51
|
Zhang HQ, Sun C, Xu N, Liu W. The current landscape of the antimicrobial peptide melittin and its therapeutic potential. Front Immunol 2024; 15:1326033. [PMID: 38318188 PMCID: PMC10838977 DOI: 10.3389/fimmu.2024.1326033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Melittin, a main component of bee venom, is a cationic amphiphilic peptide with a linear α-helix structure. It has been reported that melittin can exert pharmacological effects, such as antitumor, antiviral and anti-inflammatory effects in vitro and in vivo. In particular, melittin may be beneficial for the treatment of diseases for which no specific clinical therapeutic agents exist. Melittin can effectively enhance the therapeutic properties of some first-line drugs. Elucidating the mechanism underlying melittin-mediated biological function can provide valuable insights for the application of melittin in disease intervention. However, in melittin, the positively charged amino acids enables it to directly punching holes in cell membranes. The hemolysis in red cells and the cytotoxicity triggered by melittin limit its applications. Melittin-based nanomodification, immuno-conjugation, structural regulation and gene technology strategies have been demonstrated to enhance the specificity, reduce the cytotoxicity and limit the off-target cytolysis of melittin, which suggests the potential of melittin to be used clinically. This article summarizes research progress on antiviral, antitumor and anti-inflammatory properties of melittin, and discusses the strategies of melittin-modification for its future potential clinical applications in preventing drug resistance, enhancing the selectivity to target cells and alleviating cytotoxic effects to normal cells.
Collapse
Affiliation(s)
- Hai-Qian Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Na Xu
- Academic Affairs Office, Jilin Medical University, Jilin, Jilin, China
| | - Wensen Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| |
Collapse
|
52
|
Zaikova E, Cheng BYC, Cerda V, Kong E, Lai D, Lum A, Bates C, den Brok W, Kono T, Bourque S, Chan A, Feng X, Fenton D, Gurjal A, Levasseur N, Lohrisch C, Roberts S, Shenkier T, Simmons C, Taylor S, Villa D, Miller R, Aguirre-Hernandez R, Aparicio S, Gelmon K. Circulating tumour mutation detection in triple-negative breast cancer as an adjunct to tissue response assessment. NPJ Breast Cancer 2024; 10:3. [PMID: 38182588 PMCID: PMC10770342 DOI: 10.1038/s41523-023-00607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/02/2023] [Indexed: 01/07/2024] Open
Abstract
Circulating tumour DNA (ctDNA) detection via liquid biopsy is an emerging alternative to tissue biopsy, but its potential in treatment response monitoring and prognosis in triple negative breast cancer (TNBC) is not yet well understood. Here we determined the prevalence of actionable mutations detectable in ctDNA using a clinically validated cancer gene panel assay in patients with TNBC, without recurrence at the time of study entry. Sequencing of plasma DNA and validation of variants from 130 TNBC patients collected within 7 months of primary treatment completion revealed that 7.7% had detectable residual disease with a hotspot panel. Among neoadjuvant treated patients, we observed a trend where patients with incomplete pathologic response and positive ctDNA within 7 months of treatment completion were at much higher risk of reduced progression free survival. We propose that a high risk subset of early TNBC patients treated in neoadjuvant therapy protocols may be identifiable by combining tissue response and sensitive ctDNA detection.
Collapse
Affiliation(s)
- Elena Zaikova
- Molecular Oncology, BC Cancer, 675 W10th Avenue, Vancouver, Canada
| | - Brian Y C Cheng
- Molecular Oncology, BC Cancer, 675 W10th Avenue, Vancouver, Canada
| | - Viviana Cerda
- Molecular Oncology, BC Cancer, 675 W10th Avenue, Vancouver, Canada
| | - Esther Kong
- Molecular Oncology, BC Cancer, 675 W10th Avenue, Vancouver, Canada
| | - Daniel Lai
- Molecular Oncology, BC Cancer, 675 W10th Avenue, Vancouver, Canada
| | - Amy Lum
- Molecular Oncology, BC Cancer, 675 W10th Avenue, Vancouver, Canada
| | - Cherie Bates
- Molecular Oncology, BC Cancer, 675 W10th Avenue, Vancouver, Canada
| | - Wendie den Brok
- Medical Oncology, BC Cancer, 600 W10th Avenue, Vancouver, Canada
| | - Takako Kono
- Molecular Oncology, BC Cancer, 675 W10th Avenue, Vancouver, Canada
| | - Sylvie Bourque
- Medical Oncology, BC Cancer, 13750 96 Ave, Surrey, Canada
| | - Angela Chan
- Medical Oncology, BC Cancer, 13750 96 Ave, Surrey, Canada
| | - Xioalan Feng
- Medical Oncology, BC Cancer, 2410 Lee Ave, Victoria, Canada
| | - David Fenton
- Medical Oncology, BC Cancer, 2410 Lee Ave, Victoria, Canada
| | - Anagha Gurjal
- Medical Oncology, BC Cancer, 32900 Marshall Rd, Abbotsford, Canada
| | | | | | - Sarah Roberts
- Medical Oncology, BC Cancer, 1215 Lethbridge St, Prince George, Canada
| | - Tamara Shenkier
- Medical Oncology, BC Cancer, 600 W10th Avenue, Vancouver, Canada
| | | | - Sara Taylor
- Medical Oncology, BC Cancer, 399 Royal Ave, Kelowna, Canada
| | - Diego Villa
- Medical Oncology, BC Cancer, 600 W10th Avenue, Vancouver, Canada
| | - Ruth Miller
- Imagia Canexia Health, 204-2389 Health Sciences Mall, Vancouver, Canada
| | | | - Samuel Aparicio
- Molecular Oncology, BC Cancer, 675 W10th Avenue, Vancouver, Canada.
| | - Karen Gelmon
- Medical Oncology, BC Cancer, 600 W10th Avenue, Vancouver, Canada.
| |
Collapse
|
53
|
Yu X, Qian F, Zhang X, Zhu Y, He G, Yang J, Wu X, Zhou Y, Shen L, Shi X, Zhang H, Liu X. Promotion effect of FOXCUT as a microRNA sponge for miR-24-3p on progression in triple-negative breast cancer through the p38 MAPK signaling pathway. Chin Med J (Engl) 2024; 137:105-114. [PMID: 38178324 PMCID: PMC10766298 DOI: 10.1097/cm9.0000000000002700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a type of highly invasive breast cancer with a poor prognosis. According to new research, long noncoding RNAs (lncRNAs) play a significant role in the progression of cancer. Although the role of lncRNAs in breast cancer has been well reported, few studies have focused on TNBC. This study aimed to explore the biological function and clinical significance of forkhead box C1 promoter upstream transcript (FOXCUT) in triple-negative breast cancer. METHODS Based on a bioinformatic analysis of the cancer genome atlas (TCGA) database, we detected that the lncRNA FOXCUT was overexpressed in TNBC tissues, which was further validated in an external cohort of tissues from the General Surgery Department of the First Affiliated Hospital of Nanjing Medical University. The functions of FOXCUT in proliferation, migration, and invasion were detected in vitro or in vivo. Luciferase assays and RNA immunoprecipitation (RIP) were performed to reveal that FOXCUT acted as a competitive endogenous RNA (ceRNA) for the microRNA miR-24-3p and consequently inhibited the degradation of p38. RESULTS lncRNA FOXCUT was markedly highly expressed in breast cancer, which was associated with poor prognosis in some cases. Knockdown of FOXCUT significantly inhibited cancer growth and metastasis in vitro or in vivo. Mechanistically, FOXCUT competitively bounded to miR-24-3p to prevent the degradation of p38, which might act as an oncogene in breast cancer. CONCLUSION Collectively, this research revealed a novel FOXCUT/miR-24-3p/p38 axis that affected breast cancer progression and suggested that the lncRNA FOXCUT could be a diagnostic marker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiao'an Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
54
|
Shimizu T, Oba T, Oshi M, Ito KI. Eribulin promotes proliferation of CD8 + T cells and potentiates T cell-mediated anti-tumor activity against triple-negative breast cancer cells. Breast Cancer Res Treat 2024; 203:57-71. [PMID: 37733186 DOI: 10.1007/s10549-023-07111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE Chemotherapeutic agents exert immunomodulatory effects on triple-negative breast cancer (TNBC) cells and immune cells. Eribulin favorably affects the immunological status of patients with breast cancer. However, the effects of eribulin on the immune cells remain unexplored. The aim of this study was to investigate the effects of eribulin on immune cells. METHODS Peripheral blood mononuclear cells (PBMCs) from healthy donors and mouse splenocytes were stimulated with anti-CD3 and anti-CD28 antibodies. The effects of eribulin and paclitaxel on cell proliferation and differentiation status were analyzed using flow cytometry. RNA sequencing was performed to assess alterations in gene expression in CD8+ T cells following eribulin and paclitaxel treatment. Using TNBC cell lines (MDA-MB-231, Hs578T, and MDA-MB-157), the anti-tumor activity of CD3/CD28-stimulated T cells combined with eribulin or paclitaxel was evaluated. RESULTS Eribulin did not affect CD3/CD28-stimulated PBMCs proliferation. However, eribulin significantly decreased the CD4/CD8 ratio in T cells, indicating that eribulin facilitates CD8+ T cell proliferation. Furthermore, eribulin significantly increased the frequency of less differentiated CD45RA+, CCR7+, and TCF1+ subsets of CD8+ T cells. RNA sequencing revealed that eribulin enhanced the expression of gene sets related to cell proliferation and immune responses. Moreover, eribulin augmented the anti-tumor effects of CD3/CD28-stimulated T cells against TNBC cells. These results were not observed in experiments using paclitaxel. CONCLUSIONS Eribulin promoted CD8+ T cell proliferation, repressed effector T cell differentiation, and harnessed T cell-mediated anti-tumor effects. These mechanisms may be one of the cues that eribulin can improve the immunological status of tumor-bearing hosts.
Collapse
Affiliation(s)
- Tadafumi Shimizu
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-861, Japan
| | - Takaaki Oba
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-861, Japan.
| | - Masanori Oshi
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ken-Ichi Ito
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-861, Japan
| |
Collapse
|
55
|
Grote I, Poppe A, Lehmann U, Christgen M, Kreipe H, Bartels S. Frequency of genetic alterations differs in advanced breast cancer between metastatic sites. Genes Chromosomes Cancer 2024; 63:e23199. [PMID: 37672607 DOI: 10.1002/gcc.23199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
About 20%-30% of breast cancer (BC) patients will develop distant metastases, preferentially in bones, liver, lung, and brain. BCs with different intrinsic subtypes prefer different sites for metastasis. These subtypes vary in the abundance of genetic alterations which may influence the localization of metastases. Currently, information about the relation between metastatic site and mutational profile of BC is limited. In this study, n = 521 BC metastases of the most frequently affected sites (bone, brain, liver, and lung) were investigated for the frequency of AKT1, ERBB2, ESR1, PIK3CA, and TP53 mutations via NGS and pyrosequencing. Somatic mutations were present in 64% cases. PIK3CA and TP53 were the most frequently mutated genes under study. We provide an analysis of the mutational profile of BCs and the affected metastatic site. Genetic alterations differed significantly depending on the organ site affected by metastases. TP53 mutations were mostly observed in brain metastases (51.0%), metastases outside of the brain revealed a much lower proportion of TP53 mutated samples. PIK3CA mutations are frequent in liver (40.6%), lung (36.8%), and bone metastases (35.7%), whereas less common in brain metastases (18.4%). The highest percentage of ESR1 mutations was observed in liver and lung metastases (about 30% each), whereas metastatic lesions in the brain showed significantly less ESR1 mutations, only in 2.0% of the cases. In summary, we found significant differences of mutational status in mBC depending on the affected organ and intrinsic subtype. Organotropism of metastatic cancer spread may be influenced by the mutational profile of individual BCs.
Collapse
Affiliation(s)
- Isabel Grote
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Alexandra Poppe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Ulrich Lehmann
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Stephan Bartels
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
56
|
Akula S, Gonzalez CG, Kermet S, Burleson M. Natural compounds solasonine and alisol B23-acetate target GLI3 signaling to block oncogenesis in MED12-altered breast cancer. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:127-135. [PMID: 38915457 PMCID: PMC11194031 DOI: 10.22099/mbrc.2024.49044.1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Breast cancer remains to be the second leading cause of cancer deaths worldwide thereby highlighting the critical need to find superior treatment strategies for this disease. In the current era of cancer treatment, personalized medicine is garnering much attention as this type of treatment is more selective thereby minimizing harmful side effects. Personalized medicine is dependent upon knowing the underlying genetic landscape of the initial tumor. In our study, we focused our efforts on a specific subset of breast cancer that harbors genetic alterations in the Mediator subunit 12 (MED12). Our results show that loss of MED12 leads to enhanced cellular proliferation and colony formation of breast cancer cells through a mechanism that involves activation of GLI3-dependent SHH signaling, a pathway that is central to breast development and homeostasis. To find a personalized treatment option for this subset of breast cancer, we employed a natural compound screening strategy which uncovered a total of ten compounds that selectively target MED12 knockdown breast cancer cells. Our results show that two of these ten compounds, solasonine and alisol B23-acetate, block GLI3-dependent SHH signaling which leads to a reversal of enhanced cellular proliferation and colony formation ability. Thus, our findings provide promising insight into a novel personalized treatment strategy for patients suffering from MED12-altered breast cancer.
