51
|
Giblin JT, Park SW, Jiang J, Kılıç K, Kura S, Tang J, Boas DA, Chen IA. Measuring capillary flow dynamics using interlaced two-photon volumetric scanning. J Cereb Blood Flow Metab 2023; 43:595-609. [PMID: 36495178 PMCID: PMC10063827 DOI: 10.1177/0271678x221145091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two photon microscopy and optical coherence tomography (OCT) are two standard methods for measuring flow speeds of red blood cells in microvessels, particularly in animal models. However, traditional two photon microscopy lacks the depth of field to adequately capture the full volumetric complexity of the cerebral microvasculature and OCT lacks the specificity offered by fluorescent labeling. In addition, the traditional raster scanning technique utilized in both modalities requires a balance of image frame rate and field of view, which severely limits the study of RBC velocities in the microvascular network. Here, we overcome this by using a custom two photon system with an axicon based Bessel beam to obtain volumetric images of the microvascular network with fluorescent specificity. We combine this with a novel scan pattern that generates pairs of frames with short time delay sufficient for tracking red blood cell flow in capillaries. We track RBC flow speeds in 10 or more capillaries simultaneously at 1 Hz in a 237 µm × 237 µm × 120 µm volume and quantified both their spatial and temporal variability in speed. We also demonstrate the ability to track flow speed changes around stalls in capillary flow and measure to 300 µm in depth.
Collapse
Affiliation(s)
- John T Giblin
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Seong-Wook Park
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - John Jiang
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kıvılcım Kılıç
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sreekanth Kura
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jianbo Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - David A Boas
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ichun A Chen
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
52
|
Crouzet C, Phan T, Wilson RH, Shin TJ, Choi B. Intrinsic, widefield optical imaging of hemodynamics in rodent models of Alzheimer's disease and neurological injury. NEUROPHOTONICS 2023; 10:020601. [PMID: 37143901 PMCID: PMC10152182 DOI: 10.1117/1.nph.10.2.020601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The complex cerebrovascular network is critical to controlling local cerebral blood flow (CBF) and maintaining brain homeostasis. Alzheimer's disease (AD) and neurological injury can result in impaired CBF regulation, blood-brain barrier breakdown, neurovascular dysregulation, and ultimately impaired brain homeostasis. Measuring cortical hemodynamic changes in rodents can help elucidate the complex physiological dynamics that occur in AD and neurological injury. Widefield optical imaging approaches can measure hemodynamic information, such as CBF and oxygenation. These measurements can be performed over fields of view that range from millimeters to centimeters and probe up to the first few millimeters of rodent brain tissue. We discuss the principles and applications of three widefield optical imaging approaches that can measure cerebral hemodynamics: (1) optical intrinsic signal imaging, (2) laser speckle imaging, and (3) spatial frequency domain imaging. Future work in advancing widefield optical imaging approaches and employing multimodal instrumentation can enrich hemodynamic information content and help elucidate cerebrovascular mechanisms that lead to the development of therapeutic agents for AD and neurological injury.
Collapse
Affiliation(s)
- Christian Crouzet
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thinh Phan
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Robert H. Wilson
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Medicine, Irvine, California, United States
| | - Teo Jeon Shin
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Seoul National University, Department of Pediatric Dentistry and Dental Research Institute, Seoul, Republic of Korea
| | - Bernard Choi
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, Department of Surgery, Irvine, California, United States
- University of California, Irvine, Edwards Lifesciences Foundation Cardiovascular Innovation Research Center, California, United States
| |
Collapse
|
53
|
Dion-Albert L, Dudek KA, Russo SJ, Campbell M, Menard C. Neurovascular adaptations modulating cognition, mood, and stress responses. Trends Neurosci 2023; 46:276-292. [PMID: 36805768 DOI: 10.1016/j.tins.2023.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
The neurovascular unit (NVU) is a dynamic center for substance exchange between the blood and the brain, making it an essential gatekeeper for central nervous system (CNS) homeostasis. Recent evidence supports a role for the NVU in modulating brain function and cognition. In addition, alterations in NVU processes are observed in response to stress, although the mechanisms via which they can affect mood and cognitive functions remain elusive. Here, we summarize recent studies of neurovascular regulation of emotional processes and cognitive function, including under stressful conditions. We also highlight relevant RNA-sequencing (RNA-seq) databases aiming to profile the NVU along with innovative tools to study and manipulate NVU function that can be exploited in the context of cognition and stress research throughout development, aging, or brain disorders.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, QC, Canada
| | - Katarzyna A Dudek
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, QC, Canada
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai and Center for Affective Neuroscience, 1 Gustave L Levy Place, New York, NY, USA
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
54
|
Lee JH, Stefan S, Walek K, Nie J, Min K, Yang TD, Lee J. Investigating the correlation between early vascular alterations and cognitive impairment in Alzheimer's disease in mice with SD-OCT. BIOMEDICAL OPTICS EXPRESS 2023; 14:1494-1508. [PMID: 37078054 PMCID: PMC10110305 DOI: 10.1364/boe.481826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Vascular alterations have recently gained some attention with their strong association with Alzheimer's disease (AD). We conducted a label-free in vivo optical coherence tomography (OCT) longitudinal imaging using an AD mouse model. We achieved the tracking of the same individual vessels over time and conducted an in-depth analysis of temporal dynamics in vasculature and vasodynamics using OCT angiography and Doppler-OCT. The AD group showed an exponential decay in both vessel diameter and blood flow change with the critical timepoint before 20 weeks of age, which precedes cognitive decline observed at 40 weeks of age. Interestingly, for the AD group, the diameter change showed the dominance in arterioles over venules, but no such influence was found in blood flow change. Conversely, three mice groups with early vasodilatory intervention did not show any significant change in both vascular integrity and cognitive function compared to the wild-type group. We found early vascular alterations and confirmed their correlation with cognitive impairment in AD.
Collapse
Affiliation(s)
- Jang-Hoon Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Sabina Stefan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Konrad Walek
- Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Jiarui Nie
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Kyounghee Min
- University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Taeseok Daniel Yang
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
| | - Jonghwan Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
55
|
Sompol P, Gollihue JL, Weiss BE, Lin RL, Case SL, Kraner SD, Weekman EM, Gant JC, Rogers CB, Niedowicz DM, Sudduth TL, Powell DK, Lin AL, Nelson PT, Thibault O, Wilcock DM, Norris CM. Targeting Astrocyte Signaling Alleviates Cerebrovascular and Synaptic Function Deficits in a Diet-Based Mouse Model of Small Cerebral Vessel Disease. J Neurosci 2023; 43:1797-1813. [PMID: 36746627 PMCID: PMC10010459 DOI: 10.1523/jneurosci.1333-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Despite the indispensable role that astrocytes play in the neurovascular unit, few studies have investigated the functional impact of astrocyte signaling in cognitive decline and dementia related to vascular pathology. Diet-mediated induction of hyperhomocysteinemia (HHcy) recapitulates numerous features of vascular contributions to cognitive impairment and dementia (VCID). Here, we used astrocyte targeting approaches to evaluate astrocyte Ca2+ dysregulation and the impact of aberrant astrocyte signaling on cerebrovascular dysfunction and synapse impairment in male and female HHcy diet mice. Two-photon imaging conducted in fully awake mice revealed activity-dependent Ca2+ dysregulation in barrel cortex astrocytes under HHcy. Stimulation of contralateral whiskers elicited larger Ca2+ transients in individual astrocytes of HHcy diet mice compared with control diet mice. However, evoked Ca2+ signaling across astrocyte networks was impaired in HHcy mice. HHcy also was associated with increased activation of the Ca2+/calcineurin-dependent transcription factor NFAT4, which has been linked previously to the reactive astrocyte phenotype and synapse dysfunction in amyloid and brain injury models. Targeting the NFAT inhibitor VIVIT to astrocytes, using adeno-associated virus vectors, led to reduced GFAP promoter activity in HHcy diet mice and improved functional hyperemia in arterioles and capillaries. VIVIT expression in astrocytes also preserved CA1 synaptic function and improved spontaneous alternation performance on the Y maze. Together, the results demonstrate that aberrant astrocyte signaling can impair the major functional properties of the neurovascular unit (i.e., cerebral vessel regulation and synaptic regulation) and may therefore represent a promising drug target for treating VCID and possibly Alzheimer's disease and other related dementias.SIGNIFICANCE STATEMENT The impact of reactive astrocytes in Alzheimer's disease and related dementias is poorly understood. Here, we evaluated Ca2+ responses and signaling in barrel cortex astrocytes of mice fed with a B-vitamin deficient diet that induces hyperhomocysteinemia (HHcy), cerebral vessel disease, and cognitive decline. Multiphoton imaging in awake mice with HHcy revealed augmented Ca2+ responses in individual astrocytes, but impaired signaling across astrocyte networks. Stimulation-evoked arteriole dilation and elevated red blood cell velocity in capillaries were also impaired in cortex of awake HHcy mice. Astrocyte-specific inhibition of the Ca2+-dependent transcription factor, NFAT, normalized cerebrovascular function in HHcy mice, improved synaptic properties in brain slices, and stabilized cognition. Results suggest that astrocytes are a mechanism and possible therapeutic target for vascular-related dementia.
Collapse
Affiliation(s)
- Pradoldej Sompol
- Sanders-Brown Center on Aging
- Departments of Pharmacology and Nutritional Sciences
| | | | - Blaine E Weiss
- Sanders-Brown Center on Aging
- Departments of Pharmacology and Nutritional Sciences
| | - Ruei-Lung Lin
- Departments of Pharmacology and Nutritional Sciences
| | - Sami L Case
- Departments of Pharmacology and Nutritional Sciences
| | | | | | - John C Gant
- Sanders-Brown Center on Aging
- Departments of Pharmacology and Nutritional Sciences
| | | | | | | | | | - Ai-Ling Lin
- Sanders-Brown Center on Aging
- Departments of Pharmacology and Nutritional Sciences
| | - Peter T Nelson
- Sanders-Brown Center on Aging
- Pathology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Olivier Thibault
- Sanders-Brown Center on Aging
- Departments of Pharmacology and Nutritional Sciences
| | | | - Christopher M Norris
- Sanders-Brown Center on Aging
- Departments of Pharmacology and Nutritional Sciences
| |
Collapse
|
56
|
Cheng J, Jiang J, He B, Lin WJ, Li Y, Duan J, Li H, Huang X, Cai J, Xie J, Zhang Z, Yang Y, Xu Y, Hu X, Wu M, Zhuo X, Liu Q, Shi Z, Yu P, Rong X, Ye X, Saw PE, Wu LJ, Simone CB, Chua MLK, Mai HQ, Tang Y. A phase 2 study of thalidomide for the treatment of radiation-induced blood-brain barrier injury. Sci Transl Med 2023; 15:eabm6543. [PMID: 36812346 DOI: 10.1126/scitranslmed.abm6543] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Radiation-induced brain injury (RIBI) is a debilitating sequela after radiotherapy to treat head and neck cancer, and 20 to 30% of patients with RIBI fail to respond to or have contraindications to the first-line treatments of bevacizumab and corticosteroids. Here, we reported a Simon's minmax two-stage, single-arm, phase 2 clinical trial (NCT03208413) to assess the efficacy of thalidomide in patients with RIBI who were unresponsive to or had contraindications to bevacizumab and corticosteroid therapies. The trial met its primary endpoint, with 27 of 58 patients enrolled showing ≥25% reduction in the volume of cerebral edema on fluid-attenuated inversion recovery-magnetic resonance imaging (FLAIR-MRI) after treatment (overall response rate, 46.6%; 95% CI, 33.3 to 60.1%). Twenty-five (43.1%) patients demonstrated a clinical improvement based on the Late Effects Normal Tissues-Subjective, Objective, Management, Analytic (LENT/SOMA) scale, and 36 (62.1%) experienced cognitive improvement based on the Montreal Cognitive Assessment (MoCA) scores. In a mouse model of RIBI, thalidomide restored the blood-brain barrier and cerebral perfusion, which were attributed to the functional rescue of pericytes secondary to elevation of platelet-derived growth factor receptor β (PDGFRβ) expression by thalidomide. Our data thus demonstrate the therapeutic potential of thalidomide for the treatment of radiation-induced cerebral vasculature impairment.
