51
|
Mesenchymal stromal cells in hematopoietic cell transplantation. Blood Adv 2021; 4:5877-5887. [PMID: 33232479 DOI: 10.1182/bloodadvances.2020002646] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are widely recognized to possess potent immunomodulatory activity, as well as to stimulate repair and regeneration of diseased or damaged tissue. These fundamental properties suggest important applications in hematopoietic cell transplantation. Although the mechanisms of therapeutic activity in vivo are yet to be fully elucidated, MSCs seem to suppress lymphocytes by paracrine mechanisms, including secreted mediators and metabolic modulators. Most recently, host macrophage engulfment of apoptotic MSCs has emerged as an important contributor to the immune suppressive microenvironment. Although bone marrow-derived MSCs are the most commonly studied, the tissue source of MSCs may be a critical determinant of immunomodulatory function. The key application of MSC therapy in hematopoietic cell transplantation is to prevent or treat graft-versus-host disease (GVHD). The pathogenesis of GVHD reveals multiple potential targets. Moreover, the recently proposed concept of tissue tolerance suggests a new possible mechanism of MSC therapy for GVHD. Beyond GVHD, MSCs may facilitate hematopoietic stem cell engraftment, which could gain greater importance with increasing use of haploidentical transplantation. Despite many challenges and much doubt, commercial MSC products for pediatric steroid-refractory GVHD have been licensed in Japan, conditionally licensed in Canada and New Zealand, and have been recommended for approval by an FDA Advisory Committee in the United States. Here, we review key historical data in the context of the most salient recent findings to present the current state of MSCs as adjunct cell therapy in hematopoietic cell transplantation.
Collapse
|
52
|
Crippa S, Santi L, Berti M, De Ponti G, Bernardo ME. Role of ex vivo Expanded Mesenchymal Stromal Cells in Determining Hematopoietic Stem Cell Transplantation Outcome. Front Cell Dev Biol 2021; 9:663316. [PMID: 34017834 PMCID: PMC8129582 DOI: 10.3389/fcell.2021.663316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Overall, the human organism requires the production of ∼1 trillion new blood cells per day. Such goal is achieved via hematopoiesis occurring within the bone marrow (BM) under the tight regulation of hematopoietic stem and progenitor cell (HSPC) homeostasis made by the BM microenvironment. The BM niche is defined by the close interactions of HSPCs and non-hematopoietic cells of different origin, which control the maintenance of HSPCs and orchestrate hematopoiesis in response to the body’s requirements. The activity of the BM niche is regulated by specific signaling pathways in physiological conditions and in case of stress, including the one induced by the HSPC transplantation (HSCT) procedures. HSCT is the curative option for several hematological and non-hematological diseases, despite being associated with early and late complications, mainly due to a low level of HSPC engraftment, impaired hematopoietic recovery, immune-mediated graft rejection, and graft-versus-host disease (GvHD) in case of allogenic transplant. Mesenchymal stromal cells (MSCs) are key elements of the BM niche, regulating HSPC homeostasis by direct contact and secreting several paracrine factors. In this review, we will explore the several mechanisms through which MSCs impact on the supportive activity of the BM niche and regulate HSPC homeostasis. We will further discuss how the growing understanding of such mechanisms have impacted, under a clinical point of view, on the transplantation field. In more recent years, these results have instructed the design of clinical trials to ameliorate the outcome of HSCT, especially in the allogenic setting, and when low doses of HSPCs were available for transplantation.
Collapse
Affiliation(s)
- Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| |
Collapse
|
53
|
Shang Y, Guan H, Zhou F. Biological Characteristics of Umbilical Cord Mesenchymal Stem Cells and Its Therapeutic Potential for Hematological Disorders. Front Cell Dev Biol 2021; 9:570179. [PMID: 34012958 PMCID: PMC8126649 DOI: 10.3389/fcell.2021.570179] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 04/08/2021] [Indexed: 01/14/2023] Open
Abstract
Umbilical cord mesenchymal stem cells (UC-MSCs) are a class of multifunctional stem cells isolated and cultured from umbilical cord. They possessed the characteristics of highly self-renewal, multi-directional differentiation potential and low immunogenicity. Its application in the field of tissue engineering and gene therapy has achieved a series of results. Recent studies have confirmed their characteristics of inhibiting tumor cell proliferation and migration to nest of cancer. The ability of UC-MSCs to support hematopoietic microenvironment and suppress immune system suggests that they can improve engraftment after hematopoietic stem cell transplantation, which shows great potential in treatment of hematologic diseases. This review will focus on the latest advances in biological characteristics and mechanism of UC-MSCs in treatment of hematological diseases.
Collapse
Affiliation(s)
- Yufeng Shang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haotong Guan
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
54
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
55
|
Zhang J, Gao J, Lin D, Xiong J, Wang J, Chen J, Lin B, Gao Z. Potential Networks Regulated by MSCs in Acute-On-Chronic Liver Failure: Exosomal miRNAs and Intracellular Target Genes. Front Genet 2021; 12:650536. [PMID: 33968135 PMCID: PMC8102832 DOI: 10.3389/fgene.2021.650536] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a severe syndrome associated with high mortality. Alterations in the liver microenvironment are one of the vital causes of immune damage and liver dysfunction. Human bone marrow mesenchymal stem cells (hBMSCs) have been reported to alleviate liver injury via exosome-mediated signaling; of note, miRNAs are one of the most important cargoes in exosomes. Importantly, the miRNAs within exosomes in the hepatic microenvironment may mediate the mesenchymal stem cell (MSC)-derived regulation of liver function. This study investigated the hepatocyte exosomal miRNAs which are regulated by MSCs and the target genes which have potential in the treatment of liver failure. Briefly, ACLF was induced in mice using carbon tetrachloride and primary hepatocytes were isolated and co-cultured (or not) with MSCs under serum-free conditions. Exosomes were then collected, and the expression of exosomal miRNAs was assessed using next-generation sequencing; a comparison was performed between liver cells from healthy versus ACLF animals. Additionally, to identify the intracellular targets of exosomal miRNAs in humans, we focused on previously published data, i.e., microarray data and mass spectrometry data in liver samples from ACLF patients. The biological functions and signaling pathways associated with differentially expressed genes were predicted using gene ontology and Kyoto Encyclopedia of Genes and Genomics enrichment analyses; hub genes were also screened based on pathway analysis and the prediction of protein-protein interaction networks. Finally, we constructed the hub gene-miRNA network and performed correlation analysis and qPCR validation. Importantly, our data revealed that MSCs could regulate the miRNA content within exosomes in the hepatic microenvironment. MiR-20a-5p was down-regulated in ACLF hepatocytes and their exosomes, while the levels of chemokine C-X-C Motif Chemokine Ligand 8 (CXCL8; interleukin 8) were increased in hepatocytes. Importantly, co-culture with hBMSCs resulted in up-regulated expression of miR-20a-5p in exosomes and hepatocytes, and down-regulated expression of CXCL8 in hepatocytes. Altogether, our data suggest that the exosomal miR-20a-5p/intracellular CXCL8 axis may play an important role in the reduction of liver inflammation in ACLF in the context of MSC-based therapies and highlights CXCL8 as a potential target for alleviating liver injury.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Gao
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dengna Lin
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Xiong
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jialei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Chen
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingliang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
56
|
Kim D, Lee AE, Xu Q, Zhang Q, Le AD. Gingiva-Derived Mesenchymal Stem Cells: Potential Application in Tissue Engineering and Regenerative Medicine - A Comprehensive Review. Front Immunol 2021; 12:667221. [PMID: 33936109 PMCID: PMC8085523 DOI: 10.3389/fimmu.2021.667221] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
A unique subpopulation of mesenchymal stem cells (MSCs) has been isolated and characterized from human gingival tissues (GMSCs). Similar to MSCs derived from other sources of tissues, e.g. bone marrow, adipose or umbilical cord, GMSCs also possess multipotent differentiation capacities and potent immunomodulatory effects on both innate and adaptive immune cells through the secretion of various types of bioactive factors with immunosuppressive and anti-inflammatory functions. Uniquely, GMSCs are highly proliferative and have the propensity to differentiate into neural cell lineages due to the neural crest-origin. These properties have endowed GMSCs with potent regenerative and therapeutic potentials in various preclinical models of human disorders, particularly, some inflammatory and autoimmune diseases, skin diseases, oral and maxillofacial disorders, and peripheral nerve injuries. All types of cells release extracellular vesicles (EVs), including exosomes, that play critical roles in cell-cell communication through their cargos containing a variety of bioactive molecules, such as proteins, nucleic acids, and lipids. Like EVs released by other sources of MSCs, GMSC-derived EVs have been shown to possess similar biological functions and therapeutic effects on several preclinical diseases models as GMSCs, thus representing a promising cell-free platform for regenerative therapy. Taken together, due to the easily accessibility and less morbidity of harvesting gingival tissues as well as the potent immunomodulatory and anti-inflammatory functions, GMSCs represent a unique source of MSCs of a neural crest-origin for potential application in tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Dane Kim
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alisa E Lee
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qilin Xu
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qunzhou Zhang
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anh D Le
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States.,Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
57
|
[Chinese consensus on the diagnosis and management of chronic graft-versus-host disease (2021)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:265-275. [PMID: 33979969 PMCID: PMC8120129 DOI: 10.3760/cma.j.issn.0253-2727.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 12/02/2022]
|
58
|
Lan HR, Du WL, Liu Y, Mao CS, Jin KT, Yang X. Role of immune regulatory cells in breast cancer: Foe or friend? Int Immunopharmacol 2021; 96:107627. [PMID: 33862552 DOI: 10.1016/j.intimp.2021.107627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer (BC) is the most common cancer among women between the ages of 20 and 50, affecting more than 2.1 million people and causing the annual death of more than 627,000 women worldwide. Based on the available knowledge, the immune system and its components are involved in the pathogenesis of several malignancies, including BC. Cancer immunobiology suggests that immune cells can play a dual role and induce anti-tumor or immunosuppressive responses, depending on the tumor microenvironment (TME) signals. The most important effector immune cells with anti-tumor properties are natural killer (NK) cells, B, and T lymphocytes. On the other hand, immune and non-immune cells with regulatory/inhibitory phenotype, including regulatory T cells (Tregs), regulatory B cells (Bregs), tolerogenic dendritic cells (tDCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), mesenchymal stem cells (MSCs), and regulatory natural killer cells (NKregs), can promote the growth and development of tumor cells by inhibiting anti-tumor responses, inducing angiogenesis and metastasis, as well as the expression of inhibitory molecules and suppressor mediators of the immune system. However, due to the complexity of the interaction and the modification in the immune cells' phenotype and the networking of the immune responses, the exact mechanism of action of the immunosuppressive and regulatory cells is not yet fully understood. This review article reviews the immune responses involved in BC as well as the role of regulatory and inhibitory cells in the pathogenesis of the disease. Finally, therapeutic approaches based on inhibition of immunosuppressive responses derived from regulatory cells are discussed.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, PR China
| | - Yuyao Liu
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Chun-Sen Mao
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, PR China.