Collapse
Affiliation(s)
- Shivani Akula
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, TX, USA
- These authors contributed equally to this work
| | - Cristian G. Gonzalez
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
- These authors contributed equally to this work
| | - Sophia Kermet
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
| | - Marieke Burleson
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
| |
Collapse
|
57
|
Ge LP, Jin X, Ma D, Wang ZY, Liu CL, Zhou CZ, Zhao S, Yu TJ, Liu XY, Di GH, Shao ZM, Jiang YZ. ZNF689 deficiency promotes intratumor heterogeneity and immunotherapy resistance in triple-negative breast cancer. Cell Res 2024; 34:58-75. [PMID: 38168642 PMCID: PMC10770380 DOI: 10.1038/s41422-023-00909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease characterized by remarkable intratumor heterogeneity (ITH), which poses therapeutic challenges. However, the clinical relevance and key determinant of ITH in TNBC are poorly understood. Here, we comprehensively characterized ITH levels using multi-omics data across our center's cohort (n = 260), The Cancer Genome Atlas cohort (n = 134), and four immunotherapy-treated cohorts (n = 109). Our results revealed that high ITH was associated with poor patient survival and immunotherapy resistance. Importantly, we identified zinc finger protein 689 (ZNF689) deficiency as a crucial determinant of ITH formation. Mechanistically, the ZNF689-TRIM28 complex was found to directly bind to the promoter of long interspersed element-1 (LINE-1), inducing H3K9me3-mediated transcriptional silencing. ZNF689 deficiency reactivated LINE-1 retrotransposition to exacerbate genomic instability, which fostered ITH. Single-cell RNA sequencing, spatially resolved transcriptomics and flow cytometry analysis confirmed that ZNF689 deficiency-induced ITH inhibited antigen presentation and T-cell activation, conferring immunotherapy resistance. Pharmacological inhibition of LINE-1 significantly reduced ITH, enhanced antitumor immunity, and eventually sensitized ZNF689-deficient tumors to immunotherapy in vivo. Consistently, ZNF689 expression positively correlated with favorable prognosis and immunotherapy response in clinical samples. Altogether, our study uncovers a previously unrecognized mechanism underlying ZNF689 deficiency-induced ITH and suggests LINE-1 inhibition combined with immunotherapy as a novel treatment strategy for TNBC.
Collapse
Affiliation(s)
- Li-Ping Ge
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Xi Jin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zi-Yu Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao-Zheng Zhou
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shen Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian-Jian Yu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi-Yu Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gen-Hong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
58
|
Keskinkılıc M, Gökmen-Polar Y, Badve SS. Triple Negative Breast Cancers: An Obsolete Entity? Clin Breast Cancer 2024; 24:1-6. [PMID: 38016912 DOI: 10.1016/j.clbc.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Triple negative breast cancer is defined on the basis of what it is not. It has served as a useful umbrella entity for management of patients with breast cancer for the last couple of decades. However, during this period a number of novel therapies have become available. These therapies have been documented to be useful in subsets of TNBCs that can be identified on the basis of distinct biologic alterations. Herein we revisit the categorization and usage of the TNBC as an entity to assess its utility in view of the currently available therapies.
Collapse
Affiliation(s)
- Merve Keskinkılıc
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA.
| |
Collapse
|
59
|
Konstantinidis G, Tavernarakis N. In Vivo Monitoring of Nucleophagy in Caenorhabditis elegans. Methods Mol Biol 2024; 2845:67-77. [PMID: 39115658 DOI: 10.1007/978-1-0716-4067-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The autophagy-lysosomal pathway enables the controlled degradation of cellular contents. Nucleophagy is the selective autophagic recycling of nuclear components upon delivery to the lysosome. Although methods to monitor and quantify autophagy as well as selective types of autophagy have been developed and implemented in cells and in vivo, methods monitoring nucleophagy remain scarce. Here, we describe a procedure to monitor the autophagic engagement of an endogenous nuclear envelope component, i.e., ANC-1, the nematode homologue of the mammalian Nesprins in vivo, utilizing super-resolution microscopy.
Collapse
Affiliation(s)
- Georgios Konstantinidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
60
|
Zhao D, Li W, Wang Y, Zhang G, Bai X, Yu H. HTRA1 expression is associated with immune-cell infiltration and survival in breast cancer. Transl Cancer Res 2023; 12:3503-3521. [PMID: 38197075 PMCID: PMC10774071 DOI: 10.21037/tcr-23-773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/18/2023] [Indexed: 01/11/2024]
Abstract
Background High temperature requirement A1 (HTRA1), a member of the HTRA family, is a serine peptidase involved in many crucial bioprocesses such as proliferation, mitochondrial homeostasis, apoptosis, and protein quality control. It also plays an important role in the development of various tumors. However, the potential role and mechanisms of action of HTRA1 in breast cancer (BRCA) remain unclear. We conducted a bioinformatics-based study to investigate HTRA1 expression in BRCA alongside its associations with immune-cell infiltrates and survival outcomes. Methods The expression of HTRA1 in BRCA samples was analyzed using RNAseq datasets from The Cancer Genome Atlas and Gene Expression Omnibus. R software was employed to assess the relationship between HTRA1 expression and clinicopathological characteristics, tumor-infiltrating immune cells, and immunity-associated biomarkers in BRCA. MethSurv and cBioPortal database were utilized to evaluate DNA methylation and genovariation within the HTRA1 DNA. Receiver operating characteristic curves, Kaplan-Meier analysis, and Cox regression were performed to estimate the impact of HTRA1 on diagnosis, prognosis, and response to chemotherapy in BRCA. Results HTRA1 expression was significantly downregulated in BRCA tissues compared to adjacent normal breast tissue controls. Differentially expressed genes associated with HTRA1 expression primarily enriched in cell proliferation pathways. Furthermore, altered HTRA1 expression significantly correlated with patient age, tumor histological type, T stage, progesterone receptor/estrogen receptor status, and PAM50 subtype of BRCA. Both positive and negative associations were observed between HTRA1 levels and the abundance of different types of immune cells, as well as immune biomarkers, including resting mast cells, follicular helper T cells, PD-L1, p53, and Ki67. Low HTRA1 expression was related with pathological complete response in luminal B BRCA patients undergoing chemotherapy. Additionally, lower HTRA1 expression in BRCA was associated with inferior overall survival and relapse-free survival. Conclusions HTRA1 expression is associated with immune-cell infiltration, response to chemotherapy, and survival outcomes in BRCA. HTRA1 has the potential to serve as a promising biomarker and therapeutic target moving forward.
Collapse
Affiliation(s)
- Dawei Zhao
- Department of Breast Cancer, Jilin Cancer Hospital, Changchun, China
| | - Wanfeng Li
- Department of Breast Cancer, Jilin Cancer Hospital, Changchun, China
| | - Yan Wang
- Department of Breast Cancer, Jilin Cancer Hospital, Changchun, China
| | - Gengyue Zhang
- Jilin Province Institute of Cancer Prevention and Treatment, Jilin Cancer Hospital, Changchun, China
| | - Xinhua Bai
- Department of Pathology, Jilin Cancer Hospital, Changchun, China
| | - Hong Yu
- Jilin Province Institute of Cancer Prevention and Treatment, Jilin Cancer Hospital, Changchun, China
| |
Collapse
|
61
|
Hu P, Zhou P, Sun T, Liu D, Yin J, Liu L. Therapeutic protein PAK restrains the progression of triple negative breast cancer through degrading SREBP-1 mRNA. Breast Cancer Res 2023; 25:151. [PMID: 38082285 PMCID: PMC10714641 DOI: 10.1186/s13058-023-01749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Triple-negative breast cancer (TNBC) represents the most challenging subtype of breast cancer. Studies have implicated an upregulation of lipid synthesis pathways in the initiation and progression of TNBC. Targeting lipid synthesis pathways may be a promising therapeutic strategy for TNBC. Our previous study developed a therapeutic protein PAK with passive targeting and inhibiting tumor proliferation. In this study, we further substantiate the efficacy of PAK in TNBC. Transcriptome sequencing analysis revealed PAK-mediated downregulation of genes involved in fatty acid synthesis, including key genes like SREBP-1, FASN, and SCD1. RNA immunoprecipitation experiments demonstrated a significant binding affinity of PAK to SREBP-1 mRNA, facilitating its degradation process. Both in vitro and in vivo models, PAK hampered TNBC progression by downregulating lipid synthesis pathways. In conclusion, this study emphasizes that PAK inhibits the progression of TNBC by binding to and degrading SREBP-1 mRNA, revealing a new strategy for regulating lipid synthesis in the intervention of TNBC and its therapeutic significance.
Collapse
Affiliation(s)
- Pan Hu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Peiyi Zhou
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Tieyun Sun
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
62
|
Mai N, Abuhadra N, Jhaveri K. Molecularly Targeted Therapies for Triple Negative Breast Cancer: History, Advances, and Future Directions. Clin Breast Cancer 2023; 23:784-799. [PMID: 37336650 DOI: 10.1016/j.clbc.2023.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
Triple negative breast cancer (TNBC) remains the subtype with poorest prognosis. Despite the subtype's heterogeneity, there is still a paucity in effective targeted therapeutics that offer both good efficacy and tolerability, and chemotherapy remains the backbone of modern TNBC therapy. In the past few years, immunotherapy as well as novel therapeutic modalities like antibody-drug conjugates (ADCs) have shown clinical benefit and have been FDA approved in various clinical stages of unselected TNBC. However, there has not been similar advancement in molecularly targeted therapies, especially when compared to advancements seen in hormone receptor (HR)-positive or HER2-positive breast cancer. PARP inhibitors have been approved for BRCA-mutated TNBC, but responses are short-lived, and resistance remains a barrier for current treatment. PI3K pathway inhibitors approved in HR+ breast cancer has not worked for TNBC and continue to have significant dose-limiting adverse effects. EGFR inhibition has been thoroughly explored in TNBC, but all trials so far have shown minimal efficacy. Nevertheless, despite these setbacks, current research in targeted therapy for TNBC holds great promise in overcoming the barriers of the past and developing novel therapeutic approaches for the future. In this review, we describe molecular targets both identified and validated in the treatment of TNBC, discuss the historical efforts towards development of targeted agents and current areas of improvement, and address promising advances that have the potential to improve outcomes in this heterogenous and aggressive breast cancer subtype. Immunotherapy, ADCs, and AR targeting will be discussed in separate reviews of this edition.
Collapse
Affiliation(s)
- Nicholas Mai
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nour Abuhadra
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
63
|
Mukhopadhyay D, Goel HL, Xiong C, Goel S, Kumar A, Li R, Zhu LJ, Clark JL, Brehm MA, Mercurio AM. The calcium channel TRPC6 promotes chemotherapy-induced persistence by regulating integrin α6 mRNA splicing. Cell Rep 2023; 42:113347. [PMID: 37910503 PMCID: PMC10872598 DOI: 10.1016/j.celrep.2023.113347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Understanding the cell biological mechanisms that enable tumor cells to persist after therapy is necessary to improve the treatment of recurrent disease. Here, we demonstrate that transient receptor potential channel 6 (TRPC6), a channel that mediates calcium entry, contributes to the properties of breast cancer stem cells, including resistance to chemotherapy, and that tumor cells that persist after therapy are dependent on TRPC6. The mechanism involves the ability of TRPC6 to regulate integrin α6 mRNA splicing. Specifically, TRPC6-mediated calcium entry represses the epithelial splicing factor ESRP1 (epithelial splicing regulatory protein 1), which enables expression of the integrin α6B splice variant. TRPC6 and α6B function in tandem to facilitate stemness and persistence by activating TAZ and, consequently, repressing Myc. Therapeutic inhibition of TRPC6 sensitizes triple-negative breast cancer (TNBC) cells and tumors to chemotherapy by targeting the splicing of α6 integrin mRNA and inducing Myc. These data reveal a Ca2+-dependent mechanism of chemotherapy-induced persistence, which is amenable to therapy, that involves integrin mRNA splicing.
Collapse
Affiliation(s)
- Dimpi Mukhopadhyay
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Choua Xiong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shivam Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ayush Kumar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jennifer L Clark
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael A Brehm
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
64
|
Srikanthan A, Awan AA, McGee S, Rushton M. Young Women with Breast Cancer: The Current Role of Precision Oncology. J Pers Med 2023; 13:1620. [PMID: 38003935 PMCID: PMC10672565 DOI: 10.3390/jpm13111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Young adults aged 40 years and younger with breast cancer represent less than 5% of all breast cancer cases, yet it is the leading cause of death among young women with cancer worldwide. Breast cancer that develops at a young age is more aggressive and has biological features that carry an increased risk of relapse and death. Young adults are more likely to have a genetic predisposition and key biomarkers, including endocrine receptors, the HER2 receptor, and proliferation biomarkers, that appear different compared to older adults. Despite being more aggressive, management strategies are largely the same irrespective of age. Given the higher rates of genetic predisposition, fast access to genetic counselling and testing is a necessity. In this review, the biological differences in young adult breast cancer and the current role precision medicine holds in the treatment of young adults with breast cancer are explored. Given the relatively high risk of relapse, developing novel genomic tools to refine the treatment options beyond the current standard is critical. Existing predictive genomic tests require careful interpretation with consideration of the patient's clinical and pathological features in the young patient cohort. Careful evaluation is also required when considering extended endocrine therapy options. Improved characterization of mutations occurring in tumors using next-generation sequencing could identify important driver mutations that arise in young women. Applying the advances of precision medicine equitably to patients in resource-rich and low- and middle-income countries will be critical to impacting the survival of young adults with breast cancer worldwide.