Collapse
Affiliation(s)
- Jinping Cheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jingru Jiang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Baixuan He
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Honghong Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaolong Huang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhan Zhang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuhua Yang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xia Hu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Minyi Wu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaohuang Zhuo
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qiang Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Pei Yu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaojing Ye
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA
| | - Melvin L K Chua
- Department of Head and Neck and Thoracic Cancers, Division of Radiation Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.,Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore.,Oncology Academic Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| |
Collapse
|
57
|
Zheng T, Liversage AR, Tehrani KF, Call JA, Kner PA, Mortensen LJ. Imaging mitochondria through bone in live mice using two-photon fluorescence microscopy with adaptive optics. FRONTIERS IN NEUROIMAGING 2023; 2:959601. [PMID: 37554651 PMCID: PMC10406258 DOI: 10.3389/fnimg.2023.959601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/09/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Mitochondria are extremely important organelles in the regulation of bone marrow and brain activity. However, live imaging of these subcellular features with high resolution in scattering tissues like brain or bone has proven challenging. METHODS In this study, we developed a two-photon fluorescence microscope with adaptive optics (TPFM-AO) for high-resolution imaging, which uses a home-built Shack-Hartmann wavefront sensor (SHWFS) to correct system aberrations and a sensorless approach for correcting low order tissue aberrations. RESULTS Using AO increases the fluorescence intensity of the point spread function (PSF) and achieves fast imaging of subcellular organelles with 400 nm resolution through 85 μm of highly scattering tissue. We achieved ~1.55×, ~3.58×, and ~1.77× intensity increases using AO, and a reduction of the PSF width by ~0.83×, ~0.74×, and ~0.9× at the depths of 0, 50 μm and 85 μm in living mouse bone marrow respectively, allowing us to characterize mitochondrial health and the survival of functioning cells with a field of view of 67.5× 67.5 μm. We also investigate the role of initial signal and background levels in sample correction quality by varying the laser power and camera exposure time and develop an intensity-based criteria for sample correction. DISCUSSION This study demonstrates a promising tool for imaging of mitochondria and other organelles in optically distorting biological environments, which could facilitate the study of a variety of diseases connected to mitochondrial morphology and activity in a range of biological tissues.
Collapse
Affiliation(s)
- Tianyi Zheng
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA, United States
| | - Adrian R. Liversage
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, United States
| | - Kayvan F. Tehrani
- Biophotonics Imaging Laboratory, The University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jarrod A. Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
| | - Peter A. Kner
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA, United States
| | - Luke J. Mortensen
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, United States
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA, United States
| |
Collapse
|
58
|
Guarino V, Zizzari A, Bianco M, Gigli G, Moroni L, Arima V. Advancements in modelling human blood brain-barrier on a chip. Biofabrication 2023; 15. [PMID: 36689766 DOI: 10.1088/1758-5090/acb571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
The human Blood Brain Barrier (hBBB) is a complex cellular architecture separating the blood from the brain parenchyma. Its integrity and perfect functionality are essential for preventing neurotoxic plasma components and pathogens enter the brain. Although vital for preserving the correct brain activity, the low permeability of hBBB represents a huge impediment to treat mental and neurological disorders or to address brain tumors. Indeed, the vast majority of potential drug treatments are unable to reach the brain crossing the hBBB. On the other hand, hBBB integrity can be damaged or its permeability increase as a result of infections or in presence of neurodegenerative diseases. Currentin vitrosystems andin vivoanimal models used to study the molecular/drug transport mechanism through the hBBB have several intrinsic limitations that are difficult to overcome. In this scenario, Organ-on-Chip (OoC) models based on microfluidic technologies are considered promising innovative platforms that combine the handiness of anin vitromodel with the complexity of a living organ, while reducing time and costs. In this review, we focus on recent advances in OoCs for developing hBBB models, with the aim of providing the reader with a critical overview of the main guidelines to design and manufacture a hBBB-on-chip, whose compartments need to mimic the 'blood side' and 'brain side' of the barrier, to choose the cells types that are both representative and convenient, and to adequately evaluate the barrier integrity, stability, and functionality.
Collapse
Affiliation(s)
- Vita Guarino
- Department of Mathematics and Physics 'E. De Giorgi', Università del Salento, 73100 Lecce, Italy.,CNR NANOTEC-Institute of Nanotechnology, 73100 Lecce, Italy
| | | | - Monica Bianco
- CNR NANOTEC-Institute of Nanotechnology, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Department of Mathematics and Physics 'E. De Giorgi', Università del Salento, 73100 Lecce, Italy.,CNR NANOTEC-Institute of Nanotechnology, 73100 Lecce, Italy
| | - Lorenzo Moroni
- CNR NANOTEC-Institute of Nanotechnology, 73100 Lecce, Italy.,Department of complex tissue regeneration, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, 6229ER Maastricht, The Netherlands
| | | |
Collapse
|
59
|
Gellner AK, Frase S, Reis J, Fritsch B. Direct current stimulation increases blood flow and permeability of cortical microvasculature in vivo. Eur J Neurol 2023; 30:362-371. [PMID: 36305221 DOI: 10.1111/ene.15616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Transcranial direct current stimulation (DCS) structurally and functionally modulates neuronal networks and microglia dynamics. Neurovascular coupling adapts regional cerebral blood flow to neuronal activity and metabolic demands. METHODS In this study, we examined effects of anodal DCS on vessel morphology, blood flow parameters, permeability of cortical microvasculature, and perivascular microglia motility by time-lapse two-photon microscopy in anaesthetized mice. RESULTS Low-intensity DCS significantly increased vessel diameter and blood flow parameters. These effects were transient and dependent on the spontaneous vasomotion characteristics of the individual vessel. Vessel leakage increased significantly after DCS at 1.1 and was more pronounced at 2.2 A/m2 , indicating a dose-dependent increase in vascular permeability. Perivascular microglia exhibited increased soma motility post-DCS at both intensities, potentially triggered by the extravasation of intravascular substrates. CONCLUSIONS Our findings demonstrate that DCS affected only vessels with spontaneous vasomotion. This rapid vascular response may occur as an adaptation of regional blood supply to neuronal excitability altered by DCS or as a direct effect on the vessel wall. In contrast to these immediate effects during stimulation, increases in cortical vessel permeability and perivascular microglia motility appeared after the stimulation had ended.
Collapse
Affiliation(s)
- Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Neurology and Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sibylle Frase
- Department of Neurology and Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Janine Reis
- Department of Neurology and Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brita Fritsch
- Department of Neurology and Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
60
|
Ferrer Ortas J, Mahou P, Escot S, Stringari C, David NB, Bally-Cuif L, Dray N, Négrerie M, Supatto W, Beaurepaire E. Label-free imaging of red blood cells and oxygenation with color third-order sum-frequency generation microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:29. [PMID: 36702815 PMCID: PMC9879988 DOI: 10.1038/s41377-022-01064-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Mapping red blood cells (RBCs) flow and oxygenation is of key importance for analyzing brain and tissue physiology. Current microscopy methods are limited either in sensitivity or in spatio-temporal resolution. In this work, we introduce a novel approach based on label-free third-order sum-frequency generation (TSFG) and third-harmonic generation (THG) contrasts. First, we propose a novel experimental scheme for color TSFG microscopy, which provides simultaneous measurements at several wavelengths encompassing the Soret absorption band of hemoglobin. We show that there is a strong three-photon (3P) resonance related to the Soret band of hemoglobin in THG and TSFG signals from zebrafish and human RBCs, and that this resonance is sensitive to RBC oxygenation state. We demonstrate that our color TSFG implementation enables specific detection of flowing RBCs in zebrafish embryos and is sensitive to RBC oxygenation dynamics with single-cell resolution and microsecond pixel times. Moreover, it can be implemented on a 3P microscope and provides label-free RBC-specific contrast at depths exceeding 600 µm in live adult zebrafish brain. Our results establish a new multiphoton contrast extending the palette of deep-tissue microscopy.
Collapse
Affiliation(s)
- Júlia Ferrer Ortas
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France
| | - Sophie Escot
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France
| | - Nicolas B David
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, team supported by Ligue Nationale contre le Cancer, Institut Pasteur, CNRS, 75015, Paris, France
| | - Nicolas Dray
- Zebrafish Neurogenetics Unit, team supported by Ligue Nationale contre le Cancer, Institut Pasteur, CNRS, 75015, Paris, France
| | - Michel Négrerie
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France
| | - Willy Supatto
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, CNRS, INSERM, École polytechnique, IP Paris, 91128, Palaiseau, France.
| |
Collapse
|
61
|
Zhong F, Hu S. Thin-film optical-acoustic combiner enables high-speed wide-field multi-parametric photoacoustic microscopy in reflection mode. OPTICS LETTERS 2023; 48:195-198. [PMID: 36638416 PMCID: PMC10238147 DOI: 10.1364/ol.475373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 05/14/2023]
Abstract
Multi-parametric photoacoustic microscopy (PAM) is uniquely capable of simultaneous high-resolution mapping of blood oxygenation and flow in vivo. However, its speed has been limited by the dense sampling required for blood flow quantification. To overcome this limitation, we have developed a high-speed multi-parametric PAM system, which enables simultaneous acquisition of ∼500 densely sampled B-scans by superposing the rapid optical scanning across the line-shaped focus of a cylindrically focused ultrasonic transducer over the conventional mechanical scan of the optical-acoustic dual foci. A novel, to the best of our knowledge, optical-acoustic combiner (OAC) is designed and implemented to accommodate the short working distance of the transducer, enabling convenient confocal alignment of the dual foci in reflection mode. A resonant galvanometer (GM) provides stabilized high-speed large-angle scanning. This new system can continuously monitor microvascular blood oxygenation (sO2) and flow over a 4.5 × 3 mm2 area in the awake mouse brain with high spatial and temporal resolutions (6.9 µm and 0.3 Hz, respectively).
Collapse
Affiliation(s)
- Fenghe Zhong
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, Missouri 63130, USA
| | - Song Hu
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, Missouri 63130, USA
| |
Collapse
|
62
|
Ventimiglia T, Linninger AA. MESH-FREE HIGH-RESOLUTION SIMULATION OF CEREBROCORTICAL OXYGEN SUPPLY WITH FAST FOURIER PRECONDITIONING. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523320. [PMID: 36711827 PMCID: PMC9881973 DOI: 10.1101/2023.01.09.523320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxygen transfer from blood vessels to cortical brain tissue is representative of a class of problems with mixed-domain character. Large-scale efficient computation of tissue oxygen concentration is dependent on the manner in which the tubular network of blood vessels is coupled to the tissue mesh. Models which explicitly resolve the interface between the tissue and vasculature with a contiguous mesh are prohibitively expensive for very dense cerebral microvasculature. We propose a mixed-domain mesh-free technique whereby a vascular anatomical network (VAN) represented as a thin directed graph serves for convection of blood oxygen, and the surrounding extravascular tissue is represented as a Cartesian grid of 3D voxels throughout which oxygen is transported by diffusion. We split the network and tissue meshes by the Schur complement method of domain decomposition to obtain a reduced set of system equations for the tissue oxygen concentration. The use of a Cartesian grid allows the corresponding matrix equation to be solved approximately with a fast Fourier transform based Poisson solver, which serves as an effective preconditioner for Krylov subspace iteration. The performance of this method enables the steady state simulation of cortical oxygen perfusion for anatomically accurate vascular networks down to single micron resolution without the need for supercomputers. Practitioner Points We present a novel mixed-domain framework for efficiently modeling O 2 extraction kinetics in the brain. Model equations are generated by graph-theoretic methods for mixed domains.Dual mesh domain decomposition with FFT preconditioning yields very fast simulation times for extremely high spatial resolution.
