51
|
Manghrani A, Rangadurai AK, Szekely O, Liu B, Guseva S, Al-Hashimi HM. Quantitative and Systematic NMR Measurements of Sequence-Dependent A-T Hoogsteen Dynamics in the DNA Double Helix. Biochemistry 2025; 64:1042-1054. [PMID: 39982856 DOI: 10.1021/acs.biochem.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
The dynamic properties of DNA depend on the sequence, providing an important source of sequence-specificity in biochemical reactions. However, comprehensively measuring how these dynamics vary with sequence is challenging, especially when they involve lowly populated and short-lived conformational states. Using 1H CEST supplemented by targeted 13C R1ρ NMR experiments, we quantitatively measured Watson-Crick to Hoogsteen dynamics for an A-T base pair in 13 trinucleotide sequence contexts. The Hoogsteen population and exchange rate varied 4-fold and 16-fold, respectively, and were dependent on both the 3'- and 5'-neighbors but only weakly dependent on monovalent ion concentration (25 versus 100 mM NaCl) and pH (6.8 versus 8.0). Flexible TA and CA dinucleotide steps exhibited the highest Hoogsteen populations, and their kinetics rates strongly depended on the 3'-neighbor. In contrast, the stiffer AA and GA steps had the lowest Hoogsteen population, and their kinetics were weakly dependent on the 3'-neighbor. The Hoogsteen lifetime was especially short when G-C neighbors flanked the A-T base pair. Our results uncover a unique conformational basis for sequence-specificity in the DNA double helix and establish the utility of NMR to quantitatively and comprehensively measure sequence-dependent DNA dynamics.
Collapse
Affiliation(s)
- Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Atul Kaushik Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Or Szekely
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Serafima Guseva
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
52
|
Chang Q, Zhao S, Sun J, Guo W, Yang L, Qiu L, Zhang N, Fan Y, Liu J. Identification of a novel prognostic and therapeutic prediction model in clear cell renal carcinoma based on Renin-angiotensin system related genes. Front Endocrinol (Lausanne) 2025; 16:1521940. [PMID: 40099255 PMCID: PMC11911175 DOI: 10.3389/fendo.2025.1521940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Background Clear cell renal cell carcinoma is the most predominant type of renal malignancies, characterized by high aggressiveness and probability of distant metastasis. Renin angiotensin system (RAS) plays a crucial role in maintaining fluid balance within the human body, and its involvement in tumorigenesis is increasingly being uncovered, while its role in ccRCC remains unclear. Methods WGCNA was used to identify RAS related genes. Machine learning was applied to screen hub genes for constructing risk model, E-MTAB-1980 dataset was used for external validation. Transwell and CCK8 assays were used to investigate the impact of SLC6A19 to ccRCC cells. Results SLC6A19, SLC16A12 and SMIM24 were eventually screened to construct risk model and the predictive efficiency for prognosis was validated by internal and external cohorts. Moreover, the differences were found in pathway enrichment, immune cell infiltration, mutational landscapes and drug prediction between high and low risk groups. Experimental results indicated that SLC6A19 could inhibit invasion and proliferation of ccRCC cells and GSEA pinpointed that SLC6A19 was intimately correlated with fatty acid metabolism and CPT1A. Conclusion The risk model based on the three RAS-related genes have a robust ability to predict the prognosis and drug sensitivity of ccRCC patients, further providing a valid instruction for clinical care.
Collapse
Affiliation(s)
- Qinzheng Chang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shuo Zhao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiajia Sun
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wei Guo
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Yang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Laiyuan Qiu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Nianzhao Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yidong Fan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jikai Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
53
|
Nelan R, Mijuskovic M, Hughes M, Becq J, Kingsbury Z, Tsogka E, He M, Vucenovic D, Craig C, Elgar G, Levey P, Suaris T, Walsh E, Ross M, Jones JL. Clinical utility of 'Shaken' biopsies for whole-genome sequencing. J Clin Pathol 2025:jcp-2024-209781. [PMID: 40032506 DOI: 10.1136/jcp-2024-209781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/18/2024] [Indexed: 03/05/2025]
Abstract
AIMS Whole-genome sequencing (WGS) is beginning to be applied to cancer samples in the clinical setting. This ideally requires high-quality, minimally degraded DNA of high tumour cell content, while retaining sufficient tissue with excellent morphology for histopathological diagnosis and immunohistochemistry. The aim of this study was to investigate alternative ways of handling cancer samples to fulfil both diagnostic and molecular requirements. METHODS Ex vivo biopsies were taken to investigate the feasibility of using cancer cells 'shaken' from the surface of a biopsy for WGS, while maintaining the tissue biopsy for histological diagnosis. WGS from the shaken cells was compared with the gold standard of a fresh-frozen (FF) biopsy. The procedure was piloted in the real-world setting for breast cancer samples. RESULTS Cells shaken from ex vivo biopsies can yield DNA of sufficient quantity and quality for WGS, while having no discernible impact on quality of tissue morphology. WGS data showed good coverage, comparable variant calls and generally higher tumour content in shaken cell samples compared with the control FF samples. For real-world biopsies, DNA yields were lower, but WGS data were of excellent quality for the cases analysed. CONCLUSIONS Shaken biopsy sampling allows genomic sequencing from patients with cancer who may otherwise not receive a genome sequence due to limited sample availability. It represents a way of overcoming the logistics of obtaining and storing FF tissue making it a suitable technique for wider scale implementation in the clinical setting.
Collapse
Affiliation(s)
- Rachel Nelan
- Centre for Tumour Biology, Queen Mary University of London, London, UK
| | | | - Martina Hughes
- Centre for Tumour Biology, Queen Mary University of London, London, UK
| | | | | | | | - Miao He
- Illumina Cambridge, Great Abington, UK
| | | | | | | | - Pauline Levey
- Queen Mary University of London Blizard Institute, London, UK
| | - Tamara Suaris
- Department of Radiology, St Bartholomew's Hospital, London, UK
| | | | - Mark Ross
- Illumina Cambridge, Great Abington, UK
| | - J Louise Jones
- Centre for Tumour Biology, Queen Mary University of London, London, UK
| |
Collapse
|
54
|
Rizzo M, Pezzicoli G, Porta C, Povero M, Pradelli L, Sicari E, Barbiero VS, Porta C. The genomic landscape of metastatic clear-cell renal cell carcinoma and its prognostic value: a comprehensive analysis of a large real-world clinico-genomic database. ESMO Open 2025; 10:104294. [PMID: 39965361 PMCID: PMC11876921 DOI: 10.1016/j.esmoop.2025.104294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Translating findings on the genomic landscape of metastatic clear-cell renal cell carcinoma (mccRCC) into clinical practice remains challenging. A better understanding of the molecular features of mccRCC could identify a prognostic and/or predictive role for ccRCC genomic alterations. PATIENTS AND METHODS In this real-world observational study based on the nationwide (US-based) de-identified Flatiron Health-Foundation Medicine, Inc. clinico-genomic database (FH-FMI-CGDB), we investigate the frequency and co-occurrence of genomic alterations in mccRCC patients and assess their prognostic role. Patients (n = 858) were adults diagnosed with mccRCC, with FH electronic health records between 2011 and 2022. RESULTS The top 10 mutated genes were VHL (73.9%), PBRM1 (42.4%), SETD2 (25.3%), CDKN2A (20.0%), BAP1 (16.4%), CDKN2B (16.0%), KDM5C (14.5%), TP53 (12.9%), PTEN (11.7%), and TERT (9.2%). Eight genes showed prognostic value: CDKN2A, CDKN2B, TP53, PTEN, NF2, PIK3CA, and MTAP were linked to worse prognosis, whereas PBRM1 was associated with better overall survival (OS). Two of the three identified gene clusters had prognostic value: cluster 1 (VHL, SETD2, PBRM1, KDM5C, NFE2L2) correlated with better OS [adjusted hazard ratio (aHR) 0.63, P < 0.001], whereas cluster 3 (CDKN2A, CDKN2B, BAP1, NF2, MTAP) correlated with shorter OS (aHR 1.36, P = 0.023). CONCLUSION We identified eight genes and two gene clusters with prognostic significance for mccRCC. Future research will explore the predictive value of gene clusters in various treatments.
Collapse
Affiliation(s)
- M Rizzo
- Division of Medical Oncology, AOU Consorziale Policlinico di Bari, Bari, Italy.
| | - G Pezzicoli
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | | | | | | | | | | | - C Porta
- Division of Medical Oncology, AOU Consorziale Policlinico di Bari, Bari, Italy; Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
55
|
Quintero-Ruiz N, Corradi C, Moreno NC, de Souza TA, Menck CFM. UVA-light-induced mutagenesis in the exome of human nucleotide excision repair-deficient cells. Photochem Photobiol Sci 2025; 24:429-449. [PMID: 40063310 DOI: 10.1007/s43630-025-00697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/23/2025] [Indexed: 04/05/2025]
Abstract
Skin cancer is associated with genetic mutations caused by sunlight exposure, primarily through ultraviolet (UV) radiation that damages DNA. While UVA is less energetic, it is the predominant solar UV component reaching the Earth's surface. However, the mechanisms of UVA-induced mutagenesis and its role in skin cancer development remain poorly understood. This study employed whole exome sequencing of clones from human XP-C cells, which lack nucleotide excision repair (NER), to characterize somatic mutations induced by UVA exposure. DNA sequence analysis of UVA-irradiated XP-C cells revealed a marked increase in mutation frequency across nearly all types of base substitutions, with particular enrichment in C > T transitions within the CCN and TCN trinucleotide context-potential sites for pyrimidine dimer formation. The C > T mutation primarily occurred at the 3' base of the 5'TC dimer, and an enrichment of CC > TT tandem mutations. We also identified the SBS7b COSMIC mutational signature within irradiated cells, which has been associated with tumors in sun-exposed skin. C > A transversions, often linked to oxidized guanine, were the second most frequently induced mutation, although a specific context for this base substitution was not identified. Moreover, C > T mutations were significantly increased in unirradiated XP-C compared to NER-proficient cells, which may be caused by unrepaired spontaneous DNA damage. Thus, this study indicates that pyrimidine dimers are the primary lesions contributing to UVA-induced mutagenesis in NER-deficient human cells and demonstrates that UVA generates mutational signatures similar to those of UVB irradiation.
Collapse
Affiliation(s)
- Nathalia Quintero-Ruiz
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
- Faculty of Applied Science, Campinas University, Limeira, SP, Brazil
| | - Camila Corradi
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Natália Cestari Moreno
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Tiago Antonio de Souza
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
- Tau GC Bioinformatics, São Paulo, SP, Brazil
| | | |
Collapse
|
56
|
DeWitt JT, Jimenez-Tovar D, Mazumder A, Haricharan S. Advances in diagnostic and therapeutic applications of mismatch repair loss in cancer. DNA Repair (Amst) 2025; 147:103822. [PMID: 40068557 DOI: 10.1016/j.dnarep.2025.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Mismatch repair (MMR) is a highly conserved, fundamental DNA damage repair pathway that maintains genomic fidelity during cell replication. MMR dysregulation contributes to tumor formation by promoting genomic instability thereby increasing the frequency of potentially oncogenic mutational events. Therefore, MMR dysregulation, in its tumor suppressor role, is largely studied in the context of genomic instability and associated response to immune checkpoint blockade therapies. However, a growing body of literature suggests that the impact of MMR dysregulation on tumor phenotypes is more nuanced than a concerted impact on genomic stability. Rather, loss of individual MMR genes promotes distinct cancer-relevant biological phenotypes, and these phenotypes are further modulated by the tissue of tumor origin. Here, we explore relevant literature and review the prognostic and predictive significance of these non-canonical discoveries.
Collapse
Affiliation(s)
- J T DeWitt
- Dept of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA
| | - D Jimenez-Tovar
- Dept of Biology, San Diego State University, San Diego, CA, USA
| | - A Mazumder
- Dept of Biology, San Diego State University, San Diego, CA, USA
| | - S Haricharan
- Dept of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA.
| |
Collapse
|
57
|
Aoki T, Nishida N, Minami Y, Kudo M. The Impact of Normal Hepatobiliary Cell Zonation Programs on the Phenotypes and Functions of Primary Liver Tumors. Liver Cancer 2025; 14:92-103. [PMID: 40144466 PMCID: PMC11936443 DOI: 10.1159/000541077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 03/28/2025] Open
Abstract
Background Traditional tumor classifications have relied on cellular origin, pathological morphological features, gene expression profiles, and more recently, the tumor immune microenvironment. While these classifications provide valuable insights, incorporating physiological classifications focusing on liver metabolic functions may lead to new discoveries. Summary We proposed to reclassify benign and malignant hepatocellular neoplasms based on their physiological functions such as albumin production, bile acid production, glycolysis, glycogenesis, and adipogenesis. We further demonstrated the homology between signal pathways activated by the differentiation program of the normal hepatobiliary cells and those activated by genetic abnormalities in tumors. Specifically, Wnt/β-catenin, RAS, NOTCH, and TGF-β signaling not only contribute to cell differentiation via activation of liver-enriched transcription factors but also determine the tumor traits. Examining the distinctions between hepatocellular carcinomas (HCCs) that maintain or lose metabolic functions can yield valuable insights into the drivers of biological malignancy and tumor plasticity. Key Messages To confirm the homology between the differentiation programs of normal hepatobiliary cells, hepatocellular adenomas (HCA), and HCC we identify liver-specific functions such as catabolism and anabolism within tumors. HCCs and HCAs that have lost these metabolic functions exhibit characteristics such as dedifferentiation, resemblance to biliary cells, or increased glycolysis. Focusing on this underexplored area will likely stimulate active research into new tumor characteristics.