| |
Collapse
|
59
|
Yoo KH. Strategies to enhance graft performance in cord blood transplantation. PRECISION AND FUTURE MEDICINE 2021. [DOI: 10.23838/pfm.2020.00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
60
|
Zhou JH, Lu X, Yan CL, Sheng XY, Cao HC. Mesenchymal stromal cell-dependent immunoregulation in chemically-induced acute liver failure. World J Stem Cells 2021; 13:208-220. [PMID: 33815670 PMCID: PMC8006015 DOI: 10.4252/wjsc.v13.i3.208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/08/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI), which refers to liver damage caused by a drug or its metabolites, has emerged as an important cause of acute liver failure (ALF) in recent years. Chemically-induced ALF in animal models mimics the pathology of DILI in humans; thus, these models are used to study the mechanism of potentially effective treatment strategies. Mesenchymal stromal cells (MSCs) possess immunomodulatory properties, and they alleviate acute liver injury and decrease the mortality of animals with chemically-induced ALF. Here, we summarize some of the existing research on the interaction between MSCs and immune cells, and discuss the possible mechanisms underlying the immuno-modulatory activity of MSCs in chemically-induced ALF. We conclude that MSCs can impact the phenotype and function of macrophages, as well as the differentiation and maturation of dendritic cells, and inhibit the proliferation and activation of T lymphocytes or B lymphocytes. MSCs also have immuno-modulatory effects on the production of cytokines, such as prostaglandin E2 and tumor necrosis factor-alpha-stimulated gene 6, in animal models. Thus, MSCs have significant benefits in the treatment of chemically-induced ALF by interacting with immune cells and they may be applied to DILI in humans in the near future.
Collapse
Affiliation(s)
- Jia-Hang Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xuan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Cui-Lin Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xin-Yu Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hong-Cui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
61
|
Tynecka M, Moniuszko M, Eljaszewicz A. Old Friends with Unexploited Perspectives: Current Advances in Mesenchymal Stem Cell-Based Therapies in Asthma. Stem Cell Rev Rep 2021; 17:1323-1342. [PMID: 33649900 PMCID: PMC7919631 DOI: 10.1007/s12015-021-10137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have a great regenerative and immunomodulatory potential that was successfully tested in numerous pre-clinical and clinical studies of various degenerative, hematological and inflammatory disorders. Over the last few decades, substantial immunoregulatory effects of MSC treatment were widely observed in different experimental models of asthma. Therefore, it is tempting to speculate that stem cell-based treatment could become an attractive means to better suppress asthmatic airway inflammation, especially in subjects resistant to currently available anti-inflammatory therapies. In this review, we discuss mechanisms accounting for potent immunosuppressive properties of MSCs and the rationale for their use in asthma. We describe in detail an intriguing interplay between MSCs and other crucial players in the immune system as well as lung microenvironment. Finally, we reveal the potential of MSCs in maintaining airway epithelial integrity and alleviating lung remodeling.
Collapse
Affiliation(s)
- Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, Białystok, 15-276, Poland.
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
| |
Collapse
|
62
|
Zheng S, Huang K, Xia W, Shi J, Liu Q, Zhang X, Li G, Chen J, Wang T, Chen X, Xiang AP. Mesenchymal Stromal Cells Rapidly Suppress TCR Signaling-Mediated Cytokine Transcription in Activated T Cells Through the ICAM-1/CD43 Interaction. Front Immunol 2021; 12:609544. [PMID: 33692786 PMCID: PMC7937648 DOI: 10.3389/fimmu.2021.609544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-cell contact participates in the process of mesenchymal stromal cell (MSC)-mediated T cell modulation and thus contributes to MSC-based therapies for various inflammatory diseases, especially T cell-mediated diseases. However, the mechanisms underlying the adhesion interactions between MSCs and T cells are still poorly understood. In this study, we explored the interaction between MSCs and T cells and found that activated T cells could rapidly adhere to MSCs, leading to significant reduction of TNF-α and IFN-γ mRNA expression. Furthermore, TCR-proximal signaling in activated T cells was also dramatically suppressed in the MSC co-culture, resulting in weakened Ca2+ signaling. MSCs rapidly suppressed TCR signaling and its downstream signaling in a cell-cell contact-dependent manner, partially through the ICAM-1/CD43 adhesion interaction. Blockade of either ICAM-1 on MSCs or CD43 on T cells significantly reversed this rapid suppression of proinflammatory cytokine expression in T cells. Mechanistically, MSC-derived ICAM-1 likely disrupts CD43-mediated TCR microcluster formation to limit T cell activation. Taken together, our results reveal a fast mechanism of activated T cell inhibition by MSCs, which provides new clues to unravel the MSC-mediated immunoregulatory mechanism for aGVHD and other severe acute T cell-related diseases.
Collapse
Affiliation(s)
- Shuwei Zheng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Ke Huang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Xia
- Guangzhou Blood Centre, Institute of Blood Transfusion, Guangzhou, China
| | - Jiahao Shi
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Gang Li
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jieying Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyong Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China.,Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
63
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cell Therapy in Solid Organ Transplantation. Front Immunol 2021; 11:618243. [PMID: 33643298 PMCID: PMC7902912 DOI: 10.3389/fimmu.2020.618243] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Transplantation is the gold-standard treatment for the failure of several solid organs, including the kidneys, liver, heart, lung and small bowel. The use of tailored immunosuppressive agents has improved graft and patient survival remarkably in early post-transplant stages, but long-term outcomes are frequently unsatisfactory due to the development of chronic graft rejection, which ultimately leads to transplant failure. Moreover, prolonged immunosuppression entails severe side effects that severely impact patient survival and quality of life. The achievement of tolerance, i.e., stable graft function without the need for immunosuppression, is considered the Holy Grail of the field of solid organ transplantation. However, spontaneous tolerance in solid allograft recipients is a rare and unpredictable event. Several strategies that include peri-transplant administration of non-hematopoietic immunomodulatory cells can safely and effectively induce tolerance in pre-clinical models of solid organ transplantation. Mesenchymal stromal cells (MSC), non-hematopoietic cells that can be obtained from several adult and fetal tissues, are among the most promising candidates. In this review, we will focus on current pre-clinical evidence of the immunomodulatory effect of MSC in solid organ transplantation, and discuss the available evidence of their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| |
Collapse
|
64
|
Wang F, Chen X, Li J, Wang D, Huang H, Li X, Bi Z, Peng Y, Zhang X, Li G, Wang J, Wang C, Fu Q, Liu L. Dose- and Time-Dependent Effects of Human Mesenchymal Stromal Cell Infusion on Cardiac Allograft Rejection in Mice. Stem Cells Dev 2021; 30:203-213. [PMID: 33371825 DOI: 10.1089/scd.2019.0300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heart transplantation is the final life-saving therapeutic strategy for many end-stage heart diseases. Long-term immunosuppressive regimens are needed to prevent allograft rejection. Mesenchymal stromal cells (MSCs) have been shown as immunomodulatory therapy for organ transplantation. However, the effect of dose and timing of MSC treatment on heart transplantation has not yet been examined. In this study, we infused three doses (1 × 106, 2 × 106, or 5 × 106 cells) of human MSCs (hMSCs) to the recipient BALB/c mice before (7 days or 24 h) or after (24 h) receiving C57BL/6 cardiac transplants. We found that infusion of high dose hMSCs (5 × 106) at 24 h post-transplantation significantly prolonged the survival time of cardiac grafts. To delineate the underlying mechanism, grafts, spleens, and draining lymph nodes were harvested for analysis. Dose-dependent effect of hMSC treatment was shown in: (1) alleviation of International Society of Heart and Lung Transplantation (ISHLT) score in grafts; (2) reduction of the population of CD4+ and CD8+ T cells; (3) increase of regulatory T (Treg) cells; (4) and decrease of serum levels of inflammatory cytokines and donor-specific antibodies. Taken together, we showed timing critical and dose-dependent immunomodulatory effects of hMSC treatment against acute allograft rejection in a mouse model of heart transplantation.
Collapse
Affiliation(s)
- Feng Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Organ Transplant Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital, SunYat-sen University, Guangzhou, China
| | - Huiting Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xirui Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zirong Bi
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanwen Peng
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Gang Li
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jiali Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changxi Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China
| | - Qian Fu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China
| |
Collapse
|
65
|
Man Y, Yao X, Yang T, Wang Y. Hematopoietic Stem Cell Niche During Homeostasis, Malignancy, and Bone Marrow Transplantation. Front Cell Dev Biol 2021; 9:621214. [PMID: 33553181 PMCID: PMC7862549 DOI: 10.3389/fcell.2021.621214] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Self-renewal and multidirectional differentiation of hematopoietic stem cells (HSCs) are strictly regulated by numerous cellular components and cytokines in the bone marrow (BM) microenvironment. Several cell types that regulate HSC niche have been identified, including both non-hematopoietic cells and HSC-derived cells. Specific changes in the niche composition can result in hematological malignancies. Furthermore, processes such as homing, proliferation, and differentiation of HSCs are strongly controlled by the BM niche and have been reported to be related to the success of hematopoietic stem cell transplantation (HSCT). Single-cell sequencing and in vivo imaging are powerful techniques to study BM microenvironment in hematological malignancies and after HSCT. In this review, we discuss how different components of the BM niche, particularly non-hematopoietic and hematopoietic cells, regulate normal hematopoiesis, and changes in the BM niche in leukemia and after HSCT. We believe that this comprehensive review will provide clues for further research on improving HSCT efficiency and exploring potential therapeutic targets for leukemia.
