51
|
Liang F, Yang W, Xu L, Ji L, He Q, Wu L, Ran Y, Yan S. Closing extra CO2 into plants for simultaneous CO2 fixation, drought stress alleviation and nutrient absorption enhancement. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
52
|
Khoshravesh R, Stata M, Adachi S, Sage TL, Sage RF. Evolutionary Convergence of C 4 Photosynthesis: A Case Study in the Nyctaginaceae. FRONTIERS IN PLANT SCIENCE 2020; 11:578739. [PMID: 33224166 PMCID: PMC7667235 DOI: 10.3389/fpls.2020.578739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 05/27/2023]
Abstract
C4 photosynthesis evolved over 65 times, with around 24 origins in the eudicot order Caryophyllales. In the Caryophyllales family Nyctaginaceae, the C4 pathway is known in three genera of the tribe Nyctagineae: Allionia, Okenia and Boerhavia. Phylogenetically, Allionia and Boerhavia/Okenia are separated by three genera whose photosynthetic pathway is uncertain. To clarify the distribution of photosynthetic pathways in the Nyctaginaceae, we surveyed carbon isotope ratios of 159 species of the Nyctaginaceae, along with bundle sheath (BS) cell ultrastructure, leaf gas exchange, and C4 pathway biochemistry in five species from the two C4 clades and closely related C3 genera. All species in Allionia, Okenia and Boerhavia are C4, while no C4 species occur in any other genera of the family, including three that branch between Allionia and Boerhavia. This demonstrates that C4 photosynthesis evolved twice in Nyctaginaceae. Boerhavia species use the NADP-malic enzyme (NADP-ME) subtype of C4 photosynthesis, while Allionia species use the NAD-malic enzyme (NAD-ME) subtype. The BS cells of Allionia have many more mitochondria than the BS of Boerhavia. Bundle sheath mitochondria are closely associated with chloroplasts in Allionia which facilitates CO2 refixation following decarboxylation by mitochondrial NAD-ME. The close relationship between Allionia and Boerhavia could provide insights into why NADP-ME versus NAD-ME subtypes evolve, particularly when coupled to analysis of their respective genomes. As such, the group is an excellent system to dissect the organizational hierarchy of convergent versus divergent traits produced by C4 evolution, enabling us to understand when convergence is favored versus when divergent modifications can result in a common phenotype.
Collapse
Affiliation(s)
- Roxana Khoshravesh
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
- Department of Biology, The University of New Mexico, Albuquerque, NM, United States
| | - Matt Stata
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
| | - Shunsuke Adachi
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tammy L. Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
| | - Rowan F. Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
53
|
AuBuchon-Elder T, Coneva V, Goad DM, Jenkins LM, Yu Y, Allen DK, Kellogg EA. Sterile Spikelets Contribute to Yield in Sorghum and Related Grasses. THE PLANT CELL 2020; 32:3500-3518. [PMID: 32873633 PMCID: PMC7610286 DOI: 10.1105/tpc.20.00424] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 05/14/2023]
Abstract
Sorghum (Sorghum bicolor) and its relatives in the grass tribe Andropogoneae bear their flowers in pairs of spikelets in which one spikelet (seed-bearing or sessile spikelet [SS]) of the pair produces a seed and the other is sterile or male (staminate). This division of function does not occur in other major cereals such as wheat (Triticum aestivum) or rice (Oryza sativa). Additionally, one bract of the SS spikelet often produces a long extension, the awn, that is in the same position as, but independently derived from, that of wheat and rice. The function of the sterile spikelet is unknown and that of the awn has not been tested in Andropogoneae. We used radioactive and stable isotopes of carbon, RNA sequencing of metabolically important enzymes, and immunolocalization of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to show that the sterile spikelet assimilates carbon, which is translocated to the largely heterotrophic SS. The awn shows no evidence of photosynthesis. These results apply to distantly related species of Andropogoneae. Removal of sterile spikelets in sorghum significantly decreases seed weight (yield) by ∼9%. Thus, the sterile spikelet, but not the awn, affects yield in the cultivated species and fitness in the wild species.
Collapse
Affiliation(s)
| | | | - David M Goad
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Lauren M Jenkins
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- U.S. Department of Agriculture-Agricultural Research Service, St. Louis, Missouri 63132
| | - Yunqing Yu
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- U.S. Department of Agriculture-Agricultural Research Service, St. Louis, Missouri 63132
| | | |
Collapse
|
54
|
Abstract
C4 photosynthesis evolved multiple times independently from ancestral C3 photosynthesis in a broad range of flowering land plant families and in both monocots and dicots. The evolution of C4 photosynthesis entails the recruitment of enzyme activities that are not involved in photosynthetic carbon fixation in C3 plants to photosynthesis. This requires a different regulation of gene expression as well as a different regulation of enzyme activities in comparison to the C3 context. Further, C4 photosynthesis relies on a distinct leaf anatomy that differs from that of C3, requiring a differential regulation of leaf development in C4. We summarize recent progress in the understanding of C4-specific features in evolution and metabolic regulation in the context of C4 photosynthesis.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| |
Collapse
|
55
|
van Rooijen R, Schulze S, Petzsch P, Westhoff P. Targeted misexpression of NAC052, acting in H3K4 demethylation, alters leaf morphological and anatomical traits in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1434-1448. [PMID: 31740936 PMCID: PMC7031063 DOI: 10.1093/jxb/erz509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/18/2019] [Indexed: 05/31/2023]
Abstract
In an effort to identify genetic regulators for the cell ontogeny around the veins in Arabidopsis thaliana leaves, an activation-tagged mutant line with altered leaf morphology and altered bundle sheath anatomy was characterized. This mutant had a small rosette area with wrinkled leaves and chlorotic leaf edges, as well as enhanced chloroplast numbers in the (pre-)bundle sheath tissue. It had a bundle-specific promoter from the gene GLYCINE DECARBOXYLASE SUBUNIT-T from the C4 species Flaveria trinervia (GLDTFt promoter) inserted in the coding region of the transcriptional repressor NAC052, functioning in H3K4 demethylation, in front of an alternative start codon in-frame with the natural start codon. Reconstruction of the mutation event of our activation-tagged line by creating a line expressing an N-terminally truncated sequence of NAC052 under control of the GLDTFt promoter confirmed the involvement of NAC052 in leaf development. Our study not only reveals leaf anatomic and transcriptomic effects of an N-terminally truncated NAC052 under control of the GLDTFt promoter, but also identifies NAC052 as a novel genetic regulator of leaf development.
Collapse
Affiliation(s)
- Roxanne van Rooijen
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits towards Synthetic Modules’, Duesseldorf, Germany
| | - Stefanie Schulze
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Patrick Petzsch
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Genomics & Transcriptomics Labor (GTL), Heinrich-Heine-University, Duesseldorf, Germany
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits towards Synthetic Modules’, Duesseldorf, Germany
| |
Collapse
|
56
|
Simkin AJ, Faralli M, Ramamoorthy S, Lawson T. Photosynthesis in non-foliar tissues: implications for yield. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1001-1015. [PMID: 31802560 PMCID: PMC7064926 DOI: 10.1111/tpj.14633] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/16/2019] [Accepted: 11/25/2019] [Indexed: 05/19/2023]
Abstract
Photosynthesis is currently a focus for crop improvement. The majority of this work has taken place and been assessed in leaves, and limited consideration has been given to the contribution that other green tissues make to whole-plant carbon assimilation. The major focus of this review is to evaluate the impact of non-foliar photosynthesis on carbon-use efficiency and total assimilation. Here we appraise and summarize past and current literature on the substantial contribution of different photosynthetically active organs and tissues to productivity in a variety of different plant types, with an emphasis on fruit and cereal crops. Previous studies provide evidence that non-leaf photosynthesis could be an unexploited potential target for crop improvement. We also briefly examine the role of stomata in non-foliar tissues, gas exchange, maintenance of optimal temperatures and thus photosynthesis. In the final section, we discuss possible opportunities to manipulate these processes and provide evidence that Triticum aestivum (wheat) plants genetically manipulated to increase leaf photosynthesis also displayed higher rates of ear assimilation, which translated to increased grain yield. By understanding these processes, we can start to provide insights into manipulating non-foliar photosynthesis and stomatal behaviour to identify novel targets for exploitation in continuing breeding programmes.
