51
|
Indirli R, Lanzi V, Arosio M, Mantovani G, Ferrante E. The association of hypogonadism with depression and its treatments. Front Endocrinol (Lausanne) 2023; 14:1198437. [PMID: 37635965 PMCID: PMC10449581 DOI: 10.3389/fendo.2023.1198437] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
According to World Health Organization estimates, 5% of the adult population worldwide suffers from depression. In addition to the affective, psychomotor and cognitive symptoms which characterize this mood disorder, sexual dysfunction has been frequently reported among men suffering from depression. The most common sexual manifestations are decreased libido, erectile dysfunction and orgasmic disorder. In addition, epidemiological studies have documented a reduction of testosterone concentrations in men with depression and, for these reasons, depressive disorders appear as one possible cause of male functional hypogonadism. Moreover, some largely used antidepressant medications can cause or worsen sexual complaints, thus depression and its treatments rise several andrological-relevant issues. The other way round, men with hypogonadism can manifest depressed mood, anxiety, insomnia, memory impairment which, if mild, may respond to testosterone replacement therapy (TRT). However, the prevalence of functional hypogonadism in depression, and of depressive symptoms in hypogonadal men, is not known. Severe depressive symptoms do not respond to TRT, while the effect of treating major depression on functional hypogonadism, has not been investigated. Overall, the clinical relevance of each condition to the other, as well as the physiopathological underpinnings of their relationship, are still to be clarified. The present review summarizes current evidence on the influence of testosterone on mood and of depression on the hypothalamic-pituitary-testis axis; the clinical association between male hypogonadism and depression; and the reciprocal effects of respective treatments.
Collapse
Affiliation(s)
- Rita Indirli
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valeria Lanzi
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Emanuele Ferrante
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
52
|
Lullau APM, Haga EMW, Ronold EH, Dwyer GE. Antidepressant mechanisms of ketamine: a review of actions with relevance to treatment-resistance and neuroprogression. Front Neurosci 2023; 17:1223145. [PMID: 37614344 PMCID: PMC10442706 DOI: 10.3389/fnins.2023.1223145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/12/2023] [Indexed: 08/25/2023] Open
Abstract
Concurrent with recent insights into the neuroprogressive nature of depression, ketamine shows promise in interfering with several neuroprogressive factors, and has been suggested to reverse neuropathological patterns seen in depression. These insights come at a time of great need for novel approaches, as prevalence is rising and current treatment options remain inadequate for a large number of people. The rapidly growing literature on ketamine's antidepressant potential has yielded multiple proposed mechanisms of action, many of which have implications for recently elucidated aspects of depressive pathology. This review aims to provide the reader with an understanding of neuroprogressive aspects of depressive pathology and how ketamine is suggested to act on it. Literature was identified through PubMed and Google Scholar, and the reference lists of retrieved articles. When reviewing the evidence of depressive pathology, a picture emerges of four elements interacting with each other to facilitate progressive worsening, namely stress, inflammation, neurotoxicity and neurodegeneration. Ketamine acts on all of these levels of pathology, with rapid and potent reductions of depressive symptoms. Converging evidence suggests that ketamine works to increase stress resilience and reverse stress-induced dysfunction, modulate systemic inflammation and neuroinflammation, attenuate neurotoxic processes and glial dysfunction, and facilitate synaptogenesis rather than neurodegeneration. Still, much remains to be revealed about ketamine's antidepressant mechanisms of action, and research is lacking on the durability of effect. The findings discussed herein calls for more longitudinal approaches when determining efficacy and its relation to neuroprogressive factors, and could provide relevant considerations for clinical implementation.
Collapse
Affiliation(s)
- August P. M. Lullau
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Emily M. W. Haga
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Eivind H. Ronold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Gerard E. Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
53
|
Douglas K, Bell C, Tanveer S, Eggleston K, Porter R, Boden J. UNITE Project: understanding neurocognitive impairment after trauma exposure-study protocol of an observational study in Christchurch, New Zealand. BMJ Open 2023; 13:e072195. [PMID: 37550025 PMCID: PMC10407410 DOI: 10.1136/bmjopen-2023-072195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
INTRODUCTION Our previous research has demonstrated significant cognitive effects of earthquake exposure 2-3 years following the Canterbury earthquake sequence of 2011. Such impairment has major implications for a population trying to recover, and to rebuild, a devastated city. This study aims to examine psychological, cognitive and biological factors that may contribute to subjective cognitive difficulties in a large group of individuals exposed to the Canterbury earthquake sequence. METHODS AND ANALYSIS Two-hundred earthquake-exposed participants from an existing large cohort study (Christchurch Health and Development Study, CHDS) will be recruited. Inclusion is based on results of online screening of the CHDS cohort, using the Cognitive Failures Questionnaire. Individuals scoring the highest (n=100) and lowest (n=100), representing the highest and lowest levels of subjective cognitive impairment, are selected. Exclusions are: psychotic/bipolar disorders, serious substance/alcohol dependence, chronic medical conditions, pregnancy and previous serious head injury. Participants will undergo a half-day assessment including clinician-rated interviews, self-report measures, objective and subjective cognitive assessments, blood sample collection and physical measurements. The primary analysis will compare cognitive, psychological and biological measures in 'high' and 'low' subjective cognitive impairment groups. The study will have power (p<0.05, α=0.8) to show a difference between groups of 0.4 SD on any variable. ETHICS AND DISSEMINATION Ethical approval for this study was granted by the New Zealand Health and Disability Ethics Committee. The online screening component of the study received ethical approval on 1 April 2021 (16/STH/188, PAF 7), and the main study (subsequent to screening) received approval on 16 August 2021 (Northern A 21/NTA/68). All participants provide written informed consent. Findings will be disseminated initially to the CHDS cohort members, the wider Canterbury community, and then by publication in scientific journals and conference presentations. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT05090046).
Collapse
Affiliation(s)
- Katie Douglas
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Caroline Bell
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Sandila Tanveer
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Kate Eggleston
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
- Specialist Mental Health Services, Te Whatu Ora Waitaha, Christchurch, New Zealand
| | - Richard Porter
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
- Specialist Mental Health Services, Te Whatu Ora Waitaha, Christchurch, New Zealand
| | - Joseph Boden
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
54
|
Williams ZA, Szyszkowicz JK, Osborne N, Allehyany B, Nadon C, Udechukwu MC, Santos A, Audet MC. Sex-specific effects of voluntary wheel running on behavior and the gut microbiota-immune-brain axis in mice. Brain Behav Immun Health 2023; 30:100628. [PMID: 37396336 PMCID: PMC10308214 DOI: 10.1016/j.bbih.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 07/04/2023] Open
Abstract
Physical exercise has been positioned as a promising strategy to prevent and/or alleviate anxiety and depression, but the biological processes associated with its effects on mental health have yet to be entirely determined. Although the prevalence of depression and anxiety in women is about twice that of men, very few studies have examined whether physical exercise could affect mental health differently according to sex. This study examined, in singly-housed mice, the sex-specific effects of voluntary exercise on depressive- and anxiety-like behaviors as well as on different markers along the gut microbiota-immune-brain axis. Male and female C57BL/6N mice had voluntary access to running wheels in their home-cages for 24 days or were left undisturbed in identical home-cages without running wheels. Behaviors were then examined in the open field, splash, elevated plus maze, and tail suspension tests. Gene expression of pro-inflammatory cytokines, microglia activation-related genes, and tight junction proteins was determined in the jejunum and the hippocampus, while microbiota composition and predicted function were verified in cecum contents. Voluntary exercise reduced anxiety-like behaviors and altered grooming patterns in males exclusively. Although the exercise intervention resulted in changes to brain inflammatory activity and to cecal microbiota composition and inferred function in both sexes, reductions in the jejunal expression of pro-inflammatory markers were observed in females only. These findings support the view that voluntary exercise, even when performed during a short period, is beneficial for mental and intestinal health and that its sex-specific effects on behavior could be, at least in part, related to some components of the gut microbiota-immune-brain axis.
Collapse
Affiliation(s)
| | - Joanna Kasia Szyszkowicz
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Canada
| | - Natasha Osborne
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Christophe Nadon
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Ana Santos
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | - Marie-Claude Audet
- Department of Neuroscience, Carleton University, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- School of Nutrition Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
55
|
Zhou H, Wang K, Xu Z, Liu D, Wang Y, Guo M. Chronic unpredictable stress induces depression/anxiety-related behaviors and alterations of hippocampal monoamine receptor mRNA expression in female mice at different ages. Heliyon 2023; 9:e18369. [PMID: 37539192 PMCID: PMC10393760 DOI: 10.1016/j.heliyon.2023.e18369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Abstract
Depression and anxiety are the most common mental health disorders. Though they affect people at any age and occur more often in females, the pathophysiological changes under these conditions are less investigated. In the present study, we examined the effects of age and stress on depression- and anxiety-related behaviors in female mice. Saccharin preference and the open field test were carried out before and after chronic unpredictable stress in 4-, 14- and 25-month-old female mice. After behavioral tests, mRNA levels of monoamine receptors in the hippocampus were measured by real-time RT-PCR. Chronic unpredictable stress decreased saccharin preference in 4-, 14- and 25-month-old mice and the time spent in the center in the open field test in 25-month-old mice. For monoamine receptors, analysis of variance revealed significant effects of age on mRNA levels of Htr1a, Htr2a, Htr6, Adra1a, Adrb2, and Adrb3, significant effects of stress on mRNA levels of Htr4, Adra2c, Adrb1, and Adrb2, and interactions of age × stress on mRNA levels of Htr1a, Htr5b, Adra1d, Adra2a, Adra2c, and Adrb1. Chronic unpredictable stress decreased mRNA levels of Htr4, Htr5b, Adra2c, and Adrb1 in 4-month-old female mice. Correlations were observed between saccharin preference and mRNA levels of Htr4, Htr5b, Htr6, Adra1d, Adra2a, and Adra2c in 4-month-old mice and between the time spent in the center in the open field test and mRNA levels of Htr1b in 4-month-old mice, Htr3a, Htr7, and Adrb2 in 14-month-old mice, and Drd2 in 4- and 14-month-old mice. Our findings support that stress induces depression- and anxiety-related behaviors and the expression of hippocampal monoamine receptors in an age-dependent manner in female mice.
