51
|
Lassen LB, Reimer L, Ferreira N, Betzer C, Jensen PH. Protein Partners of α-Synuclein in Health and Disease. Brain Pathol 2018; 26:389-97. [PMID: 26940507 DOI: 10.1111/bpa.12374] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 12/30/2022] Open
Abstract
α-synuclein is normally situated in the nerve terminal but it accumulates and aggregates in axons and cell bodies in synucleinopathies such as Parkinson's disease. The conformational changes occurring during α-synucleins aggregation process affects its interactions with other proteins and its subcellular localization. This review focuses on interaction partners of α-synuclein within different compartments of the cell with a focus on those preferentially binding aggregated α-synuclein. The aggregation state of α-synuclein also affects its catabolism and we hypothesize impaired macroautophagy is involved neuronal excretion of α-synuclein species responsible for the prion-like spreading of α-synuclein pathology.
Collapse
Affiliation(s)
- Louise Berkhoudt Lassen
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Lasse Reimer
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Nelson Ferreira
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Cristine Betzer
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Poul Henning Jensen
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
52
|
Genomic dissection and prediction of feed intake and residual feed intake traits using a longitudinal model in F2 chickens. Animal 2017; 12:1792-1798. [PMID: 29268803 DOI: 10.1017/s1751731117003354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Feed efficiency traits (FETs) are important economic indicators in poultry production. Because feed intake (FI) is a time-dependent variable, longitudinal models can provide insights into the genetic basis of FET variation over time. It is expected that the application of longitudinal models as part of genome-wide association (GWA) and genomic selection (i.e. genome-wide selection (GS)) studies will lead to an increase in accuracy of selection. Thus, the objectives of this study were to evaluate the accuracy of estimated breeding values (EBVs) based on pedigree as well as high-density single nucleotide polymorphism (SNP) genotypes, and to conduct a GWA study on longitudinal FI and residual feed intake (RFI) in a total of 312 chickens with phenotype and genotype in the F2 population. The GWA and GS studies reported in this paper were conducted using β-spline random regression models for FI and RFI traits in a chicken F2 population, with FI and BW recorded for each bird weekly between 2 and 10 weeks of age. A single SNP regression approach was used on spline coefficients for weekly FI and RFI traits, with results showing that two significant SNPs for FI occur in the synuclein (SNCAIP) gene. Results also show that these regions are significantly associated with the spline coefficients (q 2) for 5- and 6-week-old birds, while GWA study results showed no SNP association with RFI in F2 chickens. Estimated breeding value predictions obtained using a pedigree-based best linear unbiased prediction (ABLUP) model were then compared with predictions based on genomic best linear unbiased prediction (GBLUP). The accuracy was measured as correlation between genomic EBV and EBV with the phenotypic value corrected for fixed effects divided by the square root of heritability. The regression of observed on predicted values was used to estimate bias of methods. Results show that prediction accuracies using GBLUP and ABLUP for the FI measured from 2nd to 10th week were between 0.06 and 0.46 and 0.03 and 0.37, respectively. These results demonstrate that genomic methods are able to increase the accuracy of predicted breeding values at later ages on the basis of both traits, and indicate that use of a longitudinal model can improve selection accuracy for the trajectory of traits in F2 chickens when compared with conventional methods.
Collapse
|
53
|
Rott R, Szargel R, Shani V, Hamza H, Savyon M, Abd Elghani F, Bandopadhyay R, Engelender S. SUMOylation and ubiquitination reciprocally regulate α-synuclein degradation and pathological aggregation. Proc Natl Acad Sci U S A 2017; 114:13176-13181. [PMID: 29180403 PMCID: PMC5740625 DOI: 10.1073/pnas.1704351114] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
α-Synuclein accumulation is a pathological hallmark of Parkinson's disease (PD). Ubiquitinated α-synuclein is targeted to proteasomal or lysosomal degradation. Here, we identify SUMOylation as a major mechanism that counteracts ubiquitination by different E3 ubiquitin ligases and regulates α-synuclein degradation. We report that PIAS2 promotes SUMOylation of α-synuclein, leading to a decrease in α-synuclein ubiquitination by SIAH and Nedd4 ubiquitin ligases, and causing its accumulation and aggregation into inclusions. This was associated with an increase in α-synuclein release from the cells. A SUMO E1 inhibitor, ginkgolic acid, decreases α-synuclein levels by relieving the inhibition exerted on α-synuclein proteasomal degradation. α-Synuclein disease mutants are more SUMOylated compared with the wild-type protein, and this is associated with increased aggregation and inclusion formation. We detected a marked increase in PIAS2 expression along with SUMOylated α-synuclein in PD brains, providing a causal mechanism underlying the up-regulation of α-synuclein SUMOylation in the disease. We also found a significant proportion of Lewy bodies in nigral neurons containing SUMO1 and PIAS2. Our observations suggest that SUMOylation of α-synuclein by PIAS2 promotes α-synuclein aggregation by two mutually reinforcing mechanisms. First, it has a direct proaggregatory effect on α-synuclein. Second, SUMOylation facilitates α-synuclein aggregation by blocking its ubiquitin-dependent degradation pathways and promoting its accumulation. Therefore, inhibitors of α-synuclein SUMOylation provide a strategy to reduce α-synuclein levels and possibly aggregation in PD.
Collapse
Affiliation(s)
- Ruth Rott
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Raymonde Szargel
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Vered Shani
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Haya Hamza
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Mor Savyon
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Fatimah Abd Elghani
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, University College London Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Simone Engelender
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel;
| |
Collapse
|
54
|
Szybińska A, Leśniak W. P53 Dysfunction in Neurodegenerative Diseases - The Cause or Effect of Pathological Changes? Aging Dis 2017; 8:506-518. [PMID: 28840063 PMCID: PMC5524811 DOI: 10.14336/ad.2016.1120] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/20/2016] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous, mostly age-associated group of disorders characterized by progressive neuronal loss, the most prevalent being Alzheimer disease. It is anticipated that, with continuously increasing life expectancy, these diseases will pose a serious social and health problem in the near feature. Meanwhile, however, their etiology remains largely obscure even though all possible novel clues are being thoroughly examined. In this regard, a concept has been proposed that p53, as a transcription factor controlling many vital cellular pathways including apoptosis, may contribute to neuronal death common to all neurodegenerative disorders. In this work, we review the research devoted to the possible role of p53 in the pathogenesis of these diseases. We not only describe aberrant changes in p53 level/activity observed in CNS regions affected by particular diseases but, most importantly, put special attention to the complicated reciprocal regulatory ties existing between p53 and proteins commonly regarded as pathological hallmarks of these diseases, with the ultimate goal to identify the primary element of their pathogenesis.
Collapse
Affiliation(s)
- Aleksandra Szybińska
- 1Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena St., 02-109 Warsaw, Poland.,2Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Center Polish Academy of Sciences, 5 Pawinskiego St. 02-106 Warsaw, Poland
| | - Wiesława Leśniak
- 3Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw Poland
| |
Collapse
|
55
|
Park J, Park Y, Ryu I, Choi MH, Lee HJ, Oh N, Kim K, Kim KM, Choe J, Lee C, Baik JH, Kim YK. Misfolded polypeptides are selectively recognized and transported toward aggresomes by a CED complex. Nat Commun 2017; 8:15730. [PMID: 28589942 PMCID: PMC5467238 DOI: 10.1038/ncomms15730] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 04/24/2017] [Indexed: 11/29/2022] Open
Abstract
Misfolded polypeptides are rapidly cleared from cells via the ubiquitin–proteasome system (UPS). However, when the UPS is impaired, misfolded polypeptides form small cytoplasmic aggregates, which are sequestered into an aggresome and ultimately degraded by aggrephagy. Despite the relevance of the aggresome to neurodegenerative proteinopathies, the molecular mechanisms underlying aggresome formation remain unclear. Here we show that the CTIF–eEF1A1–DCTN1 (CED) complex functions in the surveillance of either pre-existing or newly synthesized polypeptides by linking two molecular events: selective recognition and aggresomal targeting of misfolded polypeptides. These events are accompanied by CTIF sequestration into the aggresome, preventing the additional synthesis of misfolded polypeptides from mRNAs bound by nuclear cap-binding complex. These events render cells more resistant to apoptosis induced by proteotoxic stresses. Collectively, our data provide compelling evidence for a previously unappreciated protein surveillance pathway and a regulatory gene expression network for coping with misfolded polypeptides. Misfolded polypeptide aggregates are actively transported to aggresomes, where they are degraded through aggrephagy. Here the authors show that these aggregates are selectively recognized by the CTIF–eEF1A1–DCTN1 (CED) complex and transported to aggresomes through the interactions of DCTN1 with dynein motors.
Collapse
Affiliation(s)
- Joori Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yeonkyoung Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Incheol Ryu
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Mi-Hyun Choi
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyo Jin Lee
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Nara Oh
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kyutae Kim
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea.,BRI, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kyoung Mi Kim
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Junho Choe
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Cheolju Lee
- BRI, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ja-Hyun Baik
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
56
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
57
|
Liu KW, Pajtler KW, Worst BC, Pfister SM, Wechsler-Reya RJ. Molecular mechanisms and therapeutic targets in pediatric brain tumors. Sci Signal 2017; 10:10/470/eaaf7593. [PMID: 28292958 DOI: 10.1126/scisignal.aaf7593] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Brain tumors are among the leading causes of cancer-related deaths in children. Although surgery, aggressive radiation, and chemotherapy have improved outcomes, many patients still die of their disease. Moreover, those who survive often suffer devastating long-term side effects from the therapies. A greater understanding of the molecular underpinnings of these diseases will drive the development of new therapeutic approaches. Advances in genomics and epigenomics have provided unprecedented insight into the molecular diversity of these diseases and, in several cases, have revealed key genes and signaling pathways that drive tumor growth. These not only serve as potential therapeutic targets but also have facilitated the creation of animal models that faithfully recapitulate the human disease for preclinical studies. In this Review, we discuss recent progress in understanding the molecular basis of the three most common malignant pediatric brain tumors-medulloblastoma, ependymoma, and high-grade glioma-and the implications for development of safer and more effective therapies.