Collapse
Affiliation(s)
- Andrew J. Simkin
- Genetics, Genomics and BreedingNIAB EMRNew Road, East MallingKentME19 6BJUK
| | - Michele Faralli
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
- Present address:
Department of Biodiversity and Molecular EcologyResearch and Innovation CentreFondazione Edmund Mach, via Mach 1San Michele all'Adige (TN)38010Italy
| | - Siva Ramamoorthy
- School of Bio Sciences and TechnologyVellore Institute of TechnologyVellore632014India
| | - Tracy Lawson
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
| |
Collapse
|
57
|
Simkin AJ. Genetic Engineering for Global Food Security: Photosynthesis and Biofortification. PLANTS (BASEL, SWITZERLAND) 2019; 8:E586. [PMID: 31835394 PMCID: PMC6963231 DOI: 10.3390/plants8120586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022]
Abstract
Increasing demands for food and resources are challenging existing markets, driving a need to continually investigate and establish crop varieties with improved yields and health benefits. By the later part of the century, current estimates indicate that a >50% increase in the yield of most of the important food crops including wheat, rice and barley will be needed to maintain food supplies and improve nutritional quality to tackle what has become known as 'hidden hunger'. Improving the nutritional quality of crops has become a target for providing the micronutrients required in remote communities where dietary variation is often limited. A number of methods to achieve this have been investigated over recent years, from improving photosynthesis through genetic engineering, to breeding new higher yielding varieties. Recent research has shown that growing plants under elevated [CO2] can lead to an increase in Vitamin C due to changes in gene expression, demonstrating one potential route for plant biofortification. In this review, we discuss the current research being undertaken to improve photosynthesis and biofortify key crops to secure future food supplies and the potential links between improved photosynthesis and nutritional quality.
Collapse
Affiliation(s)
- Andrew John Simkin
- Genetics, Genomics and Breeding, NIAB EMR, East Malling, Kent, ME19 6BJ, UK
| |
Collapse
|
58
|
Dehigaspitiya P, Milham P, Ash GJ, Arun-Chinnappa K, Gamage D, Martin A, Nagasaka S, Seneweera S. Exploring natural variation of photosynthesis in a site-specific manner: evolution, progress, and prospects. PLANTA 2019; 250:1033-1050. [PMID: 31254100 DOI: 10.1007/s00425-019-03223-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Site-specific changes of photosynthesis, a relatively new concept, can be used to improve the productivity of critical food crops to mitigate the foreseen food crisis. Global food security is threatened by an increasing population and the effects of climate change. Large yield improvements were achieved in major cereal crops between the 1950s and 1980s through the Green Revolution. However, we are currently experiencing a significant decline in yield progress. Of the many approaches to improved cereal yields, exploitation of the mode of photosynthesis has been intensely studied. Even though the C4 pathway is considered the most efficient, mainly because of the carbon concentrating mechanisms around the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, which minimize photorespiration, much is still unknown about the specific gene regulation of this mode of photosynthesis. Most of the critical cereal crops, including wheat and rice, are categorized as C3 plants based on the photosynthesis of major photosynthetic organs. However, recent findings raise the possibility of different modes of photosynthesis occurring at different sites in the same plant and/or in plants grown in different habitats. That is, it seems possible that efficient photosynthetic traits may be expressed in specific organs, even though the major photosynthetic pathway is C3. Knowledge of site-specific differences in photosynthesis, coupled with site-specific regulation of gene expression, may therefore hold a potential to enhance the yields of economically important C3 crops.
Collapse
Affiliation(s)
| | - Paul Milham
- Hawkesbury Institute for the Environment, Western Sydney University, LB 1797, Penrith, NSW, 2753, Australia
| | - Gavin J Ash
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Kiruba Arun-Chinnappa
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Dananjali Gamage
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Seiji Nagasaka
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Saman Seneweera
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
- National Institute of Fundamental Studies, Hanthana Road, Kandy, 20000, Central, Sri Lanka.
| |
Collapse
|
59
|
Fabiańska I, Bucher M, Häusler RE. Intracellular phosphate homeostasis - A short way from metabolism to signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:57-67. [PMID: 31300142 DOI: 10.1016/j.plantsci.2019.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 05/21/2023]
Abstract
Phosphorus in plant cells occurs in inorganic form as both ortho- and pyrophosphate or bound to organic compounds, like e.g., nucleotides, phosphorylated metabolites, phospholipids, phosphorylated proteins, or phytate as P storage in the vacuoles of seeds. Individual compartments of the cell are surrounded by membranes that are selective barriers to avoid uncontrolled solute exchange. A controlled exchange of phosphate or phosphorylated metabolites is accomplished by specific phosphate transporters (PHTs) and the plastidial phosphate translocator family (PTs) of the inner envelope membrane. Plastids, in particular chloroplasts, are the site of various anabolic sequences of enzyme-catalyzed reactions. Apart from their role in metabolism PHTs and PTs are presumed to be also involved in communication between organelles and plant organs. Here we will focus on the integration of phosphate transport and homeostasis in signaling processes. Recent developments in this field will be critically assessed and potential future developments discussed. In particular, the occurrence of various plastid types in one organ (i.e. the leaf) with different functions with respect to metabolism or sensing, as has been documented recently following a tissue-specific proteomics approach (Beltran et al., 2018), will shed new light on functional aspects of phosphate homeostasis.
Collapse
Affiliation(s)
- Izabela Fabiańska
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Rainer E Häusler
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany.
| |
Collapse
|
60
|
Stutz SS, Hanson DT. What is the fate of xylem-transported CO 2 in Kranz-type C 4 plants? THE NEW PHYTOLOGIST 2019; 223:1241-1252. [PMID: 31077397 DOI: 10.1111/nph.15908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
High concentrations of dissolved inorganic carbon in stems of herbaceous and woody C3 plants exit leaves in the dark. In the light, C3 species use a small portion of xylem-transported CO2 for leaf photosynthesis. However, it is not known if xylem-transported CO2 will exit leaves in the dark or be used for photosynthesis in the light in Kranz-type C4 plants. Cut leaves of Amaranthus hypochondriacus were placed in one of three solutions of [NaH13 CO3 ] dissolved in KCl water to measure the efflux of xylem-transported CO2 exiting the leaf in the dark or rates of assimilation of xylem-transported CO2 * in the light, in real-time, using a tunable diode laser absorption spectroscope. In the dark, the efflux of xylem-transported CO2 increased with increasing rates of transpiration and [13 CO2 *]; however, rates of 13 Cefflux in A. hypochondriacus were lower compared to C3 species. In the light, A. hypochondriacus fixed nearly 75% of the xylem-transported CO2 supplied to the leaf. Kranz anatomy and biochemistry likely influence the efflux of xylem-transported CO2 out of cut leaves of A. hypochondriacus in the dark, as well as the use of xylem-transported CO2 * for photosynthesis in the light. Thus increasing the carbon use efficiency of Kranz-type C4 species over C3 species.
Collapse
Affiliation(s)
- Samantha S Stutz
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
61
|
Tooulakou G, Nikolopoulos D, Dotsika E, Orkoula MG, Kontoyannis CG, Liakopoulos G, Klapa MI, Karabourniotis G. Changes in size and composition of pigweed (Amaranthus hybridus L.) calcium oxalate crystals under CO 2 starvation conditions. PHYSIOLOGIA PLANTARUM 2019; 166:862-872. [PMID: 30238994 DOI: 10.1111/ppl.12843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
The functional role(s) of plant calcium oxalate (CaOx) crystals are still poorly understood. Recently, it was shown that crystals function as dynamic carbon pools whose decomposition could provide CO2 to photosynthesis when stomata are closed (e.g. under drought conditions) and CO2 starvation conditions may be created within the mesophyll. This biochemical process, named as 'alarm photosynthesis', can become crucial for plant survival under adverse conditions. Here, we study crystal decomposition under controlled CO2 starvation conditions (either in the shoot or in the root) to obtain a better insight into the process of crystal formation and function. Hydroponically grown pigweed plants were kept in CO2 -free air and/or CO2 -free nutrient medium for 9 days. Crystal volume was monitored daily, and carbon stable isotope composition (δ13 C) and Fourier transformation Raman spectra were obtained at the end of the experiment. A considerable reduction in the leaf crystal volume was observed in shoot-CO2 -starved plants at the end of the experiment. The smallest crystals were isolated from the plants in which carbon was excluded from both the shoot and the root and contained potassium nitrate. Crystal δ13 C of CO2 -starved plants was altered in a predicted way. Specifically, it depended on the average calculated isotope fractionation of all carbon fixation processes considered to be contributing in each experimental treatment. The results of the present study confirmed the correlation between CO2 starvation conditions and the CaOx crystal decomposition. Inorganic carbon fixed in the root may represent a major carbon source for CaOx formation.