Collapse
Affiliation(s)
- Yan Man
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Xiangmei Yao
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Tonghua Yang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Yajie Wang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
66
|
Maldonado-Lasunción I, O’Neill N, Umland O, Verhaagen J, Oudega M. Macrophage-Derived Inflammation Induces a Transcriptome Makeover in Mesenchymal Stromal Cells Enhancing Their Potential for Tissue Repair. Int J Mol Sci 2021; 22:E781. [PMID: 33466704 PMCID: PMC7828776 DOI: 10.3390/ijms22020781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
Pre-clinical and clinical studies revealed that mesenchymal stromal cell (MSC) transplants elicit tissue repair. Conditioning MSC prior to transplantation may boost their ability to support repair. We investigated macrophage-derived inflammation as a means to condition MSC by comprehensively analyzing their transcriptome and secretome. Conditioning MSC with macrophage-derived inflammation resulted in 3208 differentially expressed genes, which were annotated with significantly enriched GO terms for 1085 biological processes, 85 cellular components, and 79 molecular functions. Inflammation-mediated conditioning increased the secretion of growth factors that are key for tissue repair, including vascular endothelial growth factor, hepatocyte growth factor, nerve growth factor and glial-derived neurotrophic factor. Furthermore, we found that inflammation-mediated conditioning induces transcriptomic changes that challenge the viability and mobility of MSC. Our data support the notion that macrophage-derived inflammation stimulates MSC to augment their paracrine repair-supporting activity. The results suggest that inflammatory pre-conditioning enhances the therapeutic potential of MSC transplants.
Collapse
Affiliation(s)
- Inés Maldonado-Lasunción
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands;
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movements Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Nick O’Neill
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oliver Umland
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA;
| | - Joost Verhaagen
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands;
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movements Sciences, Northwestern University, Chicago, IL 60611, USA
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
- Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
| |
Collapse
|
67
|
Fang J, Chen F, Liu D, Gu F, Wang Y. Adipose tissue-derived stem cells in breast reconstruction: a brief review on biology and translation. Stem Cell Res Ther 2021; 12:8. [PMID: 33407902 PMCID: PMC7789635 DOI: 10.1186/s13287-020-01955-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Recent developments in adipose-derived stromal/stem cell (ADSC) biology provide new hopes for tissue engineering and regeneration medicine. Due to their pluripotent activity, paracrine activity, and immunomodulatory function, ADSCs have been widely administrated and exhibited significant therapeutic effects in the treatment for autoimmune disorders, neurodegenerative diseases, and ischemic conditions both in animals and human clinical trials. Cell-assisted lipotransfer (CAL) based on ADSCs has emerged as a promising cell therapy technology and significantly improved the fat graft retention. Initially applied for cosmetic breast and facial enhancement, CAL has found a potential use for breast reconstruction in breast cancer patients. However, more challenges emerge related to CAL including lack of a standardized surgical procedure, the controversy in the effectiveness of CAL, and the potential oncogenic risk of ADSCs in cancer patients. In this review, we summarized the latest research and intended to give an outline involving the biological characteristics of ADSCs as well as the preclinical and clinical application of ADSCs.
Collapse
Affiliation(s)
- Jun Fang
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Feng Chen
- Department of Breast Tumor Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dong Liu
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Feiying Gu
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yuezhen Wang
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China. .,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China. .,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
68
|
Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Show Comparable Functionality to Their Autologous Origin. Cells 2020; 10:cells10010033. [PMID: 33379312 PMCID: PMC7823915 DOI: 10.3390/cells10010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/12/2023] Open
Abstract
A multimodal therapeutic approach involving radiotherapy is required when treating head and neck squamous cell carcinoma. However, radiotherapy is restricted due to its high risk for damages to the surrounding healthy tissue of the treated area. Tissue regeneration and wound healing is promoted by the survival and regenerative capacities of tissue-resident or invading stem cells. Mesenchymal stem cells (MSCs) exhibit a promising therapeutic potential in the field of cell-based tissue engineering and regenerative medicine due to their immunomodulatory properties and differentiation capacity. However, the generation of MSCs for therapeutic applications is still a major challenge. We aimed to produce highly homogeneous induced pluripotent stem cell-derived mesenchymal stem cells (iP-MSCs) in an autologous manner from initially isolated human mucosa mesenchymal stem cells (mMSCs) of the upper respiratory tract. Therefore, mMSCs were reprogrammed into induced pluripotent stem cells (iPSCs) by non-integrative chromosomal technologies and differentiated into corresponding iP-MSCs. We demonstrated that mMSCs and iP-MSCs show similar cell characteristics in terms of morphology, clonogenic potential, differentiation, and surface phenotype. Moreover, iP-MSCs demonstrated related immunosuppressive capacity as mMSCs including the secretion of cytokines, and T cell inhibition. Therefore, generating iP-MSCs in an autologous manner may be a novel personalized treatment option in regenerative medicine.
Collapse
|
69
|
Introna M, Golay J. Tolerance to Bone Marrow Transplantation: Do Mesenchymal Stromal Cells Still Have a Future for Acute or Chronic GvHD? Front Immunol 2020; 11:609063. [PMID: 33362797 PMCID: PMC7759493 DOI: 10.3389/fimmu.2020.609063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal Stromal Cells (MSCs) are fibroblast-like cells of mesodermal origin present in many tissues and which have the potential to differentiate to osteoblasts, adipocytes and chondroblasts. They also have a clear immunosuppressive and tissue regeneration potential. Indeed, the initial classification of MSCs as pluripotent stem cells, has turned into their identification as stromal progenitors. Due to the relatively simple procedures available to expand in vitro large numbers of GMP grade MSCs from a variety of different tissues, many clinical trials have tested their therapeutic potential in vivo. One pathological condition where MSCs have been quite extensively tested is steroid resistant (SR) graft versus host disease (GvHD), a devastating condition that may occur in acute or chronic form following allogeneic hematopoietic stem cell transplantation. The clinical and experimental results obtained have outlined a possible efficacy of MSCs, but unfortunately statistical significance in clinical studies has only rarely been reached and effects have been relatively limited in most cases. Nonetheless, the extremely complex pathogenetic mechanisms at the basis of GvHD, the fact that studies have been conducted often in patients who had been previously treated with multiple lines of therapy, the variable MSC doses and schedules administered in different trials, the lack of validated potency assays and clear biomarkers, the difference in MSC sources and production methods may have been major factors for this lack of clear efficacy in vivo. The heterogeneity of MSCs and their different stromal differentiation potential and biological activity may be better understood through more refined single cell sequencing and proteomic studies, where either an “anti-inflammatory” or a more “immunosuppressive” profile can be identified. We summarize the pathogenic mechanisms of acute and chronic GvHD and the role for MSCs. We suggest that systematic controlled clinical trials still need to be conducted in the most promising clinical settings, using better characterized cells and measuring efficacy with specific biomarkers, before strong conclusions can be drawn about the therapeutic potential of these cells in this context. The same analysis should be applied to other inflammatory, immune or degenerative diseases where MSCs may have a therapeutic potential.
Collapse
Affiliation(s)
- Martino Introna
- Center of Cellular Therapy "G. Lanzani", Division of Haematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Josée Golay
- Center of Cellular Therapy "G. Lanzani", Division of Haematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.,Fondazione per la Ricerca Ospedale Maggiore, Bergamo, Italy
| |
Collapse
|
70
|
Ellison-Hughes GM, Colley L, O'Brien KA, Roberts KA, Agbaedeng TA, Ross MD. The Role of MSC Therapy in Attenuating the Damaging Effects of the Cytokine Storm Induced by COVID-19 on the Heart and Cardiovascular System. Front Cardiovasc Med 2020; 7:602183. [PMID: 33363221 PMCID: PMC7756089 DOI: 10.3389/fcvm.2020.602183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has led to 47 m infected cases and 1. 2 m (2.6%) deaths. A hallmark of more severe cases of SARS-CoV-2 in patients with acute respiratory distress syndrome (ARDS) appears to be a virally-induced over-activation or unregulated response of the immune system, termed a "cytokine storm," featuring elevated levels of pro-inflammatory cytokines such as IL-2, IL-6, IL-7, IL-22, CXCL10, and TNFα. Whilst the lungs are the primary site of infection for SARS-CoV-2, in more severe cases its effects can be detected in multiple organ systems. Indeed, many COVID-19 positive patients develop cardiovascular complications, such as myocardial injury, myocarditis, cardiac arrhythmia, and thromboembolism, which are associated with higher mortality. Drug and cell therapies targeting immunosuppression have been suggested to help combat the cytokine storm. In particular, mesenchymal stromal cells (MSCs), owing to their powerful immunomodulatory ability, have shown promise in early clinical studies to avoid, prevent or attenuate the cytokine storm. In this review, we will discuss the mechanistic underpinnings of the cytokine storm on the cardiovascular system, and how MSCs potentially attenuate the damage caused by the cytokine storm induced by COVID-19. We will also address how MSC transplantation could alleviate the long-term complications seen in some COVID-19 patients, such as improving tissue repair and regeneration.
