51
|
Yang W, Jeelani N, Cai A, Cheng X, An S. Coastal reclamation alters soil microbial communities following different land use patterns in the Eastern coastal zone of China. Sci Rep 2021; 11:7265. [PMID: 33790383 PMCID: PMC8012362 DOI: 10.1038/s41598-021-86758-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/09/2021] [Indexed: 01/29/2023] Open
Abstract
Coastal reclamation seriously disturbs coastal wetland ecosystems, while its influences on soil microbial communities remain unclear. In this study, we examined the impacts of coastal reclamation on soil microbial communities based on phospholipid fatty acids (PLFA) analysis following the conversion of Phragmites australis wetlands to different land use types. Coastal reclamation enhanced total soil microbial biomass and various species (i.e., gram-positive bacterial, actinomycete, saturated straight-chain, and branched PLFA) following the conversion of P. australis wetland to aquaculture pond, wheat, and oilseed rape fields. In contrast, it greatly decreased total soil microbial biomass and various species following the conversion of P. australis wetland to town construction land. Coastal reclamation reduced fungal:bacterial PLFA, monounsaturated:branched PLFA ratios, whereas increasing gram-positive:gram-negative PLFA ratio following the conversion of P. australis wetland to other land use types. Our study suggested that coastal reclamation shifted soil microbial communities by altering microbial biomass and community composition. These changes were driven primarily by variations in soil nutrient substrates and physiochemical properties. Changes in soil microbial communities following coastal reclamation impacted the decomposition and accumulation of soil carbon and nitrogen, with potential modification of carbon and nitrogen sinks in the ecosystems, with potential feedbacks in response to climate change.
Collapse
Affiliation(s)
- Wen Yang
- College of Life Sciences, Shaanxi Normal University, No. 620 West Chang'an St., Chang'an Dist., Xi'an, 710119, Shaanxi, People's Republic of China.
| | - Nasreen Jeelani
- School of Life Sciences and Institute of Wetland Ecology, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Andong Cai
- Key Laboratory for Agro-Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 10081, People's Republic of China
| | - Xiaoli Cheng
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Shuqing An
- School of Life Sciences and Institute of Wetland Ecology, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
52
|
Similarities and Differences among Soil Fungal Assemblages in Managed Forests and Formerly Managed Forest Reserves. FORESTS 2021. [DOI: 10.3390/f12030353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unlike the numerous works concerning the effect of management on the forest mycobiome, only a few studies have addressed how fungi from different trophic groups recover from natural and anthropogenic disturbances and develop structural features typical of unmanaged old-growth forests. Our objective is to compare the soil fungal assemblages represented by different functional/trophic groups in protected and managed stands located in European mixed forests dominated by Scots pine. Fungal communities were analyzed using high-throughput Illumina MiSeq sequencing of fungal internal transcribed spacer 1 (ITS1) amplicons. Formerly managed forest reserves (established around 50 years ago) and forests under standard forest management appeared to be similar in terms of total and mean species richness of all fungal operational taxonomic units (OTUs), as well as OTUs assigned to different functional trophic groups. Among the 599 recorded OTUs, 497 (83%) were shared between both management types, whereas 9.5% of taxa were unique to forest reserves and 7.5% were unique to managed stands. Ascomycota and Basidiomycota were the predominant phyla, comprising 88% of all identified fungi. The main functional components of soil fungal assemblages consisted of saprotrophic (42% fungal OTUs; 27% reads) and ectomycorrhizal fungi (16%; 47%). Two-way analysis of similarities (ANOSIM) revealed that both site and management strategy influenced the species composition of soil fungal communities, with site being a primary effect for saprotrophic and ectomycorrhizal fungi. Volume of coarse and very fine woody debris and soil pH significantly influenced the ectomycorrhizal fungal community, whereas saprotrophic fungi were influenced primarily by volume of coarse woody debris and soil nitrate concentration. Among the identified fungal OTUs, 18 red-listed fungal species were identified from both forest reserves and managed forests, comprising two ECM fungi and four saprotrophs from the category of endangered species. Our results suggest that the transformation of fungal diversity after cessation of forest management is rather slow, and that both forest reserves and managed forests help uphold fungal diversity.
Collapse
|
53
|
Adamczyk M, Rüthi J, Frey B. Root exudates increase soil respiration and alter microbial community structure in alpine permafrost and active layer soils. Environ Microbiol 2021; 23:2152-2168. [PMID: 33393203 DOI: 10.1111/1462-2920.15383] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Due to climate warming, alpine ecosystems are changing rapidly. Ongoing upward migrations of plants and thus an increase of easily decomposable substrates will strongly affect the soil microbiome. To understand how belowground communities will respond to such changes, we set up an incubation experiment with permafrost and active soil layers from northern (NW) and southern (SE) slopes of a mountain ridge on Muot da Barba Peider in the Swiss Alps and incubated them with or without artificial root exudates (AREs) at two temperatures, 4°C or 15°C. The addition of AREs resulted in elevated respiration across all soil types. Bacterial and fungal alpha diversity decreased significantly, coinciding with strong shifts in microbial community structure in ARE-treated soils. These shifts in bacterial community structure were driven by an increased abundance of fast-growing copiotrophic taxa. Fungal communities were predominantly affected by AREs in SE active layer soils and shifted towards fast-growing opportunistic yeast. In contrast, in the colder NW facing active layer and permafrost soils fungal communities were more influenced by temperature changes. These findings demonstrate the sensitivity of soil microbial communities in high alpine ecosystems to climate change and how shifts in these communities may lead to functional changes impacting biogeochemical processes.
Collapse
Affiliation(s)
- Magdalene Adamczyk
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Joel Rüthi
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| |
Collapse
|
54
|
Hannula S, Morriën E, van der Putten W, de Boer W. Rhizosphere fungi actively assimilating plant-derived carbon in a grassland soil. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
55
|
Guo Y, Chen J, Tsolmon B, He A, Guo J, Yang J, Bao Y. Effects of subsidence and transplanted trees on soil arbuscular mycorrhizal fungal diversity in a coal mining area of the Loess Plateau. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
56
|
Noor SO, Al-Zahrani DA, Hussein RM, Baeshen MN, Moussa TAA, Abo-Aba SM, Al-Hejin AM, Baeshen NA, Huelsenbeck JP. Assessment of fungal diversity in soil rhizosphere associated with Rhazya stricta and some desert plants using metagenomics. Arch Microbiol 2020; 203:1211-1219. [PMID: 33231748 DOI: 10.1007/s00203-020-02119-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to compare the fungal rhizosphere communities of Rhazya stricta, Enneapogon desvauxii, Citrullus colocynthis, Senna italica, and Zygophyllum simplex, and the gut mycobiota of Poekilocerus bufonius (Orthoptera, Pyrgomorphidae, "Usherhopper"). A total of 164,485 fungal reads were observed from the five plant rhizospheres and Usherhopper gut. The highest reads were in S. italica rhizosphere (29,883 reads). Species richness in the P. bufonius gut was the highest among the six samples. Ascomycota was dominant in all samples, with the highest reads in E. desvauxii (26,734 reads) rhizosphere. Sordariomycetes and Dothideomycetes were the dominant classes detected with the highest abundance in C. colocynthis and E. desvauxii rhizospheres. Aspergillus and Ceratobasidium were the most abundant genera in the R. stricta rhizosphere, Fusarium and Penicillium in the E. desvauxii rhizosphere and P. bufonius gut, Ceratobasidium and Myrothecium in the C. colocynthis rhizosphere, Aspergillus and Fusarium in the S. italica rhizosphere, and Cochliobolus in the Z. simplex rhizosphere. Aspergillus terreus was the most abundant species in the R. stricta and S. italica rhizospheres, Fusarium sp. in E. desvauxii rhizosphere, Ceratobasidium sp. in C. colocynthis rhizosphere, Cochliobolus sp. in Z. simplex rhizosphere, and Penicillium sp. in P. bufonius gut. The phylogenetic results revealed the unclassified species were related closely to Ascomycota and the species in E. desvauxii, S. italica and Z. simplex rhizospheres were closely related, where the species in the P. bufonius gut, were closely related to the species in the R. stricta, and C. colocynthis rhizospheres.
Collapse
Affiliation(s)
- Samah O Noor
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dhafer A Al-Zahrani
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Refaei M Hussein
- University of Jeddah, College of Sciences and Arts, Department of Biological Sciences, Al Kamel Province, Jeddah, Saudi Arabia.,Genetics and Cytology Dept. Genetic Engineering Division, National Resesrch Centre, Dokki, Cairo, Egypt
| | - Mohammed N Baeshen
- University of Jeddah, College of Science, Department of Biological Sciences, Jeddah, Saudi Arabia
| | - Tarek A A Moussa
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Salah M Abo-Aba
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Microbial Genetics, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed M Al-Hejin
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabih A Baeshen
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - John P Huelsenbeck
- Department of Integrative Biology, University of California, Berkeley, USA
| |
Collapse
|
57
|
Islam W, Noman A, Naveed H, Huang Z, Chen HYH. Role of environmental factors in shaping the soil microbiome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41225-41247. [PMID: 32829437 DOI: 10.1007/s11356-020-10471-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/10/2020] [Indexed: 05/09/2023]
Abstract
The soil microbiome comprises one of the most important and complex components of all terrestrial ecosystems as it harbors millions of microbes including bacteria, fungi, archaea, viruses, and protozoa. Together, these microbes and environmental factors contribute to shaping the soil microbiome, both spatially and temporally. Recent advances in genomic and metagenomic analyses have enabled a more comprehensive elucidation of the soil microbiome. However, most studies have described major modulators such as fungi and bacteria while overlooking other soil microbes. This review encompasses all known microbes that may exist in a particular soil microbiome by describing their occurrence, abundance, diversity, distribution, communication, and functions. Finally, we examined the role of several abiotic factors involved in the shaping of the soil microbiome.
Collapse
Affiliation(s)
- Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
- Institute of Geography, Fujian Normal University, Fuzhou, 350007, China
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Hassan Naveed
- College of Life Science, Leshan Normal University, Leshan, 614004, Sichuan, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China.
- Institute of Geography, Fujian Normal University, Fuzhou, 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China.
- Institute of Geography, Fujian Normal University, Fuzhou, 350007, China.
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
58
|
Nemadodzi LE, Vervoort J, Prinsloo G. NMR-Based Metabolomic Analysis and Microbial Composition of Soil Supporting Burkea africana Growth. Metabolites 2020; 10:E402. [PMID: 33050369 PMCID: PMC7600111 DOI: 10.3390/metabo10100402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
Burkea africana is a leguminous tree used for medicinal purposes, growing in clusters, on soils impoverished from most nutrients. The study aimed to determine the factors responsible for successful reproduction and establishment of the B. africana trees in nature, as all efforts for commercial production has been proven unsuccessful. An investigation was carried out to determine the metabolomic profile, chemical composition, and microbial composition of the soils where B. africana grows (Burkea soil) versus the soil where it does not grow (non-Burkea soil). 1H-NMR metabolomic analysis showed different metabolites in the respective soils. Trehalose and betaine, as well as a choline-like and carnitine-like compound, were found to be in higher concentration in Burkea soils, whereas, acetate, lactate, and formate were concentrated in non-Burkea soils. Liquid Chromatography-Mass Spectrometry analysis revealed the presence of numerous amino acids such as aspartic acid and glutamine to be higher in Burkea soils. Since it was previously suggested that the soil microbial diversity is the major driver for establishment and survival of seedlings in nature, Deoxyribonucleic acid (DNA) was extracted and a BLAST analysis conducted for species identification. Penicillium species was found to be highly prevalent and discriminant between the two soils, associated with the Burkea soils. No differences in the bacterial composition of Burkea and non-Burkea soils were observed. The variances in fungal composition suggests that species supremacy play a role in development of B. africana trees and is responsible for creating a supporting environment for natural establishment and survival of seedlings.