Collapse
|
63
|
Zhao ZA, Zhang NN, Cui Y, Chen HS. The effect of head-down tilt in experimental acute ischemic stroke. Eur J Neurol 2023; 30:155-161. [PMID: 36256506 DOI: 10.1111/ene.15597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Collateral therapeutics exert a promising protective effect on the outcome of acute ischemic stroke. Cerebral blood flow (CBF) may be modulated by different head positioning. The current study aimed to determine the effect of head-down tilt (HDT) on stroke in a rodent model. METHODS The model of middle cerebral artery occlusion and reperfusion (MCAO/R) was used in this study. Neurological deficit scoring, 2,3,5-triphenyltetrazolium chloride staining, brain water content, perivascular aquaporin protein-4 (AQP4) localization, pericyte marker platelet-derived growth factor receptor β (PDGFRβ), and CBF velocity were evaluated at 24 h after MCAO/R and HDT treatment. RESULTS In the rat model of MCAO/R, brain infarct volume and neurological deficit score were significantly alleviated in the -30° and -60° groups compared to those in the lying flat (0°) group. Compared with the 0° group, an increase in CBF velocity was detected in the -30° group through two-photon microscopy imaging at 24 h after MCAO/R. Compared with the SHAM group, a decrease in PDGFRβ was observed in both the MCAO/R and HDT treatment (-30°) groups. The integrated optical density of PDGFRβ was found to be higher in the HDT treatment (-30°) group than in the MCAO/R group. An impairment in perivascular AQP4 polarity and an increase in brain water content were observed after MCAO/R, which were not exacerbated by HDT treatment (-30°). CONCLUSIONS Our findings suggest that HDT treatment at certain degrees may exert a neuroprotective effect after MCAO/R through improving CBF velocity and the protection of pericytes.
Collapse
Affiliation(s)
- Zi-Ai Zhao
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Nan-Nan Zhang
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yu Cui
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
64
|
Stobart JL, Erlebach E, Glück C, Huang SF, Barrett MJ, Li M, Vinogradov SA, Klohs J, Zarb Y, Keller A, Weber B. Altered hemodynamics and vascular reactivity in a mouse model with severe pericyte deficiency. J Cereb Blood Flow Metab 2022; 43:763-777. [PMID: 36545806 PMCID: PMC10108184 DOI: 10.1177/0271678x221147366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pericytes are the mural cells of the microvascular network that are in close contact with underlying endothelial cells. Endothelial-secreted PDGFB leads to recruitment of pericytes to the vessel wall, but this is disrupted in Pdgfbret/ret mice when the PDGFB retention motif is deleted. This results in severely reduced pericyte coverage on blood vessels. In this study, we investigated vascular abnormalities and hemodynamics in Pdgfbret/ret mice throughout the cerebrovascular network and in different cortical layers by in vivo two-photon microscopy. We confirmed that Pdgfbret/ret mice are severely deficient in pericytes throughout the vascular network, with enlarged brain blood vessels and a reduced number of vessel branches. Red blood cell velocity, linear density, and tube hematocrit were reduced in Pdgfbret/ret mice, which may impair oxygen delivery to the tissue. We also measured intravascular PO2 and found that concentrations were higher in cortical Layer 2/3 in Pdgfbret/ret mice, indicative of reduced blood oxygen extraction. Finally, we found that Pdgfbret/ret mice had a reduced capacity for vasodilation in response to an acetazolamide challenge during functional MRI imaging. Taken together, these results suggest that severe pericyte deficiency can lead to vascular abnormalities and altered cerebral blood flow, reminiscent of pathologies such as arteriovenous malformations.
Collapse
Affiliation(s)
- Jillian L Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Eva Erlebach
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Matthew Jp Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Max Li
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jan Klohs
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Yvette Zarb
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Annika Keller
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
65
|
Abi Rached NM, Gbotosho OT, Archer DR, Jones JA, Sterling MS, Hyacinth HI. Adhesion molecules and cerebral microvascular hemodynamic abnormalities in sickle cell disease. Front Neurol 2022; 13:976063. [PMID: 36570439 PMCID: PMC9767957 DOI: 10.3389/fneur.2022.976063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cerebrovascular abnormalities are a common feature of sickle cell disease that may be associated with risk of vaso-occlusive pain crises, microinfarcts, and cognitive impairment. An activated endothelium and adhesion factors, VCAM-1 and P-selectin, are implicated in sickle cell vasculopathy, including abnormal hemodynamics and leukocyte adherence. This study examined the association between cerebral expression of these adhesion factors and cortical microvascular blood flow dynamics by using in-vivo two-photon microscopy. We also examined the impact of blood transfusion treatment on these markers of vasculopathy. Results showed that sickle cell mice had significantly higher maximum red blood cell (RBC) velocity (6.80 ± 0.25 mm/sec, p ≤ 0.01 vs. 5.35 ± 0.35 mm/sec) and more frequent blood flow reversals (18.04 ± 0.95 /min, p ≤ 0.01 vs. 13.59 ± 1.40 /min) in the cortical microvasculature compared to controls. In addition, sickle cell mice had a 2.6-fold (RFU/mm2) increase in expression of VCAM-1 and 17-fold (RFU/mm2) increase in expression of P-selectin compared to controls. This was accompanied by an increased frequency in leukocyte adherence (4.83 ± 0.57 /100 μm/min vs. 2.26 ± 0.37 /100 μm/min, p ≤ 0.001). We also found that microinfarcts identified in sickle cell mice were 50% larger than in controls. After blood transfusion, many of these parameters improved, as results demonstrated that sickle cell mice had a lower post-transfusion maximum RBC velocity (8.30 ± 0.98 mm/sec vs. 11.29 ± 0.95 mm/sec), lower frequency of blood flow reversals (12.80 ± 2.76 /min vs. 27.75 ± 2.09 /min), and fewer instances of leukocyte adherence compared to their pre-transfusion imaging time point (1.35 ± 0.32 /100 μm/min vs. 3.46 ± 0.58 /100 μm/min). Additionally, we found that blood transfusion was associated with lower expression of adhesion factors. Our results suggest that blood transfusion and adhesion factors, VCAM-1 and P-selectin, are potential therapeutic targets for addressing cerebrovascular pathology, such as vaso-occlusion, in sickle cell disease.
Collapse
Affiliation(s)
- Noor Mary Abi Rached
- Neuroscience and Behavioral Biology Undergraduate Program, Emory University, Atlanta, GA, United States
| | - Oluwabukola T. Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David R. Archer
- Aflac Cancer and Blood Disorders Center, Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Jayre A. Jones
- Aflac Cancer and Blood Disorders Center, Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Morgan S. Sterling
- Aflac Cancer and Blood Disorders Center, Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Hyacinth I. Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
66
|
Vargas-Soria M, Ramos-Rodriguez JJ, Del Marco A, Hierro-Bujalance C, Carranza-Naval MJ, Calvo-Rodriguez M, van Veluw SJ, Stitt AW, Simó R, Bacskai BJ, Infante-Garcia C, Garcia-Alloza M. Accelerated amyloid angiopathy and related vascular alterations in a mixed murine model of Alzheimer´s disease and type two diabetes. Fluids Barriers CNS 2022; 19:88. [PMID: 36345028 PMCID: PMC9639294 DOI: 10.1186/s12987-022-00380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND While aging is the main risk factor for Alzheimer´s disease (AD), emerging evidence suggests that metabolic alterations such as type 2 diabetes (T2D) are also major contributors. Indeed, several studies have described a close relationship between AD and T2D with clinical evidence showing that both diseases coexist. A hallmark pathological event in AD is amyloid-β (Aβ) deposition in the brain as either amyloid plaques or around leptomeningeal and cortical arterioles, thus constituting cerebral amyloid angiopathy (CAA). CAA is observed in 85-95% of autopsy cases with AD and it contributes to AD pathology by limiting perivascular drainage of Aβ. METHODS To further explore these alterations when AD and T2D coexist, we have used in vivo multiphoton microscopy to analyze over time the Aβ deposition in the form of plaques and CAA in a relevant model of AD (APPswe/PS1dE9) combined with T2D (db/db). We have simultaneously assessed the effects of high-fat diet-induced prediabetes in AD mice. Since both plaques and CAA are implicated in oxidative-stress mediated vascular damage in the brain, as well as in the activation of matrix metalloproteinases (MMP), we have also analyzed oxidative stress by Amplex Red oxidation, MMP activity by DQ™ Gelatin, and vascular functionality. RESULTS We found that prediabetes accelerates amyloid plaque and CAA deposition, suggesting that initial metabolic alterations may directly affect AD pathology. T2D significantly affects vascular pathology and CAA deposition, which is increased in AD-T2D mice, suggesting that T2D favors vascular accumulation of Aβ. Moreover, T2D synergistically contributes to increase CAA mediated oxidative stress and MMP activation, affecting red blood cell velocity. CONCLUSIONS Our data support the cross-talk between metabolic disease and Aβ deposition that affects vascular integrity, ultimately contributing to AD pathology and related functional changes in the brain microvasculature.
Collapse
Affiliation(s)
- Maria Vargas-Soria
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Juan Jose Ramos-Rodriguez
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Currently at Department of Physiology, School of Health Sciences, University of Granada, Granada, Spain
| | - Angel Del Marco
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Carmen Hierro-Bujalance
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Maria Jose Carranza-Naval
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
- Salus-Infirmorum, University of Cadiz, Cadiz, Spain
| | - Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Susanne J van Veluw
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Carmen Infante-Garcia
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain.
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| | - Monica Garcia-Alloza
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain.
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
67
|
Cheng H, Chen X, Zhong J, Li J, Qiu P, Wang K. Label-free measurement of wall shear stress in the brain venule and arteriole using dual-wavelength third-harmonic-generation line-scanning imaging. OPTICS LETTERS 2022; 47:5618-5621. [PMID: 37219285 DOI: 10.1364/ol.472136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/06/2022] [Indexed: 05/24/2023]
Abstract
Wall shear stress (WSS) is of fundamental physiological and pathological significance. Current measurement technologies suffer from poor spatial resolution or cannot measure instantaneous values in a label-free manner. Here we demonstrate dual-wavelength third-harmonic-generation (THG) line-scanning imaging, for instantaneous wall shear rate and WSS measurement in vivo. We used the soliton self-frequency shift to generate dual-wavelength femtosecond pulses. Simultaneous acquisition of dual-wavelength THG line-scanning signals extract blood flow velocities at adjacent radial positions for instantaneous wall shear rate and WSS measurement. Our results show the oscillating behavior of WSS in brain venules and arterioles at micron spatial resolution in a label-free manner.
