51
|
Brown RB, Haq A, Stanford CF, Razzaque MS. Vitamin D, phosphate, and vasculotoxicity. Can J Physiol Pharmacol 2015; 93:1077-82. [DOI: 10.1139/cjpp-2015-0083] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascular calcification is a complex process that results in the ectopic deposition of calcium-phosphate hydroxyapatite. Medial and intimal vascular calcification is frequently present in patients with diabetes mellitus and chronic kidney disease (CKD), and markedly increases the morbidity and mortality of these patients. Increased serum levels of calcium and phosphate, along with the use of active vitamin D metabolites, are commonly implicated in the evolvement of vascular wall mineralization in CKD patients. Because CKD patients have lower serum levels of vitamin D, they are routinely prescribed vitamin D supplements that exert a dualistic role that is both healthful and harmful in these patients, perhaps protecting bone health, but at the expense of promoting vascular pathology. This review briefly explains how reducing the phosphate burden in CKD patients could minimize vitamin-D-associated vascular wall calcification.
Collapse
Affiliation(s)
- Ronald B. Brown
- College of Human Ecology, Kansas State University, Manhattan, KS 66506, USA
| | - Afrozul Haq
- Division of Research & Development, VPS Healthcare, Abu Dhabi, UAE
| | | | - Mohammed S. Razzaque
- Division of Research & Development, VPS Healthcare, Abu Dhabi, UAE
- Department of Applied Oral Sciences, Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| |
Collapse
|
52
|
Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 2015; 15:51-69. [PMID: 26567701 DOI: 10.1038/nrd.2015.9] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocrine fibroblast growth factors (FGFs), FGF19, FGF21 and FGF23, are critical for maintaining whole-body homeostasis, with roles in bile acid, glucose and lipid metabolism, modulation of vitamin D and phosphate homeostasis and metabolic adaptation during fasting. Given these functions, the endocrine FGFs have therapeutic potential in a wide array of chronic human diseases, including obesity, type 2 diabetes, cancer, and kidney and cardiovascular disease. However, the safety and feasibility of chronic endocrine FGF administration has been challenged, and FGF analogues and mimetics are now being investigated. Here, we discuss current knowledge of the complex biology of the endocrine FGFs and assess how this may be harnessed therapeutically.
Collapse
|
53
|
Masuda M, Miyazaki-Anzai S, Keenan AL, Okamura K, Kendrick J, Chonchol M, Offermanns S, Ntambi JM, Kuro-O M, Miyazaki M. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity. J Clin Invest 2015; 125:4544-58. [PMID: 26517697 DOI: 10.1172/jci82871] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023] Open
Abstract
Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification.
Collapse
|
54
|
Abstract
Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders.
Collapse
Affiliation(s)
- Ao Bian
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Javier A Neyra
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | - Ming Zhan
- Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, USA
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
55
|
Olauson H, Vervloet MG, Cozzolino M, Massy ZA, Ureña Torres P, Larsson TE. New insights into the FGF23-Klotho axis. Semin Nephrol 2015; 34:586-97. [PMID: 25498378 DOI: 10.1016/j.semnephrol.2014.09.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abnormal mineral metabolism is a hallmark in patients with advanced chronic kidney disease (CKD). Hyperphosphatemia, and the homeostatic mechanisms controlling phosphate metabolism, have received particular attention over the past decade. The phosphate-regulating hormone fibroblast growth factor-23 (FGF23) was discovered through studies of rare hypophosphatemic disorders, whereas Klotho, which subsequently turned out to be a co-receptor for FGF23, was identified in a mouse model showing hyperphosphatemia and multiple aging-like traits. The FGF23-Klotho endocrine axis is a pivotal regulator of mineral metabolism. In CKD, early onset of Klotho deficiency contributes to renal FGF23 resistance and a maladaptive increase in circulating FGF23. FGF23 is an early biomarker of renal injury and increased FGF23 predicts adverse clinical outcomes, in particular cardiovascular disease. A paradigm of FGF23 excess and Klotho deficiency is proposed, in which FGF23 preferentially stimulates left ventricular hypertrophy, and loss of Klotho augments fibrosis, endothelial dysfunction, and vascular calcification. The clinical benefit of FGF23 and Klotho measurements remain uncertain, nevertheless, the FGF23-Klotho axis is a solid candidate for a novel diagnostic and therapeutic target in CKD.
Collapse
Affiliation(s)
- Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marc G Vervloet
- Department of Nephrology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Mario Cozzolino
- Department of Health Sciences, University of Milan, Renal Division, San Paolo Hospital, Milan, Italy
| | - Ziad A Massy
- Inserm U-1088, Université de Picardie Jules Verne (UPJV), Amiens, France; Division of Nephrology, Ambroise Paré Hospital, Paris-Ile-de-France-Ouest University (Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)), Paris-Boulogne Billancourt, France
| | - Pablo Ureña Torres
- Service of Nephrology and Dialysis, Clinique du Landy and Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Tobias E Larsson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Nephrology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
56
|
Gajjala PR, Sanati M, Jankowski J. Cellular and Molecular Mechanisms of Chronic Kidney Disease with Diabetes Mellitus and Cardiovascular Diseases as Its Comorbidities. Front Immunol 2015. [PMID: 26217336 PMCID: PMC4495338 DOI: 10.3389/fimmu.2015.00340] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD), diabetes mellitus (DM), and cardiovascular diseases (CVD) are complex disorders of partly unknown genesis and mostly known progression factors. CVD and DM are the risk factors of CKD and are strongly intertwined since DM can lead to both CKD and/or CVD, and CVD can lead to kidney disease. In recent years, our knowledge of CKD, DM, and CVD has been expanded and several important experimental, clinical, and epidemiological associations have been reported. The tight cellular and molecular interactions between the renal, diabetic, and cardiovascular systems in acute or chronic disease settings are becoming increasingly evident. However, the (patho-) physiological basis of the interactions of CKD, DM, and CVD with involvement of multiple endogenous and environmental factors is highly complex and our knowledge is still at its infancy. Not only single pathways and mediators of progression of these diseases have to be considered in these processes but also the mutual interactions of these factors are essential. The recent advances in proteomics and integrative analysis technologies have allowed rapid progress in analyzing complex disorders and clearly show the opportunity for new efficient and specific therapies. More than a dozen pathways have been identified so far, including hyperactivity of the renin–angiotensin (RAS)–aldosterone system, osmotic sodium retention, endothelial dysfunction, dyslipidemia, RAS/RAF/extracellular-signal-regulated kinase pathway, modification of the purinergic system, phosphatidylinositol 3-kinase (PI 3-kinase)-dependent signaling pathways, and inflammation, all leading to histomorphological alterations of the kidney and vessels of diabetic and non-diabetic patients. Since a better understanding of the common cellular and molecular mechanisms of these diseases may be a key to successful identification of new therapeutic targets, we review in this paper the current literature about cellular and molecular mechanisms of CKD.
Collapse
Affiliation(s)
- Prathibha Reddy Gajjala
- Institute for Molecular Cardiovascular Research, Universitätsklinikum RWTH Aachen , Aachen , Germany
| | - Maryam Sanati
- Institute for Molecular Cardiovascular Research, Universitätsklinikum RWTH Aachen , Aachen , Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, Universitätsklinikum RWTH Aachen , Aachen , Germany
| |
Collapse
|
57
|
Almilaji A, Pakladok T, Muñoz C, Elvira B, Sopjani M, Lang F. Upregulation of KCNQ1/KCNE1 K+ channels by Klotho. Channels (Austin) 2015; 8:222-9. [PMID: 24457979 DOI: 10.4161/chan.27662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Klotho is a transmembrane protein expressed primarily in kidney, parathyroid gland, and choroid plexus. The extracellular domain could be cleaved off and released into the systemic circulation. Klotho is in part effective as β-glucuronidase regulating protein stability in the cell membrane. Klotho is a major determinant of aging and life span.Overexpression of Klotho increases and Klotho deficiency decreases life span. Klotho deficiency may further result in hearing loss and cardiac arrhythmia. The present study explored whether Klotho modifies activity and protein abundance of KCNQ1/KCNE1, a K(+) channel required for proper hearing and cardiac repolarization. To this end, cRNA encoding KCNQ1/KCNE1 was injected in Xenopus oocytes with or without additional injection of cRNA encoding Klotho. KCNQ1/KCNE1 expressing oocytes were treated with human recombinant Klotho protein (30 ng/mL) for 24 h. Moreover, oocytes which express both KCNQ1/KCNE1 and Klotho were treated with 10 μM DSA L (D-saccharic acid-1,4-lactone), a β-glucuronidase inhibitor. The KCNQ1/KCNE1 depolarization-induced current (I(Ks)) was determined utilizing dual electrode voltage clamp, while KCNQ1/KCNE1 protein abundance in the cell membrane was visualized utilizing specific antibody binding and quantified by chemiluminescence. KCNQ1/KCNE1 channel activity and KCNQ1/KCNE1 protein abundance were upregulated by coexpression of Klotho. The effect was mimicked by treatment with human recombinant Klotho protein (30 ng/mL) and inhibited by DSA L (10 μM). In conclusion, Klotho upregulates KCNQ1/KCNE1 channel activity by “mainly” enhancing channel protein abundance in the plasma cell membrane, an effect at least partially mediated through the β-glucuronidase activity of Klotho protein.