Collapse
Affiliation(s)
- Georgia Tooulakou
- Laboratory of Plant Physiology, Faculty of Crop Science, Agricultural University of Athens, Athens 118 55, Greece
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology-Hellas (FORTH/ICE-HT), Patras 265 04, Greece
| | - Dimosthenis Nikolopoulos
- Laboratory of Plant Physiology, Faculty of Crop Science, Agricultural University of Athens, Athens 118 55, Greece
| | - Elissavet Dotsika
- Stable Isotope and Radiocarbon Units, Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research "Demokritos", Athens 153 10, Greece
| | - Malvina G Orkoula
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology-Hellas (FORTH/ICE-HT), Patras 265 04, Greece
- Department of Pharmacy, University of Patras, Patras 265 04, Greece
| | - Christos G Kontoyannis
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology-Hellas (FORTH/ICE-HT), Patras 265 04, Greece
- Department of Pharmacy, University of Patras, Patras 265 04, Greece
| | - Georgios Liakopoulos
- Laboratory of Plant Physiology, Faculty of Crop Science, Agricultural University of Athens, Athens 118 55, Greece
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology-Hellas (FORTH/ICE-HT), Patras 265 04, Greece
| | - George Karabourniotis
- Laboratory of Plant Physiology, Faculty of Crop Science, Agricultural University of Athens, Athens 118 55, Greece
| |
Collapse
|
62
|
Hu L, Zhang Y, Xia H, Fan S, Song J, Lv X, Kong L. Photosynthetic characteristics of non-foliar organs in main C 3 cereals. PHYSIOLOGIA PLANTARUM 2019; 166:226-239. [PMID: 30221359 DOI: 10.1111/ppl.12838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 05/15/2023]
Abstract
Photosynthesis in non-foliar organs plays an important role in crop growth and productivity, and it has received considerable research attention in recent years. However, compared with the capability of photosynthetic CO2 fixation in leaves, the distinct attributes of photosynthesis in the non-foliar organs of wheat (a C3 species) are unclear. This review presents a comprehensive examination of the photosynthetic characteristics of non-foliar organs in wheat. Compared with leaves, non-foliar organs had a higher capacity to refix respired CO2 , higher tolerance to environmental stresses and slower terminal senescence after anthesis. Additionally, whether C4 photosynthetic metabolism exists in the non-foliar organs of wheat is discussed, as is the advantage of photosynthesis in non-foliar organs during times of abiotic stress. Introducing the photosynthesis-related genes of C4 plants into wheat, which are specifically expressed in non-foliar organs, can be a promising approach for improving wheat productivity.
Collapse
Affiliation(s)
- Ling Hu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Haiyong Xia
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Jie Song
- College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Xuemei Lv
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- College of Life Science, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
63
|
|
64
|
Kubis A, Bar-Even A. Synthetic biology approaches for improving photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1425-1433. [PMID: 30715460 PMCID: PMC6432428 DOI: 10.1093/jxb/erz029] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/08/2019] [Indexed: 05/10/2023]
Abstract
The phenomenal increase in agricultural yields that we have witnessed in the last century has slowed down as we approach the limits of selective breeding and optimization of cultivation techniques. To support the yield increase required to feed an ever-growing population, we will have to identify new ways to boost the efficiency with which plants convert light into biomass. This challenge could potentially be tackled using state-of-the-art synthetic biology techniques to rewrite plant carbon fixation. In this review, we use recent studies to discuss and demonstrate different approaches for enhancing carbon fixation, including engineering Rubisco for higher activity, specificity, and activation; changing the expression level of enzymes within the Calvin cycle to avoid kinetic bottlenecks; introducing carbon-concentrating mechanisms such as inorganic carbon transporters, carboxysomes, and C4 metabolism; and rewiring photorespiration towards more energetically efficient routes or pathways that do not release CO2. We conclude by noting the importance of prioritizing and combining different approaches towards continuous and sustainable increase of plant productivities.
Collapse
Affiliation(s)
- Armin Kubis
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Correspondence:
| |
Collapse
|
65
|
Moreno-Villena JJ, Dunning LT, Osborne CP, Christin PA. Highly Expressed Genes Are Preferentially Co-Opted for C4 Photosynthesis. Mol Biol Evol 2019; 35:94-106. [PMID: 29040657 PMCID: PMC5850498 DOI: 10.1093/molbev/msx269] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Novel adaptations are generally assembled by co-opting pre-existing genetic components, but the factors dictating the suitability of genes for new functions remain poorly known. In this work, we used comparative transcriptomics to determine the attributes that increased the likelihood of some genes being co-opted for C4 photosynthesis, a convergent complex trait that boosts productivity in tropical conditions. We show that independent lineages of grasses repeatedly co-opted the gene lineages that were the most highly expressed in non-C4 ancestors to produce their C4 pathway. Although ancestral abundance in leaves explains which genes were used for the emergence of a C4 pathway, the tissue specificity has surprisingly no effect. Our results suggest that levels of key genes were elevated during the early diversification of grasses and subsequently repeatedly used to trigger a weak C4 cycle via relatively few mutations. The abundance of C4-suitable transcripts therefore facilitated physiological innovation, but the transition to a strong C4 pathway still involved consequent changes in expression levels, leaf specificity, and coding sequences. The direction and amount of changes required for the strong C4 pathway depended on the identity of the genes co-opted, so that ancestral gene expression both facilitates adaptive transitions and constrains subsequent evolutionary trajectories.
Collapse
Affiliation(s)
| | - Luke T Dunning
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Colin P Osborne
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
66
|
Oliveira PMR, Rodrigues MA, Gonçalves AZ, Kerbauy GB. Exposure of Catasetum fimbriatum aerial roots to light coordinates carbon partitioning between source and sink organs in an auxin dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:341-347. [PMID: 30605871 DOI: 10.1016/j.plaphy.2018.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Light energy is essential for carbon metabolism in plants, as well as controlling the transport of metabolites between the organs. While terrestrial plants have a distinct structural and functional separation between the light exposed aerial parts and the non-exposed roots, epiphytic plants, such as orchids, have shoots and roots simultaneously fully exposed to light. The roots of orchids differ mainly from non-orchidaceous plants in their ability to photosynthesize. Since the roots of Catasetum fimbriatum can synthesize auxin which is acropetally transported to the shoot region, we decided to investigate whether: (1) light treatment of C. fimbriatum roots raises the auxin levels in the plant; and (2) distinct auxin concentrations can change the source-sink relationships, altering the amounts of sugars and organic acids in leaves, pseudobulbs and roots. Among the organs studied, the roots accumulated the highest concentrations of indole-3-acetic-acid (IAA); and when roots were exposed to light, IAA accumulated in the leaves. However, when polar auxin transport (PAT) was blocked with N-(1-Naphthyl)phthalamic acid (NPA) treatment, a significant accumulation of sugars and organic acids occurred in the pseudobulbs and leaves, respectively, suggesting that auxin flux from roots to shoots was involved in carbon partitioning of the aerial organs. Considering that C. fimbriatum plants lose all their leaves seasonally, it is possible the roots are a substituting influence on the growth and development of this orchid during its leafless period.
Collapse
Affiliation(s)
| | - Maria Aurineide Rodrigues
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Ana Zangirolame Gonçalves
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Gilberto Barbante Kerbauy
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
67
|
Trade-offs and Synergies in the Structural and Functional Characteristics of Leaves Photosynthesizing in Aquatic Environments. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-93594-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
68
|
Voznesenskaya EV, Koteyeva NK, Cousins A, Edwards GE. Diversity in structure and forms of carbon assimilation in photosynthetic organs in Cleome (Cleomaceae). FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:983-999. [PMID: 32290998 DOI: 10.1071/fp17323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/23/2018] [Indexed: 05/21/2023]
Abstract
Photosynthesis in different organs of Cleome was analysed in four species known to have differences in leaf photosynthesis: Cleome africana Botsch. (C3), Cleome paradoxa R.Br. (C3-C4 intermediate), Cleome angustifolia Forssk. and Cleome gynandra L. (C4). The chlorophyll content, carbon isotope composition, stomatal densities, anatomy, levels and compartmentation of some key photosynthetic enzymes, and the form and function of photosynthesis were determined in different organs of these species. In the three xerophytes, C. africana, C. paradoxa, and C. angustifolia, multiple organs contribute to photosynthesis (cotyledons, leaves, petioles, stems and pods) which is considered important for their survival under arid conditions. In C. africana, all photosynthetic organs have C3 photosynthesis. In C. paradoxa, cotyledons, leaves, stems and petioles have C3-C4 type features. In C. angustifolia, the pods have C3 photosynthesis, whereas all other organs have C4 photosynthesis with Kranz anatomy formed by a continuous, dual layer of chlorenchyma cells. In the subtropical C4 species C. gynandra, cotyledons, leaves, and pods develop C4 photosynthesis, with Kranz anatomy around individual veins; but not in stems and petioles which have limited function of photosynthesis. The diversity in forms and the capacity of photosynthesis in organs of these species to contribute to their carbon economy is discussed.
Collapse
Affiliation(s)
- Elena V Voznesenskaya
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of the Russian Academy of Sciences, St Petersburg, Russia
| | - Nuria K Koteyeva
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of the Russian Academy of Sciences, St Petersburg, Russia
| | - Asaph Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Gerald E Edwards
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
69
|
Gao Z, Shen W, Chen G. Uncovering C4-like photosynthesis in C3 vascular cells. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3531-3540. [PMID: 29684188 DOI: 10.1093/jxb/ery155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
In C4 plants, the vascularization of the leaf is extended to include a ring of photosynthetic bundle sheath cells, which have essential and specific functions. In contrast to the substantial knowledge of photosynthesis in C4 plants, relatively little is known about photosynthesis in C3 plant veins, which differs substantially from that in C3 mesophyll cells. In this review we highlight the specific photosynthetic machinery present in C3 vascular cells, which likely evolved prior to the divergence between C3 and C4 plants. The associated primary processes of carbon recapture, nitrogen transport, and antioxidant metabolism are discussed. This review of the basal C4 photosynthesis in C3 plants is significant in the context of promoting the potential for biotechnological development of C4-transgenic rice crops.