Collapse
Affiliation(s)
- Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
58
|
Liu Z, Dai Q, Yu X, Duan X, Wang C. Predicting circRNA-Drug Resistance Associations Based on a Multimodal Graph Representation Learning Framework. IEEE J Biomed Health Inform 2025; 29:1838-1848. [PMID: 37498762 DOI: 10.1109/jbhi.2023.3299423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Circular RNA (circRNA) is a class of noncoding RNA that is highly conserved and exhibit exceptional stability. Due to its function as a microRNA sponge, circRNA has gained significant attention as an essential biomarker and potential drug target in the pathogenesis of several cancers. Although many circRNAs have been identified to play a role in cancer resistance, traditional methods are time-consuming and expensive. In this context, computational methods offer a promising way to facilitate the discovery process. However, most existing prediction models focus on the association between circRNAs and drug resistance, without considering the corresponding disease-related information in the circRNA-drug resistance association. Incorporating disease-related information into the prediction of circRNA-drug resistance associations could potentially improve the efficiency and speed of discovering and developing circRNA-targeting drugs. We propose a computational framework, named GraphCDD, for predicting the association between circRNA and drug resistance. Our model utilizes data from three sources, namely circRNA, disease, and drug, to construct three similarity networks that represent the features of circRNA, disease, and drug, respectively. We utilize a multimodal graph neural network to acquire efficient representations of circRNAs, diseases, and drugs by integrating various types of information, and establish a predictive model. The experimental results have validated the effectiveness of our model and provided a promising method in predicting potential associations between circRNA and drug resistance.
Collapse
|
59
|
Borgers JSW, Lenkala D, Kohler V, Jackson EK, Linssen MD, Hymson S, McCarthy B, O'Reilly Cosgrove E, Balogh KN, Esaulova E, Starr K, Ware Y, Klobuch S, Sciuto T, Chen X, Mahimkar G, Sheen JHF, Ramesh S, Wilgenhof S, van Thienen JV, Scheiner KC, Jedema I, Rooney M, Dong JZ, Srouji JR, Juneja VR, Arieta CM, Nuijen B, Gottstein C, Finney OC, Manson K, Nijenhuis CM, Gaynor RB, DeMario M, Haanen JB, van Buuren MM. Personalized, autologous neoantigen-specific T cell therapy in metastatic melanoma: a phase 1 trial. Nat Med 2025; 31:881-893. [PMID: 39753970 PMCID: PMC11922764 DOI: 10.1038/s41591-024-03418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/13/2024] [Indexed: 03/21/2025]
Abstract
New treatment approaches are warranted for patients with advanced melanoma refractory to immune checkpoint blockade (ICB) or BRAF-targeted therapy. We designed BNT221, a personalized, neoantigen-specific autologous T cell product derived from peripheral blood, and tested this in a 3 + 3 dose-finding study with two dose levels (DLs) in patients with locally advanced or metastatic melanoma, disease progression after ICB, measurable disease (Response Evaluation Criteria in Solid Tumors version 1.1) and, where appropriate, BRAF-targeted therapy. Primary and secondary objectives were evaluation of safety, highest tolerated dose and anti-tumor activity. We report here the non-pre-specified, final results of the completed monotherapy arm consisting of nine patients: three at DL1 (1 × 108-1 × 109 cells) and six at DL2 (2 × 109-1 × 1010 cells). Drug products (DPs) were generated for all enrolled patients. BNT221 was well tolerated across both DLs, with no dose-limiting toxicities of grade 3 or higher attributed to the T cell product observed. Specifically, no cytokine release, immune effector cell-associated neurotoxicity or macrophage activation syndromes were reported. A dose of 5.0 × 108-1.0 × 1010 cells was identified for further study conduct. Six patients showed stable disease as best overall response, and tumor reductions (≤20%) were reported for four of these patients. In exploratory analyses, multiple mutant-specific CD4+ and CD8+ T cell responses were generated in each DP. These were cytotoxic, polyfunctional and expressed T cell receptors with broad functional avidities. Neoantigen-specific clonotypes were detected after treatment in blood and tumor. Our results provide key insights into this neoantigen-specific adoptive T cell therapy and demonstrate proof of concept for this new therapeutic approach. ClinicalTrials.gov registration: NCT04625205 .
Collapse
Affiliation(s)
- Jessica S W Borgers
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | | | - Matthijs D Linssen
- BioTherapeutics Unit, Division of Pharmacy and Pharmacology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | - Sebastian Klobuch
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | - Xi Chen
- BioNTech US, Cambridge, MA, USA
| | | | | | | | - Sofie Wilgenhof
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Johannes V van Thienen
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Karina C Scheiner
- BioTherapeutics Unit, Division of Pharmacy and Pharmacology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Inge Jedema
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | | | | | | | - Bastiaan Nuijen
- BioTherapeutics Unit, Division of Pharmacy and Pharmacology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | | | - Cynthia M Nijenhuis
- BioTherapeutics Unit, Division of Pharmacy and Pharmacology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | - John B Haanen
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.
| | | |
Collapse
|
60
|
Zhou W, Chi H, Zhao X, Tao G, Gan J. A mutational signature and ARID1A mutation associated with outcome in hepatocellular carcinoma. Clin Transl Oncol 2025; 27:1166-1175. [PMID: 39179940 DOI: 10.1007/s12094-024-03669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVE The prognosis of hepatocellular carcinoma (HCC) is poor and there is no stable and reliable molecular biomarker for evaluation. This study attempted to find reliable prognostic markers from tumor mutational profiles. METHODS A total of 362 HCC samples with whole-exome sequencing were collected as discovery datasets, and 200 samples with targeted sequencing were used for validation of the relevant results. All HCC samples were obtained from previously published studies. Bayesian non-negative matrix factorization was used to extract mutational signatures, and multivariate Cox regression models were utilized to identify the prognostic role of mutational factors. Gene set enrichment analysis was employed to discover potential signaling pathways associated with specific mutational groups. RESULTS In the HCC discovery dataset, a total of four mutational signatures (i.e., signatures 4, 6, 16, and 22) were extracted, of which signature 16 characterized by T>C mutations was observed to be associated with favorable HCC prognosis, and this correlation was also found in the validation dataset. Further analysis showed that patients with ARID1A mutations exhibited inferior survival outcomes in both discovery and validation datasets. Mechanistic exploration revealed that the presence of signature 16 was associated with better immune infiltration and tumor immunogenicity, while patients with ARID1A mutations were away from these favorable immunological features. CONCLUSION By integrating somatic mutation data and clinical information of HCC, this study identified that signature 16 and ARID1A mutations were associated with better and worse outcomes respectively, providing a basis for prognosis prediction and clinical treatment strategies of HCC.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Hao Chi
- Department of Medical Laboratory, Huaian Hospital of Huaian City, Huaian, China
| | - Xiaohu Zhao
- Department of Infectious Diseases, Huaian Hospital of Huaian City, Huaian, China
| | - Guangrong Tao
- Department of Infectious Diseases, Huaian Hospital of Huaian City, Huaian, China
| | - Jianhe Gan
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
61
|
Geng Z, Wafula E, Corbett RJ, Zhang Y, Jin R, Gaonkar KS, Shukla S, Rathi KS, Hill D, Lahiri A, Miller DP, Sickler A, Keith K, Blackden C, Chroni A, Brown MA, Kraya AA, Rood BR, Resnick AC, Van Kuren N, Maris JM, Farrel A, Koptyra MP, Trooskin GR, Coleman N, Zhu Y, Stefankiewicz S, Abdullaev Z, Chinwalla AT, Santi M, Naqvi AS, Mason JL, Koschmann CJ, Huang X, Diskin SJ, Aldape K, Farrow BK, Ma W, Zhang B, Ennis BM, Tasian S, Phul S, Lueder MR, Zhong C, Dybas JM, Wang P, Taylor D, Rokita JL. The Open Pediatric Cancer Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.09.599086. [PMID: 39026781 PMCID: PMC11257555 DOI: 10.1101/2024.07.09.599086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Background In 2019, the Open Pediatric Brain Tumor Atlas (OpenPBTA) was created as a global, collaborative open-science initiative to genomically characterize 1,074 pediatric brain tumors and 22 patient-derived cell lines. Here, we present an extension of the OpenPBTA called the Open Pediatric Cancer (OpenPedCan) Project, a harmonized open-source multi-omic dataset from 6,112 pediatric cancer patients with 7,096 tumor events across more than 100 histologies. Combined with RNA-Seq from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA), OpenPedCan contains nearly 48,000 total biospecimens (24,002 tumor and 23,893 normal specimens). Findings We utilized Gabriella Miller Kids First (GMKF) workflows to harmonize WGS, WXS, RNA-seq, and Targeted Sequencing datasets to include somatic SNVs, InDels, CNVs, SVs, RNA expression, fusions, and splice variants. We integrated summarized CPTAC whole cell proteomics and phospho-proteomics data, miRNA-Seq data, and have developed a methylation array harmonization workflow to include m-values, beta-vales, and copy number calls. OpenPedCan contains reproducible, dockerized workflows in GitHub, CAVATICA, and Amazon Web Services (AWS) to deliver harmonized and processed data from over 60 scalable modules which can be leveraged both locally and on AWS. The processed data are released in a versioned manner and accessible through CAVATICA or AWS S3 download (from GitHub), and queryable through PedcBioPortal and the NCI's pediatric Molecular Targets Platform. Notably, we have expanded PBTA molecular subtyping to include methylation information to align with the WHO 2021 Central Nervous System Tumor classifications, allowing us to create research-grade integrated diagnoses for these tumors. Conclusions OpenPedCan data and its reproducible analysis module framework are openly available and can be utilized and/or adapted by researchers to accelerate discovery, validation, and clinical translation.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Eric Wafula
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ryan J Corbett
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yuanchao Zhang
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Run Jin
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Krutika S Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sangeeta Shukla
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Komal S Rathi
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Dave Hill
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Aditya Lahiri
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Daniel P Miller
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Alex Sickler
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kelsey Keith
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Christopher Blackden
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Antonia Chroni
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Miguel A Brown
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Adam A Kraya
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Brian R Rood
- Children's National Research Institute, Washington, D.C.; George Washington University School of Medicine and Health Sciences, Washington, D.C., 20052, USA
| | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA · Funded by Children's Brain Tumor Network; NIH 3P30 CA016520-44S5, U2C HL138346-03, U24 CA220457-03; NCI/NIH Contract No. 75N91019D00024, Task Order No. 75N91020F00003; Children's Hospital of Philadelphia Division of Neurosurgery
| | - Nicholas Van Kuren
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - John M Maris
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alvin Farrel
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA · Funded by NCI/NIH Contract No. 75N91019D00024, Task Order No. 75N91020F00003
| | - Mateusz P Koptyra
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gerri R Trooskin
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Noel Coleman
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yuankun Zhu
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stephanie Stefankiewicz
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Zied Abdullaev
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Asif T Chinwalla
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ammar S Naqvi
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer L Mason
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Carl J Koschmann
- Department of Pediatrics, University of Michigan Health, Ann Arbor, MI, 48105, USA
- Pediatric Hematology Oncology, Mott Children's Hospital, Ann Arbor, MI, 48109, USA
| | - Xiaoyan Huang
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sharon J Diskin
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Bailey K Farrow
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Zhang
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Brian M Ennis
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sarah Tasian
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Saksham Phul
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Matthew R Lueder
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Chuwei Zhong
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Joseph M Dybas
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman Medical School, Philadelphia, PA, 19104, USA · Funded by NCI/NIH Contract No. 75N91019D00024, Task Order No. 75N91020F00003
| | - Jo Lynne Rokita
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA · Funded by NCI/NIH Contract No. 75N91019D00024, Task Order No. 75N91020F00003
| |
Collapse
|
62
|
Ma J, Shah R, Bell AC, McDermott N, Pei X, Selenica P, Haseltine J, Delsite R, Khan AJ, Lok BH, Ellis MJ, Aft RF, Setton J, Reis-Filho JS, Riaz N, Powell SN. Increased Synthetic Cytotoxicity of Combinatorial Chemoradiation Therapy in Homologous Recombination Deficient Tumors. Int J Radiat Oncol Biol Phys 2025; 121:768-779. [PMID: 38997095 PMCID: PMC11717987 DOI: 10.1016/j.ijrobp.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE Homologous recombination deficient (HRD) tumors are exquisitely sensitive to platinum-based chemotherapy and when combined with radiation therapy (RT), leads to improved overall survival in multiple cancer types. Whether a subset of tumors with distinct molecular characteristics demonstrate increased benefit from cisplatin and RT (c-RT) is unclear. We hypothesized that HRD tumors, whether associated with BRCA mutations or genomic scars of HRD, exhibit exquisite sensitivity to c-RT, and that HRD may be a significant driver of c-RT benefit. METHODS AND MATERIALS Sensitivity to c-RT was examined using isogenic and sporadic breast cancer cell lines. HRD was assessed using 4 assays: RT-induced Rad51 foci, a DR-GFP reporter assay, a genomic scar score (large-scale state transitions [LST]), and clonogenic survival assays. Whole-genome sequencing of 4 breast tumors from a phase 2 clinical trial of neoadjuvant c-RT in triple-negative breast cancer was performed and HRD was defined using HRDetect. RESULTS BRCA1/2 deficient cell lines displayed functional HRD based on the Rad51 functional assay, with c-RT to RT or cisplatin interaction ratios (IR) of 1.11 and 26.84 for the BRCA1 isogenic pair at 2 μM cisplatin and 6 Gy, respectively. The highest LST lines demonstrated HRD and synthetic cytotoxicity to c-RT with IR at 2 Gy and cisplatin 20 μM of 7.50, and the lowest LST line with IR of 0.65. Of 4 evaluable patients in the phase 2 trial, one achieved a pathologic complete response with corresponding HRD based on multiple genomic scar scores including HRDetect and LST scores, compared with patients without a pathologic complete response. CONCLUSIONS HRD breast cancers, whether identified by BRCA1/2 mutation status, functional tests, or mutational signatures, appear to be significantly more sensitive to c-RT compared with isogenic controls or tumors without HRD mutational signatures. HRD tumors may be exquisitely sensitive to c-RT which warrants further clinical investigation to guide a precision oncology approach.
