51
|
Bumgarner JR, Walker WH, Nelson RJ. Circadian rhythms and pain. Neurosci Biobehav Rev 2021; 129:296-306. [PMID: 34375675 PMCID: PMC8429267 DOI: 10.1016/j.neubiorev.2021.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
The goal of this review is to provide a perspective on the nature and importance of the relationship between the circadian and pain systems. We provide: 1) An overview of the circadian and pain systems, 2) a review of direct and correlative evidence that demonstrates diurnal and circadian rhythms within the pain system; 3) a perspective highlighting the need to consider the role of a proposed feedback loop of circadian rhythm disruption and maladaptive pain; 4) a perspective on the nature of the relationship between circadian rhythms and pain. In summary, we propose that there is no single locus responsible for producing the circadian rhythms of the pain system. Instead, circadian rhythms of pain are a complex result of the distributed rhythms present throughout the pain system, especially those of the descending pain modulatory system, and the rhythms of the systems with which it interacts, including the opioid, endocrine, and immune systems.
Collapse
Affiliation(s)
- Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA.
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
52
|
Murillo-Rodríguez E, Millán-Aldaco D, Arankowsky-Sandoval G, Yamamoto T, Pertwee RG, Parker L, Mechoulam R. Assessing the treatment of cannabidiolic acid methyl ester: a stable synthetic analogue of cannabidiolic acid on c-Fos and NeuN expression in the hypothalamus of rats. J Cannabis Res 2021; 3:31. [PMID: 34253253 PMCID: PMC8276432 DOI: 10.1186/s42238-021-00081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 06/14/2021] [Indexed: 04/03/2024] Open
Abstract
BACKGROUND Cannabidiol (CBD), the non-psychotropic compound from Cannabis sativa, shows positive results on controlling several health disturbances; however, comparable data regarding additional chemical from C. sativa, such as cannabidiolic acid (CBDA), is scarce due to its instability. To address this limitation, a stable CBDA analogue, CBDA methyl ester (HU-580), was synthetized and showed CBDA-like effects. Recently, we described that HU-580 increased wakefulness and wake-related neurochemicals. OBJECTIVE To extend the comprehension of HU-580´s properties on waking, the c-Fos and NeuN expression in a wake-linked brain area, the hypothalamus was evaluated. METHODS c-Fos and NeuN expression in hypothalamic sections were analyzed after the injections of HU-580 (0.1 or 100 μg/kg, i.p.). RESULTS Systemic administrations of HU-580 increased c-Fos and neuronal nuclei (NeuN) expression in hypothalamic nuclei, including the dorsomedial hypothalamic nucleus dorsal part, dorsomedial hypothalamic nucleus compact part, and dorsomedial hypothalamic nucleus ventral part. CONCLUSION HU-580 increased c-Fos and NeuN immunoreactivity in hypothalamus nuclei suggesting that this drug might modulate the sleep-wake cycle by engaging the hypothalamus.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab Mérida, Km. 15.5 Carretera Mérida-Progreso, Int. Km. 2 Carretera a Chablekal, Yucatán, C.P. 97,308, Mérida, México.
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, México.
| | - Diana Millán-Aldaco
- Depto. de Neurociencia Cognitiva. División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gloria Arankowsky-Sandoval
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, México
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Linda Parker
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, Guelph, Ontario, Canada
| | - Raphael Mechoulam
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem, Israel
| |
Collapse
|
53
|
Circadian rhythm influences naloxone induced morphine withdrawal and neuronal activity of lateral paragigantocellularis nucleus. Behav Brain Res 2021; 414:113450. [PMID: 34265318 DOI: 10.1016/j.bbr.2021.113450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/10/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
Investigations have shown that the circadian rhythm can affect the mechanisms associated with drug dependence. In this regard, we sought to assess the negative consequence of morphine withdrawal syndrome on conditioned place aversion (CPA) and lateral paragigantocellularis (LPGi) neuronal activity in morphine-dependent rats during light (8:00-12:00) and dark (20:00-24:00) cycles. Male Wistar rats (250-300 g) were received 10 mg/kg morphine or its vehicle (Saline, 2 mL/kg/12 h, s.c.) in 13 consecutive days for behavioral assessment tests. Then, naloxone-induced conditioned place aversion and physical signs of withdrawal syndrome were evaluated during light and dark cycles. In contrast to the behavioral part, we performed in vivo extracellular single-unit recording for investigating the neural response of LPGi to naloxone in morphine-dependent rats on day 10 of morphine/saline exposure. Results showed that naloxone induced conditioned place aversion in both light and dark cycles, but the CPA score during the light cycle was larger. Moreover, the intensity of physical signs of morphine withdrawal syndrome was more severe during the light cycle (rest phase) compare to the dark one. In electrophysiological experiments, results indicated that naloxone evoked both excitatory and inhibitory responses in LPGi neurons and the incremental effect of naloxone on LPGi activity was stronger in the light cycle. Also, the neurons with the excitatory response exhibited higher baseline activity in the dark cycle, but the neurons with the inhibitory response showed higher baseline activity in the light cycle. Interestingly, the baseline firing rate of neurons recorded in the light cycle was significantly different in response (excitatory/inhibitory) -dependent manner. We concluded that naloxone-induced changes in LPGi cellular activity and behaviors of morphine-dependent rats can be affected by circadian rhythm and the internal clock.
Collapse
|
54
|
|
55
|
Khurram OU, Negro F, Heckman CJ, Thompson CK. Estimates of persistent inward currents in tibialis anterior motor units during standing ramped contraction tasks in humans. J Neurophysiol 2021; 126:264-274. [PMID: 34133235 DOI: 10.1152/jn.00144.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Persistent inward currents (PICs) play an essential role in setting motor neuron gain and shaping motor unit firing patterns. Estimates of PICs in humans can be made using the paired motor unit analysis technique, which quantifies the difference in discharge rate of a lower threshold motor unit at the recruitment onset and offset of a higher threshold motor unit (ΔF). Because PICs are highly dependent on the level of neuromodulatory drive, ΔF represents an estimate of level of neuromodulation at the level of the spinal cord. Most of the estimates of ΔF are performed under constrained, isometric, seated conditions. In the present study, we used high-density surface EMG arrays to discriminate motor unit firing patterns during isometric seated conditions with torque or EMG visual feedback and during unconstrained standing anterior-to-posterior movements with root mean square EMG visual feedback. We were able to apply the paired motor unit analysis technique to the decomposed motor units in each of the three conditions. We hypothesized that ΔF would be higher during unconstrained standing anterior-to-posterior movements compared with the seated conditions, reflecting an increase in the synaptic input to motoneurons drive while standing. In agreement with previous work, we found that there was no evidence of a difference in ΔF between the seated and standing postures, although slight differences in the initial and peak discharge rates were observed. Taken together, our results suggest that both the standing and seated postures are likely not sufficiently different, both being "upright" postures, to result in large changes in neuromodulatory drive.NEW & NOTEWORTHY In the present study, we show that the discharge rate of a lower threshold motor unit at the recruitment onset and offset of a higher threshold motor unit (ΔF) is similar between standing and seated conditions in human tibialis anterior motor units, suggesting that at least for these two upright postures neuromodulatory drive is similar. We also highlight a proposed technological development in using high-density EMG arrays for real-time muscle activity feedback to accomplish standing ramped contraction tasks and demonstrate the validity of the paired motor unit analysis technique during these conditions.
Collapse
Affiliation(s)
- Obaid U Khurram
- Department of Physiology, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - C J Heckman
- Department of Physiology, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Shirley Ryan AbilityLab, Chicago, Illinois
| | - Christopher K Thompson
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
56
|
Sun W, Yang Y, Chen X, Cheng Y, Li X, An L. Light Promotes Neural Correlates of Fear Memory via Enhancing Brain-Derived Neurotrophic Factor (BDNF) Expression in the Prelimbic Cortex. ACS Chem Neurosci 2021; 12:1802-1810. [PMID: 33961393 DOI: 10.1021/acschemneuro.1c00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to light has been shown to enhance vigilance and improve working memory, possibly due to changes in prefrontal function. Ample evidence supports the critical role of prefrontal cortex (PFC) in fear memory performance. However, the effects of light on memory processing and its potential mechanisms remain unclear. Here, through rats exposure conditioned to light at different memory phases, we sought evidence for the influences by employing behavioral tests, pharmacological infusions, immunoblotting, and electrophysiological recording. Exposure to light immediately following conditioning of 30 min or longer could effectively improve consolidation of fear memory without altering short-term memory or upgrading the original fear. The absence of significant freezing during baseline and intertrial interval periods ruled out the possibility of a general induction of freezing by light. Meanwhile, rats exposed to light in homecages or conditioning chambers exhibited a similar memory phenotype, indicating that light specifically enhanced the fear stimulus rather than the contextual environment. Furthermore, light exposure elevated the training-induced brain-derived neurotrophic factor (BDNF) expression in the prelimbic, but not infralimbic, subregion of the PFC. Moreover, the BDNF-TrkB pathway, but not the BDNF-p75NTR pathway, was involved in light-mediated fear memory. The enhancement in BDNF activity effectively facilitated firing correlates of prelimbic pyramidal neurons but not fast-spiking interneurons. Blocking the training-induced BDNF by its antibody abolished the effects of light on neural function and fear memory. Therefore, our findings indicate that light enhances training-induced BDNF expression that promotes the neural correlate of memory function.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Xiao Chen
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Yan Cheng
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Xiaolian Li
- Department of Neurology, Jinan Rehabilitation Hospital, Jinan 250013, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Physiology, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| |
Collapse
|
57
|
Resilience in the suprachiasmatic nucleus: Implications for aging and Alzheimer's disease. Exp Gerontol 2021; 147:111258. [PMID: 33516909 DOI: 10.1016/j.exger.2021.111258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/27/2020] [Accepted: 01/24/2021] [Indexed: 12/13/2022]
Abstract
Many believe that the circadian impairments associated with aging and Alzheimer's disease are, simply enough, a byproduct of tissue degeneration within the central pacemaker, the suprachiasmatic nucleus (SCN). However, the findings that have accumulated to date examining the SCNs obtained postmortem from the brains of older individuals, or those diagnosed with Alzheimer's disease upon autopsy, suggest only limited atrophy. We review this literature as well as a complementary one concerning fetal-donor SCN transplant, which established that many circadian timekeeping functions can be maintained with rudimentary (structurally limited) representations of the SCN. Together, these corpora of data suggest that the SCN is a resilient brain region that cannot be directly (or solely) implicated in the behavioral manifestations of circadian disorganization often witnessed during aging as well as early and late progression of Alzheimer's disease. We complete our review by suggesting future directions of research that may bridge this conceptual divide and briefly discuss the implications of it for improving health outcomes in later adulthood.