Collapse
Affiliation(s)
- Han Zhou
- Department of Psychology, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
- Medical Research Center, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Kaixin Wang
- Medical Research Center, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Zhicheng Xu
- Medical Research Center, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Dunjiang Liu
- Medical Research Center, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Yameng Wang
- Medical Research Center, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Ming Guo
- Department of Psychology, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
- Medical Research Center, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
| |
Collapse
|
56
|
Cutler AJ, Mattingly GW, Maletic V. Understanding the mechanism of action and clinical effects of neuroactive steroids and GABAergic compounds in major depressive disorder. Transl Psychiatry 2023; 13:228. [PMID: 37365161 PMCID: PMC10293235 DOI: 10.1038/s41398-023-02514-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The pathophysiology of major depressive disorder (MDD) is thought to result from impaired connectivity between key brain networks. Gamma-aminobutyric acid (GABA) is the key inhibitory neurotransmitter in the brain, working primarily via GABAA receptors, with an important role in virtually all physiologic functions in the brain. Some neuroactive steroids (NASs) are positive allosteric modulators (PAMs) of GABAA receptors and potentiate phasic and tonic inhibitory responses via activation of synaptic and extrasynaptic GABAA receptors, respectively. This review first discusses preclinical and clinical data that support the association of depression with diverse defects in the GABAergic system of neurotransmission. Decreased levels of GABA and NASs have been observed in adults with depression compared with healthy controls, while treatment with antidepressants normalized the altered levels of GABA and NASs. Second, as there has been intense interest in treatment approaches for depression that target dysregulated GABAergic neurotransmission, we discuss NASs approved or currently in clinical development for the treatment of depression. Brexanolone, an intravenous NAS and a GABAA receptor PAM, is approved by the U.S. Food and Drug Administration for the treatment of postpartum depression (PPD) in patients 15 years and older. Other NASs include zuranolone, an investigational oral GABAA receptor PAM, and PH10, which acts on nasal chemosensory receptors; clinical data to date have shown improvement in depressive symptoms with these investigational NASs in adults with MDD or PPD. Finally, the review discusses how NAS GABAA receptor PAMs may potentially address the unmet need for novel and effective treatments with rapid and sustained antidepressant effects in patients with MDD.
Collapse
|
57
|
Li X, Teng T, Yan W, Fan L, Liu X, Clarke G, Zhu D, Jiang Y, Xiang Y, Yu Y, Zhang Y, Yin B, Lu L, Zhou X, Xie P. AKT and MAPK signaling pathways in hippocampus reveals the pathogenesis of depression in four stress-induced models. Transl Psychiatry 2023; 13:200. [PMID: 37308476 DOI: 10.1038/s41398-023-02486-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 05/06/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Major depressive disorder (MDD) is a highly heterogeneous psychiatric disorder. The pathogenesis of MDD remained unclear, and it may be associated with exposure to different stressors. Most previous studies have focused on molecular changes in a single stress-induced depression model, which limited the identification of the pathogenesis of MDD. The depressive-like behaviors were induced by four well-validated stress models in rats, including chronic unpredictable mild stress, learned helplessness stress, chronic restraint stress and social defeat stress. We applied proteomic and metabolomic to investigate molecular changes in the hippocampus of those four models and revealed 529 proteins and 98 metabolites. Ingenuity Pathways Analysis (IPA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified differentially regulated canonical pathways, and then we presented a schematic model that simulates AKT and MAPK signaling pathways network and their interactions and revealed the cascade reactions. Further, the western blot confirmed that p-AKT, p-ERK12, GluA1, p-MEK1, p-MEK2, p-P38, Syn1, and TrkB, which were changed in at least one depression model. Importantly, p-AKT, p-ERK12, p-MEK1 and p-P38 were identified as common alterations in four depression models. The molecular level changes caused by different stressors may be dramatically different, and even opposite, between four depression models. However, the different molecular alterations converge on a common AKT and MAPK molecular pathway. Further studies of these pathways could contribute to a better understanding of the pathogenesis of depression, with the ultimate goal of helping to develop or select more effective treatment strategies for MDD.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Fan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
58
|
Li J, Zhang M, Pei Y, Yang Q, Zheng L, Wang G, Sun Y, Yang W, Liu L. The total alkaloids of Sophora alopecuroides L. improve depression-like behavior in mice via BDNF-mediated AKT/mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023:116723. [PMID: 37271329 DOI: 10.1016/j.jep.2023.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression has become a global public health problem and the development of new highly effective, low-toxicity antidepressants is imminent. Sophora alopecuroides L. is a common medicinal plant, which has therapeutic effect on central nervous system diseases. AIM OF THE STUDY In this study, the antidepressant effect of total alkaloids (ALK) isolated from Sophora alopecuroides L. was explored and the mechanism was further elucidated. MATERIALS AND METHODS A primary neuronal injury model was established in vitro by corticosterone. ICR mice were then selected to construct an in vivo model of chronic unpredictable mild stress (CUMS)-induced depression, and the ameliorative effects of ALK on depression were examined by various behavioral tests. The antidepressant molecular mechanism of ALK was subsequently revealed by ELISA, Western blot, immunohistochemistry and Golgi staining. RESULTS BDNF secretion as well as TrkB and ERK phosphorylated protein levels were found to be improved in primary cortical neurons, along with improved dendritic complexity of neurons. The results of in vivo showed that the depression-like behavior of CUMS-induced mice was reversed after 2 weeks of continuous gavage administration of ALK, and the neurotransmitter levels in the plasma of mice were increased. Moreover, the expression levels of key proteins of BDNF-AKT-mTOR pathway and the complexity of neuronal dendrites were improved in the prefrontal cortex of mice. CONCLUSIONS These findings indicate that ALK of Sophora alopecuroides L. can effectively improve the depressive phenotype of mice, possibly by promoting the expression of BDNF in prefrontal cortex, activating the downstream AKT/mTOR signal pathway, and ultimately enhancing neuronal dendritic complexity.
Collapse
Affiliation(s)
- Jingyi Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Ming Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yiying Pei
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Qifang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Guannan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Ying Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China.
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.
| |
Collapse
|
59
|
Jellinger KA. The heterogeneity of late-life depression and its pathobiology: a brain network dysfunction disorder. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02648-z. [PMID: 37145167 PMCID: PMC10162005 DOI: 10.1007/s00702-023-02648-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
Depression is frequent in older individuals and is often associated with cognitive impairment and increasing risk of subsequent dementia. Late-life depression (LLD) has a negative impact on quality of life, yet the underlying pathobiology is still poorly understood. It is characterized by considerable heterogeneity in clinical manifestation, genetics, brain morphology, and function. Although its diagnosis is based on standard criteria, due to overlap with other age-related pathologies, the relationship between depression and dementia and the relevant structural and functional cerebral lesions are still controversial. LLD has been related to a variety of pathogenic mechanisms associated with the underlying age-related neurodegenerative and cerebrovascular processes. In addition to biochemical abnormalities, involving serotonergic and GABAergic systems, widespread disturbances of cortico-limbic, cortico-subcortical, and other essential brain networks, with disruption in the topological organization of mood- and cognition-related or other global connections are involved. Most recent lesion mapping has identified an altered network architecture with "depressive circuits" and "resilience tracts", thus confirming that depression is a brain network dysfunction disorder. Further pathogenic mechanisms including neuroinflammation, neuroimmune dysregulation, oxidative stress, neurotrophic and other pathogenic factors, such as β-amyloid (and tau) deposition are in discussion. Antidepressant therapies induce various changes in brain structure and function. Better insights into the complex pathobiology of LLD and new biomarkers will allow earlier and better diagnosis of this frequent and disabling psychopathological disorder, and further elucidation of its complex pathobiological basis is warranted in order to provide better prevention and treatment of depression in older individuals.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
60
|
Jazvinšćak Jembrek M, Oršolić N, Karlović D, Peitl V. Flavonols in Action: Targeting Oxidative Stress and Neuroinflammation in Major Depressive Disorder. Int J Mol Sci 2023; 24:ijms24086888. [PMID: 37108052 PMCID: PMC10138550 DOI: 10.3390/ijms24086888] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Major depressive disorder is one of the most common mental illnesses that highly impairs quality of life. Pharmacological interventions are mainly focused on altered monoamine neurotransmission, which is considered the primary event underlying the disease's etiology. However, many other neuropathological mechanisms that contribute to the disease's progression and clinical symptoms have been identified. These include oxidative stress, neuroinflammation, hippocampal atrophy, reduced synaptic plasticity and neurogenesis, the depletion of neurotrophic factors, and the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. Current therapeutic options are often unsatisfactory and associated with adverse effects. This review highlights the most relevant findings concerning the role of flavonols, a ubiquitous class of flavonoids in the human diet, as potential antidepressant agents. In general, flavonols are considered to be both an effective and safe therapeutic option in the management of depression, which is largely based on their prominent antioxidative and anti-inflammatory effects. Moreover, preclinical studies have provided evidence that they are capable of restoring the neuroendocrine control of the HPA axis, promoting neurogenesis, and alleviating depressive-like behavior. Although these findings are promising, they are still far from being implemented in clinical practice. Hence, further studies are needed to more comprehensively evaluate the potential of flavonols with respect to the improvement of clinical signs of depression.
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| |
Collapse
|
61
|
Cheng K, Wang Y, He Y, Tian Y, Li J, Chen C, Xu X, Wu Z, Yu H, Chen X, Wu Y, Song W, Dong Z, Xu H, Xie P. Upregulation of carbonic anhydrase 1 beneficial for depressive disorder. Acta Neuropathol Commun 2023; 11:59. [PMID: 37013604 PMCID: PMC10071615 DOI: 10.1186/s40478-023-01545-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Carbonic Anhydrase 1 (CAR1) is a zinc-metalloenzyme that catalyzes the hydration of carbon dioxide, and the alteration of CAR1 has been implicated in neuropsychiatric disorders. However, the mechanism underlying the role of CAR1 in major depressive disorder (MDD) remains largely unknown. In this study, we report the decreased level of CAR1 in MDD patients and depression-like model rodents. We found that CAR1 is expressed in hippocampal astrocytes and CAR1 regulates extracellular bicarbonate concentration and pH value in the partial hilus. Ablation of the CAR1 gene increased the activity of granule cells via decreasing their miniature inhibitory postsynaptic currents (mIPSC), and caused depression-like behaviors in CAR1-knockout mice. Astrocytic CAR1 expression rescued the deficits in mIPSCs of granule cells and reduced depression-like behaviors in CAR1 deficient mice. Furthermore, pharmacological activation of CAR1 and overexpression of CAR1 in the ventral hippocampus of mice improved depressive behaviors. These findings uncover a critical role of CAR1 in the MDD pathogenesis and its therapeutic potential.
Collapse
Affiliation(s)
- Ke Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu Tian
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junjie Li
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xingzhe Xu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhonghao Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Heming Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yili Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Huatai Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
62
|
Yu C, Ruan Y, Sun X, Chen C, Shen T, Liu C, Qiu W, Lu Z, Chan SO, Wang L. rTMS ameliorates depression/anxiety-like behaviors in experimental autoimmune encephalitis by inhibiting neurotoxic reactive astrocytes. J Affect Disord 2023; 331:352-361. [PMID: 36958487 DOI: 10.1016/j.jad.2023.03.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
One third of patients with multiple sclerosis (MS) suffered from depressive symptoms. The pathogenesis of depression in MS patients has been related to innate immune activation in certain regions of the brain such as hippocampus. However, pharmacotherapy lacks sufficient evidence for beneficial effects on depression in MS patients, urging for a novel treatment modality for this mental disorder. Treatment effects of rTMS on depression/anxiety-like behaviors in mice with experimental autoimmune encephalomyelitis (EAE) were assessed by behavioral tests. The role of innate immune response was examined by RNA sequencing, quantitative RT-PCR, and immunofluorescence techniques. Depressive symptom severity and astroglial activation in patients with MS were assessed by Beck Depression Inventory and serum glial fibrillary acidic protein (GFAP), respectively. EAE mice displayed depression/anxiety-like behaviors, which were ameliorated by rTMS. Transcriptome and gene-specific expression analysis of the hippocampus showed significant reduction in transcript levels associated with neurotoxic reactive astrocytes in EAE mice after rTMS treatment. This was confirmed by immunofluorescence studies. Complement component 3d, a marker of neurotoxic reactive astrocytes, was highly expressed in EAE hippocampus, but was reduced to a basal level after rTMS treatment. In patients with MS, astroglial activation, indicated by serum GFAP levels, was significantly elevated in those with moderate or major depressive symptoms. These findings support that the suppression of neurotoxic reactive astrocytes might be a potential target for treatment of depression in patients with MS, and suggest the potential of using rTMS as a potential therapeutic treatment for this disorder.