Collapse
Affiliation(s)
- Jennifer Ma
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachna Shah
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew C Bell
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Niamh McDermott
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xin Pei
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pier Selenica
- Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin Haseltine
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Delsite
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Atif J Khan
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benjamin H Lok
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Departments of Radiation Oncology; Medical Biophysics; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Matthew J Ellis
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rebecca F Aft
- Department of General Surgery, Washington University, St Louis, Missouri
| | - Jeremy Setton
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Nadeem Riaz
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Simon N Powell
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
63
|
Marín-Márquez C, Adisa AO, Niklander SE, Kirby J, Hunter KD. Genomic and Transcriptomic Analysis of Ameloblastoma Reveals Distinct Molecularly Aggressive Phenotypes. Mod Pathol 2025; 38:100682. [PMID: 39675431 DOI: 10.1016/j.modpat.2024.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Ameloblastoma (AM) is a benign but locally infiltrative epithelial odontogenic neoplasm of the jawbones that may reach grotesque proportions and be highly recurrent if inadequately removed. The BRAFV600E mutation has been demonstrated as a key molecular event in its development; nevertheless, there are many queries about its etiopathogenesis, which are yet to be answered. In this study, we aimed to integrate the results from whole-exome sequencing (WES) and RNA sequencing in AM samples to identify novel candidate genes that may be relevant to its pathogenesis. Thirteen-matched tumors were subjected to WES and RNA-seq, respectively, to detect gene mutations and gene expression profiles, along with the presence of gene fusions. Mutations were validated using Sanger sequencing, whereas transcriptome results were validated using qPCR. The results from both molecular techniques were merged in order to identify novel candidate genes that were biologically validated with immunohistochemistry. BRAFV600E mutation was present in 62% of the analyzed cases, and each AM presented at least 2 or 3 mutations affecting cancer-driver genes. RNA-seq showed different molecular subgroups associated with an aggressive and cancer-related phenotype (epithelial-mesenchymal transition and KRAS gene sets). No gene fusions were detected among the cases. CDH11 and TGM2, novel genes associated with epithelial-mesenchymal transition in AM, were selected and validated in tissues. Both WES and RNA-seq results showed gene alterations related to proliferation, cell differentiation, and metabolic processes. These results show that AM shares many of the hallmarks of cancer secondary to the presence of oncogenic mutations or activation of oncogenic signaling pathways.
Collapse
Affiliation(s)
- Constanza Marín-Márquez
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield, UK; Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Puerto Montt, Chile.
| | - Akinyele O Adisa
- Department of Oral Pathology, Faculty of Dentistry, University of Ibadan and University College Hospital Ibadan, Ibadan, Nigeria
| | - Sven E Niklander
- Unit of Oral Pathology and Oral Medicine, Faculty of Dentistry, Universidad Andres Bello, Viña del Mar, Chile
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| |
Collapse
|
64
|
Tseng D, Lee S. Tumor-Infiltrating Lymphocyte Therapy: A New Frontier. Transplant Cell Ther 2025; 31:S599-S609. [PMID: 40089329 DOI: 10.1016/j.jtct.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/22/2024] [Indexed: 03/17/2025]
Abstract
In recent years, the successful use of tumor-infiltrating lymphocyte (TIL) therapy to treat melanoma not only culminated in a landmark Food and Drug Administration approval, but has also fueled the emergence of a new, rapidly growing field in TIL cellular immunotherapy surrounding novel enhancements in TIL design, refined manufacturing strategies to enrich for more potent TIL populations, as well as numerous clinical trials now investigating TIL therapy in additional solid tumor types beyond melanoma. This review provides a summary of the latest advances in TIL therapy and what lies ahead for the field. The first section explores several solid cancers that demonstrate the greatest potential for future indications of TIL therapy. The second section provides insight into the promising innovations for designing the next generation of TIL with greater specificity, persistence, safety, and function.
Collapse
Affiliation(s)
- Diane Tseng
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sylvia Lee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington.
| |
Collapse
|
65
|
Betz M, Witz A, Dardare J, Michel C, Massard V, Boidot R, Gilson P, Merlin JL, Harlé A. Decoding mutational signatures in breast cancer: Insights from a multi-cohort study. Transl Oncol 2025; 53:102315. [PMID: 39908964 PMCID: PMC11847527 DOI: 10.1016/j.tranon.2025.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
PURPOSE Diagnosis and treatment decisions of hormonal breast cancers (BC) are now guided by genomic mutations determination, combined into mutational signatures, and provide insight into the patients' genomic landscape. This work aims to compare genomic data and signatures extracted from tissue samples collected in the CICLADES study to existing cohorts. Ultimately, the goal is to prove the accuracy of smaller cohorts and provide new relevant data. MATERIALS AND METHODS DNA from patients of the CICLADES cohort was extracted, sequenced, and custom filtering was applied to the resulting files. Genomic data was pulled from 6 BC cohorts available on cBioPortal.com. In total, 2303 samples were analyzed. Mutational signatures were extracted and matched to known signatures of the Catalogue of Somatic Mutations in Cancer (COSMIC). Tumor Mutation Burden (TMB) and hypermutation were estimated and compared between samples. RESULTS PIK3CA and TP53 represented the two genes highly mutated across all cohorts. TMB was similar between the CICLADES and CBSM groups, however the MSKCC population showed a significantly higher TMB than both. Nine signatures were extracted, with recurring Single Base Substitutions (SBS) signatures like SBS1, SBS2 and SBS5. The presence of APOBEC-specific signatures was concordant with cohorts presenting APOBEC enrichment. The mean number of mutations was significantly higher in enriched samples for each analyzed cohort. CONCLUSION The use of comprehensive genomic profiling provided accurate evaluation of the TMB and extraction of signatures consistent with published literature. The genomic analysis of the tissue samples of the CICLADES cohort brings new and relevant data, comparable to results found in bigger cohorts.
Collapse
Affiliation(s)
- Margaux Betz
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy, France.
| | - Andréa Witz
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy, France
| | - Julie Dardare
- Service de Biopathologie, Institut de Cancérologie de Lorraine, 54519 Vandœuvre-lès-Nancy, France
| | - Cassandra Michel
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy, France
| | - Vincent Massard
- Département d'Oncologie Médicale, Institut de cancérologie de Lorraine, 54519 Vandoeuvre-lès-Nancy, France
| | - Romain Boidot
- Research Platform in Biological Oncology, Center GF Leclerc, Dijon, France
| | - Pauline Gilson
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy, France
| | - Alexandre Harlé
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy, France
| |
Collapse
|
66
|
Su X, Hu P, Li D, Zhao B, Niu Z, Herget T, Yu PS, Hu L. Interpretable identification of cancer genes across biological networks via transformer-powered graph representation learning. Nat Biomed Eng 2025; 9:371-389. [PMID: 39789329 DOI: 10.1038/s41551-024-01312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2024] [Indexed: 01/12/2025]
Abstract
Graph representation learning has been leveraged to identify cancer genes from biological networks. However, its applicability is limited by insufficient interpretability and generalizability under integrative network analysis. Here we report the development of an interpretable and generalizable transformer-based model that accurately predicts cancer genes by leveraging graph representation learning and the integration of multi-omics data with the topologies of homogeneous and heterogeneous networks of biological interactions. The model allows for the interpretation of the respective importance of multi-omic and higher-order structural features, achieved state-of-the-art performance in the prediction of cancer genes across biological networks (including networks of interactions between miRNA and proteins, transcription factors and proteins, and transcription factors and miRNA) in pan-cancer and cancer-specific scenarios, and predicted 57 cancer-gene candidates (including three genes that had not been identified by other models) among 4,729 unlabelled genes across 8 pan-cancer datasets. The model's interpretability and generalization may facilitate the understanding of gene-related regulatory mechanisms and the discovery of new cancer genes.
Collapse
Affiliation(s)
- Xiaorui Su
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Computer Science, University of Illinois Chicago, Chicago, IL, USA
| | - Pengwei Hu
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongxu Li
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bowei Zhao
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaomeng Niu
- Department of Health Informatics, Rutgers School of Health Professions, Piscataway, NJ, USA
| | | | - Philip S Yu
- Department of Computer Science, University of Illinois Chicago, Chicago, IL, USA
| | - Lun Hu
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
67
|
Chitta P, Barrow TM, Dawangpa A, Christiani DC, Poungvarin N, Sae-Lee C. Blood-based biomarkers derived from tumor-informed DNA methylation analysis for lung adenocarcinoma. Heliyon 2025; 11:e42581. [PMID: 40034277 PMCID: PMC11874551 DOI: 10.1016/j.heliyon.2025.e42581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Objective To identify robust markers of lung adenocarcinoma (LUAD) using DNA methylation profiles from blood samples informed by tissue lung adenocarcinoma. Methods This study analyzed 56 LUAD blood samples from patients attending clinic at Siriraj Hospital, Thailand and 51 samples from healthy participants, using 644 tumor and 59 normal tissue methylome datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases for candidate gene identification. We performed comparative analysis to identify DNA methylation (DNAm) changes present in tumors that are also observable in blood, to be taken forward for validation. Results DNAm profiling of lung tumor datasets identified 59,639 differentially methylated positions (DMPs), of which 17,251 exhibited a negative correlation with gene expression. In blood samples, 46,680 DMPs were identified among LUAD patients, which were enriched in pathways associated with the ribosome, spliceosome, cell cycle, ubiquitin mediated proteolysis and nucleocytoplasmic transport. Comparative analysis revealed a two DMP epigenetic signature of matching changes in both tissue and blood. This signature offered high diagnostic performance in distinguishing LUAD from normal lung tissue (AUC: 0.77-0.91) and in blood samples from LUAD patients (AUC:0.92-0.96). Similarly high performance was observed in two independent tissue validation datasets (AUC:0.90-0.92). Conclusions Our novel two DMP signatures offer robust performance in both lung tissue and blood for the identification of LUAD.
Collapse
Affiliation(s)
- Pitaksin Chitta
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Timothy M. Barrow
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Atchara Dawangpa
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - David C. Christiani
- Harvard T H Chan School of Public Health, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Naravat Poungvarin
- Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
68
|
Suo Y, Song Y, Wang Y, Liu Q, Rodriguez H, Zhou H. Advancements in proteogenomics for preclinical targeted cancer therapy research. BIOPHYSICS REPORTS 2025; 11:56-76. [PMID: 40070661 PMCID: PMC11891078 DOI: 10.52601/bpr.2024.240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 03/14/2025] Open
Abstract
Advancements in molecular characterization technologies have accelerated targeted cancer therapy research at unprecedented resolution and dimensionality. Integrating comprehensive multi-omic molecular profiling of a tumor, proteogenomics, marks a transformative milestone for preclinical cancer research. In this paper, we initially provided an overview of proteogenomics in cancer research, spanning genomics, transcriptomics, and proteomics. Subsequently, the applications were introduced and examined from different perspectives, including but not limited to genetic alterations, molecular quantifications, single-cell patterns, different post-translational modification levels, subtype signatures, and immune landscape. We also paid attention to the combined multi-omics data analysis and pan-cancer analysis. This paper highlights the crucial role of proteogenomics in preclinical targeted cancer therapy research, including but not limited to elucidating the mechanisms of tumorigenesis, discovering effective therapeutic targets and promising biomarkers, and developing subtype-specific therapies.
