51
|
Hawley DM, Gibson AK, Townsend AK, Craft ME, Stephenson JF. Bidirectional interactions between host social behaviour and parasites arise through ecological and evolutionary processes. Parasitology 2021; 148:274-288. [PMID: 33092680 PMCID: PMC11010184 DOI: 10.1017/s0031182020002048] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host-parasite coevolution.
Collapse
Affiliation(s)
- Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061, USA
| | - Amanda K. Gibson
- Department of Biology, University of Virginia, Charlottesville, VA22903, USA
| | | | - Meggan E. Craft
- Department of Veterinary Population Medicine and Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN55108, USA
| | - Jessica F. Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260, USA
| |
Collapse
|
52
|
DeCandia AL, Schrom EC, Brandell EE, Stahler DR, vonHoldt BM. Sarcoptic mange severity is associated with reduced genomic variation and evidence of selection in Yellowstone National Park wolves ( Canis lupus). Evol Appl 2021; 14:429-445. [PMID: 33664786 PMCID: PMC7896714 DOI: 10.1111/eva.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 01/25/2023] Open
Abstract
Population genetic theory posits that molecular variation buffers against disease risk. Although this "monoculture effect" is well supported in agricultural settings, its applicability to wildlife populations remains in question. In the present study, we examined the genomics underlying individual-level disease severity and population-level consequences of sarcoptic mange infection in a wild population of canids. Using gray wolves (Canis lupus) reintroduced to Yellowstone National Park (YNP) as our focal system, we leveraged 25 years of observational data and biobanked blood and tissue to genotype 76,859 loci in over 400 wolves. At the individual level, we reported an inverse relationship between host genomic variation and infection severity. We additionally identified 410 loci significantly associated with mange severity, with annotations related to inflammation, immunity, and skin barrier integrity and disorders. We contextualized results within environmental, demographic, and behavioral variables, and confirmed that genetic variation was predictive of infection severity. At the population level, we reported decreased genome-wide variation since the initial gray wolf reintroduction event and identified evidence of selection acting against alleles associated with mange infection severity. We concluded that genomic variation plays an important role in disease severity in YNP wolves. This role scales from individual to population levels, and includes patterns of genome-wide variation in support of the monoculture effect and specific loci associated with the complex mange phenotype. Results yielded system-specific insights, while also highlighting the relevance of genomic analyses to wildlife disease ecology, evolution, and conservation.
Collapse
Affiliation(s)
| | - Edward C. Schrom
- Ecology & Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | | | | | | |
Collapse
|
53
|
Animal board invited review: OneARK: Strengthening the links between animal production science and animal ecology. Animal 2020; 15:100053. [PMID: 33515992 DOI: 10.1016/j.animal.2020.100053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Wild and farmed animals are key elements of natural and managed ecosystems that deliver functions such as pollination, pest control and nutrient cycling within the broader roles they play in contributing to biodiversity and to every category of ecosystem services. They are subjected to global changes with a profound impact on the natural range and viability of animal species, the emergence and spatial distribution of pathogens, land use, ecosystem services and farming sustainability. We urgently need to improve our understanding of how animal populations can respond adaptively and therefore sustainably to these new selective pressures. In this context, we explored the common points between animal production science and animal ecology to identify promising avenues of synergy between communities through the transfer of concepts and/or methodologies, focusing on seven concepts that link both disciplines. Animal adaptability, animal diversity (both within and between species), selection, animal management, animal monitoring, agroecology and viability risks were identified as key concepts that should serve the cross-fertilization of both fields to improve ecosystem resilience and farming sustainability. The need for breaking down interdisciplinary barriers is illustrated by two representative examples: i) the circulation and reassortment of pathogens between wild and domestic animals and ii) the role of animals in nutrient cycles, i.e. recycling nitrogen, phosphorus and carbon through, for example, contribution to soil fertility and carbon sequestration. Our synthesis identifies the need for knowledge integration techniques supported by programmes and policy tools that reverse the fragmentation of animal research toward a unification into a single Animal Research Kinship, OneARK, which sets new objectives for future science policy. At the interface of animal ecology and animal production science, our article promotes an effective application of the agroecology concept to animals and the use of functional diversity to increase resilience in both wild and farmed systems. It also promotes the use of novel monitoring technologies to quantify animal welfare and factors affecting fitness. These measures are needed to evaluate viability risk, predict and potentially increase animal adaptability and improve the management of wild and farmed systems, thereby responding to an increasing demand of society for the development of a sustainable management of systems.
Collapse
|
54
|
Bos N, Guimaraes L, Palenzuela R, Renelies-Hamilton J, Maccario L, Silue SK, Koné N'A, Poulsen M. You don't have the guts: a diverse set of fungi survive passage through Macrotermes bellicosus termite guts. BMC Evol Biol 2020; 20:163. [PMID: 33297950 PMCID: PMC7724875 DOI: 10.1186/s12862-020-01727-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023] Open
Abstract
Background Monoculture farming poses significant disease challenges, but fungus-farming termites are able to successfully keep their monoculture crop free from contamination by other fungi. It has been hypothesised that obligate gut passage of all plant substrate used to manure the fungal symbiont is key to accomplish this. Here we refute this hypothesis in the fungus-farming termite species Macrotermes bellicosus. Results We first used ITS amplicon sequencing to show that plant substrate foraged on by termite workers harbour diverse fungal communities, which potentially could challenge the farming symbiosis. Subsequently, we cultivated fungi from dissected sections of termite guts to show that fungal diversity does not decrease during gut passage. Therefore, we investigated if healthy combs harboured these undesirable fungal genera, and whether the presence of workers affected fungal diversity within combs. Removal of workers led to a surge in fungal diversity in combs, implying that termite defences must be responsible for the near-complete absence of other fungi in functioning termite gardens. Conclusions The rapid proliferation of some of these fungi when colonies are compromised indicates that some antagonists successfully employ a sit-and-wait strategy that allows them to remain dormant until conditions are favourable. Although this strategy requires potentially many years of waiting, it prevents these fungi from engaging in an evolutionary arms race with the termite host, which employs a series of complementary behavioural and chemical defences that may prove insurmountable.
Collapse
Affiliation(s)
- Nick Bos
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Universitetsparken 15, Building 3, 1st floor, 2100, Copenhagen East, Copenhagen, Denmark. .,Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Universitetsparken 15, Building 3, 1st floor, 2100, Copenhagen East, Copenhagen, Denmark.
| | - Leandro Guimaraes
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Universitetsparken 15, Building 3, 1st floor, 2100, Copenhagen East, Copenhagen, Denmark.,Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Universitetsparken 15, Building 3, 1st floor, 2100, Copenhagen East, Copenhagen, Denmark
| | - Romen Palenzuela
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Universitetsparken 15, Building 3, 1st floor, 2100, Copenhagen East, Copenhagen, Denmark.,Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Universitetsparken 15, Building 3, 1st floor, 2100, Copenhagen East, Copenhagen, Denmark
| | - Justinn Renelies-Hamilton
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Universitetsparken 15, Building 3, 1st floor, 2100, Copenhagen East, Copenhagen, Denmark.,Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Universitetsparken 15, Building 3, 1st floor, 2100, Copenhagen East, Copenhagen, Denmark
| | - Lorrie Maccario
- Department of Biology, Section of Microbiology, University of Copenhagen, Universitetsparken 15, Building 1, 1st floor, 2100, Copenhagen East, Copenhagen, Denmark
| | - Simon Kolotchèlèma Silue
- Unité de Recherche en Ecologie Et Biodiversité (UREB), Université Nangui Abrogoua, UFR Des Sciences de La Nature (UFR-SN), 28 BP 847 28, Abidjan, Côte d'Ivoire.,Centre de Recherche en Écologie (CRE), Station de Recherche en Ecologie du Parc National de La Comoé, Bouna, Côte d'Ivoire
| | - N 'golo Abdoulaye Koné
- Unité de Recherche en Ecologie Et Biodiversité (UREB), Université Nangui Abrogoua, UFR Des Sciences de La Nature (UFR-SN), 28 BP 847 28, Abidjan, Côte d'Ivoire.,Centre de Recherche en Écologie (CRE), Station de Recherche en Ecologie du Parc National de La Comoé, Bouna, Côte d'Ivoire
| | - Michael Poulsen
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Universitetsparken 15, Building 3, 1st floor, 2100, Copenhagen East, Copenhagen, Denmark.,Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Universitetsparken 15, Building 3, 1st floor, 2100, Copenhagen East, Copenhagen, Denmark
| |
Collapse
|
55
|
Gibson AK, Nguyen AE. Does genetic diversity protect host populations from parasites? A meta-analysis across natural and agricultural systems. Evol Lett 2020; 5:16-32. [PMID: 33552533 PMCID: PMC7857278 DOI: 10.1002/evl3.206] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022] Open
Abstract
If parasites transmit more readily between closely related hosts, then parasite burdens should decrease with increased genetic diversity of host populations. This important hypothesis is often accepted at face value—notorious epidemics of crop monocultures testify to the vulnerability of host populations that have been purged of diversity. Yet the relationship between genetic diversity and parasitism likely varies across contexts, differing between crop and noncrop hosts and between experimental and natural host populations. Here, we used a meta‐analytic approach to ask if host diversity confers protection against parasites over the range of contexts in which it has been tested. We synthesized the results of 102 studies, comprising 2004 effect sizes representing a diversity of approaches and host‐parasite systems. Our results validate a protective effect of genetic diversity, while revealing significant variation in its strength across biological and empirical contexts. In experimental host populations, genetic diversity reduces parasitism by ∼20% for noncrop hosts and by ∼50% for crop hosts. In contrast, observational studies of natural host populations show no consistent relationship between genetic diversity and parasitism, with both strong negative and positive correlations reported. This result supports the idea that, if parasites preferentially attack close relatives, the correlation of genetic diversity with parasitism could be positive or negative depending upon the potential for host populations to evolve in response to parasite selection. Taken together, these results reinforce genetic diversity as a priority for both conservation and agriculture and emphasize the challenges inherent to drawing comparisons between controlled experimental populations and dynamic natural populations.