Collapse
Affiliation(s)
- Chao Yu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China; Medical Examination Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Yiwen Ruan
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiaobo Sun
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Chen Chen
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Ting Shen
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Chunxin Liu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Wei Qiu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Zhengqi Lu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Sun On Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Liqing Wang
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
63
|
Nikolopoulos D, Manolakou T, Polissidis A, Filia A, Bertsias G, Koutmani Y, Boumpas DT. Microglia activation in the presence of intact blood-brain barrier and disruption of hippocampal neurogenesis via IL-6 and IL-18 mediate early diffuse neuropsychiatric lupus. Ann Rheum Dis 2023; 82:646-657. [PMID: 36898766 PMCID: PMC10176423 DOI: 10.1136/ard-2022-223506] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/26/2023] [Indexed: 03/12/2023]
Abstract
INTRODUCTION Inflammatory mediators are detected in the cerebrospinal fluid of systemic lupus erythematosus patients with central nervous system involvement (NPSLE), yet the underlying cellular and molecular mechanisms leading to neuropsychiatric disease remain elusive. METHODS We performed a comprehensive phenotyping of NZB/W-F1 lupus-prone mice including tests for depression, anxiety and cognition. Immunofluorescence, flow cytometry, RNA-sequencing, qPCR, cytokine quantification and blood-brain barrier (BBB) permeability assays were applied in hippocampal tissue obtained in both prenephritic (3-month-old) and nephritic (6-month-old) lupus mice and matched control strains. Healthy adult hippocampal neural stem cells (hiNSCs) were exposed ex vivo to exogenous inflammatory cytokines to assess their effects on proliferation and apoptosis. RESULTS At the prenephritic stage, BBB is intact yet mice exhibit hippocampus-related behavioural deficits recapitulating the human diffuse neuropsychiatric disease. This phenotype is accounted by disrupted hippocampal neurogenesis with hiNSCs exhibiting increased proliferation combined with decreased differentiation and increased apoptosis in combination with microglia activation and increased secretion of proinflammatory cytokines and chemokines. Among these cytokines, IL-6 and IL-18 directly induce apoptosis of adult hiNSCs ex vivo. During the nephritic stage, BBB becomes disrupted which facilitates immune components of peripheral blood, particularly B-cells, to penetrate into the hippocampus further augmenting inflammation with locally increased levels of IL-6, IL-12, IL-18 and IL-23. Of note, an interferon gene signature was observed only at nephritic-stage. CONCLUSION An intact BBB with microglial activation disrupting the formation of new neurons within the hippocampus represent early events in NPSLE. Disturbances of the BBB and interferon signature are evident later in the course of the disease.
Collapse
Affiliation(s)
- Dionysis Nikolopoulos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece .,School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Manolakou
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Anastasia Filia
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George Bertsias
- Laboratory of Autoimmunity-Inflammation, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,Rheumatology, Clinical Immunology and Allergy Department, Medical School University of Crete, Heraklion, Greece
| | | | - Dimitrios T Boumpas
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece .,School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
64
|
Fabry Disease and Central Nervous System Involvement: From Big to Small, from Brain to Synapse. Int J Mol Sci 2023; 24:ijms24065246. [PMID: 36982318 PMCID: PMC10049671 DOI: 10.3390/ijms24065246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disorder (LSD) secondary to mutations in the GLA gene that causes dysfunctional activity of lysosomal hydrolase α-galactosidase A and results in the accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3). The endothelial accumulation of these substrates results in injury to multiple organs, mainly the kidney, heart, brain and peripheral nervous system. The literature on FD and central nervous system involvement is scarce when focusing on alterations beyond cerebrovascular disease and is nearly absent in regard to synaptic dysfunction. In spite of that, reports have provided evidence for the CNS’ clinical implications in FD, including Parkinson’s disease, neuropsychiatric disorders and executive dysfunction. We aim to review these topics based on the current available scientific literature.
Collapse
|
65
|
A focus on Rho/ROCK signaling pathway: An emerging therapeutic target in depression. Eur J Pharmacol 2023; 946:175648. [PMID: 36894049 DOI: 10.1016/j.ejphar.2023.175648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Depression is the most common mental health disorder worldwide; however, the exact cellular and molecular mechanisms of this major depressive disorder are unclear so far. Experimental studies have demonstrated that depression is associated with significant cognitive impairment, dendrite spine loss, and reduction in connectivity among neurons that contribute to symptoms associated with mood disorders. Rho/Rho-associated coiled-coil containing protein kinase (ROCK) receptors are exclusively expressed in the brain and Rho/ROCK signaling has gained considerable attention as it plays a crucial role in the development of neuronal architecture and structural plasticity. Chronic stress-induced activation of the Rho/ROCK signaling pathway promotes neuronal apoptosis and loss of neural processes and synapses. Interestingly, accumulated evidence has identified Rho/ROCK signaling pathways as a putative target for treating neurological disorders. Furthermore, inhibition of the Rho/ROCK signaling pathway has proven to be effective in different models of depression, which signify the potential benefits of clinical Rho/ROCK inhibition. The ROCK inhibitors extensively modulate antidepressant-related pathways which significantly control the synthesis of proteins, and neuron survival and ultimately led to the enhancement of synaptogenesis, connectivity, and improvement in behavior. Therefore, the present review refines the prevailing contribution of this signaling pathway in depression and highlighted preclinical shreds of evidence for employing ROCK inhibitors as disease-modifying targets along with possible underlying mechanisms in stress-associated depression.
Collapse
|
66
|
Yoon S, Iqbal H, Kim SM, Jin M. Phytochemicals That Act on Synaptic Plasticity as Potential Prophylaxis against Stress-Induced Depressive Disorder. Biomol Ther (Seoul) 2023; 31:148-160. [PMID: 36694423 PMCID: PMC9970837 DOI: 10.4062/biomolther.2022.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
Depression is a neuropsychiatric disorder associated with persistent stress and disruption of neuronal function. Persistent stress causes neuronal atrophy, including loss of synapses and reduced size of the hippocampus and prefrontal cortex. These alterations are associated with neural dysfunction, including mood disturbances, cognitive impairment, and behavioral changes. Synaptic plasticity is the fundamental function of neural networks in response to various stimuli and acts by reorganizing neuronal structure, function, and connections from the molecular to the behavioral level. In this review, we describe the alterations in synaptic plasticity as underlying pathological mechanisms for depression in animal models and humans. We further elaborate on the significance of phytochemicals as bioactive agents that can positively modulate stress-induced, aberrant synaptic activity. Bioactive agents, including flavonoids, terpenes, saponins, and lignans, have been reported to upregulate brain-derived neurotrophic factor expression and release, suppress neuronal loss, and activate the relevant signaling pathways, including TrkB, ERK, Akt, and mTOR pathways, resulting in increased spine maturation and synaptic numbers in the neuronal cells and in the brains of stressed animals. In clinical trials, phytochemical usage is regarded as safe and well-tolerated for suppressing stress-related parameters in patients with depression. Thus, intake of phytochemicals with safe and active effects on synaptic plasticity may be a strategy for preventing neuronal damage and alleviating depression in a stressful life.
Collapse
Affiliation(s)
- Soojung Yoon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Hamid Iqbal
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Sun Mi Kim
- Department of Psychiatry, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea,Department of Psychiatry, Chung-Ang University Hospital, Seoul 06973, Republic of Korea
| | - Mirim Jin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea,Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea,Corresponding Author E-mail: , Tel: +82-32-899-6080, Fax: +82-32-899-6029
| |
Collapse
|
67
|
Breit S, Mazza E, Poletti S, Benedetti F. White matter integrity and pro-inflammatory cytokines as predictors of antidepressant response in MDD. J Psychiatr Res 2023; 159:22-32. [PMID: 36657311 DOI: 10.1016/j.jpsychires.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/12/2022] [Accepted: 12/10/2022] [Indexed: 01/13/2023]
Abstract
Major depressive disorder (MDD) is a multifactorial, serious and heterogeneous mental disorder that can lead to chronic recurrent symptoms, treatment resistance and suicidal behavior. MDD often involves immune dysregulation with high peripheral levels of inflammatory cytokines that might have an influence on the clinical course and treatment response. Moreover, patients with MDD show brain volume changes as well as white matter (WM) alterations that are already existing in the early stage of illness. Mounting evidence suggests that both neuroimaging markers, such as WM integrity and blood markers, such as inflammatory cytokines might serve as predictors of treatment response in MDD. However, the relationship between peripheral inflammation, WM structure and antidepressant response is not yet clearly understood. The aim of the present review is to elucidate the association between inflammation and WM integrity and its impact on the pathophysiology and progression of MDD as well as the role of possible novel biomarkers of treatment response to improve MDD prevention and treatment strategies.
Collapse
Affiliation(s)
- Sigrid Breit
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Elena Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
68
|
Paramanik V, Kurrey K, Singh P, Tiwari S. Roles of genistein in learning and memory during aging and neurological disorders. Biogerontology 2023; 24:329-346. [PMID: 36828983 DOI: 10.1007/s10522-023-10020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/23/2023] [Indexed: 02/26/2023]
Abstract
Genistein (GEN) is a non-steroidal phytoestrogen that belongs to the isoflavone class. It is abundantly found in soy. Soy and its products are used as food components in many countries including India. The present review is focused to address roles of GEN in brain functions in the context of learning and memory as a function of aging and neurological disorders. Memory decline is one of the most disabling features observed during normal aging and age-associated neurodegenerative disorders namely Alzheimer's disease (AD) and Parkinson's disease (PD), etc. Anatomical, physiological, biochemical and molecular changes in the brain with advancement of age and pathological conditions lead to decline of cognitive functions. GEN is chemically comparable to estradiol and binds to estrogen receptors (ERs). GEN acts through ERs and mimics estrogen action. After binding to ERs, GEN regulates a plethora of brain functions including learning and memory; however detailed study still remains elusive. Due to the neuroprotective, anti-oxidative and anti-inflammatory properties, GEN is used to restore or improve memory functions in different animal models and humans. The present review may be helpful to understand roles of GEN in learning and memory during aging and neurological disorders, its direction of research and therapeutic perspectives.