Collapse
Affiliation(s)
- Kun-Wei Liu
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kristian W Pajtler
- Division of Pediatric Neurooncology, German Cancer Research Centre (Deutsches Krebsforschungszentrum, DKFZ) and Heidelberg University Hospital, D-69120 Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, D-69120 Heidelberg, Germany.,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Core Center Heidelberg, D-69120 Heidelberg, Germany
| | - Barbara C Worst
- Division of Pediatric Neurooncology, German Cancer Research Centre (Deutsches Krebsforschungszentrum, DKFZ) and Heidelberg University Hospital, D-69120 Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, D-69120 Heidelberg, Germany.,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Core Center Heidelberg, D-69120 Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Centre (Deutsches Krebsforschungszentrum, DKFZ) and Heidelberg University Hospital, D-69120 Heidelberg, Germany. .,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, D-69120 Heidelberg, Germany.,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Core Center Heidelberg, D-69120 Heidelberg, Germany
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
58
|
Chung CY, Khurana V, Yi S, Sahni N, Loh KH, Auluck PK, Baru V, Udeshi ND, Freyzon Y, Carr SA, Hill DE, Vidal M, Ting AY, Lindquist S. In Situ Peroxidase Labeling and Mass-Spectrometry Connects Alpha-Synuclein Directly to Endocytic Trafficking and mRNA Metabolism in Neurons. Cell Syst 2017; 4:242-250.e4. [PMID: 28131823 PMCID: PMC5578869 DOI: 10.1016/j.cels.2017.01.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 08/05/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Abstract
Synucleinopathies, including Parkinson's disease (PD), are associated with the misfolding and mistrafficking of alpha-synuclein (α-syn). Here, using an ascorbate peroxidase (APEX)-based labeling method combined with mass spectrometry, we defined a network of proteins in the immediate vicinity of α-syn in living neurons to shed light on α-syn function. This approach identified 225 proteins, including synaptic proteins, proteins involved in endocytic vesicle trafficking, the retromer complex, phosphatases and mRNA binding proteins. Many were in complexes with α-syn, and some were encoded by genes known to be risk factors for PD and other neurodegenerative diseases. Endocytic trafficking and mRNA translation proteins within this spatial α-syn map overlapped with genetic modifiers of α-syn toxicity, developed in an accompanying study (Khurana et al., this issue of Cell Systems). Our data suggest that perturbation of these particular pathways is directly related to the spatial localization of α-syn within the cell. These approaches provide new avenues to systematically examine protein function and pathology in living cells.
Collapse
Affiliation(s)
- Chee Yeun Chung
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Vikram Khurana
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Song Yi
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nidhi Sahni
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ken H Loh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Pavan K Auluck
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Valeriya Baru
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yelena Freyzon
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Y Ting
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
59
|
Fruhmann G, Seynnaeve D, Zheng J, Ven K, Molenberghs S, Wilms T, Liu B, Winderickx J, Franssens V. Yeast buddies helping to unravel the complexity of neurodegenerative disorders. Mech Ageing Dev 2017; 161:288-305. [DOI: 10.1016/j.mad.2016.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022]
|
60
|
Szargel R, Shani V, Abd Elghani F, Mekies LN, Liani E, Rott R, Engelender S. The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway. Hum Mol Genet 2016; 25:3476-3490. [DOI: 10.1093/hmg/ddw189] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
|
61
|
Zhao L, Yang Q, Zheng J, Zhu X, Hao X, Song J, Lebacq T, Franssens V, Winderickx J, Nystrom T, Liu B. A genome-wide imaging-based screening to identify genes involved in synphilin-1 inclusion formation in Saccharomyces cerevisiae. Sci Rep 2016; 6:30134. [PMID: 27440388 PMCID: PMC4954962 DOI: 10.1038/srep30134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022] Open
Abstract
Synphilin-1 is a major component of Parkinson's disease (PD) inclusion bodies implicated in PD pathogenesis. However, the machinery controlling synphilin-1 inclusion formation remains unclear. Here, we investigated synphilin-1 inclusion formation using a systematic genome-wide, high-content imaging based screening approach (HCI) in the yeast Saccharomyces cerevisiae. By combining with a secondary screening for mutants showing significant changes on fluorescence signal intensity, we filtered out hits that significantly decreased the expression level of synphilin-1. We found 133 yeast genes that didn't affect synphilin-1 expression but that were required for the formation of synphilin-1 inclusions. Functional enrichment and physical interaction network analysis revealed these genes to encode for functions involved in cytoskeleton organization, histone modification, sister chromatid segregation, glycolipid biosynthetic process, DNA repair and replication. All hits were confirmed by conventional microscopy. Complementation assays were performed with a selected group of mutants, results indicated that the observed phenotypic changes in synphilin-1 inclusion formation were directly caused by the loss of corresponding genes of the deletion mutants. Further growth assays of these mutants showed a significant synthetic sick effect upon synphilin-1 expression, which supports the hypothesis that matured inclusions represent an end stage of several events meant to protect cells against the synphilin-1 cytotoxicity.
Collapse
Affiliation(s)
- Lei Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ju Zheng
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, S-405 30, Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Jia Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Tom Lebacq
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Vanessa Franssens
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Thomas Nystrom
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Beidong Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.,Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| |
Collapse
|
62
|
Phukan G, Shin TH, Shim JS, Paik MJ, Lee JK, Choi S, Kim YM, Kang SH, Kim HS, Kang Y, Lee SH, Mouradian MM, Lee G. Silica-coated magnetic nanoparticles impair proteasome activity and increase the formation of cytoplasmic inclusion bodies in vitro. Sci Rep 2016; 6:29095. [PMID: 27378605 PMCID: PMC4932509 DOI: 10.1038/srep29095] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/15/2016] [Indexed: 12/28/2022] Open
Abstract
The potential toxicity of nanoparticles, particularly to neurons, is a major concern. In this study, we assessed the cytotoxicity of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye (MNPs@SiO2(RITC)) in HEK293 cells, SH-SY5Y cells, and rat primary cortical and dopaminergic neurons. In cells treated with 1.0 μg/μl MNPs@SiO2(RITC), the expression of several genes related to the proteasome pathway was altered, and proteasome activity was significantly reduced, compared with control and with 0.1 μg/μl MNPs@SiO2(RITC)-treated cells. Due to the reduction of proteasome activity, formation of cytoplasmic inclusions increased significantly in HEK293 cells over-expressing the α-synuclein interacting protein synphilin-1 as well as in primary cortical and dopaminergic neurons. Primary neurons, particularly dopaminergic neurons, were more vulnerable to MNPs@SiO2(RITC) than SH-SY5Y cells. Cellular polyamines, which are associated with protein aggregation, were significantly altered in SH-SY5Y cells treated with MNPs@SiO2(RITC). These findings highlight the mechanisms of neurotoxicity incurred by nanoparticles.
Collapse
Affiliation(s)
- Geetika Phukan
- Department of Physiology and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae Hwan Shin
- Department of Physiology and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jeom Soon Shim
- Department of Physiology and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Man Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon, Republic of Korea
| | - Jin-Kyu Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | | | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yup Kang
- Department of Physiology and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Soo Hwan Lee
- Department of Physiology and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - M. Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers–Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Gwang Lee
- Department of Physiology and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
63
|
Kleinknecht A, Popova B, Lázaro DF, Pinho R, Valerius O, Outeiro TF, Braus GH. C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease. PLoS Genet 2016; 12:e1006098. [PMID: 27341336 PMCID: PMC4920419 DOI: 10.1371/journal.pgen.1006098] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/10/2016] [Indexed: 12/15/2022] Open
Abstract
Parkinson´s disease (PD) is characterized by the presence of proteinaceous inclusions called Lewy bodies that are mainly composed of α-synuclein (αSyn). Elevated levels of oxidative or nitrative stresses have been implicated in αSyn related toxicity. Phosphorylation of αSyn on serine 129 (S129) modulates autophagic clearance of inclusions and is prominently found in Lewy bodies. The neighboring tyrosine residues Y125, Y133 and Y136 are phosphorylation and nitration sites. Using a yeast model of PD, we found that Y133 is required for protective S129 phosphorylation and for S129-independent proteasome clearance. αSyn can be nitrated and form stable covalent dimers originating from covalent crosslinking of two tyrosine residues. Nitrated tyrosine residues, but not di-tyrosine-crosslinked dimers, contributed to αSyn cytotoxicity and aggregation. Analysis of tyrosine residues involved in nitration and crosslinking revealed that the C-terminus, rather than the N-terminus of αSyn, is modified by nitration and di-tyrosine formation. The nitration level of wild-type αSyn was higher compared to that of A30P mutant that is non-toxic in yeast. A30P formed more dimers than wild-type αSyn, suggesting that dimer formation represents a cellular detoxification pathway in yeast. Deletion of the yeast flavohemoglobin gene YHB1 resulted in an increase of cellular nitrative stress and cytotoxicity leading to enhanced aggregation of A30P αSyn. Yhb1 protected yeast from A30P-induced mitochondrial fragmentation and peroxynitrite-induced nitrative stress. Strikingly, overexpression of neuroglobin, the human homolog of YHB1, protected against αSyn inclusion formation in mammalian cells. In total, our data suggest that C-terminal Y133 plays a major role in αSyn aggregate clearance by supporting the protective S129 phosphorylation for autophagy and by promoting proteasome clearance. C-terminal tyrosine nitration increases pathogenicity and can only be partially detoxified by αSyn di-tyrosine dimers. Our findings uncover a complex interplay between S129 phosphorylation and C-terminal tyrosine modifications of αSyn that likely participates in PD pathology. Parkinson’s disease is characterized by loss of dopaminergic neurons in midbrain and the presence of αSyn protein inclusions. Human αSyn mimics the disease pathology in yeast resulting in cytotoxicity and aggregate formation. αSyn is abundantly phosphorylated at serine S129 and possesses four tyrosines (Y39, Y125, Y133, and Y136) that can be posttranslationally modified by nitration or phosphorylation. The consequence of each of these possible modifications is still unclear. Nitration as consequence of oxidative stress is a hallmark for neurodegenerative diseases. Here, we addressed the molecular mechanism, how tyrosine posttranslational modifications affect αSyn cytotoxicity. Tyrosine nitration can contribute to αSyn toxicity or can be part of a cellular salvage pathway when di-tyrosine-crosslinked dimers are formed. The Y133 residue, which can be either phosphorylated or nitrated, determines whether S129 is protectively phosphorylated and αSyn inclusions are cleared. This interplay with S129 phosphorylation demonstrates a dual role for C-terminal tyrosine residues. Yeast flavohemoglobin Yhb1 and its human counterpart neuroglobin NGB protect cells against cytotoxicity and aggregate formation. These novel insights into the molecular pathways responsible for αSyn cytotoxicity indicate NGB as a potential target for therapeutic intervention in PD.