Collapse
Affiliation(s)
- Zhiping Gao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Weijun Shen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guoxiang Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
70
|
Muthusamy SK, Lenka SK, Katiyar A, Chinnusamy V, Singh AK, Bansal KC. Genome-Wide Identification and Analysis of Biotic and Abiotic Stress Regulation of C 4 Photosynthetic Pathway Genes in Rice. Appl Biochem Biotechnol 2018; 187:221-238. [PMID: 29915917 DOI: 10.1007/s12010-018-2809-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 06/04/2018] [Indexed: 11/30/2022]
Abstract
Photosynthetic fixation of CO2 is more efficient in C4 than in C3 plants. Rice is a C3 plant and a potential target for genetic engineering of the C4 pathway. It is known that genes encoding C4 enzymes are present in C3 plants. However, no systematic analysis has been conducted to determine if these C4 gene family members are expressed in diverse rice genotypes. In this study, we identified 15 genes belonging to the five C4 gene families in rice genome through BLAST search using known maize C4 photosynthetic pathway genes. Phylogenetic relationship of rice C4 photosynthetic pathway genes and their isoforms with other grass genomes (Brachypodium, maize, Sorghum and Setaria), showed that these genes were highly conserved across grass genomes. Spatiotemporal, hormone, and abiotic stress specific expression pattern of the identified genes revealed constitutive as well as inductive responses of the C4 photosynthetic pathway in different tissues and developmental stages of rice. Expression levels of C4 specific gene family members in flag leaf during tillering stage were quantitatively analyzed in five rice genotypes covering three species, viz. Oryza sativa, ssp. japonica (cv. Nipponbare), Oryza sativa, ssp. indica (cv IR64, Swarna), and two wild species Oryza barthii and Oryza australiensis. The results showed that all the identified genes expressed in rice and exhibited differential expression pattern during different growth stages, and in response to biotic and abiotic stress conditions and hormone treatments. Our study concludes that C4 photosynthetic pathway genes present in rice play a crucial role in stress regulation and might act as targets for C4 pathway engineering via CRISPR-mediated breeding.
Collapse
Affiliation(s)
- Senthilkumar K Muthusamy
- ICAR-National Research Centre on Plant Biotechnology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.,Division of Crop Improvement, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, 695017, India
| | - Sangram K Lenka
- ICAR-National Research Centre on Plant Biotechnology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.,TERI-Deakin Nanobiotechnology Centre, Gurgaon, 122 001, India
| | - Amit Katiyar
- ICAR-National Research Centre on Plant Biotechnology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.,ICMR-All India Institute of Medical Science, Ansari Nagar, New Delhi, 110029, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ashok K Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kailash C Bansal
- ICAR-National Research Centre on Plant Biotechnology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India. .,TERI-Deakin Nanobiotechnology Centre, Gurgaon, 122 001, India.
| |
Collapse
|
71
|
Plant secretory structures: more than just reaction bags. Curr Opin Biotechnol 2018; 49:73-79. [DOI: 10.1016/j.copbio.2017.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
|
72
|
Flexas J, Cano FJ, Carriquí M, Coopman RE, Mizokami Y, Tholen D, Xiong D. CO2 Diffusion Inside Photosynthetic Organs. THE LEAF: A PLATFORM FOR PERFORMING PHOTOSYNTHESIS 2018. [DOI: 10.1007/978-3-319-93594-2_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
73
|
Luo M, Zhang S, Tang C, Jia G, Tang S, Zhi H, Diao X. Screening of Mutants Related to the C 4 Photosynthetic Kranz Structure in Foxtail Millet. FRONTIERS IN PLANT SCIENCE 2018; 9:1650. [PMID: 30487807 PMCID: PMC6246719 DOI: 10.3389/fpls.2018.01650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 10/24/2018] [Indexed: 05/22/2023]
Abstract
C4 plants exhibit significantly higher photosynthetic, water and nutrient use efficiency compared with C3 plants. Kranz anatomy is associated with many C4 plants in which bundle sheath cells surround the veins and are themselves surrounded by mesophyll cells. This specialized Kranz anatomy is elucidated as an important contributor to C4 photosynthetic activities in C4 plant. Characterizing the molecular basis of Kranz structure formation has become a key objective for studies of C4 photosynthesis. However, severe mutants that specifically disrupt Kranz anatomy have not been identified. In this study, we detected 549 stable ethyl methane sulfonate-induced foxtail millet (cultivar Yugu1) mutants related to leaf development and photosynthesis among 2,709 mutants screened (M3/M4 generation). The identified mutants included 52 that had abnormal leaf veins (with abnormal starch accumulation based on iodine staining). Each of the 52 mutants was characterized through an analysis of leaf morphology, and through microscopic observations of leaf tissue sections embedded in resin and paraffin. In total, 14 mutants were identified with abnormal Kranz structures exemplified by small bundle sheath cell size. Additional phenotypes of the mutants included poorly differentiated mesophyll and bundle sheath cells, increased vein density and the absence of chloroplasts in the bundle sheath cells. Kranz structure mutations were accompanied by varying leaf thickness, implying these mutations induced complex effects. We identified mutations related to Kranz structure development in this trial, which may be useful for the mapping and cloning of genes responsible for mediating Kranz structure development.
Collapse
|
74
|
Moreno-Villena JJ, Dunning LT, Osborne CP, Christin PA. Highly Expressed Genes Are Preferentially Co-Opted for C4 Photosynthesis. Mol Biol Evol 2018. [PMID: 29040657 DOI: 10.1093/molbev/msx269/4457558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Novel adaptations are generally assembled by co-opting pre-existing genetic components, but the factors dictating the suitability of genes for new functions remain poorly known. In this work, we used comparative transcriptomics to determine the attributes that increased the likelihood of some genes being co-opted for C4 photosynthesis, a convergent complex trait that boosts productivity in tropical conditions. We show that independent lineages of grasses repeatedly co-opted the gene lineages that were the most highly expressed in non-C4 ancestors to produce their C4 pathway. Although ancestral abundance in leaves explains which genes were used for the emergence of a C4 pathway, the tissue specificity has surprisingly no effect. Our results suggest that levels of key genes were elevated during the early diversification of grasses and subsequently repeatedly used to trigger a weak C4 cycle via relatively few mutations. The abundance of C4-suitable transcripts therefore facilitated physiological innovation, but the transition to a strong C4 pathway still involved consequent changes in expression levels, leaf specificity, and coding sequences. The direction and amount of changes required for the strong C4 pathway depended on the identity of the genes co-opted, so that ancestral gene expression both facilitates adaptive transitions and constrains subsequent evolutionary trajectories.
Collapse
Affiliation(s)
| | - Luke T Dunning
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Colin P Osborne
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
75
|
Wang P, Khoshravesh R, Karki S, Tapia R, Balahadia CP, Bandyopadhyay A, Quick WP, Furbank R, Sage TL, Langdale JA. Re-creation of a Key Step in the Evolutionary Switch from C 3 to C 4 Leaf Anatomy. Curr Biol 2017; 27:3278-3287.e6. [PMID: 29056456 PMCID: PMC5678070 DOI: 10.1016/j.cub.2017.09.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022]
Abstract
The C4 photosynthetic pathway accounts for ∼25% of primary productivity on the planet despite being used by only 3% of species. Because C4 plants are higher yielding than C3 plants, efforts are underway to introduce the C4 pathway into the C3 crop rice. This is an ambitious endeavor; however, the C4 pathway evolved from C3 on multiple independent occasions over the last 30 million years, and steps along the trajectory are evident in extant species. One approach toward engineering C4 rice is to recapitulate this trajectory, one of the first steps of which was a change in leaf anatomy. The transition from C3 to so-called "proto-Kranz" anatomy requires an increase in organelle volume in sheath cells surrounding leaf veins. Here we induced chloroplast and mitochondrial development in rice vascular sheath cells through constitutive expression of maize GOLDEN2-LIKE genes. Increased organelle volume was accompanied by the accumulation of photosynthetic enzymes and by increased intercellular connections. This suite of traits reflects that seen in "proto-Kranz" species, and, as such, a key step toward engineering C4 rice has been achieved.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Roxana Khoshravesh
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada
| | - Shanta Karki
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines
| | - Ronald Tapia
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines
| | - C Paolo Balahadia
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines
| | - Anindya Bandyopadhyay
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines
| | - W Paul Quick
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines; Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Robert Furbank
- CSIRO, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada.