Collapse
Affiliation(s)
- Yuying Suo
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanli Song
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuqiu Wang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Qian Liu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
69
|
Duraisamy R, Veerasamy V, Balakrishnan V, Jawaharlal S, Subramani S, Sathiavakoo VA. Exploring anticancer potential of betanin in DMBA-induced oral squamous cell carcinoma: an in silico and experimental study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03909-2. [PMID: 40009172 DOI: 10.1007/s00210-025-03909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
In addition to being able to fight cancer, betanin (BTN) has amazing natural antioxidant and peroxy-radical scavenging properties. 7,12-Dimethylbenz[a]anthracene (DMBA) can impair the activities of enzymes accountable for breaking down xenobiotics and can also cause lipid peroxidation. The study's goal was to find out if betanin could protect against these problems. We determined 100% tumor incidence, abnormal tumor volume, inclined tumor burden, and deduced body weight in DMBA-induced hamsters. We observed diminished lipid peroxidation and enzymatic and nonenzymatic antioxidant activities in DMBA-induced hamsters. The histological study showed that the hamster that receives only DMBA undergoes hyperkeratosis, epithelial hyperplasia, dysplasia, and well-differentiated oral squamous cell carcinoma (OSCC). The hamsters received three different dosages of BTN (10, 20, and 40 mg/kg b.w.) via intragastric intubation for 14 weeks, on alternate days of DMBA painting. The levels of antioxidants, xenobiotic enzymes, and lipid peroxidation (LPO) were significantly restored and inhibited tumor development in a dose-dependent manner. The molecular docking study found high levels of binding affinity in Bax (PDB ID: 2K7W), Caspase-3 (PDB ID: 4JJ8), Caspase-9 (PDB ID: 2AR9), PI3K (PDB ID: 5XGI), AKT (PDB ID: 6BUU), p53 (PDB ID: 1YCS), SMAD-2 (PDB ID: 1DEV), SMAD-4 (PDB ID: 1YGS), SMAD-7 (PDB ID: 2DJY), TGFβ-I (PDB ID: 1PY5), and TGFβ-II (PDB ID: 1M9Z). So, therefore, in vivo and in silico studies were providing prominent anticancer activity of betanin against DMBA-induced oral cancer.
Collapse
Affiliation(s)
- Ramachandhiran Duraisamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Annamalainagar, 608002, Tamil Nadu, India
| | - Vinothkumar Veerasamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Annamalainagar, 608002, Tamil Nadu, India.
| | - Vaitheeswari Balakrishnan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Annamalainagar, 608002, Tamil Nadu, India
| | - Saranya Jawaharlal
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Annamalainagar, 608002, Tamil Nadu, India
| | - Srinivasan Subramani
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Annamalainagar, 608002, Tamil Nadu, India
- Research Department of Biochemistry, Government Arts College for Women, Krishnagiri, Tamil Nadu, India
| | - Vigil Anbiah Sathiavakoo
- Central Animal House Government Medical College and Hospital Cuddalore, Chidambaram, Annamalainagar, 608002, Tamil Nadu, India
| |
Collapse
|
70
|
Uniyal P, Kashyap VK, Behl T, Parashar D, Rawat R. KRAS Mutations in Cancer: Understanding Signaling Pathways to Immune Regulation and the Potential of Immunotherapy. Cancers (Basel) 2025; 17:785. [PMID: 40075634 PMCID: PMC11899378 DOI: 10.3390/cancers17050785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The Kirsten rat sarcoma viral oncogene homologue (KRAS) mutation is one of the most prevailing mutations in various tumors and is difficult to cure. Long-term proliferation in carcinogenesis is primarily initiated by oncogenic KRAS-downstream signaling. Recent research suggests that it also activates the autocrine effect and interplays the tumor microenvironment (TME). Here, we discuss the emerging research, including KRAS mutations to immune evasion in TME, which induce immunological modulation that promotes tumor development. This review gives an overview of the existing knowledge of the underlying connection between KRAS mutations and tumor immune modulation. It also addresses the mechanisms to reduce the effect of oncogenes on the immune system and recent advances in clinical trials for immunotherapy in KRAS-mutated cancers.
Collapse
Affiliation(s)
- Priyanka Uniyal
- Department of Pharmaceutical Technology, School of Health Sciences and Technology, UPES, Dehradun 248007, India;
| | - Vivek Kumar Kashyap
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research (ST-CECR), School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali 140306, India;
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ravi Rawat
- Department of Pharmaceutical Technology, School of Health Sciences and Technology, UPES, Dehradun 248007, India;
| |
Collapse
|
71
|
Chen Z, Eggerman TL, Bocharov AV, Baranova IN, Vishnyakova TG, Patterson AP. APOBEC-1 cofactors regulate APOBEC3-induced mutations in hepatitis B virus. J Virol 2025; 99:e0187924. [PMID: 39868801 PMCID: PMC11853063 DOI: 10.1128/jvi.01879-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/06/2024] [Indexed: 01/28/2025] Open
Abstract
APOBEC3 proteins (A3s) play an important role in host innate immunity against viruses and DNA mutations in cancer. A3s-induced mutations in both viral and human DNA genomes vary significantly from non-lethal mutations in viruses to localized hypermutations, such as kataegis in cancer. How A3s are regulated remains largely unknown. Since A3s exist in complexes and belong to the same family as APOBEC-1 (A1), which requires cofactors to be functional, we investigated the role of A1 cofactors and other A3 potentially associated hnRNPs on A3 mutational activity using hepatitis B virus (HBV) cellular replication as a model. We found that A1-associated cofactors and other hnRNPs were involved in A3 mutational activity regulation, and their regulatory effect was dependent on the strength of A3 association with hnRNPs with an order of A3C > 3G>3B and A1 cofactors > other hnRNPs. A1 cofactors had a strong protein interaction with A3 and significantly increased A3 mutational activity by co-expression. Endogenous gene expression knockdown by siRNA had the opposite decrease effect. Disruption of the protein interactions between A3 and hnRNPs through A3G and A3B mutagenesis decreased A3 mutational activity significantly, even to a level of near total loss, indicating that A1 cofactors and hnRNPs are required for A3 mutational activity. HBV genome-wide mutation analyses showed that A1 cofactors significantly increased A3C accessibility to HBV (-)DNA and A3C-induced mutational efficiency to generate kataegis-like hypermutation. These data demonstrate that A1 cofactors and hnRNPs are closely associated with A3s and may play an important regulatory role under physiological conditions. IMPORTANCE As human host restriction factors, A3s play an important role against viral infections. A3s are also major mutagenic drivers of cancer. However, why A3-induced mutations vary significantly from non-lethal mutations in virus to localized hypermutations in cancer remains unknown. We found that A1 cofactor and other hnRNPs are not only associated with A3 complexes but also play important regulatory roles in A3-induced mutation activities. A1 cofactors like GRY-RBP significantly increased A3 accessibility and mutational efficiency to its single-strand DNA substrate during HBV reverse transcription to generate hypermutations. Disruption of the A3 protein association with hnRNPs by A3 mutagenesis diminished A3 mutational activity. This finding not only reveals a regulatory mechanism for A3-induced mutation but also indicates that A3-associated cellular factors can be a potential target for regulating A3-induced mutation for cancer therapeutics.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas L. Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Alexander V. Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Irina N. Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Tatyana G. Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Amy P. Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
72
|
Díaz-Gay M, dos Santos W, Moody S, Kazachkova M, Abbasi A, Steele CD, Vangara R, Senkin S, Wang J, Fitzgerald S, Bergstrom EN, Khandekar A, Otlu B, Abedi-Ardekani B, de Carvalho AC, Cattiaux T, Penha RCC, Gaborieau V, Chopard P, Carreira C, Cheema S, Latimer C, Teague JW, Mukeriya A, Zaridze D, Cox R, Albert M, Phouthavongsy L, Gallinger S, Malekzadeh R, Niavarani A, Miladinov M, Erić K, Milosavljevic S, Sangrajrang S, Curado MP, Aguiar S, Reis RM, Reis MT, Romagnolo LG, Guimarães DP, Holcatova I, Kalvach J, Vaccaro CA, Piñero TA, Świątkowska B, Lissowska J, Roszkowska-Purska K, Huertas-Salgado A, Shibata T, Shiba S, Sangkhathat S, Chitapanarux T, Roshandel G, Ashton-Prolla P, Damin DC, de Oliveira FH, Humphreys L, Lawley TD, Perdomo S, Stratton MR, Brennan P, Alexandrov LB. Geographic and age-related variations in mutational processes in colorectal cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.13.25322219. [PMID: 40034755 PMCID: PMC11875255 DOI: 10.1101/2025.02.13.25322219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Colorectal cancer incidence rates vary geographically and have changed over time. Notably, in the past two decades, the incidence of early-onset colorectal cancer, affecting individuals under the age of 50 years, has doubled in many countries. The reasons for this increase are unknown. Here, we investigate whether mutational processes contribute to geographic and age-related differences by examining 981 colorectal cancer genomes from 11 countries. No major differences were found in microsatellite unstable cancers, but variations in mutation burden and signatures were observed in the 802 microsatellite-stable cases. Multiple signatures, most with unknown etiologies, exhibited varying prevalence in Argentina, Brazil, Colombia, Russia, and Thailand, indicating geographically diverse levels of mutagenic exposure. Signatures SBS88 and ID18, caused by the bacteria-produced mutagen colibactin, had higher mutation loads in countries with higher colorectal cancer incidence rates. SBS88 and ID18 were also enriched in early-onset colorectal cancers, being 3.3 times more common in individuals diagnosed before age 40 than in those over 70, and were imprinted early during colorectal cancer development. Colibactin exposure was further linked to APC driver mutations, with ID18 responsible for about 25% of APC driver indels in colibactin-positive cases. This study reveals geographic and age-related variations in colorectal cancer mutational processes, and suggests that early-life mutagenic exposure to colibactin-producing bacteria may contribute to the rising incidence of early-onset colorectal cancer.
Collapse
Affiliation(s)
- Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Digital Genomics Group, Structural Biology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Wellington dos Santos
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Mariya Kazachkova
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Christopher D Steele
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sergey Senkin
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Stephen Fitzgerald
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Behnoush Abedi-Ardekani
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ana Carolina de Carvalho
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Thomas Cattiaux
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | | | - Valérie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Priscilia Chopard
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Christine Carreira
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Saamin Cheema
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Jon W Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Anush Mukeriya
- Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - David Zaridze
- Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Riley Cox
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Monique Albert
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Larry Phouthavongsy
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Niavarani
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marko Miladinov
- Clinic for Digestive Surgery - First Surgical Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Katarina Erić
- Department of Pathology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Sasa Milosavljevic
- International Organization for Cancer Prevention and Research, Belgrade, Serbia
| | | | - Maria Paula Curado
- Department of Epidemiology, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Samuel Aguiar
- Colon Cancer Reference Center, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Minho University, Braga, Portugal
| | | | | | | | - Ivana Holcatova
- Institute of Public Health & Preventive Medicine, 2 Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Oncology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jaroslav Kalvach
- Surgery Department, 2 Faculty of Medicine, Charles University and Central Military Hospital, Prague, Czech Republic
- 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Institute of Animal Physiology and Genetics Czech Academy of Science, Libechov, Czech Republic
- Clinical Center ISCARE, Prague, Czech Republic
| | - Carlos Alberto Vaccaro
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)- CONICET- Universidad Hospital Italiano de Buenos Aires (UHIBA) y Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Tamara Alejandra Piñero
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)- CONICET- Universidad Hospital Italiano de Buenos Aires (UHIBA) y Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - Jolanta Lissowska
- The Maria Sklodowska-Cure National Research Institute of Oncology, Warsaw, Poland
| | | | - Antonio Huertas-Salgado
- Oncological pathology group, Terry Fox National Tumor Bank (Banco Nacional de Tumores Terry Fox), National Cancer Institute, Bogotá, Colombia
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Satoshi Shiba
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Surasak Sangkhathat
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Taned Chitapanarux
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Patricia Ashton-Prolla
- Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniel C Damin
- Department of Surgery, Division of Colorectal Surgery, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Francine Hehn de Oliveira
- Department of Pathology, Anatomic Pathology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Trevor D. Lawley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Sandra Perdomo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
73
|
Bayraktar R, Tang Y, Dragomir MP, Ivan C, Peng X, Fabris L, Zhang J, Carugo A, Aneli S, Liu J, Chen MJM, Srinivasan S, Sahnoune I, Bayraktar E, Akdemir KC, Chen M, Narayanan P, Huang W, Ott LF, Eterovic AK, Villarreal OE, Mohammad MM, Peoples MD, Walsh DM, Hernandez JA, Morgan MB, Shaw KR, Davis JS, Menter D, Tam CS, Yeh P, Dawson SJ, Rassenti LZ, Kipps TJ, Kunej T, Estrov Z, Joosse SA, Pagani L, Alix-Panabières C, Pantel K, Ferajoli A, Futreal A, Wistuba II, Radovich M, Kopetz S, Keating MJ, Draetta GF, Mattick JS, Liang H, Calin GA. The mutational landscape and functional effects of noncoding ultraconserved elements in human cancers. SCIENCE ADVANCES 2025; 11:eado2830. [PMID: 39970212 PMCID: PMC11837999 DOI: 10.1126/sciadv.ado2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
The mutational landscape of phylogenetically ultraconserved elements (UCEs), especially those in noncoding DNAs (ncUCEs), and their functional relevance in cancers remain poorly characterized. Here, we perform a systematic analysis of whole-genome and in-house targeted UCE sequencing datasets from more than 3000 patients with cancer of 13,736 UCEs and demonstrate that ncUCE somatic alterations are common. Using a multiplexed CRISPR knockout screen in colorectal cancer cells, we show that the loss of several altered ncUCEs significantly affects cell proliferation. In-depth functional studies in vitro and in vivo further reveal that specific ncUCEs can be enhancers of tumor suppressors (such as ARID1B) and silencers of oncogenic proteins (such as RPS13). Moreover, several miRNAs located in ncUCEs are recurrently mutated. Mutations in miR-142 locus can affect the Drosha-mediated processing of precursor miRNAs, resulting in the down-regulation of the mature transcript. These results provide systematic evidence that specific ncUCEs play diverse regulatory roles in cancer.