Collapse
Affiliation(s)
- Amirrtha Srikanthan
- Division of Medical Oncology, The Ottawa Hospital, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; (A.A.A.); (S.M.); (M.R.)
- Department of Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Arif Ali Awan
- Division of Medical Oncology, The Ottawa Hospital, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; (A.A.A.); (S.M.); (M.R.)
- Department of Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Sharon McGee
- Division of Medical Oncology, The Ottawa Hospital, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; (A.A.A.); (S.M.); (M.R.)
- Department of Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Moira Rushton
- Division of Medical Oncology, The Ottawa Hospital, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; (A.A.A.); (S.M.); (M.R.)
- Department of Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
65
|
Han Y, Wang J, Sun T, Ouyang Q, Li J, Yuan J, Xu B. Predictive biomarkers of response and survival following immunotherapy with a PD-L1 inhibitor benmelstobart (TQB2450) and antiangiogenic therapy with a VEGFR inhibitor anlotinib for pretreated advanced triple negative breast cancer. Signal Transduct Target Ther 2023; 8:429. [PMID: 37973901 PMCID: PMC10654734 DOI: 10.1038/s41392-023-01672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
In our phase Ib trial (ClinialTrials.gov Identifier: NCT03855358), benmelstobart (TQB2450), a novel humanized IgG1 antibody against PD-L1, plus antiangiogenic multikinase inhibitor, anlotinib, demonstrated promising antitumor activities in pretreated triple negative breast cancer (TNBC) patients. We conducted explorative analyses of genomic biomarkers to explore the associations with treatment response and survival outcomes. Targeted next generation sequencing (NGS) was undertaken toward circulating tumor DNA (ctDNA) collected from peripheral blood samples prior to the start of treatment and after disease progression. A total of 31 patients received targeted NGS and functional driver mutations in 29 patients were analyzed. The most frequent mutations were TP53 (72%), MLL3 (28%), and PIK3CA (17%). At a blood-based tumor mutational burden (bTMB) cutoff of 6.7 mutations per megabase, patients with low bTMB showed better response to anlotinib plus TQB2450 (50% vs. 7%, P = 0.015) and gained greater PFS benefits (7.3 vs. 4.1 months, P = 0.012) than those with high bTMB. At a maximum somatic allele frequency (MSAF) cutoff of 10%, a low MSAF indicated a better objective response (43% vs. 20%) as well as a significantly longer median PFS (7.9 vs. 2.7 months, P < 0.001). Patients with both low MSAF and low bTMB showed a notably better objective response to anlotinib plus TQB2450 (70% vs. 11%, P < 0.001) and a significantly longer median PFS (11.0 vs. 2.9 months, P < 0.001) than patients with other scenarios. Our findings support future studes and validation of MSAF and the combined bTMB-MSAF classification as predictive biomarkers of immune checkpoint inhibitor-based regimens in advanced TNBC patients.
Collapse
Affiliation(s)
- Yiqun Han
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiayu Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Tao Sun
- Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
| | | | - Jianwen Li
- Geneplus-Shenzhen, Shenzhen, 518118, China
| | - Jie Yuan
- Geneplus-Shenzhen, Shenzhen, 518118, China
| | - Binghe Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
66
|
Morales-Pison S, Tapia JC, Morales-González S, Maldonado E, Acuña M, Calaf GM, Jara L. Association of Germline Variation in Driver Genes with Breast Cancer Risk in Chilean Population. Int J Mol Sci 2023; 24:16076. [PMID: 38003265 PMCID: PMC10671568 DOI: 10.3390/ijms242216076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a genomic disease, with driver mutations contributing to tumorigenesis. These potentially heritable variants influence risk and underlie familial breast cancer (BC). This study evaluated associations between BC risk and 13 SNPs in driver genes MAP3K1, SF3B1, SMAD4, ARID2, ATR, KMT2C, MAP3K13, NCOR1, and TBX3, in BRCA1/2-negative Chilean families. SNPs were genotyped using TaqMan Assay in 492 cases and 1285 controls. There were no associations between rs75704921:C>T (ARID2); rs2229032:A>C (ATR); rs3735156:C>G (KMT2C); rs2276738:G>C, rs2293906:C>T, rs4075943T:>A, rs13091808:C>T (MAP3K13); rs178831:G>A (NCOR1); or rs3759173:C>A (TBX3) and risk. The MAP3K1 rs832583 A allele (C/A+A/A) showed a protective effect in families with moderate BC history (OR = 0.7 [95% CI 0.5-0.9] p = 0.01). SF3B1 rs16865677-T (G/T+T/T) increased risk in sporadic early-onset BC (OR = 1.4 [95% CI 1.0-2.0] p = 0.01). SMAD4 rs3819122-C (A/C+C/C) increased risk in cases with moderate family history (OR = 2.0 [95% CI 1.3-2.9] p ≤ 0.0001) and sporadic cases diagnosed ≤50 years (OR = 1.6 [95% CI 1.1-2.2] p = 0.006). SMAD4 rs12456284:A>G increased BC risk in G-allele carriers (A/G + G/G) in cases with ≥2 BC/OC cases and early-onset cases (OR = 1.2 [95% CI 1.0-1.6] p = 0.04 and OR = 1.4 [95% CI 1.0-1.9] p = 0.03, respectively). Our study suggests that specific germline variants in driver genes MAP3K1, SF3B1, and SMAD4 contribute to BC risk in Chilean population.
Collapse
Affiliation(s)
- Sebastián Morales-Pison
- Centro de Oncología de Precisión (COP), Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Las Condes, Santiago 7560908, Chile;
| | - Julio C. Tapia
- Laboratorio de Transformación Celular, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 783090, Chile;
| | - Sarai Morales-González
- Laboratorio de Genética Humana, Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 783090, Chile; (S.M.-G.); (M.A.)
| | - Edio Maldonado
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 783090, Chile;
| | - Mónica Acuña
- Laboratorio de Genética Humana, Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 783090, Chile; (S.M.-G.); (M.A.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1010069, Chile;
| | - Lilian Jara
- Laboratorio de Genética Humana, Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 783090, Chile; (S.M.-G.); (M.A.)
| |
Collapse
|
67
|
Yan G, Dai M, Poulet S, Wang N, Boudreault J, Daliah G, Ali S, Lebrun JJ. Combined in vitro/in vivo genome-wide CRISPR screens in triple negative breast cancer identify cancer stemness regulators in paclitaxel resistance. Oncogenesis 2023; 12:51. [PMID: 37932309 PMCID: PMC10628277 DOI: 10.1038/s41389-023-00497-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Triple negative breast cancer (TNBC) is defined as lacking the expressions of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC patients exhibit relatively poor clinical outcomes due to lack of molecular markers for targeted therapies. As such chemotherapy often remains the only systemic treatment option for these patients. While chemotherapy can initially help shrink TNBC tumor size, patients eventually develop resistance to drug, leading to tumor recurrence. We report a combined in vitro/in vivo genome-wide CRISPR synthetic lethality screening approach in a relevant TNBC cell line model to identify several targets responsible for the chemotherapy drug, paclitaxel resistance. Computational analysis integrating in vitro and in vivo data identified a set of genes, for which specific loss-of-function deletion enhanced paclitaxel resistance in TNBC. We found that several of these genes (ATP8B3, FOXR2, FRG2, HIST1H4A) act as cancer stemness negative regulators. Finally, using in vivo orthotopic transplantation TNBC models we showed that FRG2 gene deletion reduced paclitaxel efficacy and promoted tumor metastasis, while increasing FRG2 expression by means of CRISPR activation efficiently sensitized TNBC tumors to paclitaxel treatment and inhibited their metastatic abilities. In summary, the combined in vitro/in vivo genome-wide CRISPR screening approach proved effective as a tool to identify novel regulators of paclitaxel resistance/sensitivity and highlight the FRG2 gene as a potential therapeutical target overcoming paclitaxel resistance in TNBC.
Collapse
Affiliation(s)
- Gang Yan
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Meiou Dai
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Sophie Poulet
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Ni Wang
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Julien Boudreault
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Girija Daliah
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
68
|
Castellano G, Giugliano F, Curigliano G, Marra A. Clinical utility of genomic signatures for the management of early and metastatic triple-negative breast cancer. Curr Opin Oncol 2023; 35:479-490. [PMID: 37621170 DOI: 10.1097/cco.0000000000000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
PURPOSE OF REVIEW This comprehensive review aims to provide timely and relevant insights into the current therapeutic landscape for triple-negative breast cancer (TNBC) and the molecular features underlying this subtype. It emphasizes the need for more reliable biomarkers to refine prognostication and optimize therapy, considering the aggressive nature of TNBC and its limited targeted treatment options. RECENT FINDINGS The review explores the multidisciplinary management of early TNBC, which typically involves systemic chemotherapy, surgery, and radiotherapy. It highlights the emergence of immune checkpoint inhibitors (ICIs), poly(ADP-ribose) polymerase (PARP) inhibitors, and antibody-drug conjugates (ADCs) as promising therapeutic strategies for TNBC. Recent clinical trials investigating the use of ICIs in combination with chemotherapy and the approval of pembrolizumab and atezolizumab for PD-L1-positive metastatic TNBC are discussed. The efficacy of PARP inhibitors and ADCs in treating TNBC patients with specific genetic alterations is also highlighted. SUMMARY The findings discussed in this review have significant implications for clinical practice and research in TNBC. The identification of distinct molecular subtypes through gene expression profiling has enabled a better understanding of TNBC heterogeneity and its clinical implications. This knowledge has the potential to guide treatment decisions, as different subtypes display varying responses to neoadjuvant chemotherapy. Furthermore, the review emphasizes the importance of developing reliable genomic and transcriptomic signatures as biomarkers to refine patient prognostication and optimize therapy selection in TNBC. Integrating these signatures into clinical practice may lead to more personalized treatment approaches, improving outcomes for TNBC patients.
Collapse
Affiliation(s)
- Grazia Castellano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federica Giugliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonio Marra
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
| |
Collapse
|
69
|
Mansur MB, deSouza NM, Natrajan R, Abegglen LM, Schiffman JD, Greaves M. Evolutionary determinants of curability in cancer. Nat Ecol Evol 2023; 7:1761-1770. [PMID: 37620552 DOI: 10.1038/s41559-023-02159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023]
Abstract
The emergence of drug-resistant cells, most of which have a mutated TP53 gene, prevents curative treatment in most advanced and common metastatic cancers of adults. Yet, a few, rarer malignancies, all of which are TP53 wild type, have high cure rates. In this Perspective, we discuss how common features of curable cancers offer insights into the evolutionary and developmental determinants of drug resistance. Acquired loss of TP53 protein function is the most common genetic change in cancer. This probably reflects positive selection in the context of strong ecosystem pressures including microenvironmental hypoxia. Loss of TP53's functions results in multiple fitness benefits and enhanced evolvability of cancer cells. TP53-null cells survive apoptosis, and tolerate potent oncogenic signalling, DNA damage and genetic instability. In addition, critically, they provide an expanded pool of self-renewing, or stem, cells, the primary units of evolutionary selection in cancer, making subsequent adaptation to therapeutic challenge by drug resistance highly probable. The exceptional malignancies that are curable, including the common genetic subtype of childhood acute lymphoblastic leukaemia and testicular seminoma, differ from the common adult cancers in originating prenatally from embryonic or fetal cells that are developmentally primed for TP53-dependent apoptosis. Plus, they have other genetic and phenotypic features that enable dissemination without exposure to selective pressures for TP53 loss, retaining their intrinsic drug hypersensitivity.
Collapse
Affiliation(s)
| | - Nandita M deSouza
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Department of Imaging, The Royal Marsden National Health Service (NHS) Foundation Trust, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Lisa M Abegglen
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Joshua D Schiffman
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
70
|
Zhang H, Ouyang C. BTB protein family and human breast cancer: signaling pathways and clinical progress. J Cancer Res Clin Oncol 2023; 149:16213-16229. [PMID: 37682360 DOI: 10.1007/s00432-023-05314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Breast cancer is considered the number one killer of women both in China and abroad, and the leading cause of cancer death. It severely affects female health-related quality of life. Broad-complex, tramtrack, bric à brac (BTB) protein family was first discovered in drosophila as early as in 1993 by Godt D and peers, since then, more family members and their critical biological functions were uncovered. Moreover, researchers around the world have recently demonstrated that numerous signaling pathways connect BTB family members and human breast cancer. PURPOSE In this review, we critically discuss these findings regarding the essential mechanisms and functions of the BTB protein family in mediating the organic processes of human breast cancer. Meanwhile, we summarize the signaling pathways the BTB protein family participates in. And we address that BTB proteins regulate the growth, apoptosis, and other behaviors of breast cancer cells. We also point out the future directions for further studies in this field. METHODS The relevant online literatures have been reviewed for this article. CONCLUSION This review could offer an update on novel molecular targets for treating human breast cancer and new insights into BTB protein family research.