Collapse
Affiliation(s)
- Amanda Kyle Gibson
- Department of Biology University of Virginia Charlottesville Virginia 22904
| | - Anna E Nguyen
- Department of Biology University of Virginia Charlottesville Virginia 22904
| |
Collapse
|
56
|
Stange M, Barrett RDH, Hendry AP. The importance of genomic variation for biodiversity, ecosystems and people. Nat Rev Genet 2020; 22:89-105. [PMID: 33067582 DOI: 10.1038/s41576-020-00288-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 11/09/2022]
Abstract
The 2019 United Nations Global assessment report on biodiversity and ecosystem services estimated that approximately 1 million species are at risk of extinction. This primarily human-driven loss of biodiversity has unprecedented negative consequences for ecosystems and people. Classic and emerging approaches in genetics and genomics have the potential to dramatically improve these outcomes. In particular, the study of interactions among genetic loci within and between species will play a critical role in understanding the adaptive potential of species and communities, and hence their direct and indirect effects on biodiversity, ecosystems and people. We explore these population and community genomic contexts in the hope of finding solutions for maintaining and improving ecosystem services and nature's contributions to people.
Collapse
Affiliation(s)
- Madlen Stange
- Redpath Museum, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
57
|
Priyadarsini SL, Suresh M, Huisingh D. What can we learn from previous pandemics to reduce the frequency of emerging infectious diseases like COVID-19? GLOBAL TRANSITIONS 2020; 2:202-220. [PMID: 32984800 PMCID: PMC7508551 DOI: 10.1016/j.glt.2020.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/09/2020] [Accepted: 09/14/2020] [Indexed: 05/09/2023]
Abstract
The global risks report of 2020 stated, climate-related issues dominate all of the top-five long-term critical global risks burning the planet and according to the report, "as existing health risks resurge and new ones emerge, humanity's past successes in overcoming health challenges are no guarantee of future results." Over the last few decades, the world has experienced several pandemic outbreaks of various pathogens and the frequency of the emergence of novel strains of infectious organisms has increased in recent decades. As per expert opinion, rapidly mutating viruses, emergence and re-emergence of epidemics with increasing frequencies, climate-sensitive vector-borne diseases are likely to be increasing over the years and the trends will continue and intensify. Susceptible disease hosts, anthropogenic activities and environmental changes contribute and trigger the 'adaptive evolution' of infectious agents to thrive and spread into different ecological niches and to adapt to new hosts. The overarching objective of this paper is to provide insight into the human actions which should be strictly regulated to help to sustain life on earth. To identify and categorize the triggering factors that contribute to disease ecology, especially repeated emergence of disease pandemics, a theory building approach, 'Total Interpretive Structural Modeling' (TISM) was used; also the tool, 'Impact Matrix Cross-Reference Multiplication Applied to a Classification' analysis (MICMAC) was applied to rank the risk factors based on their impacts on other factors and on the interdependence among them. This mathematical modeling tool clearly explains the strength, position and interconnectedness of each anthropogenic factor that contributes to the evolution of pathogens and to the frequent emergence of pandemics which needs to be addressed with immediate priority. As we are least prepared for another pandemic outbreak, significant policy attention must be focused on the causative factors to limit emerging outbreaks like COVID 19 in the future.
Collapse
Affiliation(s)
- S Lakshmi Priyadarsini
- Dept. of Zoology, Govt Victoria College, University of Calicut, Palakkad-678001, Kerala, India
| | - M Suresh
- Amrita School of Business, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Donald Huisingh
- The Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, 37996, USA
| |
Collapse
|
58
|
Gibson AK, Baffoe-Bonnie H, Penley MJ, Lin J, Owens R, Khalid A, Morran LT. The evolution of parasite host range in heterogeneous host populations. J Evol Biol 2020; 33:773-782. [PMID: 32086852 PMCID: PMC7275899 DOI: 10.1111/jeb.13608] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 01/07/2023]
Abstract
Theory on the evolution of niche width argues that resource heterogeneity selects for niche breadth. For parasites, this theory predicts that parasite populations will evolve, or maintain, broader host ranges when selected in genetically diverse host populations relative to homogeneous host populations. To test this prediction, we selected the bacterial parasite Serratia marcescens to kill Caenorhabditis elegans in populations that were genetically heterogeneous (50% mix of two experimental genotypes) or homogeneous (100% of either genotype). After 20 rounds of selection, we compared the host range of selected parasites by measuring parasite fitness (i.e. virulence, the selected fitness trait) on the two focal host genotypes and on a novel host genotype. As predicted, heterogeneous host populations selected for parasites with a broader host range: these parasite populations gained or maintained virulence on all host genotypes. This result contrasted with selection in homogeneous populations of one host genotype. Here, host range contracted, with parasite populations gaining virulence on the focal host genotype and losing virulence on the novel host genotype. This pattern was not, however, repeated with selection in homogeneous populations of the second host genotype: these parasite populations did not gain virulence on the focal host genotype, nor did they lose virulence on the novel host genotype. Our results indicate that host heterogeneity can maintain broader host ranges in parasite populations. Individual host genotypes, however, vary in the degree to which they select for specialization in parasite populations.
Collapse
Affiliation(s)
- Amanda K Gibson
- Department of Biology, Emory University, Atlanta, GA 30322
- Department of Biology, University of Virginia, Virginia 22902, USA
| | | | | | - Julie Lin
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Raythe Owens
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Arooj Khalid
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Levi T. Morran
- Department of Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
59
|
Peters A, Vetter P, Guitart C, Lotfinejad N, Pittet D. Understanding the emerging coronavirus: what it means for health security and infection prevention. J Hosp Infect 2020; 104:440-448. [PMID: 32145323 PMCID: PMC7124368 DOI: 10.1016/j.jhin.2020.02.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Affiliation(s)
- A Peters
- Infection Control Programme, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - P Vetter
- Division of Infectious Diseases, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - C Guitart
- Infection Control Programme, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - N Lotfinejad
- Department of Research, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - D Pittet
- Infection Control Programme, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland.
| |
Collapse
|
60
|
Thomas F, Giraudeau M, Dheilly NM, Gouzerh F, Boutry J, Beckmann C, Biro PA, Hamede R, Abadie J, Labrut S, Bieuville M, Misse D, Bramwell G, Schultz A, Le Loc'h G, Vincze O, Roche B, Renaud F, Russell T, Ujvari B. Rare and unique adaptations to cancer in domesticated species: An untapped resource? Evol Appl 2020. [DOI: 10.1111/eva.12920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Frédéric Thomas
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Mathieu Giraudeau
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook NY USA
| | - Flora Gouzerh
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Justine Boutry
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Christa Beckmann
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
- School of Science Western Sydney UniversityParramatta NSW Australia
| | - Peter A. Biro
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
| | - Rodrigo Hamede
- School of Natural Sciences University of Tasmania Hobart TAS Australia
| | | | | | - Margaux Bieuville
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Dorothée Misse
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Georgina Bramwell
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
| | - Aaron Schultz
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
| | - Guillaume Le Loc'h
- Clinique des NAC et de la Faune Sauvage, UMR IHAP École Nationale Vétérinaire de Toulouse Toulouse France
| | - Orsolya Vincze
- Hungarian Department of Biology and Ecology Evolutionary Ecology Group Babeş‐Bolyai University Cluj‐Napoca Romania
- Department of Tisza Research MTA Centre for Ecological Research‐DRI Debrecen Hungary
| | - Benjamin Roche
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- Unité mixte Internationale de Modélisation Mathématique et Informatique des Systèmes Complexes UMI IRD/Sorbonne UniversitéUMMISCO Bondy France
| | - François Renaud
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Tracey Russell
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| | - Beata Ujvari
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
- School of Natural Sciences University of Tasmania Hobart TAS Australia
| |
Collapse
|
61
|
Gupta P, Robin VV, Dharmarajan G. Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2020; 99:65. [PMID: 33622992 PMCID: PMC7371965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 08/23/2024]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease mediated extinctions and wildlife epidemics. We then focus on elucidating how host-parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
Affiliation(s)
- Pooja Gupta
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29801, USA.
| | | | | |
Collapse
|
62
|
Orlansky S, Ben-Ami F. Genetic resistance and specificity in sister taxa of Daphnia: insights from the range of host susceptibilities. Parasit Vectors 2019; 12:545. [PMID: 31747976 PMCID: PMC6864995 DOI: 10.1186/s13071-019-3795-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 11/07/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Host genetic diversity can affect various aspects of host-parasite interactions, including individual-level effects on parasite infectivity, production of transmission stages and virulence, as well as population-level effects that reduce disease spread and prevalence, and buffer against widespread epidemics. However, a key aspect of this diversity, the genetic variation in host susceptibility, has often been neglected in interpreting empirical data and in theoretical studies. Daphnia similis naturally coexists with its competitor Daphnia magna and is more resistant to the endoparasitic microsporidium Hamiltosporidium tvaerminnensis, as suggested by a previous survey of waterbodies, which detected this parasite in D. magna, but not in D. similis. However, under laboratory conditions D. similis was sometimes found to be susceptible. We therefore asked if there is genetic variation for disease trait expression, and if the genetic variation in disease traits in D. similis is different from that of D. magna. METHODS We exposed ten clones of D. similis and ten clones of D. magna to three isolates of H. tvaerminnensis, and measured infection rates, parasite-induced host mortality and parasite spore production. RESULTS The two Daphnia species differ in the range and variation of their susceptibilities. The parasite produced on average two-fold more spores when growing in D. magna clones than in D. similis clones. CONCLUSIONS We confirm that D. similis is indeed much more resistant than D. magna and suggest that this could create a dilution effect in habitats where both species coexist.