Collapse
|
68
|
Calabrese B, Jones SL, Shiraishi-Yamaguchi Y, Lingelbach M, Manor U, Svitkina TM, Higgs HN, Shih AY, Halpain S. INF2-mediated actin filament reorganization confers intrinsic resilience to neuronal ischemic injury. Nat Commun 2022; 13:6037. [PMID: 36229429 PMCID: PMC9558009 DOI: 10.1038/s41467-022-33268-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
During early ischemic brain injury, glutamate receptor hyperactivation mediates neuronal death via osmotic cell swelling. Here we show that ischemia and excess NMDA receptor activation cause actin to rapidly and extensively reorganize within the somatodendritic compartment. Normally, F-actin is concentrated within dendritic spines. However, <5 min after bath-applied NMDA, F-actin depolymerizes within spines and polymerizes into stable filaments within the dendrite shaft and soma. A similar actinification occurs after experimental ischemia in culture, and photothrombotic stroke in mouse. Following transient NMDA incubation, actinification spontaneously reverses. Na+, Cl-, water, and Ca2+ influx, and spine F-actin depolymerization are all necessary, but not individually sufficient, for actinification, but combined they induce activation of the F-actin polymerization factor inverted formin-2 (INF2). Silencing of INF2 renders neurons vulnerable to cell death and INF2 overexpression is protective. Ischemia-induced dendritic actin reorganization is therefore an intrinsic pro-survival response that protects neurons from death induced by cell edema.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, and Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
| | - Steven L Jones
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104-4544, USA
| | | | - Michael Lingelbach
- Neurosciences Interdepartmental Program, Stanford University, Stanford, CA, 94305, USA
| | - Uri Manor
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104-4544, USA
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine, Hanover, NH, 03755, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, and Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
69
|
Kim E, Van Reet J, Kim HC, Kowsari K, Yoo SS. High Incidence of Intracerebral Hemorrhaging Associated with the Application of Low-Intensity Focused Ultrasound Following Acute Cerebrovascular Injury by Intracortical Injection. Pharmaceutics 2022; 14:2120. [PMID: 36297554 PMCID: PMC9609794 DOI: 10.3390/pharmaceutics14102120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
Low-intensity transcranial focused ultrasound (FUS) has gained momentum as a non-/minimally-invasive modality that facilitates the delivery of various pharmaceutical agents to the brain. With the additional ability to modulate regional brain tissue excitability, FUS is anticipated to confer potential neurotherapeutic applications whereby a deeper insight of its safety is warranted. We investigated the effects of FUS applied to the rat brain (Sprague-Dawley) shortly after an intracortical injection of fluorescent interstitial solutes, a widely used convection-enhanced delivery technique that directly (i.e., bypassing the blood-brain-barrier (BBB)) introduces drugs or interstitial tracers to the brain parenchyma. Texas Red ovalbumin (OA) and fluorescein isothiocyanate-dextran (FITC-d) were used as the interstitial tracers. Rats that did not receive sonication showed an expected interstitial distribution of OA and FITC-d around the injection site, with a wider volume distribution of OA (21.8 ± 4.0 µL) compared to that of FITC-d (7.8 ± 2.7 µL). Remarkably, nearly half of the rats exposed to the FUS developed intracerebral hemorrhaging (ICH), with a significantly higher volume of bleeding compared to a minor red blood cell extravasation from the animals that were not exposed to sonication. This finding suggests that the local cerebrovascular injury inflicted by the micro-injection was further exacerbated by the application of sonication, particularly during the acute stage of injury. Smaller tracer volume distributions and weaker fluorescent intensities, compared to the unsonicated animals, were observed for the sonicated rats that did not manifest hemorrhaging, which may indicate an enhanced degree of clearance of the injected tracers. Our results call for careful safety precautions when ultrasound sonication is desired among groups under elevated risks associated with a weakened or damaged vascular integrity.
Collapse
Affiliation(s)
- Evgenii Kim
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| | - Jared Van Reet
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| | - Hyun-Chul Kim
- Department of Artificial Intelligence, Kyungpook National University, Daegu 37224, Korea
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| |
Collapse
|
70
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
71
|
Matsuura H, Kawakami R, Isoe M, Hoshihara M, Minami Y, Yatsuzuka K, Tsuda T, Murakami M, Suzuki Y, Kawamata J, Imamura T, Hadano S, Watanabe S, Niko Y. NIR-II-Excitable Dye-Loaded Nanoemulsions for Two-Photon Microscopy Imaging of Capillary Blood Vessels in the Entire Hippocampal CA1 Region of Living Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40481-40490. [PMID: 36063083 DOI: 10.1021/acsami.2c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For in vivo two-photon fluorescence microscopy (2PM) imaging, the development of techniques that can improve the observable depth and temporal resolution is an important challenge to address biological and biomedical concerns such as vascular dynamics in the deep brain (typically the hippocampal region) of living animals. Improvements have been achieved through two approaches: an optical approach using a highly tissue-penetrating excitation laser oscillating in the second near-infrared wavelength region (NIR-II, 1100-1350 nm) and a chemical approach employing fluorescent probes with high two-photon brightness (characterized by the product of the two-photon absorption cross section, σ2, and the fluorescence quantum yield, Φ). To integrate these two approaches, we developed a fluorescent dye exhibiting a sufficiently high σ2Φ value of 68 Goeppert-Mayer units at 1100 nm. When a nanoemulsion encapsulating >1000 dye molecules per particle and a 1100 nm laser were employed for 2PM imaging, capillary blood vessels in almost the entire hippocampal CA1 region of the mouse brain (approximately 1.1-1.5 mm below the surface) were clearly visualized at a frame rate of 30 frames s-1 (averaged over eight frames, practically 3.75 frames s-1). This observable depth and frame rate are much higher than those in previous reports on 2PM imaging. Furthermore, this nanoemulsion allowed for the visualization of blood vessels at a depth of 1.8 mm, corresponding to the hippocampal dentate gyrus. These results highlight the advantage of combining bright probes with NIR-II lasers. Our probe is a promising tool for studying the vascular dynamics of living animals and related diseases.
Collapse
Affiliation(s)
- Hitomi Matsuura
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
- TOSA Innovative Human Development Programs, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Maki Isoe
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Masaharu Hoshihara
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Yuya Minami
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Kazuki Yatsuzuka
- Department of Dermatology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Teruko Tsuda
- Department of Dermatology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Masamoto Murakami
- Department of Dermatology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yasutaka Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Jun Kawamata
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Shingo Hadano
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Shigeru Watanabe
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| |
Collapse
|
72
|
Falling Short: The Contribution of Central Insulin Receptors to Gait Dysregulation in Brain Aging. Biomedicines 2022; 10:biomedicines10081923. [PMID: 36009470 PMCID: PMC9405648 DOI: 10.3390/biomedicines10081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Insulin resistance, which manifests as a reduction of insulin receptor signaling, is known to correlate with pathological changes in peripheral tissues as well as in the brain. Central insulin resistance has been associated with impaired cognitive performance, decreased neuronal health, and reduced brain metabolism; however, the mechanisms underlying central insulin resistance and its impact on brain regions outside of those associated with cognition remain unclear. Falls are a leading cause of both fatal and non-fatal injuries in the older population. Despite this, there is a paucity of work focused on age-dependent alterations in brain regions associated with ambulatory control or potential therapeutic approaches to target these processes. Here, we discuss age-dependent alterations in central modalities that may contribute to gait dysregulation, summarize current data supporting the role of insulin signaling in the brain, and highlight key findings that suggest insulin receptor sensitivity may be preserved in the aged brain. Finally, we present novel results showing that administration of insulin to the somatosensory cortex of aged animals can alter neuronal communication, cerebral blood flow, and the motivation to ambulate, emphasizing the need for further investigations of intranasal insulin as a clinical management strategy in the older population.
Collapse
|
73
|
Bruce M, DeWees D, Harmon JN, Cates L, Khaing ZZ, Hofstetter CP. Blood Flow Changes Associated with Spinal Cord Injury Assessed by Non-linear Doppler Contrast-Enhanced Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1410-1419. [PMID: 35523621 PMCID: PMC9704544 DOI: 10.1016/j.ultrasmedbio.2022.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 05/23/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) is clinically used to image the microcirculation at lower imaging frequencies (<2 MHz). Recently, plane-wave acquisitions and Doppler processing have revealed improved microbubble sensitivity, enabling CEUS use at higher frequencies (15 MHz) and the ability to image simultaneously blood flow in the micro- and macrocirculations. We used this approach to assess acute and chronic blood flow changes within contused spinal cord in a rodent spinal cord injury model. Immediately after spinal cord injury, we found significant differences in perfusion deficit between moderate and severe injuries (1.73 ± 0.1 mm2 vs. 3.2 ± 0.3 mm2, respectively), as well as a delay in microbubble arrival time in tissue adjacent to the injury site (0.97 ± 0.1 s vs. 1.54 ± 0.1 s, respectively). Acutely, morphological changes to central sulcal arteries were observed where vessels rostral to the contusion were displaced 4.8 ± 2.2° and 8.2 ± 3.1° anteriorly, and vessels caudal to the contusion 17.8 ± 3.9° and 24.2 ± 4.1° posteriorly, respectively, for moderate and severe injuries. Significant correlation of the acute perfusion deficit and arrival time were found with the chronic assessment of locomotive function and histological estimate of spared spinal cord tissue.
Collapse
Affiliation(s)
- Matthew Bruce
- Applied Physics Laboratory/Center for Industrial and Medical Ultrasound, University of Washington, Seattle, Washington, USA.
| | - Dane DeWees
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | - Jennifer N Harmon
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | - Lindsay Cates
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | - Zin Z Khaing
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
74
|
Renaudin N, Demené C, Dizeux A, Ialy-Radio N, Pezet S, Tanter M. Functional ultrasound localization microscopy reveals brain-wide neurovascular activity on a microscopic scale. Nat Methods 2022; 19:1004-1012. [PMID: 35927475 PMCID: PMC9352591 DOI: 10.1038/s41592-022-01549-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/14/2022] [Indexed: 12/02/2022]
Abstract
The advent of neuroimaging has increased our understanding of brain function. While most brain-wide functional imaging modalities exploit neurovascular coupling to map brain activity at millimeter resolutions, the recording of functional responses at microscopic scale in mammals remains the privilege of invasive electrophysiological or optical approaches, but is mostly restricted to either the cortical surface or the vicinity of implanted sensors. Ultrasound localization microscopy (ULM) has achieved transcranial imaging of cerebrovascular flow, up to micrometre scales, by localizing intravenously injected microbubbles; however, the long acquisition time required to detect microbubbles within microscopic vessels has so far restricted ULM application mainly to microvasculature structural imaging. Here we show how ULM can be modified to quantify functional hyperemia dynamically during brain activation reaching a 6.5-µm spatial and 1-s temporal resolution in deep regions of the rat brain.
Collapse
Affiliation(s)
- Noémi Renaudin
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Charlie Demené
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Alexandre Dizeux
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Nathalie Ialy-Radio
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Sophie Pezet
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Mickael Tanter
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France.
| |
Collapse
|
75
|
Coelho-Santos V, Tieu T, Shih AY. Reinforced thinned-skull window for repeated imaging of the neonatal mouse brain. NEUROPHOTONICS 2022; 9:031918. [PMID: 35673538 PMCID: PMC9163199 DOI: 10.1117/1.nph.9.3.031918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Significance: Two-photon microscopy is a powerful tool for in vivo imaging of the mammalian brain at cellular to subcellular resolution. However, resources that describe methods for imaging live newborn mice have remained sparse. Aim: We describe a non-invasive cranial window procedure for longitudinal imaging of neonatal mice. Approach: We demonstrate construction of the cranial window by iterative shaving of the calvarium of P0 to P12 mouse pups. We use the edge of a syringe needle and scalpel blades to thin the bone to ∼ 15 - μ m thickness. The window is then reinforced with cyanoacrylate glue and a coverslip to promote stability and optical access for at least a week. The head cap also includes a light-weight aluminum flange for head-fixation during imaging. Results: The resulting chronic thinned-skull window enables in vivo imaging to a typical cortical depth of ∼ 200 μ m without disruption of the intracranial environment. We highlight techniques to measure vascular structure and blood flow during development, including use of intravenous tracers and transgenic mice to label the blood plasma and vascular cell types, respectively. Conclusions: This protocol enables direct visualization of the developing neurogliovascular unit in the live neonatal brain during both normal and pathological states.