Collapse
Affiliation(s)
- Georgina M. Ellison-Hughes
- Faculty of Life Sciences & Medicine, Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London Guy's Campus, London, United Kingdom
| | - Liam Colley
- School of Sport, Health, and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Katie A. O'Brien
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kirsty A. Roberts
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Thomas A. Agbaedeng
- Faculty of Health & Medical Sciences, Centre for Heart Rhythm Disorders, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
71
|
Roura S, Monguió-Tortajada M, Munizaga-Larroudé M, Clos-Sansalvador M, Franquesa M, Rosell A, Borràs FE. Potential of Extracellular Vesicle-Associated TSG-6 from Adipose Mesenchymal Stromal Cells in Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21186761. [PMID: 32942629 PMCID: PMC7554813 DOI: 10.3390/ijms21186761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) represent a promising strategy for a variety of medical applications. Although only a limited number of MSC engraft and survive after in vivo cellular infusion, MSC have shown beneficial effects on immunomodulation and tissue repair. This indicates that the contribution of MSC exists in paracrine signaling, rather than a cell-contact effect of MSC. In this review, we focus on current knowledge about tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) and mechanisms based on extracellular vesicles (EV) that govern long-lasting immunosuppressive and regenerative activity of MSC. In this context, in particular, we discuss the very robust set of findings by Jha and colleagues, and the opportunity to potentially extend their research focus on EV isolated in concentrated conditioned media (CCM) from adipose tissue derived MSC (ASC). Particularly, the authors showed that ASC-CCM mitigated visual deficits after mild traumatic brain injury in mice. TSG-6 knockdown ASC were, then, used to generate TSG-6-depleted CCM that were not able to replicate the alleviation of abnormalities in injured animals. In light of the presented results, we envision that the infusion of much distilled ASC-CCM could enhance the alleviation of visual abnormalities. In terms of EV research, the advantages of using size-exclusion chromatography are also highlighted because of the enrichment of purer and well-defined EV preparations. Taken together, this could further delineate and boost the benefit of using MSC-based regenerative therapies in the context of forthcoming clinical research testing in diseases that disrupt immune system homeostasis.
Collapse
Affiliation(s)
- Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, 08916 Badalona, Spain; (M.M.-T.); (M.M.-L.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.R.); (F.E.B.); Tel.: +34-93-033-63-51 (F.E.B.); Fax: +34-93-497-86-54 (F.E.B.)
| | - Marta Monguió-Tortajada
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, 08916 Badalona, Spain; (M.M.-T.); (M.M.-L.)
| | - Micaela Munizaga-Larroudé
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, 08916 Badalona, Spain; (M.M.-T.); (M.M.-L.)
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Marta Clos-Sansalvador
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, 08916 Badalona, Spain; (M.C.-S.); (M.F.)
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Marcella Franquesa
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, 08916 Badalona, Spain; (M.C.-S.); (M.F.)
- Nephrology Service, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain;
| | - Francesc E. Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, 08916 Badalona, Spain; (M.C.-S.); (M.F.)
- Nephrology Service, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- Correspondence: (S.R.); (F.E.B.); Tel.: +34-93-033-63-51 (F.E.B.); Fax: +34-93-497-86-54 (F.E.B.)
| |
Collapse
|
72
|
Liu J, Liu Q, Chen X. The Immunomodulatory Effects of Mesenchymal Stem Cells on Regulatory B Cells. Front Immunol 2020; 11:1843. [PMID: 32922398 PMCID: PMC7456948 DOI: 10.3389/fimmu.2020.01843] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The therapeutic potential of mesenchymal stem cells (MSCs) has been investigated in many preclinical and clinical studies. This potential is dominantly based on the immunosuppressive properties of MSCs. Although the therapeutic profiles of MSC transplantation are still not fully characterized, accumulating evidence has revealed that B cells change after MSC infusion, in particular inducing regulatory B cells (Bregs). The immunosuppressive effects of Bregs have been demonstrated, and these cells are being evaluated as new targets for the treatment of inflammatory diseases. MSCs are capable of educating B cells and inducing regulatory B cell production via cell-to-cell contact, soluble factors, and extracellular vesicles (EVs). These cells thus have the potential to complement each other's immunomodulatory functions, and a combined approach may enable synergistic effects for the treatment of immunological diseases. However, compared with investigations regarding other immune cells, investigations into how MSCs specifically regulate Bregs have been superficial and insufficient. In this review, we discuss the current findings related to the immunomodulatory effects of MSCs on regulatory B cells and provide optimal strategies for applications in immune-related disease treatments.
Collapse
Affiliation(s)
- Jialing Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyong Chen
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
73
|
Gong W, Wang F, He Y, Zeng X, Zhang D, Chen Q. Mesenchymal Stem Cell Therapy for Oral Inflammatory Diseases: Research Progress and Future Perspectives. Curr Stem Cell Res Ther 2020; 16:165-174. [PMID: 32713335 DOI: 10.2174/1574888x15666200726224132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cell (MSC) therapy for clinical diseases associated with inflammation and tissue damage has become a progressive treatment strategy. MSCs have unique biological functions, such as homing, immune regulation, and differentiation capabilities, which provide the prerequisites for the treatment of clinical diseases. Oral diseases are often associated with abnormal immune regulation and epithelial tissue damage. In this review, we summarize previous studies that use MSC therapy to treat various oral inflammatory diseases, including oral ulceration, allergic diseases, chemo/radiotherapy-induced oral mucositis, periodontitis, osteonecrosis of the jaw, Sjögren's syndrome (SS), among other similar diseases. We highlight MSC treatment as a promising approach in the management of oral inflammatory diseases, and discuss the obstacles that remain and must be overcome for MSC treatment to thrive in the future.
Collapse
Affiliation(s)
- Wang Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuqing He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dunfang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
74
|
Saldanha-Araujo F, Melgaço Garcez E, Silva-Carvalho AE, Carvalho JL. Mesenchymal Stem Cells: A New Piece in the Puzzle of COVID-19 Treatment. Front Immunol 2020; 11:1563. [PMID: 32719683 PMCID: PMC7347794 DOI: 10.3389/fimmu.2020.01563] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a disease characterized by a strong inflammatory response in severe cases, which fails to respond to corticosteroid therapy. In the context of the current COVID-19 outbreak and the critical information gaps regarding the disease, several different therapeutic strategies are under investigation, including the use of stem cells. In the present manuscript, we provide an analysis of the rationale underlying the application of stem cells to manage COVID-19, and also a comprehensive compendium of the 69 clinical trials underway worldwide aiming to investigate the application of stem cells to treat COVID-19. Even though data are still scarce, it is already possible to observe the protagonism of China in testing mesenchymal stem cells (MSCs) for COVID-19. Furthermore, it is possible to determine that current efforts focus on the use of multiple infusions of high numbers of stem cells and derived products, as well as to acknowledge the positive results obtained by independent groups who publicized the therapeutic benefits provided by such therapies in 51 COVID-19 patients. In such a rapid-paced field, up-to-date systematic studies and meta-analysis will aid the scientific community to separate hype from hope and offer an unbiased position to the society and governments.
Collapse
Affiliation(s)
- Felipe Saldanha-Araujo
- Hematology and Stem Cells Laboratory, Health Sciences Department, University of Brasília, Brasilia, Brazil
- Molecular Pharmacology Laboratory, Health Sciences Department, University of Brasília, Brasilia, Brazil
| | - Emãnuella Melgaço Garcez
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | | | - Juliana Lott Carvalho
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasilia, Brazil
| |
Collapse
|
75
|
Boberg E, von Bahr L, Afram G, Lindström C, Ljungman P, Heldring N, Petzelbauer P, Garming Legert K, Kadri N, Le Blanc K. Treatment of chronic GvHD with mesenchymal stromal cells induces durable responses: A phase II study. Stem Cells Transl Med 2020; 9:1190-1202. [PMID: 32573983 PMCID: PMC7519760 DOI: 10.1002/sctm.20-0099] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 02/02/2023] Open
Abstract
Steroid‐refractory chronic graft‐vs‐host disease (cGvHD) contributes to morbidity after allogeneic hematopoietic stem cell transplantation. Here, we report on 11 patients with severe, refractory cGvHD treated with repeated infusions of allogeneic bone marrow‐derived mesenchymal stromal cells (MSC) over a 6‐ to 12‐month period. Six patients responded to MSC treatment following National Institutes of Health response criteria, accompanied by improvement in GvHD‐related symptoms and quality of life. This response was durable, with systemic immunosuppressive therapy withdrawn from two responders, and a further two free from steroids and tapering calcineurin inhibitors. All responders displayed a distinct immune phenotype characterized by higher levels of naïve T cells and B cells before treatment compared with the nonresponders, and a significantly higher fraction of CD31+ naïve CD4+ T cells. MSC treatment was associated with significant increases in naïve T cells, B cells, and Tregs 7 days after each infusion. Skin biopsies showed resolution of epidermal pathology. CXCL9 and CXCL10 showed differential responses in responder and nonresponder patients. Our data support the use of MSC infusions as treatment for steroid‐refractory cGvHD with durable responses. We propose CXCL9 and CXCL10 as early biomarkers for responsiveness to MSC treatment. Our results highlight the importance of the MSC recipient immune phenotype in promoting treatment response. This trial was registered at www.ClinicalTrials.gov as #NCT01522716.
Collapse
Affiliation(s)
- Erik Boberg
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Lena von Bahr
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gabriel Afram
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden
| | - Carina Lindström
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Per Ljungman
- Department of Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden.,Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Nina Heldring
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Nadir Kadri
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
76
|
Wang X, Zhang M, He P. Pre-infusion single-dose mesenchymal stem cells promote platelet engraftment and decrease severe acute graft versus host disease without relapse in haploidentical peripheral blood stem cell transplantation. J Int Med Res 2020; 48:300060520920438. [PMID: 32363972 PMCID: PMC7221479 DOI: 10.1177/0300060520920438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) may be used to treat steroid-refractory graft
versus host disease (GVHD). However, the effects of MSCs in haploidentical
peripheral blood stem cell transplantation (haplo-PBSCT) have not been
confirmed in randomized studies. Methods We conducted a randomized clinical study to investigate the effects of
pre-infusion (1 × 106 cells/kg) MSCs on hematopoietic recovery,
Epstein–Barr and cytomegalovirus infection, GVHD, and relapse in patients
undergoing haplo-PBSCT. Fifty patients with acute leukemia or
myelodysplastic syndrome were randomly divided into an MSC group
administered 1 × 106 MSCs/kg 4 to 6 hours before infusion of
peripheral stem cells and a control group without MSCs. Results Mean platelet engraftment time was significantly faster in the MSC compared
with the control group (12.28 vs 13.29 days). The mean neutrophil
engraftment time was comparable in both groups (10.76 ± 2.40 vs.