Collapse
Affiliation(s)
- Sigal Orlansky
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Frida Ben-Ami
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
63
|
Mondal D, Dutta S, Chakrabarty U, Mallik A, Mandal N. Development and characterization of white spot disease linked microsatellite DNA markers in Penaeus monodon, and their application to determine the population diversity, cluster and structure. J Invertebr Pathol 2019; 168:107275. [PMID: 31715182 DOI: 10.1016/j.jip.2019.107275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 11/15/2022]
Abstract
Pathogens that are introduced suddenly to natural populations can potentially cause quick changes to the genetics and diversity of the host. In the past three decades, white spot syndrome virus (WSSV) has caused damaging epizootics in Penaeus monodon populations. In this study, we developed WSSV resistance- or susceptibility-linked microsatellite DNA markers, and their effectiveness was validated experimentally. WSSV-resistant marker linked retroelements and genes that may have an important role in WSSV-resistance phenomena were partially identified. Allelic data of 1,694 samples from nine distinct geographic locations in India were revealed that populations from Digha and Kochi were highly dispersed, and also showed higher genetic diversity, higher population diversity, and lower prevalence of disease resistance. A very high level of gene flow was observed within all populations and a very high level of genetic variation was present within populations. Two genetically admixture population clusters were estimated in nature. WSSV-resistance has a significant link with genetic diversity, population cluster and population diversity. Microsatellite marker analysis characterized genetic divergence, diversity and structure among wild populations.
Collapse
Affiliation(s)
- Debabrata Mondal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata 700054, West Bengal, India
| | - Sourav Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata 700054, West Bengal, India
| | - Usri Chakrabarty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata 700054, West Bengal, India
| | - Ajoy Mallik
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata 700054, West Bengal, India; Department of Zoology, Dinabandhu Mahavidyalaya, Bongaon, North 24 Parganas, West Bengal, India
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
64
|
Cabalzar AP, Fields PD, Kato Y, Watanabe H, Ebert D. Parasite-mediated selection in a natural metapopulation of Daphnia magna. Mol Ecol 2019; 28:4770-4785. [PMID: 31591747 DOI: 10.1111/mec.15260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 01/03/2023]
Abstract
Parasite-mediated selection varying across time and space in metapopulations is expected to result in host local adaptation and the maintenance of genetic diversity in disease-related traits. However, nonadaptive processes like migration and extinction-(re)colonization dynamics might interfere with adaptive evolution. Understanding how adaptive and nonadaptive processes interact to shape genetic variability in life-history and disease-related traits can provide important insights into their evolution in subdivided populations. Here we investigate signatures of spatially fluctuating, parasite-mediated selection in a natural metapopulation of Daphnia magna. Host genotypes from infected and uninfected populations were genotyped at microsatellite markers, and phenotyped for life-history and disease traits in common garden experiments. Combining phenotypic and genotypic data a QST -FST -like analysis was conducted to test for signatures of parasite mediated selection. We observed high variation within and among populations for phenotypic traits, but neither an indication of host local adaptation nor a cost of resistance. Infected populations have a higher gene diversity (Hs) than uninfected populations and Hs is strongly positively correlated with fitness. These results suggest a strong parasite effect on reducing population level inbreeding. We discuss how stochastic processes related to frequent extinction-(re)colonization dynamics as well as host and parasite migration impede the evolution of resistance in the infected populations. We suggest that the genetic and phenotypic patterns of variation are a product of dynamic changes in the host gene pool caused by the interaction of colonization bottlenecks, inbreeding, immigration, hybrid vigor, rare host genotype advantage and parasitism. Our study highlights the effect of the parasite in ameliorating the negative fitness consequences caused by the high drift load in this metapopulation.
Collapse
Affiliation(s)
- Andrea P Cabalzar
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Yasuhiko Kato
- Department of Biotechnology, Division of Advance Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Division of Advance Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,Tvärminne Zoological Station, Tvärminne, Finland
| |
Collapse
|
65
|
Žlabravec Z, Krapež U, Slavec B, Vrezec A, Rojs OZ, Račnik J. Detection and Phylogenetic Analysis of Herpesviruses Detected in Wild Owls in Slovenia. Avian Dis 2019; 62:397-403. [PMID: 31119924 DOI: 10.1637/11899-051418-reg.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 11/05/2022]
Abstract
Herpesvirus (HV) was detected using PCR in the organs of eight of 55 wild owls (14.5%) from seven species that were found dead in various locations in Slovenia between 1995 and 2015. HV was detected in three species: the Eurasian eagle owl (Bubo bubo), Ural owl (Strix uralensis), and long-eared owl (Asio otus). Phylogenetic analysis of partial DNA polymerase gene nucleotide sequences showed that the detected HVs are similar to the avian and mammal alphaherpesviruses. Two sequences were very similar to known bird HV sequences. One sequence was identical to the columbid herpesvirus 1 (CoHV1) sequence, and the other was very similar to the gallid herpesvirus 2 (GaHV2) sequence. The phylogenetic tree revealed a lower similarity of the other six analyzed Slovenian sequences with the sequences of alphaherpesviruses of birds and mammals. This is the first study to report the detection of different HVs in owls.
Collapse
Affiliation(s)
- Zoran Žlabravec
- Institute for Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Uroš Krapež
- Institute for Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Brigita Slavec
- Institute for Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Al Vrezec
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.,Slovenian Museum of Natural History, Prešernova 20, 1000 Ljubljana, Slovenia
| | - Olga Zorman Rojs
- Institute for Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Jožko Račnik
- Institute for Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia,
| |
Collapse
|
66
|
Patterns of distribution, population genetics and ecological requirements of field-occurring resistant and susceptible Pseudosuccinea columella snails to Fasciola hepatica in Cuba. Sci Rep 2019; 9:14359. [PMID: 31591422 PMCID: PMC6779948 DOI: 10.1038/s41598-019-50894-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 09/20/2019] [Indexed: 11/09/2022] Open
Abstract
Pseudosuccinea columella snails transmit the trematode Fasciola hepatica, but in Cuba, six naturally occurring populations successfully resist parasite infection. Here, we present an updated distribution of P. columella in Cuba; 68 positive sites with the earliest records more abundant in west-central Cuba and with east-central populations generally corresponding to the newest samples. No records were found farther east. The IPA site reported 10.5% prevalence of F. hepatica-infected snails. Population genetics, studied through microsatellites, showed low allelic and multilocus genotypic richness (MLGT), mainly in susceptible populations, strong deviations from panmixia and high self-fertilization rates. Susceptible individuals were grouped in one major cluster containing the majority of MLGT, and two independent clusters grouped the MLGT of resistant individuals from western and central populations, respectively. From these, we propose that several introductions of P. columella occurred in Cuba, primarily in the west, with the early arrivals deriving on the resistant populations. A more recent introduction of susceptible P. columella carrying MLGT T and Y may have occurred, where the latter spread quickly through the island and possibly increase the risk of parasite transmission in Cuba since all snails naturally infected with F. hepatica were carriers of the MLGT Y. Interestingly, even though resistant populations are highly diverse and are likely the oldest within Cuba, they are only found in six localities characterized by soft (total hardness, TH = 6.3 ± 1.03°d) and slightly acidic (pH = 6.2 ± 0.12) waters with low richness in snail species (3.2 ± 1.02). This tendency was also observed in a two-year follow-up ecological study that was conducted on a farm where both phenotypes occurred in sympatry; colonization events by resistant over susceptible snails coincided with a reduction in the pH and TH of the water. A comparison of life traits in susceptible and resistant isolates reared at two different pH/TH conditions (5.9/4°d or 7.8/14°d) showed that low pH/TH negatively affects P. columella, irrespective of the phenotype. However, evidence of higher tolerance (higher survival, life expectancy, egg viability) to such conditions was observed in resistant isolates. Finally, we speculate that the limited distribution of resistant populations might be related to a better exploitation of sites that are less suitable to snails (thus, with lower competition), rather than to a differential ecological restriction to specific environmental conditions from susceptible P. columella.
Collapse
|
67
|
The Absence of Nosema bombi in Bumblebees (Bombus spp.) on Farms in Michigan. AMERICAN MIDLAND NATURALIST 2019. [DOI: 10.1674/0003-0031-182.2.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
68
|
Ekroth AKE, Rafaluk-Mohr C, King KC. Host genetic diversity limits parasite success beyond agricultural systems: a meta-analysis. Proc Biol Sci 2019; 286:20191811. [PMID: 31551053 DOI: 10.1098/rspb.2019.1811] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is evidence that human activities are reducing the population genetic diversity of species worldwide. Given the prediction that parasites better exploit genetically homogeneous host populations, many species could be vulnerable to disease outbreaks. While agricultural studies have shown the devastating effects of infectious disease in crop monocultures, the widespread nature of this diversity-disease relationship remains unclear in natural systems. Here, we provide broad support that high population genetic diversity can protect against infectious disease by conducting a meta-analysis of 23 studies, with a total of 67 effect sizes. We found that parasite functional group (micro- or macroparasite) affects the presence of the effect and study setting (field or laboratory-based environment) influences the magnitude. Our study also suggests that host genetic diversity is overall a robust defence against infection regardless of host reproduction, parasite host range, parasite diversity, virulence and the method by which parasite success was recorded. Combined, these results highlight the importance of monitoring declines of host population genetic diversity as shifts in parasite distributions could have devastating effects on at-risk populations in nature.
Collapse
Affiliation(s)
| | | | - Kayla C King
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
69
|
Lettuce Chlorosis Virus Disease: A New Threat to Cannabis Production. Viruses 2019; 11:v11090802. [PMID: 31470681 PMCID: PMC6784094 DOI: 10.3390/v11090802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
In a survey conducted in Cannabis sativa L. (cannabis) authorized farms in Israel, plants showed disease symptoms characteristic of nutrition deprivation. Interveinal chlorosis, brittleness, and occasional necrosis were observed in older leaves. Next generation sequencing analysis of RNA extracted from symptomatic leaves revealed the presence of lettuce chlorosis virus (LCV), a crinivirus that belongs to the Closteroviridae family. The complete viral genome sequence was obtained using RT-PCR and Rapid Amplification of cDNA Ends (RACE) PCR followed by Sanger sequencing. The two LCV RNA genome segments shared 85-99% nucleotide sequence identity with LCV isolates from GenBank database. The whitefly Bemisia tabaci Middle Eastern Asia Minor1 (MEAM1) biotype transmitted the disease from symptomatic cannabis plants to un-infected 'healthy' cannabis, Lactuca sativa, and Catharanthus roseus plants. Shoots from symptomatic cannabis plants, used for plant propagation, constituted a primary inoculum of the disease. To the best of our knowledge, this is the first report of cannabis plant disease caused by LCV.