Collapse
Affiliation(s)
- Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa;
- ABBERU, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University, 6708 PB Wageningen, The Netherlands;
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa;
| |
Collapse
|
59
|
Kaplan I, Bokulich NA, Caporaso JG, Enders LS, Ghanem W, Ingerslew KS. Phylogenetic farming: Can evolutionary history predict crop rotation via the soil microbiome? Evol Appl 2020; 13:1984-1999. [PMID: 32908599 PMCID: PMC7463318 DOI: 10.1111/eva.12956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
Agriculture has long employed phylogenetic rules whereby farmers are encouraged to rotate taxonomically unrelated plants in shared soil. Although this forms a central tenet of sustainable agriculture, strangely, this on-farm "rule of thumb" has never been rigorously tested in a scientific framework. To experimentally evaluate the relationship between phylogenetic distance and crop performance, we used a plant-soil feedback approach whereby 35 crops and weeds varying in their relatedness to tomato (Solanum lycopersicum) were tested in a two-year field experiment. We used community profiling of the bacteria and fungi to determine the extent to which soil microbes contribute to phenotypic differences in crop growth. Overall, tomato yield was ca. 15% lower in soil previously cultivated with tomato; yet, past the species level there was no effect of phylogenetic distance on crop performance. Soil microbial communities, on the other hand, were compositionally more similar between close plant relatives. Random forest regression predicted log10 phylogenetic distance to tomato with moderate accuracy (R 2 = .52), primarily driven by bacteria in the genus Sphingobium. These data indicate that, beyond avoiding conspecifics, evolutionary history contributes little to understanding plant-soil feedbacks in agricultural fields; however, microbial legacies can be predicted by species identity and relatedness.
Collapse
Affiliation(s)
- Ian Kaplan
- Department of EntomologyPurdue UniversityWest LafayetteINUSA
| | - Nicholas A. Bokulich
- Center for Applied Microbiome ScienceThe Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffAZUSA
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffAZUSA
| | - J. Gregory Caporaso
- Center for Applied Microbiome ScienceThe Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffAZUSA
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffAZUSA
| | | | - Wadih Ghanem
- Department of EntomologyPurdue UniversityWest LafayetteINUSA
| | | |
Collapse
|
60
|
Jurburg SD, Shek KL, McGuire K. Soil microbial composition varies in response to coffee agroecosystem management. FEMS Microbiol Ecol 2020; 96:5892097. [DOI: 10.1093/femsec/fiaa164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT
Soil microbes are essential to the continued productivity of sustainably managed agroecosystems. In shade coffee plantations, the relationship between soil microbial composition, soil nutrient availability and coffee productivity have been demonstrated, but the effects of management on the composition of the soil microbial communities remains relatively unexplored. To further understand how management modulates the soil microbiome, the soil fungal and bacterial communities, soil chemistry, and canopy composition were surveyed in a Nicaraguan coffee cooperative, across 19 individual farms. Amplicon sequencing analyses showed that management (organic or conventional), stand age and previous land use affected the soil microbiome, albeit in different ways. Bacterial communities were most strongly associated with soil chemistry, while fungal communities were more strongly associated with the composition of the canopy and historical land use of the coffee plantation. Notably, both fungal and bacterial richness decreased with stand age. In addition to revealing the first in-depth characterization of the soil microbiome in coffee plantations in Nicaragua, these results highlight how fungal and bacterial communities are simultaneously modulated by long-term land use legacies (i.e. an agricultural plot's previous land use) and short-term press disturbance (i.e. farm age).
Collapse
Affiliation(s)
- Stephanie D Jurburg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscherplatz 5E, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23,Leipzig, Germany
- Department of Ecology, Evolution & Environmental Biology, Columbia University, 1190 Amsterdam Ave, New York, NY, USA
| | - Katherine L Shek
- Department of Biology, University of Oregon, 1025 University St., Eugene, OR, USA
| | - Krista McGuire
- Department of Biology, University of Oregon, 1025 University St., Eugene, OR, USA
- Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancón, Republic of Panama
| |
Collapse
|
61
|
Chen J, Akutse KS, Saqib HSA, Wu X, Yang F, Xia X, Wang L, Goettel MS, You M, Gurr GM. Fungal Endophyte Communities of Crucifer Crops Are Seasonally Dynamic and Structured by Plant Identity, Plant Tissue and Environmental Factors. Front Microbiol 2020; 11:1519. [PMID: 32760366 PMCID: PMC7373767 DOI: 10.3389/fmicb.2020.01519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Endophytic fungi are important in diverse plant functions but knowledge of the factors that shape assemblages of these symbionts is lacking. Here, using a culture-dependent approach, we report 4,178 endophytic fungal isolates representing 16 orders isolated from stems, roots and leaves of three cruciferous plant species, Chinese cabbage (Brassica rapa L.), radish (Raphanus sativus L.) and white cabbage (B. olerocea L.), collected from 21 focal fields with different landscape contexts and pesticide uses during four seasons (summer, autumn, winter and spring). The colonization rate of fungi was found to be most strongly affected by season, plant identity and plant tissue. The colonization was highest during autumn, followed by summer, spring and lowest during winter. The colonization was highest in B. olerocea (53.2%), followed by B. rapa (42.6%), and lowest in R. sativus (35.0%). The colonization was highest in stems (51.9%) in all plant types, followed by leaves (42.4%) and roots (37.5%). Hypocreales was the dominant order (33.3% of all the isolates), followed by Glomerellales (26.5%), Eurotiales (12.1%), Pleosporales (9.8%) and Capnodiales (6.0%). Fungal endophyte abundance (number of isolates) followed the same pattern as colonization rate, while species richness varied with season and host plant tissue. Ordination analyses showed that the abundance and richness of Hypocreales, Eurotiales and Sordariales were associated with plant roots, while Capnodiales, Pleosporales and Trichosphaeriales were associated with spring. Other environmental factors, elevation, and the proportions of grassland, forest, orchard and waterbodies in the surrounding landscape also exerted effects within some categories of other main effects or for certain fungal taxa. Our results indicate that while fungal endophyte communities of crucifer crops vary strongly with the season, they are also strongly structured by plant identity and plant tissue, to a lesser extent by pesticide use and only weakly by landscape composition. The understanding of the ecological roles of fungal endophytes could contribute to habitat management and consequently improve crop pest management.
Collapse
Affiliation(s)
- Junhui Chen
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
| | | | - Hafiz Sohaib Ahmed Saqib
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
| | - Xiaolu Wu
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
| | - Feiying Yang
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
| | - Mark S. Goettel
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
| | - Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Graham Centre, Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
62
|
Ritter CD, Dunthorn M, Anslan S, de Lima VX, Tedersoo L, Nilsson RH, Antonelli A. Advancing biodiversity assessments with environmental DNA: Long-read technologies help reveal the drivers of Amazonian fungal diversity. Ecol Evol 2020; 10:7509-7524. [PMID: 32760545 PMCID: PMC7391351 DOI: 10.1002/ece3.6477] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/09/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Fungi are a key component of tropical biodiversity. However, due to their inconspicuous and largely subterranean nature, they are usually neglected in biodiversity inventories. The goal of this study was to identify the key determinants of fungal richness, community composition, and turnover in tropical rainforests. We tested specifically for the effect of soil properties, habitat, and locality in Amazonia. For these analyses, we used high-throughput sequencing data of short and long reads of fungal DNA present in soil and organic litter samples, combining existing and novel genomic data. Habitat type (phytophysiognomy) emerges as the strongest factor explaining fungal community composition. Naturally open areas-campinas-are the richest habitat overall. Soil properties have different effects depending on the soil layer (litter or mineral soil) and the choice of genetic marker. We suggest that campinas could be a neglected hotspot of fungal diversity. An underlying cause for their rich diversity may be the overall low soil fertility, which increases the reliance on biotic interactions essential for nutrient absorption in these environments, notably ectomycorrhizal fungi-plant associations. Our results highlight the advantages of using both short and long DNA reads produced through high-throughput sequencing to characterize fungal diversity. While short reads can suffice for diversity and community comparison, long reads add taxonomic precision and have the potential to reveal population diversity.
Collapse
Affiliation(s)
- Camila D. Ritter
- Eukaryotic MicrobiologyUniversity of Duisburg‐EssenEssenGermany
- Gothenburg Global Biodiversity CentreGöteborgSweden
- Department of Biological and Environmental SciencesUniversity of GothenburgGöteborgSweden
| | - Micah Dunthorn
- Eukaryotic MicrobiologyUniversity of Duisburg‐EssenEssenGermany
| | - Sten Anslan
- Zoological InstituteTechnische Universität BraunschweigBraunschweigGermany
| | - Vitor Xavier de Lima
- Departamento de MicologiaCentro de BiociênciasUniversidade Federal de PernambucoRecifeBrazil
| | - Leho Tedersoo
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Rolf Henrik Nilsson
- Gothenburg Global Biodiversity CentreGöteborgSweden
- Department of Biological and Environmental SciencesUniversity of GothenburgGöteborgSweden
| | - Alexandre Antonelli
- Gothenburg Global Biodiversity CentreGöteborgSweden
- Department of Biological and Environmental SciencesUniversity of GothenburgGöteborgSweden
- Royal Botanic Gardens, KewRichmondUK
| |
Collapse
|
63
|
Collins CD, Bever JD, Hersh MH. Community context for mechanisms of disease dilution: insights from linking epidemiology and plant-soil feedback theory. Ann N Y Acad Sci 2020; 1469:65-85. [PMID: 32170775 PMCID: PMC7317922 DOI: 10.1111/nyas.14325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 12/21/2022]
Abstract
In many natural systems, diverse host communities can reduce disease risk, though less is known about the mechanisms driving this "dilution effect." We relate feedback theory, which focuses on pathogen-mediated coexistence, to mechanisms of dilution derived from epidemiological models, with the central goal of gaining insights into host-pathogen interactions in a community context. We first compare the origin, structure, and application of epidemiological and feedback models. We then explore the mechanisms of dilution, which are grounded in single-pathogen, single-host epidemiological models, from the perspective of feedback theory. We also draw on feedback theory to examine how coinfecting pathogens, and pathogens that vary along a host specialist-generalist continuum, apply to dilution theory. By identifying synergies among the feedback and epidemiological approaches, we reveal ways in which organisms occupying different trophic levels contribute to diversity-disease relationships. Additionally, using feedbacks to distinguish dilution in disease incidence from dilution in the net effect of disease on host fitness allows us to articulate conditions under which definitions of dilution may not align. After ascribing dilution mechanisms to macro- or microorganisms, we propose ways in which each contributes to diversity-disease and productivity-diversity relationships. Our analyses lead to predictions that can guide future research efforts.