Collapse
|
58
|
Sato S, Kawamata Y, Takahashi A, Imai Y, Hanyu A, Okuma A, Takasugi M, Yamakoshi K, Sorimachi H, Kanda H, Ishikawa Y, Sone S, Nishioka Y, Ohtani N, Hara E. Ablation of the p16(INK4a) tumour suppressor reverses ageing phenotypes of klotho mice. Nat Commun 2015; 6:7035. [PMID: 25923845 PMCID: PMC4421814 DOI: 10.1038/ncomms8035] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/26/2015] [Indexed: 01/08/2023] Open
Abstract
The p16INK4a tumour suppressor has an established role in the implementation of cellular senescence in stem/progenitor cells, which is thought to contribute to organismal ageing. However, since p16INK4a knockout mice die prematurely from cancer, whether p16INK4a reduces longevity remains unclear. Here we show that, in mutant mice homozygous for a hypomorphic allele of the α-klotho ageing-suppressor gene (klkl/kl), accelerated ageing phenotypes are rescued by p16INK4a ablation. Surprisingly, this is due to the restoration of α-klotho expression in klkl/kl mice and does not occur when p16INK4a is ablated in α-klotho knockout mice (kl−/−), suggesting that p16INK4a is an upstream regulator of α-klotho expression. Indeed, p16INK4a represses α-klotho promoter activity by blocking the functions of E2Fs. These results, together with the observation that the expression levels of p16INK4a are inversely correlated with those of α-klotho throughout ageing, indicate that p16INK4a plays a previously unrecognized role in downregulating α-klotho expression during ageing. The protein p16INK4a promotes senescence in tissue stem cells and thereby contributes to organismal ageing. Here the authors reveal that p16INK4a also downregulates expression of a-klotho, thereby revealing an additional ageing-promoting function of 16INK4a that is independent from its role in senescence.
Collapse
Affiliation(s)
- Seidai Sato
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.,Department of Respiratory Medicine and Rheumatology, University of Tokushima Graduate School of Medicine, Tokushima 770-8503, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yuka Kawamata
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akiko Takahashi
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yoshinori Imai
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Aki Hanyu
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Atsushi Okuma
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Masaki Takasugi
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Kimi Yamakoshi
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Hiroyuki Sorimachi
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroaki Kanda
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yuichi Ishikawa
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Saburo Sone
- Department of Respiratory Medicine and Rheumatology, University of Tokushima Graduate School of Medicine, Tokushima 770-8503, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, University of Tokushima Graduate School of Medicine, Tokushima 770-8503, Japan
| | - Naoko Ohtani
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Eiji Hara
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.,Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
59
|
Esapa CT, Hannan FM, Babinsky VN, Potter P, Thomas GP, Croucher PI, Brown MA, Brown SDM, Cox RD, Thakker RV. N-ethyl-N-Nitrosourea (ENU) induced mutations within the klotho gene lead to ectopic calcification and reduced lifespan in mouse models. PLoS One 2015; 10:e0122650. [PMID: 25860694 PMCID: PMC4393098 DOI: 10.1371/journal.pone.0122650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/11/2015] [Indexed: 11/18/2022] Open
Abstract
Ectopic calcification (EC), which is the pathological deposition of calcium and phosphate in extra-skeletal tissues, may be associated with hypercalcaemic and hyperphosphataemic disorders, or it may occur in the absence of metabolic abnormalities. In addition, EC may be inherited as part of several monogenic disorders and studies of these have provided valuable insights into the metabolic pathways regulating mineral metabolism. For example, studies of tumoural calcinosis, a disorder characterised by hyperphosphataemia and progressive EC, have revealed mutations of fibroblast growth factor 23 (FGF23), polypeptide N-acetyl galactosaminyltransferase 3 (GALNT3) and klotho (KL), which are all part of a phosphate-regulating pathway. However, such studies in humans are limited by the lack of available large families with EC, and to facilitate such studies we assessed the progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for EC. This identified two mutants with autosomal recessive forms of EC, and reduced lifespan, designated Ecalc1 and Ecalc2. Genetic mapping localized the Ecalc1 and Ecalc2 loci to a 11.0 Mb region on chromosome 5 that contained the klotho gene (Kl), and DNA sequence analysis identified nonsense (Gln203Stop) and missense (Ile604Asn) Kl mutations in Ecalc1 and Ecalc2 mice, respectively. The Gln203Stop mutation, located in KL1 domain, was severely hypomorphic and led to a 17-fold reduction of renal Kl expression. The Ile604Asn mutation, located in KL2 domain, was predicted to impair klotho protein stability and in vitro expression studies in COS-7 cells revealed endoplasmic reticulum retention of the Ile604Asn mutant. Further phenotype studies undertaken in Ecalc1 (kl203X/203X) mice demonstrated elevations in plasma concentrations of phosphate, FGF23 and 1,25-dihydroxyvitamin D. Thus, two allelic variants of Kl that develop EC and represent mouse models for tumoural calcinosis have been established.
Collapse
Affiliation(s)
- Christopher T. Esapa
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, United Kingdom
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Fadil M. Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, United Kingdom
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Valerie N. Babinsky
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, United Kingdom
| | - Paul Potter
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Gethin P. Thomas
- University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
| | | | - Matthew A. Brown
- University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
| | - Steve D. M. Brown
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Roger D. Cox
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Rajesh V. Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
60
|
Abstract
The discovery of the Klotho (KL) gene, which was originally identified as a putative aging-suppressor gene, has generated tremendous interest and has advanced understanding of the aging process. In mice, the overexpression of the KL gene extends the life span, whereas mutations to the KL gene shorten the life span. The human KL gene encodes the α-Klotho protein, which is a multifunctional protein that regulates the metabolism of phosphate, calcium, and vitamin D. α-Klotho also may function as a hormone, although the α-Klotho receptor(s) has not been found. Point mutations of the KL gene in humans are associated with hypertension and kidney disease, which suggests that α-Klotho may be essential to the maintenance of normal renal function. Three α-Klotho protein types with potentially different functions have been identified: a full-length transmembrane α-Klotho, a truncated soluble α-Klotho, and a secreted α-Klotho. Recent evidence suggests that α-Klotho suppresses the insulin and Wnt signaling pathways, inhibits oxidative stress, and regulates phosphatase and calcium absorption. In this review, we provide an update on recent advances in the understanding of the molecular, genetic, biochemical, and physiological properties of the KL gene. Specifically, this review focuses on the structure of the KL gene and the factors that regulate KL gene transcription, the key sites in the regulation of α-Klotho enzyme activity, the α-Klotho signaling pathways, and the molecular mechanisms that underlie α-Klotho function. This current understanding of the molecular biology of the α-Klotho protein may offer new insights into its function and role in aging.
Collapse
Affiliation(s)
- Yuechi Xu
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | | |
Collapse
|
61
|
Delanaye P, Bouquegneau A, Krzesinski JM, Cavalier É, Jean G, Urena-Torres P, Souberbielle JC. [Native vitamin D in dialysis patients]. Nephrol Ther 2015; 11:5-15. [PMID: 25597001 DOI: 10.1016/j.nephro.2014.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022]
Abstract
Chronic kidney disease is frequent and usually responsible of mineral and bone disorder. These abnormalities lead to increased morbidity and mortality. To become active, native vitamin D needs a first hydroxylation in the liver, and a second one in the kidney. Next to its action on bone metabolism, vitamin D also possesses pleiotropic actions on cardiovascular, immune and neurological systems as well as antineoplastic activities. End-stage renal disease (ESRD) is also associated with a decrease in vitamin D activity by mechanisms including the increase of plasma phosphate concentration, secretion of FGF-23 and decrease in 1α-hydroxylase activity. The prevalence of 25 hydroxy-vitamin D deficiency depends on the chosen cut-off value to define this lack. Currently it is well established that a patient has to be substituted when 25 hydroxy-vitamin D level is under 30 ng/mL. The use and monitoring of 1.25 hydroxy-vitamin D is still not recommended in routine practice. The goals of vitamin D treatment in case of ESRD are to substitute the deficiency and to prevent or treat hyperparathyroidism. Interest of native vitamin D in first intention is now well demonstrated. This review article describes the vitamin D metabolism and physiology and also the treatment for vitamin D deficiency in ESRD population.