Collapse
Affiliation(s)
- Vanessa Coelho-Santos
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States
- University of Washington, Department of Pediatrics, Seattle, Washington, United States
| | - Taryn Tieu
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States
| | - Andy Y. Shih
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States
- University of Washington, Department of Pediatrics, Seattle, Washington, United States
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| |
Collapse
|
76
|
Faulhaber LD, D’Costa O, Shih AY, Gust J. Antibody-based in vivo leukocyte label for two-photon brain imaging in mice. NEUROPHOTONICS 2022; 9:031917. [PMID: 35637871 PMCID: PMC9128835 DOI: 10.1117/1.nph.9.3.031917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Significance: To study leukocyte-endothelial interactions in a living system, robust and specific leukocyte labeling techniques are needed for in vivo two-photon microscopy of the cerebral microvasculature. Aim: We tested fluorophore-conjugated anti-CD45.2 monoclonal antibodies (mAb) to optimize dosing and two-photon imaging parameters for leukocyte labeling in healthy mice and a venous microstroke model. Approach: We retro-orbitally injected anti-CD45.2 mAb at 0.04, 0.4, and 2 mg / kg into BALB/c mice and used flow cytometry to analyze antibody saturation. Leukocyte labeling in the cortical microvasculature was examined by two-photon imaging. We also tested the application of CD45.2 mAb in a pathological leukocyte-endothelial adhesion model by photothrombotically occluding cortical penetrating venules. Results: We found that 0.4 mg / kg of anti-CD45.2 antibody intravenously was sufficient to label 95% of circulating leukocytes. There was no depletion of circulating leukocytes after 24 h at the dosages tested. Labeled leukocytes could be observed as deep as 550 μ m from the cortical surface. The antibody reliably labeled rolling, crawling, and adherent leukocytes in venules around the stroke-affected tissues. Conclusion: We show that the anti-CD45.2 mAb is a robust reagent for acute labeling of leukocytes during in vivo two-photon microscopy of the cortical microvasculature.
Collapse
Affiliation(s)
- Lila D. Faulhaber
- Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, Washington, United States
| | - Olivia D’Costa
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, Washington, United States
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States
- University of Washington, Department of Pediatrics, Seattle, Washington, United States
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Juliane Gust
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, Washington, United States
- University of Washington, Department of Neurology, Seattle, Washington, United States
| |
Collapse
|
77
|
Yeon C, Im JM, Kim M, Kim YR, Chung E. Cranial and Spinal Window Preparation for in vivo Optical Neuroimaging in Rodents and Related Experimental Techniques. Exp Neurobiol 2022; 31:131-146. [PMID: 35786637 PMCID: PMC9272117 DOI: 10.5607/en22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
Optical neuroimaging provides an effective neuroscience tool for multi-scale investigation of the neural structures and functions, ranging from molecular, cellular activities to the inter-regional connectivity assessment. Amongst experimental preparations, the implementation of an artificial window to the central nervous system (CNS) is primarily required for optical visualization of the CNS and associated brain activities through the opaque skin and bone. Either thinning down or removing portions of the skull or spine is necessary for unobstructed long-term in vivo observations, for which types of the cranial and spinal window and applied materials vary depending on the study objectives. As diversely useful, a window can be designed to accommodate other experimental methods such as electrophysiology or optogenetics. Moreover, auxiliary apparatuses would allow the recording in synchrony with behavior of large-scale brain connectivity signals across the CNS, such as olfactory bulb, cerebral cortex, cerebellum, and spinal cord. Such advancements in the cranial and spinal window have resulted in a paradigm shift in neuroscience, enabling in vivo investigation of the brain function and dysfunction at the microscopic, cellular level. This Review addresses the types and classifications of windows used in optical neuroimaging while describing how to perform in vivo studies using rodent models in combination with other experimental modalities during behavioral tests. The cranial and spinal window has enabled longitudinal examination of evolving neural mechanisms via in situ visualization of the brain. We expect transformable and multi-functional cranial and spinal windows to become commonplace in neuroscience laboratories, further facilitating advances in optical neuroimaging systems.
Collapse
Affiliation(s)
- Chanmi Yeon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jeong Myo Im
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Minsung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Young Ro Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
78
|
Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo. Proc Natl Acad Sci U S A 2022; 119:e2117346119. [PMID: 35648820 PMCID: PMC9191662 DOI: 10.1073/pnas.2117346119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SignificanceCharacterizing blood flow by tracking individual red blood cells as they move through vessels is essential for understanding vascular function. With high spatial resolution, two-photon fluorescence microscopy is the method of choice for imaging blood flow at the cellular level. However, its application is limited to a low flow speed regimen in anesthetized animals by its slow focus scanning mechanism. Using an ultrafast scanning module, we demonstrated two-photon fluorescence imaging of blood flow at 1,000 two-dimensional frames and 1,000,000 one-dimensional line scans per second in the brains of awake mice. These ultrafast measurements enabled us to study hemodynamic and fluid mechanical regimens beyond the reach of conventional methods.
Collapse
|
79
|
Rouillon J, Ali LMA, Hadj-Kaddour K, Marie-Luce R, Simon G, Onofre M, Denis-Quanquin S, Jean M, Albalat M, Vanthuyne N, Micouin G, Banyasz A, Gary-Bobo M, Monnereau C, Andraud C. Assembly of Aggregation-Induced Emission Active Bola-Amphiphilic Macromolecules into Luminescent Nanoparticles Optimized for Two-Photon Microscopy In Vivo. Biomacromolecules 2022; 23:2485-2495. [PMID: 35608946 DOI: 10.1021/acs.biomac.2c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The (Z) and (E)-isomers of an extended tetraphenylethylene-based chromophore with optimized two-photon-induced luminescence properties are separated and functionalized with water-solubilizing pendant polymer groups, promoting their self-assembly in physiological media in the form of small, colloidal stable organic nanoparticles. The two resulting fluorescent suspensions are then evaluated as potential two-photon luminescent contrast agents for intravital epifluorescence and two-photon fluorescence microscopy. Comparisons with previously reported works involving similar fluorophores devoid of polymer side chains illustrate the benefits of later functionalization regarding the control of the self-assembly of the nano-objects and ultimately their biocompatibility toward the imaged organism.
Collapse
Affiliation(s)
- Jean Rouillon
- Univ. Lyon, ENS Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Lamiaa M A Ali
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34293, France.,Department of Biochemistry Medical Research Institute, University of Alexandria, 21561 Alexandria, Egypt
| | | | - Raphaël Marie-Luce
- Univ. Lyon, ENS Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Guillaume Simon
- Univ. Lyon, ENS Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Mélanie Onofre
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | - Sandrine Denis-Quanquin
- Univ. Lyon, ENS Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Marion Jean
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille 13284, France
| | - Muriel Albalat
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille 13284, France
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille 13284, France
| | - Guillaume Micouin
- Univ. Lyon, ENS Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Akos Banyasz
- Univ. Lyon, ENS Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | | | - Cyrille Monnereau
- Univ. Lyon, ENS Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Chantal Andraud
- Univ. Lyon, ENS Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| |
Collapse
|
80
|
Kedarasetti RT, Drew PJ, Costanzo F. Arterial vasodilation drives convective fluid flow in the brain: a poroelastic model. Fluids Barriers CNS 2022; 19:34. [PMID: 35570287 PMCID: PMC9107702 DOI: 10.1186/s12987-022-00326-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/29/2022] [Indexed: 01/26/2023] Open
Abstract
The movement of fluid into, through, and out of the brain plays an important role in clearing metabolic waste. However, there is controversy regarding the mechanisms driving fluid movement in the fluid-filled paravascular spaces (PVS), and whether the movement of metabolic waste in the brain extracellular space (ECS) is primarily driven by diffusion or convection. The dilation of penetrating arterioles in the brain in response to increases in neural activity (neurovascular coupling) is an attractive candidate for driving fluid circulation, as it drives deformation of the brain tissue and of the PVS around arteries, resulting in fluid movement. We simulated the effects of vasodilation on fluid movement into and out of the brain ECS using a novel poroelastic model of brain tissue. We found that arteriolar dilations could drive convective flow through the ECS radially outward from the arteriole, and that this flow is sensitive to the dynamics of the dilation. Simulations of sleep-like conditions, with larger vasodilations and increased extracellular volume in the brain showed enhanced movement of fluid from the PVS into the ECS. Our simulations suggest that both sensory-evoked and sleep-related arteriolar dilations can drive convective flow of cerebrospinal fluid not just in the PVS, but also into the ECS through the PVS around arterioles.
Collapse
Affiliation(s)
- Ravi Teja Kedarasetti
- grid.29857.310000 0001 2097 4281Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| | - Patrick J. Drew
- grid.29857.310000 0001 2097 4281Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Center for Neural Engineering, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Department of Neurosurgery, Pennsylvania State University, University Park, PA USA
| | - Francesco Costanzo
- grid.29857.310000 0001 2097 4281Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Center for Neural Engineering, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Department of Mathematics, Pennsylvania State University, University Park, PA USA
| |
Collapse
|
81
|
Myagmar BO, Chen R, Zhang X, Xu R, Jiang W, Cao W, Ji H, Zhang X. Cerebroprotein hydrolysate injection is involved in promoting long-term angiogenesis, vessel diameter and density after cerebral ischemia in mice. Life Sci 2022; 300:120568. [PMID: 35489566 DOI: 10.1016/j.lfs.2022.120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/09/2022]
Abstract
AIMS In this study, we aimed investigate the impacts of CH-I on angiogenesis, effects for vascular structure changes and long-term neurological recovery after ischemic stroke as well as the potential mechanisms. MAIN METHODS Young male mice subjected to intraluminal middle cerebral artery occlusion were administrated with CH-I once daily from day 1 to day 14 after stroke. The infarct volume was evaluated by TTC staining at day 7 after stroke. Neurological deficits were measured 1 to 28 days after stroke. Microvascular density, astrocyte coverage, and angiogenesis were assessed by IF, qRT-PCR, and WB at regular intervals after stroke. LSCI and TPMI measured changes in blood flow and vascular density and width from the day after stroke to day 28. KEY FINDINGS Compared with the dMCAO group, CH-I treatment significantly improved neurological recovery and reduced the infarct at day 7 after stroke. CH-I treatment increased the expression of the CD31, BrdU+/CD31+ microvessels and GFAP positive vessels in the peri-infarct cortex at day 7 to 28 after stroke. The expression of protein and gene were enhanced in CH-I group. CH-I significantly improved cerebral blood flow at day 7 after stroke. CH-I increased the vascular density and vascular width at day 14 after stroke. SIGNIFICANCE CH-I has been shown to restore nerve function, reduce the rate of cerebral infarction, increase microvascular density, and promote angiogenesis. CH-I improved cerebral blood flow, protected blood vessels from postoperative stenosis, and improved vascular plasticity.