Collapse
Affiliation(s)
| | - James D. Bever
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas
- Kansas Biological SurveyUniversity of KansasLawrenceKansas
| | | |
Collapse
|
64
|
Wang C, Michalet R, Liu Z, Jiang X, Wang X, Zhang G, An L, Chen S, Xiao S. Disentangling Large- and Small-Scale Abiotic and Biotic Factors Shaping Soil Microbial Communities in an Alpine Cushion Plant System. Front Microbiol 2020; 11:925. [PMID: 32528430 PMCID: PMC7262953 DOI: 10.3389/fmicb.2020.00925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Microorganisms play a crucial role in biogeochemical cycles and ecosystem processes, but the key factors driving microbial community structure are poorly understood, particularly in alpine environments. In this study, we aim to disentangle the relative contribution of abiotic and biotic factors shaping bacterial and fungal community structure at large and small spatial and integration scales in an alpine system dominated by a stress-tolerant cushion species Thylacospermum ceaspitosum. These effects were assessed in two mountain ranges of northwest China and for two contrasting phenotypes of the cushion species inhabiting two different microtopographic positions. The large- and small-scale abiotic effects include the site and microhabitat effects, respectively, while the large- and small-scale biotic effects include the effects of cushion presence and cushion phenotype, respectively. Soil microbial communities were characterized by Illumina Miseq sequencing. Uni- and multivariate statistics were used to test the effects of abiotic and biotic factors at both scales. Results indicated that the site effect representing the soil pH and abiotic hydrothermal conditions mainly affected bacterial community structure, whereas fungal community structure was mainly affected by biotic factors with an equal contribution of cushion presence and cushion phenotype effects. Future studies should analyze the direct factors contributing to shaping microbial community structure in particular of the cushion phenotypes.
Collapse
Affiliation(s)
- Chenyue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
| | - Richard Michalet
- Environnements et Paléoenvironnements Océaniques et Continentaux, University of Bordeaux, Bordeaux, France
| | - Ziyang Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
| | - Xingpei Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
| | - Xiangtai Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
| | - Shuyan Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
| | - Sa Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
| |
Collapse
|
65
|
Lyu J, Jin L, Jin N, Xie J, Xiao X, Hu L, Tang Z, Wu Y, Niu L, Yu J. Effects of Different Vegetable Rotations on Fungal Community Structure in Continuous Tomato Cropping Matrix in Greenhouse. Front Microbiol 2020; 11:829. [PMID: 32508762 PMCID: PMC7251036 DOI: 10.3389/fmicb.2020.00829] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/07/2020] [Indexed: 12/03/2022] Open
Abstract
Intensive greenhouse vegetable cultivation aggravates continuous cropping, resulting in the disturbance of the microbial community structure and the diversity of the soil matrix. In this study, we evaluated the diversity of the rhizosphere matrix fungi in rotation and continuous cropping systems by using high-throughput sequencing analysis of substrates under 6-years of continuous tomato cropping and rotation with cabbage, bean, or celery in greenhouse pots. The results showed that fungal richness in the Chinese cabbage rotation treatment (B) was significantly lower than that of other treatments, and fungal diversities of treatment B and the bean rotation treatment (D) were significantly lower than that of continuous tomato cropping (CK). Contrastingly, the celery rotation treatment (Q) increased the fungal diversity and richness. Furthermore, a principal coordinate analysis showed that the fungal soil community structure of each rotation treatment was different from that of CK. The relative abundances of several harmful fungi (such as Pseudogymnoascus, Gibberella, and Pyrenochaeta) in control CK were significantly higher than those in rotation treatments. In addition, the matrix electrical conductivity, organic matter, total K, and available P in treatments B and D were significantly higher than those in control CK. Moreover, pH and total N of treatment Q were significantly higher than those of control CK. Most fungi were positively correlated with organic matter and available P and negatively correlated with pH. Therefore, rotation with celery could improve the abundance and diversity of fungi in continuous tomato cropping substrates and reduce the relative abundance of harmful fungi. These results indicated that the rotation of celery and tomato could effectively maintain the ecological balance of the substrate microenvironment and provide a more effective way to prevent the problems of continuous tomato cropping in greenhouse.
Collapse
Affiliation(s)
- Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Lijuan Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
66
|
Diazotrophs Show Signs of Restoration in Amazon Rain Forest Soils with Ecosystem Rehabilitation. Appl Environ Microbiol 2020; 86:AEM.00195-20. [PMID: 32169937 DOI: 10.1128/aem.00195-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/08/2020] [Indexed: 11/20/2022] Open
Abstract
Biological nitrogen fixation can be an important source of nitrogen in tropical forests that serve as a major CO2 sink. Extensive deforestation of the Amazon is known to influence microbial communities and the biogeochemical cycles they mediate. However, it is unknown how diazotrophs (nitrogen-fixing microorganisms) respond to deforestation and subsequent ecosystem conversion to agriculture, as well as whether they can recover in secondary forests that are established after agriculture is abandoned. To address these knowledge gaps, we combined a spatially explicit sampling approach with high-throughput sequencing of nifH genes. The main objectives were to assess the functional distance decay relationship of the diazotrophic bacterial community in a tropical forest ecosystem and to quantify the roles of various factors that drive the observed changes in the diazotrophic community structure. We observed an increase in local diazotrophic diversity (α-diversity) with a decrease in community turnover (β-diversity), associated with a shift in diazotrophic community structure as a result of the forest-to-pasture conversion. Both diazotrophic community turnover and structure showed signs of recovery in secondary forests. Changes in the diazotrophic community were primarily driven by the change in land use rather than differences in geochemical characteristics or geographic distances. The diazotroph communities in secondary forests resembled those in primary forests, suggesting that at least partial recovery of diazotrophs is possible following agricultural abandonment.IMPORTANCE The Amazon region is a major tropical forest region that is being deforested at an alarming rate to create space for cattle ranching and agriculture. Diazotrophs (nitrogen-fixing microorganisms) play an important role in supplying soil N for plant growth in tropical forests. It is unknown how diazotrophs respond to deforestation and whether they can recover in secondary forests that establish after agriculture is abandoned. Using high-throughput sequencing of nifH genes, we characterized the response of diazotrophs' β-diversity and identified major drivers of changes in diazotrophs from forest-to-pasture and pasture-to-secondary-forest conversions. Studying the impact of land use change on diazotrophs is important for a better understanding of the impact of deforestation on tropical forest ecosystem functioning, and our results on the potential recovery of diazotrophs in secondary forests imply the possible restoration of ecosystem functions in secondary forests.
Collapse
|
67
|
Schappe T, Albornoz FE, Turner BL, Jones FA. Co-occurring Fungal Functional Groups Respond Differently to Tree Neighborhoods and Soil Properties Across Three Tropical Rainforests in Panama. MICROBIAL ECOLOGY 2020; 79:675-685. [PMID: 31654106 DOI: 10.1007/s00248-019-01446-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Abiotic and biotic drivers of co-occurring fungal functional guilds across regional-scale environmental gradients remain poorly understood. We characterized fungal communities using Illumina sequencing from soil cores collected across three Neotropical rainforests in Panama that vary in soil properties and plant community composition. We classified each fungal OTU into different functional guilds, namely plant pathogens, saprotrophs, arbuscular mycorrhizal (AM), or ectomycorrhizal (ECM). We measured soil properties and nutrients within each core and determined the tree community composition and richness around each sampling core. Canonical correspondence analyses showed that soil pH and moisture were shared potential drivers of fungal communities for all guilds. However, partial the Mantel tests showed different strength of responses of fungal guilds to composition of trees and soils. Plant pathogens and saprotrophs were more strongly correlated with soil properties than with tree composition; ECM fungi showed a stronger correlation with tree composition than with soil properties; and AM fungi were correlated with soil properties, but not with trees. In conclusion, we show that co-occurring fungal guilds respond differently to abiotic and biotic environmental factors, depending on their ecological function. This highlights the joint role that abiotic and biotic factors play in determining composition of fungal communities, including those associated with plant hosts.
Collapse
Affiliation(s)
- Tyler Schappe
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
- Present address: Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Felipe E Albornoz
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
- Present address: School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Benjamin L Turner
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - F Andrew Jones
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama.
| |
Collapse
|
68
|
Turley NE, Bell‐Dereske L, Evans SE, Brudvig LA. Agricultural land‐use history and restoration impact soil microbial biodiversity. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13591] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nash E. Turley
- Department of Plant Biology Michigan State University East Lansing MI USA
- Program in Ecology Evolutionary Biology, and Behavior Michigan State University East Lansing MI USA
| | - Lukas Bell‐Dereske
- Kellogg Biological Station Michigan State University East Lansing MI USA
| | - Sarah E. Evans
- Program in Ecology Evolutionary Biology, and Behavior Michigan State University East Lansing MI USA
- Kellogg Biological Station Michigan State University East Lansing MI USA
- Department of Integrative Biology Michigan State University East Lansing MI USA
| | - Lars A. Brudvig
- Department of Plant Biology Michigan State University East Lansing MI USA
- Program in Ecology Evolutionary Biology, and Behavior Michigan State University East Lansing MI USA
| |
Collapse
|
69
|
Zhao PS, Guo MS, Gao GL, Zhang Y, Ding GD, Ren Y, Akhtar M. Community structure and functional group of root-associated Fungi of Pinus sylvestris var. mongolica across stand ages in the Mu Us Desert. Ecol Evol 2020; 10:3032-3042. [PMID: 32211174 PMCID: PMC7083681 DOI: 10.1002/ece3.6119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/30/2022] Open
Abstract
Root-associated fungi (RAF) are an important factor affecting the host's growth, and their contribution to Pinus sylvestris var. mongolica plantation decline is substantial. Therefore, we selected three age groups of P. sylvestris plantations (26, 33, and 43 years), in the Mu Us Desert, to characterize the community structure and functional groups of RAF, identified by Illumina high-throughput sequencing and FUNGuild platform, respectively. The effects of soil properties and enzyme activities on fungal diversity and functional groups were also examined. The results indicated that (a) 805 operational taxonomic units of RAF associated with P. sylvestris belonged to six phyla and 163 genera. Diversity and richness were not significantly different in the three age groups, but community composition showed significant differences. Ascomycota and Basidiomycota dominated the fungal community, while Rhizopogon dominated in each plot. (b) The proportion of pathotrophs decreased with increasing age, while that of symbiotrophs increased sharply, which were mainly represented by ectomycorrhizal fungi. (c) Stand age and soil enzyme activity had a greater influence on fungal community composition than did soil properties, whereas environmental variables were not significantly correlated with fungal diversity and richness. Dynamics of fungal community composition and functional groups with the aging plantations reflected the growth state of P. sylvestris and were related to plantation degradation.