Collapse
Affiliation(s)
- Vijay Paramanik
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India.
| | - Khuleshwari Kurrey
- Department of Psychiatry and Behavioral Sciences, Neurobiology Division, John Hopkins University, School of Medicine, Baltimore, MD, 21287, USA
| | - Padmanabh Singh
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India
| | - Sneha Tiwari
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India
| |
Collapse
|
69
|
The effect of chronic stress on behaviors, inflammation and lymphocyte subtypes in male and female rats. Behav Brain Res 2023; 439:114220. [PMID: 36414104 DOI: 10.1016/j.bbr.2022.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Excessively released proinflammatory mediators from activated macrophages and lymphocytes may contribute to the etiology of depression. However, the relationship between lymphocytes and depression is not fully understood. Although women have higher depression risk than men, sex/gender differences in psychoneuroimmunological mechanisms are still unclear. To explore these two questions, chronic unpredictable mild stress (CUMS) was used to evaluate the changes in behaviors, inflammation and lymphocyte subtypes in adult male and female Wistar rats. Results show that CUMS increased anhedonia and anxiety-like behaviors, along with increased serum corticosterone, hippocampal pro-inflammatory factors, CD11b, IFN-γ, IL-6 and IL-17, but decreased CD4, CD25, CD4/CD8 ratio, GFAP, 5-hydroxytryptamine (5-HT) and NE concentrations, regardless of sex. There was no positive correlation between sucrose preference and blood CD4/CD8 ratio, but a positive correlation between sucrose preference and spleen CD25, sucrose preference and neurotransmitters (NE and 5-HT), spleen CD25 and serum TGF-β1/IL-6 ratio were found, regardless of sex. Females presented higher basal locomotion, blood CD4, CD4/CD8 ratio, serum corticosteroid and IL-6 concentrations, but lower hippocampal norepinephrine (NE) than males. Although CUMS didn't induce significant sex differences, females presented more changes in CD4 and CD8 lymphocytes than male rats. CUMS caused abnormalities in corticosteroid, lymphocytes, cytokines and neurotransmitters, which might be the precursors for inducing depression-like behaviors in both sexes.
Collapse
|
70
|
Moigneu C, Abdellaoui S, Ramos-Brossier M, Pfaffenseller B, Wollenhaupt-Aguiar B, de Azevedo Cardoso T, Camus C, Chiche A, Kuperwasser N, Azevedo da Silva R, Pedrotti Moreira F, Li H, Oury F, Kapczinski F, Lledo PM, Katsimpardi L. Systemic GDF11 attenuates depression-like phenotype in aged mice via stimulation of neuronal autophagy. NATURE AGING 2023; 3:213-228. [PMID: 37118117 PMCID: PMC10154197 DOI: 10.1038/s43587-022-00352-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/19/2022] [Indexed: 04/30/2023]
Abstract
Cognitive decline and mood disorders increase in frequency with age. Many efforts are focused on the identification of molecules and pathways to treat these conditions. Here, we demonstrate that systemic administration of growth differentiation factor 11 (GDF11) in aged mice improves memory and alleviates senescence and depression-like symptoms in a neurogenesis-independent manner. Mechanistically, GDF11 acts directly on hippocampal neurons to enhance neuronal activity via stimulation of autophagy. Transcriptomic and biochemical analyses of these neurons reveal that GDF11 reduces the activity of mammalian target of rapamycin (mTOR), a master regulator of autophagy. Using a murine model of corticosterone-induced depression-like phenotype, we also show that GDF11 attenuates the depressive-like behavior of young mice. Analysis of sera from young adults with major depressive disorder (MDD) reveals reduced GDF11 levels. These findings identify mechanistic pathways related to GDF11 action in the brain and uncover an unknown role for GDF11 as an antidepressant candidate and biomarker.
Collapse
Affiliation(s)
- Carine Moigneu
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
| | - Soumia Abdellaoui
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | | | - Bianca Pfaffenseller
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | | | | - Claire Camus
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
| | - Aurélie Chiche
- Cellular Plasticity in Age-Related Pathologies Laboratory, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Paris, France
| | - Nicolas Kuperwasser
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | | | | | - Han Li
- Cellular Plasticity in Age-Related Pathologies Laboratory, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Paris, France
| | - Franck Oury
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | - Flávio Kapczinski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Pierre-Marie Lledo
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France.
| | - Lida Katsimpardi
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France.
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France.
| |
Collapse
|
71
|
Prolonged High-Fat Diet Consumption throughout Adulthood in Mice Induced Neurobehavioral Deterioration via Gut-Brain Axis. Nutrients 2023; 15:nu15020392. [PMID: 36678262 PMCID: PMC9867348 DOI: 10.3390/nu15020392] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Neuropsychiatric disorders have been one of the worldwide health problems contributing to profound social and economic consequences. It is reported that consumption of an excessive high-fat diet (HFD) in middle age could induce cognitive and emotional dysfunctions, whereas the mechanisms of the effects of long-term HFD intake on brain disorders have not been fully investigated. We propose a hypothesis that prolonged HFD intake throughout adulthood could lead to neurobehavioral deterioration via gut-brain axis. In this study, the adult C57BL/6J mice consuming long-term HFD (24 weeks) exhibited more anxiety-like, depression-like, and disruptive social behaviors and poorer performance in learning and memory than control mice fed with a normal diet (ND). In addition, the homeostasis of gut microbiota was impaired by long-term HFD consumption. Changes in some flora, such as Prevotellaceae_NK3B31_group and Ruminococcus, within the gut communities, were correlated to neurobehavioral alterations. Furthermore, the gut permeability was increased after prolonged HFD intake due to the decreased thickness of the mucus layer and reduced expression of tight junction proteins in the colon. The mRNA levels of genes related to synaptic-plasticity, neuronal development, microglia maturation, and activation in the hippocampus and prefrontal cortex of HFD-fed mice were lower than those in mice fed with ND. Interestingly, the transcripts of genes related to tight junction proteins, ZO-1 and Occludin involved in blood-brain-barrier (BBB), were decreased in both hippocampus and prefrontal cortex after long-term HFD consumption. Those results indicated that chronic consumption of HFD in mice resulted in gut microbiota dysbiosis, which induced decreased expression of mucus and tight junction proteins in the colon, in turn leading to local and systemic inflammation. Those changes could further contribute to the impairment of brain functions and neurobehavioral alterations, including mood, sociability, learning and memory. In short, long-term HFD intake throughout adulthood could induce behavioral phenotypes related to neuropsychiatric disorders via gut-brain axis. The observations of this study provide potential intervention strategies to reduce the risk of HFD via targeting the gut or manipulating gut microbiota.
Collapse
|
72
|
Wolugbom JA, Areloegbe SE, Olaniyi KS. Protective Role of Acetate Against Depressive-Like Behaviour Associated with Letrozole-Induced PCOS Rat Model: Involvement of HDAC2 and DNA Methylation. Mol Neurobiol 2023; 60:355-368. [PMID: 36269541 DOI: 10.1007/s12035-022-03074-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/08/2022] [Indexed: 12/30/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder amongst women of reproductive age. PCOS has been demonstrated to induce depressive-like behaviour. Epigenetic alterations such as histone deacetylation (HDAC) and DNA methylation have been suggested in major depression. However, their effects with respect to neuroinflammation are not clear. This study therefore investigated the pathogenic involvement of epigenetic changes in PCOS-associated depression and the protective role of HDACi, especially acetate. Virgin female Wistar rats (140 ± 10 g) were assigned into four groups: the groups received vehicle (control), acetate (200 mg/kg), letrozole (1 mg/kg) and letrozole plus acetate, respectively. The administrations were done concomitantly by oral gavage for 21 days. Treatment with letrozole caused hyperandrogenism, hypoestrogenism, hyperinsulinemia and multiple ovarian cysts/degenerated follicles. In addition, these animals showed depressive-like behaviours and increased expression of HDAC2 and DNA methyltransferase in PFC and hippocampal tissues. Biochemical analyses showed elevated levels of NF-κB, malondialdehyde and acetylcholine (ACH) with glutathione depletion in PFC and hippocampus as well as elevated plasma malondialdehyde and impaired anti-oxidant system in letrozole-treated animals. Histological analysis of PFC and hippocampus showed neurodegeneration in letrozole-treated animals compared with control. However, these alterations were attenuated when treated with acetate. The study demonstrates that PCOS-associated depression is characterised by neuroinflammation and elevated ACH levels, accompanied by increased expression of HDAC2/DNA methyltransferase in PFC and hippocampus. Besides, the study suggests that acetate protects against PCOS-associated depression through suppression of prefrontal and hippocampal DNA methylation and prefrontal but not hippocampal HDAC2 expression.
Collapse
Affiliation(s)
- John A Wolugbom
- Cardio/Repro-Metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Stephanie E Areloegbe
- Cardio/Repro-Metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Kehinde S Olaniyi
- Cardio/Repro-Metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.
| |
Collapse
|
73
|
Zou W, Song P, Lu W, Shao R, Zhang R, Yau SY, Yuan TF, Wang Y, Lin K. Global hippocampus functional connectivity as a predictive neural marker for conversion to future mood disorder in unaffected offspring of bipolar disorder parents. Asian J Psychiatr 2022; 78:103307. [PMID: 36332319 DOI: 10.1016/j.ajp.2022.103307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Hippocampus-related functional alteration in genetically at-risk individuals may reflect an endophenotype of a mood disorder. Herein, we performed a prospective study to investigate whether baseline hippocampus functional connectivity (FC) in offspring of patients with bipolar disorder (BD) would predict subsequent conversion to mood disorder. METHODS Eighty bipolar offspring and 40 matched normal controls (NC) underwent resting state functional MRI (rsfMRI) scanning on a 3.0 Tesla MR scanner. The offspring were subdivided into asymptomatic offspring (AO) (n = 41) and symptomatic offspring (SO) (n = 39) according to whether they manifested subthreshold mood symptoms. After identifying the different hippocampus FCs between the AO and SO, a logistic regression analysis was conducted to investigate whether the baseline hippocampus FCs predicted a future mood disorder during a 6-year follow-up. RESULTS We identified seven baseline para/hippocampus FCs that showed differences between AO and SO, which were entered as predictive features in the logistic regressive model. Of the 80 bipolar offspring entering the analysis, the FCs between left hippocampus and left precuneus, and between right hippocampus and left posterior cingulate, showed a discriminative capacity for predicting future mood disorder (area-under-curve, or AUC=75.76 % and 75.00 % respectively), and for predicting BD onset (AUC=77.46 % and 81.63 %, respectively). CONCLUSIONS The present findings revealed high predictive utility of the hippocampus resting state FCs for future mood disorder and BD onset in individuals at familial risk. These neural markers can potentially improve early detection of individuals carrying particularly high risk for future mood disorder.
Collapse
Affiliation(s)
- Wenjin Zou
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peilun Song
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Weicong Lu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Robin Shao
- Laboratory of Neuropsychology and Laboratory of Social Cognitive Affective, Neuroscience, Department of Psychology, University of Hong Kong, Hong Kong
| | - Ruoxi Zhang
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Yaping Wang
- School of Information Engineering, Zhengzhou University, Zhengzhou, China.