Collapse
|
58
|
Kurczewska E, Ferensztajn-Rochowiak E, Rybakowski F, Michalak M, Rybakowski J. Treatment-resistant depression: Neurobiological correlates and the effect of sleep deprivation with sleep phase advance for the augmentation of pharmacotherapy. World J Biol Psychiatry 2021; 22:58-69. [PMID: 32295463 DOI: 10.1080/15622975.2020.1755449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To assess the neurobiology of treatment-resistant depression (TRD), and factors connected with improvement after total sleep deprivation (TSD) with sleep phase advance (SPA), for the augmentation of pharmacotherapy. METHODS The study comprised 43 patients with TRD, (15 male, 28 female), aged 48 ± 13 years, with the illness duration 12 ± 9 years, and the depressive episode 8 ± 7 months. TRD was defined as a lack of significant improvement despite at least two antidepressant treatments and the augmentation with mood-stabilisers. Clinical improvement (response) was a reduction of ≥50% of points in the Hamilton Depression Rating Scale (HDRS), and the remission criterion was ≤7 points in HDRS, lasting until the 14th day after TSD + SPA. RESULTS TRD severity was associated with greater activity of the hypothalamic-pituitary-adrenal axis, the pro-inflammatory status of the immune system and lower reactivity of the hypothalamic-pituitary-thyroid axis. The response was achieved by 18 of 42 subjects, and connected with the later onset and shorter duration of the disease. In responders, there was a decrease in cortisol and interferon-gamma. In all subjects, a decrease in thyroid hormones was observed. CONCLUSIONS TRD can improve after augmentation of pharmacotherapy by TSD + SPA and some biological changes may be compatible with a decrease in allostatic load.
Collapse
Affiliation(s)
- Ewa Kurczewska
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Filip Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Janusz Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland.,Department of Psychiatric Nursing, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
59
|
The Attenuated Pseudorabies Virus Vaccine Strain Bartha K61: A Brief Review on the Knowledge Gathered During 60 Years of Research. Pathogens 2020; 9:pathogens9110897. [PMID: 33121171 PMCID: PMC7693725 DOI: 10.3390/pathogens9110897] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Pseudorabies virus (PRV) is a member of the alphaherpesvirus subfamily of the herpesviruses and is the causative agent of Aujeszky’s disease in pigs, causing respiratory, neurological, and reproductive symptoms. Given the heavy economic losses associated with Aujeszky’s disease epidemics, great efforts were made to develop efficacious vaccines. One of the best modified live vaccines to this day is the attenuated Bartha K61 strain. The use of this vaccine in extensive vaccination programs worldwide has assisted considerably in the eradication of PRV from the domesticated pig population in numerous countries. The Bartha K61 strain was described in 1961 by Adorján Bartha in Budapest and was obtained by serial passaging in different cell cultures. Ever since, it has been intensively studied by several research groups, for example, to explore its efficacy as a vaccine strain, to molecularly and mechanistically explain its attenuation, and to use it as a retrograde neuronal tracer and as a vector vaccine. Given that the Bartha K61 vaccine strain celebrates its 60th birthday in 2021 with no sign of retirement, this review provides a short summary of the knowledge on its origin, characteristics, and use as a molecular tool and as a vaccine.
Collapse
|
60
|
Imai R, Makino H, Katoh T, Kimura T, Kurita T, Hokamura K, Umemura K, Nakajima Y. Desflurane anesthesia shifts the circadian rhythm phase depending on the time of day of anesthesia. Sci Rep 2020; 10:18273. [PMID: 33106509 PMCID: PMC7588451 DOI: 10.1038/s41598-020-75434-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
Desflurane is one of the most frequently used inhalational anesthetics in clinical practice. A circadian rhythm phase-shift after general anesthesia with sevoflurane or isoflurane has been reported in mice, but few studies have reported this effect with desflurane. In the present study, we examined the rest/activity rhythm of mice by counting the number of running wheel rotations, and we found that desflurane anesthesia caused a phase shift in the circadian rhythm that was dependent on the time of day of anesthesia. We also found that desflurane anesthesia altered the relative mRNA expression of four major clock genes (Per2, Bmal, Clock, and Cry1) in the suprachiasmatic nucleus (SCN). These results are important for elucidating the effects of desflurane on the SCN, which is the master clock for the mammalian circadian rhythm. Further studies on the relationship between anesthesia and circadian rhythm may lead to the prevention and treatment of postoperative complications related to circadian rhythms.
Collapse
Affiliation(s)
- Ryo Imai
- Department of Anesthesiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Hiroshi Makino
- Department of Anesthesiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Takasumi Katoh
- Department of Anesthesiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tetsuro Kimura
- Department of Anesthesiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tadayoshi Kurita
- Department of Anesthesiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuya Hokamura
- Department of Medical Education, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuo Umemura
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshiki Nakajima
- Department of Anesthesiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
61
|
Bostanciklioğlu M. Unexpected awakenings in severe dementia from case reports to laboratory. Alzheimers Dement 2020; 17:125-136. [PMID: 33064369 DOI: 10.1002/alz.12162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Case report notions of unexpected memory retrieval in patients with severe dementia near to death are starting to alter the central "irreversible" paradigm of dementia and locate dementia as a problem of memory retrieval, not consolidation. We suggest that the most likely central tenet of this paradoxical memory retrieval is the fluctuation of neuromodulators projecting from the brain stem to the medial prefrontal cortex and the hippocampus. The neuromodulation-centric explanation of this phenomenon aims to open the "irreversible" paradigm of dementia up for discussion and suggest a plausible treatment strategy by questioning how the devastating process of death fluctuates memory performance in severe dementia. BACKGROUND Supporting demented patients, who are mostly unresponsive, without making demands or asking a question and regarding them as valuable human beings unexpectedly improve their memory performance around the time of death. NEW LUCIDITY HYPOTHESIS Around the time of death, neurological signs (hyper-arousal and -attention) of demented people point out that neurotransmitter discharges are dramatically changed. Relatively resistant neuromodulator circuits to neurodegeneration can maintain optimal levels of arousal and attention for memory processing. In this way, unexpected episodes of lucidity can be triggered. Also, corticotropin-releasing peptides might increase mental clarity by increasing the excitability of the neuromodulator circuits. The science of memory retrieval is more complicated and nuanced than retrieval observations in case reports, but the rapid development of new techniques holds promise for future understanding of lucidity in severe dementia. MAJOR CHALLENGE FOR THE MODEL There is no an animal or human model to test this hypothesis; however, the similarities between neurological signs (instantaneous cognitive fluctuations) of delirium and paradoxical lucidity could provide a unique window to understand neural events of terminal lucidity on a modified animal model of delirium. Likewise, similarities between unexpected consciousness signs of terminal lucidity and lucid dreaming suggest that lucid dreaming episodes might be considered a human model for terminal lucidity research.