Collapse
Affiliation(s)
- Pei-Shan Zhao
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Mi-Shan Guo
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Guang-Lei Gao
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Ying Zhang
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Guo-Dong Ding
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Yue Ren
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Mobeen Akhtar
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| |
Collapse
|
70
|
Guo Y, Liu X, Tsolmon B, Chen J, Wei W, Lei S, Yang J, Bao Y. The influence of transplanted trees on soil microbial diversity in coal mine subsidence areas in the Loess Plateau of China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2019.e00877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
71
|
Kivlin SN, Hawkes CV. Spatial and temporal turnover of soil microbial communities is not linked to function in a primary tropical forest. Ecology 2020; 101:e02985. [PMID: 31958139 DOI: 10.1002/ecy.2985] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/21/2019] [Accepted: 12/20/2019] [Indexed: 11/06/2022]
Abstract
The spatial and temporal linkages between turnover of soil microbial communities and their associated functions remain largely unexplored in terrestrial ecosystems. Yet defining these relationships and how they vary across ecosystems and microbial lineages is key to incorporating microbial communities into ecological forecasts and ecosystem models. To define linkages between turnover of soil bacterial and fungal communities and their function we sampled fungal and bacterial composition, abundance, and enzyme activities across a 3-ha area of wet tropical primary forest over 2 yr. We show that fungal and bacterial communities both exhibited temporal turnover, but turnover of both groups was much lower than in temperate ecosystems. Turnover over time was driven by gain and loss of microbial taxa and not changes in abundance of individual species present in multiple samples. Only fungi varied over space with idiosyncratic variation that did not increase linearly with distance among sampling locations. Only phosphorus-acquiring enzyme activities were linked to shifts in septate, decomposer fungal abundance; no enzymes were affected by composition or diversity of fungi or bacteria. Although temporal and spatial variation in composition was appreciable, because turnover of microbial communities did not alter the functional repertoire of decomposing enzymes, functional redundancy among taxa may be high in this ecosystem. Slow temporal turnover of tropical soil microbial communities and large functional redundancy suggests that shifts in abundance of particular functional groups may capture ecosystem function more accurately than composition in these heterogeneous ecosystems.
Collapse
Affiliation(s)
- Stephanie N Kivlin
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Christine V Hawkes
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
72
|
Schimann H, Vleminckx J, Baraloto C, Engel J, Jaouen G, Louisanna E, Manzi S, Sagne A, Roy M. Tree communities and soil properties influence fungal community assembly in neotropical forests. Biotropica 2020. [DOI: 10.1111/btp.12747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heidy Schimann
- INRA EcoFoG (AgroParisTech, CNRS, CIRAD, INRA, Université des Antilles, Université de Guyane) Kourou France
| | - Jason Vleminckx
- Department of Biological Science Florida International University Miami FL USA
| | | | - Julien Engel
- AMAP (Université de Montpellier, CIRAD, CNRS, INRA, IRD) Montpellier France
| | - Gaelle Jaouen
- AgroParisTech EcoFoG (AgroParisTech, CNRS, CIRAD, INRA, Université des Antilles, Université de Guyane) Kourou France
| | - Eliane Louisanna
- INRA EcoFoG (AgroParisTech, CNRS, CIRAD, INRA, Université des Antilles, Université de Guyane) Kourou France
| | - Sophie Manzi
- Laboratoire Évolution et Diversité Biologique CNRS, UMR 5174 UPS CNRS ENFA IRD Université Toulouse 3 Paul Sabatier Toulouse France
| | - Audrey Sagne
- INRA EcoFoG (AgroParisTech, CNRS, CIRAD, INRA, Université des Antilles, Université de Guyane) Kourou France
| | - Mélanie Roy
- Laboratoire Évolution et Diversité Biologique CNRS, UMR 5174 UPS CNRS ENFA IRD Université Toulouse 3 Paul Sabatier Toulouse France
| |
Collapse
|
73
|
Osburn ED, McBride SG, Aylward FO, Badgley BD, Strahm BD, Knoepp JD, Barrett JE. Soil Bacterial and Fungal Communities Exhibit Distinct Long-Term Responses to Disturbance in Temperate Forests. Front Microbiol 2019; 10:2872. [PMID: 31921050 PMCID: PMC6917579 DOI: 10.3389/fmicb.2019.02872] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/28/2019] [Indexed: 11/24/2022] Open
Abstract
In Appalachian ecosystems, forest disturbance has long-term effects on microbially driven biogeochemical processes such as nitrogen (N) cycling. However, little is known regarding long-term responses of forest soil microbial communities to disturbance in the region. We used 16S and ITS sequencing to characterize soil bacterial (16S) and fungal (ITS) communities across forested watersheds with a range of past disturbance regimes and adjacent reference forests at the Coweeta Hydrologic Laboratory in the Appalachian mountains of North Carolina. Bacterial communities in previously disturbed forests exhibited consistent responses, including increased alpha diversity and increased abundance of copiotrophic (e.g., Proteobacteria) and N-cycling (e.g., Nitrospirae) bacterial phyla. Fungal community composition also showed disturbance effects, particularly in mycorrhizal taxa. However, disturbance did not affect fungal alpha diversity, and disturbance effects were not consistent at the fungal class level. Co-occurrence networks constructed for bacteria and fungi showed that disturbed communities were characterized by more connected and tightly clustered network topologies, indicating that disturbance alters not only community composition but also potential ecological interactions among taxa. Although bacteria and fungi displayed different long-term responses to forest disturbance, our results demonstrate clear responses of important bacterial and fungal functional groups (e.g., nitrifying bacteria and mycorrhizal fungi), and suggest that both microbial groups play key roles in the long-term alterations to biogeochemical processes observed following forest disturbance in the region.
Collapse
Affiliation(s)
- Ernest D. Osburn
- Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Steven G. McBride
- Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Frank O. Aylward
- Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Brian D. Badgley
- School of Plant and Environmental Sciences, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Brian D. Strahm
- Department of Forest Resources and Environmental Conservation, College of Natural Resources and Environment, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jennifer D. Knoepp
- Coweeta Hydrologic Laboratory, USDA Forest Service Southern Research Station, Otto, NC, United States
| | - J. E. Barrett
- Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
74
|
Yang W, Zhang D, Cai X, Xia L, Luo Y, Cheng X, An S. Significant alterations in soil fungal communities along a chronosequence of Spartina alterniflora invasion in a Chinese Yellow Sea coastal wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133548. [PMID: 31369894 DOI: 10.1016/j.scitotenv.2019.07.354] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 05/24/2023]
Abstract
Plant invasion typically alters the microbial communities of soils, which affects ecosystem carbon (C) and nitrogen (N) cycles. The responses of the soil fungal communities to plant invasion along its chronosequence remain poorly understood. For this study, we investigated variations in soil fungal communities through Illumina MiSeq sequencing analyses of the fungal internal transcribed spacer (ITS) region, and quantitative polymerase chain reaction (qPCR), along a chronosequence (i.e., 9-, 13-, 20- and 23-year-old) of invasive Spartina alterniflora. We compared these variations with those of bare flat in a Chinese Yellow Sea coastal wetland. Our results highlighted that the abundance of soil fungi, the number of operational taxonomic units (OTUs), species richness, and Shannon diversity indices for soil fungal communities were highest in 9-year-old S. alterniflora soil, which gradually declined along the invasion chronosequence. The relative abundance of copiotrophic Basidiomycota revealed significant decreasing trend, while the relative abundance of oligotrophic Ascomycota gradually increased along the S. alterniflora invasion chronosequence. The relative abundance of soil saprotrophic fungi (e.g., undefined saprotrophs) was gradually reduced while symbiotic fungi (e.g., ectomycorrhizal fungi) and pathotrophic fungi (e.g., plant and animal pathogens) progressively increased along the S. alterniflora invasion chronosequence. Our results suggested that S. alterniflora invasion significantly altered soil fungal abundance and diversity, community composition, trophic modes, and functional groups along a chronosequence, via substantially reduced soil litter inputs, and gradually decreased soil pH, moisture, and soil nutrient substrates along the invasion chronosequence, from 9 to 23 years. These changes in soil fungal communities, particularly their trophic modes and functional groups along the S. alterniflora invasion chronosequence could well impact the decomposition and accumulation of soil C and N, while potentially altering ecosystem C and N sinks in a Chinese Yellow Sea coastal wetland.
Collapse
Affiliation(s)
- Wen Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Di Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, PR China
| | - Xinwen Cai
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, PR China
| | - Lu Xia
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing 210023, PR China
| | - Yiqi Luo
- Center for Ecosystem Science and Society (Ecoss), Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Xiaoli Cheng
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China.
| | - Shuqing An
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
75
|
Collado E, Bonet JA, Camarero JJ, Egli S, Peter M, Salo K, Martínez-Peña F, Ohenoja E, Martín-Pinto P, Primicia I, Büntgen U, Kurttila M, Oria-de-Rueda JA, Martínez-de-Aragón J, Miina J, de-Miguel S. Mushroom productivity trends in relation to tree growth and climate across different European forest biomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:602-615. [PMID: 31279206 DOI: 10.1016/j.scitotenv.2019.06.471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Although it is logical to think that mycorrhizal mushroom production should be somehow related to the growth of the trees from which the fungi obtain carbohydrates, little is known about how mushroom yield patterns are related to tree performance. In this study, we delved into the understanding of the relationships between aboveground fungal productivity, tree radial growth patterns and climatic conditions across three latitudinally different bioclimatic regions encompassing Mediterranean, temperate and boreal forest ecosystems in Europe. For this purpose, we used a large assemblage of long-term data of weekly or biweekly mushroom yield monitoring in Spain, Switzerland and Finland. We analysed the relationships between annual mushroom yield (considering both biomass and number of sporocarps per unit area), tree ring features (tree ring, earlywood and latewood widths), and meteorological conditions (i.e. precipitation and temperature of summer and autumn) from different study sites and forest ecosystems, using both standard and partial correlations. Moreover, we fitted predictive models to estimate mushroom yield from mycorrhizal and saprotrophic fungal guilds based on climatic and dendrochronological variables. Significant synchronies between mushroom yield and climatic and dendrochronological variables were mostly found in drier Mediterranean sites, while few or no significant correlations were found in the boreal and temperate regions. We observed positive correlations between latewood growth and mycorrhizal mushroom biomass only in some Mediterranean sites, this relationship being mainly mediated by summer and autumn precipitation. Under more water-limited conditions, both the seasonal wood production and the mushroom yield are more sensitive to precipitation events, resulting in higher synchrony between both variables. This comparative study across diverse European forest biomes and types provides new insights into the relationship between mushroom productivity, tree growth and weather conditions.