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, No. 17, Shandong Road, Shinan district, Qingdao City, Shandong Province, China.
| |
Collapse
|
74
|
Claudio A, Andrea F. Circadian neuromarkers of mood disorders. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
75
|
Huang D, Yan S, Shen S, Lv S, Lai S, Zhong S, Jia Y. Effects of virtual reality working memory training on event-based prospective memory in patients with major depressive disorder. J Psychiatr Res 2022; 156:91-99. [PMID: 36244203 DOI: 10.1016/j.jpsychires.2022.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/17/2022] [Accepted: 09/24/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Event-based prospective memory (EBPM) refers to remembering to perform delayed intention when specific events occur. EBPM deficit is present in patients with major depressive disorder (MDD) and hinders recovery from the illness. Working memory training (WMT) has been reported to enhance EBPM but its effect on EBPM in MDD remains unclear. We investigated whether virtual reality (VR)-based WMT can improve EBPM in MDD patients. METHODS Forty-six MDD patients and 41 healthy controls (HC) were recruited. Among the former ones, the first 23 consecutive patients were allocated to the experimental group (MDD-VR) and the next 23 consecutive patients to the waitlist control group (MDD-W). EBPM accuracy was used to assess EBPM performance. Hamilton Depression Rating Scale (HDRS) and Massachusetts General Hospital Cognitive and Physical Functioning Questionnaire (CPFQ) were employed to assess the cognitive functions and the depressive symptoms. RESULTS At baseline, EBPM accuracy did not significantly differ between MDD-VR and MDD-W but was lower in both of these two groups than in HC (both p < 0.001). Group-by-time interactions on EBPM accuracy (F = 4.614, p = 0.031) and CPFQ score (F = 5.754, p = 0.021) were present, whereas no significant group-by-time interaction or group effects were observed for HDRS score (both p > 0.05). After VR intervention, MDD-VR showed an increase in EBPM accuracy (Cohen's d = 1.20 [95% CI: 0.53, 1.86], p = 0.001). CONCLUSIONS Our results demonstrated that VR-based WMT could improve EBPM deficits in MDD patients. Large-scale studies of a VR-based WMT program are indicated.
Collapse
Affiliation(s)
- Dong Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shuya Yan
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; School of Management, Jinan University, Guangzhou, 510316, China
| | - Shiyi Shen
- School of Management, Jinan University, Guangzhou, 510316, China
| | - Sihui Lv
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; School of Management, Jinan University, Guangzhou, 510316, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
76
|
Xu J, Xia X, Li Q, Dou Y, Suo X, Sun Z, Liu N, Han Y, Sun X, He Y, Qin W, Zhang S, Banaschewski T, Flor H, Grigis A, Gowland P, Heinz A, Brühl R, Martinot JL, Artiges E, Nees F, Paus T, Poustka L, Hohmann S, Walter H, Sham PC, Schumann G, Wu X, Li MJ, Yu C. A causal association of ANKRD37 with human hippocampal volume. Mol Psychiatry 2022; 27:4432-4445. [PMID: 36195640 DOI: 10.1038/s41380-022-01800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
Human hippocampal volume has been separately associated with single nucleotide polymorphisms (SNPs), DNA methylation and gene expression, but their causal relationships remain largely unknown. Here, we aimed at identifying the causal relationships of SNPs, DNA methylation, and gene expression that are associated with hippocampal volume by integrating cross-omics analyses with genome editing, overexpression and causality inference. Based on structural neuroimaging data and blood-derived genome, transcriptome and methylome data, we prioritized a possibly causal association across multiple molecular phenotypes: rs1053218 mutation leads to cg26741686 hypermethylation, thus leads to overactivation of the associated ANKRD37 gene expression in blood, a gene involving hypoxia, which may result in the reduction of human hippocampal volume. The possibly causal relationships from rs1053218 to cg26741686 methylation to ANKRD37 expression obtained from peripheral blood were replicated in human hippocampal tissue. To confirm causality, we performed CRISPR-based genome and epigenome-editing of rs1053218 homologous alleles and cg26741686 methylation in mouse neural stem cell differentiation models, and overexpressed ANKRD37 in mouse hippocampus. These in-vitro and in-vivo experiments confirmed that rs1053218 mutation caused cg26741686 hypermethylation and ANKRD37 overexpression, and cg26741686 hypermethylation favored ANKRD37 overexpression, and ANKRD37 overexpression reduced hippocampal volume. The pairwise relationships of rs1053218 with hippocampal volume, rs1053218 with cg26741686 methylation, cg26741686 methylation with ANKRD37 expression, and ANKRD37 expression with hippocampal volume could be replicated in an independent healthy young (n = 443) dataset and observed in elderly people (n = 194), and were more significant in patients with late-onset Alzheimer's disease (n = 76). This study revealed a novel causal molecular association mechanism of ANKRD37 with human hippocampal volume, which may facilitate the design of prevention and treatment strategies for hippocampal impairment.
Collapse
Affiliation(s)
- Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Xianyou Xia
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, PR China
| | - Qiaojun Li
- College of Information Engineering, Tianjin University of Commerce, Tianjin, 300052, PR China
| | - Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Xinjun Suo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Zuhao Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Nana Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Yating Han
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xiaodi Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Yukun He
- Department of Pharmacology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Shijie Zhang
- Department of Pharmacology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2 - 12, Berlin, Germany
| | - Jean-Luc Martinot
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental trajectories & psychiatry"; Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - Eric Artiges
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental trajectories & psychiatry"; Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; Gif-sur-Yvette; and Etablissement Public de Santé (EPS) Barthélemy Durand, 91700, Sainte-Geneviève-des-Bois, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Tomáš Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Henrik Walter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany
| | - Pak Chung Sham
- Centre for PanorOmic Sciences-Genomics and Bioinformatics Cores, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, P.R. China
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence 20 (ISTBI), Fudan University, Shanghai, P.R. China
- PONS Centre, Department of Psychiatry and Psychotherapy, CCM, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | - Xudong Wu
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, PR China.
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, PR China.
| | - Mulin Jun Li
- Department of Pharmacology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China.
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, PR China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, PR China.
| |
Collapse
|
77
|
Herzberg MP, Tillman R, Kandala S, Barch DM, Luby J. Preschool Depression and Hippocampal Volume: The Moderating Role of Family Income. J Am Acad Child Adolesc Psychiatry 2022; 61:1362-1371. [PMID: 35523377 PMCID: PMC10845235 DOI: 10.1016/j.jaac.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Depression and low socioeconomic status have both been associated with hippocampal volume alterations. Whether these factors interact to predict neurobehavioral outcomes has not been adequately studied. The authors investigated family income as a moderator of the relationship between depression and hippocampal volume in a longitudinal sample. METHOD Longitudinal behavioral data, beginning at preschool age, and behavioral and neuroimaging data from school age to adolescence were used to assess the impact of preschool only and total preschool to adolescent depression symptoms on hippocampal volumes using family income as a moderator (N = 176). RESULTS Depression severity during the preschool period interacted with family income to predict hippocampal volumes at the intercept (ie, age 13 years; B = -0.078, p = .003). Interaction decomposition revealed that only individuals with relatively high family income exhibited smaller hippocampal volume with increasing depression severity (B = -0.146, p = .005). Family income was associated with hippocampus volumes only in individuals with low to moderate preschool depression severity (B = 0.289, p = .007 and B = 0.169, p = .030, respectively). CONCLUSION Preschool depression severity interacts with family income to predict hippocampal volume across development, such that the effects of early depression are evident only in those with higher income. These findings suggest that hippocampal volume may not be an effective marker of risk for depression at different levels of socioeconomic status, and emphasizes the importance of the environmental context when assessing risk markers for depression. Future research should explore how socioeconomic stress may eclipse the effects of depression on hippocampal development, setting alternative neurodevelopmental risk trajectories.
Collapse
Affiliation(s)
- Max P Herzberg
- Washington University in St. Louis, St. Louis, Missouri.
| | | | | | | | - Joan Luby
- Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
78
|
Jin K, Zhang S, Jiang C, Liu R, Chen B, Zhao H, Zhang Q, Shen Z, Xu P, Hu X, Jiao J, Lu J, Huang M. The role of reelin in the pathological mechanism of depression from clinical to rodents. Psychiatry Res 2022; 317:114838. [PMID: 36103758 DOI: 10.1016/j.psychres.2022.114838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/13/2022] [Accepted: 09/04/2022] [Indexed: 01/04/2023]
Abstract
Major depressive disorder (MDD) is a devastating mental illness and the leading cause of disability worldwide. Previous studies have suggested that synaptic plasticity in the hippocampus plays an important role in depression pathogenesis. Reelin is expressed mainly in the frontal lobe and hippocampus, and is closely associated with neurodevelopment and synaptic plasticity. However, few studies have investigated its role in MDD combining clinical trials and animal experiments. We show that in a clinical trial, plasma reelin levels decreased in patients with first-episode drug-naïve MDD and increased after treatment; further, plasma reelin levels allowed to distinguish drug-naïve patients with first-episode MDD from healthy individuals. In rats, chronic mild and unpredictable stress led to a decrease in both reelin mRNA and protein levels in the hippocampus, which could be reversed by vortioxetine. Subsequent experiments confirmed that the reelin-ApoER2-NR2A /NR2B pathway regulates hippocampal synaptic plasticity and may be involved in depression or antidepressant responses. Our work contributes to a deeper understanding of MDD pathogenesis and provides new evidence that reelin should be considered a potential therapeutic target for MDD.
Collapse
Affiliation(s)
- Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Shiyi Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Chaonan Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ripeng Liu
- College of First Clinical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Haoyang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Qin Zhang
- College of First Clinical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Zhe Shen
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Pengfeng Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xiaohan Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jianping Jiao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
79
|
The neuroprotective and neuroplastic potential of glutamatergic therapeutic drugs in bipolar disorder. Neurosci Biobehav Rev 2022; 142:104906. [DOI: 10.1016/j.neubiorev.2022.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
80
|
Kot M, Neglur PK, Pietraszewska A, Buzanska L. Boosting Neurogenesis in the Adult Hippocampus Using Antidepressants and Mesenchymal Stem Cells. Cells 2022; 11:cells11203234. [PMID: 36291101 PMCID: PMC9600461 DOI: 10.3390/cells11203234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The hippocampus is one of the few privileged regions (neural stem cell niche) of the brain, where neural stem cells differentiate into new neurons throughout adulthood. However, dysregulation of hippocampal neurogenesis with aging, injury, depression and neurodegenerative disease leads to debilitating cognitive impacts. These debilitating symptoms deteriorate the quality of life in the afflicted individuals. Impaired hippocampal neurogenesis is especially difficult to rescue with increasing age and neurodegeneration. However, the potential to boost endogenous Wnt signaling by influencing pathway modulators such as receptors, agonists, and antagonists through drug and cell therapy-based interventions offers hope. Restoration and augmentation of hampered Wnt signaling to facilitate increased hippocampal neurogenesis would serve as an endogenous repair mechanism and contribute to hippocampal structural and functional plasticity. This review focuses on the possible interaction between neurogenesis and Wnt signaling under the control of antidepressants and mesenchymal stem cells (MSCs) to overcome debilitating symptoms caused by age, diseases, or environmental factors such as stress. It will also address some current limitations hindering the direct extrapolation of research from animal models to human application, and the technical challenges associated with the MSCs and their cellular products as potential therapeutic solutions.