Collapse
Affiliation(s)
- Pierre Delanaye
- Service de néphrologie-dialyse, CHU Sart-Tilman, université de Liège, 4000 Liège, Belgique.
| | - Antoine Bouquegneau
- Service de néphrologie-dialyse, CHU Sart-Tilman, université de Liège, 4000 Liège, Belgique
| | - Jean-Marie Krzesinski
- Service de néphrologie-dialyse, CHU Sart-Tilman, université de Liège, 4000 Liège, Belgique
| | - Étienne Cavalier
- Service de chimie clinique, CHU Sart-Tilman, université de Liège, 4000 Liège, Belgique
| | - Guillaume Jean
- Néphrologie et dialyse, Nephrocare Tassin-Charcot, Sainte-Foy-les-Lyon, France
| | - Pablo Urena-Torres
- Laboratoire d'explorations fonctionnelles, Inserm U845, hôpital Necker-Enfants malades, Paris, France; Service de néphrologie et dialyse, clinique du Landy, Saint-Ouen, France
| | - Jean-Claude Souberbielle
- Laboratoire d'explorations fonctionnelles, Inserm U845, hôpital Necker-Enfants malades, Paris, France
| |
Collapse
|
62
|
Almilaji A, Honisch S, Liu G, Elvira B, Ajay SS, Hosseinzadeh Z, Ahmed M, Munoz C, Sopjani M, Lang F. Regulation of the voltage gated K channel Kv1.3 by recombinant human klotho protein. Kidney Blood Press Res 2014; 39:609-22. [PMID: 25571875 DOI: 10.1159/000368472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Klotho, a protein mainly produced in the kidney and released into circulating blood, contributes to the negative regulation of 1,25(OH)2D3 formation and is thus a powerful regulator of mineral metabolism. As β-glucuronidase, alpha Klotho protein further regulates the stability of several carriers and channels in the plasma membrane and thus regulates channel and transporter activity. Accordingly, alpha Klotho protein participates in the regulation of diverse functions seemingly unrelated to mineral metabolism including lymphocyte function. The present study explored the impact of alpha Klotho protein on the voltage gated K+ channel Kv1.3. METHODS cRNA encoding Kv1.3 (KCNA3) was injected into Xenopus oocytes and depolarization induced outward current in Kv1.3 expressing Xenopus oocytes determined utilizing dual electrode voltage clamp. Experiments were performed without or with prior treatment with recombinant human Klotho protein (50 ng/ml, 24 hours) in the absence or presence of a β-glucuronidase inhibitor D-saccharic acid-1,4-lactone (DSAL, 10 µM). Moreover, the voltage gated K+ current was determined in Jcam lymphoma cells by whole cell patch clamp following 24 hours incubation without or with recombinant human Klotho protein (50 ng/ml, 24 hours). Kv1.3 protein abundance in Jcam cells was determined utilising fluorescent antibodies in flow cytometry. RESULTS In Kv1.3 expressing Xenopus oocytes the Kv1.3 currents and the protein abundance of Kv1.3 were both significantly enhanced after treatment with recombinant human Klotho protein (50 ng/ml, 24 hours), an effect reversed by presence of DSAL. Moreover, treatment with recombinant human Klotho protein increased Kv currents and Kv1.3 protein abundance in Jcam cells. CONCLUSION Alpha Klotho protein enhances Kv1.3 channel abundance and Kv1.3 currents in the plasma membrane, an effect depending on its β-glucuronidase activity.
Collapse
Affiliation(s)
- Ahmad Almilaji
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Almilaji A, Sopjani M, Elvira B, Borras J, Dërmaku-Sopjani M, Munoz C, Warsi J, Lang UE, Lang F. Upregulation of the creatine transporter Slc6A8 by Klotho. Kidney Blood Press Res 2014; 39:516-25. [PMID: 25531216 DOI: 10.1159/000368462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The transmembrane Klotho protein contributes to inhibition of 1,25(OH)2D3 formation. The extracellular domain of Klotho protein could function as an enzyme with e.g. β-glucuronidase activity, be cleaved off and be released into blood and cerebrospinal fluid. Klotho regulates several cellular transporters. Klotho protein deficiency accelerates the appearance of age related disorders including neurodegeneration and muscle wasting and eventually leads to premature death. The main site of Klotho protein expression is the kidney. Klotho protein is also appreciably expressed in other tissues including chorioid plexus. The present study explored the effect of Klotho protein on the creatine transporter CreaT (Slc6A8), which participates in the maintenance of neuronal function and survival. METHODS To this end cRNA encoding Slc6A8 was injected into Xenopus oocytes with and without additional injection of cRNA encoding Klotho protein. Creatine transporter CreaT (Slc6A8) activity was estimated from creatine induced current determined by two-electrode voltage-clamp. RESULTS Coexpression of Klotho protein significantly increased creatine-induced current in Slc6A8 expressing Xenopus oocytes. Coexpression of Klotho protein delayed the decline of creatine induced current following inhibition of carrier insertion into the cell membrane by brefeldin A (5 µM). The increase of creatine induced current by coexpression of Klotho protein in Slc6A8 expressing Xenopus oocytes was reversed by β-glucuronidase inhibitor (DSAL). Similarly, treatment of Slc6A8 expressing Xenopus oocytes with recombinant human alpha Klotho protein significantly increased creatine induced current. CONCLUSION Klotho protein up-regulates the activity of creatine transporter CreaT (Slc6A8) by stabilizing the carrier protein in the cell membrane, an effect requiring β-glucuronidase activity of Klotho protein.
Collapse
Affiliation(s)
- Ahmad Almilaji
- Department of Physiology, Gmelinstr. 5, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Sapir-Koren R, Livshits G. Bone mineralization is regulated by signaling cross talk between molecular factors of local and systemic origin: the role of fibroblast growth factor 23. Biofactors 2014; 40:555-68. [PMID: 25352227 DOI: 10.1002/biof.1186] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 10/06/2014] [Indexed: 01/07/2023]
Abstract
Body phosphate homeostasis is regulated by a hormonal counter-balanced intestine-bone-kidney axis. The major systemic hormones involved in this axis are parathyroid hormone (PTH), 1,25-dihydroxyvitamin-D, and fibroblast growth factor-23 (FGF23). FGF23, produced almost exclusively by the osteocytes, is a phosphaturic hormone that plays a major role in regulation of the bone remodeling process. Remodeling composite components, bone mineralization and resorption cycles create a continuous influx-efflux loop of the inorganic phosphate (Pi) through the skeleton. This "bone Pi loop," which is formed, is controlled by local and systemic factors according to phosphate homeostasis demands. Although FGF23 systemic actions in the kidney, and for the production of PTH and 1,25-dihydroxyvitamin-D are well established, its direct involvement in bone metabolism is currently poorly understood. This review presents the latest available evidence suggesting two aspects of FGF23 bone local activity: (a) Regulation of FGF23 production by both local and systemic factors. The suggested local factors include extracellular levels of Pi and pyrophosphate (PPi), (the Pi/PPi ratio), and another osteocyte-derived protein, sclerostin. In addition, 1,25-dihydroxyvitamin-D, synthesized locally by bone cells, may contribute to regulation of FGF23 production. The systemic control is achieved via PTH and 1,25-dihydroxyvitamin-D endocrine functions. (b) FGF23 acts as a local agent, directly affecting bone mineralization. We support the assumption that under balanced physiological conditions, sclerostin, by para- autocrine signaling, upregulates FGF23 production by the osteocyte. FGF23, in turn, acts as a mineralization inhibitor, by stimulating the generation of the major mineralization antagonist-PPi.
Collapse
Affiliation(s)
- Rony Sapir-Koren
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
65
|
Affiliation(s)
- Myles Wolf
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
66
|
Calpain 1 inhibitor BDA-410 ameliorates α-klotho-deficiency phenotypes resembling human aging-related syndromes. Sci Rep 2014; 4:5847. [PMID: 25080854 PMCID: PMC4118420 DOI: 10.1038/srep05847] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/07/2014] [Indexed: 12/18/2022] Open
Abstract
Taking good care of elderly is a major challenge of our society, and thus identification of potential drug targets to reduce age-associated disease burden is desirable. α-klotho-/- (α-kl) is a short-lived mouse model that displays multiple phenotypes resembling human aging-related syndromes. Such ageing phenotype of α-kl-/- mice is associated with activation of a proteolytic enzyme, Calpain-1. We hypothesized that uncontrolled activation of calpain-1 might be causing age-related phenotypes in α-kl-deficient mice. We found that daily administration of BDA-410, a calpain-1 inhibitor, strikingly ameliorated multiple aging-related phenotypes. Treated mice showed recovery of reproductive ability, increased body weight, reduced organ atrophy, and suppression of ectopic calcifications, bone mineral density reduction, pulmonary emphysema and senile atrophy of skin. We also observed ectopic expression of FGF23 in calcified arteries of α-kl-/- mice, which might account for the clinically observed association of increased FGF23 level with increased risk of cardiovascular mortality. These findings allow us to propose that modulation of calpain-1 activity is a potential therapeutic option for delaying age-associated organ pathology, particularly caused by the dysregulation of mineral ion homeostasis.
Collapse
|
67
|
Razzaque MS. Bone-kidney axis in systemic phosphate turnover. Arch Biochem Biophys 2014; 561:154-8. [PMID: 24997362 DOI: 10.1016/j.abb.2014.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022]
Abstract
An adequate phosphate balance is essential for the maintenance of skeletal growth, development and function. It is also crucial in basic cellular functions, ranging from cell signaling to energy metabolism. Bone-derived fibroblast growth factor 23 (FGF23), through activating FGF receptor system, plays an important role in the systemic regulation of phosphate metabolism. Under physiological conditions, FGF23 exerts serum phosphate-lowering effects by inducing urinary phosphate excretion. Increased FGF23 activities are associated with hypophosphatemic diseases (i.e., rickets/osteomalacia), while reduced FGF23 activity are linked to hyperphosphatemic diseases (i.e., tumoral calcinosis). Unlike most of the FGF family members, FGF23 needs klotho, as a co-factor to activate its receptor system. In vivo studies have convincingly demonstrated that, in absence of klotho, FGF23 is unable to influence systemic phosphate metabolism. Available information suggests that interactions of FGF23, klotho, and FGFRs regulate renal phosphate metabolism by suppressing sodium-phosphate transporters in the proximal tubular epithelial cells. This article briefly summarizes how bone-kidney communication contributes to physiologic phosphate balance.