Collapse
Affiliation(s)
- E Collado
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain.
| | - J A Bonet
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| | - J J Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| | - S Egli
- Swiss Federal Research Institute WSL, Zurcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - M Peter
- Swiss Federal Research Institute WSL, Zurcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - K Salo
- Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland
| | - F Martínez-Peña
- European Mycological Institute EGTC-EMI, 42003 Soria, Spain; Agrifood Research and Technology Centre of Aragon CITA, Montañana 930, 50059 Zaragoza, Spain
| | - E Ohenoja
- Biodiversity Unit/Botanical Museum, P.O.B. 3000, FI-90014, University of Oulu, Finland
| | - P Martín-Pinto
- Instituto Universitario de Gestión Forestal Sostenible (UVA-INIA), Avda. Madrid, s/n, E-34004 Palencia, Spain; Escuela Técnica Superior de Ingenierías Agrarias de Palencia (ETSIIA), Universidad de Valladolid (UVA), Avda. Madrid, s/n, E-34004 Palencia, Spain
| | - I Primicia
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| | - U Büntgen
- Swiss Federal Research Institute WSL, Zurcherstrasse 111, 8903 Birmensdorf, Switzerland; Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK; Global Change Research Centre and Masaryk University Brno, Bělidla 986/4a, 61300 Brno, Czech Republic
| | - M Kurttila
- Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland
| | - J A Oria-de-Rueda
- Instituto Universitario de Gestión Forestal Sostenible (UVA-INIA), Avda. Madrid, s/n, E-34004 Palencia, Spain; Escuela Técnica Superior de Ingenierías Agrarias de Palencia (ETSIIA), Universidad de Valladolid (UVA), Avda. Madrid, s/n, E-34004 Palencia, Spain
| | - J Martínez-de-Aragón
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| | - J Miina
- Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland
| | - S de-Miguel
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| |
Collapse
|
76
|
Chen C, Chen HYH, Chen X. Functional diversity enhances, but exploitative traits reduce tree mixture effects on microbial biomass. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chen Chen
- Faculty of Natural Resources Management Lakehead University Thunder Bay ON Canada
| | - Han Y. H. Chen
- Faculty of Natural Resources Management Lakehead University Thunder Bay ON Canada
- Key Laboratory for Humid Subtropical Eco‐geographical Processes of the Ministry of Education Fujian Normal University Fuzhou China
| | - Xinli Chen
- Faculty of Natural Resources Management Lakehead University Thunder Bay ON Canada
| |
Collapse
|
77
|
Grossman JJ, Butterfield AJ, Cavender-Bares J, Hobbie SE, Reich PB, Gutknecht J, Kennedy PG. Non-symbiotic soil microbes are more strongly influenced by altered tree biodiversity than arbuscular mycorrhizal fungi during initial forest establishment. FEMS Microbiol Ecol 2019; 95:5553462. [PMID: 31437281 DOI: 10.1093/femsec/fiz134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/21/2019] [Indexed: 11/13/2022] Open
Abstract
While the relationship between plant and microbial diversity has been well studied in grasslands, less is known about similar relationships in forests, especially for obligately symbiotic arbuscular mycorrhizal (AM) fungi. To assess the effect of varying tree diversity on microbial alpha- and beta-diversity, we sampled soil from plots in a high-density tree diversity experiment in Minnesota, USA, 3 years after establishment. About 3 of 12 tree species are AM hosts; the other 9 primarily associate with ectomycorrhizal fungi. We used phospho- and neutral lipid fatty acid analysis to characterize the biomass and functional identity of the whole soil bacterial and fungal community and high throughput sequencing to identify the species-level richness and composition of the AM fungal community. We found that plots of differing tree composition had different bacterial and fungal communities; plots with conifers, and especially Juniperus virginiana, had lower densities of several bacterial groups. In contrast, plots with a higher density or diversity of AM hosts showed no sign of greater AM fungal abundance or diversity. Our results indicate that early responses to plant diversity vary considerably across microbial groups, with AM fungal communities potentially requiring longer timescales to respond to changes in host tree diversity.
Collapse
Affiliation(s)
- Jake J Grossman
- Arnold Arboretum, Harvard University, 1300 Centre St., Boston, MA 02131, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota -- Twin Cities, 1475 Gortner Ave., St. Paul, MN, 55108, USA
| | - Allen J Butterfield
- Department of Chemical Engeineering, University of Minnesota -- Duluth, 1303 Ordean Ct., Duluth, MN 55812, USA
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution, and Behavior, University of Minnesota -- Twin Cities, 1475 Gortner Ave., St. Paul, MN, 55108, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota -- Twin Cities, 1475 Gortner Ave., St. Paul, MN, 55108, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota -- Twin Cities, 1530 Cleveland Ave. N., St. Paul, MN 55108, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, NSW, Australia
| | - Jessica Gutknecht
- Department of Soil, Water, and Climate, University of Minnesota --Twin Cities, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota -- Twin Cities, 1475 Gortner Ave., St. Paul, MN 55108, USA
| |
Collapse
|
78
|
Borg Dahl M, Brejnrod AD, Russel J, Sørensen SJ, Schnittler M. Different Degrees of Niche Differentiation for Bacteria, Fungi, and Myxomycetes Within an Elevational Transect in the German Alps. MICROBIAL ECOLOGY 2019; 78:764-780. [PMID: 30903202 DOI: 10.1007/s00248-019-01347-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
We used direct DNA amplification from soil extracts to analyze microbial communities from an elevational transect in the German Alps by parallel metabarcoding of bacteria (16S rRNA), fungi (ITS2), and myxomycetes (18S rRNA). For the three microbial groups, 5710, 6133, and 261 operational taxonomic units (OTU) were found. For the latter group, we can relate OTUs to barcodes from fruit bodies sampled over a 4-year period. The alpha diversity of myxomycetes was positively correlated with that of bacteria. Vegetation type was found to be the main explanatory parameter for the community composition of all three groups and a substantial species turnover with elevation was observed. Bacteria and fungi display similar community responses, driven by symbiont species and plant substrate quality. Myxamoebae show a more patchy distribution, though still clearly stratified between taxa, which seems to be a response to both structural properties of the habitat and interaction with specific bacterial and fungal taxa. Finally, we report a high number of myxomycete OTUs not represented in a reference database from fructifications, which might represent novel species.
Collapse
Affiliation(s)
- Mathilde Borg Dahl
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstrasse 15, 17487, Greifswald, Mecklenburg-Vorpommern, Germany.
| | - Asker Daniel Brejnrod
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Schnittler
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstrasse 15, 17487, Greifswald, Mecklenburg-Vorpommern, Germany
| |
Collapse
|
79
|
Looking at the Origin: Some Insights into the General and Fermentative Microbiota of Vineyard Soils. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In winemaking processes, there is a current tendency to develop spontaneous fermentations taking advantage of the metabolic diversity of derived from the great microbial diversity present in grape musts. This enological practice enhances wine complexity, but undesirable consequences or deviations could appear on wine quality. Soil is a reservoir of important microorganisms for different beneficial processes, especially for plant nutrition, but it is also the origin of many of the phytopathogenic microorganisms that affect vines. In this study, a meta-taxonomic analysis of the microbial communities inhabiting vineyard soils was realized. A significant impact of the soil type and climate aspects (seasonal patterns) was observed in terms of alpha and beta bacterial diversity, but fungal populations appeared as more stable communities in vineyard soils, especially in terms of alpha diversity. Focusing on the presence and abundance of wine-related microorganisms present in the studied soils, some seasonal and soil-dependent patterns were observed. The Lactobacillaceae family, containing species responsible for the malolactic fermentation, was only present in non-calcareous soils samples and during the summer season. The study of wine-related fungi indicated that the Debaryomycetaceae family dominates the winter yeast population, whereas the Saccharomycetaceae family, containing the most important fermentative yeast species for winemaking, was detected as dominant in summer.
Collapse
|
80
|
Qin M, Shi G, Miranda JP, Liu Y, Meng Y, Pan J, Chai Y, Jiang S, Zhou G, Feng H, Zhang Q. Revegetation differentially influences microbial trophic groups in a Qinghai-Tibetan alpine steppe ecosystem. J Basic Microbiol 2019; 59:992-1003. [PMID: 31410872 DOI: 10.1002/jobm.201900149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/25/2019] [Indexed: 11/08/2022]
Abstract
Revegetation accelerates the recovery of degraded lands. Different microbial trophic groups underpin this acceleration from the aspects of soil structure stabilization, nutrient accumulation, and ecosystem functions. However, little is known about how revegetation influences the community and biodiversity of different soil microbial trophic groups. Here, six revegetation treatments with different plantings of plant species were established at an excavation pit in the Qinghai-Tibetan Plateau. Communities of plant, bacteria, and several key soil fungal groups were investigated after 12 years of revegetation. Plant and all microbial trophic group compositions were markedly influenced by revegetation treatments. Total fungal and pathogenic fungal compositions were not significantly predicted by any factor of plant and soil, but arbuscular mycorrhizal fungal composition could be mainly predicted by plant composition and plant P content. Bacterial composition was mainly determined by soil total N, organic carbon concentration, and moisture content; and saprotrophic fungal composition was mainly determined by soil organic carbon. Soil pH was the strongest factor to predict bacterial metabolic functions. Our findings highlight that even the differences of microbial compositions were because of different revegetation treatments, but each trophic microbial composition had different relations with plant and/or soil; especially, the bacterial community and metabolic functions and saprotrophic fungal community were more correlated with soil properties rather than plant community or characteristics per se.
Collapse
Affiliation(s)
- Mingsen Qin
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China.,Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Guoxi Shi
- Key Laboratory of Utilization of Agricultural Solid Waste Resource, Tianshui Normal University, Tianshui, China
| | | | - Yongjun Liu
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
| | - Yiming Meng
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
| | - Jianbin Pan
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
| | - Yuxing Chai
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
| | - Shengjing Jiang
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
| | - Guoying Zhou
- The Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Huyuan Feng
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China.,State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Qi Zhang
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
| |
Collapse
|
81
|
Coordinated community structure among trees, fungi and invertebrate groups in Amazonian rainforests. Sci Rep 2019; 9:11337. [PMID: 31383883 PMCID: PMC6683196 DOI: 10.1038/s41598-019-47595-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/10/2019] [Indexed: 11/30/2022] Open
Abstract
Little is known regarding how trophic interactions shape community assembly in tropical forests. Here we assess multi-taxonomic community assembly rules using a rare standardized coordinated inventory comprising exhaustive surveys of five highly-diverse taxonomic groups exerting key ecological functions: trees, fungi, earthworms, ants and spiders. We sampled 36 1.9-ha plots from four remote locations in French Guiana including precise soil measurements, and we tested whether species turnover was coordinated among groups across geographic and edaphic gradients. All species group pairs exhibited significant compositional associations that were independent from soil conditions. For some of the pairs, associations were also partly explained by soil properties, especially soil phosphorus availability. Our study provides evidence for coordinated turnover among taxonomic groups beyond simple relationships with environmental factors, thereby refining our understanding regarding the nature of interactions occurring among these ecologically important groups.
Collapse
|
82
|
Averill C, Cates LL, Dietze MC, Bhatnagar JM. Spatial vs. temporal controls over soil fungal community similarity at continental and global scales. THE ISME JOURNAL 2019; 13:2082-2093. [PMID: 31019271 PMCID: PMC6776031 DOI: 10.1038/s41396-019-0420-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/21/2019] [Accepted: 03/20/2019] [Indexed: 11/09/2022]
Abstract
Large-scale environmental sequencing efforts have transformed our understanding of the spatial controls over soil microbial community composition and turnover. Yet, our knowledge of temporal controls is comparatively limited. This is a major uncertainty in microbial ecology, as there is increasing evidence that microbial community composition is important for predicting microbial community function in the future. Here, we use continental- and global-scale soil fungal community surveys, focused within northern temperate latitudes, to estimate the relative contribution of time and space to soil fungal community turnover. We detected large intra-annual temporal differences in soil fungal community similarity, where fungal communities differed most among seasons, equivalent to the community turnover observed over thousands of kilometers in space. inter-annual community turnover was comparatively smaller than intra-annual turnover. Certain environmental covariates, particularly climate covariates, explained some spatial-temporal effects, though it is unlikely the same mechanisms drive spatial vs. temporal turnover. However, these commonly measured environmental covariates could not fully explain relationships between space, time and community composition. These baseline estimates of fungal community turnover in time provide a starting point to estimate the potential duration of legacies in microbial community composition and function.
Collapse
Affiliation(s)
- Colin Averill
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, USA.