Collapse
Affiliation(s)
- Marta Kot
- Correspondence: ; Tel.: +48-22-60-86-563
| | | | | | | |
Collapse
|
81
|
Cognitive Deficits Found in a Pro-inflammatory State are Independent of ERK1/2 Signaling in the Murine Brain Hippocampus Treated with Shiga Toxin 2 from Enterohemorrhagic Escherichia coli. Cell Mol Neurobiol 2022:10.1007/s10571-022-01298-1. [PMID: 36227397 DOI: 10.1007/s10571-022-01298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
Shiga toxin 2 (Stx2) from enterohemorrhagic Escherichia coli (EHEC) produces hemorrhagic colitis, hemolytic uremic syndrome (HUS), and acute encephalopathy. The mortality rate in HUS increases significantly when the central nervous system (CNS) is involved. Besides, EHEC also releases lipopolysaccharide (LPS). Many reports have described cognitive dysfunctions in HUS patients, the hippocampus being one of the brain areas targeted by EHEC infection. In this context, a translational murine model of encephalopathy was employed to establish the deleterious effects of Stx2 and the contribution of LPS in the hippocampus. The purpose of this work is to elucidate the signaling pathways that may activate the inflammatory processes triggered by Stx2, which produces cognitive alterations at the level of the hippocampus. Results demonstrate that Stx2 produced depression-like behavior, pro-inflammatory cytokine release, and NF-kB activation independent of the ERK1/2 signaling pathway, while co-administration of Stx2 and LPS reduced memory index. On the other hand, LPS activated NF-kB dependent on ERK1/2 signaling pathway. Cotreatment of Stx2 with LPS aggravated the pathologic state, while dexamethasone treatment succeeded in preventing behavioral alterations. Our present work suggests that the use of drugs such as corticosteroids or NF-kB signaling inhibitors may serve as neuroprotectors from EHEC infection.
Collapse
|
82
|
Perl A, Agmon-Levin N, Crispín JC, Jorgensen TN. Editorial: New biomarkers for the diagnosis and treatment of systemic lupus erythematosus. Front Immunol 2022; 13:1009038. [PMID: 36311710 PMCID: PMC9599399 DOI: 10.3389/fimmu.2022.1009038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 01/17/2023] Open
Affiliation(s)
- Andras Perl
- Department of Medicine, College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, United States,Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, United States,Department of Microbiology and Immunology, College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, United States,*Correspondence: Andras Perl,
| | - Nancy Agmon-Levin
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Israel
| | - José C. Crispín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Trine N. Jorgensen
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
83
|
Liu Y, Song N, Yao H, Jiang S, Wang Y, Zheng Y, Zhou Y, Ding J, Hu G, Lu M. β-Arrestin2-biased Drd2 agonist UNC9995 alleviates astrocyte inflammatory injury via interaction between β-arrestin2 and STAT3 in mouse model of depression. J Neuroinflammation 2022; 19:240. [PMID: 36183107 PMCID: PMC9526944 DOI: 10.1186/s12974-022-02597-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/13/2022] [Indexed: 12/17/2022] Open
Abstract
Background Major depressive disorder (MDD) is a prevalent and devastating psychiatric illness. Unfortunately, the current therapeutic practice, generally depending on the serotonergic system for drug treatment is unsatisfactory and shows intractable side effects. Multiple evidence suggests that dopamine (DA) and dopaminergic signals associated with neuroinflammation are highly involved in the pathophysiology of depression as well as in the mechanism of antidepressant drugs, which is still in the early stage of study and well worthy of investigation. Methods We established two chronic stress models, including chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), to complementarily recapitulate depression-like behaviors. Then, hippocampal tissues were used to detect inflammation-related molecules and signaling pathways. Pathological changes in depressive mouse hippocampal astrocytes were examined by RNA sequencing. After confirming the dopamine receptor 2 (Drd2)/β-arrestin2 signaling changes in the depressive mice brain, we then established the depressive mouse model using the β-arrestin2 knockout mice or administrating the β-arrestin2-biased Drd2 agonist to investigate the roles. Label-free mass spectrometry was used to identify the β-arrestin2-binding proteins as the underlying mechanisms. We modeled neuroinflammation with interleukin-6 (IL-6) and corticosterone treatment and characterized astrocytes using multiple methods including cell viability assay, flow cytometry, and confocal immunofluorescence. Results Drd2-biased β-arrestin2 pathway is significantly changed in the progression of depression, and genetic deletion of β-arrestin2 aggravates neuroinflammation and depressive-like phenotypes. Mechanistically, astrocytic β-arrestin2 retains STAT3 in the cytoplasm by structural combination with STAT3, therefore, inhibiting the JAK–STAT3 pathway-mediated inflammatory activation. Furtherly, pharmacological activation of Drd2/β-arrestin2 pathway by UNC9995 abolishes the inflammation-induced loss of astrocytes and ameliorates depressive-like behaviors in mouse model for depression. Conclusions Drd2/β-arrestin2 pathway is a potential therapeutic target for depression and β-arrestin2-biased Drd2 agonist UNC9995 is identified as a potential anti-depressant strategy for preventing astrocytic dysfunctions and relieving neuropathological manifestations in mouse model for depression, which provides insights for the therapy of depression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02597-6.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nanshan Song
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hang Yao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Siyuan Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yueping Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Ying Zheng
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanzhang Zhou
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China. .,Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
84
|
Longstanding health risk across the life course: The influence of early-life experience on health status throughout the life span. J Biosoc Sci 2022:1-27. [PMID: 36120813 DOI: 10.1017/s002193202200027x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study tracked the longstanding effect of childhood adversities on health status over the course of a life. This study used the data from China Health and Retirement Longitudinal Study which was a nationally representative survey and documented the generation who had arrived in the middle- and old-age phase and experienced the difficult time in the early founding of PR China in their childhood. Results shown the significant associations between multiple forms of children adversities (economic distress, child neglect, child abuse, lack of friends, parental mental health problems) and health status in adolescence (from 0.068 to 0.102, p<0.01), and health status in mid and late adulthood, including self-rated general health problems (from 0.039 to 0.061, p<0.01), chronic conditions (from 0.014 to 0.120, p<0.01 except for lack of friends), body aches (from 0.016 to 0.062, p<0.01 except for child neglect), and depression (from 0.047 to 0.112, p<0.01). Meanwhile, results also shown an underlying pathway (i.e., health status in adolescence) linking childhood adversities and health status in mid and late adulthood. Results suggested that the experience of multiple forms of adversities in childhood represented a substantial source of health risk throughout life.
Collapse
|
85
|
Wang Q, Chen B, Zhong X, Hou L, Zhang M, Yang M, Wu Z, Chen X, Mai N, Zhou H, Lin G, Zhang S, Ning Y. Static and dynamic functional connectivity variability of the anterior-posterior hippocampus with subjective cognitive decline. Alzheimers Res Ther 2022; 14:122. [PMID: 36057586 PMCID: PMC9440588 DOI: 10.1186/s13195-022-01066-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 08/14/2022] [Indexed: 12/03/2022]
Abstract
Background Subjective cognitive decline (SCD) is a putative Alzheimer’s disease (AD) precursor without objective neuropsychological deficits. The hippocampus plays an important role in cognitive function and emotional responses and is generally aberrant in SCD. However, previous studies have mainly focused on static functional connectivity (sFC) by resting-state functional magnetic resonance imaging (fMRI) in SCD individuals, and it remains unclear whether hippocampal dynamic functional connectivity (dFC) changes exist in SCD and whether those changes are associated with subtle changes in cognitive function or affect. Methods Seventy SCD patients and 65 healthy controls were recruited. Demographic data, comprehensive neuropsychology assessments, and resting-state fMRI data were collected. The bilateral anterior and posterior hippocampi were selected as seeds to investigate the static and dynamic functional connectivity alterations in SCD. Results Compared to healthy controls, subjects with SCD exhibited: (1) decreased sFC between the left caudal hippocampus and left precuneus; (2) decreased dFC variability between the bilateral caudal hippocampus and precuneus; (3) increased dFC variability between the bilateral rostral hippocampus and caudate nucleus; and (4) increased dFC variability between the left rostral hippocampus and left olfactory cortex. Additionally, the attention scores were positively correlated with dFC variability between the left posterior hippocampus and left precuneus, and the dFC variability between the bilateral anterior hippocampus and caudate nucleus was positively correlated with depression scores and negatively correlated with global cognition scores. Conclusion SCD individuals exhibited abnormal sFC and dFC in the anterior-posterior hippocampus, and abnormal dFC was more widespread than abnormal sFC. A combination of sFC and dFC provides a new perspective for exploring the brain pathophysiological mechanisms in SCD and offers potential neuroimaging biomarkers for the early diagnosis and intervention of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01066-9.
Collapse
|
86
|
Webb EK, Cardenas-Iniguez C, Douglas R. Radically reframing studies on neurobiology and socioeconomic circumstances: A call for social justice-oriented neuroscience. Front Integr Neurosci 2022; 16:958545. [PMID: 36118113 PMCID: PMC9479322 DOI: 10.3389/fnint.2022.958545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 01/29/2023] Open
Abstract
Socioeconomic circumstances are associated with symptoms and diagnostic status of nearly all mental health conditions. Given these robust relationships, neuroscientists have attempted to elucidate how socioeconomic-based adversity "gets under the skin." Historically, this work emphasized individual proxies of socioeconomic position (e.g., income, education), ignoring the effects of broader socioeconomic contexts (e.g., neighborhood socioeconomic disadvantage) which may uniquely contribute to chronic stress. This omission represented a disconnect between neuroscience and other allied fields that have recognized health is undeniably linked to interactions between systems of power and individual characteristics. More recently, neuroscience work has considered how sociopolitical context affects brain structure and function; however, the products of this exciting line of research have lacked critical sociological and historical perspectives. While empirical evidence on this topic is burgeoning, the cultural, ethical, societal, and legal implications of this work have been elusive. Although the mechanisms by which socioeconomic circumstances impact brain structure and function may be similar across people, not everyone is exposed to these factors at similar rates. Individuals from ethnoracially minoritized groups are disproportionally exposed to neighborhood disadvantage. Thus, socioeconomic inequities examined in neuroscience research are undergirding with other forms of oppression, namely structural racism. We utilize a holistic, interdisciplinary approach to interpret findings from neuroscience research and interweave relevant theories from the fields of public health, social sciences, and Black feminist thought. In this perspective piece, we discuss the complex relationship that continues to exist between academic institutions and underserved surrounding communities, acknowledging the areas in which neuroscience research has historically harmed and/or excluded structurally disadvantaged communities. We conclude by envisioning how this work can be used; not just to inform policymakers, but also to engage and partner with communities and shape the future direction of human neuroscience research.
Collapse
Affiliation(s)
- E. Kate Webb
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, United States
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Robyn Douglas
- Department of Psychological and Behavioral Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
87
|
Davidson M, Rashidi N, Nurgali K, Apostolopoulos V. The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23179968. [PMID: 36077360 PMCID: PMC9456464 DOI: 10.3390/ijms23179968] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 12/20/2022] Open
Abstract
In recent decades, neuropsychiatric disorders such as major depressive disorder, schizophrenia, bipolar, etc., have become a global health concern, causing various detrimental influences on patients. Tryptophan is an important amino acid that plays an indisputable role in several physiological processes, including neuronal function and immunity. Tryptophan’s metabolism process in the human body occurs using different pathways, including the kynurenine and serotonin pathways. Furthermore, other biologically active components, such as serotonin, melatonin, and niacin, are by-products of Tryptophan pathways. Current evidence suggests that a functional imbalance in the synthesis of Tryptophan metabolites causes the appearance of pathophysiologic mechanisms that leads to various neuropsychiatric diseases. This review summarizes the pharmacological influences of tryptophan and its metabolites on the development of neuropsychiatric disorders. In addition, tryptophan and its metabolites quantification following the neurotransmitters precursor are highlighted. Eventually, the efficiency of various biomarkers such as inflammatory, protein, electrophysiological, genetic, and proteomic biomarkers in the diagnosis/treatment of neuropsychiatric disorders was discussed to understand the biomarker application in the detection/treatment of various diseases.