Collapse
Affiliation(s)
- Alexandra Kleinknecht
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, Georg-August-Universität, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Blagovesta Popova
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, Georg-August-Universität, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Diana F. Lázaro
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- Department of NeuroDegeneration and Restorative Research, University of Göttingen Medical School, Göttingen, Germany
| | - Raquel Pinho
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- Department of NeuroDegeneration and Restorative Research, University of Göttingen Medical School, Göttingen, Germany
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, Georg-August-Universität, Göttingen, Germany
| | - Tiago F. Outeiro
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- Department of NeuroDegeneration and Restorative Research, University of Göttingen Medical School, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, Georg-August-Universität, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- * E-mail:
| |
Collapse
|
64
|
Butler B, Sambo D, Khoshbouei H. Alpha-synuclein modulates dopamine neurotransmission. J Chem Neuroanat 2016; 83-84:41-49. [PMID: 27334403 DOI: 10.1016/j.jchemneu.2016.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/03/2016] [Accepted: 06/11/2016] [Indexed: 01/13/2023]
Abstract
Alpha-synuclein is a small, highly charged protein encoded by the synuclein or SNCA gene that is predominantly expressed in central nervous system neurons. Although its physiological function remains enigmatic, alpha-synuclein is implicated in movement disorders such as Parkinson's disease, multiple system atrophy, and in neurodegenerative diseases such as Dementia with Lewy bodies. Here we have focused on reviewing the existing literature pertaining to wild-type alpha-synuclein structure, its properties, and its potential involvement in regulation of dopamine neurotransmission.
Collapse
Affiliation(s)
- Brittany Butler
- University of Florida, Department of Neuroscience and Department of Psychiatry Gainesville, FL 32611
| | - Danielle Sambo
- University of Florida, Department of Neuroscience and Department of Psychiatry Gainesville, FL 32611
| | - Habibeh Khoshbouei
- University of Florida, Department of Neuroscience and Department of Psychiatry Gainesville, FL 32611.
| |
Collapse
|
65
|
Lopes da Fonseca T, Pinho R, Outeiro TF. A familial ATP13A2 mutation enhances alpha-synuclein aggregation and promotes cell death. Hum Mol Genet 2016; 25:2959-2971. [PMID: 27282395 DOI: 10.1093/hmg/ddw147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/30/2016] [Accepted: 05/09/2016] [Indexed: 01/07/2023] Open
Abstract
Aberrant protein-protein interactions are a common pathological hallmark among neurodegenerative diseases, including Parkinson's disease (PD). Thus far, mutations in more than 20 genes have been associated with PD. These genes encode for proteins involved in distinct intracellular pathways, complicating our understanding of the precise molecular mechanisms underlying the disease. Recent reports suggested that the endolysosomal protein ATP13A2 can determine the fate of alpha-synuclein (α-Syn), although no consensus has yet been reached on the mechanisms underlying this effect. Here, we describe, for the first time, the deleterious effect arising from the interaction between the ATP13A2 familial mutant Dup22 with α-Syn. We show that this ATP13A2 mutant can enhance α-Syn oligomerization and aggregation in cell culture. Additionally, we report the accumulation of both proteins in abnormal endoplasmic reticulum membranous structures and the activation of the protein kinase RNA-like endoplasmic reticulum kinase pathway. Ultimately, our data bring new insight into the molecular mechanisms underlying the interplay of these two proteins, opening novel perspectives for therapeutic intervention.
Collapse
Affiliation(s)
- Tomás Lopes da Fonseca
- Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen 37073, Germany.,Faculdade de Medicina da Universidade de Lisboa, Lisboa 1648-028, Portugal
| | - Raquel Pinho
- Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen 37073, Germany.,Faculty of Medicine, University of Porto, Porto 4099-002, Portugal
| | - Tiago F Outeiro
- Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen 37073, Germany .,CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1150, Portugal.,Max Plank Institute for Experimental Medicine, Goettingen 37075, Germany
| |
Collapse
|
66
|
Emamzadeh FN. Alpha-synuclein structure, functions, and interactions. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2016; 21:29. [PMID: 27904575 PMCID: PMC5122110 DOI: 10.4103/1735-1995.181989] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/03/2016] [Accepted: 02/24/2016] [Indexed: 12/01/2022]
Abstract
At present, when a clinical diagnosis of Parkinson's disease (PD) is made, serious damage has already been done to nerve cells of the substantia nigra pars compacta. The diagnosis of PD in its earlier stages, before this irreversible damage, would be of enormous benefit for future treatment strategies designed to slow or halt the progression of this disease that possibly prevents accumulation of toxic aggregates. As a molecular biomarker for the detection of PD in its earlier stages, alpha-synuclein (α-syn), which is a key component of Lewy bodies, in which it is found in an aggregated and fibrillar form, has attracted considerable attention. Here, α-syn is reviewed in details.
Collapse
Affiliation(s)
- Fatemeh Nouri Emamzadeh
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster, LA1 4AY, UK
| |
Collapse
|
67
|
Killinger BA, Moszczynska A. Characterization of α-Synuclein Multimer Stoichiometry in Complex Biological Samples by Electrophoresis. Anal Chem 2016; 88:4071-84. [PMID: 26937787 PMCID: PMC4898865 DOI: 10.1021/acs.analchem.6b00419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
The
aberrant aggregation of α-synuclein in the brain is a
hallmark of Parkinson’s disease (PD). In vivo soluble α-synuclein
occurs as a monomer and several multimers, the latter of which may
be important for the biological function of α-synuclein. Currently,
there is a lack of reproducible methods to compare α-synuclein
multimer abundance between complex biological samples. Here we developed
a method, termed “multimer-PAGE,” that combines in-gel
chemical cross-linking with several common electrophoretic techniques
to measure the stoichiometry of soluble α-synuclein multimers
in brain tissue lysates. Results show that soluble α-synuclein
from the rat brain exists as several high molecular weight species
of approximately 56 kDa (αS56), 80 kDa (αS80), and 100
kDa (αS100) that comigrate with endogenous lipids, detergents,
and/or micelles during blue native gel electrophoresis (BN-PAGE).
Co-extraction of endogenous lipids with α-synuclein was essential
for the detection of soluble α-synuclein multimers. Homogenization
of brain tissue in small buffer volumes (>50 mg tissue per 1 mL
buffer)
increased relative lipid extraction and subsequently resulted in abundant
soluble multimer detection via multimer-PAGE. α-Synuclein multimers
captured by directly cross-linking soluble lysates resembled those
observed following multimer-PAGE. The ratio of multimer (αS80)
to monomer (αS17) increased linearly with protein input into
multimer-PAGE, suggesting to some extent, multimers were also formed
during electrophoresis. Overall, soluble α-synuclein maintains
lipid interactions following tissue disruption and readily forms multimers
when this lipid–protein complex is preserved. Once the multimer-PAGE
technique was validated, relative stoichiometric comparisons could
be conducted simultaneously between 14 biological samples. Multimer-PAGE
provides a simple inexpensive biochemical technique to study the molecular
factors influencing α-synuclein multimerization.
Collapse
Affiliation(s)
- Bryan A Killinger
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , 259 Mack Avenue, Detroit, Michigan 48201, United States
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , 259 Mack Avenue, Detroit, Michigan 48201, United States
| |
Collapse
|
68
|
Mahurkar S, Polytarchou C, Iliopoulos D, Pothoulakis C, Mayer EA, Chang L. Genome-wide DNA methylation profiling of peripheral blood mononuclear cells in irritable bowel syndrome. Neurogastroenterol Motil 2016; 28:410-22. [PMID: 26670691 PMCID: PMC4760882 DOI: 10.1111/nmo.12741] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a stress-sensitive disorder. Environmental factors including stress can trigger epigenetic changes, which have not been well-studied in IBS. We performed a pilot study investigating genome-wide DNA methylation of IBS patients and healthy controls (HCs) to identify potential epigenetic markers and associated pathways. Additionally, we investigated relationships of epigenetic changes in selected genes with clinical traits. METHODS Twenty-seven IBS patients (59% women; 10 IBS-diarrhea, 8 IBS-constipation, 9 IBS-mixed) and 23 age- and sex-matched HCs were examined. DNA methylation from peripheral blood mononuclear cells (PBMCs) was measured using HM450 BeadChip, and representative methylation differences were confirmed by bisulphite sequencing. Gene expression was measured using quantitative PCR. Gastrointestinal (GI) and non-GI symptoms were measured using validated questionnaires. Associations were tested using non-parametric methods. KEY RESULTS Genome-wide DNA methylation profiling of IBS patients compared with HCs identified 133 differentially methylated positions (DMPs) (mean difference ≥10%; p < 0.05). These genes were associated with gene ontology terms including glutathione metabolism related to oxidative stress and neuropeptide hormone activity. Validation by sequencing confirmed differential methylation of subcommissural organ (SCO)-Spondin (SSPO), glutathione-S-transferases mu 5 (GSTM5), and tubulin polymerization promoting protein genes. Methylation of two promoter CpGs in GSTM5 was associated with epigenetic silencing. Epigenetic changes in SSPO gene were positively correlated with hospital anxiety and depression scores in IBS patients (r > 0.4 and false discovery rate <0.05). CONCLUSIONS & INFERENCES This study is the first to comprehensively explore the methylome of IBS patients. We identified DMPs in novel candidate genes which could provide new insights into disease mechanisms; however, these preliminary findings warrant confirmation in larger, independent studies.