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
76
|
Reyna-Llorens I, Hibberd JM. Recruitment of pre-existing networks during the evolution of C 4 photosynthesis. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160386. [PMID: 28808102 PMCID: PMC5566883 DOI: 10.1098/rstb.2016.0386] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2017] [Indexed: 11/12/2022] Open
Abstract
During C4 photosynthesis, CO2 is concentrated around the enzyme RuBisCO. The net effect is to reduce photorespiration while increasing water and nitrogen use efficiencies. Species that use C4 photosynthesis have evolved independently from their C3 ancestors on more than 60 occasions. Along with mimicry and the camera-like eye, the C4 pathway therefore represents a remarkable example of the repeated evolution of a highly complex trait. In this review, we provide evidence that the polyphyletic evolution of C4 photosynthesis is built upon pre-existing metabolic and genetic networks. For example, cells around veins of C3 species show similarities to those of the C4 bundle sheath in terms of C4 acid decarboxylase activity and also the photosynthetic electron transport chain. Enzymes of C4 photosynthesis function together in gluconeogenesis during early seedling growth of C3Arabidopsis thaliana Furthermore, multiple C4 genes appear to be under control of both light and chloroplast signals in the ancestral C3 state. We, therefore, hypothesize that relatively minor rewiring of pre-existing genetic and metabolic networks has facilitated the recurrent evolution of this trait. Understanding how these changes are likely to have occurred could inform attempts to install C4 traits into C3 crops.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
77
|
Bachir DG, Saeed I, Song Q, Linn TZ, Chen L, Hu YG. Characterization and expression patterns of key C 4 photosynthetic pathway genes in bread wheat (Triticum aestivum L.) under field conditions. JOURNAL OF PLANT PHYSIOLOGY 2017; 213:87-97. [PMID: 28340469 DOI: 10.1016/j.jplph.2017.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 05/29/2023]
Abstract
Wheat is a C3 plant with relatively low photosynthetic efficiency and is a potential target for C4 photosynthetic pathway engineering. Here we reported the characterization of four key C4 pathway genes and assessed their expression patterns and enzymatic activities at three growth stages in flag leaves of 59 bread wheat genotypes. The C4-like genes homologous to PEPC, NADP-ME, MDH, and PPDK in maize were identified in the A, B, and D sub-genomes of bread wheat, located on the long arms of chromosomes 3 and 5 (TaPEPC), short arms of chromosomes 1 and 3 (TaNADP-ME), long arms of chromosomes 1 and 7 (TaMDH), and long arms of chromosome 1 (TaPPDK), respectively. All the four C4-like genes were expressed in the flag leaves at the three growth stages with considerable variations among the 59 bread wheat genotypes. Significant differences were observed between the photosynthesis rates (A) of wheat genotypes with higher expressions of TaPEPC_5, TaNADP-ME_1, and TaMDH_7 at heading and middle grain-filling stages and those with intermediate and low expressions. Our results also indicated that the four C4 enzymes showed activity in the flag leaves and were obviously different among the 59 wheat genotypes. The activities of PEPcase and PPDK decreased at anthesis and slightly increased at grain-filling stage, while NADP-ME and MDH exhibited a decreasing trend at the three stages. The results of the current study could be very valuable and useful for wheat researchers in improving photosynthetic capacity of wheat.
Collapse
Affiliation(s)
- Daoura Goudia Bachir
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Iqbal Saeed
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; NIFA, PO BOX 446, Tarnab, Peshawar, KP, Pakistan
| | - Quanhao Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tay Zar Linn
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
78
|
Tseng YC, Chu SW. High spatio-temporal-resolution detection of chlorophyll fluorescence dynamics from a single chloroplast with confocal imaging fluorometer. PLANT METHODS 2017; 13:43. [PMID: 28546824 PMCID: PMC5442853 DOI: 10.1186/s13007-017-0194-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 05/18/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Chlorophyll fluorescence (CF) is a key indicator to study plant physiology or photosynthesis efficiency. Conventionally, CF is characterized by fluorometers, which only allows ensemble measurement through wide-field detection. For imaging fluorometers, the typical spatial and temporal resolutions are on the order of millimeter and second, far from enough to study cellular/sub-cellular CF dynamics. In addition, due to the lack of optical sectioning capability, conventional imaging fluorometers cannot identify CF from a single cell or even a single chloroplast. RESULTS AND DISCUSSION Here we demonstrated a fluorometer based on confocal imaging, that not only provides high contrast images, but also allows CF measurement with spatiotemporal resolution as high as micrometer and millisecond. CF transient (the Kautsky curve) from a single chloroplast is successfully obtained, with both the temporal dynamics and the intensity dependences corresponding well to the ensemble measurement from conventional studies. The significance of confocal imaging fluorometer is to identify the variation among individual chloroplasts, e.g. the temporal position of the P-S-M phases, and the half-life period of P-T decay in the Kautsky curve, that are not possible to analyze with wide-field techniques. A linear relationship is found between excitation intensity and the temporal positions of P-S-M peaks/valleys in the Kautsky curve. Based on the CF transients, the photosynthetic quantum efficiency is derived with spatial resolution down to a single chloroplast. In addition, an interesting 6-order increase in excitation intensity is found between wide-field and confocal fluorometers, whose pixel integration time and optical sectioning may account for this substantial difference. CONCLUSION Confocal imaging fluorometers provide micrometer and millisecond CF characterization, opening up unprecedented possibilities toward detailed spatiotemporal analysis of CF transients and its propagation dynamics, as well as photosynthesis efficiency analysis, on the scale of organelles, in a living plant.
Collapse
Affiliation(s)
- Yi-Chin Tseng
- Department of Physics, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Da’an District, Taipei City, 10617 Taiwan
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Da’an District, Taipei City, 10617 Taiwan
- Molecular Imaging Center, National Taiwan University, No. 81, Changxing Street, Da’an District, Taipei, 10672 Taiwan
| |
Collapse
|
79
|
Sui X, Shan N, Hu L, Zhang C, Yu C, Ren H, Turgeon R, Zhang Z. The complex character of photosynthesis in cucumber fruit. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1625-1637. [PMID: 28369547 PMCID: PMC5441898 DOI: 10.1093/jxb/erx034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The surface area of a mature green cucumber (Cucumis sativa L.) fruit is comparable with that of a functional leaf, but the characteristics of fruit photosynthesis and its contribution to growth are poorly understood. Here, the photosynthetic properties of two genotypes of cucumber (dark green and light green fruits) were studied using a combination of electron microscopy, immunogold enzyme localization, chlorophyll fluorescence imaging, isotope tracer, and fruit darkening techniques. Chlorophyll content of the exocarp is similar to that of leaves, but there are no distinctive palisade and spongy tissues. The efficiency of PSII is similar to that in leaves, but with lower non-photochemical quenching (NPQ). Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is found mainly in the exocarp, while phosphoenolpyruvate carboxylase (PEPC) is primarily localized to vascular bundles and placenta tissue. Rubisco and PEPC expression at both transcriptional and translational levels increases concurrently during fruit growth. The contribution of fruit photosynthesis in exocarp to its own C accumulation is 9.4%, while ~88% of respiratory CO2 in fruit was captured and re-fixed. Photosynthesis by cucumber fruits, through direct fixation of atmospheric CO2 and recapture of respired CO2, as verified by 14CO2 uptake and gas exchange, makes an important contribution to fruit growth.
Collapse
Affiliation(s)
- Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Nan Shan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liping Hu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Changqing Yu
- Ecological Laboratory, Ecotech Ecological Technology Ltd, Beijing 100190, China
| | - Huazhong Ren
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Robert Turgeon
- Plant Biology Section, Cornell University, Ithaca, NY 14853, USA
| | - Zhenxian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
80
|
Li Y, Dong XM, Jin F, Shen Z, Chao Q, Wang BC. Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C 4 Photosynthetic Enzyme Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:950. [PMID: 28642769 PMCID: PMC5462996 DOI: 10.3389/fpls.2017.00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/22/2017] [Indexed: 05/18/2023]
Abstract
Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra) homologs of maize (Zea mays) C4 photosynthetic enzyme genes, carbonic anhydrase (CA), pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxykinase (PCK), and phosphoenolpyruvate carboxylase (PEPC), and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac) determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants.
Collapse
Affiliation(s)
- Yuan Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry UniversityHarbin, China
| | - Xiu-Mei Dong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Feng Jin
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Zhuo Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Bai-Chen Wang,
| |
Collapse
|
81
|
Shen W, Ye L, Ma J, Yuan Z, Zheng B, Lv C, Zhu Z, Chen X, Gao Z, Chen G. The existence of C4-bundle-sheath-like photosynthesis in the mid-vein of C3 rice. RICE (NEW YORK, N.Y.) 2016; 9:20. [PMID: 27164981 PMCID: PMC4864733 DOI: 10.1186/s12284-016-0094-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/30/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Recent studies have shown that C4-like photosynthetic pathways partly reside in photosynthetic cells surrounding the vascular system of C3 dicots. However, it is still unclear whether this is the case in C3 monocots, especially at the molecular level. RESULTS In order to fill this gap, we investigated several characteristics required for C4 photosynthesis, including C4 pathway enzymes, cyclic/non-cyclic photophosphorylation rates, the levels and assembly state of photosynthetic machineries, in the mid-veins of C3 monocots rice with leaf laminae used as controls. The signature of photosystem photochemistry was also recorded via non-invasive chlorophyll a fluorescence and reflectance changes at 820 nm in vivo. Our results showed that rice mid-veins were photosynthetically active with higher levels of three C4 decarboxylases. Meanwhile, the linear electron transport chain was blocked in mid-veins due to the selective loss of dysfunctional photosystem II subunits. However, photosystem I was sufficient to support cyclic electron flow in mid-veins, reminiscent of the bundle sheath in C4 plants. CONCLUSIONS The photosynthetic attributes required for C4 photosynthesis were identified for the first time in the monocotyledon model crop rice, suggesting that this is likely a general innate characteristic of C3 plants which might be preconditioned for the C4 pathway evolution. Understanding these attributes would provide a base for improved strategies for engineering C4 photosynthetic pathways into rice.