Collapse
Affiliation(s)
- Mohammed Shawkat Razzaque
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.
| |
Collapse
|
68
|
PAI-1-regulated extracellular proteolysis governs senescence and survival in Klotho mice. Proc Natl Acad Sci U S A 2014; 111:7090-5. [PMID: 24778222 DOI: 10.1073/pnas.1321942111] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence restricts the proliferative capacity of cells and is accompanied by the production of several proteins, collectively termed the "senescence-messaging secretome" (SMS). As senescent cells accumulate in tissue, local effects of the SMS have been hypothesized to disrupt tissue regenerative capacity. Klotho functions as an aging-suppressor gene, and Klotho-deficient (kl/kl) mice exhibit an accelerated aging-like phenotype that includes a truncated lifespan, arteriosclerosis, and emphysema. Because plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor (SERPIN), is elevated in kl/kl mice and is a critical determinant of replicative senescence in vitro, we hypothesized that a reduction in extracellular proteolytic activity contributes to the accelerated aging-like phenotype of kl/kl mice. Here we show that PAI-1 deficiency retards the development of senescence and protects organ structure and function while prolonging the lifespan of kl/kl mice. These findings indicate that a SERPIN-regulated cell-nonautonomous proteolytic cascade is a critical determinant of senescence in vivo.
Collapse
|
69
|
Vadakke Madathil S, Coe LM, Casu C, Sitara D. Klotho deficiency disrupts hematopoietic stem cell development and erythropoiesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:827-41. [PMID: 24412515 DOI: 10.1016/j.ajpath.2013.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 12/15/2022]
Abstract
Klotho deficiency is a characteristic feature of chronic kidney disease in which anemia and cardiovascular complications are prevalent. Disruption of the Klotho gene in mice results in hypervitaminosis D and a syndrome resembling accelerated aging that includes osteopenia and vascular calcifications. Given that the bone microenvironment and its cellular components considerably influence hematopoiesis, in the present study, we addressed the in vivo role of klotho in blood cell formation and differentiation. Herein, we report that genetic ablation of Klotho in mice results in a significant increase in erythropoiesis and a decrease in the hematopoietic stem cell pool size in the bone marrow, leading to impaired hematopoietic stem cell homing in vivo. Our data also suggest that high vitamin D levels are only partially responsible for these hematopoietic changes in Klotho(-/-) mice. Importantly, we found similar hematopoietic abnormalities in Klotho(-/-) fetal liver cells, suggesting that the effects of klotho in hematopoietic stem cell development are independent of the bone microenvironment. Finally, injection of klotho protein results in hematopoietic changes opposite to the ones observed in Klotho(-/-) mice. These observations unveil a novel role for the antiaging hormone klotho in the regulation of prenatal and postnatal hematopoiesis and provide new insights for the development of therapeutic strategies targeting klotho to treat hematopoietic disorders associated with aging.
Collapse
Affiliation(s)
- Sangeetha Vadakke Madathil
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York
| | - Lindsay M Coe
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York
| | - Carla Casu
- Department of Pediatric Hematology, Weill Cornell Medical College, New York
| | - Despina Sitara
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York; Department of Medicine, New York University School of Medicine, New York, New York.
| |
Collapse
|
70
|
Abstract
Extracellular phosphate is toxic to the cell at high concentrations. When the phosphate level is increased in the blood by impaired urinary phosphate excretion, premature aging ensues. When the phosphate level is increased in the urine by dietary phosphate overload, this may lead to kidney damage (tubular injury and interstitial fibrosis). Extracellular phosphate exerts its cytotoxicity when it forms insoluble nanoparticles with calcium and fetuin-A, referred to as calciprotein particles (CPPs). CPPs are highly bioactive ligands that can induce various cellular responses, including osteogenic transformation of vascular smooth muscle cells and cell death in vascular endothelium and renal tubular epithelium. CPPs are detected in the blood of animal models and patients with chronic kidney disease (CKD) and associated with adaptation of the endocrine axes mediated by fibroblast growth factor-23 (FGF23) and Klotho that regulate mineral metabolism and aging. These observations have raised the possibility that CPPs may contribute to the pathophysiology of CKD. This notion, if validated, is expected to provide new diagnostic and therapeutic targets for CKD.
Collapse
|
71
|
Shutto Y, Shimada M, Kitajima M, Yamabe H, Saitoh Y, Saitoh H, Razzaque MS. Inadequate awareness among chronic kidney disease patients regarding food and drinks containing artificially added phosphate. PLoS One 2013; 8:e78660. [PMID: 24236030 PMCID: PMC3827266 DOI: 10.1371/journal.pone.0078660] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 09/21/2013] [Indexed: 12/03/2022] Open
Abstract
Hyperphosphatemia is an important determinant of morbidity and mortality in patients with chronic kidney disease (CKD). Patients with CKD are advised to consume a low phosphate diet and are often prescribed phosphate-lowering drug therapy. However, commercially processed food and drinks often contain phosphate compounds, but the phosphate level is not usually provided in the ingredient list, which makes it difficult for CKD patients to choose a correct diet. We conducted a survey of the awareness of food/beverages containing artificially added phosphate among CKD patients undergoing hemodialysis. The subjects were 153 patients (77 males and 76 females; average age 56±11 years) who were randomly selected from the Dialysis Center of Hirosaki City, Japan. The subjects were provided with a list of questions. The survey results showed that 93% of the subjects were aware of the presence of high sugar content in soda, whereas only 25% were aware of the presence of phosphate (phosphoric acid) in such drinks. Despite 78% of the subjects being aware of the detrimental effects of consumption of a high phosphate diet, 43% drank at least 1 to 5 cans of soda per week and about 17% consumed “fast food” once each week. We also assessed the immediate effects of high-phosphate containing carbonated soda consumption by determining urinary calcium, phosphate, protein and sugar contents in overnight fasted healthy volunteers (n = 55; average age 20.7±0.3 years old, 20 males and 35 females). Significantly higher urinary calcium (adjusted using urinary creatinine) excretion was found 2 h after consuming 350 ml of carbonated soda compared to the fasting baseline level (0.15±0.01 vs. 0.09±0.01, p = 0.001). Our survey results suggest that CKD patients undergoing hemodialysis are not adequately aware of the hidden source of phosphate in their diet, and emphasize the need for educational initiatives to raise awareness of this issue among CKD patients.
Collapse
Affiliation(s)
- Yoshiko Shutto
- Department of Health Promotion, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Acromegaly is characterized by excessively high GH and IGF1 levels. Recent data suggest that soluble Klotho (sKlotho) is also elevated in patients with active acromegaly. sKlotho decreases towards normal following removal of the GH-producing pituitary adenoma. The Klotho gene was identified in mice following its accidental disruption by ectopic DNA. It is an ageing suppressor gene of restricted expression (mainly in kidneys, brain, and parathyroid and pituitary glands) encoding a transmembrane protein, mKlotho. mKlotho serves as a co-receptor in fibroblast growth factor 23 (FGF23) signalling. FGF23 promotes urinary phosphate excretion and inhibits the synthesis of calcitriol. The ectodomain of mKlotho is enzymatically released to result in a humoral factor, sKlotho, which exerts systemic effects (on ion channels and signalling pathways), possibly by working as an enzyme that modifies glycans of cell surface glycoproteins. GH enhances renal phosphate reabsorption and calcitriol production, i.e. exerts effects in the proximal tubule opposing those attributed to mKlotho, and attenuates calciuria in the distal tubule similar to sKlotho. sKlotho can be measured in extracellular fluids (serum, urine and cerebrospinal fluid (CSF)) by an ELISA. In line with predominant expression of Klotho in kidneys and choroid plexus, concentrations of sKlotho are particularly high in urine and CSF. Determination of sKlotho in serum and urine (both presumably reflecting GH action on the kidneys) could be used as a supplementary tool in the diagnosis and follow-up of patients with acromegaly. The question arises whether GH exerts selected actions via modifying activities of Klotho.
Collapse
Affiliation(s)
- Christoph Schmid
- Division of Endocrinology and Diabetology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland Division of Endocrinology and Diabetology, Kantonsspital St Gallen, 9007 St Gallen, Switzerland Department of Neurosurgery, Clinic Hirslanden, Witellikerstrasse 40, 8032 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
73
|
Dërmaku-Sopjani M, Kolgeci S, Abazi S, Sopjani M. Significance of the anti-aging protein Klotho. Mol Membr Biol 2013; 30:369-85. [PMID: 24124751 DOI: 10.3109/09687688.2013.837518] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Klotho gene was identified as an 'aging suppressor' in mice. Overexpression of the Klotho gene extends lifespan and defective Klotho results in rapid aging and early death. Both the membrane and secreted forms of Klotho have biological activity that include regulatory effects on general metabolism and a more specific effect on mineral metabolism that correlates with its effect on aging. Klotho serves as a co-receptor for fibroblast growth factor (FGF), but it also functions as a humoral factor that regulates cell survival and proliferation, vitamin D metabolism, and calcium and phosphate homeostasis and may serve as a potential tumor suppressor. Moreover, Klotho protects against several pathogenic processes in a FGF23-independent manner. These processes include cancer metastasis, vascular calcification, and renal fibrosis. This review covers the recent advances in Klotho research and discusses novel Klotho-dependent mechanisms that are clinically relevant in aging and age-related diseases.