Collapse
Affiliation(s)
- Swapna Mahurkar
- Oppenheimer Center for Neurobiology of Stress at UCLA; Division of Digestive Diseases, David Geffen School of Medicine at UCLA
| | - Christos Polytarchou
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA
| | - Charalabos Pothoulakis
- Department of Medicine, Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA
| | - Emeran A. Mayer
- Oppenheimer Center for Neurobiology of Stress at UCLA; Division of Digestive Diseases, David Geffen School of Medicine at UCLA
| | - Lin Chang
- Oppenheimer Center for Neurobiology of Stress at UCLA; Division of Digestive Diseases, David Geffen School of Medicine at UCLA
| |
Collapse
|
69
|
Green fluorescent protein as a scaffold for high efficiency production of functional bacteriotoxic proteins in Escherichia coli. Sci Rep 2016; 6:20661. [PMID: 26864123 PMCID: PMC4749965 DOI: 10.1038/srep20661] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/04/2016] [Indexed: 12/28/2022] Open
Abstract
The availability of simple, robust, and cost-effective methods for the large-scale production of bacteriotoxic peptides such as antimicrobial peptides (AMPs) is essential for basic and pharmaceutical research. However, the production of bacteriotoxic proteins has been difficult due to a high degree of toxicity in bacteria and proteolytic degradation. In this study, we inserted AMPs into the Green fluorescent protein (GFP) in a loop region and expressed them as insoluble proteins in high yield, circumventing the inherent toxicity of AMP production in Escherichia coli. The AMPs inserted were released by cyanogen bromide and purified by chromatography. We showed that highly potent AMPs such as Protegrin-1, PMAP-36, Buforin-2, and Bactridin-1 are produced in high yields and produced AMPs showed similar activities compared to chemically synthesized AMPs. We increased the yield more than two-fold by inserting three copies of Protegrin-1 in the GFP scaffold. The immunogold electron micrographs showed that the expressed Protegrin-1 in the GFP scaffold forms large and small size aggregates in the core region of the inclusion body and become entirely nonfunctional, therefore not influencing the proliferation of E. coli. Our novel method will be applicable for diverse bacteriotoxic peptides which can be exploited in biomedical and pharmaceutical researches.
Collapse
|
70
|
Induction of de novo α-synuclein fibrillization in a neuronal model for Parkinson's disease. Proc Natl Acad Sci U S A 2016; 113:E912-21. [PMID: 26839406 DOI: 10.1073/pnas.1512876113] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lewy bodies (LBs) are intraneuronal inclusions consisting primarily of fibrillized human α-synuclein (hα-Syn) protein, which represent the major pathological hallmark of Parkinson's disease (PD). Although doubling hα-Syn expression provokes LB pathology in humans, hα-Syn overexpression does not trigger the formation of fibrillar LB-like inclusions in mice. We hypothesized that interactions between exogenous hα-Syn and endogenous mouse synuclein homologs could be attenuating hα-Syn fibrillization in mice, and therefore, we systematically assessed hα-Syn aggregation propensity in neurons derived from α-Syn-KO, β-Syn-KO, γ-Syn-KO, and triple-KO mice lacking expression of all three synuclein homologs. Herein, we show that hα-Syn forms hyperphosphorylated (at S129) and ubiquitin-positive LB-like inclusions in primary neurons of α-Syn-KO, β-Syn-KO, and triple-KO mice, as well as in transgenic α-Syn-KO mouse brains in vivo. Importantly, correlative light and electron microscopy, immunogold labeling, and thioflavin-S binding established their fibrillar ultrastructure, and fluorescence recovery after photobleaching/photoconversion experiments showed that these inclusions grow in size and incorporate soluble proteins. We further investigated whether the presence of homologous α-Syn species would interfere with the seeding and spreading of α-Syn pathology. Our results are in line with increasing evidence demonstrating that the spreading of α-Syn pathology is most prominent when the injected preformed fibrils and host-expressed α-Syn monomers are from the same species. These findings provide insights that will help advance the development of neuronal and in vivo models for understanding mechanisms underlying hα-Syn intraneuronal fibrillization and its contribution to PD pathogenesis, and for screening pharmacologic and genetic modulators of α-Syn fibrillization in neurons.
Collapse
|
71
|
Zhao J, Wu J, Cai H, Wang D, Yu L, Zhang WH. E3 Ubiquitin Ligase Siah-1 is Down-regulated and Fails to Target Natural HBx Truncates for Degradation in Hepatocellular Carcinoma. J Cancer 2016; 7:418-26. [PMID: 26918055 PMCID: PMC4749362 DOI: 10.7150/jca.13019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/14/2015] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common worldwide malignancy with high morbidity and mortality. Hepatitis B viral (HBV)-encoded X protein (HBx) and natural HBx variants play important roles in HBV-associated HCC development. HBx is an unstable protein that can be degraded in vivo. Our previous study found that the E3 ubiquitin ligase Siah-1 could target HBx for poly-ubiquitylation and proteasomal degradation and attenuate the transcriptional activity of HBx. However, in HCC patients, high expression levels of HBx and HBx variants are frequently observed and are associated with HCC progression. The mechanism underlying their up-regulation is largely unknown. In this study, we screened for Siah-1 mutations in 270 HCC samples and 9 HCC cell lines, and examined Siah-1 mRNA and protein expression in a subset of paired HCC specimens. Our results demonstrate that Siah-1 is highly conserved, as no somatic mutation was identified, with the exception of one synonymous transition from G to A at codon 67. Both the mRNA and protein levels of Siah-1 were significantly down-regulated in HCC tissues compared with their adjacent normal counterparts. We constructed three natural HBx truncates that were identified in our HCC cases. We found that Siah-1 failed to decrease the stability of these HBx variants and was unable to inhibit the transcriptional activity of these HBx truncates at heat shock elements (HSEs). Moreover, Siah-1 had weaker association with three HBx mutants than full length HBx. Therefore, our findings suggest that down-regulation of Siah-1, but not its mutations, and natural HBx variants resistant to Siah-1-induced degradation may be a novel mechanism for HCC development.
Collapse
Affiliation(s)
- Jing Zhao
- 1. Department of General Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jing Wu
- 2. Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hao Cai
- 3. The State Key Laboratory of Genetics Engineering, Fudan University, Shanghai 200433, China
| | - Dan Wang
- 3. The State Key Laboratory of Genetics Engineering, Fudan University, Shanghai 200433, China
| | - Long Yu
- 3. The State Key Laboratory of Genetics Engineering, Fudan University, Shanghai 200433, China
| | - Wen-Hong Zhang
- 2. Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| |
Collapse
|
72
|
Tanji K, Miki Y, Maruyama A, Mori F, Mimura J, Itoh K, Kamitani T, Wakabayashi K. The role of NUB1 in α-synuclein degradation in Lewy body disease model mice. Biochem Biophys Res Commun 2016; 470:635-642. [PMID: 26797281 DOI: 10.1016/j.bbrc.2016.01.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 01/15/2016] [Indexed: 11/19/2022]
Abstract
Abnormal α-synuclein is deposited in neuronal cytoplasmic inclusions and presynapses in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Previously we have shown that NUB1 is accumulated in these specific regions together with abnormal α-synuclein and that NUB1 is able to inhibit α-synuclein aggregation in cultured cells. We therefore created transgenic (Tg) mice expressing both NUB1 and abnormal α-synuclein to investigate the role of NUB1 on degradation of abnormal α-synuclein in vivo. Immunohistochemical and biochemical studies confirmed that NUB1 was over-expressed in neurons of mice expressing NUB1 (NUB1 Tg), and both NUB1 and abnormal α-synuclein (double Tg). NUB1 levels were increased by 4.7-fold in NUB1 Tg mice compared with wild type mice. Unexpectedly, normal and abnormal α-synuclein levels were unchanged between abnormal α-synuclein Tg mice (Lewy body disease model mice) and double Tg mice, and pathological observations were almost similar between them. Finally, we found that the levels of insoluble α-synuclein were lower and those of some chaperone molecules were higher in double Tg mice compared with abnormal α-synuclein Tg mice. These results suggest that increased levels of NUB1 play a potential role in degradation of detergent-insoluble α-synuclein in vivo, although it is insufficient to degrade abnormal α-synuclein in Lewy body disease model mice.
Collapse
Affiliation(s)
- Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Atsushi Maruyama
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Junsei Mimura
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tetsu Kamitani
- Center for Molecular Chaperone, Medical College of Georgia, Augusta, GA 30912, USA
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
73
|
Liu J, Li T, Thomas JM, Pei Z, Jiang H, Engelender S, Ross CA, Smith WW. Synphilin-1 attenuates mutant LRRK2-induced neurodegeneration in Parkinson's disease models. Hum Mol Genet 2016; 25:672-80. [PMID: 26744328 DOI: 10.1093/hmg/ddv504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/07/2015] [Indexed: 11/12/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal-dominant Parkinsonism with pleomorphic pathology including deposits of aggregated protein and neuronal degeneration. The pathogenesis of LRRK2-linked Parkinson's disease (PD) is not fully understood. Here, using co-immunoprecipitation, we found that LRRK2 interacted with synphilin-1 (SP1), a cytoplasmic protein that interacts with α-synuclein and has implications in PD pathogenesis. LRRK2 interacted with the N-terminus of SP1 whereas SP1 predominantly interacted with the C-terminus of LRRK2, including kinase domain. Co-expression of SP1 with LRRK2 increased LRRK2-induced cytoplasmic aggregation in cultured cells. Moreover, SP1 also attenuated mutant LRRK2-induced toxicity and reduced LRRK2 kinase activity in cultured cells. Knockdown of SP1 by siRNA enhanced LRRK2 neuronal toxicity. In vivo Drosophila studies, co-expression of SP1 and mutant G2019S-LRRK2 in double transgenic Drosophila increased survival and improved locomotor activity. Expression of SP1 protects against G2019S-LRRK2-induced dopamine neuron loss and reduced LRRK2 phosphorylation in double transgenic fly brains. Our findings demonstrate that SP1 attenuates mutant LRRK2-induced PD-like phenotypes and plays a neural protective role.