Collapse
Affiliation(s)
- Haorui Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China.
| |
Collapse
|
71
|
Maura F, Adams RM, Aoki T. Scientific techniques in adolescent and young adult classic Hodgkin lymphoma. EJHAEM 2023; 4:902-907. [PMID: 38024640 PMCID: PMC10660113 DOI: 10.1002/jha2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 12/01/2023]
Abstract
Understanding the tumor microenvironment and genomic landscape is crucial for better prediction of treatment outcomes and developing novel therapies in Hodgkin lymphoma (HL). Recent advancements in genomics have enabled researchers to gain deeper insights into the genomic characteristics of HL at both single-cell resolution and the whole genome level. The use of noninvasive methods such as liquid biopsies and formalin-fixed paraffin-embedded-based imaging techniques has expanded the possibilities of applying cutting-edge analyses to routine clinically available samples. Collaborative efforts between adult and pediatric group are imperative to translate novel findings into routine patient care.
Collapse
Affiliation(s)
- Francesco Maura
- Sylvester Comprehensive Cancer CenterUniversity of MiamiMiamiFloridaUSA
| | - Ragini M. Adams
- Division of Pediatric Hematology, OncologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Tomohiro Aoki
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
72
|
Martorana F, Di Grazia G, Rosano GN, Vecchio GM, Conti C, Nucera S, Magro G, Vigneri P. More Than Meets the Eye: A Case of Breast Cancer Switching from Being Luminal-Androgen-Receptor-Positive to Being Hormone-Receptor-Positive. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1875. [PMID: 37893593 PMCID: PMC10608003 DOI: 10.3390/medicina59101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Triple-negative breast cancer (TNBC) represents about 15% of all breast cancers and is usually characterized by aggressive clinical behavior and a poor prognosis. Four TNBC subgroups have been previously defined with different molecular profiles: (i) luminal androgen receptor (LAR), (ii) mesenchymal (MES), (iii) basal-like immunosuppressed (BLIS) and (iv) basal-like immune-activated (BLIA). Among these, LAR is characterized by the expression of the androgen receptor (AR), and exhibits genomic characteristics that resemble luminal breast cancers, with a still undefined prognosis and clinical behavior. Here, we report a case of a woman affected by recurring LAR TNBC, which underwent phenotypic changes throughout its natural history. After the initial diagnosis of LAR breast cancer, the patient experienced local recurrence with strong expression of the estrogen receptor. Due to this finding, she started treatment with a CDK4/6-inhibitor and an aromatase inhibitor, followed by oral vinorelbine, both with dismal outcomes. Then, she received everolimus and exemestane, which determined temporary disease stabilization. An extensive NGS analysis of tumor tissue showed PIK3CA and HER2 mutations. Our case is consistent with previous reports of LAR breast cancer and underlines the potential utility of re-biopsy and molecular testing in breast cancer (BC), especially in rare subtypes.
Collapse
Affiliation(s)
- Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Giuseppe Di Grazia
- Department of Human Pathology “G. Barresi”, University of Messina, 98131 Messina, Italy; (G.D.G.); (C.C.); (S.N.)
| | - Giovanni Nunzio Rosano
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.N.R.); (G.M.V.); (G.M.)
| | - Giada Maria Vecchio
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.N.R.); (G.M.V.); (G.M.)
| | - Chiara Conti
- Department of Human Pathology “G. Barresi”, University of Messina, 98131 Messina, Italy; (G.D.G.); (C.C.); (S.N.)
| | - Sabrina Nucera
- Department of Human Pathology “G. Barresi”, University of Messina, 98131 Messina, Italy; (G.D.G.); (C.C.); (S.N.)
| | - Gaetano Magro
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.N.R.); (G.M.V.); (G.M.)
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
- Humanitas Istituto Clinico Catanese, University Oncology Department, 95045 Catania, Italy
| |
Collapse
|
73
|
Lau HSH, Tan VKM, Tan BKT, Sim Y, Quist J, Thike AA, Tan PH, Pervaiz S, Grigoriadis A, Sabapathy K. Adipose-enriched peri-tumoral stroma, in contrast to myofibroblast-enriched stroma, prognosticates poorer survival in breast cancers. NPJ Breast Cancer 2023; 9:84. [PMID: 37863888 PMCID: PMC10589339 DOI: 10.1038/s41523-023-00590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
Despite our understanding of the genetic basis of intra-tumoral heterogeneity, the role of stromal heterogeneity arising from an altered tumor microenvironment in affecting tumorigenesis is poorly understood. In particular, extensive study on the peri-tumoral stroma in the morphologically normal tissues surrounding the tumor is lacking. Here, we examine the heterogeneity in tumors and peri-tumoral stroma from 8 ER+/PR+/HER2- invasive breast carcinomas, through multi-region transcriptomic profiling by microarray. We describe the regional heterogeneity observed at the intrinsic molecular subtype, pathway enrichment, and cell type composition levels within each tumor and its peri-tumoral region, up to 7 cm from the tumor margins. Moreover, we identify a pro-inflammatory adipose-enriched peri-tumoral subtype which was significantly associated with poorer overall survival in breast cancer patients, in contrast to an adaptive immune cell- and myofibroblast-enriched subtype. These data together suggest that peri-tumoral heterogeneity may be an important determinant of the evolution and treatment of breast cancers.
Collapse
Affiliation(s)
- Hannah Si Hui Lau
- Divisions of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, 168583, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Veronique Kiak Mien Tan
- Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Breast Surgery, Singapore General Hospital, Singapore, 168753, Singapore
| | - Benita Kiat Tee Tan
- Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Breast Surgery, Singapore General Hospital, Singapore, 168753, Singapore
- Department of General Surgery, Sengkang General Hospital, Singapore, 544886, Singapore
| | - Yirong Sim
- Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Breast Surgery, Singapore General Hospital, Singapore, 168753, Singapore
| | - Jelmar Quist
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Aye Aye Thike
- Division of Pathology, Singapore General Hospital, Singapore, 169856, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore, 169856, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kanaga Sabapathy
- Divisions of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, 168583, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
74
|
Niu M, Zhang Y, Luo J, Sinson JC, Thompson AM, Zong C. Characterization of Cancer Evolution Landscape Based on Accurate Detection of Somatic Mutations in Single Tumor Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561356. [PMID: 37873375 PMCID: PMC10592685 DOI: 10.1101/2023.10.09.561356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Accurate detection of somatic mutations in single tumor cells is greatly desired as it allows us to quantify the single-cell mutation burden and construct the mutation-based phylogenetic tree. Here we developed scNanoSeq chemistry and profiled 842 single cells from 21 human breast cancer samples. The majority of the mutation-based phylogenetic trees comprise a characteristic stem evolution followed by the clonal sweep. We observed the subtype-dependent lengths in the stem evolution. To explain this phenomenon, we propose that the differences are related to different reprogramming required for different subtypes of breast cancer. Furthermore, we reason that the time that the tumor-initiating cell took to acquire the critical clonal-sweep-initiating mutation by random chance set the time limit for the reprogramming process. We refer to this model as a reprogramming and critical mutation co-timing (RCMC) subtype model. Next, in the sweeping clone, we observed that tumor cells undergo a branched evolution with rapidly decreasing selection. In the most recent clades, effectively neutral evolution has been reached, resulting in a substantially large number of mutational heterogeneities. Integrative analysis with 522-713X ultra-deep bulk whole genome sequencing (WGS) further validated this evolution mode. Mutation-based phylogenetic trees also allow us to identify the early branched cells in a few samples, whose phylogenetic trees support the gradual evolution of copy number variations (CNVs). Overall, the development of scNanoSeq allows us to unveil novel insights into breast cancer evolution.
Collapse
|
75
|
Hong L, Braden DC, Zhao Y, Skoko JJ, Chang F, Woodcock SR, Uvalle C, Casey A, Wood K, Salvatore SR, Asan A, Harkness T, Fagunloye A, Razzaghi M, Straub A, Spies M, Brown DD, Lee AV, Schopfer F, Freeman BA, Neumann CA. Small molecule nitroalkenes inhibit RAD51-mediated homologous recombination and amplify triple-negative breast cancer cell killing by DNA-directed therapies. Redox Biol 2023; 66:102856. [PMID: 37633047 PMCID: PMC10472314 DOI: 10.1016/j.redox.2023.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023] Open
Abstract
Nitro fatty acids (NO2-FAs) are endogenously generated lipid signaling mediators from metabolic and inflammatory reactions between conjugated diene fatty acids and nitric oxide or nitrite-derived reactive species. NO2-FAs undergo reversible Michael addition with hyperreactive protein cysteine thiolates to induce posttranslational protein modifications that can impact protein function. Herein, we report a novel mechanism of action of natural and non-natural nitroalkenes structurally similar to (E) 10-nitro-octadec-9-enoic acid (CP-6), recently de-risked by preclinical Investigational New Drug-enabling studies and Phase 1 and Phase 2 clinical trials and found to induce DNA damage in a TNBC xenograft by inhibiting homologous-recombination (HR)-mediated repair of DNA double-strand breaks (DSB). CP-6 specifically targets Cys319, essential in RAD51-controlled HR-mediated DNA DSB repair in cells. A nitroalkene library screen identified two structurally different nitroalkenes, a non-natural fatty acid [(E) 8-nitro-nonadec-7-enoic acid (CP-8)] and a dicarboxylate ester [dimethyl (E)nitro-oct-4-enedioate (CP-23)] superior to CP-6 in TNBC cells killing, synergism with three different inhibitors of the poly ADP-ribose polymerase (PARP) and γ-IR. CP-8 and CP-23 effectively inhibited γ-IR-induced RAD51 foci formation and HR in a GFP-reported assay but did not affect benign human epithelial cells or cell cycle phases. In vivo, CP-8 and CP-23's efficacies diverged as only CP-8 showed promising anticancer activities alone and combined with the PARP inhibitor talazoparib in an HR-proficient TNBC mouse model. As preliminary preclinical toxicology analysis also suggests CP-8 as safe, our data endorse CP-8 as a novel anticancer molecule for treating cancers sensitive to homologous recombination-mediated DNA repair inhibitors.
Collapse
Affiliation(s)
- Lisa Hong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women's Research Institute, Pittsburgh, PA, USA
| | - Dennis C Braden
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women's Research Institute, Pittsburgh, PA, USA
| | - Yaoning Zhao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women's Research Institute, Pittsburgh, PA, USA; School of Medicine, Tsinghua University, Beijing, China
| | - John J Skoko
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women's Research Institute, Pittsburgh, PA, USA
| | - Fei Chang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Crystall Uvalle
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison Casey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women's Research Institute, Pittsburgh, PA, USA
| | - Katherine Wood
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sonia R Salvatore
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alparslan Asan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women's Research Institute, Pittsburgh, PA, USA
| | - Trey Harkness
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women's Research Institute, Pittsburgh, PA, USA
| | - Adeola Fagunloye
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women's Research Institute, Pittsburgh, PA, USA
| | - Mortezaali Razzaghi
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Adam Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Daniel D Brown
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francisco Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carola A Neumann
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women's Research Institute, Pittsburgh, PA, USA.
| |
Collapse
|
76
|
Jalil AT, Jehad MT, Al-Ameer LR, Khallawi AQ, Essa IM, Merza MS, Zabibah RS, Al-Hili F. Revolutionizing treatment for triple-negative breast cancer: Harnessing the power of exosomal miRNAs for targeted therapy. Pathol Res Pract 2023; 250:154825. [PMID: 37769396 DOI: 10.1016/j.prp.2023.154825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Triple-negative breast cancer (TNBC) represents a challenging and aggressive form of breast cancer associated with limited treatment options and poor prognosis. Although chemotherapy is a primary therapeutic approach, drug resistance often hinders treatment success. However, the expanding knowledge of TNBC subtypes and molecular biology has paved the way for targeted therapies. Notably, exosomes (extracellular vesicles) have emerged as crucial carriers of tumorigenic factors involved in oncogenesis and drug resistance, facilitating cell-to-cell communication and offering potential as self-delivery systems. Among the cargo carried by exosomes, microRNAs (miRNAs) have gained attention due to their ability to mediate epigenetic changes in recipient cells upon transfer. Research has confirmed dysregulation of exosomal miRNAs in breast cancer cells compared to healthy cells, establishing them as promising biomarkers for cancer diagnosis and prognosis. In this comprehensive review, we summarize the latest research findings that underscore the diagnostic and prognostic significance of exosomal miRNAs in TNBC treatment. Furthermore, we explore contemporary therapeutic approaches utilizing these exosomal miRNAs for the benefit of TNBC patients, shedding light on potential breakthroughs in TNBC management.