Collapse
|
62
|
Wang D, Huang Y, Wang X, Chen X, Li J, Zhang S, Wu J, Liu D, Ma D, Mei W. Circadian differences in emergence from volatile anaesthesia in mice: involvement of the locus coeruleus noradrenergic system. Br J Anaesth 2020; 125:548-559. [PMID: 32807382 DOI: 10.1016/j.bja.2020.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Circadian differences in the induction, maintenance, or emergence from volatile anaesthesia have not been well studied. METHODS The minimal alveolar concentration (MAC) for preventing movement in response to a painful stimulus, MAC for loss of righting reflex (MACLORR), and MAC for recovery of righting reflex (MACRORR) in C57BL/6J male mice with isoflurane or sevoflurane exposure were measured during either the light or dark phase. Time to onset of loss of righting reflex (TimeLORR) and recovery of righting reflex (TimeRORR) upon exposure to 1 MAC of isoflurane or sevoflurane were determined. EEG was also monitored in the light and dark phase under isoflurane or sevoflurane exposure. The noradrenergic toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) was used to deplete noradrenergic neurones in the locus coeruleus to explore the impact of norepinephrine on these measurements. RESULTS MACLORR, TimeLORR, and MAC did not show light- or dark-phase-dependent variations for either isoflurane or sevoflurane exposure. However, MACRORR was higher and TimeRORR was shorter in the dark phase than in the light phase for both isoflurane and sevoflurane exposure. The EEG delta wave power was higher but theta wave power was lower in the light phase than that in the dark phase during the rest state and emergence of anaesthesia. These light- and dark-phase-dependent changes in emergence were abolished in DSP-4-treated mice. CONCLUSION Our data show that circadian differences exist during emergence but not during induction or maintenance of sevoflurane or isoflurane anaesthesia. The locus coeruleus noradrenergic system may contribute to these differences.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujie Huang
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinxin Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinfeng Chen
- Chinese Institute for Brain Research, Beijing (CIBR), No. 26 Science Park Road, ZGC Life Science Park, Changping District, Beijing, China
| | - Jiayan Li
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuang Zhang
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiayi Wu
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daiqiang Liu
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| | - Wei Mei
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
63
|
Daou M, Telias I, Younes M, Brochard L, Wilcox ME. Abnormal Sleep, Circadian Rhythm Disruption, and Delirium in the ICU: Are They Related? Front Neurol 2020; 11:549908. [PMID: 33071941 PMCID: PMC7530631 DOI: 10.3389/fneur.2020.549908] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022] Open
Abstract
Delirium is a syndrome characterized by acute brain failure resulting in neurocognitive disturbances affecting attention, awareness, and cognition. It is highly prevalent among critically ill patients and is associated with increased morbidity and mortality. A core domain of delirium is represented by behavioral disturbances in sleep-wake cycle probably related to circadian rhythm disruption. The relationship between sleep, circadian rhythm and intensive care unit (ICU)-acquired delirium is complex and likely bidirectional. In this review, we explore the proposed pathophysiological mechanisms of sleep disruption and circadian dysrhythmia as possible contributing factors in transitioning to delirium in the ICU and highlight some of the most relevant caveats for understanding the relationship between these complex phenomena. Specifically, we will (1) review the physiological consequences of poor sleep quality and efficiency; (2) explore how the neural substrate underlying the circadian clock functions may be disrupted in delirium; (3) discuss the role of sedative drugs as contributors to delirium and chrono-disruption; and, (4) describe the association between abnormal sleep-pathological wakefulness, circadian dysrhythmia, delirium and critical illness. Opportunities to improve sleep and readjust circadian rhythmicity to realign the circadian clock may exist as therapeutic targets in both the prevention and treatment of delirium in the ICU. Further research is required to better define these conditions and understand the underlying physiologic relationship to develop effective prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Marietou Daou
- Interdepartment Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Respirology), University Health Network, Toronto, ON, Canada
| | - Irene Telias
- Interdepartment Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Respirology), University Health Network, Toronto, ON, Canada.,Department of Medicine (Critical Care Medicine), St. Michael's Hospital, Toronto, ON, Canada.,Keenan Research Centre, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | | | - Laurent Brochard
- Interdepartment Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Critical Care Medicine), St. Michael's Hospital, Toronto, ON, Canada.,Keenan Research Centre, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - M Elizabeth Wilcox
- Interdepartment Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Respirology), University Health Network, Toronto, ON, Canada
| |
Collapse
|
64
|
|
65
|
Chen Y, Chen T, Cai X. Light-sensitive circuits related to emotional processing underlie the antidepressant neural targets of light therapy. Behav Brain Res 2020; 396:112862. [PMID: 32827569 DOI: 10.1016/j.bbr.2020.112862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/13/2020] [Accepted: 08/11/2020] [Indexed: 02/05/2023]
Abstract
Since Aaron Beck proposed his cognitive model of depression, biased attention, biased processing, and biased rumination (different phases of biased cognition) have been considered as the key elements consistently linked with depression. Increasing evidence suggests that the functional failures in the "emotional processing system (EPS)" underlie the neurological foundation of the biased cognition of depression. Light therapy, a non-intrusive approach, exerts powerful effects on emotion and cognition and affects the activity, functional connectivity, and plasticity of multiple brain structures. Although numerous studies have reported its effectiveness in treating depression, the findings have not been integrated with Beck's cognitive model and EPS, and the neurobiological mechanisms of antidepressant light therapy remain largely unknown. In this review, integrated with the classical theories of Beck's cognitive model of depression and EPS, we identified the key neural circuits and abnormalities involved in the cognitive bias of depression and, accordingly, identified and depicted several light-sensitive circuits (LSCs, neural circuits in the EPS that are responsive to light stimulation) that may underlie the antidepressant neural targets of light therapy, as listed below: In summary, the LSCs above narrow down the research scope of identifying the neural targets of antidepressant light therapy and help elucidate the neuropsychological mechanism of antidepressant light therapy.
Collapse
Affiliation(s)
- Yaodong Chen
- School of Architecture and Design, Southwest JiaoTong University, Chengdu, China.
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xueli Cai
- School of Architecture and Design, Southwest JiaoTong University, Chengdu, China
| |
Collapse
|
66
|
Liu D, Li J, Wu J, Dai J, Chen X, Huang Y, Zhang S, Tian B, Mei W. Monochromatic Blue Light Activates Suprachiasmatic Nucleus Neuronal Activity and Promotes Arousal in Mice Under Sevoflurane Anesthesia. Front Neural Circuits 2020; 14:55. [PMID: 32973462 PMCID: PMC7461971 DOI: 10.3389/fncir.2020.00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/27/2020] [Indexed: 01/17/2023] Open
Abstract
Background: Monochromatic blue light (MBL), with a wavelength between 400-490 nm, can regulate non-image-forming (NIF) functions of light in the central nervous system. The suprachiasmatic nucleus (SCN) in the brain is involved in the arousal-promoting response to blue light in mice. Animal and human studies showed that the responsiveness of the brain to visual stimuli is partly preserved under general anesthesia. Therefore, this study aimed to investigate whether MBL promotes arousal from sevoflurane anesthesia via activation of the SCN in mice. Methods: The induction and emergence time of sevoflurane anesthesia under MBL (460 nm and 800 lux) exposure was measured. Cortical electroencephalograms (EEGs) were recorded and the burst-suppression ratio (BSR) was calculated under MBL during sevoflurane anesthesia. The EEGs and local field potential (LFP) recordings with or without locally electrolytic ablated bilateral SCN were used to further explore the role of SCN in the arousal-promoting effect of MBL under sevoflurane anesthesia. Immunofluorescent staining of c-Fos was conducted to reveal the possible downstream mechanism of SCN activation. Results: Unlike the lack of effect on the induction time, MBL shortened the emergence time and the EEG recordings showed cortical arousal during the recovery period. MBL resulted in a significant decrease in BSR and a marked increase in EEG power at all frequency bands except for the spindle band during 2.5% sevoflurane anesthesia. MBL exposure under sevoflurane anesthesia enhances the neuronal activity of the SCN. These responses to MBL were abolished in SCN lesioned (SCNx) mice. MBL evoked a high level of c-Fos expression in the prefrontal cortex (PFC) and lateral hypothalamus (LH) compared to polychromatic white light (PWL) under sevoflurane anesthesia, while it exerted no effect on c-Fos expression in the ventrolateral preoptic area (VLPO) and locus coeruleus (LC) c-Fos expression. Conclusions: MBL promotes behavioral and electroencephalographic arousal from sevoflurane anesthesia via the activation of the SCN and its associated downstream wake-related nuclei. The clinical implications of this study warrant further study.
Collapse
Affiliation(s)
- Daiqiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Dai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xinfeng Chen
- Chinese Institute for Brain Research (CIBR), ZGC Life Science Park, Beijing, China
| | - Yujie Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Tian
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
67
|
Monjo F, Shemmell J. Probing the neuromodulatory gain control system in sports and exercise sciences. J Electromyogr Kinesiol 2020; 53:102442. [DOI: 10.1016/j.jelekin.2020.102442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023] Open
|
68
|
Serova LI, Hansson E, Sabban EL. Effect of intranasal administration of neuropeptide Y and single prolonged stress on food consumption and body weight in male rats. Neuropeptides 2020; 82:102060. [PMID: 32600666 DOI: 10.1016/j.npep.2020.102060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/30/2023]
Abstract
Emerging evidence indicates that intranasal delivery of neuropeptide Y (NPY) to the brain has therapeutic potential for management of stress-triggered neuropsychiatric disorders. Here we aimed to determine how intranasal administration of NPY, either before or immediately after, traumatic stress in single prolonged stress (SPS) rodent model of Post-traumatic stress disorder (PTSD) impacts food consumption and body weight. SPS stressors suppressed food consumption for at least two days in the vehicle-treated animals. When given prior to SPS stressors, intranasal NPY prevented the SPS-elicited reduction in food intake only for several hours afterwards. When given after the SPS stressors, under conditions shown to prevent behavioral and biochemical impairments, intranasal NPY had no effect on food intake. Although all groups showed circadian variation, the SPS-exposed rats ate less than unstressed animals during the dark (active) phase. Seven days after exposure to SPS stressors, there were no differences in food intake, although body weight was still lower than unstressed controls in all the experimental groups. Thus, traumatic stress has pronounced effect on food consumption during the rodent's active phase, and a prolonged effect on body weight. Single intranasal infusion of NPY, which was previously shown to prevent development of several PTSD associated behavioral and neuroendocrine impairments, did not elicit prolonged changes in stress triggered food consumption nor regulation of body weight.