Collapse
Affiliation(s)
- Jingnan Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Joseph M Thomas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Zhong Pei
- Division of Neurobiology, Department of Psychiatry
| | | | - Simone Engelender
- Department of Pharmacology, The B. Rappaport Institute of Medical Research, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Departments of Neuroscience, Neurology, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA and
| | - Wanli W Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA,
| |
Collapse
|
74
|
Poehler AM, Xiang W, Spitzer P, May VEL, Meixner H, Rockenstein E, Chutna O, Outeiro TF, Winkler J, Masliah E, Klucken J. Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment. Autophagy 2015; 10:2171-92. [PMID: 25484190 DOI: 10.4161/auto.36436] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
SNCA/α-synuclein aggregation plays a crucial role in synucleinopathies such as Parkinson disease and dementia with Lewy bodies. Aggregating and nonaggregating SNCA species are degraded by the autophagy-lysosomal pathway (ALP). Previously, we have shown that the ALP is not only responsible for SNCA degradation but is also involved in the intracellular aggregation process of SNCA. An additional role of extracellular SNCA in the pathology of synucleinopathies substantiating a prion-like propagation hypothesis has been suggested since released SNCA species and spreading of SNCA pathology throughout neural cells have been observed. However, the molecular interplay between intracellular pathways, SNCA aggregation, release, and response of the local microenvironment remains unknown. Here, we attributed SNCA-induced toxicity mainly to secreted species in a cell culture model of SNCA aggregation and in SNCA transgenic mice: We showed that ALP inhibition by bafilomycinA1 reduced intracellular SNCA aggregation but increased secretion of smaller oligomers that exacerbated microenvironmental response including uptake, inflammation, and cellular damage. Low-aggregated SNCA was predominantly released by exosomes and RAB11A-associated pathways whereas high-aggregated SNCA was secreted by membrane shedding. In summary, our study revealed a novel role of the ALP by linking protein degradation to nonclassical secretion for toxic SNCA species. Thus, impaired ALP in the diseased brain not only limits intracellular degradation of misfolded proteins, but also leads to a detrimental microenvironmental response due to enhanced SNCA secretion. These findings suggest that the major toxic role of SNCA is related to its extracellular species and further supports a protective role of intracellular SNCA aggregation.
Collapse
Key Words
- ACTB/bAct, actin, β
- AIF1/Iba1, allograft inflammatory factor 1
- AK, adenylate kinase
- ALP, autophagy-lysosomal pathway
- ANXA5, annexin A5
- BafA1, bafilomycinA1
- CA1, cornu ammonis field1
- CASP3/aCasp3, caspase-3
- CD63, CD63 molecule
- CM, conditioned medium
- CMA, chaperone-mediated autophagy
- CSF, cerebrospinal fluid
- DLB, dementia with Lewy bodies
- ER, endoplasmatic reticulum
- ESCRT, endosomal sorting complex required for transport
- EV, empty vector
- GFAP, glial fibrillary acidic protein
- HRP, horseradish peroxidase
- HSPA8/Hsc70, heat shock 70kDa protein 8
- Hippo, hippocampus
- IL6/IL-6, interleukin-6
- ILVs, intraluminal vesicles
- LAMP2A/Lamp2a, lysosomal-associated membrane protein 2, isoform A
- LB, Lewy bodies
- LN, Lewy neuritis
- MAP2, microtubule-associated protein 2
- ML, molecular layer
- MVBs, multivesicular bodies
- N, neuron
- Neoctx, neocortex
- PD, Parkinson disease
- PDGFB/PDGFb, platelet-derived growth factor subunit b
- PF, particle fraction
- PS, phosphatidylserine
- Parkinson disease
- RAB11A/rab11, member RAS oncogene family
- RBFOX3/NeuN, RNA binding protein, fox-1 homolog (C. elegans) 3
- RT, room temperature
- S100B/S100b, S100 calcium-binding protein B
- SL, stratum lacunosum; SNCA/aSyn
- SNCA-T, tagged α-synuclein
- SNCAIP/Sph1, synphilin-1
- SYP, synaptophysin
- TNF/TNFa, tumor necrosis factor α
- TUBB3/b-III-Tub, tubulin, β 3 class III
- UPS, ubiquitin proteasome system
- WT-SNCA, wild-type α-synuclein
- inflammation
- lysosomal degradation
- protein aggregation
- secretion
- synucleinopathies
- tg, transgenic
- α-synuclein
Collapse
Affiliation(s)
- Anne-Maria Poehler
- a Department of Molecular Neurology ; Friedrich-Alexander-University Erlangen-Nürnberg (FAU) ; Erlangen , Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Amen T, Lázaro DF, Outeiro TF, Kaganovich D. Modeling Neuronal Pathology in Yeast: Insights into the Molecular Basis of Parkinson’s Disease. Isr J Chem 2015. [DOI: 10.1002/ijch.201500071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
76
|
Abstract
The discovery of alpha-synuclein's prion-like behaviors in mammals, as well as a non-Mendelian type of inheritance, has led to a new concept in biology, the "prion hypothesis" of Parkinson's disease. The misfolding and aggregation of alpha-synuclein (α-syn) within the nervous system occur in many neurodegenerative diseases including Parkinson's disease (PD), Lewy body dementia (LBD), and multiple system atrophy (MSA). The molecular basis of synucleinopathies appears to be tightly coupled to α-syn's conformational conversion and fibril formation. The pathological form of α-syn consists of oligomers and fibrils with rich in β-sheets. The conversion of its α-helical structure to the β-sheet rich fibril is a defining pathologic feature of α-syn. These kinds of disorders have been classified as protein misfolding diseases or proteopathies which share key biophysical and biochemical characteristics with prion diseases. In this review, we highlight α-syn's prion-like activities in PD and PD models, describe the idea of a prion-like mechanism contributing to PD pathology, and discuss several key molecules that can modulate the α-syn accumulation and propagation.
Collapse
Affiliation(s)
- Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL, 60612, USA,
| | | |
Collapse
|
77
|
Abstract
Previously, we have identified a novel role for the cytoplasmic protein, synphilin-1(SP1), in the controls of food intake and body weight in both mice and Drosophila. Ubiquitous overexpression of human SP1 in brain neurons in transgenic mice results in hyperphagia expressed as an increase in meal size. However, the mechanisms underlying this action of SP1 remain to be determined. Here we investigate a potential role for altered gut feedback signaling in the effects of SP1 on food intake. We examined responses to peripheral administration of cholecytokinin (CCK), amylin, and the glucagon like peptide-1 (GLP-1) receptor agonist, exendin-4. Intraperitoneal administration of CCK at doses ranging from 1–10 nmol/kg significantly reduced glucose intake in wild type (WT) mice, but failed to affect intake in SP1 transgenic mice. Moreover, there was a significant attenuation of CCK-induced c-Fos expression in the dorsal vagal complex in SP1 transgenic mice. In contrast, WT and SP1 transgenic mice were similarly responsive to both amylin and exendin-4 treatment. These studies demonstrate that SP1 results in a CCK response deficiency that may contribute to the increased meal size and overall hyperphagia in synphillin-1 transgenic mice.
Collapse
|
78
|
Brudek T, Winge K, Rasmussen NB, Bahl JMC, Tanassi J, Agander TK, Hyde TM, Pakkenberg B. Altered α-synuclein, parkin, and synphilin isoform levels in multiple system atrophy brains. J Neurochem 2015; 136:172-85. [DOI: 10.1111/jnc.13392] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/29/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Tomasz Brudek
- Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen NV Denmark
- Bispebjerg Movement Disorders Biobank; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen N Denmark
| | - Kristian Winge
- Department of Neurology; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen NV Denmark
- Bispebjerg Movement Disorders Biobank; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen N Denmark
| | - Nadja Bredo Rasmussen
- Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen NV Denmark
| | | | - Julia Tanassi
- Department of Autoimmunology and Biomarkers; Statens Serum Institut; Copenhagen S Denmark
| | | | - Thomas M. Hyde
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus; Baltimore Maryland USA
- Department of Psychiatry and Behavioral Sciences; Johns Hopkins University School of Medicine; Baltimore Maryland USA
- Department of Neurology; Johns Hopkins University School of Medicine; Baltimore Maryland USA
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen NV Denmark
| |
Collapse
|
79
|
Comparative analysis of four disease prediction models of Parkinson’s disease. Mol Cell Biochem 2015; 411:127-34. [DOI: 10.1007/s11010-015-2574-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/26/2015] [Indexed: 12/11/2022]
|
80
|
Ikonomov OC, Sbrissa D, Compton LM, Kumar R, Tisdale EJ, Chen X, Shisheva A. The Protein Complex of Neurodegeneration-related Phosphoinositide Phosphatase Sac3 and ArPIKfyve Binds the Lewy Body-associated Synphilin-1, Preventing Its Aggregation. J Biol Chem 2015; 290:28515-28529. [PMID: 26405034 DOI: 10.1074/jbc.m115.669929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/14/2022] Open
Abstract
The 5-phosphoinositide phosphatase Sac3, in which loss-of-function mutations are linked to neurodegenerative disorders, forms a stable cytosolic complex with the scaffolding protein ArPIKfyve. The ArPIKfyve-Sac3 heterodimer interacts with the phosphoinositide 5-kinase PIKfyve in a ubiquitous ternary complex that couples PtdIns(3,5)P2 synthesis with turnover at endosomal membranes, thereby regulating the housekeeping endocytic transport in eukaryotes. Neuron-specific associations of the ArPIKfyve-Sac3 heterodimer, which may shed light on the neuropathological mechanisms triggered by Sac3 dysfunction, are unknown. Here we conducted mass spectrometry analysis for brain-derived interactors of ArPIKfyve-Sac3 and unraveled the α-synuclein-interacting protein Synphilin-1 (Sph1) as a new component of the ArPIKfyve-Sac3 complex. Sph1, a predominantly neuronal protein that facilitates aggregation of α-synuclein, is a major component of Lewy body inclusions in neurodegenerative α-synucleinopathies. Modulations in ArPIKfyve/Sac3 protein levels by RNA silencing or overexpression in several mammalian cell lines, including human neuronal SH-SY5Y or primary mouse cortical neurons, revealed that the ArPIKfyve-Sac3 complex specifically altered the aggregation properties of Sph1-GFP. This effect required an active Sac3 phosphatase and proceeded through mechanisms that involved increased Sph1-GFP partitioning into the cytosol and removal of Sph1-GFP aggregates by basal autophagy but not by the proteasomal system. If uncoupled from ArPIKfyve elevation, overexpressed Sac3 readily aggregated, markedly enhancing the aggregation potential of Sph1-GFP. These data identify a novel role of the ArPIKfyve-Sac3 complex in the mechanisms controlling aggregate formation of Sph1 and suggest that Sac3 protein deficiency or overproduction may facilitate aggregation of aggregation-prone proteins, thereby precipitating the onset of multiple neuronal disorders.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Diego Sbrissa
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Lauren M Compton
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Rita Kumar
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201; Departments of Emergency Medicine, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Ellen J Tisdale
- Departments of Pharmacology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Xuequn Chen
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Assia Shisheva
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201.