10.29 ± 1.72 days). Grade II or above acute GVHD was significantly decreased
in the MSC compared with the control group (12% vs. 36%). There were no
significant differences in relapse rate or overall survival between the
groups. Conclusion These results suggest that pre-infusion single-dose MSCs promote platelet
engraftment and decrease severe acute GVHD without increasing relapse
rate.
Collapse
Affiliation(s)
- Xiaoning Wang
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mei Zhang
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pengcheng He
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
77
|
Ceccarelli S, Pontecorvi P, Anastasiadou E, Napoli C, Marchese C. Immunomodulatory Effect of Adipose-Derived Stem Cells: The Cutting Edge of Clinical Application. Front Cell Dev Biol 2020; 8:236. [PMID: 32363193 PMCID: PMC7180192 DOI: 10.3389/fcell.2020.00236] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived stem cells (ASCs) represent a promising tool for soft tissue engineering as well as for clinical treatment of inflammatory and autoimmune pathologies. The well-characterized multi-differentiation potential and self-renewal properties of ASCs are coupled with their immunomodulatory ability in providing therapeutic efficacy. Yet, their impact in immune or inflammatory disorders might rely both on cell contact-dependent mechanisms and paracrine effects, resulting in the release of various soluble factors that regulate immune cells functions. Despite the widespread use of ASCs in clinical trials addressing several pathologies, the pathophysiological mechanisms at the basis of their clinical use have been not yet fully investigated. In particular, a thorough analysis of ASC immunomodulatory potential is mandatory. Here we explore such molecular mechanisms involved in ASC immunomodulatory properties, emphasizing the relevance of the milieu composition. We review the potential clinical use of ASC secretome as a mediator for immunomodulation, with a focus on in vitro and in vivo environmental conditions affecting clinical outcome. We describe some potential strategies for optimization of ASCs immunomodulatory capacity in clinical settings, which act either on adult stem cells gene expression and local microenvironment. Finally, we discuss the limitations of both allogeneic and autologous ASC use, highlighting the issues to be fixed in order to significantly improve the efficacy of ASC-based cell therapy.
Collapse
Affiliation(s)
- Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, Università della Campania “Luigi Vanvitelli”, Naples, Italy
- IRCCS SDN, Naples, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
78
|
Cost-effective storage solution for delivering umbilical cord with efficient isolation of mesenchymal stem cells. Biotechniques 2020; 69:410-413. [PMID: 32285683 DOI: 10.2144/btn-2019-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a promising therapeutic candidate for treating many diseases. However, their proliferation and therapeutic abilities decline during the aging process and disease development. Therefore, fetal MSCs derived from the umbilical cord (UC) attract more attention. Storing and delivering the UC is one critical step for efficient MSC isolation. Although the culture medium-based solution is suitable for UC storage, it is not feasible for large-scale preparation because of its high price. Thus, we demonstrate here that a simple solution containing a pH buffering reagent, calcium, magnesium and glucose could be used as a cost-effective storage solution for UC delivery and efficient MSC isolation.
Collapse
|
79
|
Zhou X, Jin N, Wang F, Chen B. Mesenchymal stem cells: a promising way in therapies of graft-versus-host disease. Cancer Cell Int 2020; 20:114. [PMID: 32280306 PMCID: PMC7137413 DOI: 10.1186/s12935-020-01193-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
It is well acknowledged that allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for numerous malignant blood diseases, which has also been applied to autoimmune diseases for more than a decade. Whereas graft-versus-host disease (GVHD) occurs after allogeneic hematopoietic stem cell transplantation (allo-HSCT) as a common serious complication, seriously affecting the efficacy of transplantation. Mesenchymal stem cells (MSCs) derived from a wealth of sources can easily isolate and expand with low immunogenicity. MSCs also have paracrine and immune regulatory functions, leading to a broad application prospect in treatment and tissue engineering. This review focuses on immunoregulatory function of MSCs, factors affecting mesenchymal stem cells to exert immunosuppressive effects, clinical application of MSCs in GVHD and researches on MSC-derived extracellular vesicles (EVs). The latest research progress on MSC in related fields is reviewed as well. The relevant literature from PubMed databases is reviewed in this article.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| | - Nan Jin
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| | - Fei Wang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| |
Collapse
|
80
|
Can we prevent or treat graft-versus-host disease with cellular-therapy? Blood Rev 2020; 43:100669. [PMID: 32089398 DOI: 10.1016/j.blre.2020.100669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022]
Abstract
Acute and chronic graft-versus-host disease (GvHD) are the most important causes of treatment-related morbidity and mortality after allogeneic hematopoietic cell transplants for various diseases. Corticosteroids are an effective therapy in only about one-half of affected individuals and new therapy options are needed. We discuss novel strategies to treat GvHD using cellular-therapy including adoptive transfer of regulatory T-cells (Tregs), mesenchymal stromal cells (MSCs), cells derived from placental tissues, invariant natural killer T-cells (iNKTs), and myeloid-derived suppressor cells (MDSCs).These strategies may be more selective than drugs in modulating GvHD pathophysiology, and may be safer and more effective than conventional pharmacologic therapies. Additionally, these therapies have not been observed to substantially compromise the graft-versus-tumor effect associated with allotransplants. Many of these strategies are effective in animal models but substantial data in humans are lacking.
Collapse
|
81
|
Hu C, Li L. The immunoregulation of mesenchymal stem cells plays a critical role in improving the prognosis of liver transplantation. J Transl Med 2019; 17:412. [PMID: 31823784 PMCID: PMC6905033 DOI: 10.1186/s12967-019-02167-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
The liver is supplied by a dual blood supply, including the portal venous system and the hepatic arterial system; thus, the liver organ is exposed to multiple gut microbial products, metabolic products, and toxins; is sensitive to extraneous pathogens; and can develop liver failure, liver cirrhosis and hepatocellular carcinoma (HCC) after short-term or long-term injury. Although liver transplantation (LT) serves as the only effective treatment for patients with end-stage liver diseases, it is not very popular because of the complications and low survival rates. Although the liver is generally termed an immune and tolerogenic organ with adaptive systems consisting of humoral immunity and cell-mediated immunity, a high rejection rate is still the main complication in patients with LT. Growing evidence has shown that mesenchymal stromal cell (MSC) transplantation could serve as an effective immunomodulatory strategy to induce tolerance in various immune-related disorders. MSCs are reported to inhibit the immune response from innate immune cells, including macrophages, dendritic cells (DCs), natural killer cells (NK cells), and natural killer T (NKT) cells, and that from adaptive immune cells, including T cells, B cells and other liver-specific immune cells, for the generation of a tolerogenic microenvironment. In this review, we summarized the relationship between LT and immunoregulation, and we focused on how to improve the effects of MSC transplantation to improve the prognosis of LT. Only after exhaustive clarification of the potential immunoregulatory mechanisms of MSCs in vitro and in vivo can we implement MSC protocols in routine clinical practice to improve LT outcome.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
82
|
Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif 2019; 53:e12712. [PMID: 31730279 PMCID: PMC6985662 DOI: 10.1111/cpr.12712] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be derived from various adult tissues with multipotent and self‐renewal abilities. The characteristics of presenting no major ethical concerns, having low immunogenicity and possessing immune modulation functions make MSCs promising candidates for stem cell therapies. MSCs could promote inflammation when the immune system is underactivated and restrain inflammation when the immune system is overactivated to avoid self‐overattack. These cells express many immune suppressors to switch them from a pro‐inflammatory phenotype to an anti‐inflammatory phenotype, resulting in immune effector cell suppression and immune suppressor cell activation. We would discuss the mechanisms governing the immune modulation function of these cells in this review, especially the immune‐suppressive effects of MSCs.
Collapse
Affiliation(s)
- Wei Jiang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China.,Department of Anatomy, Histology & Developmental Biology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jianyong Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China.,Department of Anatomy, Histology & Developmental Biology, Health Science Center, Shenzhen University, Shenzhen, China.,Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
83
|
Chen S, Zhao K, Lin R, Wang S, Fan Z, Huang F, Chen X, Nie D, Du X, Guo Z, Lin D, Xuan L, Xu N, Sun J, Peng Xiang A, Liu Q. The efficacy of mesenchymal stem cells in bronchiolitis obliterans syndrome after allogeneic HSCT: A multicenter prospective cohort study. EBioMedicine 2019; 49:213-222. [PMID: 31668569 PMCID: PMC6945279 DOI: 10.1016/j.ebiom.2019.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background Bronchiolitis obliterans syndrome (BOS) after allo-HSCT is a devastating complication with limited therapeutic options. We aimed to assess the efficacy and safety of mesenchymal stem cells (MSCs) in BOS after allo-HSCT. Methods This multicenter prospective cohort study enrolled 81 allo-HSCT recipients whose BOS were diagnosed within 6 months. The choice of prednisone and azithromycin combined with or without MSCs was based on patient preferences (MSC n = 49, non-MSC n = 32). The primary endpoint was response rate at 3 months, defined as the proportion of patients achieving FEV1 improvement or steroid sparing. The trial was registered at ClinicalTrials.gov (NCT02543073). Findings Response rate was 35/49 patients (71%, 95% CI 59 to 84%) and 14/32 (44%, 27 to 61%) in MSC and non-MSC group, respectively (p = 0.013). The addition of MSCs was associated with a better difference for change in FEV1 rate of decline, compared to non-MSC group (53 mL/months, 2 to 103; p = 0.040). The 3-year overall survival post-diagnosis was 70.6% (55.9 to 85.3%) and 58.2% (36.1 to 78.5%) in MSC and non-MSC group, respectively (p = 0.21). Clinical improvement was accompanied by a significant increase of interleukin (IL)-10-producing CD5+B cells. There was no statistical difference in the rates of infections and leukemia relapse between the two groups. MSCs were well-tolerated with no serious adverse events. Interpretation MSCs offer an effective and safe therapeutic option for BOS after allo-HSCT. Our study strengthens evidence for clinical use of MSC therapy in BOS. These data also provide novel insight into potential biological mechanisms of MSC treatment and support further investigation in larger randomized controlled trials. Funding National Key R&D Program of China, National Natural Science Foundation of China, Health Collaborative Innovation Major Projects of Guangzhou City, Science and Technology Planning Project of Guangdong Province.