Collapse
Affiliation(s)
| | | | | | - Anwar Qasim Khallawi
- College of Health and Medical Technologies, Medical Laboratory Department, National University of Science and Technology, Dhi Qar, Iraq
| | - Israa M Essa
- University of Basrah, College of Veterinary Medicine, Department of Veterinary Parasitology, Iraq
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal, University College, Hillah, Babylon, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Farah Al-Hili
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
77
|
Adrada BE, Moseley TW, Kapoor MM, Scoggins ME, Patel MM, Perez F, Nia ES, Khazai L, Arribas E, Rauch GM, Guirguis MS. Triple-Negative Breast Cancer: Histopathologic Features, Genomics, and Treatment. Radiographics 2023; 43:e230034. [PMID: 37792593 PMCID: PMC10560981 DOI: 10.1148/rg.230034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 10/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous and aggressive group of tumors that are defined by the absence of estrogen and progesterone receptors and lack of ERBB2 (formerly HER2 or HER2/neu) overexpression. TNBC accounts for 8%-13% of breast cancers. In addition, it accounts for a higher proportion of breast cancers in younger women compared with those in older women, and it disproportionately affects non-Hispanic Black women. TNBC has high metastatic potential, and the risk of recurrence is highest during the 5 years after it is diagnosed. TNBC exhibits benign morphologic imaging features more frequently than do other breast cancer subtypes. Mammography can be suboptimal for early detection of TNBC owing to factors that include the fast growth of this cancer, increased mammographic density in young women, and lack of the typical features of malignancy at imaging. US is superior to mammography for TNBC detection, but benign-appearing features can lead to misdiagnosis. Breast MRI is the most sensitive modality for TNBC detection. Most cases of TNBC are treated with neoadjuvant chemotherapy, followed by surgery and radiation. MRI is the modality of choice for evaluating the response to neoadjuvant chemotherapy. Survival rates for individuals with TNBC are lower than those for persons with hormone receptor-positive and human epidermal growth factor receptor 2-positive cancers. The 5-year survival rates for patients with localized, regional, and distant disease at diagnosis are 91.3%, 65.8%, and 12.0%, respectively. The early success of immunotherapy has raised hope regarding the development of personalized strategies to treat TNBC. Imaging and tumor biomarkers are likely to play a crucial role in the prediction of TNBC treatment response and TNBC patient survival in the future. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Beatriz E. Adrada
- From the Departments of Breast Imaging (B.E.A., T.W.M., M.M.K.,
M.E.S., M.M.P., F.P., E.S.N., E.A., G.M.R., M.S.G.), Breast Surgical Oncology
(T.W.M.), Pathology-Anatomical (L.K.), and Abdominal Imaging (G.M.R.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1350,
Houston, TX 77030
| | - Tanya W. Moseley
- From the Departments of Breast Imaging (B.E.A., T.W.M., M.M.K.,
M.E.S., M.M.P., F.P., E.S.N., E.A., G.M.R., M.S.G.), Breast Surgical Oncology
(T.W.M.), Pathology-Anatomical (L.K.), and Abdominal Imaging (G.M.R.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1350,
Houston, TX 77030
| | - Megha M. Kapoor
- From the Departments of Breast Imaging (B.E.A., T.W.M., M.M.K.,
M.E.S., M.M.P., F.P., E.S.N., E.A., G.M.R., M.S.G.), Breast Surgical Oncology
(T.W.M.), Pathology-Anatomical (L.K.), and Abdominal Imaging (G.M.R.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1350,
Houston, TX 77030
| | - Marion E. Scoggins
- From the Departments of Breast Imaging (B.E.A., T.W.M., M.M.K.,
M.E.S., M.M.P., F.P., E.S.N., E.A., G.M.R., M.S.G.), Breast Surgical Oncology
(T.W.M.), Pathology-Anatomical (L.K.), and Abdominal Imaging (G.M.R.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1350,
Houston, TX 77030
| | - Miral M. Patel
- From the Departments of Breast Imaging (B.E.A., T.W.M., M.M.K.,
M.E.S., M.M.P., F.P., E.S.N., E.A., G.M.R., M.S.G.), Breast Surgical Oncology
(T.W.M.), Pathology-Anatomical (L.K.), and Abdominal Imaging (G.M.R.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1350,
Houston, TX 77030
| | - Frances Perez
- From the Departments of Breast Imaging (B.E.A., T.W.M., M.M.K.,
M.E.S., M.M.P., F.P., E.S.N., E.A., G.M.R., M.S.G.), Breast Surgical Oncology
(T.W.M.), Pathology-Anatomical (L.K.), and Abdominal Imaging (G.M.R.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1350,
Houston, TX 77030
| | - Emily S. Nia
- From the Departments of Breast Imaging (B.E.A., T.W.M., M.M.K.,
M.E.S., M.M.P., F.P., E.S.N., E.A., G.M.R., M.S.G.), Breast Surgical Oncology
(T.W.M.), Pathology-Anatomical (L.K.), and Abdominal Imaging (G.M.R.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1350,
Houston, TX 77030
| | - Laila Khazai
- From the Departments of Breast Imaging (B.E.A., T.W.M., M.M.K.,
M.E.S., M.M.P., F.P., E.S.N., E.A., G.M.R., M.S.G.), Breast Surgical Oncology
(T.W.M.), Pathology-Anatomical (L.K.), and Abdominal Imaging (G.M.R.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1350,
Houston, TX 77030
| | - Elsa Arribas
- From the Departments of Breast Imaging (B.E.A., T.W.M., M.M.K.,
M.E.S., M.M.P., F.P., E.S.N., E.A., G.M.R., M.S.G.), Breast Surgical Oncology
(T.W.M.), Pathology-Anatomical (L.K.), and Abdominal Imaging (G.M.R.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1350,
Houston, TX 77030
| | - Gaiane M. Rauch
- From the Departments of Breast Imaging (B.E.A., T.W.M., M.M.K.,
M.E.S., M.M.P., F.P., E.S.N., E.A., G.M.R., M.S.G.), Breast Surgical Oncology
(T.W.M.), Pathology-Anatomical (L.K.), and Abdominal Imaging (G.M.R.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1350,
Houston, TX 77030
| | - Mary S. Guirguis
- From the Departments of Breast Imaging (B.E.A., T.W.M., M.M.K.,
M.E.S., M.M.P., F.P., E.S.N., E.A., G.M.R., M.S.G.), Breast Surgical Oncology
(T.W.M.), Pathology-Anatomical (L.K.), and Abdominal Imaging (G.M.R.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1350,
Houston, TX 77030
| |
Collapse
|
78
|
López-Mejía JA, Mantilla-Ollarves JC, Rocha-Zavaleta L. Modulation of JAK-STAT Signaling by LNK: A Forgotten Oncogenic Pathway in Hormone Receptor-Positive Breast Cancer. Int J Mol Sci 2023; 24:14777. [PMID: 37834225 PMCID: PMC10573125 DOI: 10.3390/ijms241914777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer in women worldwide. Tumors that express hormone receptors account for 75% of all cases. Understanding alternative signaling cascades is important for finding new therapeutic targets for hormone receptor-positive breast cancer patients. JAK-STAT signaling is commonly activated in hormone receptor-positive breast tumors, inducing inflammation, proliferation, migration, and treatment resistance in cancer cells. In hormone receptor-positive breast cancer, the JAK-STAT cascade is stimulated by hormones and cytokines, such as prolactin and IL-6. In normal cells, JAK-STAT is inhibited by the action of the adaptor protein, LNK. However, the role of LNK in breast tumors is not fully understood. This review compiles published reports on the expression and activation of the JAK-STAT pathway by IL-6 and prolactin and potential inhibition of the cascade by LNK in hormone receptor-positive breast cancer. Additionally, it includes analyses of available datasets to determine the level of expression of LNK and various members of the JAK-STAT family for the purpose of establishing associations between expression and clinical outcomes. Together, experimental evidence and in silico studies provide a better understanding of the potential implications of the JAK-STAT-LNK loop in hormone receptor-positive breast cancer progression.
Collapse
Affiliation(s)
- José A. López-Mejía
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Jessica C. Mantilla-Ollarves
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
- Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico
| |
Collapse
|
79
|
Pal A, Gonzalez-Malerva L, Eaton S, Xu C, Zhang Y, Grief D, Sakala L, Nwekwo L, Zeng J, Christensen G, Gupta C, Streitwieser E, Singharoy A, Park JG, LaBaer J. Multidimensional quantitative phenotypic and molecular analysis reveals neomorphic behaviors of p53 missense mutants. NPJ Breast Cancer 2023; 9:78. [PMID: 37773066 PMCID: PMC10541912 DOI: 10.1038/s41523-023-00582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Mutations in the TP53 tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specific TP53 missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position-R273C vs. R273H-has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors.
Collapse
Affiliation(s)
- Anasuya Pal
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Gonzalez-Malerva
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Seron Eaton
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Chenxi Xu
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Yining Zhang
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Dustin Grief
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lydia Sakala
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lilian Nwekwo
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jia Zeng
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Grant Christensen
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Chitrak Gupta
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Ellen Streitwieser
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Abhishek Singharoy
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Jin G Park
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| | - Joshua LaBaer
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
80
|
Shin J, Kim JY, Oh JM, Lee JE, Kim SW, Nam SJ, Park W, Park YH, Ahn JS, Im YH. Comprehensive Clinical Characterization of Decade-Long Survivors of Metastatic Breast Cancer. Cancers (Basel) 2023; 15:4720. [PMID: 37835414 PMCID: PMC10571750 DOI: 10.3390/cancers15194720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Elucidating the clinical features of metastatic breast cancer (MBC) patients with an exceptionally favorable prognosis may offer insights to improve the survival of more typical patients. METHODS We collected comprehensive real-world data on clinicopathologic characteristics, treatments, and outcomes of 110 consecutive MBC patients who survived for over ten years from the clinical data warehouse of Samsung Medical Center. RESULTS The cohort included 54 hormone receptor (HR)-positive/HER2-negative (HR+/HER2-), 21 HR+/HER2+, 16 HR-/HER2+, and 14 triple-negative breast cancer (TNBC) patients. The median age at MBC diagnosis was 48.5 years. Approximately 70% of patients initially had a single-organ metastasis. The most common site of metastasis was the lung (46.4%), followed by distant lymph nodes (37.3%). During a median follow-up of 14.6 years, the median duration of systemic therapy was 11, 8.4, 7.3, and 0.8 years in the HR+/HER2-, HR+/HER2+, HR-/HER2+, and TNBC subgroups, respectively. Seven HER2+ and ten TNBC patients received systemic treatment for less than two years and remained treatment-free for most of the follow-up period, suggesting a potential chance of cure. The TNBC subtype (p < 0.001) and local treatment with curative intent within 1 year of MBC diagnosis (p = 0.002) were significantly associated with long-term treatment-free survival. The survival of HER2+ MBC and TNBC patients, but not that of HR+/HER2- patients, plateaued approximately 13 years after MBC diagnosis. CONCLUSIONS A small subset of patients with HER2+ MBC and metastatic TNBC may be curable with multimodality therapy. Prospective studies integrating clinical and genomic data may identify unique clinicogenomic features of MBC patients who can achieve durable disease control without prolonged chemotherapy.
Collapse
Affiliation(s)
- Junghoon Shin
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.S.)
| | - Ji-Yeon Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.S.)
- Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jung Min Oh
- Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jeong Eon Lee
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Seok Won Kim
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Seok Jin Nam
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Won Park
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.S.)
- Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.S.)
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Hyuck Im
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.S.)
- Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
81
|
Zhang Z, Zhang R, Li D. Molecular Biology Mechanisms and Emerging Therapeutics of Triple-Negative Breast Cancer. Biologics 2023; 17:113-128. [PMID: 37767463 PMCID: PMC10520847 DOI: 10.2147/btt.s426392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is conventionally characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2), accounting for approximately 15-20% of all breast cancers. Compared to other molecular phenotypes, TNBC is typically associated with high malignancy and poor prognosis. Cytotoxic agents have been the mainstay of treatment for the past few decades due to the lack of definitive targets and limited therapeutic interventions. However, recent developments have demonstrated that TNBC has peculiar molecular classifications and biomarkers, which provide the possibility of evolving treatment from basic cytotoxic chemotherapy to an expanding domain of targeted therapies. This review presents a framework for understanding the current clinical experience surrounding molecular biology mechanisms in TNBC (Figure 1). Including immunotherapy, polymerase (PARP) and PI3K/AKT pathway inhibitors, antibody-drug conjugates, and androgen receptor (AR) blockade. Additionally, the role of miRNA therapeutics targeting TNBC and potential strategies targeting cancer stem cells (CSCs) are discussed and highlighted. As more and more treatments arise on the horizon, we believe that patients with TNBC will have a new sense of hope.