Collapse
|
70
|
Flatau R, Segoli M, Khokhlova I, Hawlena H. Wolbachia's role in mediating its flea's reproductive success differs according to flea origin. FEMS Microbiol Ecol 2019; 94:5068685. [PMID: 30107579 DOI: 10.1093/femsec/fiy157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Endosymbionts-microbes that live within and engage in prolonged and intimate associations with their hosts-are gaining recognition for their direct impact on plant and animal reproduction. Here we used the overlooked Wolbachia-flea system to explore the possibility that endosymbionts may also play a role as mediators in shaping the reproductive success of their hosts. We simultaneously quantified the Wolbachia density in field- and laboratory-originated fleas that fed and mated on rodents for either 5 or 10 days and assessed their body size and current reproductive success. By combining multigroup analysis and model selection approaches, we teased apart the contribution of the direct effects of the flea's physiological age and body size and the mediation effect of its Wolbachia endosymbionts on flea reproductive success, and we showed that the latter was stronger than the former. However, interestingly, the mediation effect was manifested only in laboratory-originated fleas, for which the increase in Wolbachia with age translated into lower reproductive success. These results suggest that some well-supported phenomena, such as aging effects, may be driven by endosymbionts and show once again that the role of endosymbionts in shaping the reproductive success of their host depends on their selective environment.
Collapse
Affiliation(s)
- Ron Flatau
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer campus, 84990, Midreshet Ben-Gurion, Israel
| | - Michal Segoli
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer campus, 84990, Midreshet Ben-Gurion, Israel
| | - Irina Khokhlova
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer campus, 84990, Midreshet Ben-Gurion, Israel
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer campus, 84990, Midreshet Ben-Gurion, Israel
| |
Collapse
|
71
|
Dibble CJ, Rudolf VHW. Phenotype-Environment Matching Predicts Both Positive and Negative Effects of Intraspecific Variation. Am Nat 2019; 194:47-58. [DOI: 10.1086/703483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
72
|
Miller WL, Walter WD. Spatial heterogeneity of prion gene polymorphisms in an area recently infected by chronic wasting disease. Prion 2019; 13:65-76. [PMID: 30777498 PMCID: PMC7000142 DOI: 10.1080/19336896.2019.1583042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genetic variability in the prion protein (Prnp) gene influences host susceptibility to many pathogenic prion diseases. Understanding the distribution of susceptible Prnp variants and determining factors influencing spatial genetic patterns are important components of many chronic wasting disease mitigation strategies. Here, we describe Prnp variability in white-tailed deer (Odocoileus virginianus) from the Mid-Atlantic region of the United States of America, an area with a recent history of infection and low disease incidence. This population is characterized by lower rates of polymorphism and significantly higher frequencies of the more susceptible 96GG genotype compared to previously surveyed populations. The prevalence of the most susceptible genotypes at disease-associated loci did vary among subregions, indicating that populations have innate differences in genotype-dictated susceptibility.
Collapse
Affiliation(s)
- William L Miller
- a Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management, Intercollege Graduate Degree Program in Ecology , The Pennsylvania State University , University Park , PA , USA
| | - W David Walter
- b U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit , The Pennsylvania State University , University Park , PA , USA
| |
Collapse
|
73
|
Frenken T, Agha R, Schmeller DS, van West P, Wolinska J. Biological Concepts for the Control of Aquatic Zoosporic Diseases. Trends Parasitol 2019; 35:571-582. [PMID: 31076352 DOI: 10.1016/j.pt.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/26/2022]
Abstract
Aquatic zoosporic diseases are threatening global biodiversity and ecosystem services, as well as economic activities. Current means of controlling zoosporic diseases are restricted primarily to chemical treatments, which are usually harmful or likely to be ineffective in the long term. Furthermore, some of these chemicals have been banned due to adverse effects. As a result, there is a need for alternative methods with minimal side-effects on the ecosystem or environment. Here, we integrate existing knowledge of three poorly interconnected areas of disease research - amphibian conservation, aquaculture, and plankton ecology - and arrange it into seven biological concepts to control zoosporic diseases. These strategies may be less harmful and more sustainable than chemical approaches. However, more research is needed before safe application is possible.
Collapse
Affiliation(s)
- Thijs Frenken
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | - Ramsy Agha
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Dirk S Schmeller
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Pieter van West
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
74
|
Duxbury EML, Day JP, Maria Vespasiani D, Thüringer Y, Tolosana I, Smith SCL, Tagliaferri L, Kamacioglu A, Lindsley I, Love L, Unckless RL, Jiggins FM, Longdon B. Host-pathogen coevolution increases genetic variation in susceptibility to infection. eLife 2019; 8:e46440. [PMID: 31038124 PMCID: PMC6491035 DOI: 10.7554/elife.46440] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/07/2019] [Indexed: 12/31/2022] Open
Abstract
It is common to find considerable genetic variation in susceptibility to infection in natural populations. We have investigated whether natural selection increases this variation by testing whether host populations show more genetic variation in susceptibility to pathogens that they naturally encounter than novel pathogens. In a large cross-infection experiment involving four species of Drosophila and four host-specific viruses, we always found greater genetic variation in susceptibility to viruses that had coevolved with their host. We went on to examine the genetic architecture of resistance in one host species, finding that there are more major-effect genetic variants in coevolved host-pathogen interactions. We conclude that selection by pathogens has increased genetic variation in host susceptibility, and much of this effect is caused by the occurrence of major-effect resistance polymorphisms within populations.
Collapse
Affiliation(s)
- Elizabeth ML Duxbury
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Jonathan P Day
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Yannik Thüringer
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Ignacio Tolosana
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Sophia CL Smith
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Lucia Tagliaferri
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Altug Kamacioglu
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Imogen Lindsley
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Luca Love
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Robert L Unckless
- Department of Molecular BiosciencesUniversity of KansasLawrenceUnited States
| | - Francis M Jiggins
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Ben Longdon
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
- Centre for Ecology and Conservation, BiosciencesUniversity of Exeter (Penryn Campus)CornwallUnited Kingdom
| |
Collapse
|
75
|
Anacleto O, Cabaleiro S, Villanueva B, Saura M, Houston RD, Woolliams JA, Doeschl-Wilson AB. Genetic differences in host infectivity affect disease spread and survival in epidemics. Sci Rep 2019; 9:4924. [PMID: 30894567 PMCID: PMC6426847 DOI: 10.1038/s41598-019-40567-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 02/12/2019] [Indexed: 12/17/2022] Open
Abstract
Survival during an epidemic is partly determined by host genetics. While quantitative genetic studies typically consider survival as an indicator for disease resistance (an individual's propensity to avoid becoming infected or diseased), mortality rates of populations undergoing an epidemic are also affected by endurance (the propensity of diseased individual to survive the infection) and infectivity (i.e. the propensity of an infected individual to transmit disease). Few studies have demonstrated genetic variation in disease endurance, and no study has demonstrated genetic variation in host infectivity, despite strong evidence for considerable phenotypic variation in this trait. Here we propose an experimental design and statistical models for estimating genetic diversity in all three host traits. Using an infection model in fish we provide, for the first time, direct evidence for genetic variation in host infectivity, in addition to variation in resistance and endurance. We also demonstrate how genetic differences in these three traits contribute to survival. Our results imply that animals can evolve different disease response types affecting epidemic survival rates, with important implications for understanding and controlling epidemics.
Collapse
Affiliation(s)
- Osvaldo Anacleto
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos, Brazil.
| | - Santiago Cabaleiro
- Centro Tecnológico del Cluster de la Acuicultura (CETGA), A Coruña, Spain
| | | | - María Saura
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - John A Woolliams
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Andrea B Doeschl-Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
76
|
Stewart KA, Draaijer R, Kolasa MR, Smallegange IM. The role of genetic diversity in the evolution and maintenance of environmentally-cued, male alternative reproductive tactics. BMC Evol Biol 2019; 19:58. [PMID: 30777004 PMCID: PMC6379956 DOI: 10.1186/s12862-019-1385-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alternative reproductive tactics (ARTs) are taxonomically pervasive strategies adopted by individuals to maximize reproductive success within populations. Even for conditionally-dependent traits, consensus postulates most ARTs involve both genetic and environmental interactions (GEIs), but to date, quantifying genetic variation underlying the threshold disposing an individual to switch phenotypes in response to an environmental cue has been a difficult undertaking. Our study aims to investigate the origins and maintenance of ARTs within environmentally disparate populations of the microscopic bulb mite, Rhizoglyphus robini, that express 'fighter' and 'scrambler' male morphs mediated by a complex combination of environmental and genetic factors. RESULTS Using never-before-published individual genetic profiling, we found all individuals across populations are highly inbred with the exception of scrambler males in stressed environments. In fact within the poor environment, scrambler males and females showed no significant difference in genetic differentiation (Fst) compared to all other comparisons, and although fighters were highly divergent from the rest of the population in both poor or rich environments (e.g., Fst, STRUCTURE), fighters demonstrated approximately three times less genetic divergence from the population in poor environments. AMOVA analyses further corroborated significant genetic differentiation across subpopulations, between morphs and sexes, and among subpopulations within each environment. CONCLUSION Our study provides new insights into the origin of ARTs in the bulb mite, highlighting the importance of GEIs: genetic correlations, epistatic interactions, and sex-specific inbreeding depression across environmental stressors. Asymmetric reproductive output, coupled with the purging of highly inbred individuals during environmental oscillations, also facilitates genetic variation within populations, despite evidence for strong directional selection. This cryptic genetic variation also conceivably facilitates stable population persistence even in the face of spatially or temporally unstable environmental challenges. Ultimately, understanding the genetic context that maintains thresholds, even for conditionally-dependent ARTs, will enhance our understanding of within population variation and our ability to predict responses to selection.