Collapse
Affiliation(s)
- Shan Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, The Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Danian Nie
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Ziwen Guo
- Department of Hematology, Zhongshan City People's Hospital, Zhongshan, China
| | - Dongjun Lin
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, The Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Guangzhou, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
84
|
Zhang L, Song Y, Chen L, Li D, Feng H, Lu Z, Fan T, Chen Z, Livingston MJ, Geng Q. MiR-20a-containing exosomes from umbilical cord mesenchymal stem cells alleviates liver ischemia/reperfusion injury. J Cell Physiol 2019; 235:3698-3710. [PMID: 31566731 DOI: 10.1002/jcp.29264] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) have been proved to exert considerable therapeutic effects on ischemia-reperfusion (I/R)-induced injury, but the underlying mechanism remains unknown. In this study, we aimed to explore the potential molecular mechanism underlying the therapeutic effect of MSCs-derived exosome reinforced with miR-20a in reversing liver I/R injury. Quantitative real-time polymerase chain reaction, Western blot, and IHC were carried out to compare the differential expressions of miR-20a, Beclin-I, FAS, Caspase-3, mTOR and P62 in IR rats and normal rats. TUNEL was performed to assess IR-induced apoptosis in IR rats, and luciferase assay was used to confirm the inhibitory effect of miR-20a on Beclin-I and FAS expression. Among the 12 candidate microRNAs (miRNAs), miR-486, miR-25, miR-24, miR-20a,miR-466 and miR-433-3p were significantly downregulated in I/R. In particular, miR-20a, a miRNA highly expressed in umbilical cord-derived mesenchymal stem cells, was proved to bind to the 3' UTR of Beclin-I and FAS to exert an inhibitory effect on their expressions. Since Beclin-I and FAS were aberrantly upregulated in IR, exosomes separated from UC-MSCs showed therapeutic efficacy in reversing I/R induced apoptosis. In addition, exosomes reinforced with miR-20a and separated from UC-MSCs almost fully alleviated I/R injury. Furthermore, our results showed that miR-20a could alleviate the abnormal expression of genes related to apoptosis and autophagy, such as active Caspase-3, mTOR, P62, and LC3II. This study presented detailed evidence to clarify the mechanism underlying the therapeutic efficacy of UC-MSCs in the treatment of I/R injury.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yaolin Song
- Department of Thoracic Surgery, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Lei Chen
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Donghang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haohao Feng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zilong Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tao Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zubin Chen
- Department of Hepatological Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Man J Livingston
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
85
|
da Costa Gonçalves F, Paz AH. Cell membrane and bioactive factors derived from mesenchymal stromal cells: Cell-free based therapy for inflammatory bowel diseases. World J Stem Cells 2019; 11:618-633. [PMID: 31616539 PMCID: PMC6789183 DOI: 10.4252/wjsc.v11.i9.618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/23/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract associated with multifactorial conditions such as ulcerative colitis and Crohn’s disease. Although the underlying mechanisms of IBD remain unclear, growing evidence has shown that dysregulated immune system reactions in genetically susceptible individuals contribute to mucosal inflammation. However, conventional treatments have been effective in inducing remission of IBD but not in preventing the relapse of them. In this way, mesenchymal stromal cells (MSC) therapy has been recognized as a promising treatment for IBD due to their immunomodulatory properties, ability to differentiate into several tissues, and homing to inflammatory sites. Even so, literature is conflicted regarding the location and persistence of MSC in the body after transplantation. For this reason, recent studies have focused on the paracrine effect of the biofactors secreted by MSC, especially in relation to the immunomodulatory potential of soluble factors (cytokines, chemokines, and growth factors) and extracellular vehicles that are involved in cell communication and in the transfer of cellular material, such as proteins, lipids, and nucleic acids. Moreover, treatment with interferon-γ, tumor necrosis factor-α, and interleukin-1β causes MSC to express immunomodulatory molecules that mediate the suppression via cell-contact dependent mechanisms. Taken together, we present an overview of the role of bioactive factors and cell membrane proteins derived from MSC as a cell-free therapy that can improve IBD treatment.
Collapse
Affiliation(s)
- Fabiany da Costa Gonçalves
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center, Rotterdam, GD 3015, Netherlands
| | - Ana Helena Paz
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| |
Collapse
|
86
|
You Y, Wen DG, Gong JP, Liu ZJ. Research Status of Mesenchymal Stem Cells in Liver Transplantation. Cell Transplant 2019; 28:1490-1506. [PMID: 31512503 PMCID: PMC6923564 DOI: 10.1177/0963689719874786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver transplantation has been deemed the best choice for end-stage liver disease
patients but immune rejection after surgery is still a serious problem. Patients have to
take immunosuppressive drugs for a long time after liver transplantation, and this often
leads to many side effects. Mesenchymal stem cells (MSCs) gradually became of interest to
researchers because of their powerful immunomodulatory effects. In the past, a large
number of in vitro and in vivo studies have demonstrated the great potential of MSCs for
participation in posttransplant immunomodulation. In addition, MSCs also have properties
that may potentially benefit patients undergoing liver transplantation. This article aims
to provide an overview of the current understanding of the immunomodulation achieved by
the application of MSCs in liver transplantation, to discuss the problems that may be
encountered when using MSCs in clinical practice, and to describe some of the underlying
capabilities of MSCs in liver transplantation. Cell–cell contact, soluble molecules, and
exosomes have been suggested to be critical approaches to MSCs’ immunoregulation in vitro;
however, the exact mechanism, especially in vivo, is still unclear. In recent years, the
clinical safety of MSCs has been proven by a series of clinical trials. The obstacles to
the clinical application of MSCs are decreasing, but large sample clinical trials
involving MSCs are still needed to further study their clinical effects.
Collapse
Affiliation(s)
- Yu You
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Di-Guang Wen
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Jian-Ping Gong
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| | - Zuo-Jin Liu
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
87
|
Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, Wang Y. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 2019; 14:493-507. [PMID: 29895977 DOI: 10.1038/s41581-018-0023-5] [Citation(s) in RCA: 769] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs; also referred to as mesenchymal stromal cells) have attracted much attention for their ability to regulate inflammatory processes. Their therapeutic potential is currently being investigated in various degenerative and inflammatory disorders such as Crohn's disease, graft-versus-host disease, diabetic nephropathy and organ fibrosis. The mechanisms by which MSCs exert their therapeutic effects are multifaceted, but in general, these cells are thought to enable damaged tissues to form a balanced inflammatory and regenerative microenvironment in the presence of vigorous inflammation. Studies over the past few years have demonstrated that when exposed to an inflammatory environment, MSCs can orchestrate local and systemic innate and adaptive immune responses through the release of various mediators, including immunosuppressive molecules, growth factors, exosomes, chemokines, complement components and various metabolites. Interestingly, even nonviable MSCs can exert beneficial effects, with apoptotic MSCs showing immunosuppressive functions in vivo. Because the immunomodulatory capabilities of MSCs are not constitutive but rather are licensed by inflammatory cytokines, the net outcomes of MSC activation might vary depending on the levels and the types of inflammation within the residing tissues. Here, we review current understanding of the immunomodulatory mechanisms of MSCs and the issues related to their therapeutic applications.
Collapse
Affiliation(s)
- Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China. .,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Keli Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianquan Hou
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
88
|
Chen X, Cai C, Xu D, Liu Q, Zheng S, Liu L, Li G, Zhang X, Li X, Ma Y, Huang L, Chen J, Shi J, Du X, Xia W, Xiang AP, Peng Y. Human Mesenchymal Stem Cell-Treated Regulatory CD23 +CD43 + B Cells Alleviate Intestinal Inflammation. Am J Cancer Res 2019; 9:4633-4647. [PMID: 31367246 PMCID: PMC6643430 DOI: 10.7150/thno.32260] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/21/2019] [Indexed: 01/06/2023] Open
Abstract
Rationale: Mesenchymal stem cells (MSCs) have been demonstrated to ameliorate inflammatory bowel disease by their actions on multiple immune cells, especially on regulatory B cells (Breg cells). However, the phenotypes and functions of human MSCs (hMSCs)-treated Breg cell subsets are not yet clear. Methods: Purified B cells were cocultured with MSCs and the phenotypes and immunomodulatory functions of the B cells were analyzed by FACS and proliferation assays in vitro. Also, a trinitrobenzenesulfonic acid-induced mouse colitis model was employed to detect the function of MSC-treated Breg cells in vivo. Results: We demonstrated that coculturing with hMSCs significantly enhanced the immunomodulatory activity of B cells by up-regulating IL-10 expression. We then identified that a novel regulatory B cell population characterized by CD23 and CD43 phenotypic markers could be induced by hMSCs. The CD23+CD43+ Breg cells substantially inhibited the inflammatory cytokine secretion and proliferation of T cells through an IL-10-dependent pathway. More significantly, intraperitoneal injection of hMSCs ameliorated the clinical and histopathological severity in the mouse experimental colitis model, accompanied by an increase in the number of CD23+CD43+ Breg cells. The adoptive transfer of CD23+CD43+ B cells effectively alleviated murine colitis, as compared with the CD23-CD43- B cells. Treatment with CD23+CD43+ B cells, and not hMSCs, substantially improved the symptoms of colitis in B cell-depleted mice. Conclusion: the novel CD23+CD43+ Breg cell subset appears to be involved in the immunomodulatory function of hMSCs and sheds new light on elucidating the therapeutic mechanism of hMSCs for the treatment of inflammation-related diseases.
Collapse
|
89
|
Hinden L, Avner M, Stepensky P, Or R, Almogi-Hazan O. Lymphocyte counts may predict a good response to mesenchymal stromal cells therapy in graft versus host disease patients. PLoS One 2019; 14:e0217572. [PMID: 31188842 PMCID: PMC6561566 DOI: 10.1371/journal.pone.0217572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023] Open
Abstract
Steroid-resistant GvHD is one of the most significant causes of mortality following allogeneic Hematopoietic Stem Cell Transplantation (HSCT). Treatment with mesenchymal stromal cells (MSC) seems to be a promising solution, however the results from clinical studies are still equivocal. Better selection of candidate patients and improving monitoring of patients following MSC administration can increase treatment effectiveness. In order to determine which characteristics can be used to predict a good response and better monitoring of patients, blood samples were taken prior to therapy, one week and one month after therapy, from 26 allogeneic HSCT patients whom contracted GvHD and were treated with MSCs. Samples were examined for differential blood counts, bilirubin levels and cell surface markers. Serum cytokine levels were also measured. We found that the level of lymphocytes, in particular T and NK cells, may predict a good response to therapy. A better response was observed among patients who expressed low levels of IL-6 and IL-22, Th17 related cytokines, prior to therapy. Patients with high levels of bilirubin prior to therapy showed a poorer response. The results of this study may facilitate early prediction of success or failure of the treatment, and subsequently, will improve selection of patients for MSC therapy.