Collapse
|
74
|
Lam-Rachlin J, Romero R, Korzeniewski SJ, Schwartz AG, Chaemsaithong P, Hernandez-Andrade E, Dong Z, Yeo L, Hassan SS, Chaiworapongsa T. Infection and smoking are associated with decreased plasma concentration of the anti-aging protein, α-klotho. J Perinat Med 2013; 41:581-94. [PMID: 23770558 PMCID: PMC4144357 DOI: 10.1515/jpm-2013-0084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/14/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The objective of this study was to determine whether maternal plasma concentrations of soluble α-klotho are different between women with microbial invasion of the intra-amniotic cavity (MIAC) and those without MIAC among preterm labor and intact membranes (PTL) or preterm prelabor rupture of membranes (pPROM). METHODS A cross-sectional study was conducted to include women in the following groups: i) PTL with MIAC (n=14); ii) PTL without MIAC (n=79); iii) pPROM with MIAC (n=30); and iv) pPROM without MIAC (n=33). MIAC was defined as a positive amniotic fluid culture for microorganisms (aerobic/anaerobic bacteria or genital mycoplasmas). Amniotic fluid samples were obtained within 48 h of maternal blood collection. Plasma concentration of soluble α-klotho was determined by ELISA. RESULTS i) The median plasma concentration (pg/mL) of soluble α-klotho was significantly lower in patients with MIAC than in those without MIAC (787.0 vs. 1117.8; P<0.001). ii) Among patients with PTL, those with MIAC had a lower median plasma concentration (pg/mL) of soluble α-klotho than those without MIAC (787.0 vs. 1138.9; P=0.007). iii) Among patients with pPROM, those with MIAC had a lower median plasma concentration (pg/mL) of soluble α-klotho than those without MIAC (766.4 vs. 1001.6; P=0.045). iv) There was no significant difference in the median plasma concentration of soluble α-klotho between PPROM without MIAC and PTL without MIAC (1001.6 pg/mL vs. 1138.9 pg/mL, respectively; P=0.5). v) After adjustment for potential confounders (maternal age, tobacco use, gestational age at venipuncture), soluble α-klotho remained significantly associated with MIAC (P=0.02); and vi) Among patients without MIAC, smoking was significantly associated with a lower median plasma concentration soluble α-klotho than in non-smokers (794.2 pg/mL vs. 1382.0 pg/mL, respectively; P<0.001); however, this difference was not observed in patients with MIAC. CONCLUSIONS Intra-amniotic infection occurring at preterm gestations (regardless of membrane status) was associated with a decrease in maternal plasma concentrations of soluble α-klotho. Moreover, among patients without infection, the plasma concentration of α-klotho was lower in smokers.
Collapse
Affiliation(s)
- Jennifer Lam-Rachlin
- Perinatology Research Branch, Wayne State University/Hutzel Women ’ s Hospital, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Almilaji A, Munoz C, Pakladok T, Alesutan I, Feger M, Föller M, Lang UE, Shumilina E, Lang F. Klotho sensitivity of the neuronal excitatory amino acid transporters EAAT3 and EAAT4. PLoS One 2013; 8:e70988. [PMID: 23923038 PMCID: PMC3726597 DOI: 10.1371/journal.pone.0070988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/01/2013] [Indexed: 01/02/2023] Open
Abstract
Klotho, a transmembrane protein, which can be cleaved off as β-glucuronidase and hormone, is released in both, kidney and choroid plexus and encountered in blood and cerebrospinal fluid. Klotho deficiency leads to early appearance of age-related disorders and premature death. Klotho may modify transport by inhibiting 1,25(OH)2D3 formation or by directly affecting channel and carrier proteins. The present study explored whether Klotho influences the activity of the Na+-coupled excitatory amino acid transporters EAAT3 and EAAT4, which are expressed in kidney (EAAT3), intestine (EAAT3) and brain (EAAT3 and EAAT4). To this end, cRNA encoding EAAT3 or EAAT4 was injected into Xenopus oocytes with and without additional injection of cRNA encoding Klotho. EAAT expressing Xenopus oocytes were further treated with recombinant human β-Klotho protein with or without β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL). Electrogenic excitatory amino acid transport was determined as L-glutamate-induced current (Iglu) in two electrode voltage clamp experiments. EAAT3 and EAAT4 protein abundance in the Xenopus oocyte cell membrane was visualized by confocal microscopy and quantified utilizing chemiluminescence. As a result, coexpression of Klotho cRNA significantly increased Iglu in both, EAAT3 or EAAT4-expressing Xenopus oocytes. Klotho cRNA coexpression significantly increased the maximal current and cell membrane protein abundance of both EAAT3 and EAAT4. The effect of Klotho coexpression on EAAT3 and EAAT4 activity was mimicked by treating EAAT3 or EAAT4-expressing Xenopus oocytes with recombinant human β-Klotho protein. The effects of Klotho coexpression and of treatment with recombinant human β-Klotho protein were both abrogated in the presence of DSAL (10 µM). In conclusion, Klotho is a novel, powerful regulator of the excitatory amino acid transporters EAAT3 and EAAT4.
Collapse
Affiliation(s)
- Ahmad Almilaji
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Carlos Munoz
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | - Ioana Alesutan
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Martina Feger
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Michael Föller
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Undine E. Lang
- Department of Psychiatry and Psychotherapy, University Psychiatric Clinics (UPK) Basel, Basel, Switzerland
| | | | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
76
|
Yanochko GM, Vitsky A, Heyen JR, Hirakawa B, Lam JL, May J, Nichols T, Sace F, Trajkovic D, Blasi E. Pan-FGFR inhibition leads to blockade of FGF23 signaling, soft tissue mineralization, and cardiovascular dysfunction. Toxicol Sci 2013; 135:451-64. [PMID: 23872713 DOI: 10.1093/toxsci/kft161] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The fibroblast growth factor receptors (FGFR) play a major role in angiogenesis and are desirable targets for the development of therapeutics. Groups of Wistar Han rats were dosed orally once daily for 4 days with a small molecule pan-FGFR inhibitor (5mg/kg) or once daily for 6 days with a small molecule MEK inhibitor (3mg/kg). Serum phosphorous and FGF23 levels increased in all rats during the course of the study. Histologically, rats dosed with either drug exhibited multifocal, multiorgan soft tissue mineralization. Expression levels of the sodium phosphate transporter Npt2a and the vitamin D-metabolizing enzymes Cyp24a1 and Cyp27b1 were modulated in kidneys of animals dosed with the pan-FGFR inhibitor. Both inhibitors decreased ERK phosphorylation in the kidneys and inhibited FGF23-induced ERK phosphorylation in vitro in a dose-dependent manner. A separate cardiovascular outcome study was performed to monitor hemodynamics and cardiac structure and function of telemetered rats dosed with either the pan-FGFR inhibitor or MEK inhibitor for 3 days. Both compounds increased blood pressure (~+ 17 mmHg), decreased heart rate (~-75 bpm), and modulated echocardiography parameters. Our data suggest that inhibition of FGFR signaling following administration of either pan-FGFR inhibitor or MEK inhibitor interferes with the FGF23 pathway, predisposing animals to hyperphosphatemia and a tumoral calcinosis-like syndrome in rodents.
Collapse
|
77
|
Christakos S, Seth T, Hirsch J, Porta A, Moulas A, Dhawan P. Vitamin D Biology Revealed Through the Study of Knockout and Transgenic Mouse Models. Annu Rev Nutr 2013; 33:71-85. [DOI: 10.1146/annurev-nutr-071812-161249] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sylvia Christakos
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103;
| | - Tanya Seth
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103;
| | - Jennifer Hirsch
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103;
| | - Angela Porta
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103;
| | - Anargyros Moulas
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103;
| | - Puneet Dhawan
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103;
| |
Collapse
|
78
|
Kuro-o M. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 2013; 9:650-60. [DOI: 10.1038/nrneph.2013.111] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
79
|
Hartman ML, Groppo F, Ohnishi M, Goodson JM, Hasturk H, Tavares M, Yaskell T, Floras C, Behbehani K, Razzaque MS. Can salivary phosphate levels be an early biomarker to monitor the evolvement of obesity? CONTRIBUTIONS TO NEPHROLOGY 2013; 180:138-48. [PMID: 23652556 PMCID: PMC3896993 DOI: 10.1159/000346793] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphate is an essential nutrient required for important biological reactions that maintain the normal homoeostatic control of the cell. The adverse effects of phosphate metabolism in obesity have not been studied in detail, chiefly because such an association is thought to be uncommon. However, in some animal models of obesity, serum phosphate levels were noted to be higher than the nonobese controls. For example, leptin-deficient (ob/ob) mice become severely obese and have high serum phosphate levels. In this study, we analyzed the phosphate content in saliva collected from children (n = 77; 10.5 ± 1.8) to evaluate association with body mass index; there is a significant increase of salivary phosphate content in obese compared to normal-weight children (ANOVA p < 0.001). The correlation coefficient (r) between BMI and phosphate was 0.33 (p = 0.0032). Our results suggest that the human salivary phosphate level may be an early biomarker of the genesis of obesity in children. The diagnostic importance lies in the fact that the salivary phosphate level could provide a noninvasive predictive marker in the development of obesity. Further studies will be required to understand the underlying mechanism of increased salivary phosphate accumulation in obese and overweight children. Nevertheless, its occurrence without systemic changes could be of diagnostic value, particularly in monitoring evolvement of obesity.