Collapse
Affiliation(s)
- Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | - Evelyn Hansson
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA.
| |
Collapse
|
69
|
Morris LS, McCall JG, Charney DS, Murrough JW. The role of the locus coeruleus in the generation of pathological anxiety. Brain Neurosci Adv 2020; 4:2398212820930321. [PMID: 32954002 PMCID: PMC7479871 DOI: 10.1177/2398212820930321] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
This review aims to synthesise a large pre-clinical and clinical
literature related to a hypothesised role of the locus coeruleus
norepinephrine system in responses to acute and chronic threat, as
well as the emergence of pathological anxiety. The locus coeruleus has
widespread norepinephrine projections throughout the central nervous
system, which act to globally modulate arousal states and adaptive
behavior, crucially positioned to play a significant role in
modulating both ascending visceral and descending cortical
neurocognitive information. In response to threat or a stressor, the
locus coeruleus–norepinephrine system globally modulates arousal,
alerting and orienting functions and can have a powerful effect on the
regulation of multiple memory systems. Chronic stress leads to
amplification of locus coeruleus reactivity to subsequent stressors,
which is coupled with the emergence of pathological anxiety-like
behaviors in rodents. While direct in vivo evidence for locus
coeruleus dysfunction in humans with pathological anxiety remains
limited, recent advances in high-resolution 7-T magnetic resonance
imaging and computational modeling approaches are starting to provide
new insights into locus coeruleus characteristics.
Collapse
Affiliation(s)
- Laurel S Morris
- The Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordan G McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dennis S Charney
- Dean's Office, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James W Murrough
- The Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
70
|
Pulopulos M, Allaert J, Vanderhasselt MA, Sanchez-Lopez A, De Witte S, Baeken C, De Raedt R. Effects of HF-rTMS over the left and right DLPFC on proactive and reactive cognitive control. Soc Cogn Affect Neurosci 2020; 17:109-119. [PMID: 32613224 PMCID: PMC8824550 DOI: 10.1093/scan/nsaa082] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/24/2020] [Accepted: 06/15/2020] [Indexed: 01/02/2023] Open
Abstract
Previous research supports the distinction between proactive and reactive control. Although the dorsolateral prefrontal cortex (DLPFC) has been consistently related to these processes, lateralization of proactive and reactive control is still under debate. We manipulated brain activity to investigate the role of the left and right DLPFC in proactive and reactive cognitive control. Using a single-blind, sham-controlled crossover within-subjects design, 25 young healthy females performed the 'AX' Continuous Performance Task after receiving sham versus active High-Frequency repetitive Transcranial Magnetic Stimulation (HF-rTMS) to increase left and right DLPFC activity. RTs and pupillometry were used to assess patterns of proactive and reactive cognitive control and task-related resource allocation respectively. We observed that, compared to sham, HF-rTMS over the left DLPFC increased proactive control. After right DLPFC HF-rTMS, participants showed slower RTs on AX trials, suggesting more reactive control. However, this latter result was not supported by RTs on BX trials (i.e. the trial that specifically assess reactive control). Pupil measures showed a sustained increase in resource allocation after both active left and right HF-rTMS. Our results with RT data provide evidence on the role of the left DLPFC in proactive control and suggest that the right DLPFC is implicated in reactive control.
Collapse
Affiliation(s)
- Matias Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| | - Jens Allaert
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium.,Department of Head and Skin, Ghent University, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium.,Department of Head and Skin, Ghent University, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Belgium
| | - Alvaro Sanchez-Lopez
- Department of Personality, Evaluation and Psychological Treatment, Complutense University of Madrid, Spain
| | - Sara De Witte
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium.,Department of Head and Skin, Ghent University, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Belgium
| | - Chris Baeken
- Department of Head and Skin, Ghent University, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Belgium.,Department of Psychiatry, University Hospital Brussels (UZBrussel), Belgium
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| |
Collapse
|
71
|
Vertes RP, Linley SB. No cognitive processing in the unconscious,
anesthetic‐like
, state of sleep. J Comp Neurol 2020; 529:524-538. [DOI: 10.1002/cne.24963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Robert P. Vertes
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| | - Stephanie B. Linley
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| |
Collapse
|
72
|
Leach S, Suzuki K. Adrenergic Signaling in Circadian Control of Immunity. Front Immunol 2020; 11:1235. [PMID: 32714319 PMCID: PMC7344327 DOI: 10.3389/fimmu.2020.01235] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 01/07/2023] Open
Abstract
Circadian rhythms govern a multitude of physiologic processes, both on a cell-intrinsic level and systemically, through the coordinated function of multi-organ biosystems. One such system-the adrenergic system-relies on the catecholamine neurotransmitters, adrenaline and noradrenaline, to carry out a range of biological functions. Production of these catecholamines is under dual regulation by both neural components of the sympathetic nervous system and hormonal mechanisms involving the hypothalamus-pituitary-adrenal axis. Importantly, both neural and hormonal arms receive input from the body's central clock, giving rise to the observed rhythmic variations in catecholamine levels in blood and peripheral tissues. Oscillations in catecholamine signals have the potential to influence various cellular targets expressing adrenergic receptors, including cells of the immune system. This review will focus on ways in which the body's central master clock regulates the adrenergic system to generate circadian rhythms in adrenaline and noradrenaline, and will summarize the existing literature linking circadian control of the adrenergic system to immunologic outcomes. A better understanding of the complex, multi-system pathways involved in the control of adrenergic signals may provide immunologists with new insight into mechanisms of immune regulation and precipitate the discovery of new therapeutics.
Collapse
Affiliation(s)
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
73
|
Northeast RC, Vyazovskiy VV, Bechtold DA. Eat, sleep, repeat: the role of the circadian system in balancing sleep-wake control with metabolic need. CURRENT OPINION IN PHYSIOLOGY 2020; 15:183-191. [PMID: 32617440 PMCID: PMC7323618 DOI: 10.1016/j.cophys.2020.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Feeding and sleep are behaviours fundamental to survival, and as such are subject to powerful homeostatic control. Of course, these are mutually exclusive behaviours, and therefore require coordinated temporal organisation to ensure that both energy demands and sleep need are met. Under optimal conditions, foraging/feeding and sleep can be simply partitioned to appropriate phases of the circadian cycle so that they are in suitable alignment with the external environment. However, under conditions of negative energy balance, increased foraging activity must be balanced against sleep requirements and energy conservation. In mammals and many other species, neural circuits that regulate sleep and energy balance are intimately and reciprocally linked. Here, we examine this circuitry, discuss how homeostatic regulation and temporal patterning of sleep are modulated by altered food availability, and describe the role of circadian system in adaptation to metabolic stress.
Collapse
Affiliation(s)
- Rebecca C Northeast
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - David A Bechtold
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
74
|
Macías-Triana L, Romero-Cordero K, Tatum-Kuri A, Vera-Barrón A, Millán-Aldaco D, Arankowsky-Sandoval G, Piomelli D, Murillo-Rodríguez E. Exposure to the cannabinoid agonist WIN 55, 212–2 in adolescent rats causes sleep alterations that persist until adulthood. Eur J Pharmacol 2020; 874:172911. [DOI: 10.1016/j.ejphar.2020.172911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
|
75
|
Begemann K, Neumann A, Oster H. Regulation and function of extra-SCN circadian oscillators in the brain. Acta Physiol (Oxf) 2020; 229:e13446. [PMID: 31965726 DOI: 10.1111/apha.13446] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Most organisms evolved endogenous, so called circadian clocks as internal timekeeping mechanisms allowing them to adapt to recurring changes in environmental demands brought about by 24-hour rhythms such as the light-dark cycle, temperature variations or changes in humidity. The mammalian circadian clock system is based on cellular oscillators found in all tissues of the body that are organized in a hierarchical fashion. A master pacemaker located in the suprachiasmatic nucleus (SCN) synchronizes peripheral tissue clocks and extra-SCN oscillators in the brain with each other and with external time. Different time cues (so called Zeitgebers) such as light, food intake, activity and hormonal signals reset the clock system through the SCN or by direct action at the tissue clock level. While most studies on non-SCN clocks so far have focused on peripheral tissues, several extra-SCN central oscillators were characterized in terms of circadian rhythm regulation and output. Some of them are directly innervated by the SCN pacemaker, while others receive indirect input from the SCN via other neural circuits or extra-brain structures. The specific physiological function of these non-SCN brain oscillators as well as their role in the regulation of the circadian clock network remains understudied. In this review we summarize our current knowledge about the regulation and function of extra-SCN circadian oscillators in different brain regions and devise experimental approaches enabling us to unravel the organization of the circadian clock network in the central nervous system.