Collapse
Affiliation(s)
- Recep Bayraktar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
| | - Yitao Tang
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihnea P. Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Institute of Pathology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, CCM, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health at Charité, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Berlin, 69210 Heidelberg, Germany
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Caris Life Science, Irving, TX 75039, USA
| | - Xinxin Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Linda Fabris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alessandro Carugo
- TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Serena Aneli
- Department of Biology, University of Padova, Padova, Italy
- Department of Public Health Sciences and Pediatrics, University of Turin, 10126, Turin, Italy
| | - Jintan Liu
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Ju M. Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sanjana Srinivasan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Iman Sahnoune
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emine Bayraktar
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kadir C. Akdemir
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pranav Narayanan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Johns Hopkins Physical Science– Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Leonie Florence Ott
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Agda Karina Eterovic
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Viracor Eurofins, Oncology Diagnostics, Lee's Summit, MO 64086, USA
| | - Oscar Eduardo Villarreal
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mohammad Moustaf Mohammad
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael D. Peoples
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Danielle M. Walsh
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jon Andrew Hernandez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Margaret B. Morgan
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenna R. Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer S. Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Constantine S. Tam
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Yeh
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| | - Laura Z. Rassenti
- Center for Novel Therapeutics, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Thomas J. Kipps
- Center for Novel Therapeutics, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 Domzale, Slovenia
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon A. Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy
| | - Catherine Alix-Panabières
- The Laboratory Rare Human Circulating Cells and Liquid Biopsy, The University Medical Center of Montpellier, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandra Ferajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Milan Radovich
- Caris Life Science, Irving, TX 75039, USA
- Department of Surgery, Division of General Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael J. Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giulio F. Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John S. Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
74
|
Zhou X, Ba Y, Xu N, Xu H, Zhang Y, Liu L, Weng S, Liu S, Xing Z, Chen S, Luo P, Wang L, Han X. Pharmacogenomics-based subtype decoded implications for risk stratification and immunotherapy in pancreatic adenocarcinoma. Mol Med 2025; 31:62. [PMID: 39972282 PMCID: PMC11837470 DOI: 10.1186/s10020-024-01049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/16/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND With fatal malignant peculiarities and poor survival rate, outcomes of pancreatic adenocarcinoma (PAAD) were frustrated by non-response and even resistance to therapy due to heterogeneity across clinical patients. Nevertheless, pharmacogenomics has been developed for individualized-treatment and still maintains obscure in PAAD. METHODS A total of 964 samples from 10 independent multi-center cohorts were enrolled in our study. With drug response data from the profiling of relative inhibition simultaneously in mixtures (PRISM) and genomics of drug sensitivity in cancer (GDSC) databases, we established and validated multidimensionally three pharmacogenomics-classified subtypes using non-negative matrix factorization (NMF) and nearest template prediction (NTP) algorithms, separately. The heterogenous biological characteristics and precision medicine strategies among subtypes were further investigated. RESULTS Three pharmacogenomics-classified subtypes after stable and reproducible validation, distinguished in six aspects of prognosis, biological peculiarities, immune landscapes, genomic variations, immunotherapy and individualized management strategies. Subtype 2 was close to immunocompetent phenotype and projected to immunotherapy; Subtype 3 held most favorable outcomes and metabolic pathways distinctively, promising to be treated with first-line agents. Subtype 1 with worst prognosis, was anticipated to chromosome instability (CIN) phenotype and resistant to chemotherapeutic agents. In addition, ITGB6 contributed to subtype 1 resistance to 5-fluorouracil, and knockdown of ITGB6 enhanced sensitivity to 5-fluorouracil in in vitro experiments. Ultimately, appropriate clinical stratified treatments were assigned to corresponding subtypes according to pharmacogenomic transcripts. Some limitations were not taken into account, thus needs to be supported by more research. CONCLUSION A span-new molecular subtype exploited for PAAD uncovered an insight into precise medication on ground of pharmacogenomics, and highly refined multiple clinical management strategies for specific patients.
Collapse
Affiliation(s)
- Xing Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nuo Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
75
|
Morrill Gavarró L, Couturier DL, Markowetz F. A Dirichlet-multinomial mixed model for determining differential abundance of mutational signatures. BMC Bioinformatics 2025; 26:59. [PMID: 39966709 PMCID: PMC11837616 DOI: 10.1186/s12859-025-06055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Mutational processes of diverse origin leave their imprints in the genome during tumour evolution. These imprints are called mutational signatures and they have been characterised for point mutations, structural variants and copy number changes. Each signature has an exposure, or abundance, per sample, which indicates how much a process has contributed to the overall genomic change. Mutational processes are not static, and a better understanding of their dynamics is key to characterise tumour evolution and identify cancer cell vulnerabilities that can be exploited during treatment. However, the structure of the data typically collected in this context makes it difficult to test whether signature exposures differ between conditions or time-points when comparing groups of samples. In general, the data consists of multivariate count mutational data (e.g. signature exposures) with two observations per patient, each reflecting a group. RESULTS We propose a mixed-effects Dirichlet-multinomial model: within-patient correlations are taken into account with random effects, possible correlations between signatures by making such random effects multivariate, and a group-specific dispersion parameter can deal with particularities of the groups. Moreover, the model is flexible in its fixed-effects structure, so that the two-group comparison can be generalised to several groups, or to a regression setting. We apply our approach to characterise differences of mutational processes between clonal and subclonal mutations across 23 cancer types of the PCAWG cohort. We find ubiquitous differential abundance of clonal and subclonal signatures across cancer types, and higher dispersion of signatures in the subclonal group, indicating higher variability between patients at subclonal level, possibly due to the presence of different clones with distinct active mutational processes. CONCLUSIONS Mutational signature analysis is an expanding field and we envision our framework to be used widely to detect global changes in mutational process activity. Our methodology is available in the R package CompSign and offers an ample toolkit for the analysis and visualisation of differential abundance of compositional data such as, but not restricted to, mutational signatures.
Collapse
Affiliation(s)
- Lena Morrill Gavarró
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
76
|
Prentout D, Bykova D, Hoge C, Hooper DM, McDiarmid CS, Wu F, Griffith SC, de Manuel M, Przeworski M. Mutation and recombination parameters in zebra finch are similar to those in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.05.611523. [PMID: 39282267 PMCID: PMC11398497 DOI: 10.1101/2024.09.05.611523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Most of our understanding of the fundamental processes of mutation and recombination stems from a handful of disparate model organisms and pedigree studies of mammals, with little known about other vertebrates. To gain a broader comparative perspective, we focused on the zebra finch (Taeniopygia castanotis), which, like other birds, differs from mammals in its karyotype (which includes many micro-chromosomes), in the mechanism by which recombination is directed to the genome, and in aspects of ontogenesis. We collected genome sequences from three generation pedigrees that provide information about 80 meioses, inferring 202 single-point de novo mutations, 1,174 crossovers, and 275 non-crossovers. On that basis, we estimated a sex-averaged mutation rate of 5.0 × 10-9 per base pair per generation, on par with mammals that have a similar generation time (~2-3 years). Also as in mammals, we found a paternal germline mutation bias at later stages of gametogenesis (of 1.7:1) but no discernible difference between sexes in early development. Examining recombination patterns, we found that the sex-averaged crossover rate on macro-chromosomes (1.05 cM/Mb) is again similar to values observed in mammals, as is the spatial distribution of crossovers, with a pronounced enrichment near telomeres. In contrast, non-crossover rates are more uniformly distributed. On micro-chromosomes, sex-averaged crossover rates are substantially higher (4.21 cM/Mb), as expected from crossover homeostasis, and both crossover and non-crossover events are more uniformly distributed. At a finer scale, recombination events overlap CpG islands more often than expected by chance, as expected in the absence of PRDM9. Despite differences in the mechanism by which recombination events are specified and the presence of many micro-chromosomes, estimates of the degree of GC-biased gene conversion (59%), the mean non-crossover conversion tract length (~32 bp), and the non-crossover-to-crossover ratio (5.4:1) are all comparable to those reported in primates and mice. The similarity of mutation and recombination properties in zebra finch to those in mammals suggest that they are conserved by natural selection.
Collapse
Affiliation(s)
| | - Daria Bykova
- Dept. of Biological Sciences, Columbia University
| | - Carla Hoge
- Dept. of Biological Sciences, Columbia University
| | - Daniel M. Hooper
- Institute for Comparative Genomics and Richard Gilder Graduate School, American Museum of Natural History, New York, New York, USA
| | - Callum S. McDiarmid
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Felix Wu
- Dept. of Systems Biology, Columbia University
| | - Simon C. Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | | | - Molly Przeworski
- Dept. of Biological Sciences, Columbia University
- Dept. of Systems Biology, Columbia University
| |
Collapse
|
77
|
Ford CA, Koludrovic D, Centeno PP, Foth M, Tsonou E, Vlahov N, Sphyris N, Gilroy K, Bull C, Nixon C, Serrels B, Munro AF, Dawson JC, Carragher NO, Pavet V, Hornigold DC, Dunne PD, Downward J, Welch HC, Barry ST, Sansom OJ, Campbell AD. Targeting the PREX2/RAC1/PI3Kβ Signaling Axis Confers Sensitivity to Clinically Relevant Therapeutic Approaches in Melanoma. Cancer Res 2025; 85:808-824. [PMID: 39636745 PMCID: PMC11831108 DOI: 10.1158/0008-5472.can-23-2814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Metastatic melanoma remains a major clinical challenge. Large-scale genomic sequencing of melanoma has identified bona fide activating mutations in RAC1, which are associated with resistance to BRAF-targeting therapies. Targeting the RAC1-GTPase pathway, including the upstream activator PREX2 and the downstream effector PI3Kβ, could be a potential strategy for overcoming therapeutic resistance, limiting melanoma recurrence, and suppressing metastatic progression. Here, we used genetically engineered mouse models and patient-derived BRAFV600E-driven melanoma cell lines to dissect the role of PREX2 in melanomagenesis and response to therapy. Although PREX2 was dispensable for the initiation and progression of melanoma, its loss conferred sensitivity to clinically relevant therapeutics targeting the MAPK pathway. Importantly, genetic and pharmacologic targeting of PI3Kβ phenocopied PREX2 deficiency, sensitizing model systems to therapy. These data reveal a druggable PREX2/RAC1/PI3Kβ signaling axis in BRAF-mutant melanoma that could be exploited clinically. Significance: Cotargeting the MAPK and the PREX2/RAC1/PI3Kβ pathways has remarkable efficacy and outperforms monotherapy MAPK inhibition in BRAF-mutant melanoma, supporting the potential of this combination therapy for treating metastatic melanoma.
Collapse
Affiliation(s)
| | - Dana Koludrovic
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | | | - Mona Foth
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Elpida Tsonou
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
- Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Nikola Vlahov
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | | | - Kathryn Gilroy
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Courtney Bull
- The Patrick G. Johnston Centre for Cancer Research, Queen’s University, Belfast, United Kingdom
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Bryan Serrels
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison F. Munro
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - John C. Dawson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil O. Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Valeria Pavet
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | | | - Philip D. Dunne
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- The Patrick G. Johnston Centre for Cancer Research, Queen’s University, Belfast, United Kingdom
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Heidi C.E. Welch
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Simon T. Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Owen J. Sansom
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, United Kingdom
| | | |
Collapse
|
78
|
Lee AQ, Hao C, Pan M, Ganjoo KN, Bui NQ. Histologic and Immunologic Factors Associated with Response to Immune Checkpoint Inhibitors in Advanced Sarcoma. Clin Cancer Res 2025; 31:678-684. [PMID: 39699310 DOI: 10.1158/1078-0432.ccr-24-3485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/10/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
PURPOSE To characterize factors associated with response to immune checkpoint inhibitors (ICI) in advanced sarcoma. EXPERIMENTAL DESIGN This is a retrospective study with a cohort of 216 patients with advanced sarcoma treated with ICI between 2016 and 2023 at Stanford Health Care. Overall survival, progression-free survival (PFS), objective response rates (ORR) per RECIST criteria, and reason for ICI discontinuation were analyzed across histologic subtypes, ICI regimens, tumor mutational burden, and PD-L1 expression. RESULTS The overall ORR in the cohort was 16.7%. The histologic subtypes with the highest ORR were Kaposi sarcoma (KS, 66.7%), alveolar soft part sarcoma (ASPS, 50%), angiosarcoma (33.3%), myxofibrosarcoma (MFS, 28.6%), and undifferentiated pleomorphic sarcoma (UPS, 27.8%). The subtypes with the lowest ORR were osteosarcoma (0%), synovial sarcoma (0%), and liposarcoma (3.7%). The subtypes with the highest median PFS were KS (median not reached), ASPS (median not reached), MFS (27.4 months), and UPS (11.3 months). The ORR for sarcomas with PD-L1 ≥ 1% was 27.8% (P = 0.02), whereas the ORR for sarcomas with tumor mutational burden ≥10 mutations per megabase of DNA was 28.6% (P = 0.20). CONCLUSIONS ORR and PFS were highly variable across sarcoma histologic subtypes. In this large analysis, KS, ASPS, angiosarcoma, MFS, and UPS demonstrated the highest ORR and longest PFS while osteosarcoma, synovial sarcoma, and liposarcoma had the lowest ORR and shortest PFS. PD-L1 expression was also associated with increased ORR. Our findings provide further insight into understanding the sarcoma histologic and immunologic factors that correspond with response to ICI.