Collapse
Affiliation(s)
- K A Stewart
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| | - R Draaijer
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - M R Kolasa
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Slawkowska 17 St., 31-016, Krakow, Poland
| | - I M Smallegange
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
77
|
Bower DS, Brannelly LA, McDonald CA, Webb RJ, Greenspan SE, Vickers M, Gardner MG, Greenlees MJ. A review of the role of parasites in the ecology of reptiles and amphibians. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12695] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Deborah S. Bower
- College of Science and Engineering; James Cook University; Townsville Queensland 4811 Australia
- School of Environmental and Rural Science; University of New England; Armidale New South Wales Australia
| | - Laura A. Brannelly
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Cait A. McDonald
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca New York USA
| | - Rebecca J. Webb
- College of Public Health, Medical and Veterinary Sciences; James Cook University; Townsville Queensland Australia
| | - Sasha E. Greenspan
- Department of Biological Sciences; University of Alabama; Tuscaloosa Alabama USA
| | - Mathew Vickers
- College of Science and Engineering; James Cook University; Townsville Queensland 4811 Australia
| | - Michael G. Gardner
- College of Science and Engineering; Flinders University; Adelaide South Australia Australia
- Evolutionary Biology Unit; South Australian Museum; Adelaide South Australia Australia
| | - Matthew J. Greenlees
- School of Life and Environmental Sciences; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
78
|
Mable BK. Conservation of adaptive potential and functional diversity: integrating old and new approaches. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1129-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
79
|
Penczykowski RM, Parratt SR, Barrès B, Sallinen SK, Laine AL. Manipulating host resistance structure reveals impact of pathogen dispersal and environmental heterogeneity on epidemics. Ecology 2018; 99:2853-2863. [PMID: 30289567 DOI: 10.1002/ecy.2526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/20/2018] [Indexed: 11/08/2022]
Abstract
Understanding how variation in hosts, parasites, and the environment shapes patterns of disease is key to predicting ecological and evolutionary outcomes of epidemics. Yet in spatially structured populations, variation in host resistance may be spatially confounded with variation in parasite dispersal and environmental factors that affect disease processes. To tease apart these disease drivers, we paired surveys of natural epidemics with experiments manipulating spatial variation in host susceptibility to infection. We mapped epidemics of the wind-dispersed powdery mildew pathogen Podosphaera plantaginis in five populations of its plant host, Plantago lanceolata. At 15 replicate sites within each population, we deployed groups of healthy potted 'sentinel' plants from five allopatric host lines. By tracking which sentinels became infected in the field and measuring pathogen connectivity and microclimate at those sites, we could test how variation in these factors affected disease when spatial variation in host resistance and soil conditions was minimized. We found that the prevalence and severity of sentinel infection varied over small spatial scales in the field populations, largely due to heterogeneity in pathogen prevalence on wild plants and unmeasured environmental factors. Microclimate was critical for disease spread only at the onset of epidemics, where humidity increased infection risk. Sentinels were more likely to become infected than initially healthy wild plants at a given field site. However, in a follow-up laboratory inoculation study we detected no significant differences between wild and sentinel plant lines in their qualitative susceptibility to pathogen isolates from the field populations, suggesting that primarily non-genetic differences between sentinel and wild hosts drove their differential infection rates in the field. Our study leverages a multi-faceted experimental approach to disentangle important biotic and abiotic drivers of disease patterns within wild populations.
Collapse
Affiliation(s)
- Rachel M Penczykowski
- Research Centre for Ecological Change, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Steven R Parratt
- Research Centre for Ecological Change, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Benoit Barrès
- Research Centre for Ecological Change, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Suvi K Sallinen
- Research Centre for Ecological Change, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Anna-Liisa Laine
- Research Centre for Ecological Change, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| |
Collapse
|
80
|
Parsche S, Lattorff HMG. The relative contributions of host density and genetic diversity on prevalence of a multi-host parasite in bumblebees. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Susann Parsche
- Institute of Biology, Molecular Ecology, Martin-Luther University Halle-Wittenberg, Hoher Weg, Halle (Saale), Germany
| | - H Michael G Lattorff
- Institute of Biology, Molecular Ecology, Martin-Luther University Halle-Wittenberg, Hoher Weg, Halle (Saale), Germany
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz, Leipzig, Germany
| |
Collapse
|
81
|
Siqueira JD, Dominguez-Bello MG, Contreras M, Lander O, Caballero-Arias H, Xutao D, Noya-Alarcon O, Delwart E. Complex virome in feces from Amerindian children in isolated Amazonian villages. Nat Commun 2018; 9:4270. [PMID: 30323210 PMCID: PMC6189175 DOI: 10.1038/s41467-018-06502-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/06/2018] [Indexed: 01/22/2023] Open
Abstract
The number of viruses circulating in small isolated human populations may be reduced by viral extinctions and rare introductions. Here we used viral metagenomics to characterize the eukaryotic virome in feces from healthy children from a large urban center and from three Amerindian villages with minimal outside contact. Numerous human enteric viruses, mainly from the Picornaviridae and Caliciviridae families, were sequenced from each of the sites. Multiple children from the same villages shed closely related viruses reflecting frequent transmission clusters. Feces of isolated villagers also contained multiple viral genomes of unknown cellular origin from the Picornavirales order and CRESS-DNA group and higher levels of nematode and protozoan DNA. Despite cultural and geographic isolation, the diversity of enteric human viruses was therefore not reduced in these Amazonian villages. Frequent viral introductions and/or increased susceptibility to enteric infections may account for the complex fecal virome of Amerindian children in isolated villages.
Collapse
Affiliation(s)
- Juliana D Siqueira
- Blood Systems Research Institute, San Francisco, CA, 94118, USA.,Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro, 20.231-050, Brazil
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology and of Anthropology, Rutgers University, New Brunswick, NJ, 08901-8554, USA
| | - Monica Contreras
- Center for Biophysics and Biochemistry, Venezuelan Institute of Scientific Research (IVIC), Caracas, 01204, Venezuela
| | - Orlana Lander
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, 1051, Venezuela
| | - Hortensia Caballero-Arias
- Department of Anthropology, Venezuelan Institute of Scientific Research (IVIC), Caracas, 01204, Venezuela
| | - Deng Xutao
- Blood Systems Research Institute, San Francisco, CA, 94118, USA.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, 94118, USA
| | - Oscar Noya-Alarcon
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, 1051, Venezuela.,Amazonic Center for Research and Control of Tropical Diseases (CAICET), Puerto Ayacucho, 7101, Venezuela
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, 94118, USA. .,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, 94118, USA.
| |
Collapse
|
82
|
Chabas H, Lion S, Nicot A, Meaden S, van Houte S, Moineau S, Wahl LM, Westra ER, Gandon S. Evolutionary emergence of infectious diseases in heterogeneous host populations. PLoS Biol 2018; 16:e2006738. [PMID: 30248089 PMCID: PMC6171948 DOI: 10.1371/journal.pbio.2006738] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/04/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022] Open
Abstract
The emergence and re-emergence of pathogens remains a major public health concern. Unfortunately, when and where pathogens will (re-)emerge is notoriously difficult to predict, as the erratic nature of those events is reinforced by the stochastic nature of pathogen evolution during the early phase of an epidemic. For instance, mutations allowing pathogens to escape host resistance may boost pathogen spread and promote emergence. Yet, the ecological factors that govern such evolutionary emergence remain elusive because of the lack of ecological realism of current theoretical frameworks and the difficulty of experimentally testing their predictions. Here, we develop a theoretical model to explore the effects of the heterogeneity of the host population on the probability of pathogen emergence, with or without pathogen evolution. We show that evolutionary emergence and the spread of escape mutations in the pathogen population is more likely to occur when the host population contains an intermediate proportion of resistant hosts. We also show that the probability of pathogen emergence rapidly declines with the diversity of resistance in the host population. Experimental tests using lytic bacteriophages infecting their bacterial hosts containing Clustered Regularly Interspaced Short Palindromic Repeat and CRISPR-associated (CRISPR-Cas) immune defenses confirm these theoretical predictions. These results suggest effective strategies for cross-species spillover and for the management of emerging infectious diseases. The probability that an epidemic will break out is highly dependent on the ability of the pathogen to acquire new adaptive mutations and to induce evolutionary emergence. Forecasting pathogen emergence thus requires a good understanding of the interplay between the epidemiology and evolution taking place at the onset of an outbreak. Here, we provide a comprehensive theoretical framework to analyze the impact of host population heterogeneity on the probability of pathogen evolutionary emergence. We use this model to predict the impact of the fraction of susceptible hosts, the inoculum size of the pathogen, and the diversity of host resistance on pathogen emergence. Our experiments using lytic bacteriophages and CRISPR-resistant bacteria support our theoretical predictions and demonstrate that manipulating the diversity of resistance alleles in a host population may be an effective way to limit the emergence of new pathogens.