Collapse
Affiliation(s)
- Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
88
|
Resting-state functional connectivity does not predict individual differences in the effects of emotion on memory. Sci Rep 2022; 12:14481. [PMID: 36008438 PMCID: PMC9411155 DOI: 10.1038/s41598-022-18543-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Emotion-laden events and objects are typically better remembered than neutral ones. This is usually explained by stronger functional coupling in the brain evoked by emotional content. However, most research on this issue has focused on functional connectivity evoked during or after learning. The effect of an individual’s functional connectivity at rest is unknown. Our pre-registered study addresses this issue by analysing a large database, the Cambridge Centre for Ageing and Neuroscience, which includes resting-state data and emotional memory scores from 303 participants aged 18–87 years. We applied regularised regression to select the relevant connections and replicated previous findings that whole-brain resting-state functional connectivity can predict age and intelligence in younger adults. However, whole-brain functional connectivity predicted neither an emotional enhancement effect (i.e., the degree to which emotionally positive or negative events are remembered better than neutral events) nor a positivity bias effect (i.e., the degree to which emotionally positive events are remembered better than negative events), failing to support our pre-registered hypotheses. These results imply a small or no association between individual differences in functional connectivity at rest and emotional memory, and support recent notions that resting-state functional connectivity is not always useful in predicting individual differences in behavioural measures.
Collapse
|
89
|
Haas-Neill S, Iwashita E, Dvorkin-Gheva A, Forsythe P. Effects of Two Distinct Psychoactive Microbes, Lacticaseibacillus rhamnosus JB-1 and Limosilactobacillus reuteri 6475, on Circulating and Hippocampal mRNA in Male Mice. Int J Mol Sci 2022; 23:ijms23179653. [PMID: 36077051 PMCID: PMC9456087 DOI: 10.3390/ijms23179653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Discovery of the microbiota-gut–brain axis has led to proposed microbe-based therapeutic strategies in mental health, including the use of mood-altering bacterial species, termed psychobiotics. However, we still have limited understanding of the key signaling pathways engaged by specific organisms in modulating brain function, and evidence suggests that bacteria with broadly similar neuroactive and immunomodulatory actions can drive different behavioral outcomes. We sought to identify pathways distinguishing two psychoactive bacterial strains that seemingly engage similar gut–brain signaling pathways but have distinct effects on behaviour. We used RNAseq to identify mRNAs differentially expressed in the blood and hippocampus of mice following Lacticaseibacillus rhamnosus JB-1, and Limosilactobacillus reuteri 6475 treatment and performed Gene Set Enrichment Analysis (GSEA) to identify enrichment in pathway activity. L. rhamnosus, but not L. reuteri treatment altered several pathways in the blood and hippocampus, and the rhamnosus could be clearly distinguished based on mRNA profile. In particular, L. rhamnosus treatment modulated the activity of interferon signaling, JAK/STAT, and TNF-alpha via NF-KB pathways. Our results highlight that psychobiotics can induce complex changes in host gene expression, andin understanding these changes, we may help fine-tune selection of psychobiotics for treating mood disorders.
Collapse
Affiliation(s)
- Sandor Haas-Neill
- The Brain Body Institute, St. Joseph’s Hospital, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Eiko Iwashita
- The Brain Body Institute, St. Joseph’s Hospital, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Paul Forsythe
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 569 Heritage Medical Research Center, Edmonton, AB T6G 2S2, Canada
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 1H9, Canada
- Correspondence:
| |
Collapse
|
90
|
Kuga N, Sasaki T. Memory-related neurophysiological mechanisms in the hippocampus underlying stress susceptibility. Neurosci Res 2022:S0168-0102(22)00213-9. [PMID: 35931215 DOI: 10.1016/j.neures.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
Abstract
Stress-induced psychiatric symptoms, such as increased anxiety, decreased sociality, and depression, differ considerably across individuals. The cognitive model of depression proposes that biased negative memory is a crucial determinant in the development of mental stress-induced disorders. Accumulating evidence from both clinical and animal studies has demonstrated that such biased memory processing could be triggered by the hippocampus, a region well known to be involved in declarative memories. This review mainly describes how memory-related neurophysiological mechanisms in the hippocampus and their interactions with other related brain regions are involved in the regulation of stress susceptibility and discusses potential interventions to prevent and treat stress-related psychiatric symptoms. Further neurophysiological insights based on memory mechanisms are expected to devise personalized prevention and therapy to confer stress resilience.
Collapse
Affiliation(s)
- Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan.
| |
Collapse
|
91
|
Yuan N, Li X, Tang K, Gan H, Da X, Hao W, Deng L, Huang J, Ma Q, Wu M, Chen J. Xiaoyaosan inhibits neuronal apoptosis by regulating the miR-200/NR3C1 signaling in the prefrontal cortex of chronically stressed rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154239. [PMID: 35716541 DOI: 10.1016/j.phymed.2022.154239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/21/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Depression is a prevalent emotion disorder which is thought to be due to neuronal structural alterations and/or functional impairment within specific brain regions. Several studies have shown that microRNAs are involved in the pathogenesis of depression. As a Chinese herbal formula, Xiaoyaosan (XYS) could have antidepressive effects, although the mechanisms associated with microRNAs are poorly understood. PURPOSE In this study, we investigated whether inhibition of the miR-200a/b-3p/NR3C1 pathway in the prefrontal cortex is involved in the anti-neuronal apoptosis and anti-stress effects of XYS and then further delineated the underlying mechanism. METHODS To evaluate the efficacy of XYS in relieving stress behaviors and altering the expression of miRNAs involved in the regulation of these behaviors in vivo, a chronic unpredictable mild stress (CUMS) rodent model and RNA-seq were performed. Primary cortical neurons were used to evaluate the molecular function of miR-200a/b-3p and detect the in vitro neuroprotective function of paeoniflorin, which is one of the main components of XYS. To investigate the function of miR-200a/b-3p in stress behaviors, stereotactic microinjection of AAV2/9-Syn-miR-200a/b-3p was performed to deliver the treatment to the rat mPFC. RESULTS XYS reduced the anxiety and depression-like behaviors associated with chronic stress and reduced the expression of miR-200a/b-3p and neuronal apoptosis in the prefrontal cortex (PFC). The overexpression of miR-200a/b-3p in primary cortical neurons reduced the expression of the target gene NR3C1, increased the protein expression of cleaved caspase-3 and Bax, and decreased the anti-apoptotic protein Bcl-2. One of the active ingredients of XYS, paeoniflorin, can inhibit miR-200a/b-3p-mediated apoptosis of primary neurons and abnormal expression of apoptosis-related proteins. After overexpressing miR-200a/b-3p in vivo (vmPFC), the rats eventually showed significant anxiety-like behaviors similar to those caused by chronic stress. CONCLUSION Our findings indicate that XYS can inhibit the CUMS-induced expression of miR-200a/b-3p, regulate miR-200a/b-3p/NR3C1 signaling in the PFC caused by chronic stress, and reduce neuronal apoptosis and stress-related behaviors.
Collapse
Affiliation(s)
- Naijun Yuan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Kairui Tang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaoli Da
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wenzhi Hao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lijuan Deng
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Junqing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Mansi Wu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
92
|
Zhu P, Tang J, Liang X, Luo Y, Wang J, Li Y, Xiao K, Li J, Deng Y, Jiang L, Xiao Q, Qi Y, Xie Y, Yang H, Zhu L, Tang Y, Huang C. Activation of liver X receptors protects oligodendrocytes in CA3 of stress-induced mice. Front Pharmacol 2022; 13:936045. [PMID: 35959443 PMCID: PMC9358133 DOI: 10.3389/fphar.2022.936045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is a complex disorder that is associated with various structural abnormalities. Oligodendrocyte (OL) dysfunction is associated with the pathogenesis of depression and the promotion of hippocampal oligodendrocyte maturation and myelination could be a novel therapeutic strategy for ameliorating depressive behaviors. Recent studies have shown that activation of liver X receptors (LXRs) by GW3965 improves depressive phenotypes, but the effects of GW3965 on OL function and myelination in the hippocampus of depression remain relatively unclear. To address this issue, we investigated the effects of GW3965 on mature OL in the hippocampus and on the myelin sheaths of mice subjected to chronic unpredictable stress (CUS). Behavioral tests were performed to assess depressive behaviors. Then, the number of mature OLs (CC1+) in each hippocampal subregion was precisely quantified with immunohistochemical and stereological methods, and the density of newborn mature OLs (BrdU+/Olig2+/CC1+ cells) in each hippocampal subregion was quantified with immunofluorescence. In addition, myelin basic protein (MBP) staining intensity in the cornu ammonis 3 (CA3) region was assessed by using immunofluorescence. We found that both the number of CC1+ OLs and the density of BrdU+/Olig2+/CC1+ cells were obviously decreased in each hippocampal subregion of mice subjected to CUS, and 4 weeks of GW3965 treatment reversed these effects only in the CA3 region. Furthermore, the decreased MBP expression in the CA3 region of mice subjected to CUS was ameliorated by GW3965 treatment. Collectively, these results suggested that improvement of OL maturation and enhancement of myelination may be structural mechanisms underlying the antidepressant effects of LXR agonists.