Collapse
Affiliation(s)
- Alex Q Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Clara Hao
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Minggui Pan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Kristen N Ganjoo
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Nam Q Bui
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
79
|
Tao W, Sun Q, Xu B, Wang R. Towards the Prediction of Responses to Cancer Immunotherapy: A Multi-Omics Review. Life (Basel) 2025; 15:283. [PMID: 40003691 PMCID: PMC11856636 DOI: 10.3390/life15020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor treatment has undergone revolutionary changes with the development of immunotherapy, especially immune checkpoint inhibitors. Because not all patients respond positively to immune therapeutic agents, and severe immune-related adverse events (irAEs) are frequently observed, the development of the biomarkers evaluating the response of a patient is key for the application of immunotherapy in a wider range. Recently, various multi-omics features measured by high-throughput technologies, such as tumor mutation burden (TMB), gene expression profiles, and DNA methylation profiles, have been proved to be sensitive and accurate predictors of the response to immunotherapy. A large number of predictive models based on these features, utilizing traditional machine learning or deep learning frameworks, have also been proposed. In this review, we aim to cover recent advances in predicting tumor immunotherapy response using multi-omics features. These include new measurements, research cohorts, data sources, and predictive models. Key findings emphasize the importance of TMB, neoantigens, MSI, and mutational signatures in predicting ICI responses. The integration of bulk and single-cell RNA sequencing has enhanced our understanding of the tumor immune microenvironment and enabled the identification of predictive biomarkers like PD-L1 and IFN-γ signatures. Public datasets and machine learning models have also improved predictive tools. However, challenges remain, such as the need for large and diverse clinical datasets, standardization of multi-omics data, and model interpretability. Future research will require collaboration among researchers, clinicians, and data scientists to address these issues and enhance cancer immunotherapy precision.
Collapse
Affiliation(s)
- Weichu Tao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
| | - Qian Sun
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
| | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
| |
Collapse
|
80
|
Wang C, Li J, Chen J, Wang Z, Zhu G, Song L, Wu J, Li C, Qiu R, Chen X, Zhang L, Li W. Multi-omics analyses reveal biological and clinical insights in recurrent stage I non-small cell lung cancer. Nat Commun 2025; 16:1477. [PMID: 39929832 PMCID: PMC11811181 DOI: 10.1038/s41467-024-55068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/26/2024] [Indexed: 02/13/2025] Open
Abstract
Post-operative recurrence rates of stage I non-small cell lung cancer (NSCLC) range from 20% to 40%. Nonetheless, the molecular mechanisms underlying recurrence hitherto remain largely elusive. Here, we generate genomic, epigenomic and transcriptomic profiles of paired tumors and adjacent tissues from 122 stage I NSCLC patients, among which 57 patients develop recurrence after surgery during follow-up. Integrated analyses illustrate that the presence of predominantly solid or micropapillary histological subtypes, increased genomic instability, and APOBEC-related signature are associated with recurrence. Furthermore, TP53 missense mutation in DNA-binding domain could contribute to shorter time to recurrence. DNA hypomethylation is pronounced in recurrent NSCLC, and PRAME is the significantly hypomethylated and overexpressed gene in recurrent lung adenocarcinoma (LUAD). Mechanistically, hypomethylation at TEAD1 binding site facilitates the transcriptional activation of PRAME. Inhibition of PRAME restrains the tumor metastasis via downregulation of epithelial-mesenchymal transition-related genes. We also identify that enrichment of AT2 cells with higher copy number variation burden, exhausted CD8 + T cells and Macro_SPP1, along with the reduced interaction between AT2 and immune cells, is essential for the formation of ecosystem in recurrent LUAD. Finally, multi-omics clustering could stratify the NSCLC patients into 4 subclusters with varying recurrence risk and subcluster-specific therapeutic vulnerabilities. Collectively, this study constitutes a promising resource enabling insights into the biological mechanisms and clinical management for post-operative recurrence of stage I NSCLC.
Collapse
Affiliation(s)
- Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jingwei Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyao Chen
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhoufeng Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guonian Zhu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lujia Song
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayang Wu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changshu Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Qiu
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, China
| | - Xuelan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
81
|
Pham DX, Hsu T. Tumor-initiating and metastasis-initiating cells of clear-cell renal cell carcinoma. J Biomed Sci 2025; 32:17. [PMID: 39920694 PMCID: PMC11806631 DOI: 10.1186/s12929-024-01111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/11/2024] [Indexed: 02/09/2025] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) is the most common subtype of kidney malignancy. ccRCC is considered a major health concern worldwide because its numbers of incidences and deaths continue to rise and are predicted to continue rising in the foreseeable future. Therefore new strategy for early diagnosis and therapeutics for this disease is urgently needed. The discovery of cancer stem cells (CSCs) offers hope for early cancer detection and treatment. However, there has been no definitive identification of these cancer progenitors for ccRCC. A majority of ccRCC is characterized by the loss of the von Hippel-Lindau (VHL) tumor suppressor gene function. Recent advances in genome analyses of ccRCC indicate that in ccRCC, tumor-initiating cells (TICs) and metastasis-initiating cells (MICs) are two distinct groups of progenitors. MICs result from various genetic changes during subclonal evolution, while TICs reside in the stem of the ccRCC phylogenetic tree of clonal development. TICs likely originate from kidney tubule progenitor cells bearing VHL gene inactivation, including chromatin 3p loss. Recent studies also point to the importance of microenvironment reconstituted by the VHL-deficient kidney tubule cells in promoting ccRCC initiation and progression. These understandings should help define the progenitors of ccRCC and facilitate early detection and treatment of this disease.
Collapse
Affiliation(s)
- Dinh-Xuan Pham
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan, ROC
| | - Tien Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan, ROC.
- Graduate Institute of Biomedical Sciences, China Medical University-Taiwan, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan, ROC.
| |
Collapse
|
82
|
Chan LL, Kwong TT, Yau JCW, Chan SL. Treatment for hepatocellular carcinoma after immunotherapy. Ann Hepatol 2025; 30:101781. [PMID: 39929474 DOI: 10.1016/j.aohep.2025.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
Immunotherapy has revolutionized the treatment landscape for advanced HCC, resulting in prolonged response and improved survival. With these results, a pressing question arises: what is the optimal treatment following first-line immunotherapy? Despite the benefits of immunotherapy, most patients will experience disease progression within six months and will require subsequent therapies. International guidelines recommend second-line multi-kinase inhibitors following progression on immunotherapy; however, this recommendation is primarily based on expert consensus rather than high-quality evidence. Nevertheless, real-world data indicate that these agents demonstrate similar efficacy and safety when used as first-line treatments. Conversely, it remains unclear whether continuing immunotherapy after progression is beneficial. In some cases, adding anti-CTLA-4 as salvage therapy has shown effectiveness. Molecular-directed therapies have also been tested, showing some initial promise, but further data is needed to confirm the benefits of this approach. Emerging evidence suggests that patients experiencing oligoprogression may benefit from local or locoregional therapies while continuing immunotherapy. In this review, we will discuss treatment strategies following progression after first-line immunotherapy.
Collapse
Affiliation(s)
- Landon L Chan
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Tsz Tung Kwong
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Johnny C W Yau
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Stephen L Chan
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
83
|
Sun M, Monahan K, Moquet J, Barnard S. Ionizing Radiation May Induce Tumors Partly Through the Alteration or Regulation of Mismatch Repair Genes. Cancers (Basel) 2025; 17:564. [PMID: 40002162 PMCID: PMC11852753 DOI: 10.3390/cancers17040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Ionizing radiation is mutagenic and carcinogenic, and it is reported to induce primary and secondary tumors with intestinal tumors being one of the most commonly observed. However, the pathological and molecular mechanism(s) underlying the radiation-associated tumorigenesis remain unclear. A link between radiation and somatic tumorigenesis partly through genetic, epigenetic alteration and/or regulation of mismatch repair (MMR) genes has been hypothesized for the first time within this review. Clinical observations and experimental findings provide significant support for this association including MMR mutations as well as altered MMR RNA and protein expressions that occurred post-exposure, although existing evidence in published literature is sparse in this niche area. Some speculative mechanisms are suggested with this review to inform future research. Further studies are needed to understand the roles of the MMR system in response to radiation and to test this possible connection which could potentially provide useful and urgently needed information for clinical guidance.
Collapse
Affiliation(s)
- Mingzhu Sun
- UK Health Security Agency (UKHSA), Cytogenetics Group, Radiation Effects Department, Radiation, Chemical, Climate and Environmental Hazards Directorate, Chilton, Didcot OX11 0RQ, UK
| | - Kevin Monahan
- Lynch Syndrome Clinic, Centre for Familial Intestinal Cancer, St Mark’s Hospital, London North West University Healthcare NHS Trust, Watford Road, Harrow HA1 3UJ, UK
- Department of Surgery and Cancer, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Jayne Moquet
- UK Health Security Agency (UKHSA), Cytogenetics Group, Radiation Effects Department, Radiation, Chemical, Climate and Environmental Hazards Directorate, Chilton, Didcot OX11 0RQ, UK
| | - Stephen Barnard
- UK Health Security Agency (UKHSA), Cytogenetics Group, Radiation Effects Department, Radiation, Chemical, Climate and Environmental Hazards Directorate, Chilton, Didcot OX11 0RQ, UK
| |
Collapse
|
84
|
Condoiu C, Musta M, Cumpanas AA, Bardan R, Dema V, Zara F, Suciu CS, Dumitru CS, Ciucurita A, Dumache R, Ismail H, Novacescu D. Spontaneous Necrosis of a High-Risk Bladder Tumor Under Immunotherapy for Concurrent Malignant Melanoma: Role of BRAF Mutations and PD-L1 Expression. Biomedicines 2025; 13:377. [PMID: 40002790 PMCID: PMC11852637 DOI: 10.3390/biomedicines13020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Bladder cancer (BC) is a heterogeneous malignancy, and predicting response to immune checkpoint inhibitors (ICIs) remains a challenge. Herein, we investigate a high-risk bladder tumor, which developed during anti-BRAF/MEK therapy for a concurrent advanced BRAF-V600E-positive malignant melanoma (MM) and subsequently underwent complete spontaneous necrosis following Nivolumab immunotherapy, only to recur thereafter while still under the same treatment. This unique scenario provided an opportunity to investigate the roles of BRAF gene mutations in BC pathogenesis, respectively, of PD-L1 expression in immunotherapy response prediction. Methods: We retrospectively analyzed BC specimens obtained via transurethral resection at two critical time-points: prior to the complete spontaneous necrosis under Nivolumab (prenecrosis) and after tumor recurrence postnecrosis (postnecrosis). The BRAF gene mutation status was evaluated using quantitative polymerase chain reaction (qPCR). PD-L1 expression was assessed by immunohistochemistry (IHC), quantified using the combined positive score (CPS), and a cutoff of ≥10 for positivity. Results: Neither pre- nor postnecrosis BC samples harbored BRAF gene mutations. Prenecrosis PD-L1 expression (CPS = 5) indicated a minimal likelihood of response to immunotherapy. However, complete spontaneous necrosis occurred under Nivolumab, followed by recurrence with further reduced PD-L1 expression (CPS = 1). Conclusions: The complete BC regression challenges the conventional role of PD-L1 as a sole predictive biomarker for immunotherapy. This study also highlights the potential role of BRAF/MEK inhibitors in BC oncogenesis and underscores the need for alternative biomarkers, such as tumor mutation burden (TMB) and circulating tumor DNA (ctDNA), to guide treatment selection in BC better.
Collapse
Affiliation(s)
- Cristian Condoiu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.C.); (V.D.); (A.C.)
| | - Mihael Musta
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.C.); (V.D.); (A.C.)
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (A.A.C.); (R.B.)
| | - Razvan Bardan
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (A.A.C.); (R.B.)
| | - Vlad Dema
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.C.); (V.D.); (A.C.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (A.A.C.); (R.B.)
| | - Flavia Zara
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.S.S.); (C.-S.D.); (D.N.)
| | - Cristian Silviu Suciu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.S.S.); (C.-S.D.); (D.N.)
| | - Cristina-Stefania Dumitru
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.S.S.); (C.-S.D.); (D.N.)
| | - Andreea Ciucurita
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.C.); (V.D.); (A.C.)
| | - Raluca Dumache
- Department VIII, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania;
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Hossam Ismail
- Department of Urology, Lausitz Seenland Teaching Hospital, University of Dresden, Maria-Grollmuß-Straße, No. 10, 02977 Hoyerswerda, Germany;
| | - Dorin Novacescu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.S.S.); (C.-S.D.); (D.N.)