Collapse
Affiliation(s)
| | | | - Henrik Oster
- Institute of Neurobiology University of Lübeck Lübeck Germany
| |
Collapse
|
76
|
Differential Impact of Sleep Deprivation and Circadian Timing on Reflexive Versus Inhibitory Control of Attention. Sci Rep 2020; 10:7270. [PMID: 32350303 PMCID: PMC7190648 DOI: 10.1038/s41598-020-63144-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
In a visually stimulating environment with competing stimuli, we continually choose where to allocate attention, and what to ignore. Wake and circadian-dependent modulation of attentional control and resolution of conflict is poorly understood. Twenty-two participants (17males; 25.6 ± 5.6 years) completed ocular motor tasks throughout 40 hours of sleep deprivation under constant routine conditions. A prosaccade task required a reflexive saccade toward a stimulus (no conflict), while an antisaccade task required inhibiting a reflexive saccade to the peripheral stimulus, and looking in the mirror opposite instead (conflict resolution). Antisaccade inhibitory errors showed circadian modulation, being highest in the morning, progressively decreasing until melatonin onset, before returning to the prior morning's peak throughout the biological night. This diurnal rhythm was blunted by sleep loss (>24 hours), with inhibitory control remaining impaired across the second biological day. For prosaccade, responses slowed down during the biological night. Taken together, we provide evidence for a circadian modulation of attentional bias: the morning being biased toward reflexive responding, and the evening toward higher inhibitory control. Our data show that sleep loss and circadian timing differentially impact attention, depending on whether a response conflict is present (antisaccade) or absent (prosaccade).
Collapse
|
77
|
Venner A, Todd WD, Fraigne J, Bowrey H, Eban-Rothschild A, Kaur S, Anaclet C. Newly identified sleep-wake and circadian circuits as potential therapeutic targets. Sleep 2020; 42:5306564. [PMID: 30722061 DOI: 10.1093/sleep/zsz023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
Optogenetics and chemogenetics are powerful tools, allowing the specific activation or inhibition of targeted neuronal subpopulations. Application of these techniques to sleep and circadian research has resulted in the unveiling of several neuronal populations that are involved in sleep-wake control, and allowed a comprehensive interrogation of the circuitry through which these nodes are coordinated to orchestrate the sleep-wake cycle. In this review, we discuss six recently described sleep-wake and circadian circuits that show promise as therapeutic targets for sleep medicine. The parafacial zone (PZ) and the ventral tegmental area (VTA) are potential druggable targets for the treatment of insomnia. The brainstem circuit underlying rapid eye movement sleep behavior disorder (RBD) offers new possibilities for treating RBD and neurodegenerative synucleinopathies, whereas the parabrachial nucleus, as a nexus linking arousal state control and breathing, is a promising target for developing treatments for sleep apnea. Therapies that act upon the hypothalamic circuitry underlying the circadian regulation of aggression or the photic regulation of arousal and mood pathway carry enormous potential for helping to reduce the socioeconomic burden of neuropsychiatric and neurodegenerative disorders on society. Intriguingly, the development of chemogenetics as a therapeutic strategy is now well underway and such an approach has the capacity to lead to more focused and less invasive therapies for treating sleep-wake disorders and related comorbidities.
Collapse
Affiliation(s)
- Anne Venner
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Neurology, Harvard Medical School, Boston, MA
| | - William D Todd
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Neurology, Harvard Medical School, Boston, MA
| | - Jimmy Fraigne
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Hannah Bowrey
- Department of Psychiatry, Rutgers Biomedical Health Sciences, Rutgers University, Newark, NJ.,Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Satvinder Kaur
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Neurology, Harvard Medical School, Boston, MA
| | - Christelle Anaclet
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, NeuroNexus Institute, Graduate Program in Neuroscience - Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
78
|
Areal CC, Cao R, Sonenberg N, Mongrain V. Wakefulness/sleep architecture and electroencephalographic activity in mice lacking the translational repressor 4E-BP1 or 4E-BP2. Sleep 2020; 43:5573651. [PMID: 31553042 DOI: 10.1093/sleep/zsz210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/05/2019] [Indexed: 12/26/2022] Open
Abstract
Sleep and sleep loss are affecting protein synthesis in the brain, but the contribution of translational control to wakefulness and sleep regulation remains poorly understood. Here, we studied the role of two suppressors of protein synthesis, the eukaryotic translation initiation factor 4E-binding proteins 1 and 2 (4E-BP1 and 4E-BP2), in sleep architecture and electroencephalographic (EEG) activity as well as in the EEG and molecular responses to acute sleep loss. The EEG of mice mutant for the genes encoding 4E-BP1 or 4E-BP2 (Eif4ebp1 and Eif4ebp2 knockout [KO] mice) was recorded under undisturbed conditions and following a 6-hour sleep deprivation (SD). The effect of SD on the expression of genes known to respond to SD was also measured in the prefrontal cortex of Eif4ebp1 and Eif4ebp2 KO mice. Eif4ebp1 KO mice differed from wild-type mice in parameters of wakefulness and sleep quantity and quality, and more subtly in the gene expression response to SD. For instance, Eif4ebp1 KO mice spent more time in slow-wave sleep (SWS) and showed altered baseline 24-h time courses of SWS delta (1-4 Hz) activity and sigma (10-13 Hz) activity. Eif4ebp2 KO mice differed from wild-type mice only for wakefulness and sleep quality, expressing changes in EEG spectral activity generally revealed during and after SD. These findings suggest different roles of effectors of translational control in the regulation of wakefulness and sleep and of synchronized cortical activity.
Collapse
Affiliation(s)
- Cassandra C Areal
- Research Center and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (CIUSSS-NIM), Montreal, Québec, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Québec, Canada
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN.,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada
| | - Valérie Mongrain
- Research Center and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (CIUSSS-NIM), Montreal, Québec, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
79
|
|
80
|
Koskela S, Turunen T, Ala-Laurila P. Mice Reach Higher Visual Sensitivity at Night by Using a More Efficient Behavioral Strategy. Curr Biol 2019; 30:42-53.e4. [PMID: 31866370 DOI: 10.1016/j.cub.2019.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/01/2019] [Accepted: 11/05/2019] [Indexed: 11/17/2022]
Abstract
Circadian clocks predictively adjust the physiology of organisms to the day/night cycle. The retina has its own clock, and many diurnal changes in its physiology have been reported. However, their implications for retinal functions and visually guided behavior are largely unresolved. Here, we study the impact of diurnal rhythm on the sensitivity limit of mouse vision. A simple photon detection task allowed us to link well-defined retinal output signals directly to visually guided behavior. We show that visually guided behavior at its sensitivity limit is strongly under diurnal control, reaching the highest sensitivity and stability at night. The diurnal differences in visual sensitivity did not arise in the retina, as assessed by spike recordings from the most sensitive retinal ganglion cell types: ON sustained, OFF sustained, and OFF transient alpha ganglion cells. Instead, we found that mice, as nocturnal animals, use a more efficient search strategy for visual cues at night. Intriguingly, they can switch to the more efficient night strategy even at their subjective day after first having performed the task at night. Our results exemplify that the shape of visual psychometric functions depends robustly on the diurnal state of the animal, its search strategy, and even its diurnal history of performing the task. The results highlight the impact of the day/night cycle on high-level sensory processing, demonstrating a direct diurnal impact on the behavioral strategy of the animal.
Collapse
Affiliation(s)
- Sanna Koskela
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland
| | - Tuomas Turunen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 02150 Espoo, Finland
| | - Petri Ala-Laurila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 02150 Espoo, Finland.