- Department of Earth & Environment, Boston University, Boston, MA, USA.
| | - LeAnna L Cates
- Department of Biology, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Michael C Dietze
- Department of Earth & Environment, Boston University, Boston, MA, USA
| | | |
Collapse
|
83
|
Monteiro JS, Sarmento PSM, Sotão HMP. Saprobic conidial fungi associated with palm leaf litter in eastern Amazon, Brazil. AN ACAD BRAS CIENC 2019; 91:e20180545. [PMID: 31365651 DOI: 10.1590/0001-3675201920180545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/13/2018] [Indexed: 01/07/2023] Open
Abstract
Fungi play an important role in litter decomposition in forest ecosystems and are considered an undersampled group in the Amazon biome. This study aims to describe the composition, richness and frequency of species of conidial fungi associated with palm trees in an area of the Amapá National Forest, State of Amapá, Brazil. Palm leaf litter was collected from July 2009 to June 2010, incubated in moist chambers and examined for the presence of fungi. One hundred and seven species of conidial fungi were identified, in 79 genera and 25 families. As for the relative frequency of the species, the majority (94.4%) was sporadic and occurred on leaflets. We report new records for South America (Chaetopsis intermedia, Chaetochalara laevis and Thysanophora verrucosa) and Brazil (Chloridium phaeosporum, Helminthosporiella stilbacea and Zygosporium geminatum), and 83 for the State of Amapá, while 15 are also new for the Brazilian Amazon. This study significantly increases the knowledge about the distribution of the fungal species in the Amazon biome, and emphasizes the importance of the conservation of these organisms particularly in view of the large number of sporadic species recorded.
Collapse
Affiliation(s)
- Josiane S Monteiro
- Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral 1901, Caixa Postal 399, 66077-830 Belém, PA, Brazil
| | - Priscila S M Sarmento
- Instituto Tecnológico Vale - Desenvolvimento Sustentável, Rua Boaventura da Silva, 955, Nazaré, 66055-090 Belém, PA, Brazil
| | - Helen M P Sotão
- Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral 1901, Caixa Postal 399, 66077-830 Belém, PA, Brazil
| |
Collapse
|
84
|
Seabloom EW, Condon B, Kinkel L, Komatsu KJ, Lumibao CY, May G, McCulley RL, Borer ET. Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecology 2019; 100:e02758. [PMID: 31306499 DOI: 10.1002/ecy.2758] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
The microbes contained within free-living organisms can alter host growth, reproduction, and interactions with the environment. In turn, processes occurring at larger scales determine the local biotic and abiotic environment of each host that may affect the diversity and composition of the microbiome community. Here, we examine variation in the diversity and composition of the foliar fungal microbiome in the grass host, Andropogon gerardii, across four mesic prairies in the central United States. Composition of fungal endophyte communities differed among sites and among individuals within a site, but was not consistently affected by experimental manipulation of nutrient supply to hosts (A. gerardii) or herbivore reduction via fencing. In contrast, mean fungal diversity was similar among sites but was limited by total plant biomass at the plot scale. Our work demonstrates that distributed experiments motivated by ecological theory are a powerful tool to unravel the multiscale processes governing microbial community composition and diversity.
Collapse
Affiliation(s)
- Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Bradford Condon
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Linda Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Kimberly J Komatsu
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland, 21037, USA
| | - Candice Y Lumibao
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Georgiana May
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Rebecca L McCulley
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, Kentucky, 40536-0312, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| |
Collapse
|
85
|
Matsuoka S, Sugiyama Y, Sato H, Katano I, Harada K, Doi H. Spatial structure of fungal DNA assemblages revealed with eDNA metabarcoding in a forest river network in western Japan. METABARCODING AND METAGENOMICS 2019. [DOI: 10.3897/mbmg.3.36335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Growing evidence has revealed high diversity and spatial heterogeneity of fungal communities in local habitats of terrestrial ecosystems. Recently, the analysis of environmental DNA has been undertaken to study the biodiversity of organisms, such as animals and plants, in both aquatic and terrestrial habitats. In the present study, we investigated fungal DNA assemblages and their spatial structure using environmental DNA metabarcoding targeting the internal transcribed spacer 1 (ITS1) region of the rRNA gene cluster in habitats across different branches of rivers in forest landscapes. A total of 1,956 operational taxonomic units (OTUs) were detected. Of these, 770 were assigned as Ascomycota, 177 as Basidiomycota, and 38 as Chytridiomycota. The river water was found to contain functionally diverse OTUs of both aquatic and terrestrial fungi, such as plant decomposers and mycorrhizal fungi. These fungal DNA assemblages were more similar within, rather than between, river branches. In addition, the assemblages were more similar between spatially closer branches. This spatial structuring was significantly associated with geographic distances but not with vegetation of the catchment area and the elevation at the sampling points. Our results imply that information on the terrestrial and aquatic fungal compositions of watersheds, and therefore their spatial structure, can be obtained by investigating the fungal DNA assemblages in river water.
Collapse
|
86
|
Filamentous fungi diversity in the natural fermentation of Amazonian cocoa beans and the microbial enzyme activities. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01488-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
87
|
Ji N, Gao C, Sandel B, Zheng Y, Chen L, Wu B, Li X, Wang Y, Lü P, Sun X, Guo L. Late Quaternary climate change explains soil fungal community composition rather than fungal richness in forest ecosystems. Ecol Evol 2019; 9:6678-6692. [PMID: 31236252 PMCID: PMC6580281 DOI: 10.1002/ece3.5247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
The dramatic climate fluctuations of the late Quaternary have influenced the diversity and composition of macroorganism communities, but how they structure belowground microbial communities is less well known. Fungi constitute an important component of soil microorganism communities. They play an important role in biodiversity maintenance, community assembly, and ecosystem functioning, and differ from many macroorganisms in many traits. Here, we examined soil fungal communities in Chinese temperate, subtropical, and tropic forests using Illumina MiSeq sequencing of the fungal ITS1 region. The relative effect of late Quaternary climate change and contemporary environment (plant, soil, current climate, and geographic distance) on the soil fungal community was analyzed. The richness of the total fungal community, along with saprotrophic, ectomycorrhizal (EM), and pathogenic fungal communities, was influenced primarily by the contemporary environment (plant and/or soil) but not by late Quaternary climate change. Late Quaternary climate change acted in concert with the contemporary environment to shape total, saprotrophic, EM, and pathogenic fungal community compositions and with a stronger effect in temperate forest than in tropic-subtropical forest ecosystems. Some contemporary environmental factors influencing total, saprotrophic, EM, and pathogenic fungal communities in temperate and tropic-subtropical forests were different. We demonstrate that late Quaternary climate change can help to explain current soil fungal community composition and argue that climatic legacies can help to predict soil fungal responses to climate change.
Collapse
Affiliation(s)
- Niu‐Niu Ji
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Brody Sandel
- Department of BiologySanta Clara UniversitySanta ClaraCalifornia
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Bin‐Wei Wu
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xing‐Chun Li
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yong‐Long Wang
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Peng‐Peng Lü
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiang Sun
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Liang‐Dong Guo
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
88
|
Duhamel M, Wan J, Bogar LM, Segnitz RM, Duncritts NC, Peay KG. Plant selection initiates alternative successional trajectories in the soil microbial community after disturbance. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1367] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Marie Duhamel
- Department of Biology Stanford University Stanford California 94305 USA
| | - Joe Wan
- Department of Biology Stanford University Stanford California 94305 USA
| | - Laura M. Bogar
- Department of Biology Stanford University Stanford California 94305 USA
| | - R. Max Segnitz
- Department of Biology Stanford University Stanford California 94305 USA
| | - Nora C. Duncritts
- Department of Botany University of Wisconsin Madison Wisconsin 53706 USA
| | - Kabir G. Peay
- Department of Biology Stanford University Stanford California 94305 USA
| |
Collapse
|
89
|
Adamczyk M, Hagedorn F, Wipf S, Donhauser J, Vittoz P, Rixen C, Frossard A, Theurillat JP, Frey B. The Soil Microbiome of GLORIA Mountain Summits in the Swiss Alps. Front Microbiol 2019; 10:1080. [PMID: 31156590 PMCID: PMC6529532 DOI: 10.3389/fmicb.2019.01080] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/29/2019] [Indexed: 01/03/2023] Open
Abstract
While vegetation has intensively been surveyed on mountain summits, limited knowledge exists about the diversity and community structure of soil biota. Here, we study how climatic variables, vegetation, parent material, soil properties, and slope aspect affect the soil microbiome on 10 GLORIA (Global Observation Research Initiative in Alpine environments) mountain summits ranging from the lower alpine to the nival zone in Switzerland. At these summits we sampled soils from all four aspects and examined how the bacterial and fungal communities vary by using Illumina MiSeq sequencing. We found that mountain summit soils contain highly diverse microbial communities with a total of 10,406 bacterial and 6,291 fungal taxa. Bacterial α-diversity increased with increasing soil pH and decreased with increasing elevation, whereas fungal α-diversity did not change significantly. Soil pH was the strongest predictor for microbial β-diversity. Bacterial and fungal community structures exhibited a significant positive relationship with plant communities, indicating that summits with a more distinct plant composition also revealed more distinct microbial communities. The influence of elevation was stronger than aspect on the soil microbiome. Several microbial taxa responded to elevation and soil pH. Chloroflexi and Mucoromycota were significantly more abundant on summits at higher elevations, whereas the relative abundance of Basidiomycota and Agaricomycetes decreased with elevation. Most bacterial OTUs belonging to the phylum Acidobacteria were indicators for siliceous parent material and several OTUs belonging to the phylum Planctomycetes were associated with calcareous soils. The trends for fungi were less clear. Indicator OTUs belonging to the genera Mortierella and Naganishia showed a mixed response to parent material, demonstrating their ubiquitous and opportunistic behaviour in soils. Overall, fungal communities responded weakly to abiotic and biotic factors. In contrast, bacterial communities were strongly influenced by environmental changes suggesting they will be strongly affected by future climate change and associated temperature increase and an upward migration of vegetation. Our results provide the first insights into the soil microbiome of mountain summits in the European Alps that are shaped as a result of highly variable local environmental conditions and may help to predict responses of the soil biota to global climate change.
Collapse
Affiliation(s)
- Magdalene Adamczyk
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Frank Hagedorn
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Sonja Wipf
- Community Ecology, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Jonathan Donhauser
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pascal Vittoz
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Christian Rixen
- Community Ecology, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Aline Frossard
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jean-Paul Theurillat
- Fondation J.-M. Aubert, Champex-Lac, Switzerland
- Department of Botany and Plant Biology, University of Geneva, Chambésy, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
90
|
Chen L, Xiang W, Wu H, Ouyang S, Lei P, Hu Y, Ge T, Ye J, Kuzyakov Y. Contrasting patterns and drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests. Appl Microbiol Biotechnol 2019; 103:5421-5433. [PMID: 31073876 DOI: 10.1007/s00253-019-09867-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
Subtropical broadleaved forests play a crucial role in supporting terrestrial ecosystem functions, but little is known about their belowground soil fungal communities despite that they have central functions in C, N, and P cycles. This study investigated the structures and identified the drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests, using high-throughput sequencing and FUNGuild for fungal identification and assignment to the trophic guild. Fungal richness was much higher in the deciduous than in the evergreen forest. Both forests were dominated by Ascomycota and Basidiomycota phyla, but saprophytic fungi were more abundant in the deciduous forest and ectomycorrhizal fungi predominated in the evergreen forest. Fungal communities had strong links to plant and soil properties. Specifically, plant diversity and litter biomass were the main aboveground drivers of fungal diversity and composition in the deciduous forest, while host effects were prominent in the evergreen forest. The belowground factors, i.e., soil pH, water content, and nutrients especially available P, were identified as the primary drivers of soil fungal communities in the broadleaved forests. Co-occurrence network analysis revealed assembly of fungal composition in broadleaved forest soils was non-random. The smaller modularity of the network in the deciduous forest reflects lower resistance to environment changes. Concluding, these results showed that plant community attributes, soil properties, and potential interactions among fungal functional guilds operate jointly on the divergence of soil fungal community assembly in the two broadleaved forest types.