Collapse
Affiliation(s)
- Weijun Shen
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Luhuan Ye
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Ma
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhongyuan Yuan
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Baogang Zheng
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Chuangen Lv
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xiang Chen
- University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhiping Gao
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Guoxiang Chen
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
82
|
Identification and expression analysis of non-photosynthetic Rubisco small subunit, OsRbcS1-like genes in plants. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
83
|
Affiliation(s)
- Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Robert T Furbank
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
84
|
|
85
|
Rangan P, Furtado A, Henry RJ. Commentary: New evidence for grain specific C 4 photosynthesis in wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:1537. [PMID: 27807439 PMCID: PMC5070121 DOI: 10.3389/fpls.2016.01537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/29/2016] [Indexed: 05/23/2023]
Affiliation(s)
- Parimalan Rangan
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandBrisbane, QLD, Australia
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic ResourcesNew Delhi, India
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandBrisbane, QLD, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
86
|
Miszalski Z, Skoczowski A, Silina E, Dymova O, Golovko T, Kornas A, Strzalka K. Photosynthetic activity of vascular bundles in Plantago media leaves. JOURNAL OF PLANT PHYSIOLOGY 2016; 204:36-43. [PMID: 27500555 DOI: 10.1016/j.jplph.2016.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/05/2016] [Accepted: 06/05/2016] [Indexed: 06/06/2023]
Abstract
Photosynthetic processes in the leaf lamina and midribs of Plantago media were investigated using plants grown in high light (HL) or low light (LL) conditions. The fluorescence parameters, which indicate photochemical/photosynthetic activity, were different in HL and LL grown plants, but no major differences between lamina and midribs were found. An OJIP test (chlorophyll a fluorescence transient induction) of LL grown plants, indicative of the chloroplast electron transport chain, also showed both tissues to be similar. In HL plants, a partial blockage of electron flow between QA (the primary plastoquinone electron acceptor of PSII) and QB (the secondary plastoquinone acceptor of PSII) was found, and this was less visible in midribs. The effective dissipation of quantum energy per reaction center (DI0/RC) was similar in both tissues of HL grown plants, while in the midribs of LL leaves, this process seemed to be less effective. Measurements of 13C discrimination showed that the midrib tissues of LL and HL leaves effectively used β-carboxylation products to accumulate their biomass. Thus, the well protected activity of electron transport in midribs with their limited capacity to fix CO2 from the air may indicate the involvement of this tissue in β-carboxylation, transport or signaling. Carbon accumulated in roots showed a lower 13C discrimination value (more negative) than the values observed in lamina. This could indicate that roots are supplied with assimilates mostly during the light phase of the day cycle with intensive C3 photosynthesis.
Collapse
Affiliation(s)
- Zbigniew Miszalski
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland; The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Andrzej Skoczowski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Kraków, Poland
| | - Ekaterina Silina
- Institute of Biology, Komi Research Center, Ural Branch, Russian Academy of Sciences, Kommunisticheskaya 28, 167982 Syktyvkar, Russia
| | - Olga Dymova
- Institute of Biology, Komi Research Center, Ural Branch, Russian Academy of Sciences, Kommunisticheskaya 28, 167982 Syktyvkar, Russia
| | - Tamara Golovko
- Institute of Biology, Komi Research Center, Ural Branch, Russian Academy of Sciences, Kommunisticheskaya 28, 167982 Syktyvkar, Russia
| | - Andrzej Kornas
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Kraków, Poland.
| | - Kazimierz Strzalka
- Department of Plant Physiology, Faculty and Biochemistry, Faculty of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
87
|
Dąbrowska-Bronk J, Komar DN, Rusaczonek A, Kozłowska-Makulska A, Szechyńska-Hebda M, Karpiński S. β-carbonic anhydrases and carbonic ions uptake positively influence Arabidopsis photosynthesis, oxidative stress tolerance and growth in light dependent manner. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:44-54. [PMID: 27316917 DOI: 10.1016/j.jplph.2016.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023]
Abstract
Carbonic anhydrases (CAs) catalyse reversible interconversion of CO2 and water into bicarbonate and protons and regulate concentration of CO2 around photosynthetic enzymes. In higher plants the CAs are divided into three distinct classes α, β and γ, with members off each of them being involved in CO2 uptake, fixation or recycling. The most abundant group is βCAs. In C4 plants they are localized in the cytosol of mesophyll cells and catalyse first step of carbon concentration pathway. C3 plants contain orthologues genes encoding βCAs's, however their functions are unknown. Given the importance of βCAs in the present study we analysed the effect of carbonic ions, selected orthologues βCAs's gene expression and βCAs enzymatic activity on Arabidopsis photosynthesis, growth and cell death in different light conditions. Plants fertilised with 0.5-3mM sodium bicarbonate had a significantly increased number of leaves, improved fresh and dry weight and reduced cell death (cellular ion leakage). This effect was dependent on provided photon flux density and photoperiod. Higher content of carbonic ions also stimulated photoprotective mechanisms such as non-photochemical quenching and foliar content of photoprotective pigments (neoxanthin, violaxanthin and carotenes). Function of various βCAs genes examined in null βcas mutants showed to be complementary and additive, and confirm results of fertilizing experiments. Taken together, regulation of βCAs gene expression and enzymatic activities are important for optimal plant growth and probably can be one of the factor influencing a switch between C3 and C4 photosynthesis mode in variable light conditions. Therefore, biotechnological amelioration of βCAs activity in economically important plants and their fertilisation with carbonic ions may lead to improved photosynthetic efficiency and further crop productivity.
Collapse
Affiliation(s)
- Joanna Dąbrowska-Bronk
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Dorota Natalia Komar
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Anna Kozłowska-Makulska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland.
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
88
|
Rangan P, Furtado A, Henry RJ. New evidence for grain specific C4 photosynthesis in wheat. Sci Rep 2016; 6:31721. [PMID: 27530078 PMCID: PMC4987656 DOI: 10.1038/srep31721] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022] Open
Abstract
The C4 photosynthetic pathway evolved to allow efficient CO2 capture by plants where effective carbon supply may be limiting as in hot or dry environments, explaining the high growth rates of C4 plants such as maize. Important crops such as wheat and rice are C3 plants resulting in efforts to engineer them to use the C4 pathway. Here we show the presence of a C4 photosynthetic pathway in the developing wheat grain that is absent in the leaves. Genes specific for C4 photosynthesis were identified in the wheat genome and found to be preferentially expressed in the photosynthetic pericarp tissue (cross- and tube-cell layers) of the wheat caryopsis. The chloroplasts exhibit dimorphism that corresponds to chloroplasts of mesophyll- and bundle sheath-cells in leaves of classical C4 plants. Breeding to optimize the relative contributions of C3 and C4 photosynthesis may adapt wheat to climate change, contributing to wheat food security.
Collapse
Affiliation(s)
- Parimalan Rangan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane QLD 4072, Australia.,Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi-110012, India
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane QLD 4072, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
89
|
Schuler ML, Mantegazza O, Weber APM. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:51-65. [PMID: 26945781 DOI: 10.1111/tpj.13155] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 05/21/2023]
Abstract
C4 photosynthetic plants outperform C3 plants in hot and arid climates. By concentrating carbon dioxide around Rubisco C4 plants drastically reduce photorespiration. The frequency with which plants evolved C4 photosynthesis independently challenges researchers to unravel the genetic mechanisms underlying this convergent evolutionary switch. The conversion of C3 crops, such as rice, towards C4 photosynthesis is a long-standing goal. Nevertheless, at the present time, in the age of synthetic biology, this still remains a monumental task, partially because the C4 carbon-concentrating biochemical cycle spans two cell types and thus requires specialized anatomy. Here we review the advances in understanding the molecular basis and the evolution of the C4 trait, advances in the last decades that were driven by systems biology methods. In this review we emphasise essential genetic engineering tools needed to translate our theoretical knowledge into engineering approaches. With our current molecular understanding of the biochemical C4 pathway, we propose a simplified rational engineering model exclusively built with known C4 metabolic components. Moreover, we discuss an alternative approach to the progressing international engineering attempts that would combine targeted mutagenesis and directed evolution.