Collapse
Affiliation(s)
- Mor-Li Hartman
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Mass
| | - Francisco Groppo
- Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Mutsuko Ohnishi
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Mass., USA
| | - J. Max Goodson
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Mass
| | - Hatice Hasturk
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Mass
| | - Mary Tavares
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Mass
| | - Tina Yaskell
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Mass
| | - Constantino Floras
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Mass
| | | | - Mohammed S. Razzaque
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Mass., USA
| |
Collapse
|
80
|
Munoz C, Pakladok T, Almilaji A, Elvira B, Seebohm G, Voelkl J, Föller M, Shumilina E, Lang F. Klotho sensitivity of the hERG channel. FEBS Lett 2013; 587:1663-8. [PMID: 23603386 DOI: 10.1016/j.febslet.2013.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 01/24/2023]
Abstract
Klotho, a hormone and enzyme, is a powerful regulator of ageing and life span. Klotho deficiency leads to cardiac arrythmia and sudden cardiac death. We thus explored whether klotho modifies cardiac K(+)-channel hERG. Current was determined utilizing dual electrode voltage clamp and hERG protein abundance utilizing immunohistochemistry and chemiluminescence in Xenopus oocytes expressing hERG with or without klotho. Coexpression of klotho increased cell membrane hERG-protein abundance and hERG current at any given voltage without significantly modifying the voltage required to activate the channel. The effect of klotho coexpression was mimicked by recombinant klotho protein and reversed by β-glucuronidase-inhibitor D-saccharic acid-1,4-lactone.
Collapse
Affiliation(s)
- Carlos Munoz
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Bergwitz C, Wee MJ, Sinha S, Huang J, DeRobertis C, Mensah LB, Cohen J, Friedman A, Kulkarni M, Hu Y, Vinayagam A, Schnall-Levin M, Berger B, Perkins LA, Mohr SE, Perrimon N. Genetic determinants of phosphate response in Drosophila. PLoS One 2013; 8:e56753. [PMID: 23520455 PMCID: PMC3592877 DOI: 10.1371/journal.pone.0056753] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/14/2013] [Indexed: 11/30/2022] Open
Abstract
Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. Conversely, life span is reduced when adult flies are cultured on high phosphate medium or when hemolymph phosphate is increased in flies with impaired Malpighian tubules. In addition, RNAi-mediated inhibition of MAPK-signaling by knockdown of Ras85D, phl/D-Raf or Dsor1/MEK affects larval development, adult life span and hemolymph phosphate, suggesting that some in vivo effects involve activation of this signaling pathway by phosphate. To identify novel genetic determinants of phosphate responses, we used Drosophila hemocyte-like cultured cells (S2R+) to perform a genome-wide RNAi screen using MAPK activation as the readout. We identified a number of candidate genes potentially important for the cellular response to phosphate. Evaluation of 51 genes in live flies revealed some that affect larval development, adult life span and hemolymph phosphate levels.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Klotho is a single-pass transmembrane protein highly expressed in the kidney. Membrane Klotho protein acts as a co-receptor for fibroblast growth factor-23. Its extracellular domain is shed from the cell surface and functions as an endocrine substance that exerts multiple renal and extrarenal functions. An exhaustive review is beyond the scope and length of this article; thus, only effects with pertinence to mineral metabolism and renoprotection are highlighted here. Klotho participates in mineral homeostasis via interplay with other calciophosphoregulatory hormones (parathyroid hormone, fibroblast growth factor-23, and 1,25-[OH]2 vitamin D3) in kidney, bone, intestine, and parathyroid gland. Klotho also may be involved in acute and chronic kidney disease development and progression. Acute kidney injury is a temporary and reversible state of Klotho deficiency and chronic kidney disease is a sustained state of systemic Klotho deficiency. Klotho deficiency renders the kidney more susceptible to acute insults, delays kidney regeneration, and promotes renal fibrosis. In addition to direct renal effects, Klotho deficiency also triggers and aggravates deranged mineral metabolism, secondary hyperparathyroidism, vascular calcification, and cardiac hypertrophy and fibrosis. Although studies examining the therapeutic effect of Klotho replacement were performed in animal models, it is quite conceivable that supplementation of exogenous Klotho and/or up-regulation of endogenous Klotho production may be a viable therapeutic strategy for patients with acute or chronic kidney diseases.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8885, USA.
| | | | | |
Collapse
|
83
|
Stenvinkel P, Larsson TE. Chronic kidney disease: a clinical model of premature aging. Am J Kidney Dis 2013; 62:339-51. [PMID: 23357108 DOI: 10.1053/j.ajkd.2012.11.051] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/19/2012] [Indexed: 12/21/2022]
Abstract
Premature aging is a process associated with a progressive accumulation of deleterious changes over time, an impairment of physiologic functions, and an increase in the risk of disease and death. Regardless of genetic background, aging can be accelerated by the lifestyle choices and environmental conditions to which our genes are exposed. Chronic kidney disease is a common condition that promotes cellular senescence and premature aging through toxic alterations in the internal milieu. This occurs through several mechanisms, including DNA and mitochondria damage, increased reactive oxygen species generation, persistent inflammation, stem cell exhaustion, phosphate toxicity, decreased klotho expression, and telomere attrition. Because recent evidence suggests that both increased local signaling of growth factors (through the nutrient-sensing mammalian target of rapamycin) and decreased klotho expression are important modulators of aging, interventions that target these should be tested in this prematurely aged population.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
84
|
Hwang YG, Hsu HC, Lim FC, Wu Q, Yang P, Fisher G, Hunter GR, Mountz JD. Increased vitamin D is associated with decline of naïve, but accumulation of effector, CD8 T cells during early aging. ACTA ACUST UNITED AC 2013; 2:72-80. [PMID: 25392765 DOI: 10.4236/aar.2013.22010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Given the protective roles of 25-hydroxyvitamin D (25[OH]D or vitamin D) in musculoskeletal health and the potential beneficial effects of vitamin D supplementation in reducing the risk of various chronic diseases, intensive repletion of vitamin D has been widely advocated. Of note, CD8 T cells have the highest levels of the vitamin D receptor compared with other major immune cells. The effects of vitamin D on CD8 T cells during aging, however, remain unclear. This study determined the relationship between vitamin D levels and CD8 T-cell status in 34 healthy female subjects (all >60 years old). The CD8 T cell phenotype was defined by the surface expression of CD28 and CD95. The low-25(OH)D serum groups (≤30 ng/ml) had higher percentages of CD28+CD95-CD8+ (naïve) T cells and lower percentages of CD28+CD95+CD8+ (effector) T cells. By contrast, subjects with high levels of 25(OH)D had very low percentages of naïve CD8 T cells but very high percentages of effector CD8 T cells. There was a significant inverse correlation between 25(OH)D levels and the frequency of naïve CD8 T cells. The results show that higher levels of vitamin D are correlated with decreased frequencies of naïve CD8 T cells during early aging, suggesting that higher levels of 25(OH)D accelerate CD8 T-cell senescence. These results warrant the further evaluation of the effects of vitamin D supplementation in immune aging.
Collapse
Affiliation(s)
- Yong Gil Hwang
- University of Alabama at Birmingham, Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Fei-Chu Lim
- University of Alabama at Birmingham, Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Qi Wu
- University of Alabama at Birmingham, Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - PingAr Yang
- University of Alabama at Birmingham, Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Gordon Fisher
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Gary R Hunter
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John D Mountz
- University of Alabama at Birmingham, Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA ; Birmingham VA Medical Center, Birmingham, AL, 35233, USA
| |
Collapse
|
85
|
Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 2013; 75:503-33. [PMID: 23398153 PMCID: PMC3770142 DOI: 10.1146/annurev-physiol-030212-183727] [Citation(s) in RCA: 423] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The metabolically active and perpetually remodeling calcium phosphate-based endoskeleton in terrestrial vertebrates sets the demands on whole-organism calcium and phosphate homeostasis that involves multiple organs in terms of mineral flux and endocrine cross talk. The fibroblast growth factor (FGF)-Klotho endocrine networks epitomize the complexity of systems biology, and specifically, the FGF23-αKlotho axis highlights the concept of the skeleton holding the master switch of homeostasis rather than a passive target organ as hitherto conceived. Other than serving as a coreceptor for FGF23, αKlotho circulates as an endocrine substance with a multitude of effects. This review covers recent data on the physiological regulation and function of the complex FGF23-αKlotho network. Chronic kidney disease is a common pathophysiological state in which FGF23-αKlotho, a multiorgan endocrine network, is deranged in a self-amplifying vortex resulting in organ dysfunction of the utmost severity that contributes to its morbidity and mortality.