Collapse
Affiliation(s)
- Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China. .,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China.
| | - Huili Wu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Shuai Ouyang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Pifeng Lei
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Yajun Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Jun Ye
- Australian Centre for Ecogenomics, The University of Queensland, QLD, St. Lucia, 4072, Australia
| | - Yakov Kuzyakov
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, 37077, Göttingen, Germany.,Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, 142290, Russia
| |
Collapse
|
91
|
Schlatter DC, Kahl K, Carlson B, Huggins DR, Paulitz T. Fungal community composition and diversity vary with soil depth and landscape position in a no-till wheat-based cropping system. FEMS Microbiol Ecol 2019; 94:5003378. [PMID: 29800123 DOI: 10.1093/femsec/fiy098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/23/2018] [Indexed: 11/14/2022] Open
Abstract
Soil edaphic characteristics are major drivers of fungal communities, but there is a lack of information on how communities vary with soil depth and landscape position in no-till cropping systems. Eastern Washington is dominated by dryland wheat grown on a highly variable landscape with steep, rolling hills. High-throughput sequencing of fungal ITS1 amplicons was used to characterize fungal communities across soil depth profiles (0 to 100 cm from the soil surface) among distinct landscape positions and aspects across a no-till wheat field. Fungal communities were highly stratified with soil depth, where deeper depths harbored distinct fungal taxa and more variable, less diverse fungal communities. Fungal communities from deep soils harbored a greater portion of taxa inferred to have pathotrophic or symbiotrophic in addition to saprotrophic lifestyles. Co-occurrence networks of fungal taxa became smaller and denser as soil depth increased. In contrast, differences between fungal communities from north-facing and south-facing slopes were relatively minor, suggesting that plant host, tillage, and fertilizer may be stronger drivers of fungal communities than landscape position.
Collapse
Affiliation(s)
- Daniel C Schlatter
- USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164, United States
| | - Kendall Kahl
- Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844 United States
| | - Bryan Carlson
- USDA-ARS, Northwest Sustainable Agroecosystems Research Unit, Pullman, WA 99164, United States
| | - David R Huggins
- USDA-ARS, Northwest Sustainable Agroecosystems Research Unit, Pullman, WA 99164, United States
| | - Timothy Paulitz
- USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164, United States
| |
Collapse
|
92
|
Chai Y, Cao Y, Yue M, Tian T, Yin Q, Dang H, Quan J, Zhang R, Wang M. Soil Abiotic Properties and Plant Functional Traits Mediate Associations Between Soil Microbial and Plant Communities During a Secondary Forest Succession on the Loess Plateau. Front Microbiol 2019; 10:895. [PMID: 31105679 PMCID: PMC6499021 DOI: 10.3389/fmicb.2019.00895] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
In the context of secondary forest succession, aboveground-belowground interactions are known to affect the dynamics and functional structure of plant communities. However, the links between soil microbial communities, soil abiotic properties, plant functional traits in the case of semi-arid and arid ecosystems, are unclear. In this study, we investigated the changes in soil microbial species diversity and community composition, and the corresponding effects of soil abiotic properties and plant functional traits, during a ≥150-year secondary forest succession on the Loess Plateau, which represents a typical semi-arid ecosystem in China. Plant community fragments were assigned to six successional stages: 1-4, 4-8, 8-15, 15-50, 50-100, and 100-150 years after abandonment. Bacterial and fungal communities were analyzed by high-throughput sequencing of the V4 hypervariable region of the 16S rRNA gene and the internal transcribed spacer (ITS2) region of the rRNA operon, respectively. A multivariate variation-partitioning approach was used to estimate the contributions of soil properties and plant traits to the observed microbial community composition. We found considerable differences in bacterial and fungal community compositions between the early (S1-S3) and later (S4-S6) successional stages. In total, 18 and 12 unique families were, respectively, obtained for bacteria and fungi, as indicators of microbial community succession across the six stages. Bacterial alpha diversity was positively correlated with plant species alpha diversity, while fungal diversity was negatively correlated with plant species diversity. Certain fungal and bacterial taxa appeared to be associated with the occurrence of dominant plant species at different successional stages. Soil properties (pH, total N, total C, NH4-N, NO3-N, and PO4-P concentrations) and plant traits explained 63.80% and 56.68% of total variance in bacterial and fungal community compositions, respectively. These results indicate that soil microbial communities are coupled with plant communities via the mediation of microbial species diversity and community composition over a long-term secondary forest succession in the semi-arid ecosystem. The bacterial and fungal communities show distinct patterns in response to plant community succession, according to both soil abiotic properties and plant functional traits.
Collapse
Affiliation(s)
- Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Ying Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Tingting Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Qiulong Yin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Han Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Ruichang Zhang
- Department of Plant Ecology, University of Tübingen, Tübingen, Germany
| | - Mao Wang
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
93
|
Tahir AA, Mohd Barnoh NF, Yusof N, Mohd Said NN, Utsumi M, Yen AM, Hashim H, Mohd Noor MJM, Akhir FNM, Mohamad SE, Sugiura N, Othman N, Zakaria Z, Hara H. Microbial Diversity in Decaying Oil Palm Empty Fruit Bunches (OPEFB) and Isolation of Lignin-degrading Bacteria from a Tropical Environment. Microbes Environ 2019; 34:161-168. [PMID: 31019143 PMCID: PMC6594733 DOI: 10.1264/jsme2.me18117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oil palm empty fruit bunches (OPEFB) are the most abundant, inexpensive, and environmentally friendly lignocellulosic biomass in Malaysia. Investigations on the microbial diversity of decaying OPEFB may reveal microbes with complex enzymes that have the potential to enhance the conversion of lignocellulose into second-generation biofuels as well as the production of other value-added products. In the present study, fungal and bacterial diversities in decaying OPEFB were identified using Illumina MiSeq sequencing of the V3 region of the 16S rRNA gene and V4 region of the 18S rRNA gene. Fungal diversity in decaying OPEFB was dominated by the phylum Ascomycota (14.43%), while most of the bacterial sequences retrieved belonged to Proteobacteria (76.71%). Three bacterial strains isolated from decaying OPEFB, designated as S18, S20, and S36, appeared to grow with extracted OPEFB-lignin and Kraft lignin (KL) as the sole carbon source. 16S rRNA gene sequencing identified the 3 isolates as Paenibacillus sp.. The molecular weight distribution of KL before and after degradation showed significant depolymerization when treated with bacterial strains S18, S20, and S36. The presence of low-molecular-weight lignin-related compounds, such as vanillin and 2-methoxyphenol derivatives, which were detected by a GC-MS analysis, confirmed the KL-degrading activities of isolated Paenibacillus strains.
Collapse
Affiliation(s)
- Analhuda Abdullah Tahir
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Nor Farhana Mohd Barnoh
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Nurtasbiyah Yusof
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Nuurul Nadrah Mohd Said
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Motoo Utsumi
- Graduate School of Life and Environmental Science, University of Tsukuba
| | - Ang May Yen
- Analytical and Scientific Instruments Division, Shimadzu Malaysia Sdn. Bhd
| | - Hazni Hashim
- Analytical and Scientific Instruments Division, Shimadzu Malaysia Sdn. Bhd
| | - Megat Johari Megat Mohd Noor
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Fazrena Nadia Md Akhir
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Shaza Eva Mohamad
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Norio Sugiura
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia.,Graduate School of Life and Environmental Science, University of Tsukuba
| | - Nor'azizi Othman
- Department of Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Zuriati Zakaria
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Hirofumi Hara
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| |
Collapse
|
94
|
Liu D, Wang H, An S, Bhople P, Davlatbekov F. Geographic distance and soil microbial biomass carbon drive biogeographical distribution of fungal communities in Chinese Loess Plateau soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1058-1069. [PMID: 30743903 DOI: 10.1016/j.scitotenv.2019.01.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Fungi are ecological drivers of carbon cycle in soils and also effectively mediate mineral nutrition for plants especially in the severely eroded Loess Plateau of China. However, factors determining variations in fungal diversity and their biogeographic patterns in this rigorously affected landscape area remain poorly understood. Therefore, we performed Illumina MiSeq high throughput sequencing of the fungal specific, internal transcribed spacer 2 (ITS2) region from 24 representative soils covering forest, grassland and agricultural lands from 8 distinct landscapes. Using this technique, we demonstrate that fungal members belonging to phylum Ascomycota dominated in all soils investigated in this study with an average relative abundance higher than 80%. High fungal richness in the Loess Plateau soils is ascribed to the retrieval of 1,822,499 quality sequences belonging to 13,533 different phylotypes. However, this richness/phylotype number decreased (from 779 to 561) with increasing longitudinal gradient through 107°39' to 109°36'. Interestingly, higher fungal diversity (in terms of presence of diverse fungal taxa) occurred as microbial biomass carbon (MBC) concentration decreased (approximately from 500 to 100mgkg-1) in soils. Variation partitioning analysis revealed that geographic distance contributed more to fungal community variation (38.3%) than soil properties (22.2%) at the landscape level (~400km). As indicated by non-metric multidimensional scaling (NMDS), among soil properties, concentrations of MBC primarily affected (significantly corrected with NMDS 1; r=0.620; p<0.01) fungal community structure in the current study. This study therefore constitutes an essential set of information and recommends usage of information on fungal community structure as a potential ecological indicator of the Loess Plateau region.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, PR China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Honglei Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, PR China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, PR China.
| | - Parag Bhople
- Faculty of Organic Agricultural Sciences, Department of Soil Biology and Plant Nutrition, University of Kassel, Germany
| | | |
Collapse
|
95
|
Brinkmann N, Schneider D, Sahner J, Ballauff J, Edy N, Barus H, Irawan B, Budi SW, Qaim M, Daniel R, Polle A. Intensive tropical land use massively shifts soil fungal communities. Sci Rep 2019; 9:3403. [PMID: 30833601 PMCID: PMC6399230 DOI: 10.1038/s41598-019-39829-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/30/2019] [Indexed: 12/02/2022] Open
Abstract
Soil fungi are key players in nutrient cycles as decomposers, mutualists and pathogens, but the impact of tropical rain forest transformation into rubber or oil palm plantations on fungal community structures and their ecological functions are unknown. We hypothesized that increasing land use intensity and habitat loss due to the replacement of the hyperdiverse forest flora by nonendemic cash crops drives a drastic loss of diversity of soil fungal taxa and impairs the ecological soil functions. Unexpectedly, rain forest conversion was not associated with strong diversity loss but with massive shifts in soil fungal community composition. Fungal communities clustered according to land use system and loss of plant species. Network analysis revealed characteristic fungal genera significantly associated with different land use systems. Shifts in soil fungal community structure were particularly distinct among different trophic groups, with substantial decreases in symbiotrophic fungi and increases in saprotrophic and pathotrophic fungi in oil palm and rubber plantations in comparison with rain forests. In conclusion, conversion of rain forests and current land use systems restructure soil fungal communities towards enhanced pathogen pressure and, thus, threaten ecosystem health functions.