Collapse
Affiliation(s)
- Mara L Schuler
- Institute for Plant Molecular and Developmental Biology, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Otho Mantegazza
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225, Düsseldorf, Germany
| |
Collapse
|
90
|
Budzinski IGF, Moon DH, Morosini JS, Lindén P, Bragatto J, Moritz T, Labate CA. Integrated analysis of gene expression from carbon metabolism, proteome and metabolome, reveals altered primary metabolism in Eucalyptus grandis bark, in response to seasonal variation. BMC PLANT BIOLOGY 2016; 16:149. [PMID: 27364638 PMCID: PMC4929727 DOI: 10.1186/s12870-016-0839-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/22/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Seasonal variation is presumed to play an important role in the regulation of tree growth, especially for Eucalyptus grandis, a fast-growing tree. This variation may induce changes in the whole tree at transcriptional, protein and metabolite levels. Bark represents an important group of tissues that protect trees from desiccation and pathogen attack, and it has been identified as potential feedstock for lignocellulosic derived biofuels. Despite the growing interest, little is known about the molecular mechanisms that regulates bark metabolism, particularly in tropical countries. RESULTS In this study we report the changes observed in the primary metabolism of E. grandis bark during two contrasting seasons in Brazil, summer (wet) and winter (dry), through the combination of transcripts (RT-qPCR), proteome (2-DE gels) and metabolome (GC-MS) analysis, in an integrated manner. Twenty-four genes, involved in carbon metabolism, were analyzed in the two seasons. Eleven were up-regulated in summer, three were up-regulated in winter and ten did not show statistical differences in the expression pattern. The proteomic analysis using 2-DE gels showed 77 proteins expressing differences in abundance, with 38 spots up-regulated in summer and 37 in winter. Different metabolites significantly accumulated during winter. CONCLUSIONS This study revealed a metabolic reconfiguration in the primary metabolism of E. grandis bark, triggered by seasonal variation. Transcripts and protein data suggests that during winter carbohydrate formation seems to be favored by tree metabolism. Glucose, fructose and sucrose accumulated at significant levels during the winter.
Collapse
Affiliation(s)
- Ilara Gabriela Frasson Budzinski
- />Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP 13418-900 Brasil
| | - David H. Moon
- />Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP 13418-900 Brasil
| | - Júlia Silva Morosini
- />Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP 13418-900 Brasil
| | - Pernilla Lindén
- />Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83 Sweden
| | - Juliano Bragatto
- />Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP 13418-900 Brasil
| | - Thomaz Moritz
- />Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83 Sweden
| | - Carlos Alberto Labate
- />Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP 13418-900 Brasil
| |
Collapse
|
91
|
Lehmann MM, Wegener F, Barthel M, Maurino VG, Siegwolf RTW, Buchmann N, Werner C, Werner RA. Metabolic Fate of the Carboxyl Groups of Malate and Pyruvate and their Influence on δ(13)C of Leaf-Respired CO2 during Light Enhanced Dark Respiration. FRONTIERS IN PLANT SCIENCE 2016; 7:739. [PMID: 27375626 PMCID: PMC4891945 DOI: 10.3389/fpls.2016.00739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/13/2016] [Indexed: 05/03/2023]
Abstract
The enhanced CO2 release of illuminated leaves transferred into darkness, termed "light enhanced dark respiration (LEDR)", is often associated with an increase in the carbon isotope ratio of the respired CO2 (δ(13)CLEDR). The latter has been hypothesized to result from different respiratory substrates and decarboxylation reactions in various metabolic pathways, which are poorly understood so far. To provide a better insight into the underlying metabolic processes of δ(13)CLEDR, we fed position-specific (13)C-labeled malate and pyruvate via the xylem stream to leaves of species with high and low δ(13)CLEDR values (Halimium halimifolium and Oxalis triangularis, respectively). During respective label application, we determined label-derived leaf (13)CO2 respiration using laser spectroscopy and the (13)C allocation to metabolic fractions during light-dark transitions. Our results clearly show that both carboxyl groups (C-1 and C-4 position) of malate similarly influence respiration and metabolic fractions in both species, indicating possible isotope randomization of the carboxyl groups of malate by the fumarase reaction. While C-2 position of pyruvate was only weakly respired, the species-specific difference in natural δ(13)CLEDR patterns were best reflected by the (13)CO2 respiration patterns of the C-1 position of pyruvate. Furthermore, (13)C label from malate and pyruvate were mainly allocated to amino and organic acid fractions in both species and only little to sugar and lipid fractions. In summary, our results suggest that respiration of both carboxyl groups of malate (via fumarase) by tricarboxylic acid cycle reactions or by NAD-malic enzyme influences δ(13)CLEDR. The latter supplies the pyruvate dehydrogenase reaction, which in turn determines natural δ(13)CLEDR pattern by releasing the C-1 position of pyruvate.
Collapse
Affiliation(s)
- Marco M. Lehmann
- Laboratory of Atmospheric Chemistry, Paul Scherrer InstituteVilligen, Switzerland
- Institute of Agricultural Sciences, ETH ZurichZurich, Switzerland
| | | | - Matti Barthel
- Institute of Agricultural Sciences, ETH ZurichZurich, Switzerland
| | - Veronica G. Maurino
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University and Cluster of Excellence on Plant Sciences (CEPLAS)Düsseldorf, Germany
| | - Rolf T. W. Siegwolf
- Laboratory of Atmospheric Chemistry, Paul Scherrer InstituteVilligen, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH ZurichZurich, Switzerland
| | | | - Roland A. Werner
- Institute of Agricultural Sciences, ETH ZurichZurich, Switzerland
| |
Collapse
|
92
|
Kuźniak E, Kornas A, Kaźmierczak A, Rozpądek P, Nosek M, Kocurek M, Zellnig G, Müller M, Miszalski Z. Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of the C3-CAM intermediate plant Mesembryanthemum crystallinum. ANNALS OF BOTANY 2016; 117:1141-51. [PMID: 27091507 PMCID: PMC4904173 DOI: 10.1093/aob/mcw049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/01/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Leaf veins are usually encircled by specialized bundle sheath cells. In C4 plants, they play an important role in CO2 assimilation, and the photosynthetic activity is compartmentalized between the mesophyll and the bundle sheath. In C3 and CAM (Crassulacean acid metabolism) plants, the photosynthetic activity is generally attributed to the leaf mesophyll cells, and the vascular parenchymal cells are rarely considered for their role in photosynthesis. Recent studies demonstrate that enzymes required for C4 photosynthesis are also active in the veins of C3 plants, and their vascular system contains photosynthetically competent parenchyma cells. However, our understanding of photosynthesis in veins of C3 and CAM plants still remains insufficient. Here spatial analysis of photosynthesis-related properties were applied to the midrib and the interveinal lamina cells in leaves of Mesembryanthemum crystallinum, a C3-CAM intermediate plant. METHODS The midrib anatomy as well as chloroplast structure and chlorophyll fluorescence, diurnal gas exchange profiles, the immunoblot patterns of PEPC (phosphoenolpyruvate carboxylase) and RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), H2O2 localization and antioxidant enzyme activities were compared in the midrib and in the interveinal mesophyll cells in leaves of C3 and CAM plants. KEY RESULTS Leaf midribs were structurally competent to perform photosynthesis in C3 and CAM plants. The midrib chloroplasts resembled those in the bundle sheath cells of C4 plants and were characterized by limited photosynthetic activity. CONCLUSIONS The metabolic roles of midrib chloroplasts differ in C3 and CAM plants. It is suggested that in leaves of C3 plants the midrib chloroplasts could be involved in the supply of CO2 for carboxylation, and in CAM plants they could provide malate to different metabolic processes and mediate H2O2 signalling.
Collapse
Affiliation(s)
- Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland
| | - Andrzej Kornas
- Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Łódź, Poland
| | - Piotr Rozpądek
- Institute of Environmental Science, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland, Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Michał Nosek
- Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
| | - Maciej Kocurek
- Institute of Biology, Jan Kochanowski University, Świętokrzyska 15, 25-406 Kielce, Poland
| | - Günther Zellnig
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, A-8010 Graz, Austria and
| | - Maria Müller
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, A-8010 Graz, Austria and
| | - Zbigniew Miszalski
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland
| |
Collapse
|
93
|
Heckmann D. C4 photosynthesis evolution: the conditional Mt. Fuji. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:149-54. [PMID: 27153468 DOI: 10.1016/j.pbi.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/04/2016] [Accepted: 04/21/2016] [Indexed: 05/09/2023]
Abstract
C4 photosynthesis implements a biochemical carbon pump to suppress photorespiration. While this mechanism allows for increased photosynthetic efficiency, it requires the ancestral C3 state to be modified in terms of leaf anatomy, expression of metabolic genes, and enzyme kinetics. Despite the complexity of the C4 syndrome, it evolved in more than 60 independent lineages. Because the phylogenetic distribution of these origins appears to be non-random, enabling factors that are initially unrelated to C4 photosynthesis are assumed to be acting in certain C3 lineages. In recent years, substantial progress has been made on firstly, the nature of enabling events and finally, quantitative models of C4 evolution that are based on C3-C4 intermediate species. I discuss the synthesis of these approaches as a consensus trajectory towards C4 photosynthesis and hypothesize on the effect of enabling factors on the fitness landscape of C4 evolution. A complete understanding of these mechanisms will require both further experimental studies and improved quantitative models of leaf physiology.