Collapse
Affiliation(s)
- Bat-Otgon Myagmar
- Department of Neurology, Second Hospital of Hebei Medical University, Hebei Medical University Shijiazhuang, Hebei 050000, People's Republic of China
| | - Rong Chen
- Hebei Collaborative Innovation Center for Cardio- Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Xiao Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Hebei Medical University Shijiazhuang, Hebei 050000, People's Republic of China
| | - Renhao Xu
- Hebei Collaborative Innovation Center for Cardio- Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Wei Jiang
- Hebei Collaborative Innovation Center for Cardio- Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Wen Cao
- Department of Neurology, Second Hospital of Hebei Medical University, Hebei Medical University Shijiazhuang, Hebei 050000, People's Republic of China
| | - Hui Ji
- Department of Neurology, Second Hospital of Hebei Medical University, Hebei Medical University Shijiazhuang, Hebei 050000, People's Republic of China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Hebei Medical University Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Collaborative Innovation Center for Cardio- Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China.
| |
Collapse
|
82
|
Brunner C, Macé E, Montaldo G, Urban A. Quantitative Hemodynamic Measurements in Cortical Vessels Using Functional Ultrasound Imaging. Front Neurosci 2022; 16:831650. [PMID: 35495056 PMCID: PMC9039668 DOI: 10.3389/fnins.2022.831650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/23/2022] [Indexed: 01/17/2023] Open
Abstract
Red blood cell velocity (RBCv), cerebral blood flow (CBF), and volume (CBV) are three key parameters when describing brain hemodynamics. Functional ultrasound imaging is a Doppler-based method allowing for real-time measurement of relative CBV at high spatiotemporal resolution (100 × 110 × 300 μm3, up to 10 Hz) and large scale. Nevertheless, the measure of RBCv and CBF in small cortical vessels with functional ultrasound imaging remains challenging because of their orientation and size, which impairs the ability to perform precise measurements. We designed a directional flow filter to overpass these limitations allowing us to measure RBCv in single vessels using a standard functional ultrasound imaging system without contrast agents (e.g., microbubbles). This method allows to quickly extract the number of vessels in the cortex that was estimated to be approximately 650/cm3 in adult rats, with a 55-45% ratio for penetrating arterioles versus ascending venules. Then, we analyzed the changes in RBCv in these vessels during forepaw stimulation. We observed that ∼40 vessels located in the primary somatosensory forelimb cortex display a significant increase of the RBCv (median ΔRBCv ∼15%, maximal ΔRBCv ∼60%). As expected, we show that RBCv was higher for penetrating arterioles located in the center than in the periphery of the activated area. The proposed approach extends the capabilities of functional ultrasound imaging, which may contribute to a better understanding of the neurovascular coupling at the brain-wide scale.
Collapse
Affiliation(s)
- Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Emilie Macé
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Alan Urban
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
83
|
Chaigneau E, Charpak S. Measurement of Blood Velocity With Laser Scanning Microscopy: Modeling and Comparison of Line-Scan Image-Processing Algorithms. Front Physiol 2022; 13:848002. [PMID: 35464098 PMCID: PMC9022085 DOI: 10.3389/fphys.2022.848002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Laser scanning microscopy is widely used to measure blood hemodynamics with line-scans in physiological and pathological vessels. With scans of broken lines, i.e., lines made of several segments with different orientations, it also allows simultaneous monitoring of vessel diameter dynamics or the activity of specific cells. Analysis of red blood cell (RBC) velocity from line-scans requires specific image-processing algorithms, as angle measurements, Line-Scanning Particle Image Velocimetry (LSPIV) or Fourier transformation of line-scan images. The conditions under which these image-processing algorithms give accurate measurements have not been fully characterized although the accuracy of measurements vary according to specific experimental parameters: the vessel type, the RBC velocity, the scanning parameters, and the image signal to noise ratio. Here, we developed mathematical models for the three previously mentioned line-scan image-processing algorithms. Our models predict the experimental conditions in which RBC velocity measurements are accurate. We illustrate the case of different vessel types and give the parameter space available for each of them. Last, we developed a software generating artificial line-scan images and used it to validate our models.
Collapse
Affiliation(s)
- Emmanuelle Chaigneau
- Institut de la Vision, INSERM U968, Paris, France
- Institut de la Vision, CNRS UMR 7210, Paris, France
- Institut de la Vision, Sorbonne Université, Paris, France
- *Correspondence: Emmanuelle Chaigneau,
| | - Serge Charpak
- Institut de la Vision, INSERM U968, Paris, France
- Institut de la Vision, CNRS UMR 7210, Paris, France
- Institut de la Vision, Sorbonne Université, Paris, France
- Serge Charpak,
| |
Collapse
|
84
|
Tran CHT. Toolbox for studying neurovascular coupling in vivo, with a focus on vascular activity and calcium dynamics in astrocytes. NEUROPHOTONICS 2022; 9:021909. [PMID: 35295714 PMCID: PMC8920490 DOI: 10.1117/1.nph.9.2.021909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/23/2022] [Indexed: 05/14/2023]
Abstract
Significance: Insights into the cellular activity of each member of the neurovascular unit (NVU) is critical for understanding their contributions to neurovascular coupling (NVC)-one of the key control mechanisms in cerebral blood flow regulation. Advances in imaging and genetic tools have enhanced our ability to observe, manipulate and understand the cellular activity of NVU components, namely neurons, astrocytes, microglia, endothelial cells, vascular smooth muscle cells, and pericytes. However, there are still many unresolved questions. Since astrocytes are considered electrically unexcitable,Ca 2 + signaling is the main parameter used to monitor their activity. It is therefore imperative to study astrocyticCa 2 + dynamics simultaneously with vascular activity using tools appropriate for the question of interest. Aim: To highlight currently available genetic and imaging tools for studying the NVU-and thus NVC-with a focus on astrocyteCa 2 + dynamics and vascular activity, and discuss the utility, technical advantages, and limitations of these tools for elucidating NVC mechanisms. Approach: We draw attention to some outstanding questions regarding the mechanistic basis of NVC and emphasize the role of astrocyticCa 2 + elevations in functional hyperemia. We further discuss commonly used genetic, and optical imaging tools, as well as some newly developed imaging modalities for studying NVC at the cellular level, highlighting their advantages and limitations. Results: We provide an overview of the current state of NVC research, focusing on the role of astrocyticCa 2 + elevations in functional hyperemia; summarize recent advances in genetically engineeredCa 2 + indicators, fluorescence microscopy techniques for studying NVC; and discuss the unmet challenges for future imaging development. Conclusions: Advances in imaging techniques together with improvements in genetic tools have significantly contributed to our understanding of NVC. Many pieces of the puzzle have been revealed, but many more remain to be discovered. Ultimately, optimizing NVC research will require a concerted effort to improve imaging techniques, available genetic tools, and analytical software.
Collapse
Affiliation(s)
- Cam Ha T. Tran
- University of Nevada, Reno School of Medicine, Department of Physiology and Cell Biology, Reno, Nevada, United States
| |
Collapse
|
85
|
Engelmann SA, Zhou A, Hassan AM, Williamson MR, Jarrett JW, Perillo EP, Tomar A, Spence DJ, Jones TA, Dunn AK. Diamond Raman laser and Yb fiber amplifier for in vivo multiphoton fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:1888-1898. [PMID: 35519268 PMCID: PMC9045921 DOI: 10.1364/boe.448978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Here we introduce a fiber amplifier and a diamond Raman laser that output high powers (6.5 W, 1.3 W) at valuable wavelengths (1060 nm, 1250 nm) for two-photon excitation of red-shifted fluorophores. These custom excitation sources are both simple to construct and cost-efficient in comparison to similar custom and commercial alternatives. Furthermore, they operate at a repetition rate (80 MHz) that allows fast image acquisition using resonant scanners. With our system we demonstrate compatibility with fast resonant scanning, the ability to acquire neuronal images, and the capability to image vasculature at deep locations (>1 mm) within the mouse cerebral cortex.
Collapse
Affiliation(s)
- Shaun A. Engelmann
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Ahmed M. Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Michael R. Williamson
- Institute for Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Jeremy W. Jarrett
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Evan P. Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Alankrit Tomar
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - David J. Spence
- MQ Photonics, Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia
| | - Theresa A. Jones
- Institute for Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
86
|
Zhang Q, Turner KL, Gheres KW, Hossain MS, Drew PJ. Behavioral and physiological monitoring for awake neurovascular coupling experiments: a how-to guide. NEUROPHOTONICS 2022; 9:021905. [PMID: 35639834 PMCID: PMC8802326 DOI: 10.1117/1.nph.9.2.021905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 06/15/2023]
Abstract
Significance: Functional brain imaging in awake animal models is a popular and powerful technique that allows the investigation of neurovascular coupling (NVC) under physiological conditions. However, ubiquitous facial and body motions (fidgeting) are prime drivers of spontaneous fluctuations in neural and hemodynamic signals. During periods without movement, animals can rapidly transition into sleep, and the hemodynamic signals tied to arousal state changes can be several times larger than sensory-evoked responses. Given the outsized influence of facial and body motions and arousal signals in neural and hemodynamic signals, it is imperative to detect and monitor these events in experiments with un-anesthetized animals. Aim: To cover the importance of monitoring behavioral state in imaging experiments using un-anesthetized rodents, and describe how to incorporate detailed behavioral and physiological measurements in imaging experiments. Approach: We review the effects of movements and sleep-related signals (heart rate, respiration rate, electromyography, intracranial pressure, whisking, and other body movements) on brain hemodynamics and electrophysiological signals, with a focus on head-fixed experimental setup. We summarize the measurement methods currently used in animal models for detection of those behaviors and arousal changes. We then provide a guide on how to incorporate this measurements with functional brain imaging and electrophysiology measurements. Results: We provide a how-to guide on monitoring and interpreting a variety of physiological signals and their applications to NVC experiments in awake behaving mice. Conclusion: This guide facilitates the application of neuroimaging in awake animal models and provides neuroscientists with a standard approach for monitoring behavior and other associated physiological parameters in head-fixed animals.
Collapse
Affiliation(s)
- Qingguang Zhang
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
| | - Kevin L. Turner
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Kyle W. Gheres
- The Pennsylvania State University, Graduate Program in Molecular Cellular and Integrative Biosciences, University Park, Pennsylvania, United States
| | - Md Shakhawat Hossain
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Patrick J. Drew
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Neurosurgery, University Park, Pennsylvania, United States
| |
Collapse
|
87
|
Choe YG, Yoon JH, Joo J, Kim B, Hong SP, Koh GY, Lee DS, Oh WY, Jeong Y. Pericyte Loss Leads to Capillary Stalling Through Increased Leukocyte-Endothelial Cell Interaction in the Brain. Front Cell Neurosci 2022; 16:848764. [PMID: 35360491 PMCID: PMC8962364 DOI: 10.3389/fncel.2022.848764] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
The neurovascular unit is a functional unit composed of neurons, glial cells, pericytes, and endothelial cells which sustain brain activity. While pericyte is a key component of the neurovascular unit, its role in cerebral blood flow regulation remains elusive. Recently, capillary stalling, which means the transient interruption of microcirculation in capillaries, has been shown to have an outsized impact on microcirculatory changes in several neurological diseases. In this study, we investigated capillary stalling and its possible causes, such as the cerebral endothelial glycocalyx and leukocyte adhesion molecules after depleting pericytes postnatally in mice. Moreover, we investigated hypoxia and gliosis as consequences of capillary stalling. Although there were no differences in the capillary structure and RBC flow, longitudinal optical coherence tomography angiography showed an increased number of stalled segments in capillaries after pericyte loss. Furthermore, the extent of the cerebral endothelial glycocalyx was decreased with increased expression of leukocyte adhesion molecules, suggesting enhanced interaction between leukocytes and endothelial cells. Finally, pericyte loss induced cerebral hypoxia and gliosis. Cumulatively, the results suggest that pericyte loss induces capillary stalling through increased interaction between leukocytes and endothelial cells in the brain.