| |
Collapse
|
85
|
Ren Y, Zhang T, Liu J, Ma F, Chen J, Li P, Xiao G, Sun C, Zhang Y. MONet: cancer driver gene identification algorithm based on integrated analysis of multi-omics data and network models. Exp Biol Med (Maywood) 2025; 250:10399. [PMID: 39968416 PMCID: PMC11834253 DOI: 10.3389/ebm.2025.10399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Cancer progression is orchestrated by the accrual of mutations in driver genes, which endow malignant cells with a selective proliferative advantage. Identifying cancer driver genes is crucial for elucidating the molecular mechanisms of cancer, advancing targeted therapies, and uncovering novel biomarkers. Based on integrated analysis of Multi-Omics data and Network models, we present MONet, a novel cancer driver gene identification algorithm. Our method utilizes two graph neural network algorithms on protein-protein interaction (PPI) networks to extract feature vector representations for each gene. These feature vectors are subsequently concatenated and fed into a multi-layer perceptron model (MLP) to perform semi-supervised identification of cancer driver genes. For each mutated gene, MONet assigns the probability of being potential driver, with genes identified in at least two PPI networks selected as candidate driver genes. When applied to pan-cancer datasets, MONet demonstrated robustness across various PPI networks, outperforming baseline models in terms of both the area under the receiver operating characteristic curve and the area under the precision-recall curve. Notably, MONet identified 37 novel driver genes that were missed by other methods, including 29 genes such as APOBEC2, GDNF, and PRELP, which are corroborated by existing literature, underscoring their critical roles in cancer development and progression. Through the MONet framework, we successfully identified known and novel candidate cancer driver genes, providing biologically meaningful insights into cancer mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, Shandong, China
| |
Collapse
|
86
|
Velz J, Freudenmann LK, Medici G, Dubbelaar M, Mohme M, Ghasemi DR, Scheid J, Kowalewski DJ, Patterson AB, Zeitlberger AM, Lamszus K, Westphal M, Eyrich M, Messing-Jünger M, Röhrig A, Reinhard H, Beccaria K, Craveiro RB, Frey BM, Sill M, Nahnsen S, Gauder M, Kapolou K, Silginer M, Weiss T, Wirsching HG, Roth P, Grotzer M, Krayenbühl N, Bozinov O, Regli L, Rammensee HG, Rushing EJ, Sahm F, Walz JS, Weller M, Neidert MC. Mapping naturally presented T cell antigens in medulloblastoma based on integrative multi-omics. Nat Commun 2025; 16:1364. [PMID: 39904979 PMCID: PMC11794601 DOI: 10.1038/s41467-025-56268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Medulloblastoma is the most frequent malignant primary brain tumor in children. Despite recent advances in integrated genomics, the prognosis in children with high-risk medulloblastoma remains devastating, and new tumor-specific therapeutic approaches are needed. Here, we present an atlas of naturally presented T cell antigens in medulloblastoma. We map the human leukocyte antigen (HLA)-presented peptidomes of 28 tumors and perform comparative immunopeptidome profiling against an in-house benign database. Medulloblastoma is shown to be a rich source of tumor-associated antigens, naturally presented on HLA class I and II molecules. Remarkably, most tumor-associated peptides and proteins are subgroup-specific, whereas shared presentation among all subgroups of medulloblastoma (WNT, SHH, Group 3 and Group 4) is rare. Functional testing of top-ranking novel candidate antigens demonstrates the induction of peptide-specific T cell responses, supporting their potential for T cell immunotherapy. This study is an in-depth mapping of naturally presented T cell antigens in medulloblastoma. Integration of immunopeptidomics, transcriptomics, and epigenetic data leads to the identification of a large set of actionable targets that can be further used for the translation into the clinical setting by facilitating the informed design of immunotherapeutic approaches to children with medulloblastoma.
Collapse
Affiliation(s)
- Julia Velz
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Divison of Pediatric Neurosurgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Lena K Freudenmann
- Institute of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Gioele Medici
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marissa Dubbelaar
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David R Ghasemi
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Scheid
- Institute of Immunology, University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | | | - Angelica B Patterson
- Institute of Immunobiology, Cantonal Hospital St.Gallen, St. Gallen, Switzerland
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Anna M Zeitlberger
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Eyrich
- Department of Pediatric Haematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University Medical Center, University of Würzburg, Würzburg, Germany
| | | | - Andreas Röhrig
- Department of Neurosurgery, Asklepios Children's Hospital, Sankt Augustin, Germany
| | - Harald Reinhard
- Department of Pediatrics, Asklepios Children's Hospital, Sankt Augustin, Germany
| | - Kévin Beccaria
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, APHP, Université Paris Cite, Paris, France
| | - Rogeiro B Craveiro
- Department of Orthodontic, Dental Clinic, University Hospital of RWTH Aachen, Aachen, Germany
| | - Beat M Frey
- Blood Transfusion Service, Swiss Red Cross, Schlieren, Switzerland
| | - Martin Sill
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
- Department for Computer Science, Biomedical Data Science, University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Baden- Württemberg, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard-Karls University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Marie Gauder
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Konstantina Kapolou
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Hans-Georg Wirsching
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Grotzer
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Niklaus Krayenbühl
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Divison of Pediatric Neurosurgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oliver Bozinov
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Hans-Georg Rammensee
- Institute of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Elisabeth J Rushing
- Department of Neuropathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane S Walz
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marian C Neidert
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland.
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland.
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland.
| |
Collapse
|
87
|
Yang Y, Zhang X, Chen T, Wu F, Huang YS, Qu Y, Xu M, Ma L, Liu M, Zhai W. An Expanding Universe of Mutational Signatures and Its Rapid Evolution in Single-Stranded RNA Viruses. Mol Biol Evol 2025; 42:msaf009. [PMID: 39823310 PMCID: PMC11796089 DOI: 10.1093/molbev/msaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/19/2025] Open
Abstract
The study of mutational processes in somatic genomes has gained recent momentum, uncovering a wide array of endogenous and exogenous factors associated with somatic changes. However, the overall landscape of mutational processes in germline mutations across the tree of life and associated evolutionary driving forces are rather unclear. In this study, we analyzed mutational processes in single-stranded RNA (ssRNA) viruses which are known to jump between different hosts with divergent exogenous environments. We found that mutational spectra in different ssRNA viruses differ significantly and are mainly associated with their genetic divergence. Surprisingly, host environments contribute much less significantly to the mutational spectrum, challenging the prevailing view that the exogenous cellular environment is a major determinant of the mutational spectrum in viruses. To dissect the evolutionary forces shaping viral spectra, we selected two important scenarios, namely the inter-host evolution between different viral strains as well as the intra-host evolution. In both scenarios, we found mutational spectra change significantly through space and time, strongly correlating with levels of natural selection. Combining the mutations across all ssRNA viruses, we identified a suite of mutational signatures with varying degrees of similarity to somatic signatures in humans, indicating universal and divergent mutational processes across the tree of life. Taken together, we unraveled an unprecedented dynamic landscape of mutational processes in ssRNA viruses, pinpointing important evolutionary forces shaping fast evolution of mutational spectra in different species.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyuan Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu S Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Genecast Biotechnology Co., Ltd., Wuxi 214105, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Liang Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo Liu
- School of Basic Medical Sciences, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 511436, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
88
|
van den Berg J, Zeller P. Shining a light on cell biology of the nucleus with single-cell sequencing. Curr Opin Cell Biol 2025; 93:102468. [PMID: 39903993 DOI: 10.1016/j.ceb.2025.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
From the preservation of genomic integrity to the regulation of RNA translation, nearly all cellular processes are regulated in a cell context-dependent manner. To fully understand the context-specific function of involved nuclear processes, a vast number of single-cell sequencing technologies were developed over the last decade. This instrumental work demonstrated the heterogeneity between cell types and individual cells, bringing about new understanding of nuclear mechanisms and their crosstalk to cell states. In this review, we will cover new technological advances and their exciting applications as well as future opportunities to discover new nuclear processes and the crosstalk between them.
Collapse
Affiliation(s)
- Jeroen van den Berg
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Peter Zeller
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, the Netherlands; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
89
|
Xu D, Ayyamperumal S, Zhang S, Chen J, Lee EYC, Lee MYWT. The p12 Subunit Choreographs the Regulation and Functions of Two Forms of DNA Polymerase δ in Mammalian Cells. Genes (Basel) 2025; 16:188. [PMID: 40004517 PMCID: PMC11855201 DOI: 10.3390/genes16020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
There are two forms of DNA polymerase δ in human cells, Pol δ4 and Pol δ3, which differ based on their possession of the p12 subunit. The degradation of p12 has emerged as an important regulatory mechanism that controls the generation of Pol δ3. The underlying importance of this system lies in the altered enzymatic properties of the two forms of Pol δ engendered by the influence of p12. We briefly review how the balance of these two forms is regulated through the degradation of p12. We focus on the roles of Pol δ4, whose cellular functions are less well known. This is significant because recent studies show that this is the form engaged in the homology-dependent repair of double-strand breaks. We consider new horizons for future research into this system and their potential involvement in tumorigenesis.
Collapse
Affiliation(s)
- Dazhong Xu
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (S.A.); (J.C.)
| | - Selvaraj Ayyamperumal
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (S.A.); (J.C.)
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA; (S.Z.); (M.Y.W.T.L.)
| | - Jinjin Chen
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (S.A.); (J.C.)
| | - Ernest Y. C. Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA; (S.Z.); (M.Y.W.T.L.)
| | - Marietta Y. W. T. Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA; (S.Z.); (M.Y.W.T.L.)
| |
Collapse
|
90
|
Mouawad A, Boutros M, Chartouni A, Attieh F, Kourie HR. Tumor mutational burden: why is it still a controversial agnostic immunotherapy biomarker? Future Oncol 2025; 21:493-499. [PMID: 39711461 PMCID: PMC11812421 DOI: 10.1080/14796694.2024.2444862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024] Open
Abstract
For the past few years, researchers and oncologists have been pushing to find biomarkers that would help predict which treatment option would best work on a patient. Tumor Mutational Burden (TMB) is one of the latest biomarkers that is being studied and considered as a promising agnostic immunotherapy biomarker. However, it still shows controversial results in studies due to the difficulty in finding solid comparable results. This is a consequence of different cutoff definitions among many cancer types, age ranges, and the use of different sequencing assays, in addition to its association with other biomarkers such as PD-L1. Finally, the use of composite biomarkers to assess the genetic signature of a tumor might be the way forward to seriously use TMB as an agnostic biomarker.
Collapse
Affiliation(s)
- Antoine Mouawad
- Faculty of Medicine, Université Saint-Joseph de Beyrouth, Beyrouth, Lebanon
| | - Marc Boutros
- Faculty of Medicine, Université Saint-Joseph de Beyrouth, Beyrouth, Lebanon
| | - Antoine Chartouni
- Faculty of Medicine, Université Saint-Joseph de Beyrouth, Beyrouth, Lebanon
| | - Fouad Attieh
- Faculty of Medicine, Université Saint-Joseph de Beyrouth, Beyrouth, Lebanon
| | - Hampig Raphaël Kourie
- Department of Hematology-Oncology, Université Saint-Joseph de Beyrouth, Beyrouth, Lebanon
| |
Collapse
|
91
|
Dutta A, Chowdhury N, Chandra S, Guha P, Saha V, GuhaSarkar D. Gallbladder cholangiocyte organoids. Biol Cell 2025; 117:e2400132. [PMID: 39945546 PMCID: PMC11823593 DOI: 10.1111/boc.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Organoids are miniature three-dimensional (3D) organ-like structures developed from primary cells that closely mimic the key histological, functional, and molecular characteristics of their parent organs. These structures self-organize through cell-cell and cell-matrix interaction in culture. In the last decade, organoids and allied 3D culture technologies have catalyzed studies involving developmental biology, disease biology, high-throughput drug screening, personalized medicine, biomarker discovery, tissue engineering, and regenerative medicine. Many organoid systems have been generated from the gastrointestinal system, for example, intestine, stomach, liver, pancreas, or colon. Gallbladder cancer (GBC) is the most common and highly aggressive form of biliary tract cancer. GBC is rare in the west but has a high incidence in South America and India. Prolonged chronic inflammation is implicated in the pathogenesis of GBC but the driving molecular pathways leading to neoplasia are not well understood. Gallbladder cholangiocyte organoids (GCO) will facilitate the understanding of the evolution of the disease and novel therapeutic strategies. In this review, we have discussed alternative methodologies and culture conditions developed to generate GCO models, applications that these models have been subjected to and the current limitations for the use of GCOs in addressing the challenges in GBC research.
Collapse
Affiliation(s)
- Ankita Dutta
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
- School of Medical Science and TechnologyIndian Institute of Technology KharagpurKharagpurIndia
| | - Nandita Chowdhury
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
| | - Shinjini Chandra
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
| | - Payel Guha
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
| | - Vaskar Saha
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
- Department of Paediatric Haematology and Oncology Tata Medical CenterKolkataIndia
- Division of Cancer SciencesFaculty of BiologyMedicine and HealthSchool of Medical SciencesUniversity of ManchesterManchesterUK
| | - Dwijit GuhaSarkar
- SOLi3D LaboratoryTata Translational Cancer Research CentreKolkataIndia
| |
Collapse
|
92
|
Suspène R, Raymond KA, Guardado-Calvo P, Dairou J, Bonhomme F, Bonenfant C, Guyetant S, Lecomte T, Pagès JC, Vartanian JP. Disruption of deoxyribonucleotide triphosphate biosynthesis leads to RAS proto-oncogene activation and perturbation of mitochondrial metabolism. J Biol Chem 2025; 301:108117. [PMID: 39722416 PMCID: PMC11791277 DOI: 10.1016/j.jbc.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Perturbation of the deoxyribonucleotide triphosphate (dNTP) pool is recognized for contributing to the mutagenic processes involved in oncogenesis. The RAS gene family encodes well-characterized oncoproteins whose structure and function are among the most frequently altered in several cancers. In this work, we show that fluctuation of the dNTP pool induces CG → TA mutations across the whole genome, including RAS gene at codons for glycine 12 and 13, known hotspots in cancers. Cell culture addition of the ribonucleotide reductase inhibitor thymidine increases the mutation frequency in nuclear DNA and leads to disruption of mitochondrial metabolism. Interestingly, this effect is counteracted by the addition of deoxycytidine. Finally, screening for the loss of hydrogen bonds detecting CG → TA transition in RAS gene of 135 patients with colorectal cancer confirmed the clinical relevance of this process. All together, these data demonstrate that fluctuation of intracellular dNTP pool alters the nuclear DNA and mitochondrial metabolism.