Collapse
Affiliation(s)
- Ming Chang Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Kazuhiro Shiizaki
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Makoto Kuro-o
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Orson W. Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Physiology University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| |
Collapse
|
86
|
Sallam T, Cheng H, Demer LL, Tintut Y. Regulatory circuits controlling vascular cell calcification. Cell Mol Life Sci 2012; 70:3187-97. [PMID: 23269436 DOI: 10.1007/s00018-012-1231-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/12/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
Vascular calcification is a common feature of chronic kidney disease, cardiovascular disease, and aging. Such abnormal calcium deposition occurs in medial and/or intimal layers of blood vessels as well as in cardiac valves. Once considered a passive and inconsequential finding, the presence of calcium deposits in the vasculature is widely accepted as a predictor of increased morbidity and mortality. Recognition of the importance of vascular calcification in health is driving research into mechanisms that govern its development, progression, and regression. Diverse, but highly interconnected factors, have been implicated, including disturbances in lipid metabolism, oxidative stress, inflammatory cytokines, and mineral and hormonal balances, which can lead to formation of osteoblast-like cells in the artery wall. A tight balance of procalcific and anticalcific regulators dictates the extent of disease. In this review, we focus on the main regulatory circuits modulating vascular cell calcification.
Collapse
Affiliation(s)
- Tamer Sallam
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Center for the Health Sciences, A2-237, 10833 Le Conte Ave., Los Angeles, CA, 90095-1679, USA
| | | | | | | |
Collapse
|
87
|
|
88
|
Brandenburg VM, Vervloet MG, Marx N. The role of vitamin D in cardiovascular disease: From present evidence to future perspectives. Atherosclerosis 2012; 225:253-63. [DOI: 10.1016/j.atherosclerosis.2012.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/02/2012] [Accepted: 08/08/2012] [Indexed: 12/17/2022]
|
89
|
Chen TH, Kuro-O M, Chen CH, Sue YM, Chen YC, Wu HH, Cheng CY. The secreted Klotho protein restores phosphate retention and suppresses accelerated aging in Klotho mutant mice. Eur J Pharmacol 2012; 698:67-73. [PMID: 23041151 DOI: 10.1016/j.ejphar.2012.09.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/14/2012] [Accepted: 09/22/2012] [Indexed: 01/03/2023]
Abstract
Klotho was identified as the responsible gene in a mutant mouse line whose disruption results in a variety of premature aging-related phenotypes. Nonetheless, the related mechanisms were still unknown. Many studies report that dietary phosphate restriction and genetic ablation of vitamin D pathways indirectly reverse premature aging processes in these mice. Furthermore, transgenic overexpression of klotho in mice extends their life span through inhibition of insulin and IGF1 signaling. We found that intraperitoneal injection of recombinant soluble Klotho protein at dose of 0.02 mg/kg every other day effectively extends the life span of kl/kl mice by 17.4%. Soluble Klotho administration also ameliorated premature aging-related phenotype, such as growth retardation, premature thymus involution and vascular calcification, and effectively enhanced urinary phosphate excretion in kl/kl mice. Klotho treatment attenuated renal fibrosis through down-regulation of transforming growth factor-β signaling as well as reduced cellular senescence through down-regulation of p21-cip1 mRNA levels. In addition, soluble Klotho treatment significantly reduced both renal and aorta calcium deposits. In conclusion, our study shows the therapeutic potential of soluble Klotho protein to treat age-related disorders in mice.
Collapse
Affiliation(s)
- Tso-Hsiao Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, No 111, Section 3 Hsin-Long Road, Wen-Shang District, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
90
|
Olauson H, Lindberg K, Amin R, Jia T, Wernerson A, Andersson G, Larsson TE. Targeted deletion of Klotho in kidney distal tubule disrupts mineral metabolism. J Am Soc Nephrol 2012; 23:1641-51. [PMID: 22878961 PMCID: PMC3458458 DOI: 10.1681/asn.2012010048] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/25/2012] [Indexed: 11/03/2022] Open
Abstract
Renal Klotho controls mineral metabolism by directly modulating tubular reabsorption of phosphate and calcium and by acting as a co-receptor for the phosphaturic and vitamin D-regulating hormone fibroblast growth factor-23 (FGF23). Klotho null mice have a markedly abnormal phenotype. We sought to determine effects of renal-specific and partial deletion of Klotho to facilitate investigation of its roles in health and disease. We generated a mouse model with partial deletion of Klotho in distal tubular segments (Ksp-KL(-/-)). In contrast to Klotho null mice, Ksp-KL(-/-) mice were fertile, had a normal gross phenotype, and did not have vascular or tubular calcification on renal histology. However, Ksp-KL(-/-) mice were hyperphosphatemic with elevated FGF23 levels and abundant expression of the sodium-phosphate cotransporter Npt2a at the brush border membrane. Serum calcium and 1,25-dihydroxyvitamin D(3) levels were normal but parathyroid hormone levels were decreased. TRPV5 protein was reduced with a parallel mild increase in urinary calcium excretion. Renal expression of vitamin D regulatory enzymes and vitamin D receptor was higher in Ksp-KL(-/-) mice than controls, suggesting increased turnover of vitamin D metabolites and a functional increase in vitamin D signaling. There was a threshold effect of residual renal Klotho expression on FGF23: deletion of >70% of Klotho resulted in FGF23 levels 30-250 times higher than in wild-type mice. A subgroup of Ksp-KL(-/-) mice with normal phosphate levels had elevated FGF23, suggesting a Klotho-derived renal-bone feedback loop. Taken together, renal FGF23-Klotho signaling, which is disrupted in CKD, is essential for homeostatic control of mineral metabolism.
Collapse
Affiliation(s)
- Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Lindberg
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Risul Amin
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ting Jia
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; and
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; and
| | - Tobias E. Larsson
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Nephrology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
91
|
Abstract
A disproportionate expansion of white adipose tissue and abnormal recruitment of adipogenic precursor cells can not only lead to obesity but also impair glucose metabolism, which are both common causes of insulin resistance and diabetes mellitus. The development of novel and effective therapeutic strategies to slow the progression of obesity, diabetes mellitus and their associated complications will require improved understanding of adipogenesis and glucose metabolism. Klotho might have a role in adipocyte maturation and systemic glucose metabolism. Klotho increases adipocyte differentiation in vitro, and mice that lack Klotho activity are lean owing to reduced white adipose tissue accumulation; moreover, mice that lack the Kl gene (which encodes Klotho) are resistant to obesity induced by a high-fat diet. Knockout of Kl in leptin-deficient Lep(ob/ob) mice reduces obesity and increases insulin sensitivity, which lowers blood glucose levels. Energy metabolism might also be influenced by Klotho. However, further studies are needed to explore the possibility that Klotho could be a novel therapeutic target to reduce obesity and related complications, and to determine whether and how Klotho might influence the regulation and function of a related protein, β-Klotho, which is also involved in energy metabolism.
Collapse
Affiliation(s)
- M Shawkat Razzaque
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Research and Education Building, Room 304, 190 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
92
|
|
93
|
Kiattisunthorn K, Moe SM. Chronic Kidney Disease-Mineral Bone Disorder: Definitions and Rationale for a Systemic Disorder. Clin Rev Bone Miner Metab 2012. [DOI: 10.1007/s12018-011-9119-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
94
|
Goetz R, Ohnishi M, Kir S, Kurosu H, Wang L, Pastor J, Ma J, Gai W, Kuro-o M, Razzaque MS, Mohammadi M. Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor. J Biol Chem 2012; 287:29134-46. [PMID: 22733815 PMCID: PMC3436551 DOI: 10.1074/jbc.m112.342980] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 06/06/2012] [Indexed: 11/06/2022] Open
Abstract
FGFs 19, 21, and 23 are hormones that regulate in a Klotho co-receptor-dependent fashion major metabolic processes such as glucose and lipid metabolism (FGF21) and phosphate and vitamin D homeostasis (FGF23). The role of heparan sulfate glycosaminoglycan in the formation of the cell surface signaling complex of endocrine FGFs has remained unclear. Here we show that heparan sulfate is not a component of the signal transduction unit of FGF19 and FGF23. In support of our model, we convert a paracrine FGF into an endocrine ligand by diminishing heparan sulfate-binding affinity of the paracrine FGF and substituting its C-terminal tail for that of an endocrine FGF containing the Klotho co-receptor-binding site to home the ligand into the target tissue. In addition to serving as a proof of concept, the ligand conversion provides a novel strategy for engineering endocrine FGF-like molecules for the treatment of metabolic disorders, including global epidemics such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Regina Goetz
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Mutsuko Ohnishi
- the Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Serkan Kir
- the Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, and
| | - Hiroshi Kurosu
- the Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Lei Wang
- the Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Johanne Pastor
- the Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Jinghong Ma
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Weiming Gai
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Makoto Kuro-o
- the Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Mohammed S. Razzaque
- the Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Moosa Mohammadi
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
95
|
Abstract
PURPOSE Dmp1 (dentin matrix protein1) null mice (Dmp1(-/-)) display hypophosphatemic rickets with a sharp increase in fibroblast growth factor 23 (FGF23). Disruption of Klotho (the obligatory co-receptor of FGF23) results in hyperphosphatemia with ectopic calcifications formed in blood vessels and kidneys. To determine the role of DMP1 in both a hyperphosphatemic environment and within the ectopic calcifications, we created Dmp1/Klotho compound deficient (Dmp1(-/-)kl/kl) mice. PROCEDURES A combination of TUNEL, immunohistochemistry, TRAP, von Kossa, micro CT, bone histomorphometry, serum biochemistry and Scanning Electron Microscopy techniques were used to analyze the changes in blood vessels, kidney and bone for wild type control, Dmp1(-/-), Klotho deficient (kl/kl) and Dmp1(-/-)kl/kl animals. FINDINGS Interestingly, Dmp1(-/-)kl/kl mice show a dramatic improvement of rickets and an identical serum biochemical phenotype to kl/kl mice (extremely high FGF23, hyperphosphatemia and reduced parathyroid hormone (PTH) levels). Unexpectedly, Dmp1(-/-)kl/kl mice presented elevated levels of apoptosis in osteocytes, endothelial and vascular smooth muscle cells in small and large blood vessels, and within the kidney as well as dramatic increase in ectopic calcification in all these tissues, as compared to kl/kl. CONCLUSION These findings suggest that DMP1 has an anti-apoptotic role in hyperphosphatemia. Discovering this novel protective role of DMP1 may have clinical relevance in protecting the cells from apoptosis in high-phosphate environments as observed in chronic kidney disease (CKD).
