanocortin pathway in energy homeostasis. We also review the advances in the identification of human genetic variants that cause obesity via mechanisms that affect the central melanocortin system, which have provided rational targets for treatment of genetically susceptible patients.
Collapse
Affiliation(s)
- Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
98
|
Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, Sánchez-Margalet V. Role of Leptin in Inflammation and Vice Versa. Int J Mol Sci 2020; 21:E5887. [PMID: 32824322 PMCID: PMC7460646 DOI: 10.3390/ijms21165887] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is an essential immune response for the maintenance of tissue homeostasis. In a general sense, acute and chronic inflammation are different types of adaptive response that are called into action when other homeostatic mechanisms are insufficient. Although considerable progress has been made in understanding the cellular and molecular events that are involved in the acute inflammatory response to infection and tissue injury, the causes and mechanisms of systemic chronic inflammation are much less known. The pathogenic capacity of this type of inflammation is puzzling and represents a common link of the multifactorial diseases, such as cardiovascular diseases and type 2 diabetes. In recent years, interest has been raised by the discovery of novel mediators of inflammation, such as microRNAs and adipokines, with different effects on target tissues. In the present review, we discuss the data emerged from research of leptin in obesity as an inflammatory mediator sustaining multifactorial diseases and how this knowledge could be instrumental in the design of leptin-based manipulation strategies to help restoration of abnormal immune responses. On the other direction, chronic inflammation, either from autoimmune or infectious diseases, or impaired microbiota (dysbiosis) may impair the leptin response inducing resistance to the weight control, and therefore it may be a cause of obesity. Thus, we are reviewing the published data regarding the role of leptin in inflammation, and the other way around, the role of inflammation on the development of leptin resistance and obesity.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (F.S.-J.); (T.V.-G.)
| | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (F.S.-J.); (T.V.-G.)
| |
Collapse
|
99
|
UCP1-independent thermogenesis. Biochem J 2020; 477:709-725. [PMID: 32059055 DOI: 10.1042/bcj20190463] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
Obesity results from energy imbalance, when energy intake exceeds energy expenditure. Brown adipose tissue (BAT) drives non-shivering thermogenesis which represents a powerful mechanism of enhancing the energy expenditure side of the energy balance equation. The best understood thermogenic system in BAT that evolved to protect the body from hypothermia is based on the uncoupling of protonmotive force from oxidative phosphorylation through the actions of uncoupling protein 1 (UCP1), a key regulator of cold-mediated thermogenesis. Similarly, energy expenditure is triggered in response to caloric excess, and animals with reduced thermogenic fat function can succumb to diet-induced obesity. Thus, it was surprising when inactivation of Ucp1 did not potentiate diet-induced obesity. In recent years, it has become clear that multiple thermogenic mechanisms exist, based on ATP sinks centered on creatine, lipid, or calcium cycling, along with Fatty acid-mediated UCP1-independent leak pathways driven by the ADP/ATP carrier (AAC). With a key difference between cold- and diet-induced thermogenesis being the dynamic changes in purine nucleotide (primarily ATP) levels, ATP-dependent thermogenic pathways may play a key role in diet-induced thermogenesis. Additionally, the ubiquitous expression of AAC may facilitate increased energy expenditure in many cell types, in the face of over feeding. Interest in UCP1-independent energy expenditure has begun to showcase the therapeutic potential that lies in refining our understanding of the diversity of biochemical pathways controlling thermogenic respiration.
Collapse
|
100
|
Oeing CU, Mishra S, Dunkerly-Eyring BL, Ranek MJ. Targeting Protein Kinase G to Treat Cardiac Proteotoxicity. Front Physiol 2020; 11:858. [PMID: 32848832 PMCID: PMC7399205 DOI: 10.3389/fphys.2020.00858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Impaired or insufficient protein kinase G (PKG) signaling and protein quality control (PQC) are hallmarks of most forms of cardiac disease, including heart failure. Their dysregulation has been shown to contribute to and exacerbate cardiac hypertrophy and remodeling, reduced cell survival and disease pathogenesis. Enhancement of PKG signaling and PQC are associated with improved cardiac function and survival in many pre-clinical models of heart disease. While many clinically used pharmacological approaches exist to stimulate PKG, there are no FDA-approved therapies to safely enhance cardiomyocyte PQC. The latter is predominantly due to our lack of knowledge and identification of proteins regulating cardiomyocyte PQC. Recently, multiple studies have demonstrated that PKG regulates PQC in the heart, both during physiological and pathological states. These studies tested already FDA-approved pharmacological therapies to activate PKG, which enhanced cardiomyocyte PQC and alleviated cardiac disease. This review examines the roles of PKG and PQC during disease pathogenesis and summarizes the experimental and clinical data supporting the utility of stimulating PKG to target cardiac proteotoxicity.
Collapse
Affiliation(s)
- Christian U Oeing
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States.,Department of Cardiology, Charité - University Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sumita Mishra
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Brittany L Dunkerly-Eyring
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| |
Collapse
|