Collapse
Affiliation(s)
- Rodolphe Suspène
- Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, Paris, France
| | - Kyle A Raymond
- Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, Paris, France; Sorbonne Université, Complexité du Vivant ED515, Paris, France
| | - Pablo Guardado-Calvo
- Structural Biology of Infectious Diseases, Department of Virology, Université Paris Cité, Institut Pasteur, Paris, France
| | - Julien Dairou
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Frédéric Bonhomme
- Epigenetic Chemical Biology Unit, UMR CNRS 3523, Université Paris Cité, Institut Pasteur, Paris, France
| | - Christine Bonenfant
- Pathology Department and Cancer Molecular Genetics Platform, CHRU de Tours Hôpital Trousseau, Tours, France
| | - Serge Guyetant
- Pathology Department and Cancer Molecular Genetics Platform, CHRU de Tours Hôpital Trousseau, Tours, France
| | - Thierry Lecomte
- Inserm UMR 1069, N2COx "Niche, Nutrition, Cancer and Oxidative Metabolism", Université de Tours, Tours, France; Service de gastroentérologie, CHRU de Tours Hôpital Trousseau, Tours, France
| | - Jean-Christophe Pagès
- RESTORE, Université de Toulouse, EFS Occitanie, INP-ENVT, INSERM U1301, UMR CNRS 5070, Toulouse, France; CHU de Toulouse, IFB, Hôpital Purpan, Toulouse, France
| | - Jean-Pierre Vartanian
- Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, Paris, France.
| |
Collapse
|
93
|
Zhang L, Yang Y, Tan J. Applications and emerging challenges of single-cell RNA sequencing technology in tumor drug discovery. Drug Discov Today 2025; 30:104290. [PMID: 39828052 DOI: 10.1016/j.drudis.2025.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Current therapeutic drugs are inadequate for curing tumors, highlighting the need for novel tumor drugs. The advancement of single-cell RNA sequencing (scRNA-seq) technology offers new opportunities for tumor drug discovery. This technology allows us to explore tumor heterogeneity and developmental mechanisms at the single-cell level. In this review, we outline the application of scRNA-seq in tumor drug discovery stages, including elucidating tumor mechanisms, identifying targets, screening drugs, and understanding drug action and resistance. We also discuss the challenges and future prospects of using scRNA-seq in drug development, providing a scientific foundation for advancing tumor therapies.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yueying Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Jianjun Tan
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China.
| |
Collapse
|
94
|
Kai J, Liu X, Wu M, Liu P, Lin M, Yang H, Zhao Q. Technological advances in clinical individualized medication for cancer therapy: from genes to whole organism. Per Med 2025; 22:45-58. [PMID: 39764674 DOI: 10.1080/17410541.2024.2447224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025]
Abstract
Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made "individualized treatment" possible, but the desired level of accuracy has not been fully attained yet. Here, we briefly summarize the conventional and state-of-the-art technologies contributing to individualized medication in clinical settings, aiming to explore therapy options enhancing clinical outcomes.
Collapse
Affiliation(s)
- Jiejing Kai
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueling Liu
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meijia Wu
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meihua Lin
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyu Yang
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
95
|
Villaume MT, Savona MR. Pathogenesis and inflammaging in myelodysplastic syndrome. Haematologica 2025; 110:283-299. [PMID: 39445405 PMCID: PMC11788632 DOI: 10.3324/haematol.2023.284944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Myelodysplastic syndromes (MDS) are a genetically complex and phenotypically diverse set of clonal hematologic neoplasms that occur with increasing frequency with age. MDS has long been associated with systemic inflammatory conditions and disordered inflammatory signaling is implicated in MDS pathogenesis. A rise in sterile inflammation occurs with ageing and the term "inflammaging" has been coined by to describe this phenomenon. This distinct form of sterile inflammation has an unknown role in in the pathogenesis of myeloid malignancies despite shared correlations with age and ageing-related diseases. More recent is a discovery that many cases of MDS arise from clonal hematopoiesis of indeterminate potential (CHIP), an age associated, asymptomatic pre-disease state. The interrelationship between ageing, inflammation and clonal CHIP is complex and likely bidirectional with causality between inflammaging and CHIP potentially instrumental to understanding MDS pathogenesis. Here we review the concept of inflammaging and MDS pathogenesis and explore their causal relationship by introducing a novel framing mechanism of "pre-clonal inflammaging" and "clonal inflammaging". We aim to harmonize research on ageing, inflammation and MDS pathogenesis by contextualizing the current understanding of inflammaging and the ageing hematopoietic system with what is known about the etiology of MDS via its progression from CHIP.
Collapse
Affiliation(s)
- Matthew T Villaume
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Michael R Savona
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; Vanderbilt-Ingram Cancer Center, Program in Cancer Biology, and Center for Immunobiology Nashville, TN 37232.
| |
Collapse
|
96
|
Badani A, Ozair A, Khasraw M, Woodworth GF, Tiwari P, Ahluwalia MS, Mansouri A. Immune checkpoint inhibitors for glioblastoma: emerging science, clinical advances, and future directions. J Neurooncol 2025; 171:531-547. [PMID: 39570554 DOI: 10.1007/s11060-024-04881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Glioblastoma (GBM), the most common and aggressive primary central nervous system (CNS) tumor in adults, continues to have a dismal prognosis. Across hundreds of clinical trials, few novel approaches have translated to clinical practice while survival has improved by only a few months over the past three decades. Randomized controlled trials of immune checkpoint inhibitors (ICIs), which have seen impressive success for advanced or metastatic extracranial solid tumors, have so far failed to demonstrate a clinical benefit for patients with GBM. This has been secondary to GBM heterogeneity, the unique immunosuppressive CNS microenvironment, immune-evasive strategies by cancer cells, and the rapid evolution of tumor on therapy. This review aims to summarize findings from major clinical trials of ICIs for GBM, review historic failures, and describe currently promising avenues of investigation. We explore the biological mechanisms driving ICI responses, focusing on the role of the tumor microenvironment, immune evasion, and molecular biomarkers. Beyond conventional monotherapy approaches targeting PD-1, PD-L1, CTLA-4, we describe emerging approaches for GBM, such as dual-agent ICIs, and combination of ICIs with oncolytic virotherapy, antigenic peptide vaccines, chimeric antigenic receptor (CAR) T-cell therapy, along with nanoparticle-based delivery systems to enhance ICI efficacy. We highlight potential strategies for improving patient selection and treatment personalization, along with real-time, longitudinal monitoring of therapeutic responses through advanced imaging and liquid biopsy techniques. Integrated radiomics, tissue, and plasma-based analyses, may potentially uncover immunotherapeutic response signatures, enabling early, adaptive therapeutic adjustments. By specifically targeting current therapeutic challenges, outcomes for GBM patients may potentially be improved.
Collapse
Affiliation(s)
- Aarav Badani
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Neuroscience, University of California, Berkeley, CA, USA
| | - Ahmad Ozair
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mustafa Khasraw
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, NC, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumor Center, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- University of Maryland - Medicine Institute for Neuroscience Discovery (UM-MIND), Baltimore, MD, USA
| | - Pallavi Tiwari
- Department of Radiology and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial Veterans Affairs (VA) Healthcare, Madison, WI, USA
| | - Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
97
|
Janiszewska J, Kostrzewska-Poczekaj M, Wierzbicka M, Brenner JC, Giefing M. HPV-driven oncogenesis-much more than the E6 and E7 oncoproteins. J Appl Genet 2025; 66:63-71. [PMID: 38907809 PMCID: PMC11761861 DOI: 10.1007/s13353-024-00883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
High-risk human papillomaviruses are well-established drivers of several cancer types including cervical, head and neck, penile as well as anal cancers. While the E6 and E7 viral oncoproteins have proven to be critical for malignant transformation, evidence is also beginning to emerge suggesting that both host pathways and additional viral genes may also be pivotal for malignant transformation. Here, we focus on the role of host APOBEC genes, which have an important role in molecular editing including in the response to the viral DNA and their role in HPV-driven carcinogenesis. Further, we also discuss data developed suggesting the existence of HPV-derived miRNAs in HPV + tumors and their potential role in regulating the host transcriptome. Collectively, while recent advances in these two areas have added complexity to the working model of papillomavirus-induced oncogenesis, these discoveries have also shed a light onto new areas of research that will be required to fully understand the process.
Collapse
Affiliation(s)
- J Janiszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - M Kostrzewska-Poczekaj
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - M Wierzbicka
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
- Research & Development Centre, Regional Specialist Hospital Wroclaw, Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - J C Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - M Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| |
Collapse
|
98
|
Wang RJ, Peña-García Y, Raveendran M, Harris RA, Nguyen TT, Gingras MC, Wu Y, Perez L, Yoder AD, Simmons JH, Rogers J, Hahn MW. Unprecedented female mutation bias in the aye-aye, a highly unusual lemur from Madagascar. PLoS Biol 2025; 23:e3003015. [PMID: 39919095 DOI: 10.1371/journal.pbio.3003015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/12/2025] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
Every mammal studied to date has been found to have a male mutation bias: male parents transmit more de novo mutations to offspring than female parents, contributing increasingly more mutations with age. Although male-biased mutation has been studied for more than 75 years, its causes are still debated. One obstacle to understanding this pattern is its near universality-without variation in mutation bias, it is difficult to find an underlying cause. Here, we present new data on multiple pedigrees from two primate species: aye-ayes (Daubentonia madagascariensis), a member of the strepsirrhine primates, and olive baboons (Papio anubis). In stark contrast to the pattern found across mammals, we find a much larger effect of maternal age than paternal age on mutation rates in the aye-aye. In addition, older aye-aye mothers transmit substantially more mutations than older fathers. We carry out both computational and experimental validation of our results, contrasting them with results from baboons and other primates using the same methodologies. Further, we analyze a set of DNA repair and replication genes to identify candidate mutations that may be responsible for the change in mutation bias observed in aye-ayes. Our results demonstrate that mutation bias is not an immutable trait, but rather one that can evolve between closely related species. Further work on aye-ayes (and possibly other lemuriform primates) should help to explain the molecular basis for sex-biased mutation.
Collapse
Affiliation(s)
- Richard J Wang
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Yadira Peña-García
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Thuy-Trang Nguyen
- Department of Computer Science, Indiana University, Bloomington, Indiana, United States of America
| | - Marie-Claude Gingras
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yifan Wu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lesette Perez
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Joe H Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Department of Computer Science, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
99
|
Olislagers M, de Jong FC, Rutten VC, Boormans JL, Mahmoudi T, Zuiverloon TCM. Molecular biomarkers of progression in non-muscle-invasive bladder cancer - beyond conventional risk stratification. Nat Rev Urol 2025; 22:75-91. [PMID: 39095581 DOI: 10.1038/s41585-024-00914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
The global incidence of bladder cancer is more than half a million diagnoses each year. Bladder cancer can be categorized into non-muscle-invasive bladder cancer (NMIBC), which accounts for ~75% of diagnoses, and muscle-invasive bladder cancer (MIBC). Up to 45% of patients with NMIBC develop disease progression to MIBC, which is associated with a poor outcome, highlighting a clinical need to identify these patients. Current risk stratification has a prognostic value, but relies solely on clinicopathological parameters that might not fully capture the complexity of disease progression. Molecular research has led to identification of multiple crucial players involved in NMIBC progression. Identified biomarkers of progression are related to cell cycle, MAPK pathways, apoptosis, tumour microenvironment, chromatin stability and DNA-damage response. However, none of these biomarkers has been prospectively validated. Reported gene signatures of progression do not improve NMIBC risk stratification. Molecular subtypes of NMIBC have improved our understanding of NMIBC progression, but these subtypes are currently unsuitable for clinical implementation owing to a lack of prospective validation, limited predictive value as a result of intratumour subtype heterogeneity, technical challenges, costs and turnaround time. Future steps include the development of consensus molecular NMIBC subtypes that might improve conventional clinicopathological risk stratification. Prospective implementation studies of biomarkers and the design of biomarker-guided clinical trials are required for the integration of molecular biomarkers into clinical practice.
Collapse
Affiliation(s)
- Mitchell Olislagers
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Florus C de Jong
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Vera C Rutten
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tahlita C M Zuiverloon
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
100
|
Kögel D, Temme A, Aigner A. Recent advances in development and delivery of non-viral nucleic acid therapeutics for brain tumor therapy. Pharmacol Ther 2025; 266:108762. [PMID: 39603349 DOI: 10.1016/j.pharmthera.2024.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
High grade gliomas (HGG) are a group of CNS tumors refractory to currently existing therapies, which routinely leads to early recurrence and a dismal prognosis. Recent advancements in nucleic acid-based therapy using a wide variety of different molecular targets and non-viral nanocarrier systems suggest that this approach holds significant potential to meet the urgent demand for improved therapeutic options for the treatment of these tumors. This review provides a comprehensive and up-to-date overview on the current landscape and progress of preclinical and clinical developments in this rapidly evolving and exciting field of research, including optimized nanocarrier delivery systems, promising therapeutic targets and tailor-made therapeutic strategies for individualized HGG patient treatment.
Collapse
Affiliation(s)
- Donat Kögel
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt am Main, Germany; German Cancer Research Center DKFZ, Heidelberg, Germany.
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Site Leipzig, Leipzig, Germany
| |
Collapse
|