Collapse
Affiliation(s)
- Nicole Brinkmann
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Goettingen, Göttingen, Germany
| | - Josephine Sahner
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Johannes Ballauff
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Nur Edy
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Department of Agrotechnology, Faculty of Agriculture, Tadulako University, Palu, Indonesia
| | - Henry Barus
- Department of Agrotechnology, Faculty of Agriculture, Tadulako University, Palu, Indonesia
| | - Bambang Irawan
- Department of Forestry, University of Jambi, Jambi, Indonesia
| | - Sri Wilarso Budi
- Department of Silviculture, Faculty of Forestry, Bogor Agriculture University, Bogor, Indonesia
| | - Matin Qaim
- Department of Agricultural Economics and Rural Development, University of Goettingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Goettingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
96
|
Yang T, Tedersoo L, Soltis PS, Soltis DE, Gilbert JA, Sun M, Shi Y, Wang H, Li Y, Zhang J, Chen Z, Lin H, Zhao Y, Fu C, Chu H. Phylogenetic imprint of woody plants on the soil mycobiome in natural mountain forests of eastern China. THE ISME JOURNAL 2019; 13:686-697. [PMID: 30353037 PMCID: PMC6461945 DOI: 10.1038/s41396-018-0303-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/26/2018] [Accepted: 09/30/2018] [Indexed: 12/19/2022]
Abstract
Recent studies have detected strong phylogenetic signals in tree-fungus associations for diseased leaves and mycorrhizal symbioses. However, the extent of plant phylogenetic constraints on the free-living soil mycobiome remains unknown, especially at broad geographic scales. Here, 343 soil samples were collected adjacent to individual tree trunks, representing 58 woody plant species located in five mountain forests of eastern China. Integrating plant species identity and phylogenetic information, we aimed to unravel the relative contributions of phylogenetic relationships among tree species, abiotic environmental filtering, and geographic isolation to the geographic distribution of soil mycobiome. We found that the community dissimilarities of total fungi and each dominant guild (viz. saprotrophs, plant pathogens, and ectomycorrhizal fungi) significantly increased with increasing plant phylogenetic distance. Plant phylogenetic eigenvectors explained 11.4% of the variation in community composition, whereas environmental and spatial factors explained 24.1% and 7.2% of the variation, respectively. The communities of ectomycorrhizal fungi and plant pathogens were relatively more strongly affected by plant phylogeny than those of saprotrophs (13.7% and 10.4% vs. 8.5%). Overall, our results demonstrate how plant phylogeny, environment, and geographic space contribute to forest soil fungal distributions and suggest that the influence of plant phylogeny on fungal association may differ by guilds.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, 14a Ravila, Tartu, 50411, Estonia
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Jack A Gilbert
- Department of Ecology and Evolution, and Department of Surgery, University of Chicago, Chicago, IL, 60637, USA
| | - Miao Sun
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Hongfei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Yuntao Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Jian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hanyang Lin
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunpeng Zhao
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengxin Fu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China.
| |
Collapse
|
97
|
Alzarhani AK, Clark DR, Underwood GJC, Ford H, Cotton TEA, Dumbrell AJ. Are drivers of root-associated fungal community structure context specific? ISME JOURNAL 2019; 13:1330-1344. [PMID: 30692628 PMCID: PMC6474305 DOI: 10.1038/s41396-019-0350-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/22/2018] [Accepted: 12/25/2018] [Indexed: 12/01/2022]
Abstract
The composition and structure of plant-root-associated fungal communities are determined by local abiotic and biotic conditions. However, the relative influence and identity of relationships to abiotic and biotic factors may differ across environmental and ecological contexts, and fungal functional groups. Thus, understanding which aspects of root-associated fungal community ecology generalise across contexts is the first step towards a more predictive framework. We investigated how the relative importance of biotic and abiotic factors scale across environmental and ecological contexts using high-throughput sequencing (ca. 55 M Illumina metabarcoding sequences) of >260 plant-root-associated fungal communities from six UK salt marshes across two geographic regions (South-East and North-West England) in winter and summer. Levels of root-associated fungal diversity were comparable with forests and temperate grasslands, quadrupling previous estimates of salt-marsh fungal diversity. Whilst abiotic variables were generally most important, a range of site- and spatial scale-specific abiotic and biotic drivers of diversity and community composition were observed. Consequently, predictive models of diversity trained on one site, extrapolated poorly to others. Fungal taxa from the same functional groups responded similarly to the specific drivers of diversity and composition. Thus site, spatial scale and functional group are key factors that, if accounted for, may lead to a more predictive understanding of fungal community ecology.
Collapse
Affiliation(s)
- A Khuzaim Alzarhani
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.,Faculty of Science, Northern Border University, Arar, Saudi Arabia
| | - Dave R Clark
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Graham J C Underwood
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Hilary Ford
- School of Environment, Natural Resources and Geography, Thoday buildings, Bangor University, Bangor, LL57 2DG, UK
| | - T E Anne Cotton
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.,Department of Animal and Plant Sciences, The University of Sheffield, Alfred Denny Building, Sheffield, SY, S10 2TN, UK
| | - Alex J Dumbrell
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
| |
Collapse
|
98
|
Johnson D. Water, water everywhere … but how does it affect the functional diversity of ectomycorrhizal fungi? THE NEW PHYTOLOGIST 2018; 220:950-951. [PMID: 30408221 DOI: 10.1111/nph.15086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- David Johnson
- School of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| |
Collapse
|
99
|
Zinger L, Taberlet P, Schimann H, Bonin A, Boyer F, De Barba M, Gaucher P, Gielly L, Giguet‐Covex C, Iribar A, Réjou‐Méchain M, Rayé G, Rioux D, Schilling V, Tymen B, Viers J, Zouiten C, Thuiller W, Coissac E, Chave J. Body size determines soil community assembly in a tropical forest. Mol Ecol 2018; 28:528-543. [DOI: 10.1111/mec.14919] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Lucie Zinger
- CNRS, IRDUMR 5174 Evolution et Diversité Biologique (EDB)Université Toulouse 3 Paul Sabatier Toulouse France
| | - Pierre Taberlet
- CNRSLaboratoire d'Ecologie Alpine (LECA)Univ. Grenoble Alpes Grenoble France
| | - Heidy Schimann
- UMR Ecologie des Forets de Guyane (AgroParisTech, CIRAD, CNRS, Université des Antilles, Université de la Guyane)INRA Kourou France
| | - Aurélie Bonin
- CNRSLaboratoire d'Ecologie Alpine (LECA)Univ. Grenoble Alpes Grenoble France
| | - Frédéric Boyer
- CNRSLaboratoire d'Ecologie Alpine (LECA)Univ. Grenoble Alpes Grenoble France
| | - Marta De Barba
- CNRSLaboratoire d'Ecologie Alpine (LECA)Univ. Grenoble Alpes Grenoble France
| | - Philippe Gaucher
- USR 3456CNRSCentre de recherche de Montabo IRDCNRS‐Guyane Cayenne France
| | - Ludovic Gielly
- CNRSLaboratoire d'Ecologie Alpine (LECA)Univ. Grenoble Alpes Grenoble France
| | | | - Amaia Iribar
- CNRS, IRDUMR 5174 Evolution et Diversité Biologique (EDB)Université Toulouse 3 Paul Sabatier Toulouse France
| | - Maxime Réjou‐Méchain
- CNRS, IRDUMR 5174 Evolution et Diversité Biologique (EDB)Université Toulouse 3 Paul Sabatier Toulouse France
- UMR AMAP, IRD Montpellier France
| | - Gilles Rayé
- CNRSLaboratoire d'Ecologie Alpine (LECA)Univ. Grenoble Alpes Grenoble France
| | - Delphine Rioux
- CNRSLaboratoire d'Ecologie Alpine (LECA)Univ. Grenoble Alpes Grenoble France
| | - Vincent Schilling
- CNRS, IRDUMR 5174 Evolution et Diversité Biologique (EDB)Université Toulouse 3 Paul Sabatier Toulouse France
| | - Blaise Tymen
- CNRS, IRDUMR 5174 Evolution et Diversité Biologique (EDB)Université Toulouse 3 Paul Sabatier Toulouse France
| | - Jérôme Viers
- CNRS, IRDUMR 5563 GETUniversité Toulouse 3 Paul Sabatier Toulouse France
| | - Cyril Zouiten
- CNRS, IRDUMR 5563 GETUniversité Toulouse 3 Paul Sabatier Toulouse France
| | - Wilfried Thuiller
- CNRSLaboratoire d'Ecologie Alpine (LECA)Univ. Grenoble Alpes Grenoble France
| | - Eric Coissac
- CNRSLaboratoire d'Ecologie Alpine (LECA)Univ. Grenoble Alpes Grenoble France
| | - Jérôme Chave
- CNRS, IRDUMR 5174 Evolution et Diversité Biologique (EDB)Université Toulouse 3 Paul Sabatier Toulouse France
| |
Collapse
|
100
|
Daru BH, Bowman EA, Pfister DH, Arnold AE. A novel proof of concept for capturing the diversity of endophytic fungi preserved in herbarium specimens. Philos Trans R Soc Lond B Biol Sci 2018; 374:20170395. [PMID: 30455213 PMCID: PMC6282087 DOI: 10.1098/rstb.2017.0395] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2018] [Indexed: 12/22/2022] Open
Abstract
Herbarium specimens represent important records of morphological and genetic diversity of plants that inform questions relevant to global change, including species distributions, phenology and functional traits. It is increasingly appreciated that plant microbiomes can influence these aspects of plant biology, but little is known regarding the historic distribution of microbes associated with plants collected in the pre-molecular age. If microbiomes can be observed reliably in herbarium specimens, researchers will gain a new lens with which to examine microbial ecology, evolution, species interactions. Here, we describe a method for accessing historical plant microbiomes from preserved herbarium specimens, providing a proof of concept using two plant taxa from the imperiled boreal biome (Andromeda polifolia and Ledum palustre subsp. groenlandicum, Ericaceae). We focus on fungal endophytes, which occur within symptomless plant tissues such as leaves. Through a three-part approach (i.e. culturing, cloning and next-generation amplicon sequencing via the Illumina MiSeq platform, with extensive controls), we examined endophyte communities in dried, pressed leaves that had been processed as regular herbarium specimens and stored at room temperature in a herbarium for four years. We retrieved only one endophyte in culture, but cloning and especially the MiSeq analysis revealed a rich community of foliar endophytes. The phylogenetic distribution and diversity of endophyte assemblages, especially among the Ascomycota, resemble endophyte communities from fresh plants collected in the boreal biome. We could distinguish communities of endophytes in each plant species and differentiate likely endophytes from fungi that could be surface contaminants. Taxa found by cloning were observed in the larger MiSeq dataset, but species richness was greater when subsets of the same tissues were evaluated with the MiSeq approach. Our findings provide a proof of concept for capturing endophyte DNA from herbarium specimens, supporting the importance of herbarium records as roadmaps for understanding the dynamics of plant-associated microbial biodiversity in the Anthropocene.This article is part of the theme issue 'Biological collections for understanding biodiversity in the Anthropocene'.
Collapse
Affiliation(s)
- Barnabas H Daru
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
| | | | - Donald H Pfister
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|