Collapse
Affiliation(s)
- Zhiying Zhang
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Rui Zhang
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Donghai Li
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| |
Collapse
|
82
|
Huang P, Zhou X, Zheng M, Yu Y, Jin G, Zhang S. Regulatory T cells are associated with the tumor immune microenvironment and immunotherapy response in triple-negative breast cancer. Front Immunol 2023; 14:1263537. [PMID: 37767092 PMCID: PMC10521732 DOI: 10.3389/fimmu.2023.1263537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with a high risk of distant metastasis, an extremely poor prognosis, and a high risk of death. Regulatory T cells (Tregs) contribute to the formation of a tumor immunosuppressive microenvironment, which plays an important role in the progression and treatment resistance of TNBC. Methods A public single-cell sequencing dataset demonstrated increased infiltration of Tregs in TNBC tissues relative to normal breast tissue. Weighted gene co-expression network analysis was used to identify Treg infiltration-related modules for METABRIC TNBC samples. Subsequently, we obtained two Treg infiltration-associated clusters of TNBC by applying consensus clustering and further constructed a prognostic model based on this Treg infiltration-associated gene module. The ability of the selected gene in the prognostic model, thymidine kinase-1 (TK1), to promote the progression of TNBC was evaluated in vitro. Results We concluded that two Treg infiltration-associated clusters had different prognoses and sensitivities to drugs commonly used in breast cancer treatment, and multi-omics analysis revealed that the two clusters had different copy number variations of key tumor progression genes. The 7-gene risk score based on TNBC Treg infiltration was a reliable prognostic indicator both in the training and validation cohorts. Moreover, patients with TNBC with high Treg infiltration-related scores lacked the activation of immune activation pathways and exhibited resistance to anti-PD1 immunotherapy. Knocking down TK1 led to impaired proliferation, migration, and invasion of TNBC cells in vitro. In addition, specimens from patients with TNBC with high TK1 expression showed significantly higher Treg infiltration in tumors. Results of spatial transcriptome analysis showed that TK1 positive cells mainly localize in tumor area, and Treg cell infiltration in TNBC tissues was associated with high expression of TK1. Pan-cancer analysis also demonstrated that TK1 is associated with poor prognosis and activation of proliferation pathways in multiple cancers. Discussion We established a prognostic model related to Treg infiltration and this model can be used to establish a clinically relevant classification of TNBC progression. Additionally, our work revealed the underestimable potential of TK1 as a tumor biomarker and immunotherapeutic target.
Collapse
Affiliation(s)
- Pengfei Huang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xinyue Zhou
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Yongjun Yu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Gongsheng Jin
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
83
|
Zajac KK, Malla S, Babu RJ, Raman D, Tiwari AK. Ethnic disparities in the immune microenvironment of triple negative breast cancer and its role in therapeutic outcomes. Cancer Rep (Hoboken) 2023; 6 Suppl 1:e1779. [PMID: 36632988 PMCID: PMC10440847 DOI: 10.1002/cnr2.1779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
In 2020, newly diagnosed breast cancer (BC) cases surpassed that of lung cancer among women, making it the most common female cancer globally. In spite of recent increases in incidence rates, mortality due to BC has declined since 1989. These declines have been attributed to advancements in treatment modalities as well as increased mammography surveillance. Despite these advances, African American (AA) women are 40% more likely to die from BC than Caucasian women. Multifactorial etiology has been implicated in the disparity of BC mortality rates among AA women. As an example, AA women have a disproportionate incidence of triple negative breast cancer (TNBC), which has a poor prognosis and marginal treatment options. Increasingly, the tumor microenvironment (TME) has gained relevance as it relates to primary tumor progression, metastasis and treatment possibilities. The treatment outcomes or pathological complete response (pCR) in TNBC among AA women are affected by differences in TME. The TME of AA women exhibit several variances in acellular and cellular components associated with pro-tumorigenic effects. For example, increased levels of the adipocyte-related hormone, resistin, the pro-inflammatory cytokine, IL-6, and the CC chemokine, CCL2, within the TME of AA women gives rise to an increased density of M2 macrophages, also known as tumor-associated macrophages. Elevated levels of vascular endothelial growth factor in the TME of AA women increase the vascular density or vascularity, which facilitate aggressive tumor growth and metastasis. Furthermore, a pro-tumorigenic TME is supported by increased levels of the CXC chemokine, CXCL12 that results in the recruitment of regulatory T lymphocytes (Tregs ). Due to these and other differences in the TME of AA women, precision oncology can target specific aspects of the TME that may contribute to a poorer prognosis. In addition to the discrepancies in the TME, AA women face socio-economic barriers that limit their ability to access state-of-the-art, novel therapies against metastatic TNBC. In this review, we will provide a brief overview of the tumor immune microenvironment, immune-based treatment options for TNBC and their potential to decrease health disparities due to ethnicity.
Collapse
Affiliation(s)
- Kelsee K. Zajac
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
| | - Saloni Malla
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
| | - Ramapuram Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of PharmacyAuburn UniversityAuburnAlabamaUSA
| | - Dayanidhi Raman
- Department of Cell and Cancer BiologyUniversity of Toledo Health Science CampusToledoOhioUSA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
- Department of Cell and Cancer BiologyUniversity of Toledo Health Science CampusToledoOhioUSA
| |
Collapse
|
84
|
Anderle N, Schäfer-Ruoff F, Staebler A, Kersten N, Koch A, Önder C, Keller AL, Liebscher S, Hartkopf A, Hahn M, Templin M, Brucker SY, Schenke-Layland K, Schmees C. Breast cancer patient-derived microtumors resemble tumor heterogeneity and enable protein-based stratification and functional validation of individualized drug treatment. J Exp Clin Cancer Res 2023; 42:210. [PMID: 37596623 PMCID: PMC10436441 DOI: 10.1186/s13046-023-02782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023] Open
Abstract
Despite tremendous progress in deciphering breast cancer at the genomic level, the pronounced intra- and intertumoral heterogeneity remains a major obstacle to the advancement of novel and more effective treatment approaches. Frequent treatment failure and the development of treatment resistance highlight the need for patient-derived tumor models that reflect the individual tumors of breast cancer patients and allow a comprehensive analyses and parallel functional validation of individualized and therapeutically targetable vulnerabilities in protein signal transduction pathways. Here, we introduce the generation and application of breast cancer patient-derived 3D microtumors (BC-PDMs). Residual fresh tumor tissue specimens were collected from n = 102 patients diagnosed with breast cancer and subjected to BC-PDM isolation. BC-PDMs retained histopathological characteristics, and extracellular matrix (ECM) components together with key protein signaling pathway signatures of the corresponding primary tumor tissue. Accordingly, BC-PDMs reflect the inter- and intratumoral heterogeneity of breast cancer and its key signal transduction properties. DigiWest®-based protein expression profiling of identified treatment responder and non-responder BC-PDMs enabled the identification of potential resistance and sensitivity markers of individual drug treatments, including markers previously associated with treatment response and yet undescribed proteins. The combination of individualized drug testing with comprehensive protein profiling analyses of BC-PDMs may provide a valuable complement for personalized treatment stratification and response prediction for breast cancer.
Collapse
Affiliation(s)
- Nicole Anderle
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany.
| | - Felix Schäfer-Ruoff
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| | - Annette Staebler
- Institute of Pathology and Neuropathology, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Nicolas Kersten
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karls University Tuebingen, Tuebingen, 72076, Germany
- FZI Research Center for Information Technology, 76131, Karlsruhe, Germany
| | - André Koch
- Department of Women's Health, University Women's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Cansu Önder
- Department of Women's Health, University Women's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Anna-Lena Keller
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| | - Simone Liebscher
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Andreas Hartkopf
- Department of Women's Health, University Women's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
- Department of Gynecology and Obstetrics, University Hospital of Ulm, 89081, Ulm, Germany
| | - Markus Hahn
- Department of Women's Health, University Women's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| | - Sara Y Brucker
- Department of Women's Health, University Women's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Christian Schmees
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany.
| |
Collapse
|
85
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
86
|
Hong L, Braden DC, Zhao Y, Skoko JJ, Chang F, Woodcock SR, Uvalle C, Casey A, Wood K, Salvatore SR, Asan A, Harkness T, Fagunloye A, Razzaghi M, Straub A, Spies M, Brown DD, Lee AV, Schopfer F, Freeman BA, Neumann CA. Small molecule nitroalkenes inhibit RAD51-mediated homologous recombination and amplify triple-negative breast cancer cell killing by DNA-directed therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.552990. [PMID: 37645906 PMCID: PMC10462009 DOI: 10.1101/2023.08.11.552990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Nitro fatty acids (NO 2 -FAs) are endogenously generated lipid signaling mediators from metabolic and inflammatory reactions between conjugated diene fatty acids and nitric oxide or nitrite-derived reactive species. NO 2 -FAs undergo reversible Michael addition with hyperreactive protein cysteine thiolates to induce posttranslational protein modifications that can impact protein function. Herein, we report a novel mechanism of action of natural and non-natural nitroalkenes structurally similar to ( E ) 10-nitro-octadec-9-enoic acid (CP-6), recently de-risked by preclinical Investigational New Drug-enabling studies and Phase 1 and Phase 2 clinical trials and found to induce DNA damage in a TNBC xenograft by inhibiting homologous-recombination (HR)-mediated repair of DNA double-strand breaks (DSB). CP-6 specifically targets Cys319, essential in RAD51-controlled HR-mediated DNA DSB repair in cells. A nitroalkene library screen identified two structurally different nitroalkenes, a non-natural fatty acid [( E ) 8-nitro- nonadec-7-enoic acid (CP-8)] and a dicarboxylate ester [dimethyl ( E )nitro-oct-4-enedioate (CP- 23)] superior to CP-6 in TNBC cells killing, synergism with three different inhibitors of the poly ADP-ribose polymerase (PARP) and γ-IR. CP-8 and CP-23 effectively inhibited γ-IR-induced RAD51 foci formation and HR in a GFP-reported assay but did not affect benign human epithelial cells or cell cycle phases. In vivo, CP-8 and CP-23's efficacies diverged as only CP-8 showed promising anticancer activities alone and combined with the PARP inhibitor talazoparib in an HR-proficient TNBC mouse model. As preliminary preclinical toxicology analysis also suggests CP-8 as safe, our data endorse CP-8 as a novel anticancer molecule for treating cancers sensitive to homologous recombination-mediated DNA repair inhibitors.
Collapse
|
87
|
Martino F, Lupi M, Giraudo E, Lanzetti L. Breast cancers as ecosystems: a metabolic perspective. Cell Mol Life Sci 2023; 80:244. [PMID: 37561190 PMCID: PMC10415483 DOI: 10.1007/s00018-023-04902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of cancer death. Despite enormous progress in its management, both from the therapeutic and early diagnosis viewpoints, still around 700,000 patients succumb to the disease each year, worldwide. Late recurrency is the major problem in BC, with many patients developing distant metastases several years after the successful eradication of the primary tumor. This is linked to the phenomenon of metastatic dormancy, a still mysterious trait of the natural history of BC, and of several other types of cancer, by which metastatic cells remain dormant for long periods of time before becoming reactivated to initiate the clinical metastatic disease. In recent years, it has become clear that cancers are best understood if studied as ecosystems in which the impact of non-cancer-cell-autonomous events-dependent on complex interaction between the cancer and its environment, both local and systemic-plays a paramount role, probably as significant as the cell-autonomous alterations occurring in the cancer cell. In adopting this perspective, a metabolic vision of the cancer ecosystem is bound to improve our understanding of the natural history of cancer, across space and time. In BC, many metabolic pathways are coopted into the cancer ecosystem, to serve the anabolic and energy demands of the cancer. Their study is shedding new light on the most critical aspect of BC management, of metastatic dissemination, and that of the related phenomenon of dormancy and fostering the application of the knowledge to the development of metabolic therapies.
Collapse
Affiliation(s)
- Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Science and Drug Technology, University of Torino, Turin, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
88
|
Barroso-Sousa R, Pacífico JP, Sammons S, Tolaney SM. Tumor Mutational Burden in Breast Cancer: Current Evidence, Challenges, and Opportunities. Cancers (Basel) 2023; 15:3997. [PMID: 37568813 PMCID: PMC10417019 DOI: 10.3390/cancers15153997] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Tumor mutational burden (TMB) correlates with tumor neoantigen burden, T cell infiltration, and response to immune checkpoint inhibitors in many solid tumor types. Based on data from the phase II KEYNOTE-158 study, the anti-PD-1 antibody pembrolizumab was granted approval for treating patients with advanced solid tumors and TMB ≥ 10 mutations per megabase. However, this trial did not include any patients with metastatic breast cancer; thus, several questions remain unanswered about the true role of TMB as a predictive biomarker of benefit to immune checkpoint inhibitor therapy in breast cancer. In this review, we will discuss the challenges and opportunities in establishing TMB as a predictive biomarker of benefit to immunotherapy in metastatic breast cancer.