Collapse
Affiliation(s)
- Liad Hinden
- Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Mordechai Avner
- Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Reuven Or
- Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Osnat Almogi-Hazan
- Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
90
|
Mesenchymal stem cells immunomodulation: The road to IFN-γ licensing and the path ahead. Cytokine Growth Factor Rev 2019; 47:32-42. [DOI: 10.1016/j.cytogfr.2019.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
|
91
|
Lv Y, Wang H, Liu Z. The Role of Regulatory B Cells in Patients with Acute Myeloid Leukemia. Med Sci Monit 2019; 25:3026-3031. [PMID: 31017878 PMCID: PMC6496973 DOI: 10.12659/msm.915556] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Regulatory B (Breg) cells are a group of B cells with immunomodulatory function, which mainly exert negative immunomodulatory function by secreting IL-10 and other cytokines. Due to their immunoregulatory properties, Breg cells may participate in the pathogenesis of acute myeloid leukemia (AML). This study was designed to explore the frequency of Breg cells and the relationship between the Breg cells and clinical data in patients with AML. Material/Methods A total of 46 (36 in peripheral blood, 10 in bone marrow) AML patients and 15 healthy donors (HD) were included for detection of Breg cells frequency by multicolor flow cytometry. All cases were divided into different groups according to FAB subtypes of leukemia, white blood cell count (WBC) levels, age, cytogenetic characteristics, and molecular abnormalities, and were compared the differences of Breg cell frequency. Survival curve analysis was performed to estimate the value of Breg cell frequency in prognosis among cases with AML. Results We found that the frequency of Breg cells was higher in AML patients both in peripheral blood (PB) and in bone marrow (BM) compared with those in HDs. The AML patients with high WBC levels had higher Breg cell frequency compared with those with low WBC levels. Low-risk patients with had lower Breg cells frequency compared to the medium-risk patients. The patients with high WBC and high Breg cells frequency showed a shorter overall survival. Similarly, the overall survival of AML patients in the older group with high Breg cells frequency was significantly shorter than in the younger group with low Breg cell frequency. Conclusions For AML patients, the frequency of Breg cells was elevated, and high frequency of Breg cells may reveal poor prognosis.
Collapse
Affiliation(s)
- Ying Lv
- China Medical University, Shenyang, Liaoning, China (mainland)
| | - Hongtao Wang
- China Medical University, Shenyang, Liaoning, China (mainland)
| | - Zhuogang Liu
- China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
92
|
Regmi S, Pathak S, Kim JO, Yong CS, Jeong JH. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives. Eur J Cell Biol 2019; 98:151041. [PMID: 31023504 DOI: 10.1016/j.ejcb.2019.04.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are promising alternative agents for the treatment of inflammatory disorders due to their immunomodulatory functions, and several clinical trials on MSC-based products are currently being conducted. In this review, we discuss recent progress made on the use of MSCs as immunomodulatory agents, developmental challenges posed by MSC-based therapy, and the strategies being used to overcome these challenges. In this context, current understanding of the mechanisms responsible for MSC interactions with the immune system and the molecular responses of MSCs to inflammatory signals are discussed. The immunosuppressive activities of MSCs are initiated by cell-to-cell contact and the release of immuno-regulatory molecules. By doing so, MSCs can inhibit the proliferation and function of T cells, natural killer cells, B cells, and dendritic cells, and can also increase the proliferation of regulatory T cells. However, various problems, such as low transplanted cell viability, poor homing and engraftment into injured tissues, MSC heterogeneity, and lack of adequate information on optimum MSC doses impede clinical applications. On the other hand, it has been shown that the immunomodulatory activities and viabilities of MSCs might be enhanced by 3D-cultured systems, genetic modifications, preconditioning, and targeted-delivery.
Collapse
Affiliation(s)
- Shobha Regmi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Shiva Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
93
|
Wang H, Li D, Zhai Z, Zhang X, Huang W, Chen X, Huang L, Liu H, Sun J, Zou Z, Fan Y, Ke Q, Lai X, Wang T, Li X, Shen H, Xiang AP, Li W. Characterization and Therapeutic Application of Mesenchymal Stem Cells with Neuromesodermal Origin from Human Pluripotent Stem Cells. Am J Cancer Res 2019; 9:1683-1697. [PMID: 31037131 PMCID: PMC6485183 DOI: 10.7150/thno.30487] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/02/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: Mesenchymal stem cells (MSC) hold great promise in the treatment of various diseases including autoimmune diseases, inflammatory diseases, etc., due to their pleiotropic properties. However, largely incongruent data were obtained from different MSC-based clinical trials, which may be partially due to functional heterogeneity among MSC. Here, we attempt to derive homogeneous mesenchymal stem cells with neuromesodermal origin from human pluripotent stem cells (hPSC) and evaluate their functional properties. Methods: Growth factors and/or small molecules were used for the differentiation of human pluripotent stem cells (hPSC) into neuromesodermal progenitors (NMP), which were then cultured in animal component-free and serum-free induction medium for the derivation and long-term expansion of MSC. The resulted NMP-MSC were detailed characterized by analyzing their surface marker expression, proliferation, migration, multipotency, immunomodulatory activity and global gene expression profile. Moreover, the in vivo therapeutic potential of NMP-MSC was detected in a mouse model of contact hypersensitivity (CHS). Results: We demonstrate that NMP-MSC express posterior HOX genes and exhibit characteristics similar to those of bone marrow MSC (BMSC), and NMP-MSC derived from different hPSC lines show high level of similarity in global gene expression profiles. More importantly, NMP-MSC display much stronger immunomodulatory activity than BMSC in vitro and in vivo, as revealed by decreased inflammatory cell infiltration and diminished production of pro-inflammatory cytokines in inflamed tissue of CHS models. Conclusion: Our results identify NMP as a new source of MSC and suggest that functional and homogeneous NMP-MSC could serve as a candidate for MSC-based therapies.
Collapse
|
94
|
Li Y, Zhang D, Xu L, Dong L, Zheng J, Lin Y, Huang J, Zhang Y, Tao Y, Zang X, Li D, Du M. Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cell Mol Immunol 2019; 16:908-920. [PMID: 30778166 DOI: 10.1038/s41423-019-0204-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/21/2019] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs), which are pluripotent cells with immunomodulatory properties, have been considered good candidates for the therapy of several immune disorders, such as inflammatory bowel diseases, concanavalin A-induced liver injury, and graft-versus-host disease. The embryo is a natural allograft to the maternal immune system. A successful pregnancy depends on the timely extinction of the inflammatory response induced by embryo implantation, followed by the switch to a tolerant immune microenvironment in both the uterus and the system. Excessive infiltration of immune cells and serious inflammatory responses are triggers for embryo rejection, which results in miscarriage. Here, we demonstrated that adoptive transfer of MSCs could prevent fetal loss in a lipopolysaccharide (LPS)-induced abortion model and immune response-mediated spontaneous abortion model. The immunosuppressive MSCs alleviated excessive inflammation by inhibiting CD4 + T cell proliferation and promoting the decidual macrophage switch to M2 in a tumor necrosis factor-stimulated gene-6 (TSG-6)-dependent manner. Cell-to-cell contact with proinflammatory macrophages increased the TSG-6 production by the MSCs, thereby enhancing the suppressive regulation of T cells and macrophages. Moreover, proinflammatory macrophages in contact with the MSCs upregulated the expression of CD200 on the stem cells and facilitated the reprogramming of macrophages towards an anti-inflammatory skew through the interaction of CD200 with CD200R on proinflammatory macrophages. Therefore, the results demonstrate that a TSG-6-mediated paracrine effect, reinforced by cell-to-cell contact between MSCs and proinflammatory macrophages, is involved in the mechanism of MSC-mediated abortion relief through the induction of immune tolerance. Our study also indicates the potential application of MSCs in clinical recurrent miscarriages.