| |
Collapse
|
81
|
Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain 2019; 141:1917-1933. [PMID: 29850777 DOI: 10.1093/brain/awy132] [Citation(s) in RCA: 1051] [Impact Index Per Article: 175.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Cholinergic synapses are ubiquitous in the human central nervous system. Their high density in the thalamus, striatum, limbic system, and neocortex suggest that cholinergic transmission is likely to be critically important for memory, learning, attention and other higher brain functions. Several lines of research suggest additional roles for cholinergic systems in overall brain homeostasis and plasticity. As such, the brain's cholinergic system occupies a central role in ongoing research related to normal cognition and age-related cognitive decline, including dementias such as Alzheimer's disease. The cholinergic hypothesis of Alzheimer's disease centres on the progressive loss of limbic and neocortical cholinergic innervation. Neurofibrillary degeneration in the basal forebrain is believed to be the primary cause for the dysfunction and death of forebrain cholinergic neurons, giving rise to a widespread presynaptic cholinergic denervation. Cholinesterase inhibitors increase the availability of acetylcholine at synapses in the brain and are one of the few drug therapies that have been proven clinically useful in the treatment of Alzheimer's disease dementia, thus validating the cholinergic system as an important therapeutic target in the disease. This review includes an overview of the role of the cholinergic system in cognition and an updated understanding of how cholinergic deficits in Alzheimer's disease interact with other aspects of disease pathophysiology, including plaques composed of amyloid-β proteins. This review also documents the benefits of cholinergic therapies at various stages of Alzheimer's disease and during long-term follow-up as visualized in novel imaging studies. The weight of the evidence supports the continued value of cholinergic drugs as a standard, cornerstone pharmacological approach in Alzheimer's disease, particularly as we look ahead to future combination therapies that address symptoms as well as disease progression.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - M-Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ezio Giacobini
- Department of Internal Medicine, Rehabilitation and Geriatrics, University of Geneva Hospitals, Geneva, Switzerland
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Ara S Khachaturian
- The Campaign to Prevent Alzheimer's Disease by 2020 (PAD2020), Potomac, MD, USA
| | - Andrea Vergallo
- AXA Research Fund and Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Enrica Cavedo
- AXA Research Fund and Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Peter J Snyder
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI USA.,Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
82
|
Riganello F, Prada V, Soddu A, di Perri C, Sannita WG. Circadian Rhythms and Measures of CNS/Autonomic Interaction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2336. [PMID: 31269700 PMCID: PMC6651187 DOI: 10.3390/ijerph16132336] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
The physiological role and relevance of the mechanisms sustaining circadian rhythms have been acknowledged. Abnormalities of the circadian and/or sleep-wakefulness cycles can result in major metabolic disorders or behavioral/professional inadequacies and stand as independent risk factors for metabolic, psychiatric, and cerebrovascular disorders and early markers of disease. Neuroimaging and clinical evidence have documented functional interactions between autonomic (ANS) and CNS structures that are described by a concept model (Central Autonomic Network) based on the brain-heart two-way interplay. The circadian rhythms of autonomic function, ANS-mediated processes, and ANS/CNS interaction appear to be sources of variability adding to a variety of environmental factors, and may become crucial when considering the ANS major role in internal environment constancy and adaptation that are fundamental to homeostasis. The CNS/ANS interaction has not yet obtained full attention and systematic investigation remains overdue.
Collapse
Affiliation(s)
- Francesco Riganello
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University Hospital of Liège, 4000 Liège, Belgium
| | - Valeria Prada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Polyclinic Hospital San Martino IRCCS, 16132 Genova, Italy
| | - Andres Soddu
- Department of Physics and Astronomy, Brain and Mind Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Carol di Perri
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University Hospital of Liège, 4000 Liège, Belgium
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Walter G Sannita
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Polyclinic Hospital San Martino IRCCS, 16132 Genova, Italy.
| |
Collapse
|
83
|
The current status of the magnocellular theory of developmental dyslexia. Neuropsychologia 2019; 130:66-77. [DOI: 10.1016/j.neuropsychologia.2018.03.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 01/28/2023]
|
84
|
Fitzgerald PJ, Watson BO. In vivo electrophysiological recordings of the effects of antidepressant drugs. Exp Brain Res 2019; 237:1593-1614. [PMID: 31079238 PMCID: PMC6584243 DOI: 10.1007/s00221-019-05556-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Antidepressant drugs are a standard biological treatment for various neuropsychiatric disorders, yet relatively little is known about their electrophysiologic and synaptic effects on mood systems that set moment-to-moment emotional tone. In vivo electrical recording of local field potentials (LFPs) and single neuron spiking has been crucial for elucidating important details of neural processing and control in many other systems, and yet electrical approaches have not been broadly applied to the actions of antidepressants on mood-related circuits. Here we review the literature encompassing electrophysiologic effects of antidepressants in animals, including studies that examine older drugs, and extending to more recently synthesized novel compounds, as well as rapidly acting antidepressants. The existing studies on neuromodulator-based drugs have focused on recording in the brainstem nuclei, with much less known about their effects on prefrontal or sensory cortex. Studies on neuromodulatory drugs have moreover focused on single unit firing patterns with less emphasis on LFPs, whereas the rapidly acting antidepressant literature shows the opposite trend. In a synthesis of this information, we hypothesize that all classes of antidepressants could have common final effects on limbic circuitry. Whereas NMDA receptor blockade may induce a high powered gamma oscillatory state via direct and fast alteration of glutamatergic systems in mood-related circuits, neuromodulatory antidepressants may induce similar effects over slower timescales, corresponding with the timecourse of response in patients, while resetting synaptic excitatory versus inhibitory signaling to a normal level. Thus, gamma signaling may provide a biomarker (or “neural readout”) of the therapeutic effects of all classes of antidepressants.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109-5720, USA.
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109-5720, USA.
| |
Collapse
|
85
|
Steady-State Pupil Size Varies with Circadian Phase and Sleep Homeostasis in Healthy Young Men. Clocks Sleep 2019; 1:240-258. [PMID: 33089167 PMCID: PMC7445830 DOI: 10.3390/clockssleep1020021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022] Open
Abstract
Pupil size informs about sympathovagal balance as well as cognitive and affective processes, and perception. It is also directly linked to phasic activity of the brainstem locus coeruleus, so that pupil measures have gained recent attention. Steady-state pupil size and its variability have been directly linked to sleep homeostasis and circadian phase, but results have been inconsistent. Here, we report robust changes in steady-state pupil size during 29 h of continuous wakefulness in healthy young men (N = 20; 18–30 years old) maintained in dim-light in strictly controlled constant routine conditions. These variations were associated with variations in motivation and sustained attention performance. Pupil size variability did not significantly change during the protocol. Yet, pupil size variability was linearly associated with subjective fatigue, sociability, and anguish. No associations were found between neither steady-state pupil size nor pupil size variability, and objective EEG measure of alertness and subjective sleepiness. Our data support therefore the notion that, compared with its variability, steady-state pupil size is strongly influenced by the concomitant changes in sleep need and circadian phase. In addition, steady-state pupil size appears to be related to motivation and attention, while its variability may be related to separate affective dimensions and subjective fatigue.
Collapse
|
86
|
Totah NK, Logothetis NK, Eschenko O. Noradrenergic ensemble-based modulation of cognition over multiple timescales. Brain Res 2019; 1709:50-66. [DOI: 10.1016/j.brainres.2018.12.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 11/30/2022]
|
87
|
Daguet I, Bouhassira D, Gronfier C. Baseline Pupil Diameter Is Not a Reliable Biomarker of Subjective Sleepiness. Front Neurol 2019; 10:108. [PMID: 30858817 PMCID: PMC6398346 DOI: 10.3389/fneur.2019.00108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Sleepiness is commonly seen as reflecting the basic physiological need to sleep and is associated with physiological and neurobiological changes. Subjective evaluations of sleepiness, however, are neither representative of cognitive and physical performances, nor of physiological sleepiness. Finding a simple, rapid, and objective marker of sleepiness is essential in order to prevent errors and accidents, but this has remained largely unsuccessful. The aim of this study was to determine whether the baseline pupil diameter is a physiological biomarker of sleepiness at all times of day and to isolate the regulatory components involved. Twelve healthy men (20-29 years old) participated in a 56-h experimental protocol, including a 34-h constant routine paradigm with enforced wakefulness. This protocol was used in order to eliminate the potential influence of all environmental rhythms and reveal the endogenous circadian rhythmicity of two physiological measures: sleepiness and pupil diameter. Sleepiness was assessed subjectively every hour on a computerized 10 cm visual analog scale and pupil size was recorded every 2 h with a hand-held video-pupilometer. Our results revealed that subjective sleepiness increased linearly with time awake and displayed a circadian rhythm. Baseline pupil diameter showed a linear decrease with time spent awake as well as a circadian 24-h rhythm. This is the first evidence of a circadian variation of the baseline pupil size in a highly-controlled constant routine paradigm conducted in very dim light conditions. An overall negative correlation between the size of the pupil and the subjective level of sleepiness was observed. Analyzing the contribution of the two sleep regulation components in this correlation, we further showed: (1) a negative correlation between the homeostatic sleep pressure components, (2) a negative correlation between the circadian drives only during half of the 24 hours, corresponding to 62% of the biological day and 25% of the biological night. These results highlight that, due to the dual regulation of sleepiness by the homeostatic and circadian processes, baseline pupil diameter is an index of sleepiness only at certain times and therefore cannot be used as a systematic and reliable biomarker of sleepiness.