Collapse
Affiliation(s)
- Hélène Chabas
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier – EPHE, Montpellier, France
| | - Sébastien Lion
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier – EPHE, Montpellier, France
| | - Antoine Nicot
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier – EPHE, Montpellier, France
| | - Sean Meaden
- ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - Stineke van Houte
- ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - Sylvain Moineau
- Département de biochimie, microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Canada
| | - Lindi M. Wahl
- Applied Mathematics, Western University, London, Ontario, Canada
| | - Edze R. Westra
- ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - Sylvain Gandon
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier – EPHE, Montpellier, France
- * E-mail:
| |
Collapse
|
83
|
Aktipis A, Maley CC. Cooperation and cheating as innovation: insights from cellular societies. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0421. [PMID: 29061894 DOI: 10.1098/rstb.2016.0421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2017] [Indexed: 02/06/2023] Open
Abstract
The capacity to innovate is often considered a defining feature of human societies, but it is not a capacity that is unique to human societies: innovation occurs in cellular societies as well. Cellular societies such as multicellular bodies and microbial communities, including the human microbiome, are capable of innovation in response to novel opportunities and threats. Multicellularity represents a suite of innovations for cellular cooperation, but multicellularity also opened up novel opportunities for cells to cheat, exploiting the infrastructure and resources of the body. Multicellular bodies evolve less quickly than the cells within them, leaving them vulnerable to cellular innovations that can lead to cancer and infections. In order to counter these threats, multicellular bodies deploy additional innovations including the adaptive immune system and the development of partnerships with preferred microbial partners. What can we learn from examining these innovations in cooperation and cheating in cellular societies? First, innovation in social systems involves a constant tension between novel mechanisms that enable greater size and complexity of cooperative entities and novel ways of cheating. Second, cultivating cooperation with partners who can rapidly and effectively innovate (such as microbes) is important for large entities including multicellular bodies. And third, multicellularity enabled cells to manage risk socially, allowing organisms to survive in challenging environments where life would otherwise be impossible. Throughout, we ask how insights from cellular societies might be translated into new innovations in human health and medicine, promoting and protecting the cellular cooperation that makes us viable multicellular organisms.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA .,Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA 94143, USA
| | - Carlo C Maley
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
84
|
Agha R, Gross A, Rohrlack T, Wolinska J. Adaptation of a Chytrid Parasite to Its Cyanobacterial Host Is Hampered by Host Intraspecific Diversity. Front Microbiol 2018; 9:921. [PMID: 29867832 PMCID: PMC5952108 DOI: 10.3389/fmicb.2018.00921] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023] Open
Abstract
Experimental evolution can be used to test for and characterize parasite and pathogen adaptation. We undertook a serial-passage experiment in which a single parasite population of the obligate fungal (chytrid) parasite Rhizophydium megarrhizum was maintained over a period of 200 days under different mono- and multiclonal compositions of its phytoplankton host, the bloom-forming cyanobacterium Planktothrix. Despite initially inferior performance, parasite populations under sustained exposure to novel monoclonal hosts experienced rapid fitness increases evidenced by increased transmission rates. This demonstrates rapid adaptation of chytrids to novel hosts and highlights their high evolutionary potential. In contrast, increased fitness was not detected in parasites exposed to multiclonal host mixtures, indicating that cyanobacterial intraspecific diversity hampers parasites adaptation. Significant increases in intensity of infection were observed in monoclonal and multiclonal treatments, suggesting high evolvability of traits involved in parasite attachment onto hosts (i.e., encystment). A comparison of the performance of evolved and unevolved (control) parasite populations against their common ancestral host did not reveal parasite attenuation. Our results exemplify the ability of chytrid parasites to adapt rapidly to new hosts, while providing experimental evidence that genetic diversity in host populations grants increased resistance to disease by hindering parasite adaptation.
Collapse
Affiliation(s)
- Ramsy Agha
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Alina Gross
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Thomas Rohrlack
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
85
|
Warburton EM, Vonhof MJ. From individual heterogeneity to population-level overdispersion: quantifying the relative roles of host exposure and parasite establishment in driving aggregated helminth distributions. Int J Parasitol 2018; 48:309-318. [DOI: 10.1016/j.ijpara.2017.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 01/25/2023]
|
86
|
Auld SKJR, Brand J. Simulated climate change, epidemic size, and host evolution across host-parasite populations. GLOBAL CHANGE BIOLOGY 2017; 23:5045-5053. [PMID: 28544153 DOI: 10.1111/gcb.13769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Climate change is causing warmer and more variable temperatures as well as physical flux in natural populations, which will affect the ecology and evolution of infectious disease epidemics. Using replicate seminatural populations of a coevolving freshwater invertebrate-parasite system (host: Daphnia magna, parasite: Pasteuria ramosa), we quantified the effects of ambient temperature and population mixing (physical flux within populations) on epidemic size and population health. Each population was seeded with an identical suite of host genotypes and dose of parasite transmission spores. Biologically reasonable increases in environmental temperature caused larger epidemics, and population mixing reduced overall epidemic size. Mixing also had a detrimental effect on host populations independent of disease. Epidemics drove parasite-mediated selection, leading to a loss of host genetic diversity, and mixed populations experienced greater evolution due to genetic drift over the season. These findings further our understanding of how diversity loss will reduce the host populations' capacity to respond to changes in selection, therefore stymying adaptation to further environmental change.
Collapse
Affiliation(s)
- Stuart K J R Auld
- Biological & Environmental Sciences, University of Stirling, Stirling, UK
| | - June Brand
- Biological & Environmental Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
87
|
Rogalski MA, Gowler CD, Shaw CL, Hufbauer RA, Duffy MA. Human drivers of ecological and evolutionary dynamics in emerging and disappearing infectious disease systems. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0043. [PMID: 27920388 DOI: 10.1098/rstb.2016.0043] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 01/03/2023] Open
Abstract
Humans have contributed to the increased frequency and severity of emerging infectious diseases, which pose a significant threat to wild and domestic species, as well as human health. This review examines major pathways by which humans influence parasitism by altering (co)evolutionary interactions between hosts and parasites on ecological timescales. There is still much to learn about these interactions, but a few well-studied cases show that humans influence disease emergence every step of the way. Human actions significantly increase dispersal of host, parasite and vector species, enabling greater frequency of infection in naive host populations and host switches. Very dense host populations resulting from urbanization and agriculture can drive the evolution of more virulent parasites and, in some cases, more resistant host populations. Human activities that reduce host genetic diversity or impose abiotic stress can impair the ability of hosts to adapt to disease threats. Further, evolutionary responses of hosts and parasites can thwart disease management and biocontrol efforts. Finally, in rare cases, humans influence evolution by eradicating an infectious disease. If we hope to fully understand the factors driving disease emergence and potentially control these epidemics we must consider the widespread influence of humans on host and parasite evolutionary trajectories.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Mary A Rogalski
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Camden D Gowler
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Clara L Shaw
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruth A Hufbauer
- College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
88
|
Abstract
Heterogeneity in host susceptibility is a key determinant of infectious disease dynamics but is rarely accounted for in assessment of disease control measures. Understanding how susceptibility is distributed in populations, and how control measures change this distribution, is integral to predicting the course of epidemics with and without interventions. Using multiple experimental and modeling approaches, we show that rainbow trout have relatively homogeneous susceptibility to infection with infectious hematopoietic necrosis virus and that vaccination increases heterogeneity in susceptibility in a nearly all-or-nothing fashion. In a simple transmission model with an R0 of 2, the highly heterogeneous vaccine protection would cause a 35 percentage-point reduction in outbreak size over an intervention inducing homogenous protection at the same mean level. More broadly, these findings provide validation of methodology that can help to reduce biases in predictions of vaccine impact in natural settings and provide insight into how vaccination shapes population susceptibility. Differences among individuals influence transmission and spread of infectious diseases as well as the effectiveness of control measures. Control measures, such as vaccines, may provide leaky protection, protecting all hosts to an identical degree, or all-or-nothing protection, protecting some hosts completely while leaving others completely unprotected. This distinction can have a dramatic influence on disease dynamics, yet this distribution of protection is frequently unaccounted for in epidemiological models and estimates of vaccine efficacy. Here, we apply new methodology to experimentally examine host heterogeneity in susceptibility and mode of vaccine action as distinct components influencing disease outcome. Through multiple experiments and new modeling approaches, we show that the distribution of vaccine effects can be robustly estimated. These results offer new experimental and inferential methodology that can improve predictions of vaccine effectiveness and have broad applicability to human, wildlife, and ecosystem health.
Collapse
|
89
|
Eastwood JR, Ribot RFH, Rollins LA, Buchanan KL, Walder K, Bennett ATD, Berg ML. Host heterozygosity and genotype rarity affect viral dynamics in an avian subspecies complex. Sci Rep 2017; 7:13310. [PMID: 29042596 PMCID: PMC5645371 DOI: 10.1038/s41598-017-13476-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/25/2017] [Indexed: 11/09/2022] Open
Abstract
Genetic diversity at community, population and individual levels is thought to influence the spread of infectious disease. At the individual level, inbreeding and heterozygosity are associated with increased risk of infection and disease severity. Host genotype rarity may also reduce infection risk if pathogens are co-adapted to common or local hosts, but to date, no studies have investigated the relative importance of genotype rarity and heterozygosity for infection in a wild, sexually reproducing vertebrate. With beak and feather disease virus (BFDV) infection in a wild parrot (Platycercus elegans), we show that both heterozygosity and genotype rarity of individual hosts predicted infection, but in contrasting ways. Heterozygosity was negatively associated with probability of infection, but not with infection load. In contrast, increased host genotype rarity was associated with lower viral load in infected individuals, but did not predict infection probability. These effects were largely consistent across subspecies, but were not evident at the population level. Subspecies and age were also strongly associated with infection. Our study provides novel insights into infection dynamics by quantifying rarity and diversity simultaneously. We elucidate roles that host genetic diversity can play in infection dynamics, with implications for understanding population divergence, intraspecific diversity and conservation.
Collapse
Affiliation(s)
- Justin R Eastwood
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3216, Victoria, Australia. .,School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia.
| | - Raoul F H Ribot
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3216, Victoria, Australia
| | - Lee Ann Rollins
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3216, Victoria, Australia
| | - Katherine L Buchanan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3216, Victoria, Australia
| | - Ken Walder
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, 3216, Victoria, Australia
| | - Andrew T D Bennett
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3216, Victoria, Australia
| | - Mathew L Berg
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3216, Victoria, Australia
| |
Collapse
|
90
|
Ecological and evolutionary approaches to managing honeybee disease. Nat Ecol Evol 2017; 1:1250-1262. [PMID: 29046562 PMCID: PMC5749923 DOI: 10.1038/s41559-017-0246-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022]
Abstract
Honeybee declines are a serious threat to global agricultural security and productivity. Although multiple factors contribute to these declines, parasites are a key driver. Disease problems in honeybees have intensified in recent years, despite increasing attention to addressing them. Here we argue that we must focus on the principles of disease ecology and evolution to understand disease dynamics, assess the severity of disease threats, and control these threats via honeybee management. We cover the ecological context of honeybee disease, including both host and parasite factors driving current transmission dynamics, and then discuss evolutionary dynamics including how beekeeping management practices may drive selection for more virulent parasites. We then outline how ecological and evolutionary principles can guide disease mitigation in honeybees, including several practical management suggestions for addressing short- and long-term disease dynamics and consequences. Multiple interacting factors have contributed to the rapid decline of honeybee populations worldwide. Here, the authors review the impact of parasites and pathogens, and how ecological and evolutionary principles can guide management practices.