Collapse
|
96
|
Woudenberg-Vrenken TE, van der Eerden BCJ, van der Kemp AWCM, van Leeuwen JPTM, Bindels RJM, Hoenderop JGJ. Characterization of vitamin D-deficient klotho-/- mice: do increased levels of serum 1,25(OH)2D3 cause disturbed calcium and phosphate homeostasis in klotho-/- mice? Nephrol Dial Transplant 2012; 27:4061-8. [DOI: 10.1093/ndt/gfs177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
97
|
Abstract
Chronic kidney disease (CKD) is a public health epidemic that affects millions of people worldwide. Presence of CKD predisposes individuals to high risks of end-stage renal disease, cardiovascular disease and premature death. Disordered phosphate homeostasis with elevated circulating levels of fibroblast growth factor 23 (FGF23) is an early and pervasive complication of CKD. CKD is likely the most common cause of chronically elevated FGF23 levels, and the clinical condition in which levels are most markedly elevated. Although increases in FGF23 levels help maintain serum phosphate in the normal range in CKD, prospective studies in populations of pre-dialysis CKD, incident and prevalent end-stage renal disease, and kidney transplant recipients demonstrate that elevated FGF23 levels are independently associated with progression of CKD and development of cardiovascular events and mortality. It was originally thought that these observations were driven by elevated FGF23 acting as a highly sensitive biomarker of toxicity due to phosphate. However, FGF23 itself has now been shown to mediate “off-target,” direct, end-organ toxicity in the heart, which suggests that elevated FGF23 may be a novel mechanism of adverse outcomes in CKD. This report reviews recent advances in FGF23 biology relevant to CKD, the classical effects of FGF23 on mineral homeostasis, and the studies that established FGF23 excess as a biomarker and novel mechanism of cardiovascular disease. The report concludes with a critical review of the effects of different therapeutic strategies targeting FGF23 reduction and how these might be leveraged in a future randomized trial aimed at improving outcomes in CKD.
Collapse
|
98
|
Bergwitz C, Jüppner H. FGF23 and syndromes of abnormal renal phosphate handling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 728:41-64. [PMID: 22396161 DOI: 10.1007/978-1-4614-0887-1_3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is part of a previously unrecognized hormonal bone-parathyroid-kidney axis, which is modulated by 1,25(OH)(2)-vitamin D (1,25(OH)(2)D), dietary and circulating phosphate and possibly PTH. FGF23 was discovered as the humoral factor in tumors that causes hypophosphatemia and osteomalacia and through the identification of a mutant form of FGF23 that leads to autosomal dominant hypophosphatemic rickets (ADHR), a rare genetic disorder. FGF23 appears to be mainly secreted by osteocytes where its expression is up-regulated by 1,25(OH)(2)D and probably by increased serum phosphate levels. Its synthesis and secretion is reduced through yet unknown mechanisms that involve the phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX), dentin matrix protein 1 (DMP1) and ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1). Consequently, loss-of-function mutations in these genes underlie hypophosphatemic disorders that are either X-linked or autosomal recessive. Impaired O-glycosylation of FGF23 due to the lack of UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyl-transferase 3 (GALNT3) or due to certain homozygous FGF23 mutations results in reduced secretion of intact FGF23 and leads to familial hyperphosphatemic tumoral calcinosis. FGF23 acts through FGF-receptors and the coreceptor Klotho to reduce 1,25(OH)(2)D synthesis in the kidney and probably the synthesis of parathyroid hormone (PTH) by the parathyroid glands. It furthermore synergizes with PTH to increase renal phosphate excretion by reducing expression of the sodium-phosphate cotransporters NaPi-IIa and NaPi-IIc in the proximal tubules. Loss-of-function mutations in these two transporters lead to autosomal recessive Fanconi syndrome or to hereditary hypophosphatemic rickets with hypercalciuria, respectively.
Collapse
|
99
|
Anour R, Andrukhova O, Ritter E, Zeitz U, Erben RG. Klotho lacks a vitamin D independent physiological role in glucose homeostasis, bone turnover, and steady-state PTH secretion in vivo. PLoS One 2012; 7:e31376. [PMID: 22319626 PMCID: PMC3272012 DOI: 10.1371/journal.pone.0031376] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 01/09/2012] [Indexed: 01/08/2023] Open
Abstract
Apart from its function as co-receptor for fibroblast growth factor-23 (FGF23), Klotho is thought to regulate insulin signaling, intracellular oxidative stress, and parathyroid hormone (PTH) secretion in an FGF23 independent fashion. Here, we crossed Klotho deficient (Kl−/−) mice with vitamin D receptor (VDR) mutant mice to examine further vitamin D independent functions of Klotho. All mice were fed a rescue diet enriched with calcium, phosphorus, and lactose to prevent hyperparathyroidism in VDR mutants, and were killed at 4 weeks of age after double fluorochrome labeling. Kl−/− mice displayed hypercalcemia, hyperphosphatemia, dwarfism, organ atrophy, azotemia, pulmonary emphysema, and osteomalacia. In addition, glucose and insulin tolerance tests revealed hypoglycemia and profoundly increased peripheral insulin sensitivity in Kl−/− mice. Compound mutants were normocalcemic and normophosphatemic, did not show premature aging or organ atrophy, and were phenocopies of VDR mutant mice in terms of body weight, bone mineral density, bone metabolism, serum calcium, serum phosphate, serum PTH, gene expression in parathyroid glands, as well as urinary calcium and phosphate excretion. Furthermore, ablation of vitamin D signaling in double mutants completely normalized glucose and insulin tolerance, indicating that Klotho has no vitamin D independent effects on insulin signaling. Histomorphometry of pancreas islets showed similar beta cell volume per body weight in all groups of animals. In conclusion, our findings cast doubt on a physiologically relevant vitamin D and Fgf23 independent function of Klotho in the regulation of glucose metabolism, bone turnover, and steady-state PTH secretion in vivo.
Collapse
Affiliation(s)
- René Anour
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Olena Andrukhova
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Eva Ritter
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Ute Zeitz
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G. Erben
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
- * E-mail:
| |
Collapse
|
100
|
Klotz B, Mentrup B, Regensburger M, Zeck S, Schneidereit J, Schupp N, Linden C, Merz C, Ebert R, Jakob F. 1,25-dihydroxyvitamin D3 treatment delays cellular aging in human mesenchymal stem cells while maintaining their multipotent capacity. PLoS One 2012; 7:e29959. [PMID: 22242193 PMCID: PMC3252365 DOI: 10.1371/journal.pone.0029959] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 12/09/2011] [Indexed: 01/27/2023] Open
Abstract
1,25-dihydroxyvitamin D3 (1,25D3) was reported to induce premature organismal aging in fibroblast growth factor-23 (Fgf23) and klotho deficient mice, which is of main interest as 1,25D3 supplementation of its precursor cholecalciferol is used in basic osteoporosis treatment. We wanted to know if 1,25D3 is able to modulate aging processes on a cellular level in human mesenchymal stem cells (hMSC). Effects of 100 nM 1,25D3 on hMSC were analyzed by cell proliferation and apoptosis assay, β-galactosidase staining, VDR and surface marker immunocytochemistry, RT-PCR of 1,25D3-responsive, quiescence- and replicative senescence-associated genes. 1,25D3 treatment significantly inhibited hMSC proliferation and apoptosis after 72 h and delayed the development of replicative senescence in long-term cultures according to β-galactosidase staining and P16 expression. Cell morphology changed from a fibroblast like appearance to broad and rounded shapes. Long term treatment did not induce lineage commitment in terms of osteogenic pathways but maintained their clonogenic capacity, their surface marker characteristics (expression of CD73, CD90, CD105) and their multipotency to develop towards the chondrogenic, adipogenic and osteogenic pathways. In conclusion, 1,25D3 delays replicative senescence in primary hMSC while the pro-aging effects seen in mouse models might mainly be due to elevated systemic phosphate levels, which propagate organismal aging.
Collapse
Affiliation(s)
- Barbara Klotz
- Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Birgit Mentrup
- Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Martina Regensburger
- Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Sabine Zeck
- Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Jutta Schneidereit
- Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Nicole Schupp
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Christian Linden
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Cornelia Merz
- Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Regina Ebert
- Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|