| |
Collapse
|
81
|
Zaarur N, Xu X, Lestienne P, Meriin AB, McComb M, Costello CE, Newnam GP, Ganti R, Romanova NV, Shanmugasundaram M, Silva STN, Bandeiras TM, Matias PM, Lobachev KS, Lednev IK, Chernoff YO, Sherman MY. RuvbL1 and RuvbL2 enhance aggresome formation and disaggregate amyloid fibrils. EMBO J 2015; 34:2363-82. [PMID: 26303906 DOI: 10.15252/embj.201591245] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/13/2015] [Indexed: 02/02/2023] Open
Abstract
The aggresome is an organelle that recruits aggregated proteins for storage and degradation. We performed an siRNA screen for proteins involved in aggresome formation and identified novel mammalian AAA+ protein disaggregases RuvbL1 and RuvbL2. Depletion of RuvbL1 or RuvbL2 suppressed aggresome formation and caused buildup of multiple cytoplasmic aggregates. Similarly, downregulation of RuvbL orthologs in yeast suppressed the formation of an aggresome-like body and enhanced the aggregate toxicity. In contrast, their overproduction enhanced the resistance to proteotoxic stress independently of chaperone Hsp104. Mammalian RuvbL associated with the aggresome, and the aggresome substrate synphilin-1 interacted directly with the RuvbL1 barrel-like structure near the opening of the central channel. Importantly, polypeptides with unfolded structures and amyloid fibrils stimulated the ATPase activity of RuvbL. Finally, disassembly of protein aggregates was promoted by RuvbL. These data indicate that RuvbL complexes serve as chaperones in protein disaggregation.
Collapse
Affiliation(s)
- Nava Zaarur
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Xiaobin Xu
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | | | - Anatoli B Meriin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Mark McComb
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Gary P Newnam
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rakhee Ganti
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nina V Romanova
- Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Maruda Shanmugasundaram
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, USA
| | - Sara T N Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Kirill S Lobachev
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Igor K Lednev
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, USA
| | - Yury O Chernoff
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Michael Y Sherman
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
82
|
Larsen K, Madsen LB, Farajzadeh L, Bendixen C. Splicing variants of porcine synphilin-1. Meta Gene 2015; 5:32-42. [PMID: 26101749 PMCID: PMC4468357 DOI: 10.1016/j.mgene.2015.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease (PD), idiopathic and familial, is characterized by degradation of dopaminergic neurons and the presence of Lewy bodies (LB) in the substantia nigra. LBs contain aggregated proteins of which α-synuclein is the major component. The protein synphilin-1 interacts and colocalizes with α-synuclein in LBs. The aim of this study was to isolate and characterize porcine synphilin-1 and isoforms hereof with the future perspective to use the pig as a model for Parkinson's disease. The porcine SNCAIP cDNA was cloned by reverse transcriptase PCR. The spatial expression of SNCAIP mRNA was investigated by RNAseq. The presented work reports the molecular cloning and characterization of the porcine (Sus scrofa) synphilin-1 cDNA (SNCAIP) and three splice variants hereof. The porcine SNCAIP cDNA codes for a protein (synphilin-1) of 919 amino acids which shows a high similarity to human (90%) and to mouse (84%) synphilin-1. Three shorter transcript variants of the synphilin-1 gene were identified, all lacking one or more exons. SNCAIP transcripts were detected in most examined organs and tissues and the highest expression was found in brain tissues and lung. Conserved splicing variants and a novel splice form of synhilin-1 were found in this study. All synphilin-1 isoforms encoded by the identified transcript variants lack functional domains important for protein degradation. The full-length porcine SNCAIP cDNA encoding synphilin-1 was cloned and characterized. Three splicing variants of synphilin-1 were identified. Both conserved and novel splicing variant were found. SNCAIP mRNA was differently expressed in analyzed tissues and organs with highest expression in brain tissue and lung.
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Lone Bruhn Madsen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Leila Farajzadeh
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| |
Collapse
|
83
|
Norris KL, Hao R, Chen LF, Lai CH, Kapur M, Shaughnessy PJ, Chou D, Yan J, Taylor JP, Engelender S, West AE, Lim KL, Yao TP. Convergence of Parkin, PINK1, and α-Synuclein on Stress-induced Mitochondrial Morphological Remodeling. J Biol Chem 2015; 290:13862-74. [PMID: 25861987 PMCID: PMC4447961 DOI: 10.1074/jbc.m114.634063] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/18/2015] [Indexed: 12/21/2022] Open
Abstract
Mutations in PARKIN (PARK2), an ubiquitin ligase, cause early onset Parkinson disease. Parkin was shown to bind, ubiquitinate, and target depolarized mitochondria for destruction by autophagy. This process, mitophagy, is considered crucial for maintaining mitochondrial integrity and suppressing Parkinsonism. Here, we report that under moderate mitochondrial stress, parkin does not translocate to mitochondria to induce mitophagy; rather, it stimulates mitochondrial connectivity. Mitochondrial stress-induced fusion requires PINK1 (PARK6), mitofusins, and parkin ubiquitin ligase activity. Upon exposure to mitochondrial toxins, parkin binds α-synuclein (PARK1), and in conjunction with the ubiquitin-conjugating enzyme Ubc13, stimulates K63-linked ubiquitination. Importantly, α-synuclein inactivation phenocopies parkin overexpression and suppresses stress-induced mitochondria fission, whereas Ubc13 inactivation abrogates parkin-dependent mitochondrial fusion. The convergence of parkin, PINK1, and α-synuclein on mitochondrial dynamics uncovers a common function of these PARK genes in the mitochondrial stress response and provides a potential physiological basis for the prevalence of α-synuclein pathology in Parkinson disease.
Collapse
Affiliation(s)
| | - Rui Hao
- From the Departments of Pharmacology and Cancer Biology and
| | - Liang-Fu Chen
- Neurobiology, Duke University, Medical Center, Durham, North Carolina 27710
| | | | - Meghan Kapur
- From the Departments of Pharmacology and Cancer Biology and
| | | | - Dennis Chou
- From the Departments of Pharmacology and Cancer Biology and
| | - Jin Yan
- From the Departments of Pharmacology and Cancer Biology and
| | - J Paul Taylor
- the Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Simone Engelender
- the Department of Pharmacology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel, and
| | - Anna E West
- Neurobiology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Kah-Leong Lim
- the Department of Physiology, National University of Singapore, Singapore
| | - Tso-Pang Yao
- From the Departments of Pharmacology and Cancer Biology and
| |
Collapse
|
84
|
Savolainen MH, Yan X, Myöhänen TT, Huttunen HJ. Prolyl oligopeptidase enhances α-synuclein dimerization via direct protein-protein interaction. J Biol Chem 2015; 290:5117-5126. [PMID: 25555914 DOI: 10.1074/jbc.m114.592931] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Prolyl oligopeptidase (PREP) accelerates the aggregation of α-synuclein (aSyn), a key protein involved in development of Parkinson disease and other synucleinopathies. PREP inhibitors reduce aSyn aggregation, but the mechanism has remained unknown. We have now used protein-fragment complementation assays (PCA) and microscale thermophoresis in parallel to show that PREP interacts directly with aSyn in both intact cells and in a cell-free system. Using split luciferase-based PCA, we first showed that PREP enhances the formation of soluble aSyn dimers in live Neuro-2A neuroblastoma cells. A PREP inhibitor, KYP-2047, reduced aSyn dimerization in PREP-expressing cells but not in cells lacking PREP expression. aSyn dimerization was also enhanced by PREP(S554A), an enzymatically inactive PREP mutant, but this was not affected by KYP-2047. PCA and microscale thermophoresis studies showed that aSyn interacts with both PREP and PREP(S554A) with low micromolar affinity. Neither the proline-rich, C-terminal domain of aSyn nor the hydrolytic activity of PREP was required for the interaction with PREP. Our results show that PREP binds directly to aSyn to enhance its dimerization and may thus serve as a nucleation point for aSyn aggregation. Native gel analysis showed that KYP-2047 shifts PREP to a compact monomeric form with reduced ability to promote aSyn nucleation. As PREP inhibition also enhances autophagic clearance of aSyn, PREP inhibitors may reduce accumulation of aSyn inclusions via a dual mechanism and are thus a novel therapeutic candidate for synucleinopathies. Our results also suggest that PREP has other cellular functions in addition to its peptidase activity.