Collapse
Affiliation(s)
- Inès Daguet
- Lyon Neuroscience Research Center, Waking Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Didier Bouhassira
- INSERM U987, Centre d'Evaluation et de Traitement de la Douleur, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Claude Gronfier
- Lyon Neuroscience Research Center, Waking Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
88
|
Paul JR, Davis JA, Goode LK, Becker BK, Fusilier A, Meador-Woodruff A, Gamble KL. Circadian regulation of membrane physiology in neural oscillators throughout the brain. Eur J Neurosci 2019; 51:109-138. [PMID: 30633846 DOI: 10.1111/ejn.14343] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022]
Abstract
Twenty-four-hour rhythmicity in physiology and behavior are driven by changes in neurophysiological activity that vary across the light-dark and rest-activity cycle. Although this neural code is most prominent in neurons of the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus, there are many other regions in the brain where region-specific function and behavioral rhythmicity may be encoded by changes in electrical properties of those neurons. In this review, we explore the existing evidence for molecular clocks and/or neurophysiological rhythms (i.e., 24 hr) in brain regions outside the SCN. In addition, we highlight the brain regions that are ripe for future investigation into the critical role of circadian rhythmicity for local oscillators. For example, the cerebellum expresses rhythmicity in over 2,000 gene transcripts, and yet we know very little about how circadian regulation drives 24-hr changes in the neural coding responsible for motor coordination. Finally, we conclude with a discussion of how our understanding of circadian regulation of electrical properties may yield insight into disease mechanisms which may lead to novel chronotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer A Davis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lacy K Goode
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan K Becker
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Allison Fusilier
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aidan Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
89
|
Roles of tau pathology in the locus coeruleus (LC) in age-associated pathophysiology and Alzheimer’s disease pathogenesis: Potential strategies to protect the LC against aging. Brain Res 2019; 1702:17-28. [DOI: 10.1016/j.brainres.2017.12.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/21/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
|
90
|
Agorastos A, Nicolaides NC, Bozikas VP, Chrousos GP, Pervanidou P. Multilevel Interactions of Stress and Circadian System: Implications for Traumatic Stress. Front Psychiatry 2019; 10:1003. [PMID: 32047446 PMCID: PMC6997541 DOI: 10.3389/fpsyt.2019.01003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The dramatic fluctuations in energy demands by the rhythmic succession of night and day on our planet has prompted a geophysical evolutionary need for biological temporal organization across phylogeny. The intrinsic circadian timing system (CS) represents a highly conserved and sophisticated internal "clock," adjusted to the 24-h rotation period of the earth, enabling a nyctohemeral coordination of numerous physiologic processes, from gene expression to behavior. The human CS is tightly and bidirectionally interconnected to the stress system (SS). Both systems are fundamental for survival and regulate each other's activity in order to prepare the organism for the anticipated cyclic challenges. Thereby, the understanding of the temporal relationship between stressors and stress responses is critical for the comprehension of the molecular basis of physiology and pathogenesis of disease. A critical loss of the harmonious timed order at different organizational levels may affect the fundamental properties of neuroendocrine, immune, and autonomic systems, leading to a breakdown of biobehavioral adaptative mechanisms with increased stress sensitivity and vulnerability. In this review, following an overview of the functional components of the SS and CS, we present their multilevel interactions and discuss how traumatic stress can alter the interplay between the two systems. Circadian dysregulation after traumatic stress exposure may represent a core feature of trauma-related disorders mediating enduring neurobiological correlates of trauma through maladaptive stress regulation. Understanding the mechanisms susceptible to circadian dysregulation and their role in stress-related disorders could provide new insights into disease mechanisms, advancing psychochronobiological treatment possibilities and preventive strategies in stress-exposed populations.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, United States
| | - Nicolas C Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasilios P Bozikas
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George P Chrousos
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Panagiota Pervanidou
- Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
91
|
Szabadi E. Functional Organization of the Sympathetic Pathways Controlling the Pupil: Light-Inhibited and Light-Stimulated Pathways. Front Neurol 2018; 9:1069. [PMID: 30619035 PMCID: PMC6305320 DOI: 10.3389/fneur.2018.01069] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 11/13/2022] Open
Abstract
Pupil dilation is mediated by a sympathetic output acting in opposition to parasympathetically mediated pupil constriction. While light stimulates the parasympathetic output, giving rise to the light reflex, it can both inhibit and stimulate the sympathetic output. Light-inhibited sympathetic pathways originate in retina-receptive neurones of the pretectum and the suprachiasmatic nucleus (SCN): by attenuating sympathetic activity, they allow unimpeded operation of the light reflex. Light stimulates the noradrenergic and serotonergic pathways. The hub of the noradrenergic pathway is the locus coeruleus (LC) containing both excitatory sympathetic premotor neurones (SympPN) projecting to preganglionic neurones in the spinal cord, and inhibitory parasympathetic premotor neurones (ParaPN) projecting to preganglionic neurones in the Edinger-Westphal nucleus (EWN). SympPN receive inputs from the SCN via the dorsomedial hypothalamus, orexinergic neurones of the latero-posterior hypothalamus, wake- and sleep-promoting neurones of the hypothalamus and brain stem, nociceptive collaterals of the spinothalamic tract, whereas ParaPN receive inputs from the amygdala, sleep/arousal network, nociceptive spinothalamic collaterals. The activity of LC neurones is regulated by inhibitory α2-adrenoceptors. There is a species difference in the function of the preautonomic LC. In diurnal animals, the α2-adrenoceptor agonist clonidine stimulates mainly autoreceptors on SymPN, causing miosis, whereas in nocturnal animals it stimulates postsynaptic α2-arenoceptors in the EWN, causing mydriasis. Noxious stimulation activates SympPN in diurnal animals and ParaPN in nocturnal animals, leading to pupil dilation via sympathoexcitation and parasympathetic inhibition, respectively. These differences may be attributed to increased activity of excitatory LC neurones due to stimulation by light in diurnal animals. This may also underlie the wake-promoting effect of light in diurnal animals, in contrast to its sleep-promoting effect in nocturnal species. The hub of the serotonergic pathway is the dorsal raphe nucleus that is light-sensitive, both directly and indirectly (via an orexinergic input). The light-stimulated pathways mediate a latent mydriatic effect of light on the pupil that can be unmasked by drugs that either inhibit or stimulate SympPN in these pathways. The noradrenergic pathway has widespread connections to neural networks controlling a variety of functions, such as sleep/arousal, pain, and fear/anxiety. Many physiological and psychological variables modulate pupil function via this pathway.
Collapse
Affiliation(s)
- Elemer Szabadi
- Developmental Psychiatry, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
92
|
|
93
|
Lamaze A, Krätschmer P, Chen KF, Lowe S, Jepson JE. A Wake-Promoting Circadian Output Circuit in Drosophila. Curr Biol 2018; 28:3098-3105.e3. [DOI: 10.1016/j.cub.2018.07.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/24/2018] [Accepted: 07/09/2018] [Indexed: 11/17/2022]
|
94
|
Abstract
One of the consequences of chronic methamphetamine (Meth) abuse and Meth addiction is impaired hippocampal function which plays a critical role in enhanced propensity for relapse. This impairment is predicted by alterations in hippocampal neurogenesis, structural- and functional-plasticity of granule cell neurons (GCNs), and expression of plasticity-related proteins in the dentate gyrus. This review will elaborate on the effects of Meth in animal models during different stages of addiction-like behavior on proliferation, differentiation, maturation, and survival of newly born neural progenitor cells. We will then discuss evidence for the contribution of adult neurogenesis in context-driven Meth-seeking behavior in animal models. These findings from interdisciplinary studies suggest that a subset of newly born GCNs contribute to context-driven Meth-seeking in Meth addicted animals.
Collapse
Affiliation(s)
- Yoshio Takashima
- Department of Anesthesiology, University of California San Diego, VA San Diego Healthcare System, San Diego, CA, USA
| | - Chitra D. Mandyam
- Department of Anesthesiology, University of California San Diego, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
95
|
Mazuski C, Abel JH, Chen SP, Hermanstyne TO, Jones JR, Simon T, Doyle FJ, Herzog ED. Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons. Neuron 2018; 99:555-563.e5. [PMID: 30017392 PMCID: PMC6085153 DOI: 10.1016/j.neuron.2018.06.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 05/13/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023]
Abstract
The mammalian suprachiasmatic nucleus (SCN) functions as a master circadian pacemaker, integrating environmental input to align physiological and behavioral rhythms to local time cues. Approximately 10% of SCN neurons express vasoactive intestinal polypeptide (VIP); however, it is unknown how firing activity of VIP neurons releases VIP to entrain circadian rhythms. To identify physiologically relevant firing patterns, we optically tagged VIP neurons and characterized spontaneous firing over 3 days. VIP neurons had circadian rhythms in firing rate and exhibited two classes of instantaneous firing activity. We next tested whether physiologically relevant firing affected circadian rhythms through VIP release. We found that VIP neuron stimulation with high, but not low, frequencies shifted gene expression rhythms in vitro through VIP signaling. In vivo, high-frequency VIP neuron activation rapidly entrained circadian locomotor rhythms. Thus, increases in VIP neuronal firing frequency release VIP and entrain molecular and behavioral circadian rhythms. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Cristina Mazuski
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - John H Abel
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha P Chen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tracey O Hermanstyne
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jeff R Jones
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tatiana Simon
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
96
|
González MMC. Dim Light at Night and Constant Darkness: Two Frequently Used Lighting Conditions That Jeopardize the Health and Well-being of Laboratory Rodents. Front Neurol 2018; 9:609. [PMID: 30116218 PMCID: PMC6084421 DOI: 10.3389/fneur.2018.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
The influence of light on mammalian physiology and behavior is due to the entrainment of circadian rhythms complemented with a direct modulation of light that would be unlikely an outcome of circadian system. In mammals, physiological and behavioral circadian rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. This central control allows organisms to predict and anticipate environmental change, as well as to coordinate different rhythmic modalities within an individual. In adult mammals, direct retinal projections to the SCN are responsible for resetting and synchronizing physiological and behavioral rhythms to the light-dark (LD) cycle. Apart from its circadian effects, light also has direct effects on certain biological functions in such a way that the participation of the SCN would not be fundamental for this network. The objective of this review is to increase awareness, within the scientific community and commercial providers, of the fact that laboratory rodents can experience a number of adverse health and welfare outcomes attributed to commonly-used lighting conditions in animal facilities during routine husbandry and scientific procedures, widely considered as “environmentally friendly.” There is increasing evidence that exposure to dim light at night, as well as chronic constant darkness, challenges mammalian physiology and behavior resulting in disrupted circadian rhythms, neural death, a depressive-behavioral phenotype, cognitive impairment, and the deregulation of metabolic, physiological, and synaptic plasticity in both the short and long terms. The normal development and good health of laboratory rodents requires cyclical light entrainment, adapted to the solar cycle of day and night, with null light at night and safe illuminating qualities during the day. We therefore recommend increased awareness of the limited information available with regards to lighting conditions, and therefore that lighting protocols must be taken into consideration when designing experiments and duly highlighted in scientific papers. This practice will help to ensure the welfare of laboratory animals and increase the likelihood of producing reliable and reproducible results.