Collapse
Affiliation(s)
- Romualdo Barroso-Sousa
- Dasa Institute for Education and Research (IEPD), Brasilia 71635-580, DF, Brazil
- Dasa Oncology, Hospital Brasilia, Brasilia 71635-580, DF, Brazil
| | - Jana Priscila Pacífico
- Dasa Institute for Education and Research (IEPD), Brasilia 71635-580, DF, Brazil
- Dasa Oncology, Hospital Brasilia, Brasilia 71635-580, DF, Brazil
| | - Sarah Sammons
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
89
|
Bhardwaj PV, Wang Y, Brunk E, Spanheimer PM, Abdou YG. Advances in the Management of Early-Stage Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:12478. [PMID: 37569851 PMCID: PMC10419523 DOI: 10.3390/ijms241512478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with both inter- and intratumor heterogeneity, thought to result in a more aggressive course and worse outcomes. Neoadjuvant therapy (NAT) has become the preferred treatment modality of early-stage TNBC as it allows for the downstaging of tumors in the breast and axilla, monitoring early treatment response, and most importantly, provides important prognostic information that is essential to determining post-surgical therapies to improve outcomes. It focuses on combinations of systemic drugs to optimize pathologic complete response (pCR). Excellent response to NAT has allowed surgical de-escalation in ideal candidates. Further, treatment algorithms guide the systemic management of patients based on their pCR status following surgery. The expanding knowledge of molecular pathways, genomic sequencing, and the immunological profile of TNBC has led to the use of immune checkpoint inhibitors and targeted agents, including PARP inhibitors, further revolutionizing the therapeutic landscape of this clinical entity. However, subgroups most likely to benefit from these novel approaches in TNBC remain elusive and are being extensively studied. In this review, we describe current practices and promising therapeutic options on the horizon for TNBC, surgical advances, and future trends in molecular determinants of response to therapy in early-stage TNBC.
Collapse
Affiliation(s)
- Prarthna V. Bhardwaj
- Division of Hematology-Oncology, University of Massachusetts Chan Medical School—Baystate, Springfield, MA 01199, USA
| | - Yue Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Brunk
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genomic Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Computational Medicine Program, UNC Chapel Hill, NC 27599, USA
| | - Philip M. Spanheimer
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yara G. Abdou
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
90
|
Thakur S, Haider S, Natrajan R. Implications of tumour heterogeneity on cancer evolution and therapy resistance: lessons from breast cancer. J Pathol 2023; 260:621-636. [PMID: 37587096 DOI: 10.1002/path.6158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 08/18/2023]
Abstract
Tumour heterogeneity is pervasive amongst many cancers and leads to disease progression, and therapy resistance. In this review, using breast cancer as an exemplar, we focus on the recent advances in understanding the interplay between tumour cells and their microenvironment using single cell sequencing and digital spatial profiling technologies. Further, we discuss the utility of lineage tracing methodologies in pre-clinical models of breast cancer, and how these are being used to unravel new therapeutic vulnerabilities and reveal biomarkers of breast cancer progression. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Shefali Thakur
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| |
Collapse
|
91
|
Jin Z, Zhou Q, Cheng JN, Jia Q, Zhu B. Heterogeneity of the tumor immune microenvironment and clinical interventions. Front Med 2023; 17:617-648. [PMID: 37728825 DOI: 10.1007/s11684-023-1015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/24/2023] [Indexed: 09/21/2023]
Abstract
The tumor immune microenvironment (TIME) is broadly composed of various immune cells, and its heterogeneity is characterized by both immune cells and stromal cells. During the course of tumor formation and progression and anti-tumor treatment, the composition of the TIME becomes heterogeneous. Such immunological heterogeneity is not only present between populations but also exists on temporal and spatial scales. Owing to the existence of TIME, clinical outcomes can differ when a similar treatment strategy is provided to patients. Therefore, a comprehensive assessment of TIME heterogeneity is essential for developing precise and effective therapies. Facilitated by advanced technologies, it is possible to understand the complexity and diversity of the TIME and its influence on therapy responses. In this review, we discuss the potential reasons for TIME heterogeneity and the current approaches used to explore it. We also summarize clinical intervention strategies based on associated mechanisms or targets to control immunological heterogeneity.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co. Ltd., Shanghai, 201318, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Zhou
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
92
|
Morrison L, Okines A. Systemic Therapy for Metastatic Triple Negative Breast Cancer: Current Treatments and Future Directions. Cancers (Basel) 2023; 15:3801. [PMID: 37568617 PMCID: PMC10417818 DOI: 10.3390/cancers15153801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Until recently, despite its heterogenous biology, metastatic triple negative breast cancer (TNBC) was treated as a single entity, with successive lines of palliative chemotherapy being the only systemic option. Significant gene expression studies have demonstrated the diversity of TNBC, but effective differential targeting of the four main (Basal-like 1 and 2, mesenchymal and luminal androgen receptor) molecular sub-types has largely eluded researchers. The introduction of immunotherapy, currently useful only for patients with PD-L1 positive cancers, led to the stratification of first-line therapy using this immunohistochemical biomarker. Germline BRCA gene mutations can also be targeted with PARP inhibitors in both the adjuvant and metastatic settings. In contrast, the benefit of the anti-Trop-2 antibody-drug conjugate (ADC) Sacituzumab govitecan (SG) does not appear confined to patients with tumours expressing high levels of Trop-2, leading to its potential utility for any patient with an estrogen receptor (ER)-negative, HER2-negative advanced breast cancer (ABC). Most recently, low levels of HER2 expression, detected in up to 60% of TNBC, predicts benefit from the potent HER2-directed antibody-drug conjugate trastuzumab deruxtecan (T-DXd), defining an additional treatment option for this sub-group. Regrettably, despite recent advances, the median survival of TNBC continues to lag far behind the approximately 5 years now expected for patients with ER-positive or HER2-positive breast cancers. We review the data supporting immunotherapy, ADCs, and targeted agents in subgroups of patients with TNBC, and current clinical trials that may pave the way to further advances in this challenging disease.
Collapse
Affiliation(s)
| | - Alicia Okines
- Breast Unit, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| |
Collapse
|
93
|
Lang JD, Nguyen TVV, Levin MK, Blas PE, Williams HL, Rodriguez ESR, Briones N, Mueller C, Selleck W, Moore S, Zismann VL, Hendricks WPD, Espina V, O'Shaughnessy J. Pilot clinical trial and phenotypic analysis in chemotherapy-pretreated, metastatic triple-negative breast cancer patients treated with oral TAK-228 and TAK-117 (PIKTOR) to increase DNA damage repair deficiency followed by cisplatin and nab paclitaxel. Biomark Res 2023; 11:73. [PMID: 37491309 PMCID: PMC10369813 DOI: 10.1186/s40364-023-00511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND A subset of triple-negative breast cancers (TNBCs) have homologous recombination deficiency with upregulation of compensatory DNA repair pathways. PIKTOR, a combination of TAK-228 (TORC1/2 inhibitor) and TAK-117 (PI3Kα inhibitor), is hypothesized to increase genomic instability and increase DNA damage repair (DDR) deficiency, leading to increased sensitivity to DNA-damaging chemotherapy and to immune checkpoint blockade inhibitors. METHODS 10 metastatic TNBC patients received 4 mg TAK-228 and 200 mg TAK-117 (PIKTOR) orally each day for 3 days followed by 4 days off, weekly, until disease progression (PD), followed by intravenous cisplatin 75 mg/m2 plus nab paclitaxel 220 mg/m2 every 3 weeks for up to 6 cycles. Patients received subsequent treatment with pembrolizumab and/or chemotherapy. Primary endpoints were objective response rate with cisplatin/nab paclitaxel and safety. Biopsies of a metastatic lesion were collected prior to and at PD on PIKTOR. Whole exome and RNA-sequencing and reverse phase protein arrays (RPPA) were used to phenotype tumors pre- and post-PIKTOR for alterations in DDR, proliferation, and immune response. RESULTS With cisplatin/nab paclitaxel (cis/nab pac) therapy post PIKTOR, 3 patients had clinical benefit (1 partial response (PR) and 2 stable disease (SD) ≥ 6 months) and continued to have durable benefit in progression-free survival with pembrolizumab post-cis/nab pac for 1.2, 2, and 3.6 years. Their post-PIKTOR metastatic tissue displayed decreased mismatch repair (MMR), increased tumor mutation burden, and significantly lower levels of 53BP1, DAG Lipase β, GCN2, AKT Ser473, and PKCzeta Thr410/403 compared to pre-PIKTOR tumor tissue. CONCLUSIONS Priming patients' chemotherapy-pretreated metastatic TNBC with PIKTOR led to very prolonged response/disease control with subsequent cis/nab pac, followed by pembrolizumab, in 3 of 10 treated patients. Our multi-omics approach revealed a higher number of genomic alterations, reductions in MMR, and alterations in immune and stress response pathways post-PIKTOR in patients who had durable responses. TRIAL REGISTRATION This clinical trial was registered on June 21, 2017, at ClinicalTrials.gov using identifier NCT03193853.
Collapse
Affiliation(s)
- Jessica D Lang
- The Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, 85004, USA
- Department of Pathology and Laboratory Medicine, Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Tuong Vi V Nguyen
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 22030, USA
| | - Maren K Levin
- Baylor Scott & White Research Institute, Dallas, TX, 75246, USA
| | - Page E Blas
- Baylor Scott & White Research Institute, Dallas, TX, 75246, USA
| | | | | | - Natalia Briones
- The Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, 85004, USA
| | - Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 22030, USA
| | - William Selleck
- The Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, 85004, USA
| | - Sarah Moore
- The Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, 85004, USA
| | - Victoria L Zismann
- The Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, 85004, USA
| | - William P D Hendricks
- The Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, 85004, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 22030, USA
| | - Joyce O'Shaughnessy
- Baylor University Medical Center, Texas Oncology, 3410 Worth Street, Suite 400, Dallas, TX, 75246, USA.
| |
Collapse
|
94
|
de Oliveira RC, Dos Reis SP, Cavalcante GC. Mutations in Structural Genes of the Mitochondrial Complex IV May Influence Breast Cancer. Genes (Basel) 2023; 14:1465. [PMID: 37510369 PMCID: PMC10379055 DOI: 10.3390/genes14071465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Although it has gained more attention in recent years, the relationship between breast cancer (BC) and mitochondrial oxidative phosphorylation (OXPHOS) is still not well understood. Importantly, Complex IV or Cytochrome C Oxidase (COX) of OXPHOS is one of the key players in mitochondrial balance. An in silico investigation of mutations in structural genes of Complex IV was conducted in BC, comprising 2107 samples. Our findings show four variants (rs267606614, rs753969142, rs199476128 and rs267606884) with significant pathogenic potential. Moreover, we highlight nine genes (MT-CO1, MT-CO2, MT-CO3, CO4I2, COX5A, COX5B, COX6A2, COX6C and COX7B2) with a potential impact on BC.
Collapse
Affiliation(s)
- Ricardo Cunha de Oliveira
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil
| | - Sávio Pinho Dos Reis
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, Brazil
| | - Giovanna C Cavalcante
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
95
|
Jiang Z, Ju Y, Ali A, Chung PED, Skowron P, Wang DY, Shrestha M, Li H, Liu JC, Vorobieva I, Ghanbari-Azarnier R, Mwewa E, Koritzinsky M, Ben-David Y, Woodgett JR, Perou CM, Dupuy A, Bader GD, Egan SE, Taylor MD, Zacksenhaus E. Distinct shared and compartment-enriched oncogenic networks drive primary versus metastatic breast cancer. Nat Commun 2023; 14:4313. [PMID: 37463901 PMCID: PMC10354065 DOI: 10.1038/s41467-023-39935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Metastatic breast-cancer is a major cause of death in women worldwide, yet the relationship between oncogenic drivers that promote metastatic versus primary cancer is still contentious. To elucidate this relationship in treatment-naive animals, we hereby describe mammary-specific transposon-mutagenesis screens in female mice together with loss-of-function Rb, which is frequently inactivated in breast-cancer. We report gene-centric common insertion-sites (gCIS) that are enriched in primary-tumors, in metastases or shared by both compartments. Shared-gCIS comprise a major MET-RAS network, whereas metastasis-gCIS form three additional hubs: Rho-signaling, Ubiquitination and RNA-processing. Pathway analysis of four clinical cohorts with paired primary-tumors and metastases reveals similar organization in human breast-cancer with subtype-specific shared-drivers (e.g. RB1-loss, TP53-loss, high MET, RAS, ER), primary-enriched (EGFR, TGFβ and STAT3) and metastasis-enriched (RHO, PI3K) oncogenic signaling. Inhibitors of RB1-deficiency or MET plus RHO-signaling cooperate to block cell migration and drive tumor cell-death. Thus, targeting shared- and metastasis- but not primary-enriched derivers offers a rational avenue to prevent metastatic breast-cancer.
Collapse
Affiliation(s)
- Zhe Jiang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - YoungJun Ju
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Amjad Ali
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Philip E D Chung
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Patryk Skowron
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dong-Yu Wang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Mariusz Shrestha
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Huiqin Li
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Jeff C Liu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ioulia Vorobieva
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ronak Ghanbari-Azarnier
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ethel Mwewa
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | | | - Yaacov Ben-David
- The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, 550014, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Adam Dupuy
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242, USA
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E Egan
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada.