Collapse
Affiliation(s)
- Yanhong Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Di Zhang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ling Xu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Lin Dong
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ji Zheng
- Department of Immunology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yikong Lin
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiefang Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanyun Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Tao
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xingxing Zang
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
95
|
Cai X, Zhang L, Wei W. Regulatory B cells in inflammatory diseases and tumor. Int Immunopharmacol 2019; 67:281-286. [DOI: 10.1016/j.intimp.2018.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 01/10/2023]
|
96
|
Zheng J, Li H, He L, Huang Y, Cai J, Chen L, Zhou C, Fu H, Lu T, Zhang Y, Yao J, Yang Y. Preconditioning of umbilical cord-derived mesenchymal stem cells by rapamycin increases cell migration and ameliorates liver ischaemia/reperfusion injury in mice via the CXCR4/CXCL12 axis. Cell Prolif 2018; 52:e12546. [PMID: 30537044 PMCID: PMC6496237 DOI: 10.1111/cpr.12546] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Objectives Transfusion of umbilical cord‐derived mesenchymal stem cells (UC‐MSCs) is a novel strategy for treatment of various liver diseases. However, the therapeutic effect of UC‐MSCs is limited because only a few UC‐MSCs migrate towards the damaged regions. In this study, we observed the effects of autophagy on the migration of UC‐MSCs in vitro and in a model of liver ischaemia/reperfusion (I/R) injury. Materials and Methods We investigated the effects of autophagy on the status of the cell, release of anti‐inflammatory factors and migration of UC‐MSCs in vitro. The therapeutic effects and in vivo migration of rapamycin‐preconditioned UC‐MSCs were observed in a C57/B6 mouse model of liver I/R injury. Results Induction of autophagy by rapamycin enhanced the ability of UC‐MSCs to migrate and release anti‐inflammatory cytokines as well as increased expression of CXCR4 without affecting cell viability. Inhibition of CXCR4 activation markedly decreased migration of these cells. In a mouse model of liver I/R injury, we found significantly upregulated expression of CXCR12 in the damaged liver. More rapamycin‐preconditioned UC‐MSCs migrated towards the ischaemic regions than 3‐methyladenine‐preconditioned or non‐preconditioned UC‐MSCs, leading to improvement in hepatic performance, pathological changes and levels of inflammatory cytokines. These effects were abolished by AMD3100. Conclusions Preconditioning of UC‐MSCs by rapamycin afforded increased protection against liver I/R injury by enhancing immunosuppression and strengthening the homing and migratory capacity of these cells via the CXCR4/CXCL12 axis.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liying He
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yiming Huang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Chen
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chaorong Zhou
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongyuan Fu
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Research Center of Guangdong Province, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
97
|
Lai P, Chen X, Guo L, Wang Y, Liu X, Liu Y, Zhou T, Huang T, Geng S, Luo C, Huang X, Wu S, Ling W, Du X, He C, Weng J. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. J Hematol Oncol 2018; 11:135. [PMID: 30526632 PMCID: PMC6286548 DOI: 10.1186/s13045-018-0680-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are a promising therapy for preventing chronic Graft-Versus-Host Disease (cGVHD) due to their potent immunomodulatory properties. However, the safety concerns regarding the use of MSCs remain unsolved, and conflicting effects are observed due to the heterogeneity of MSCs. Recently, exosomes were shown to mediate the paracrine effects of MSCs, making it a potential candidate for cell-free therapies. The aim of this study is to investigate the efficacy and safety of MSCs-derived exosomes (MSCs-exo) in an established cGVHD mouse model. METHODS Bone marrow (BM)-derived MSCs were cultured, and the supernatants of these cultures were collected to prepare exosomes using ultracentrifugation. Exosomes from human dermal fibroblasts (Fib-exo) were used as a negative control. The cGVHD model was established, and tail vein injections of MSCs-exo or Fib-exo were administered once per week for 6 weeks. The symptoms and signs of cGVHD were monitored, and histopathological changes were detected by hematoxylin and eosin and Masson staining. The effects of MSCs-exo on Th17, Th1, and Treg were evaluated by flow cytometry, qPCR, and Luminex. In addition, human peripheral blood mononuclear cells (PBMCs) were stimulated and treated with MSCs-exo in vitro. IL-17-expressing Th17 and IL-10-expressing Treg were evaluated by flow cytometry, qPCR, and ELISA. RESULTS We found that MSCs-exo effectively prolonged the survival of cGVHD mice and diminished the clinical and pathological scores of cGVHD. Fibrosis in the skin, lung, and liver was significantly ameliorated by MSCs-exo application. In MSCs-exo treated mice, activation of CD4+ T cells and their infiltration into the lung were reduced. Of note, MSCs-exo exhibited potent immunomodulatory effects via the inhibition of IL-17-expressing pathogenic T cells and induction of IL-10-expressing regulatory cells during cGVHD. The expressions of Th17 cell-relevant transcription factors and pro-inflammatory cytokines was markedly reduced after MSCs-exo treatment. In vitro, MSCs-exo blocked Th17 differentiation and improved the Treg phenotype in PBMCs obtained from healthy donors and patients with active cGVHD, further indicating the regulatory effect of MSCs-exo on GVHD effector T cells. CONCLUSIONS Our data suggested that MSCs-exo could improve the survival and ameliorate the pathologic damage of cGVHD by suppressing Th17 cells and inducing Treg. This finding provides a novel alternative approach for the treatment of cGVHD.
Collapse
Affiliation(s)
- Peilong Lai
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.,Guangdong Geriatrics Institute, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xiaomei Chen
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Liyan Guo
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yulian Wang
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Yan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Tian Huang
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Suxia Geng
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chengwei Luo
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xin Huang
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Suijing Wu
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Wei Ling
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China. .,Guangdong Geriatrics Institute, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China.
| | - Jianyu Weng
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China. .,Guangdong Geriatrics Institute, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
98
|
Mehdipour F, Razmkhah M, Rezaeifard S, Bagheri M, Talei AR, Khalatbari B, Ghaderi A. Mesenchymal stem cells induced anti-inflammatory features in B cells from breast tumor draining lymph nodes. Cell Biol Int 2018; 42:1658-1669. [DOI: 10.1002/cbin.11062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Fereshteh Mehdipour
- Shiraz Institute for Cancer Research; School of Medicine, Shiraz University of Medical Sciences; P.O. Box: 71345-3119 Shiraz Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research; School of Medicine, Shiraz University of Medical Sciences; P.O. Box: 71345-3119 Shiraz Iran
| | - Somayeh Rezaeifard
- Shiraz Institute for Cancer Research; School of Medicine, Shiraz University of Medical Sciences; P.O. Box: 71345-3119 Shiraz Iran
| | - Mandana Bagheri
- Department of Pathology; Shiraz Central Hospital; Shiraz Iran
| | - Abdol-Rasoul Talei
- Breast Diseases Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - Behzad Khalatbari
- Department of Plastic Surgery; Shiraz University of Medical Sciences; Shiraz Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research; School of Medicine, Shiraz University of Medical Sciences; P.O. Box: 71345-3119 Shiraz Iran
- Department of Immunology, School of Medicine; Shiraz University of Medical Sciences; Shiraz Iran
| |
Collapse
|
99
|
Huang Y, Wang J, Cai J, Qiu Y, Zheng H, Lai X, Sui X, Wang Y, Lu Q, Zhang Y, Yuan M, Gong J, Cai W, Liu X, Shan Y, Deng Z, Shi Y, Shu Y, Zhang L, Qiu W, Peng L, Ren J, Lu Z, Xiang AP. Targeted homing of CCR2-overexpressing mesenchymal stromal cells to ischemic brain enhances post-stroke recovery partially through PRDX4-mediated blood-brain barrier preservation. Am J Cancer Res 2018; 8:5929-5944. [PMID: 30613272 PMCID: PMC6299433 DOI: 10.7150/thno.28029] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Rationale: Mesenchymal stromal cells (MSCs) are emerging as a novel therapeutic strategy for the acute ischemic stroke (AIS). However, the poor targeted migration and low engraftment in ischemic lesions restrict their treatment efficacy. The ischemic brain lesions express a specific chemokine profile, while cultured MSCs lack the set of corresponding receptors. Thus, we hypothesize that overexpression of certain chemokine receptor might help in MSCs homing and improve therapeutic efficacy. Methods: Using the middle cerebral artery occlusion (MCAO) model of ischemic stroke, we identified that CCL2 is one of the most highly expressed chemokines in the ipsilateral hemisphere. Then, we genetically transduced the corresponding receptor, CCR2 to the MSCs and quantified the cell retention of MSCCCR2 compared to the MSCdtomato control. Results: MSCCCR2 exhibited significantly enhanced migration to the ischemic lesions and improved the neurological outcomes. Brain edema and blood-brain barrier (BBB) leakage levels were also found to be much lower in the MSCCCR2-treated rats than the MSCdtomato group. Moreover, this BBB protection led to reduced inflammation infiltration and reactive oxygen species (ROS) generation. Similar results were also confirmed using the in vitro BBB model. Furthermore, genome-wide RNA sequencing (RNA-seq) analysis revealed that peroxiredoxin4 (PRDX4) was highly expressed in MSCs, which mainly contributed to their antioxidant impacts on MCAO rats and oxygen-glucose deprivation (OGD)-treated endothelium. Conclusion: Taken together, this study suggests that overexpression of CCR2 on MSCs enhances their targeted migration to the ischemic hemisphere and improves the therapeutic outcomes, which is attributed to the PRDX4-mediated BBB preservation.
Collapse
|
100
|
Pers YM, Quentin J, Feirreira R, Espinoza F, Abdellaoui N, Erkilic N, Cren M, Dufourcq-Lopez E, Pullig O, Nöth U, Jorgensen C, Louis-Plence P. Injection of Adipose-Derived Stromal Cells in the Knee of Patients with Severe Osteoarthritis has a Systemic Effect and Promotes an Anti-Inflammatory Phenotype of Circulating Immune Cells. Theranostics 2018; 8:5519-5528. [PMID: 30555561 PMCID: PMC6276295 DOI: 10.7150/thno.27674] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022] Open
Abstract
Rationale: Recent studies confirmed that osteoarthritis (OA) is associated with systemic inflammation. Adipose-derived stromal cells (ASCs) could become the most promising cell-based therapy in OA, based not only on their differentiation capacities and trophic and paracrine effects on the existing cartilage, but also on their immunomodulatory properties. Here, we wanted to determine the biological effect of autologous ASC intra-articular (IA) injection. Method: To this aim, we monitored the profile of immune cells in fresh peripheral blood after IA injection of autologous ASCs in the knee of 18 patients with severe OA (ADIPOA phase I study). Specifically, we used 8-color flow cytometry antibody panels to characterize the frequencies of innate and adaptive immune cell subsets (monocytes, dendritic cells, regulatory T cells and B cells) in blood samples at baseline (before injection) and one week, one month and three months after ASC injection. Results: We found that the percentage of CD4+CD25highCD127lowFOXP3+ regulatory T cells was significantly increased at 1 month after ASC injection, and this effect persisted for at least 3 months. Moreover, CD24highCD38high transitional B cells also were increased, whereas the percentage of classical CD14+ monocytes was decreased, at 3 months after ASC injection. These results suggest a global switch toward regulatory immune cells following IA injection of ASCs, underscoring the safety of ASC-based therapy. We did not find any correlation between the scores for the Visual Analogic Scale for pain, the Western Ontario and McMaster Universities Osteoarthritis Index (pain subscale and total score) at baseline and the immune cell profile changes, but this could be due to the small number of analyzed patients. Conclusion: ASCs may drive an immediate local response by releasing paracrine factors and cytokines, and our results suggest that ASCs could also initiate a cascade resulting in a long-lasting systemic immune modulation.
Collapse
|