Collapse
Affiliation(s)
- Peilin Zhu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Xin Liang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yanmin Luo
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Jin Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yue Li
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Kai Xiao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Jing Li
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Yuhui Deng
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin Jiang
- Lab Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Radioactive Medicine, Chongqing Medical University, Chongqing, China
| | - Yingqiang Qi
- Department of Electron Microscope, Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yuhan Xie
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Hao Yang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin Zhu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Chunxia Huang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Physiology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
93
|
Xu S, Yao X, Li B, Cui R, Zhu C, Wang Y, Yang W. Uncovering the Underlying Mechanisms of Ketamine as a Novel Antidepressant. Front Pharmacol 2022; 12:740996. [PMID: 35872836 PMCID: PMC9301111 DOI: 10.3389/fphar.2021.740996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is a devastating psychiatric disorder which exacts enormous personal and social-economic burdens. Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been discovered to exert rapid and sustained antidepressant-like actions on MDD patients and animal models. However, the dissociation and psychotomimetic propensities of ketamine have limited its use for psychiatric indications. Here, we review recently proposed mechanistic hypotheses regarding how ketamine exerts antidepressant-like actions. Ketamine may potentiate α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR)-mediated transmission in pyramidal neurons by disinhibition and/or blockade of spontaneous NMDAR-mediated neurotransmission. Ketamine may also activate neuroplasticity- and synaptogenesis-relevant signaling pathways, which may converge on key components like brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) and mechanistic target of rapamycin (mTOR). These processes may subsequently rebalance the excitatory/inhibitory transmission and restore neural network integrity that is compromised in depression. Understanding the mechanisms underpinning ketamine’s antidepressant-like actions at cellular and neural circuit level will drive the development of safe and effective pharmacological interventions for the treatment of MDD.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Yao Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| |
Collapse
|
94
|
Kundakovic M, Rocks D. Sex hormone fluctuation and increased female risk for depression and anxiety disorders: From clinical evidence to molecular mechanisms. Front Neuroendocrinol 2022; 66:101010. [PMID: 35716803 PMCID: PMC9715398 DOI: 10.1016/j.yfrne.2022.101010] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Women are at twice the risk for anxiety and depression disorders as men are, although the underlying biological factors and mechanisms are largely unknown. In this review, we address this sex disparity at both the etiological and mechanistic level. We dissect the role of fluctuating sex hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. We provide parallel evidence in humans and rodents that brain structure and function vary with naturally-cycling ovarian hormones. This female-unique brain plasticity and associated vulnerability are primarily driven by estrogen level changes. For the first time, we provide a sex hormone-driven molecular mechanism, namely chromatin organizational changes, that regulates neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. Finally, we map out future directions including experimental and clinical studies that will facilitate novel sex- and gender-informed approaches to treat depression and anxiety disorders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| | - Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
95
|
Felício LFF, Leão LL, Souza EHEE, Machado FSM, Laks J, Deslandes AC, Paula AMBD, Monteiro-Junior RS. Cognitive abilities of institutionalized older persons with depressive symptoms. JORNAL BRASILEIRO DE PSIQUIATRIA 2022. [DOI: 10.1590/0047-2085000000383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACT Objective To determine the level of association between depressive symptoms and cognitive abilities of institutionalized older adults. Methods This is a cross-sectional study that enrolled 69 older adults, living in a long-term care facility. Investigation of depressive symptoms in all individuals was performed using the geriatric depression scale. Cognitive verbal fluency, digit span forward (DSF) and backward (DSB) tests, and two-minute stationary gait, sit-to-stand test, and six-minute walk test were performed to assess their association with depressive symptoms. Results Depressive symptoms were identified in 35 individuals. Worse cognition and physical performances were associated with the presence of depressive symptoms – Mini-Mental State Examination [t (61) = 2.36; p < 0.05] and Stationary gait test of two minutes [t (53) = 3.12; p < 0.05]. Short-term memory and working memory tests presented worse results in individuals with depressive symptoms (DSF: U = 402.00; p < 0.05 e DSB: U = 341,00; p < 0.05). Older adults with scores below normal in DSF were 5 times more likely to exhibit depressive symptoms. Conclusion The importance of physical, cognitive and social intervention strategies in long-term care facilities for the older adults is highlighted, in order to privilege autonomy. Notably, there is an association between deficits in short-term memory and the presence of depressive symptoms in older adults. Therefore, prospective studies are suggested to investigate the cause-effect relationship of this association with the institutionalization of older adults.
Collapse
Affiliation(s)
| | | | | | | | - Jerson Laks
- Federal University of Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
96
|
Shanzhiside methylester protects against depression by inhibiting inflammation via the miRNA-155-5p/SOCS1 axis. Psychopharmacology (Berl) 2022; 239:2201-2213. [PMID: 35294601 DOI: 10.1007/s00213-022-06107-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
Abstract
Inflammation is a key player in the regulation of depression. Shanzhiside methylester (SM) is an iridoid glycoside with strong anti-inflammatory properties. However, the antidepressant effect of SM remains unknown. The present study aimed to investigate whether SM protects against depression by targeting inflammation. A chronic unpredictable mild stress (CUMS)-induced mouse model of depression was established to assess the antidepressant effect of SM in vivo. In addition, an LPS plus ATP-induced cellular model of inflammation was used to explore the related inflammatory mechanism. We found that both SM and miRNA-155-5p sponge markedly remedied CUMS-induced depression-like behaviors in the sucrose preference test (SPT), tail suspension test (TST), and forced swim test (FST), accompanied by decreased Iba1 expression and the production of TNF-α, IL-1β, and IL-6. Moreover, SM and miRNA-155-5p sponge upregulated the protein levels of SOCS1 and downregulated the protein expression of p-JAK2 and p-STAT3 in the hippocampus of CUMS-exposed mice. miRNA-155-5p expression was also decreased following SM and miRNA-155-5p sponge administration. Furthermore, SM repressed LPS- and ATP-induced inflammatory responses in BV2 cells by regulating the SOCS1/JAK2/STAT3 signaling pathway, which was similar to the anti-inflammatory effects induced by the miRNA-155-5p sponge. Collectively, these findings suggested that SM exerted antidepressant actions by targeting the miRNA-155-5p/SOCS1 axis.
Collapse
|
97
|
Uliana DL, Gomes FV, Grace AA. Nucleus reuniens inactivation reverses stress-induced hypodopaminergic state and altered hippocampal-accumbens synaptic plasticity. Neuropsychopharmacology 2022; 47:1513-1522. [PMID: 35488085 PMCID: PMC9205859 DOI: 10.1038/s41386-022-01333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/11/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
The nucleus reuniens of the thalamus (RE) is a pivotal area responsible for the connectivity of the prefrontal-hippocampus pathway that regulates cognitive, executive, and fear learning processes. Recently, it was proposed that the RE participates in the pathophysiological states related to affective dysregulation. We investigated the role of RE in motivational behavioral and electrophysiological dysregulation induced by stress. Adult Sprague-Dawley rats were exposed to a combination of stressors (restraint stress+footshock) for 10 days and tested one to two weeks later in the forced swim test (FST), ventral tegmental area (VTA)dopamine (DA) neuron electrophysiological activity, and hippocampal-nucleus accumbens plasticity. The RE was inactivated by injecting TTX prior to the procedures. The stress exposure increased the immobility in the FST and decreased VTA DA neuron population activity. Whereas an early long-term potentiation (e-LTP) in the ventral hippocampus-nucleus accumbens pathway was found after fimbria high-frequency stimulation in naïve animals, stressed animals showed an early long-term depression (e-LTD). Inactivation of the RE reversed the stress-induced changes in the FST and restored dopaminergic activity. RE inactivation partially recovered the stress-induced abnormal hippocampal-accumbens plasticity observed in controls. Our findings support the role of the RE in regulating affective dysregulation and blunted VTA DA system function induced by stress. Also, it points to the hippocampal-accumbens pathway as a potential neural circuit through which RE could modulate activity. Therefore, RE may represent a key brain region involved in the neurobiology of amotivational states and may provide insights into circuit dysfunction and markers of the maladaptive stress response.
Collapse
Affiliation(s)
- Daniela L. Uliana
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| | - Felipe V. Gomes
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA ,grid.11899.380000 0004 1937 0722Present Address: Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Anthony A. Grace
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
98
|
Lewis V, Rodrigue B, Arsenault E, Zhang M, Taghavi-Abkuh FF, Silva WCC, Myers M, Matta-Camacho E, Aguilar-Valles A. Translational control by ketamine and its implications for comorbid cognitive deficits in depressive disorders. J Neurochem 2022. [PMID: 35680556 DOI: 10.1111/jnc.15652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
Ketamine has shown antidepressant effects in patients with major depressive disorder (MDD) resistant to first-line treatments and approved for use in this patient population. Ketamine induces several forms of synaptic plasticity, which are proposed to underlie its antidepressant effects. However, the molecular mechanism of action directly responsible for ketamine's antidepressant effects remains under active investigation. It was recently demonstrated that the effectors of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway, namely, eukaryotic initiation factor 4E (eIF4E) binding proteins 1 and 2 (4E-BP1 and 4E-BP2), are central in mediating ketamine-induced synaptic plasticity and behavioural antidepressant-like effect. 4E-BPs are a family of messenger ribonucleic acid (mRNA) translation repressors inactivated by mTORC1. We observed that their expression in inhibitory interneurons mediates ketamine's effects in the forced swim and novelty suppressed feeding tests and the long-lasting inhibition of GABAergic neurotransmission in the hippocampus. In addition, another effector pathway that regulates translation elongation downstream of mTORC1, the eukaryotic elongation factor 2 kinase (eEF2K), has been implicated in ketamine's behavioural effects. We will discuss how ketamine's rapid antidepressant effect depends on the activation of neuronal mRNA translation through 4E-BP1/2 and eEF2K. Furthermore, given that these pathways also regulate cognitive functions, we will discuss the evidence of ketamine's effect on cognitive function in MDD. Overall, the data accrued from pre-clinical research have implicated the mRNA translation pathways in treating mood symptoms of MDD. However, it is yet unclear whether the pro-cognitive potential of subanesthetic ketamine in rodents also engages these pathways and whether such an effect is consistently observed in the treatment-resistant MDD population.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Brandon Rodrigue
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Emily Arsenault
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Molly Zhang
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Mysa Myers
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Edna Matta-Camacho
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
99
|
Shen Y, Zhang C, Xiao K, Liu D, Xie G. CELF4 regulates spine formation and depression-like behaviors of mice. Biochem Biophys Res Commun 2022; 605:39-44. [DOI: 10.1016/j.bbrc.2022.03.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 01/12/2023]
|
100
|
Deshpande G, Zhao X, Robinson J. Functional Parcellation of the Hippocampus based on its Layer-specific Connectivity with Default Mode and Dorsal Attention Networks. Neuroimage 2022; 254:119078. [PMID: 35276366 DOI: 10.1016/j.neuroimage.2022.119078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
Recent neuroimaging evidence suggests that there might be an anterior-posterior functional differentiation of the hippocampus along the long-axis. The HERNET (hippocampal encoding/retrieval and network) model proposed an encoding/retrieval dichotomy with the anterior hippocampus more connected to the dorsal attention network (DAN) during memory encoding, and the posterior portions more connected to the default mode network (DMN) during retrieval. Evidence both for and against the HERNET model has been reported. In this study, we test the validity of the HERNET model non-invasively in humans by computing functional connectivity (FC) in layer-specific cortico-hippocampal microcircuits. This was achieved by acquiring sub-millimeter functional magnetic resonance imaging (fMRI) data during encoding/retrieval tasks at 7T. Specifically, FC between infra-granular output layers of DAN with hippocampus during encoding and FC between supra-granular input layers of DMN with hippocampus during retrieval were computed to test the predictions of the HERNET model. Our results support some predictions of the HERNET model including anterior-posterior gradient along the long axis of the hippocampus. While preferential relationships between the entire hippocampus and DAN/DMN during encoding/retrieval, respectively, were observed as predicted, anterior-posterior specificity in these network relationships could not be confirmed. The strength and clarity of evidence for/against the HERNET model were superior with layer-specific data compared to conventional volume data.
Collapse
Affiliation(s)
- Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL 36849, USA; Department of Psychological Sciences, Auburn University, Auburn, AL, USA; Alabama Advanced Imaging Consortium, Birmingham, AL, USA; Center for Neuroscience, Auburn University, Auburn, AL, USA; Key Laboratory for Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Centre for Brain Research, Indian Institute of Science, Bangalore, India.
| | - Xinyu Zhao
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL 36849, USA; Quora Inc., Mountain View, CA, USA
| | - Jennifer Robinson
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL 36849, USA; Department of Psychological Sciences, Auburn University, Auburn, AL, USA; Alabama Advanced Imaging Consortium, Birmingham, AL, USA; Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|