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
96
|
Carbajal-Ochoa WH, Johnson D, Alvarez A, Bernal AM, Anampa JD. Racial disparities in treatment and outcomes between non-Hispanic Black and non-Hispanic White women with nonmetastatic inflammatory breast cancer. Breast Cancer Res Treat 2023:10.1007/s10549-023-07018-7. [PMID: 37442877 DOI: 10.1007/s10549-023-07018-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
PURPOSE The incidence rate of inflammatory breast cancer (IBC) is higher among non-Hispanic Black (NHB) than non-Hispanic White (NHW) women. We examined the differences in treatment and outcomes between NHB and NHW women with IBC, accounting for demographic, clinicopathological, and socioeconomic factors. METHODS We collected data from the Surveillance, Epidemiology, and End Results database for NHB and NHW women with IBC diagnosed between 2010-2016. We analyzed the odds of receiving chemotherapy, radiation, and surgery between NHB and NHW women. We evaluated overall survival (OS) with Kaplan-Meier methods and Cox proportional hazards methods. Competing risk analysis was used to compare the risk of breast cancer death between NHB and NHW women. We also evaluated the magnitude of survival disparities within the strata of demographic, socioeconomic, and treatment factors. RESULTS Among 1,652 NHW and 371 NHB women with IBC, the odds of receiving chemotherapy, surgery, and radiation were similar for NHB and NHW. After 39-month follow-up, the median OS was 40 and 81 months for NHB and NHW, respectively (p < 0.0001). The risk of breast cancer death was higher for NHB than NHW women (5-year risk of breast cancer death, 51% vs. 35%, p < 0.0001). CONCLUSION After adjustment for demographic, clinicopathological, and socioeconomic factors; NHB women with IBC had similar odds of receiving surgery, chemotherapy, and radiation therapy, but were more likely to die of the disease compared to their NHW counterparts. Our findings suggest the presence of masked tumor biology, treatment, or socioeconomic factors associated with race that can lead to worse IBC outcomes.
Collapse
Affiliation(s)
- Walter H Carbajal-Ochoa
- Department of Medical Oncology, Catalan Institute of Oncology/Josep Trueta Hospital, Girona, Spain
| | - Devin Johnson
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alvaro Alvarez
- Department of Medicine, Hematology/Oncology, Carole and Ray Neag Comprehensive Cancer Center, UCONN Health, Farmington, CT, USA
| | - Ana M Bernal
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, 1695 Eastchester Rd, Bronx, NY, 10461, USA
| | - Jesus D Anampa
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, 1695 Eastchester Rd, Bronx, NY, 10461, USA.
| |
Collapse
|
97
|
Pratelli G, Carlisi D, Di Liberto D, Notaro A, Giuliano M, D'Anneo A, Lauricella M, Emanuele S, Calvaruso G, De Blasio A. MCL1 Inhibition Overcomes the Aggressiveness Features of Triple-Negative Breast Cancer MDA-MB-231 Cells. Int J Mol Sci 2023; 24:11149. [PMID: 37446326 DOI: 10.3390/ijms241311149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is a particularly aggressive subtype among breast cancers (BCs), characterized by anoikis resistance, high invasiveness, and metastatic potential as well as Epithelial-Mesenchymal Transition (EMT) and stemness features. In the last few years, our research focused on the function of MCL1, an antiapoptotic protein frequently deregulated in TNBC. Here, we demonstrate that MCL1 inhibition by A-1210477, a specific BH3-mimetic, promotes anoikis/apoptosis in the MDA-MB-231 cell line, as shown via an increase in proapoptotic markers and caspase activation. Our evidence also shows A-1210477 effects on Focal Adhesions (FAs) impairing the integrin trim and survival signaling pathways, such as FAK, AKT, ERK, NF-κB, and GSK3β-inducing anoikis, thus suggesting a putative role of MCL1 in regulation of FA dynamics. Interestingly, in accordance with these results, we observed a reduction in migratory and invasiveness capabilities as confirmed by a decrease in metalloproteinases (MMPs) levels following A-1210477 treatment. Moreover, MCL1 inhibition promotes a reduction in EMT characteristics as demonstrated by the downregulation of Vimentin, MUC1, DNMT1, and a surprising re-expression of E-Cadherin, suggesting a possible mesenchymal-like phenotype reversion. In addition, we also observed the downregulation of stemness makers such as OCT3/4, SOX2, NANOG, as well as CD133, EpCAM, and CD49f. Our findings support the idea that MCL1 inhibition in MDA-MB-231 could be crucial to reduce anoikis resistance, aggressiveness, and metastatic potential and to minimize EMT and stemness features that distinguish TNBC.
Collapse
Affiliation(s)
- Giovanni Pratelli
- Department of Physics and Chemistry (DiFC)-Emilio Segrè, University of Palermo, 90128 Palermo, Italy
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Antonella D'Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Calvaruso
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
98
|
Alvarez-Rivera E, Ortiz-Hernández EJ, Lugo E, Lozada-Reyes LM, Boukli NM. Oncogenic Proteomics Approaches for Translational Research and HIV-Associated Malignancy Mechanisms. Proteomes 2023; 11:22. [PMID: 37489388 PMCID: PMC10366845 DOI: 10.3390/proteomes11030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Recent advances in the field of proteomics have allowed extensive insights into the molecular regulations of the cell proteome. Specifically, this allows researchers to dissect a multitude of signaling arrays while targeting for the discovery of novel protein signatures. These approaches based on data mining are becoming increasingly powerful for identifying both potential disease mechanisms as well as indicators for disease progression and overall survival predictive and prognostic molecular markers for cancer. Furthermore, mass spectrometry (MS) integrations satisfy the ongoing demand for in-depth biomarker validation. For the purpose of this review, we will highlight the current developments based on MS sensitivity, to place quantitative proteomics into clinical settings and provide a perspective to integrate proteomics data for future applications in cancer precision medicine. We will also discuss malignancies associated with oncogenic viruses such as Acquire Immunodeficiency Syndrome (AIDS) and suggest novel mechanisms behind this phenomenon. Human Immunodeficiency Virus type-1 (HIV-1) proteins are known to be oncogenic per se, to induce oxidative and endoplasmic reticulum stresses, and to be released from the infected or expressing cells. HIV-1 proteins can act alone or in collaboration with other known oncoproteins, which cause the bulk of malignancies in people living with HIV-1 on ART.
Collapse
Affiliation(s)
- Eduardo Alvarez-Rivera
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | - Emanuel J. Ortiz-Hernández
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | - Elyette Lugo
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | | | - Nawal M. Boukli
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| |
Collapse
|
99
|
Kadi MS, Alhebshi AH, Shabkah AA, Alzahrani WA, Enani GN, Samkari AA, Iskanderani O, Saleem AM, Farsi AH, Trabulsi NH. Histopathological Patterns and Outcomes of Triple-Positive Versus Triple-Negative Breast Cancer: A Retrospective Study at a Tertiary Cancer Center. Cureus 2023; 15:e42389. [PMID: 37621828 PMCID: PMC10446888 DOI: 10.7759/cureus.42389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Background One of the leading causes of cancer-related deaths in females under 45 years old is breast cancer (BC). The definition of triple-negative breast cancer (TNBC) is the lack of expression of estrogen receptors (ERs) as well as progesterone receptors (PRs) and Erb-B2 receptor tyrosine kinase 2 (HER2) gene amplification. Triple-positive breast cancer (TPBC), on the other hand, is defined as tumors expressing a high level of ER, PR, and HER2 receptors. This study aims to assess the phenotypes of TNBC and TPBC by comparing their individual clinical behavior patterns and prognosis throughout the course of the disease in a tertiary cancer center in the Kingdom of Saudi Arabia (KSA). Methods Our study is a retrospective study using electronic medical records (EMRs) to identify all female patients diagnosed with BC using the International Classification of Diseases-10 (ICD-10) codes (between C50 and C50.9). About 1209 cases with primary BC female patients were recognized based on histopathology reports. Further subclassification into TPBC and TNBC was performed. Statistical analysis was performed using Rv3.6.2 (R Studio, version 3.5.2, Boston, MA, USA). The descriptive data were presented as means and standard deviations (SD). Survival curves were approximated using the Kaplan-Meier method. The comparison between survival curves between both groups was achieved using the log-rank test. The multivariate model was constructed based on the identified predictors using univariate analysis. Results Univariate analysis of overall survival (OS) showed that mortality was higher in TNBC compared to TPBC (HR = 2.82, P-value <0.05). However, in a multivariate analysis, molecular subtypes did not show a significant effect on OS with a P-value of 0.94. We found that age at diagnosis has been associated with a 4% increase in mortality risk with a yearly rise in age. Conclusion In this limited retrospective cohort study, we found that TNBC may not be associated with a higher risk of death than TPBC. However, other factors, including age at diagnosis, surgical intervention, and lymphovascular invasion (LVI), have been observed to increase the risk of mortality. On the other hand, patients with TNBC were found to have a worse prognosis in terms of local recurrence. This information cannot be generalized to all patients with BC given the limitations of this study. Further, larger cohorts are needed to explore biological and treatment-related outcomes in patients with TNBC and TPBC.
Collapse
Affiliation(s)
- Mai S Kadi
- Department of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | | | - Alaa A Shabkah
- Department of Surgery, International Medical Center, Jeddah, SAU
| | - Walaa A Alzahrani
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, SAU
| | - Ghada N Enani
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Ali A Samkari
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Omar Iskanderani
- Department of Radiology, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Abdulaziz M Saleem
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Ali H Farsi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Nora H Trabulsi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
100
|
Nagahashi M, Ling Y, Toshikawa C, Hayashida T, Kitagawa Y, Futamura M, Kuwayama T, Nakamura S, Yamauchi H, Yamauchi T, Kaneko K, Kanbayashi C, Sato N, Tsuchida J, Moro K, Nakajima M, Shimada Y, Ichikawa H, Lyle S, Miyoshi Y, Takabe K, Okuda S, Wakai T. Copy number alteration is an independent prognostic biomarker in triple-negative breast cancer patients. Breast Cancer 2023; 30:584-595. [PMID: 36930419 DOI: 10.1007/s12282-023-01449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/05/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Next-generation sequencing (NGS) has enabled comprehensive genomic profiling to identify gene alterations that play important roles in cancer biology. However, the clinical significance of these genomic alterations in triple-negative breast cancer (TNBC) patients has not yet been fully elucidated. The aim of this study was to clarify the clinical significance of genomic profiling data, including copy number alterations (CNA) and tumor mutation burden (TMB), in TNBC patients. METHODS A total of 47 patients with Stage I-III TNBC with genomic profiling of 435 known cancer genes by NGS were enrolled in this study. Disease-free survival (DFS) and overall survival (OS) were evaluated for their association to gene profiling data. RESULTS CNA-high patients showed significantly worse DFS and OS than CNA-low patients (p = 0.0009, p = 0.0041, respectively). TMB was not associated with DFS or OS in TNBC patients. Patients with TP53 alterations showed a tendency of worse DFS (p = 0.0953) and significantly worse OS (p = 0.0338) compared with patients without TP53 alterations. Multivariable analysis including CNA and other clinicopathological parameters revealed that CNA was an independent prognostic factor for DFS (p = 0.0104) and OS (p = 0.0306). Finally, multivariable analysis also revealed the combination of CNA-high and TP53 alterations is an independent prognostic factor for DFS (p = 0.0005) and OS (p = 0.0023). CONCLUSIONS We revealed that CNA, but not TMB, is significantly associated with DFS and OS in TNBC patients. The combination of CNA-high and TP53 alterations may be a promising biomarker that can inform beyond standard clinicopathologic factors to identify a subgroup of TNBC patients with significantly worse prognosis.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan.
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan.
| | - YiWei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
- Medical AI Center, Niigata University School of Medicine, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Chie Toshikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Department of Breast Surgical Oncology, St. Luke's International Hospital, 9-1 Akashicho, Chuo-Ku, Tokyo, 104-8560, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Manabu Futamura
- Department of Breast Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takashi Kuwayama
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Hideko Yamauchi
- Department of Breast Surgical Oncology, St. Luke's International Hospital, 9-1 Akashicho, Chuo-Ku, Tokyo, 104-8560, Japan
| | - Teruo Yamauchi
- Division of Medical Oncology, Department of Internal Medicine, St. Luke's International Hospital, 9-1 Akashicho, Chuo-Ku, Tokyo, 104-8560, Japan
| | - Koji Kaneko
- Department of Breast Oncology, Niigata Cancer Center Hospital, 15-3 Kawagishi-Cho 2-Chome, Chuo-Ku, Niigata, 951-8566, Japan
| | - Chizuko Kanbayashi
- Department of Breast Oncology, Niigata Cancer Center Hospital, 15-3 Kawagishi-Cho 2-Chome, Chuo-Ku, Niigata, 951-8566, Japan
| | - Nobuaki Sato
- Department of Breast Oncology, Niigata Cancer Center Hospital, 15-3 Kawagishi-Cho 2-Chome, Chuo-Ku, Niigata, 951-8566, Japan
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Masato Nakajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Hiroshi Ichikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Stephen Lyle
- University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kazuaki Takabe
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Breast Surgery, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biosciences, The State University of New York, Buffalo, NY, 14203, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-Ku, Tokyo, 160-8402, Japan
- Department of Surgery, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
- Medical AI Center, Niigata University School of Medicine, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| |
Collapse
|