Collapse
Affiliation(s)
- Mónica M C González
- Sección Cronobiología y Sueño, Instituto Ferrero de Neurología y Sueño, Buenos Aires, Argentina
| |
Collapse
|
97
|
Rosenberg J, Jacobs HIL, Maximov II, Reske M, Shah NJ. Chronotype differences in cortical thickness: grey matter reflects when you go to bed. Brain Struct Funct 2018; 223:3411-3421. [PMID: 29948193 DOI: 10.1007/s00429-018-1697-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 06/04/2018] [Indexed: 12/23/2022]
Abstract
Based on individual circadian cycles and associated cognitive rhythms, humans can be classified via standardised self-reports as being early (EC), late (LC) and intermediate (IC) chronotypes. Alterations in neural cortical structure underlying these chronotype differences have rarely been investigated and are the scope of this study. 16 healthy male ECs, 16 ICs and 16 LCs were measured with a 3 T MAGNETOM TIM TRIO (Siemens, Erlangen) scanner using a magnetization prepared rapid gradient echo sequence. Data were analysed by applying voxel-based morphometry (VBM) and vertex-wise cortical thickness (CTh) analysis. VBM analysis revealed that ECs showed significantly lower grey matter volumes bilateral in the lateral occipital cortex and the precuneus as compared to LCs, and in the right lingual gyrus, occipital fusiform gyrus and the occipital pole as compared to ICs. CTh findings showed lower grey matter volumes for ECs in the left anterior insula, precuneus, inferior parietal cortex, and right pars triangularis than for LCs, and in the right superior parietal gyrus than for ICs. These findings reveal that chronotype differences are associated with specific neural substrates of cortical thickness, surface areas, and folding. We conclude that this might be the basis for chronotype differences in behaviour and brain function. Furthermore, our results speak for the necessity of considering "chronotype" as a potentially modulating factor in all kinds of structural brain-imaging experiments.
Collapse
Affiliation(s)
- Jessica Rosenberg
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,JARA-Translational Brain Medicine, RWTH Aachen University, 52074, Aachen, Germany. .,Department of Neurology, University Clinic Aachen, 52074, Aachen, Germany.
| | - Heidi I L Jacobs
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Juelich GmbH, 52425, Jülich, Germany.,Alzheimer Centre Limburg, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands.,Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Ivan I Maximov
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Experimental Physics III, TU Dortmund University, 44221, Dortmund, Germany
| | - Martina Reske
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,JARA-Translational Brain Medicine, RWTH Aachen University, 52074, Aachen, Germany.,Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, and Institute for Advanced Simulation (IAS-6), Theoretical Neuroscience, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - N J Shah
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,JARA-Translational Brain Medicine, RWTH Aachen University, 52074, Aachen, Germany.,Department of Neurology, University Clinic Aachen, 52074, Aachen, Germany.,Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
98
|
Abstract
Computational models have become common tools in psychology. They provide quantitative instantiations of theories that seek to explain the functioning of the human mind. In this paper, we focus on identifying deep theoretical similarities between two very different models. Both models are concerned with how fatigue from sleep loss impacts cognitive processing. The first is based on the diffusion model and posits that fatigue decreases the drift rate of the diffusion process. The second is based on the Adaptive Control of Thought - Rational (ACT-R) cognitive architecture and posits that fatigue decreases the utility of candidate actions leading to microlapses in cognitive processing. A biomathematical model of fatigue is used to control drift rate in the first account and utility in the second. We investigated the predicted response time distributions of these two integrated computational cognitive models for performance on a psychomotor vigilance test under conditions of total sleep deprivation, simulated shift work, and sustained sleep restriction. The models generated equivalent predictions of response time distributions with excellent goodness-of-fit to the human data. More importantly, although the accounts involve different modeling approaches and levels of abstraction, they represent the effects of fatigue in a functionally equivalent way: in both, fatigue decreases the signal-to-noise ratio in decision processes and decreases response inhibition. This convergence suggests that sleep loss impairs psychomotor vigilance performance through degradation of the quality of cognitive processing, which provides a foundation for systematic investigation of the effects of sleep loss on other aspects of cognition. Our findings illustrate the value of treating different modeling formalisms as vehicles for discovery.
Collapse
|
99
|
Cordani L, Tagliazucchi E, Vetter C, Hassemer C, Roenneberg T, Stehle JH, Kell CA. Endogenous modulation of human visual cortex activity improves perception at twilight. Nat Commun 2018; 9:1274. [PMID: 29636448 PMCID: PMC5893589 DOI: 10.1038/s41467-018-03660-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/01/2018] [Indexed: 11/09/2022] Open
Abstract
Perception, particularly in the visual domain, is drastically influenced by rhythmic changes in ambient lighting conditions. Anticipation of daylight changes by the circadian system is critical for survival. However, the neural bases of time-of-day-dependent modulation in human perception are not yet understood. We used fMRI to study brain dynamics during resting-state and close-to-threshold visual perception repeatedly at six times of the day. Here we report that resting-state signal variance drops endogenously at times coinciding with dawn and dusk, notably in sensory cortices only. In parallel, perception-related signal variance in visual cortices decreases and correlates negatively with detection performance, identifying an anticipatory mechanism that compensates for the deteriorated visual signal quality at dawn and dusk. Generally, our findings imply that decreases in spontaneous neural activity improve close-to-threshold perception.
Collapse
Affiliation(s)
- Lorenzo Cordani
- Cognitive Neuroscience Group, Brain Imaging Center, Goethe University, 60528, Frankfurt am Main, Germany.,Department of Neurology, Goethe University, 60528, Frankfurt am Main, Germany
| | - Enzo Tagliazucchi
- Cognitive Neuroscience Group, Brain Imaging Center, Goethe University, 60528, Frankfurt am Main, Germany.,Brain and Spine Institute, Hôpital Pitié Salpêtrière, 75013, Paris, France.,Departamento de Física, Instituto de Física de Buenos Aires-CONICET, Buenos Aires, 1428, Argentina
| | - Céline Vetter
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80310, USA.,Institute of Medical Psychology, Ludwig Maximilian University, 80336, Munich, Germany
| | - Christian Hassemer
- Cognitive Neuroscience Group, Brain Imaging Center, Goethe University, 60528, Frankfurt am Main, Germany.,Institute of Anatomy III, Goethe University, 60590, Frankfurt am Main, Germany
| | - Till Roenneberg
- Institute of Medical Psychology, Ludwig Maximilian University, 80336, Munich, Germany
| | - Jörg H Stehle
- Institute of Anatomy III, Goethe University, 60590, Frankfurt am Main, Germany
| | - Christian A Kell
- Cognitive Neuroscience Group, Brain Imaging Center, Goethe University, 60528, Frankfurt am Main, Germany. .,Department of Neurology, Goethe University, 60528, Frankfurt am Main, Germany.
| |
Collapse
|
100
|
Sprenger T, Viana M, Tassorelli C. Current Prophylactic Medications for Migraine and Their Potential Mechanisms of Action. Neurotherapeutics 2018; 15:313-323. [PMID: 29671241 PMCID: PMC5935650 DOI: 10.1007/s13311-018-0621-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A relatively high number of different medications is currently used for migraine prevention in clinical practice. Although these compounds were initially developed for other indications and differ in their mechanisms of action, some general themes can be identified from the mechanisms at play. Efficacious preventive drugs seem to either suppress excitatory nervous signaling via sodium and/or calcium receptors, facilitate GABAergic inhibition, reduce neuronal sensitization, block cortical spreading depression and/or reduce circulating levels of CGRP. We here review such mechanisms for the different compounds.
Collapse
Affiliation(s)
- Till Sprenger
- Department of Neurology, DKD Helios Klinik Wiesbaden, Aukammallee 33, 65191, Wiesbaden, Germany.
| | - M Viana
- Headache Science Centre, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - C Tassorelli
- Headache Science Centre, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| |
Collapse
|