Collapse
|
88
|
Francis AT, Manifold B, Carlson EC, Hu R, Hill AH, Men S, Fu D. In vivo simultaneous nonlinear absorption Raman and fluorescence (SNARF) imaging of mouse brain cortical structures. Commun Biol 2022; 5:222. [PMID: 35273325 PMCID: PMC8913696 DOI: 10.1038/s42003-022-03166-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
Label-free multiphoton microscopy is a powerful platform for biomedical imaging. Recent advancements have demonstrated the capabilities of transient absorption microscopy (TAM) for label-free quantification of hemoglobin and stimulated Raman scattering (SRS) microscopy for pathological assessment of label-free virtual histochemical staining. We propose the combination of TAM and SRS with two-photon excited fluorescence (TPEF) to characterize, quantify, and compare hemodynamics, vessel structure, cell density, and cell identity in vivo between age groups. In this study, we construct a simultaneous nonlinear absorption, Raman, and fluorescence (SNARF) microscope with the highest reported in vivo imaging depth for SRS and TAM at 250–280 μm to enable these multimodal measurements. Using machine learning, we predict capillary-lining cell identities with 90% accuracy based on nuclear morphology and capillary relationship. The microscope and methodology outlined herein provides an exciting route to study several research topics, including neurovascular coupling, blood-brain barrier, and neurodegenerative diseases. In this study a microscope is constructed that carries out simultaneous nonlinear absorption, Raman, and fluorescence (SNARF). Machine learning is then used to predict capillary-lining cell identities with 90% accuracy based on nuclear morphology and capillary relationship, which in combination with the developed microscope, can provide a means to study several fields such as neurovascular coupling.
Collapse
Affiliation(s)
- Andrew T Francis
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Bryce Manifold
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Elena C Carlson
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ruoqian Hu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Andrew H Hill
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Shuaiqian Men
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
89
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
90
|
Li D, Wang G, Werner R, Xie H, Guan JS, Hilgetag CC. Single Image-Based Vignetting Correction for Improving the Consistency of Neural Activity Analysis in 2-Photon Functional Microscopy. Front Neuroinform 2022; 15:674439. [PMID: 35069164 PMCID: PMC8766855 DOI: 10.3389/fninf.2021.674439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/01/2021] [Indexed: 12/04/2022] Open
Abstract
High-resolution functional 2-photon microscopy of neural activity is a cornerstone technique in current neuroscience, enabling, for instance, the image-based analysis of relations of the organization of local neuron populations and their temporal neural activity patterns. Interpreting local image intensity as a direct quantitative measure of neural activity presumes, however, a consistent within- and across-image relationship between the image intensity and neural activity, which may be subject to interference by illumination artifacts. In particular, the so-called vignetting artifact—the decrease of image intensity toward the edges of an image—is, at the moment, widely neglected in the context of functional microscopy analyses of neural activity, but potentially introduces a substantial center-periphery bias of derived functional measures. In the present report, we propose a straightforward protocol for single image-based vignetting correction. Using immediate-early gene-based 2-photon microscopic neural image data of the mouse brain, we show the necessity of correcting both image brightness and contrast to improve within- and across-image intensity consistency and demonstrate the plausibility of the resulting functional data.
Collapse
Affiliation(s)
- Dong Li
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Dong Li,
| | - Guangyu Wang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - René Werner
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hong Xie
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ji-Song Guan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Claus C. Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
91
|
Klein SP, De Sloovere V, Meyfroidt G, Depreitere B. Differential Hemodynamic Response of Pial Arterioles Contributes to a Quadriphasic Cerebral Autoregulation Physiology. J Am Heart Assoc 2022; 11:e022943. [PMID: 34935426 PMCID: PMC9075199 DOI: 10.1161/jaha.121.022943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 12/28/2022]
Abstract
Background Cerebrovascular autoregulation (CA) regulates cerebral vascular tone to maintain near-constant cerebral blood flow during fluctuations in cerebral perfusion pressure (CPP). Preclinical and clinical research has challenged the classic triphasic pressure-flow relationship, leaving the normal pressure-flow relationship unclear. Methods and Results We used in vivo imaging of the hemodynamic response in pial arterioles to study CA in a porcine closed cranial window model during nonpharmacological blood pressure manipulation. Red blood cell flux was determined in 52 pial arterioles during 10 hypotension and 10 hypertension experiments to describe the pressure-flow relationship. We found a quadriphasic pressure-flow relationship with 4 distinct physiological phases. Smaller arterioles demonstrated greater vasodilation during low CPP when compared with large arterioles (P<0.01), whereas vasoconstrictive capacity during high CPP was not significantly different between arterioles (P>0.9). The upper limit of CA was defined by 2 breakpoints. Increases in CPP lead to a point of maximal vasoconstriction of the smallest pial arterioles (upper limit of autoregulation [ULA] 1). Beyond ULA1, only larger arterioles maintain a limited additional vasoconstrictive capacity, extending the buffer for high CPP. Beyond ULA2, vasoconstrictive capacity is exhausted, and all pial arterioles passively dilate. There was substantial intersubject variability, with ranges of 29.2, 47.3, and 50.9 mm Hg for the lower limit, ULA1, and ULA2, respectively. Conclusions We provide new insights into the quadriphasic physiology of CA, differentiating between truly active CA and an extended capacity to buffer increased CPP with progressive failure of CA. In this experimental model, the limits of CA widely varied between subjects.
Collapse
Affiliation(s)
- Samuel P. Klein
- Department of NeurosurgeryUniversity Hospitals LeuvenLeuvenBelgium
| | | | - Geert Meyfroidt
- Department of Intensive Care MedicineUniversity Hospitals LeuvenLeuvenBelgium
| | - Bart Depreitere
- Department of NeurosurgeryUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
92
|
Mok AT, Shea J, Wu C, Xia F, Tatarsky R, Yapici N, Xu C. Spatially resolved measurements of ballistic and total transmission in microscale tissue samples from 450 nm to 1624 nm. BIOMEDICAL OPTICS EXPRESS 2022; 13:438-451. [PMID: 35154883 DOI: 10.6084/m9.figshare.16528890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 05/25/2023]
Abstract
We built a simple and versatile setup to measure tissue ballistic and total transmission with customizable wavelength range, spatial resolution, and sample sizes. We performed ballistic transmission and total transmission measurements of overlying structures from biological samples ex vivo. We obtained spatially resolved transmission maps to reveal transmission heterogeneity from five microscale tissue samples: Danionella skin, mouse skull bone, mosquito cuticle, wasp cuticle, and rat dura over a wide spectral range from 450 nm to 1624 nm at a spatial resolution of ∼25 µm for ballistic transmission measurements and ∼50 µm for total transmission measurements. We expect our method can be straightforwardly applied to measuring the transmission of other samples. The measurement results will be valuable for multiphoton microscopy. The total transmission of a sample is important for the collection of multiphoton excited fluorescence and the assessment of laser-induced sample heating. The ballistic transmission determines the excitation power at the focus and hence the fluorescence signal generation. Therefore, knowledge of ballistic transmission, total transmission, and transmission heterogeneity of overlying structures of animals and organs are essential to determine the optimal excitation wavelength and fluorophores for non-invasive multiphoton microscopy.
Collapse
Affiliation(s)
- Aaron T Mok
- School of Applied and Engineering Physics, Cornell University, NY 14853-3501, USA
- Meining School of Biomedical Engineering, Cornell University, NY 14853-3501, USA
| | - Jamien Shea
- Department of Neurobiology and Behavior, Cornell University, NY 14853-3501, USA
| | - Chunyan Wu
- School of Applied and Engineering Physics, Cornell University, NY 14853-3501, USA
- College of Veterinary Medicine, Cornell University, NY 14853-3501, USA
| | - Fei Xia
- School of Applied and Engineering Physics, Cornell University, NY 14853-3501, USA
- Meining School of Biomedical Engineering, Cornell University, NY 14853-3501, USA
- Present address: Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, Sorbonne Université, Collège de France, Paris, France
| | - Rose Tatarsky
- Department of Neurobiology and Behavior, Cornell University, NY 14853-3501, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, NY 14853-3501, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, NY 14853-3501, USA
| |
Collapse
|
93
|
Liu L, Xia X, Xiang F, Gao Y, Li X, Li H, Zheng W. F-CUBIC: a rapid optical clearing method optimized by quantitative evaluation. BIOMEDICAL OPTICS EXPRESS 2022; 13:237-251. [PMID: 35154867 PMCID: PMC8803013 DOI: 10.1364/boe.442976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
In recent decades, various powerful optical clearing methods have emerged to facilitate deep-tissue imaging. However, a rapid and safe protocol for millimeter-thick specimens is still desired. In this study, we propose a simple and economical chemical screening method that uses porcine small intestine tissue as the testing sample to quantify the clearing speed of different optical clearing reagents. By screening with this method, we developed a fast and versatile clearing protocol, termed F-CUBIC (adding formamide to CUBIC). F-CUBIC allows easy clearing of millimeter-thick tissues within 2-20 min by one-step immersion at room temperature. It introduces negligible tissue distortion and shows high compatibility with various fluorescent labeling techniques. Based on endoscopic human colon specimens, we successfully demonstrated the potential of F-CUBIC for nondestructive three-dimensional (3D) biopsy in combination with two-photon microscopy. This study would substantially benefit rapid 3D tissue mapping in biomedical research and clinics, such as instant histopathological examinations.
Collapse
Affiliation(s)
- Lina Liu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Authors contributed equally to this work
| | - Xianyuan Xia
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Authors contributed equally to this work
| | - Feng Xiang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yufeng Gao
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xi Li
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shen Zhen 518036, China
| | - Hui Li
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zheng
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
94
|
Mok AT, Shea J, Wu C, Xia F, Tatarsky R, Yapici N, Xu C. Spatially resolved measurements of ballistic and total transmission in microscale tissue samples from 450 nm to 1624 nm. BIOMEDICAL OPTICS EXPRESS 2022; 13:438-451. [PMID: 35154883 DOI: 10.6084/m9.figshare.16528887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 05/25/2023]
Abstract
We built a simple and versatile setup to measure tissue ballistic and total transmission with customizable wavelength range, spatial resolution, and sample sizes. We performed ballistic transmission and total transmission measurements of overlying structures from biological samples ex vivo. We obtained spatially resolved transmission maps to reveal transmission heterogeneity from five microscale tissue samples: Danionella skin, mouse skull bone, mosquito cuticle, wasp cuticle, and rat dura over a wide spectral range from 450 nm to 1624 nm at a spatial resolution of ∼25 µm for ballistic transmission measurements and ∼50 µm for total transmission measurements. We expect our method can be straightforwardly applied to measuring the transmission of other samples. The measurement results will be valuable for multiphoton microscopy. The total transmission of a sample is important for the collection of multiphoton excited fluorescence and the assessment of laser-induced sample heating. The ballistic transmission determines the excitation power at the focus and hence the fluorescence signal generation. Therefore, knowledge of ballistic transmission, total transmission, and transmission heterogeneity of overlying structures of animals and organs are essential to determine the optimal excitation wavelength and fluorophores for non-invasive multiphoton microscopy.
Collapse
Affiliation(s)
- Aaron T Mok
- School of Applied and Engineering Physics, Cornell University, NY 14853-3501, USA
- Meining School of Biomedical Engineering, Cornell University, NY 14853-3501, USA
| | - Jamien Shea
- Department of Neurobiology and Behavior, Cornell University, NY 14853-3501, USA
| | - Chunyan Wu
- School of Applied and Engineering Physics, Cornell University, NY 14853-3501, USA
- College of Veterinary Medicine, Cornell University, NY 14853-3501, USA
| | - Fei Xia
- School of Applied and Engineering Physics, Cornell University, NY 14853-3501, USA
- Meining School of Biomedical Engineering, Cornell University, NY 14853-3501, USA
- Present address: Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, Sorbonne Université, Collège de France, Paris, France
| | - Rose Tatarsky
- Department of Neurobiology and Behavior, Cornell University, NY 14853-3501, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, NY 14853-3501, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, NY 14853-3501, USA
| |
Collapse
|
95
|
Mok AT, Shea J, Wu C, Xia F, Tatarsky R, Yapici N, Xu C. Spatially resolved measurements of ballistic and total transmission in microscale tissue samples from 450 nm to 1624 nm. BIOMEDICAL OPTICS EXPRESS 2022; 13:438-451. [PMID: 35154883 PMCID: PMC8803029 DOI: 10.1364/boe.441844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 05/10/2023]
Abstract
We built a simple and versatile setup to measure tissue ballistic and total transmission with customizable wavelength range, spatial resolution, and sample sizes. We performed ballistic transmission and total transmission measurements of overlying structures from biological samples ex vivo. We obtained spatially resolved transmission maps to reveal transmission heterogeneity from five microscale tissue samples: Danionella skin, mouse skull bone, mosquito cuticle, wasp cuticle, and rat dura over a wide spectral range from 450 nm to 1624 nm at a spatial resolution of ∼25 µm for ballistic transmission measurements and ∼50 µm for total transmission measurements. We expect our method can be straightforwardly applied to measuring the transmission of other samples. The measurement results will be valuable for multiphoton microscopy. The total transmission of a sample is important for the collection of multiphoton excited fluorescence and the assessment of laser-induced sample heating. The ballistic transmission determines the excitation power at the focus and hence the fluorescence signal generation. Therefore, knowledge of ballistic transmission, total transmission, and transmission heterogeneity of overlying structures of animals and organs are essential to determine the optimal excitation wavelength and fluorophores for non-invasive multiphoton microscopy.