Collapse
Affiliation(s)
- Mari H Savolainen
- From the Division of Pharmacology and Pharmacotherapy, University of Helsinki, FI-00014 Helsinki, Finland and
| | - Xu Yan
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Timo T Myöhänen
- From the Division of Pharmacology and Pharmacotherapy, University of Helsinki, FI-00014 Helsinki, Finland and
| | - Henri J Huttunen
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
85
|
Li T, Liu J, Smith WW. Synphilin-1 binds ATP and regulates intracellular energy status. PLoS One 2014; 9:e115233. [PMID: 25545246 PMCID: PMC4278857 DOI: 10.1371/journal.pone.0115233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/19/2014] [Indexed: 11/19/2022] Open
Abstract
Recent studies have suggested that synphilin-1, a cytoplasmic protein, is involved in energy homeostasis. Overexpression of synphilin-1 in neurons results in hyperphagia and obesity in animal models. However, the mechanism by which synphilin-1 alters energy homeostasis is unknown. Here, we used cell models and biochemical approaches to investigate the cellular functions of synphilin-1 that may affect energy balance. Synphilin-1 was pulled down by ATP-agarose beads, and the addition of ATP and ADP reduced this binding, indicating that synphilin-1 bound ADP and ATP. Synphilin-1 also bound GMP, GDP, and GTP but with a lower affinity than it bound ATP. In contrast, synphilin-1 did not bind with CTP. Overexpression of synphilin-1 in HEK293T cells significantly increased cellular ATP levels. Genetic alteration to abolish predicted ATP binding motifs of synphilin-1 or knockdown of synphilin-1 by siRNA reduced cellular ATP levels. Together, these data demonstrate that synphilin-1 binds and regulates the cellular energy molecule, ATP. These findings provide a molecular basis for understanding the actions of synphilin-1 in energy homeostasis.
Collapse
Affiliation(s)
- Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States of America
| | - Jingnan Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States of America
| | - Wanli W. Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States of America
- * E-mail:
| |
Collapse
|
86
|
Parkinson's disease as a member of Prion-like disorders. Virus Res 2014; 207:38-46. [PMID: 25456401 DOI: 10.1016/j.virusres.2014.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is one of several neurodegenerative diseases associated with a misfolded, aggregated and pathological protein. In Parkinson's disease this protein is alpha-synuclein and its neuronal deposits in the form of Lewy bodies are considered a hallmark of the disease. In this review we describe the clinical and experimental data that have led to think of alpha-synuclein as a prion-like protein and we summarize data from in vitro, cellular and animal models supporting this view.
Collapse
|
87
|
Cox D, Carver JA, Ecroyd H. Preventing α-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1830-43. [PMID: 24973551 DOI: 10.1016/j.bbadis.2014.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/28/2014] [Accepted: 06/19/2014] [Indexed: 12/21/2022]
Abstract
Protein homeostasis, or proteostasis, is the process of maintaining the conformational and functional integrity of the proteome. The failure of proteostasis can result in the accumulation of non-native proteins leading to their aggregation and deposition in cells and in tissues. The amyloid fibrillar aggregation of the protein α-synuclein into Lewy bodies and Lewy neuritis is associated with neurodegenerative diseases classified as α-synucleinopathies, which include Parkinson's disease and dementia with Lewy bodies. The small heat-shock proteins (sHsps) are molecular chaperones that are one of the cell's first lines of defence against protein aggregation. They act to stabilise partially folded protein intermediates, in an ATP-independent manner, to maintain cellular proteostasis under stress conditions. Thus, the sHsps appear ideally suited to protect against α-synuclein aggregation, yet these fail to do so in the context of the α-synucleinopathies. This review discusses how sHsps interact with α-synuclein to prevent its aggregation and, in doing so, highlights the multi-faceted nature of the mechanisms used by sHsps to prevent the fibrillar aggregation of proteins. It also examines what factors may contribute to α-synuclein escaping the sHsp chaperones in the context of the α-synucleinopathies.
Collapse
Affiliation(s)
- Dezerae Cox
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Heath Ecroyd
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
88
|
Jones DR, Moussaud S, McLean P. Targeting heat shock proteins to modulate α-synuclein toxicity. Ther Adv Neurol Disord 2014; 7:33-51. [PMID: 24409201 DOI: 10.1177/1756285613493469] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Parkinson's disease is a slowly progressive neurodegenerative disorder typically characterized by the loss of dopaminergic neurons within the substantia nigra pars compacta, and the intraneuronal deposition of insoluble protein aggregates chiefly comprised of α-synuclein. Patients experience debilitating symptoms including bradykinesia, rigidity and postural instability. No curative treatment currently exists and therapeutic strategies are restricted to symptomatic treatment only. Over the past decade a class of molecular chaperones called the heat shock proteins has emerged as a potentially promising therapeutic target. Heat shock proteins aid in the folding and refolding of proteins, and target denatured proteins to degradation systems. By targeting heat shock proteins through various means including overexpression and pharmacological enhancement, researchers have shown that α-synuclein aggregation and its associated cytotoxicity can be therapeutically modulated in an array of cell and animal models. This review highlights the relevant progress in this field and discusses the relevance of heat shock proteins as therapeutic modulators of α-synuclein toxicity to the rapidly evolving understanding of Parkinson's disease pathogenesis.
Collapse
Affiliation(s)
| | | | - Pamela McLean
- Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
89
|
Synphilin-1A is a phosphoprotein phosphatase 1-interacting protein and affects PPP1 sorting to subcellular compartments. J Mol Neurosci 2014; 55:385-95. [PMID: 24902662 DOI: 10.1007/s12031-014-0343-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/27/2014] [Indexed: 12/24/2022]
Abstract
Lewy bodies (LBs) are synphilin-1 (Sph1)-containing aggregates and histological hallmarks of Parkinson's disease. Therefore, understanding processes which modulate the aggregation of Sph1, or its isoform Sph1A, will contribute to our understanding of LBs formation. Protein phosphorylation promotes aggregation, but protein phosphatases with activity towards Sph1 have not been described. The present study documents the identification of a novel Sph1A/phosphoprotein phosphatase 1 (PPP1) complex and unravels its regulatory effect on Sph1A aggregation. Using yeast co-transformation and overlay blot assay, the interaction between Sph1A and PPP1 was mapped to the Sph1A RVTF motif. Then, Sph1A overexpression in human embryonic kidney 293 cells demonstrated that Sph1A specifically targets endogenous PPP1 isoforms to inclusion bodies and that Sph1A/PPP1 complex disruption enhances inclusion bodies formation. Finally, as Sph1A interacted with PPP1CC2, a PPP1 sperm-specific isoform, Sph1 and Sph1A expression was addressed in male germ cells by qRT-PCR, revealing high expression levels in round spermatids. Together, these observations established Sph1A as a novel PPP1-interacting protein able to affect PPP1 sorting to subcellular compartments and Sph1A/PPP1 complex as a negative modulator of LBs formation. Contrarily, in physiological conditions, Sph1 isoforms are pointed as putative participants in vesicle dynamics with implications in neurotransmission and spermiogenesis.
Collapse
|
90
|
Li X, Treesukosol Y, Moghadam A, Smith M, Ofeldt E, Yang D, Li T, Tamashiro K, Choi P, Moran TH, Smith WW. Behavioral characterization of the hyperphagia synphilin-1 overexpressing mice. PLoS One 2014; 9:e91449. [PMID: 24829096 PMCID: PMC4020742 DOI: 10.1371/journal.pone.0091449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/12/2014] [Indexed: 01/06/2023] Open
Abstract
Synphilin-1 is a cytoplasmic protein that has been shown to be involved in the control of energy balance. Previously, we reported on the generation of a human synphilin-1 transgenic mouse model (SP1), in which overexpression of human synphilin-1 resulted in hyperphagia and obesity. Here, behavioral measures in SP1 mice were compared with those of their age-matched controls (NTg) at two time points: when there was not yet a group body weight difference ("pre-obese") and when SP1 mice were heavier ("obese"). At both time points, meal pattern analyses revealed that SP1 mice displayed higher daily chow intake than non-transgenic control mice. Furthermore, there was an increase in meal size in SP1 mice compared with NTg control mice at the obese stage. In contrast, there was no meal number change between SP1 and NTg control mice. In a brief-access taste procedure, both "pre-obese" and "obese" SP1 mice displayed concentration-dependent licking across a sucrose concentration range similar to their NTg controls. However, at the pre-obese stage, SP1 mice initiated significantly more trials to sucrose across the testing sessions and licked more vigorously at the highest concentration presented, than the NTg counterparts. These group differences in responsiveness to sucrose were no longer apparent in obese SP1 mice. These results suggest that at the pre-obese stage, the increased trials to sucrose in the SP1 mice reflects increased appetitive behavior to sucrose that may be indicative of the behavioral changes that may contribute to hyperphagia and development of obesity in SP1 mice. These studies provide new insight into synphilin-1 contributions to energy homeostasis.
Collapse
Affiliation(s)
- Xueping Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Yada Treesukosol
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alexander Moghadam
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Megan Smith
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Erica Ofeldt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dejun Yang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Kellie Tamashiro
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Pique Choi
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Timothy H. Moran
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Wanli W. Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| |
Collapse
|
91
|
Scarlata S, Golebiewska U. Linking alpha-synuclein properties with oxidation: a hypothesis on a mechanism underling cellular aggregation. J Bioenerg Biomembr 2014; 46:93-8. [PMID: 24474217 PMCID: PMC4000690 DOI: 10.1007/s10863-014-9540-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
α-Synuclein is a small, natively unstructured protein with propensity to aggregate. α-Synuclein fibrils are major components of Lewy bodies that are hallmarks of many neurodegenerative diseases. The solution properties and aggregation behavior of α-synuclein has been well characterized, but despite numerous studies that address the role of α-synuclein in cells, a clear physiological function of this protein remains a mystery. Over a hundred review articles of α-synuclein have been written in the last decade, making it difficult to list all of the important studies that have added to our insight of α-synuclein physiology. Instead, we briefly review the status of α-synuclein research and propose a model based on the idea that α-synuclein may not have an intrinsic activity in cells but rather, it modifies the function of a group of protein partners that in turn affect cell processes. We propose that it is the loss of its cellular partners under oxidative conditions that promotes α-synuclein aggregation accelerating neuronal death.
Collapse
Affiliation(s)
- Suzanne Scarlata
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY, 11794-8661, USA,
| | | |
Collapse
|
92
|
Qi J, Kim H, Scortegagna M, Ronai ZA. Regulators and effectors of Siah ubiquitin ligases. Cell Biochem Biophys 2014; 67:15-24. [PMID: 23700162 DOI: 10.1007/s12013-013-9636-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Siah ubiquitin ligases are members of the RING finger E3 ligases. The Siah E3s are conserved from fly to mammals. Primarily implicated in cellular stress responses, Siah ligases play a key role in hypoxia, through the regulation of HIF-1α transcription stability and activity. Concomitantly, physiological conditions associated with varying oxygen tension often highlight the importance of Siah, as seen in cancer and neurodegenerative disorders. Notably, recent studies also point to the role of these ligases in fundamental processes including DNA damage response, cellular organization and polarity. This review summarizes the current understanding of upstream regulators and downstream effectors of Siah.