Collapse
|
91
|
Nuismer SL. Rethinking Conventional Wisdom: Are Locally Adapted Parasites Ahead in the Coevolutionary Race? Am Nat 2017; 190:584-593. [PMID: 28937821 DOI: 10.1086/693455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The metaphors of the Red Queen and the arms race have inspired a large amount of research aimed at understanding the process of antagonistic coevolution between hosts and parasites. One approach that has been heavily used is to estimate the strength of parasite local adaptation using a reciprocal cross infection or transplant study. These studies frequently conclude that the locally adapted species is ahead in the coevolutionary race. Here, I use mathematical models to decompose parasite infectivity into components attributable to local versus global adaptation and to develop a robust index of which species is ahead in the coevolutionary race, which I term coevolutionary advantage. Computer simulations of coevolving host-parasite interactions demonstrate that because the magnitudes of local and global adaptation are largely independent, the link between the sign of local adaptation and coevolutionary advantage is tenuous. A consequence of the weak coupling between local adaptation and coevolutionary advantage is that the bulk of existing empirical studies do not sample enough populations for any reliable conclusions to be drawn. Together, these results suggest that the long-standing conventional wisdom holding that locally adapted parasites are ahead in the coevolutionary race should be reconsidered.
Collapse
|
92
|
Frenken T, Alacid E, Berger SA, Bourne EC, Gerphagnon M, Grossart HP, Gsell AS, Ibelings BW, Kagami M, Küpper FC, Letcher PM, Loyau A, Miki T, Nejstgaard JC, Rasconi S, Reñé A, Rohrlack T, Rojas-Jimenez K, Schmeller DS, Scholz B, Seto K, Sime-Ngando T, Sukenik A, Van de Waal DB, Van den Wyngaert S, Van Donk E, Wolinska J, Wurzbacher C, Agha R. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ Microbiol 2017; 19:3802-3822. [DOI: 10.1111/1462-2920.13827] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Thijs Frenken
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; Wageningen PB 6708 The Netherlands
| | - Elisabet Alacid
- Departament de Biologia Marina i Oceanografia; Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49; Barcelona 08003 Spain
| | - Stella A. Berger
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
| | - Elizabeth C. Bourne
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Straβe 6-8; Berlin D-14195 Germany
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301; Berlin 12587 Germany
| | - Mélanie Gerphagnon
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301; Berlin 12587 Germany
| | - Hans-Peter Grossart
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
- Institute for Biochemistry and Biology, Potsdam University, Maulbeerallee 2; Potsdam D-14476 Germany
| | - Alena S. Gsell
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; Wageningen PB 6708 The Netherlands
| | - Bas W. Ibelings
- Department F.-A. Forel for Environmental and Aquatic Sciences & Institute for Environmental Sciences; University of Geneva, 66 Boulevard Carl Vogt; Geneva 4 CH 1211 Switzerland
| | - Maiko Kagami
- Department of Environmental Sciences, Faculty of Science; Toho University, 2-2-1, Miyama; Funabashi Chiba 274-8510 Japan
| | - Frithjof C. Küpper
- Oceanlab, University of Aberdeen, Main Street; Newburgh Scotland AB41 6AA UK
| | - Peter M. Letcher
- Department of Biological Sciences; The University of Alabama, 300 Hackberry Lane; Tuscaloosa AL 35487 USA
| | - Adeline Loyau
- Department of System Ecotoxicology; Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15; 04318 Leipzig Germany
- Department of Conservation Biology; Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15; Leipzig 04318 Germany
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS; Toulouse France
| | - Takeshi Miki
- Institute of Oceanography; National Taiwan University, No.1 Section 4, Roosevelt Road; Taipei 10617 Taiwan
- Research Center for Environmental Changes; Academia Sinica, No.128 Section 2, Academia Road, Nankang; Taipei 11529 Taiwan
| | - Jens C. Nejstgaard
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
| | - Serena Rasconi
- WasserCluster Lunz - Biological Station; Inter-University Centre for Aquatic Ecosystem Research, A-3293 Lunz am See; Austria
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia; Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49; Barcelona 08003 Spain
| | - Thomas Rohrlack
- Faculty of Environmental Sciences and Natural Resource Management; Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås; Norway
| | - Keilor Rojas-Jimenez
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
- Universidad Latina de Costa Rica, Campus San Pedro, Apdo; San Jose 10138-1000 Costa Rica
| | - Dirk S. Schmeller
- Department of Conservation Biology; Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15; Leipzig 04318 Germany
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS; Toulouse France
| | - Bettina Scholz
- BioPol ehf, Einbúastig 2, Skagaströnd 545; Iceland
- Faculty of Natural Resource Sciences; University of Akureyri, Borgir v. Nordurslod; Akureyri IS 600 Iceland
| | - Kensuke Seto
- Department of Environmental Sciences, Faculty of Science; Toho University, 2-2-1, Miyama; Funabashi Chiba 274-8510 Japan
- Sugadaira Montane Research Center; University of Tsukuba, 1278-294, Sugadaira-Kogen; Ueda, Nagano, 386-2204 Japan
| | - Télesphore Sime-Ngando
- Université Clermont Auvergne, UMR CNRS 6023 LMGE, Laboratoire Microorganismes: Génome et Environnement (LMGE); Campus Universitaire des Cézeaux, Impasse Amélie Murat 1, CS 60026, Aubière, 63178 France
| | - Assaf Sukenik
- Kinneret Limnological Laboratory; Israel Oceanographic & Limnological Research, P.O.Box 447; Migdal, 14950 Israel
| | - Dedmer B. Van de Waal
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; Wageningen PB 6708 The Netherlands
| | - Silke Van den Wyngaert
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
| | - Ellen Van Donk
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; Wageningen PB 6708 The Netherlands
- Department of Biology; University of Utrecht, Padualaan 8; Utrecht TB 3508 The Netherlands
| | - Justyna Wolinska
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301; Berlin 12587 Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straβe 1-3; Berlin, 14195 Germany
| | - Christian Wurzbacher
- Department of Biological and Environmental Sciences; University of Gothenburg, Box 461; Göteborg, 405 30 Sweden
- Gothenburg Global Biodiversity Centre, Box 461; Göteborg, SE-405 30 Sweden
| | - Ramsy Agha
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301; Berlin 12587 Germany
| |
Collapse
|
93
|
de la Mata R, Hood S, Sala A. Insect outbreak shifts the direction of selection from fast to slow growth rates in the long-lived conifer Pinus ponderosa. Proc Natl Acad Sci U S A 2017; 114:7391-7396. [PMID: 28652352 PMCID: PMC5514711 DOI: 10.1073/pnas.1700032114] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long generation times limit species' rapid evolution to changing environments. Trees provide critical global ecosystem services, but are under increasing risk of mortality because of climate change-mediated disturbances, such as insect outbreaks. The extent to which disturbance changes the dynamics and strength of selection is unknown, but has important implications on the evolutionary potential of tree populations. Using a 40-y-old Pinus ponderosa genetic experiment, we provide rare evidence of context-dependent fluctuating selection on growth rates over time in a long-lived species. Fast growth was selected at juvenile stages, whereas slow growth was selected at mature stages under strong herbivory caused by a mountain pine beetle (Dendroctonus ponderosae) outbreak. Such opposing forces led to no net evolutionary response over time, thus providing a mechanism for the maintenance of genetic diversity on growth rates. Greater survival to mountain pine beetle attack in slow-growing families reflected, in part, a host-based life-history trade-off. Contrary to expectations, genetic effects on tree survival were greatest at the peak of the outbreak and pointed to complex defense responses. Our results suggest that selection forces in tree populations may be more relevant than previously thought, and have implications for tree population responses to future environments and for tree breeding programs.
Collapse
Affiliation(s)
- Raul de la Mata
- Division of Biological Sciences, University of Montana, Missoula, MT 59812;
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada T6G 2H1
| | - Sharon Hood
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
- Rocky Mountain Research Station, Fire, Fuel, and Smoke Science Program, US Department of Agriculture Forest Service, Missoula, MT 59808
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| |
Collapse
|
94
|
Recent evolution of extreme cestode growth suppression by a vertebrate host. Proc Natl Acad Sci U S A 2017; 114:6575-6580. [PMID: 28588142 DOI: 10.1073/pnas.1620095114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parasites can be a major cause of natural selection on hosts, which consequently evolve a variety of strategies to avoid, eliminate, or tolerate infection. When ecologically similar host populations present disparate infection loads, this natural variation can reveal immunological strategies underlying adaptation to infection and population divergence. For instance, the tapeworm Schistocephalus solidus persistently infects 0-80% of threespine stickleback (Gasterosteus aculeatus) in lakes on Vancouver Island. To test whether these heterogeneous infection rates result from evolved differences in immunity, we experimentally exposed laboratory-reared fish from ecologically similar high-infection and no-infection populations to controlled doses of Schistocephalus We observed heritable between-population differences in several immune traits: Fish from the naturally uninfected population initiated a stronger granulocyte response to Schistocephalus infection, and their granulocytes constitutively generate threefold more reactive oxygen species in cell culture. Despite these immunological differences, Schistocephalus was equally successful at establishing initial infections in both host populations. However, the no-infection fish dramatically suppressed tapeworm growth relative to high-infection fish, and parasite size was intermediate in F1 hybrid hosts. Our results show that stickleback recently evolved heritable variation in their capacity to suppress helminth growth by two orders of magnitude. Data from many natural populations indicate that growth suppression is widespread but not universal and, when present, is associated with reduced infection prevalence. Host suppression of helminth somatic growth may be an important immune strategy that aids in parasite clearance or in mitigating the fitness costs of persistent infection.