Collapse
Affiliation(s)
- Aaron T. Mok
- School of Applied and Engineering Physics, Cornell University, NY 14853-3501, USA
- Meining School of Biomedical Engineering, Cornell University, NY 14853-3501, USA
| | - Jamien Shea
- Department of Neurobiology and Behavior, Cornell University, NY 14853-3501, USA
| | - Chunyan Wu
- School of Applied and Engineering Physics, Cornell University, NY 14853-3501, USA
- College of Veterinary Medicine, Cornell University, NY 14853-3501, USA
| | - Fei Xia
- School of Applied and Engineering Physics, Cornell University, NY 14853-3501, USA
- Meining School of Biomedical Engineering, Cornell University, NY 14853-3501, USA
- Present address: Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, Sorbonne Université, Collège de France, Paris, France
| | - Rose Tatarsky
- Department of Neurobiology and Behavior, Cornell University, NY 14853-3501, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, NY 14853-3501, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, NY 14853-3501, USA
| |
Collapse
|
96
|
Faulhaber LD, Phuong AQ, Hartsuyker KJ, Cho Y, Mand KK, Harper SD, Olson AK, Garden GA, Shih AY, Gust J. Brain capillary obstruction during neurotoxicity in a mouse model of anti-CD19 chimeric antigen receptor T-cell therapy. Brain Commun 2021; 4:fcab309. [PMID: 35169706 PMCID: PMC8833245 DOI: 10.1093/braincomms/fcab309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/19/2021] [Accepted: 12/30/2021] [Indexed: 01/13/2023] Open
Abstract
Immunotherapy for haematologic malignancies with CD19-directed chimeric antigen receptor T cells has been highly successful at eradicating cancer but is associated with acute neurotoxicity in ∼40% of patients. This neurotoxicity correlates with systemic cytokine release syndrome, endothelial activation and disruption of endothelial integrity, but it remains unclear how these mechanisms interact and how they lead to neurologic dysfunction. We hypothesized that dysfunction of the neurovascular unit is a key step in the development of neurotoxicity. To recapitulate the interaction of the intact immune system with the blood-brain barrier, we first developed an immunocompetent mouse model of chimeric antigen receptor T-cell treatment-associated neurotoxicity. We treated wild-type mice with cyclophosphamide lymphodepletion followed by escalating doses of murine CD19-directed chimeric antigen receptor T cells. Within 3-5 days after chimeric antigen receptor T-cell infusion, these mice developed systemic cytokine release and abnormal behaviour as measured by daily neurologic screening exams and open-field testing. Histologic examination revealed widespread brain haemorrhages, diffuse extravascular immunoglobulin deposition, loss of capillary pericyte coverage and increased prevalence of string capillaries. To measure any associated changes in cerebral microvascular blood flow, we performed in vivo two-photon imaging through thinned-skull cranial windows. Unexpectedly, we found that 11.9% of cortical capillaries were plugged by Day 6 after chimeric antigen receptor T-cell treatment, compared to 1.1% in controls treated with mock transduced T cells. The capillary plugs comprised CD45+ leucocytes, a subset of which were CD3+ T cells. Plugging of this severity is expected to compromise cerebral perfusion. Indeed, we found widely distributed patchy hypoxia by hypoxyprobe immunolabelling. Increased serum levels of soluble ICAM-1 and VCAM-1 support a putative mechanism of increased leucocyte-endothelial adhesion. These data reveal that brain capillary obstruction may cause sufficient microvascular compromise to explain the clinical phenotype of chimeric antigen receptor T-cell neurotoxicity. The translational impact of this finding is strengthened by the fact that our mouse model closely approximates the kinetics and histologic findings of the chimeric antigen receptor T-cell neurotoxicity syndrome seen in human patients. This new link between systemic immune activation and neurovascular unit injury may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Lila D. Faulhaber
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Anthea Q. Phuong
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Kendra Jae Hartsuyker
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yeheun Cho
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Katie K. Mand
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Stuart D. Harper
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Aaron K. Olson
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Gwenn A. Garden
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Juliane Gust
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
97
|
Chavignon A, Heiles B, Hingot V, Orset C, Vivien D, Couture O. 3D Transcranial Ultrasound Localization Microscopy in the Rat Brain with a Multiplexed Matrix Probe. IEEE Trans Biomed Eng 2021; 69:2132-2142. [PMID: 34932470 DOI: 10.1109/tbme.2021.3137265] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Ultrasound Localization Microscopy (ULM) provides images of the microcirculation in-depth in living tissue. However, its implementation in two-dimension is limited by the elevation projection and tedious plane-by-plane acquisition. Volumetric ULM alleviates these issues and can map the vasculature of entire organs in one acquisition with isotropic resolution. However, its optimal implementation requires many independent acquisition channels, leading to complex custom hardware. METHODS In this article, we implemented volumetric ultrasound imaging with a multiplexed 32 x 32 probe driven by a single commercial ultrasound scanner. We propose and compare three different sub-aperture multiplexing combinations for localization microscopy in silico and in vitro with a flow of microbubbles in a canal. Finally, we evaluate the approach for micro-angiography of the rat brain.The "light" combination allows a higher maximal volume rate than the "full" combination while maintaining the field of view and resolution. RESULTS In the rat brain, 100,000 volumes were acquired within 7 min with a dedicated ultrasound sequence and revealed vessels down to 31 m in diameter with flows from 4.3 mm/s to 28.4 mm/s. CONCLUSION This work demonstrates the ability to perform a complete angiography with unprecedented resolution in the living rats brain with a simple and light setup through the intact skull. SIGNIFICANCE We foresee that it might contribute to democratize 3D ULM for both preclinical and clinical studies.
Collapse
|
98
|
Tahhan N, Balanca B, Fierstra J, Waelchli T, Picart T, Dumot C, Eker O, Marinesco S, Radovanovic I, Cotton F, Berhouma M. Intraoperative cerebral blood flow monitoring in neurosurgery: A review of contemporary technologies and emerging perspectives. Neurochirurgie 2021; 68:414-425. [PMID: 34895896 DOI: 10.1016/j.neuchi.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
Intraoperative monitoring of cerebral blood flow (CBF) has become an invaluable adjunct to vascular and oncological neurosurgery, reducing the risk of postoperative morbidity and mortality. Several technologies have been developed during the last two decades, including laser-based techniques, videomicroscopy, intraoperative MRI, indocyanine green angiography, and thermography. Although these technologies have been thoroughly studied and clinically applied outside the operative room, current practice lacks an optimal technology that perfectly fits the workflow within the neurosurgical operative room. The different available technologies have specific strengths but suffer several drawbacks, mainly including limited spatial and/or temporal resolution. An optimal CBF monitoring technology should meet particular criteria for intraoperative use: excellent spatial and temporal resolution, integration in the operative workflow, real-time quantitative monitoring, ease of use, and non-contact technique. We here review the main contemporary technologies for intraoperative CBF monitoring and their current and potential future applications in neurosurgery.
Collapse
Affiliation(s)
- N Tahhan
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, University of Lyon - Hospices Civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France
| | - B Balanca
- Department of Neuro-Anesthesia and Neuro-Critical Care, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, TIGER team and AniRA-Beliv technological platform, Inserm U2018, CNRS UMR 5292, Lyon 1 University, Lyon, France
| | - J Fierstra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - T Waelchli
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - T Picart
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, University of Lyon - Hospices Civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France
| | - C Dumot
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, University of Lyon - Hospices Civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France
| | - O Eker
- Department of Interventional Neuroradiology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - S Marinesco
- Lyon Neuroscience Research Center, TIGER team and AniRA-Beliv technological platform, Inserm U2018, CNRS UMR 5292, Lyon 1 University, Lyon, France
| | - I Radovanovic
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - F Cotton
- Department of Imaging, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France; Creatis Lab - CNRS UMR 5220 - INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France
| | - M Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, University of Lyon - Hospices Civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France; Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada; Creatis Lab - CNRS UMR 5220 - INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France.
| |
Collapse
|
99
|
Seker FB, Fan Z, Gesierich B, Gaubert M, Sienel RI, Plesnila N. Neurovascular Reactivity in the Aging Mouse Brain Assessed by Laser Speckle Contrast Imaging and 2-Photon Microscopy: Quantification by an Investigator-Independent Analysis Tool. Front Neurol 2021; 12:745770. [PMID: 34858312 PMCID: PMC8631776 DOI: 10.3389/fneur.2021.745770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The brain has a high energy demand but little to no energy stores. Therefore, proper brain function relies on the delivery of glucose and oxygen by the cerebral vasculature. The regulation of cerebral blood flow (CBF) occurs at the level of the cerebral capillaries and is driven by a fast and efficient crosstalk between neurons and vessels, a process termed neurovascular coupling (NVC). Experimentally NVC is mainly triggered by sensory stimulation and assessed by measuring either CBF by laser Doppler fluxmetry, laser speckle contrast imaging (LSCI), intrinsic optical imaging, BOLD fMRI, near infrared spectroscopy (NIRS) or functional ultrasound imaging (fUS). Since these techniques have relatively low spatial resolution, diameters of cerebral vessels are mainly assessed by 2-photon microscopy (2-PM). Results of studies on NVC rely on stable animal physiology, high-quality data acquisition, and unbiased data analysis, criteria, which are not easy to achieve. In the current study, we assessed NVC using two different imaging modalities, i.e., LSCI and 2-PM, and analyzed our data using an investigator-independent Matlab-based analysis tool, after manually defining the area of analysis in LSCI and vessels to measure in 2-PM. By investigating NVC in 6–8 weeks, 1-, and 2-year-old mice, we found that NVC was maximal in 1-year old mice and was significantly reduced in aged mice. These findings suggest that NVC is differently affected during the aging process. Most interestingly, specifically pial arterioles, seem to be distinctly affected by the aging. The main finding of our study is that the automated analysis tool works very efficiently in terms of time and accuracy. In fact, the tool reduces the analysis time of one animal from approximately 23 h to about 2 s while basically making no mistakes. In summary, we developed an experimental workflow, which allows us to reliably measure NVC with high spatial and temporal resolution in young and aged mice and to analyze these data in an investigator-independent manner.
Collapse
Affiliation(s)
- Fatma Burcu Seker
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Ziyu Fan
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Malo Gaubert
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Rebecca Isabella Sienel
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
100
|
Ren F, Jiang Z, Han M, Zhang H, Yun B, Zhu H, Li Z. NIR‐II Fluorescence imaging for cerebrovascular diseases. VIEW 2021. [DOI: 10.1002/viw.20200128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Feng Ren
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Mengxiao Han
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Baofeng Yun
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Hongqin Zhu
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Suzhou 215123 P. R. China
| |
Collapse
|