Collapse
Affiliation(s)
- David Heckmann
- Heinrich Heine University, Institute for Computer Science, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
94
|
Abstract
Plant growth requires the influx of atmospheric CO2 through stomatal pores, and this carbon uptake for photosynthesis is inherently associated with a large efflux of water vapor. Under water deficit, plants reduce transpiration and are able to improve carbon for water exchange leading to higher water use efficiency (WUE). Whether increased WUE can be achieved without trade-offs in plant growth is debated. The signals mediating the WUE response under water deficit are not fully elucidated but involve the phytohormone abscisic acid (ABA). ABA is perceived by a family of related receptors known to mediate acclimation responses and to reduce transpiration. We now show that enhanced stimulation of ABA signaling via distinct ABA receptors can result in plants constitutively growing at high WUE in the model species Arabidopsis WUE was assessed by three independent approaches involving gravimetric analyses, (13)C discrimination studies of shoots and derived cellulose fractions, and by gas exchange measurements of whole plants and individual leaves. Plants expressing the ABA receptors RCAR6/PYL12 combined up to 40% increased WUE with high growth rates, i.e., are water productive. Water productivity was associated with maintenance of net carbon assimilation by compensatory increases of leaf CO2 gradients, thereby sustaining biomass acquisition. Leaf surface temperatures and growth potentials of plants growing under well-watered conditions were found to be reliable indicators for water productivity. The study shows that ABA receptors can be explored to generate more plant biomass per water transpired, which is a prime goal for a more sustainable water use in agriculture.
Collapse
|
95
|
Miyake H. Starch Accumulation in the Bundle Sheaths of C3 Plants: A Possible Pre-Condition for C4 Photosynthesis. PLANT & CELL PHYSIOLOGY 2016; 57:890-6. [PMID: 26936788 DOI: 10.1093/pcp/pcw046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/20/2016] [Indexed: 05/09/2023]
Abstract
C4 plants have evolved >60 times from their C3 ancestors. C4 photosynthesis requires a set of closely co-ordinated anatomical and biochemical characteristics. However, it is now recognized that the evolution of C4 plants requires fewer changes than had ever been considered, because of the genetic, biochemical and anatomical pre-conditions of C3 ancestors that were recruited into C4 photosynthesis. Therefore, the pre-conditions in C3 plants are now being actively investigated to clarify the evolutionary trajectory from C3 to C4 plants and to engineer C4 traits efficiently into C3 crops. In the present mini review, the anatomical characteristics of C3 and C4 plants are briefly reviewed and the importance of the bundle sheath for the evolution of C4 photosynthesis is described. For example, while the bundle sheath of C3 rice plants accumulates large amounts of starch in the developing leaf blade and at the lamina joint of the mature leaf, the starch sheath function is also observed during leaf development in starch accumulator grasses regardless of photosynthetic type. The starch sheath function of C3 plants is therefore also implicated as a possible pre-condition for the evolution of C4 photosynthesis. The phylogenetic relationships between the types of storage carbohydrates and of photosynthesis need to be clarified in the future.
Collapse
Affiliation(s)
- Hiroshi Miyake
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| |
Collapse
|
96
|
Bailey KJ, Leegood RC. Nitrogen recycling from the xylem in rice leaves: dependence upon metabolism and associated changes in xylem hydraulics. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2901-11. [PMID: 27053722 PMCID: PMC4861031 DOI: 10.1093/jxb/erw132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Measurements of amino acids in the guttation fluid and in the xylem exudates of cut leaves from intact plants provide evidence of the remarkable efficiency with which these nitrogenous compounds are reabsorbed from the xylem sap. This could be achieved by mechanisms involving intercellular transport and/or metabolism. Developmental changes in transcripts and protein showed that transcripts for phosphoenolpyruvate carboxykinase (PEPCK) increased from the base to the leaf tip, and were markedly increased by supplying asparagine. Supplying amino acids also increased the amounts of protein of PEPCK and, to a lesser extent, of pyruvate, Pi dikinase. PEPCK is present in the hydathodes, stomata and vascular parenchyma of rice leaves. Evidence for the role of PEPCK was obtained by using 3-mercaptopicolinic acid (MPA), a specific inhibitor of PEPCK, and by using an activation-tagged rice line that had an increase in PEPCK activity, to show that activation of PEPCK resulted in a decrease in N in the guttation fluid and that treatment by MPA resulted in an increase in amino acids in the guttation fluid and xylem sap towards the leaf tip. Furthermore, increasing PEPCK activity decreased the amount of guttation fluid, whereas decreasing PEPCK activity increased the amount of xylem sap or guttation fluid towards the leaf tip. The findings suggest the following hypotheses: (i) both metabolism and transport are involved in xylem recycling and (ii) excess N is the signal involved in modulating xylem hydraulics, perhaps via nutrient regulation of water-transporting aquaporins. Water relations and vascular metabolism and transport are thus intimately linked.
Collapse
Affiliation(s)
- Karen J Bailey
- Robert Hill Institute and Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Richard C Leegood
- Robert Hill Institute and Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
97
|
Zou Q, Liu K, Abbas M, Yan X. Peptide-Modulated Self-Assembly of Chromophores toward Biomimetic Light-Harvesting Nanoarchitectonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1031-43. [PMID: 26273821 DOI: 10.1002/adma.201502454] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/18/2015] [Indexed: 05/21/2023]
Abstract
Elegant self-assembling complexes by the combination of proteins/peptides with functional chromophores are decisively responsible for highly efficient light-harvesting and energy transfer in natural photosynthetic systems. Mimicking natural light-harvesting complexes through synthetic peptides is attractive due to their advantanges of programmable primary structure, tunable self-assembly architecture and easy availability in comparison to naturally occuring proteins. Here, an overview of recent progresses in the area of biomimetic light-harvesting nanoarchitectonics based on peptide-modulated self-assembly of chromophores is provided. Adjusting the organization of chromophores, either by creating peptide-chromophore conjugates or by the non-covalent assembly of peptides and chromophores are highlighted. The light-harvesting properties, especially the energy transfer of the biomimetic complexes are critically discussed. The applications of such complexes in the mineralization of inorganic nanoparticles, generation of molecular hydrogen and oxygen, and photosynthesis of bioactive molecules are also included.
Collapse
Affiliation(s)
- Qianli Zou
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Kai Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Manzar Abbas
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xuehai Yan
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
98
|
Regulation of Leaf Traits in Canopy Gradients. CANOPY PHOTOSYNTHESIS: FROM BASICS TO APPLICATIONS 2016. [DOI: 10.1007/978-94-017-7291-4_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
99
|
Adwy W, Laxa M, Peterhansel C. A simple mechanism for the establishment of C₂-specific gene expression in Brassicaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1231-1238. [PMID: 26603271 DOI: 10.1111/tpj.13084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The transition of C3 , via C2 towards C4 photosynthesis is an important example of stepwise evolution of a complex genetic trait. A common feature that was gradually emphasized during this trajectory is the evolution of a CO2 concentration mechanism around Rubisco. In C2 plants, this mechanism is based on tissue-specific accumulation of glycine decarboxylase (GDC) in bundle sheath (BS) cells, relative to global expression in the cells of C3 leaves. This limits photorespiratory CO2 release to BS cells. Because BS cells are surrounded by photosynthetically active mesophyll cells, this arrangement enhances the probability of re-fixation of CO2 . The restriction of GDC to BS cells was mainly achieved by confinement of its P-subunit (GLDP). Here, we provide a mechanism for the establishment of C2 -type gene expression by studying the upstream sequences of C3 Gldp genes in Arabidopsis thaliana. Deletion of 59 bp in the upstream region of AtGldp1 restricted expression of a reporter gene to BS cells and the vasculature without affecting diurnal variation. This region was named the 'M box'. Similar results were obtained for the AtGldp2 gene. Fusion of the M box to endogenous or exogenous promoters supported mesophyll expression. Nucleosome densities at the M box were low, suggesting an open chromatin structure facilitating transcription factor binding. In silico analysis defined a possible consensus for the element that was conserved across the Brassicaceae, but not in Moricandia nitens, a C2 plant. Collective results provide evidence that a simple mutation is sufficient for establishment of C2 -specific gene expression in a C3 plant.
Collapse
Affiliation(s)
- Waly Adwy
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuserstrasse 2, 30419, Hannover, Germany
- Department of Genetics, Cairo University, 13 Gamaa Street, 12619, Giza, Egypt
| | - Miriam Laxa
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuserstrasse 2, 30419, Hannover, Germany
| | - Christoph Peterhansel
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuserstrasse 2, 30419, Hannover, Germany
| |
Collapse
|
100
|
Maurino VG, Engqvist MKM. 2-Hydroxy Acids in Plant Metabolism. THE ARABIDOPSIS BOOK 2015; 13:e0182. [PMID: 26380567 PMCID: PMC4568905 DOI: 10.1199/tab.0182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis.
Collapse
Affiliation(s)
- Veronica G. Maurino
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Martin K. M. Engqvist
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|