Collapse
|
95
|
McKnight DT, Schwarzkopf L, Alford RA, Bower DS, Zenger KR. Effects of emerging infectious diseases on host population genetics: a review. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0974-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
96
|
Campbell LJ, Head ML, Wilfert L, Griffiths AGF. An ecological role for assortative mating under infection? CONSERV GENET 2017; 18:983-994. [PMID: 32009857 PMCID: PMC6961493 DOI: 10.1007/s10592-017-0951-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/01/2017] [Indexed: 11/29/2022]
Abstract
Wildlife diseases are emerging at a higher rate than ever before meaning that understanding their potential impacts is essential, especially for those species and populations that may already be of conservation concern. The link between population genetic structure and the resistance of populations to disease is well understood: high genetic diversity allows populations to better cope with environmental changes, including the outbreak of novel diseases. Perhaps following this common wisdom, numerous empirical and theoretical studies have investigated the link between disease and disassortative mating patterns, which can increase genetic diversity. Few however have looked at the possible link between disease and the establishment of assortative mating patterns. Given that assortative mating can reduce genetic variation within a population thus reducing the adaptive potential and long-term viability of populations, we suggest that this link deserves greater attention, particularly in those species already threatened by a lack of genetic diversity. Here, we summarise the potential broad scale genetic implications of assortative mating patterns and outline how infection by pathogens or parasites might bring them about. We include a review of the empirical literature pertaining to disease-induced assortative mating. We also suggest future directions and methodological improvements that could advance our understanding of how the link between disease and mating patterns influences genetic variation and long-term population viability.
Collapse
Affiliation(s)
- L. J. Campbell
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE UK
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY UK
| | - M. L. Head
- Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT Australia
| | - L. Wilfert
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE UK
| | - A. G. F. Griffiths
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE UK
- FoAM Kernow, Studio E, Jubilee Warehouse, Commercial Road, Penryn, Cornwall TR10 8FG UK
| |
Collapse
|
97
|
|
98
|
Gauffre-Autelin P, von Rintelen T, Stelbrink B, Albrecht C. Recent range expansion of an intermediate host for animal schistosome parasites in the Indo-Australian Archipelago: phylogeography of the freshwater gastropod Indoplanorbis exustus in South and Southeast Asia. Parasit Vectors 2017; 10:126. [PMID: 28264699 PMCID: PMC5339995 DOI: 10.1186/s13071-017-2043-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/17/2017] [Indexed: 03/13/2024] Open
Abstract
Background The planorbid snail Indoplanorbis exustus is the sole intermediate host for the Schistosoma indicum species group, trematode parasites responsible for cattle schistosomiasis and human cercarial dermatitis. This freshwater snail is widely distributed in Southern Asia, ranging from Iran to China eastwards including India and from the southeastern Himalayas to Southeast Asia southwards. The veterinary and medical importance of this snail explains the interest in understanding its geographical distribution patterns and evolutionary history. In this study, we used a large and comprehensive sampling throughout Indo-Malaya, including specimens from South India and Indonesia, areas that have been formerly less studied. Results The phylogenetic inference revealed five highly divergent clades (genetic distances among clades: 4.4–13.9%) that are morphologically indistinguishable, supporting the assumption that this presumed nominal species may represent a cryptic species complex. The species group may have originated in the humid subtropical plains of Nepal or in southern adjacent regions in the Early Miocene. The major cladogenetic events leading to the fives clades occurred successively from the Early Miocene to the Early Pleistocene, coinciding with major periods of monsoonal intensification associated with major regional paleogeographic events in the Miocene and repeated climate changes due to the Plio-Pleistocene climatic oscillations. Our coverage of the Indo-Australian Archipelago (IAA) highlights the presence of a single clade there. Contrary to expectations, an AMOVA did not reveal any population genetic structure among islands or along a widely recognised zoogeographical regional barrier, suggesting a recent colonisation independent of natural biogeographical constraints. Neutrality tests and mismatch distributions suggested a sudden demographic and spatial population expansion that could have occurred naturally in the Pleistocene or may possibly result of a modern colonisation triggered by anthropogenic activities. Conclusions Even though Indoplanorbis is the main focus of this study, our findings may also have important implications for fully understanding its role in hosting digenetic trematodes. The existence of a cryptic species complex, the historical phylogeographical patterns and the recent range expansion in the IAA provide meaningful insights to the understanding and monitoring of the parasites potential spread. It brings a substantial contribution to veterinary and public health issues. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2043-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Thomas von Rintelen
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Björn Stelbrink
- Department of Animal Ecology and Systematics, Justus Liebig University, Giessen, Germany
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University, Giessen, Germany
| |
Collapse
|
99
|
Higher immunocompetence is associated with higher genetic diversity in feral honey bee colonies (Apis mellifera). CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0942-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
100
|
Lounnas M, Correa AC, Vázquez AA, Dia A, Escobar JS, Nicot A, Arenas J, Ayaqui R, Dubois MP, Gimenez T, Gutiérrez A, González-Ramírez C, Noya O, Prepelitchi L, Uribe N, Wisnivesky-Colli C, Yong M, David P, Loker ES, Jarne P, Pointier JP, Hurtrez-Boussès S. Self-fertilization, long-distance flash invasion and biogeography shape the population structure ofPseudosuccinea columellaat the worldwide scale. Mol Ecol 2017; 26:887-903. [DOI: 10.1111/mec.13984] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/11/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022]
Affiliation(s)
- M. Lounnas
- MIVEGEC; UMR IRD 224 CNRS 5290 UM1-UM2; 911 Avenue Agropolis, BP 64501 34394 Montpellier Cedex 5 France
| | - A. C. Correa
- MIVEGEC; UMR IRD 224 CNRS 5290 UM1-UM2; 911 Avenue Agropolis, BP 64501 34394 Montpellier Cedex 5 France
| | - A. A. Vázquez
- MIVEGEC; UMR IRD 224 CNRS 5290 UM1-UM2; 911 Avenue Agropolis, BP 64501 34394 Montpellier Cedex 5 France
- Laboratorio de Malacología; Instituto de Medicina Tropical Pedro Kourí; Apartado Postal 601, Marianao 13 La Habana Cuba
| | - A. Dia
- MIVEGEC; UMR IRD 224 CNRS 5290 UM1-UM2; 911 Avenue Agropolis, BP 64501 34394 Montpellier Cedex 5 France
| | - J. S. Escobar
- Vidarium Nutrition, Health and Wellness Research Center; Grupo Empresarial Nutresa; Calle 8 sur #50-67 Medellín Colombia
| | - A. Nicot
- MIVEGEC; UMR IRD 224 CNRS 5290 UM1-UM2; 911 Avenue Agropolis, BP 64501 34394 Montpellier Cedex 5 France
| | - J. Arenas
- Facultad de Biología Marina; Universidad Científica del Sur; Lima Perú
| | - R. Ayaqui
- Departamento de Microbiología y Patología de la; Facultad de Medicina de la Universidad Nacional de San Agustín; Arequipa Perú
| | - M. P. Dubois
- Centre d'Ecologie Fonctionnelle et d'Evolution; UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE; 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - T. Gimenez
- Departamento de Parasitología; Facultad de Ciencias Veterinarias; Universidad Nacional de Asunción; Casilla 1061 San Lorenzo Paraguay
| | - A. Gutiérrez
- Laboratorio de Malacología; Instituto de Medicina Tropical Pedro Kourí; Apartado Postal 601, Marianao 13 La Habana Cuba
| | - C. González-Ramírez
- Laboratorio de Investigaciones Parasitológicas ‘Dr Jesús Moreno Rangel’ Cátedra de Parasitología; Departamento de Microbiología y Parasitología; Facultad de Farmacia y Bioanálisis; Universidad de los Andes; Urb. Campo de Oro 5101 Mérida Venezuela
| | - O. Noya
- Sección de Biohelmintiasis; Instituto de Medicina Tropical; Facultad de Medicina; Universidad Central de Venezuela y Centro para Estudios Sobre Malaria; Instituto de Altos Estudios ‘Dr. Arnoldo Gabaldón’-Instituto Nacional de Higiene ‘Rafael Rangel’ del Ministerio del Poder Popular para la Salud; Caracas Venezuela
| | - L. Prepelitchi
- Unidad de Ecología de Reservorios y Vectores de Parásitos; Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Ciudad Universitaria, Pabellón 2, 4 piso, Laboratorio 55 Ciudad Autónoma de Buenos Aires C1428EGA Argentina
| | - N. Uribe
- Escuela de Bacteriología y Laboratorio Clínico; Facultad de Salud; Universidad Industrial de Santander; Bucaramanga Colombia
| | - C. Wisnivesky-Colli
- Unidad de Ecología de Reservorios y Vectores de Parásitos; Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Ciudad Universitaria, Pabellón 2, 4 piso, Laboratorio 55 Ciudad Autónoma de Buenos Aires C1428EGA Argentina
| | - M. Yong
- Laboratorio de Malacología; Instituto de Medicina Tropical Pedro Kourí; Apartado Postal 601, Marianao 13 La Habana Cuba
| | - P. David
- Centre d'Ecologie Fonctionnelle et d'Evolution; UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE; 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - E. S. Loker
- Department of Biology; Center for Evolutionary and Theoretical Immunology; University of New Mexico; Albuquerque NM 87131 USA
| | - P. Jarne
- Centre d'Ecologie Fonctionnelle et d'Evolution; UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE; 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - J. P. Pointier
- USR 3278 CNRS-EPHE; CRIOBE Université de Perpignan; 68860 Perpignan-Cedex France
| | - S. Hurtrez-Boussès
- MIVEGEC; UMR IRD 224 CNRS 5290 UM1-UM2; 911 Avenue Agropolis, BP 64501 34394 Montpellier Cedex 5 France
- Département de Biologie-Ecologie; Faculté des Sciences - cc 046; Université Montpellier; 4 Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| |
Collapse
|