Collapse
Affiliation(s)
- Jianfei Qi
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
93
|
Yang JE, Hong JW, Kim J, Paik SR. Amyloid Polymorphism of α-Synuclein Induced by Active Firefly Luciferase. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.2.425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
94
|
Proteasome failure promotes positioning of lysosomes around the aggresome via local block of microtubule-dependent transport. Mol Cell Biol 2014; 34:1336-48. [PMID: 24469403 DOI: 10.1128/mcb.00103-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ubiquitinated proteins aggregate upon proteasome failure, and the aggregates are transported to the aggresome. In aggresomes, protein aggregates are actively degraded by the autophagy-lysosome pathway, but why targeting the aggresome promotes degradation of aggregated species is currently unknown. Here we report that the important factor in this process is clustering of lysosomes around the aggresome via a novel mechanism. Proteasome inhibition causes formation of a zone around the centrosome where microtubular transport of lysosomes is suppressed, resulting in their entrapment and accumulation. Microtubule-dependent transport of other organelles, including autophagosomes, mitochondria, and endosomes, is also blocked in this entrapment zone (E-zone), while movement of organelles at the cell periphery remains unaffected. Following the whole-genome small interfering RNA (siRNA) screen for proteins involved in aggresome formation, we defined the pathway that regulates formation of the E-zone, including the Stk11 protein kinase, the Usp9x deubiquitinating enzyme, and their substrate kinase MARK4. Therefore, upon proteasome failure, targeting of aggregated proteins of the aggresome is coordinated with lysosome positioning around this body to facilitate degradation of the abnormal species.
Collapse
|
95
|
Biophysical groundwork as a hinge to unravel the biology of α-synuclein aggregation and toxicity. Q Rev Biophys 2014; 47:1-48. [PMID: 24443929 DOI: 10.1017/s0033583513000097] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Alpha-synuclein (aS) and its aggregation properties are central in the development and spread of Parkinson's disease. Point mutations and multiplications of the SNCA gene encoding aS cause autosomal dominant forms of the disorder. Moreover, protein inclusions found in the surviving neurons of parkinsonian brains consist mainly of a fibrillar form of aS. Aggregates of aS, which form a transient, complex and heterogeneous ensemble, participate in a wide variety of toxic mechanisms that may be amplified by aS spreading among neighbouring neurons. Recently, significant effort has been directed into the study of the aS aggregation process and the impact of aS aggregates on neuron survival. In this review, we present state-of-the-art biophysical studies on the aS aggregation process in vitro and in cellular models. We comprehensively review the new insights generated by the recent biophysical investigations, which could provide a solid basis from which to design future biomedical studies. The diverse cellular models of aS toxicity and their potential use in the biophysical investigation are also discussed.
Collapse
|
96
|
Roy B, Jackson GR. Interactions between Tau and α-synuclein augment neurotoxicity in a Drosophila model of Parkinson's disease. Hum Mol Genet 2014; 23:3008-23. [PMID: 24430504 DOI: 10.1093/hmg/ddu011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Clinical and pathological studies have suggested considerable overlap between tauopathies and synucleinopathies. Several genome-wide association studies have identified alpha-Synuclein (SNCA) and Tau (MAPT) polymorphisms as common risk factors for sporadic Parkinson's disease (PD). However, the mechanisms by which subtle variations in the expression of wild-type SNCA and MAPT influence risk for PD and the underlying cellular events that effect neurotoxicity remain unclear. To examine causes of neurotoxicity associated with the α-Syn/Tau interaction, we used the fruit fly as a model. We utilized misexpression paradigms in three different tissues to probe the α-Syn/Tau interaction: the retina, dopaminergic neurons and the larval neuromuscular junction. Misexpression of Tau and α-Syn enhanced a rough eye phenotype and loss of dopaminergic neurons in fly tauopathy and synucleinopathy models, respectively. Our findings suggest that interactions between α-Syn and Tau at the cellular level cause disruption of cytoskeletal organization, axonal transport defects and aberrant synaptic organization that contribute to neuronal dysfunction and death associated with sporadic PD. α-Syn did not alter levels of Tau phosphorylated at the AT8 epitope. However, α-Syn and Tau colocalized in ubiquitin-positive aggregates in eye imaginal discs. The presence of Tau also led to an increase in urea soluble α-Syn. Our findings have important implications in understanding the cellular and molecular mechanisms underlying α-Syn/Tau-mediated synaptic dysfunction, which likely arise in the early asymptomatic phase of sporadic PD.
Collapse
Affiliation(s)
- Bidisha Roy
- Mitchell Center for Neurodegenerative Diseases
| | | |
Collapse
|
97
|
p53 in neurodegenerative diseases and brain cancers. Pharmacol Ther 2013; 142:99-113. [PMID: 24287312 DOI: 10.1016/j.pharmthera.2013.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022]
Abstract
More than thirty years elapsed since a protein, not yet called p53 at the time, was detected to bind SV40 during viral infection. Thousands of papers later, p53 evolved as the main tumor suppressor involved in growth arrest and apoptosis. A lot has been done but the protein has not yet revealed all its secrets. Particularly important is the observation that in totally distinct pathologies where apoptosis is either exacerbated or impaired, p53 appears to play a central role. This is exemplified for Alzheimer's and Parkinson's diseases that represent the two main causes of age-related neurodegenerative affections, where cell death enhancement appears as one of the main etiological paradigms. Conversely, in cancers, about half of the cases are linked to mutations in p53 leading to the impairment of p53-dependent apoptosis. The involvement of p53 in these pathologies has driven a huge amount of studies aimed at designing chemical tools or biological approaches to rescue p53 defects or over-activity. Here, we describe the data linking p53 to neurodegenerative diseases and brain cancers, and we document the various strategies to interfere with p53 dysfunctions in these disorders.
Collapse
|
98
|
Abstract
Human genetics has indicated a causal role for the protein α-synuclein in the pathogenesis of familial Parkinson's disease (PD), and the aggregation of synuclein in essentially all patients with PD suggests a central role for this protein in the sporadic disorder. Indeed, the accumulation of misfolded α-synuclein now defines multiple forms of neural degeneration. Like many of the proteins that accumulate in other neurodegenerative disorders, however, the normal function of synuclein remains poorly understood. In this article, we review the role of synuclein at the nerve terminal and in membrane remodeling. We also consider the prion-like propagation of misfolded synuclein as a mechanism for the spread of degeneration through the neuraxis.
Collapse
|
99
|
Casadei N, Pöhler AM, Tomás-Zapico C, Torres-Peraza J, Schwedhelm I, Witz A, Zamolo I, De Heer R, Spruijt B, Noldus LPJJ, Klucken J, Lucas JJ, Kahle PJ, Krüger R, Riess O, Nuber S. Overexpression of synphilin-1 promotes clearance of soluble and misfolded alpha-synuclein without restoring the motor phenotype in aged A30P transgenic mice. Hum Mol Genet 2013; 23:767-81. [PMID: 24064336 DOI: 10.1093/hmg/ddt467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lewy bodies and neurites are the pathological hallmark of Parkinson's disease. These structures are composed of fibrillized and ubiquitinated alpha-synuclein suggesting that impaired protein clearance is an important event in aggregate formation. The A30P mutation is known for its fast oligomerization, but slow fibrillization rate. Despite its toxicity to neurons, mechanisms involved in either clearance or conversion of A30P alpha-synuclein from its soluble state into insoluble fibrils and their effects in vivo are poorly understood. Synphilin-1 is present in Lewy bodies, interacting with alpha-synuclein in vivo and in vitro and promotes its sequestration into aggresomes, which are thought to act as cytoprotective agents facilitating protein degradation. We therefore crossed animals overexpressing A30P alpha-synuclein with synphilin-1 transgenic mice to analyze its impact on aggregation, protein clearance and phenotype progression. We observed that co-expression of synphilin-1 mildly delayed the motor phenotype caused by A30P alpha-synuclein. Additionally, the presence of N- and C-terminal truncated alpha-synuclein species and fibrils were strongly reduced in double-transgenic mice when compared with single-transgenic A30P mice. Insolubility of mutant A30P and formation of aggresomes was still detectable in aged double-transgenic mice, paralleled by an increase of ubiquitinated proteins and high autophagic activity. Hence, this study supports the notion that co-expression of synphilin-1 promotes formation of autophagic-susceptible aggresomes and consecutively the degradation of human A30P alpha-synuclein. Notably, although synphilin-1 overexpression significantly reduced formation of fibrils and astrogliosis in aged animals, a similar phenotype is present in single- and double-transgenic mice suggesting additional neurotoxic processes in disease progression.
Collapse
Affiliation(s)
- Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Alzheimer disease (AD) and Parkinson disease (PD) are the two most common age-related neurodegenerative diseases characterized by prominent neurodegeneration in selective neural systems. Although a small fraction of AD and PD cases exhibit evidence of heritability, among which many genes have been identified, the majority are sporadic without known causes. Molecular mechanisms underlying neurodegeneration and pathogenesis of these diseases remain elusive. Convincing evidence demonstrates oxidative stress as a prominent feature in AD and PD and links oxidative stress to the development of neuronal death and neural dysfunction, which suggests a key pathogenic role for oxidative stress in both AD and PD. Notably, mitochondrial dysfunction is also a prominent feature in these diseases, which is likely to be of critical importance in the genesis and amplification of reactive oxygen species and the pathophysiology of these diseases. In this review, we focus on changes in mitochondrial DNA and mitochondrial dynamics, two aspects critical to the maintenance of mitochondrial homeostasis and function, in relationship with oxidative stress in the pathogenesis of AD and PD.
Collapse
Affiliation(s)
| | - Xinglong Wang
- Department of Pathology; Department of Neurology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Xiongwei Zhu
- Department of Pathology; Department of Neurology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|