51
|
Kwon JJ, Dilly J, Liu S, Kim E, Bian Y, Dharmaiah S, Tran TH, Kapner KS, Ly SH, Yang X, Rabara D, Waybright TJ, Giacomelli AO, Hong AL, Misek S, Wang B, Ravi A, Doench JG, Beroukhim R, Lemke CT, Haigis KM, Esposito D, Root DE, Nissley DV, Stephen AG, McCormick F, Simanshu DK, Hahn WC, Aguirre AJ. Comprehensive structure-function analysis reveals gain- and loss-of-function mechanisms impacting oncogenic KRAS activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.618529. [PMID: 39484452 PMCID: PMC11526993 DOI: 10.1101/2024.10.22.618529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
To dissect variant-function relationships in the KRAS oncoprotein, we performed deep mutational scanning (DMS) screens for both wild-type and KRASG12D mutant alleles. We defined the spectrum of oncogenic potential for nearly all possible KRAS variants, identifying several novel transforming alleles and elucidating a model to describe the frequency of KRAS mutations in human cancer as a function of transforming potential, mutational probability, and tissue-specific mutational signatures. Biochemical and structural analyses of variants identified in a KRASG12D second-site suppressor DMS screen revealed that attenuation of oncogenic KRAS can be mediated by protein instability and conformational rigidity, resulting in reduced binding affinity to effector proteins, such as RAF and PI3-kinases, or reduced SOS-mediated nucleotide exchange activity. These studies define the landscape of single amino acid alterations that modulate the function of KRAS, providing a resource for the clinical interpretation of KRAS variants and elucidating mechanisms of oncogenic KRAS inactivation for therapeutic exploitation.
Collapse
Affiliation(s)
- Jason J. Kwon
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Julien Dilly
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Shengwu Liu
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Eejung Kim
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yuemin Bian
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Timothy H. Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kevin S. Kapner
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Seav Huong Ly
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Xiaoping Yang
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Dana Rabara
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Timothy J. Waybright
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Andrew L. Hong
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Sean Misek
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Belinda Wang
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Arvind Ravi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - John G. Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | - Kevin M. Haigis
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - David E. Root
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Dwight V. Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrew G. Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - William C. Hahn
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
52
|
DeWitt JT, Raghunathan M, Haricharan S. Nonrepair functions of DNA mismatch repair proteins: new avenues for precision oncology. Trends Cancer 2024:S2405-8033(24)00220-6. [PMID: 39490324 DOI: 10.1016/j.trecan.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
DNA damage repair (DDR) proteins are well recognized as guardians of the genome that are frequently lost during malignant transformation of normal cells across cancer types. To date, their tumor suppressor functions have been generally regarded as a consequence of their roles in maintaining genomic stability: more genomic instability increases the risk of oncogenic transformation events. However, recent discoveries centering around DNA mismatch repair (MMR) proteins suggest a broader impact of the loss of DDR proteins on cellular processes beyond genomic instability. Here, we explore the clinical implications of nonrepair roles for DDR proteins, using the growing evidence supporting roles for DNA MMR proteins in cell cycle and apoptosis regulation, metabolic function, the cellular secretome, and immunomodulation.
Collapse
Affiliation(s)
- Jerry Tyler DeWitt
- Department of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA
| | - Megha Raghunathan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Svasti Haricharan
- Department of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA.
| |
Collapse
|
53
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
54
|
Watanabe M, Haeno H, Mimaki S, Tsuchihara K. Multistage carcinogenesis in occupational cholangiocarcinoma: the impact of clonal expansion and risk estimation. Genes Environ 2024; 46:21. [PMID: 39444007 PMCID: PMC11515581 DOI: 10.1186/s41021-024-00315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Both mutation induction and clonal expansion of mutated cells cause cancer. The probability of cancer development depends on mutations, clonal growth rates, and carcinogenic mechanisms. A recent study showed cases of occupational cholangiocarcinomas that originate multifocally, with higher mutation burden levels than those in common cholangiocarcinomas. This study aimed to identify the effect of clonal expansion on and estimate the risk of occupational and common intrahepatic cholangiocarcinomas (ICCs) using a multistage model modified to include the effect of cell expansion at any carcinogenic stage. METHODS The age-specific incidence of common ICC estimated from the Vital Statistics in Japan and the prognosis of ICC, and mutation frequencies of occupational and common ICC available from the previous report, were applied to a multistage model modified with cell proliferation effects. From the fittest model, the risk after exposure was estimated. RESULTS The required number of stages for carcinogenesis was estimated to be three based on the incidences and mutation frequencies of occupational and common ICCs. Based on this estimation, the predicted incidence curve under the model was similar to that estimated from the ICC mortality rate, except for older adults. The model indicated a minor effect of clonal expansion on the observed occupational ICC risk. It predicted a rapid decrease in ICC risk after the cessation of occupational exposure, although the time of clinical detection of cancer after the exposure was affected by latency. The model predicted an increase in cancer risk in older adults caused by cell expansion and common background mutations. However, the risk in older adults was overestimated in the case of common ICC; this divergence could influence occupational ICC cases. CONCLUSIONS Three-stage ICC carcinogenesis has been proposed. The high mutation burden levels caused by occupational exposure led to an immediate incidence of cancer. After a long period of relatively low cancer risk, an increased risk in older adults was also predicted.
Collapse
Affiliation(s)
- Masahiko Watanabe
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Okayama, 703-8516, Japan.
| | - Hiroshi Haeno
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, 277-0022, Japan
| | - Sachiyo Mimaki
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Katsuya Tsuchihara
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| |
Collapse
|
55
|
van der Werf't Lam AS, Helderman NC, Boot A, Terlouw D, Morreau H, Mei H, Esveldt-van Lange REE, Lakeman IMM, van Asperen CJ, Aten E, Hofland N, de Koning Gans PAM, Rayner E, Tops C, de Wind N, van Wezel T, Nielsen M. Assessing pathogenicity of mismatch repair variants of uncertain significance by molecular tumor analysis. Exp Mol Pathol 2024; 140:104940. [PMID: 39437510 DOI: 10.1016/j.yexmp.2024.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Functional analyses are the main method to classify mismatch repair (MMR) gene variants of uncertain significance (VUSs). However, the pathogenicity remains unclear for many variants because of conflicting results between clinical, molecular, and functional data. In this study, we evaluated whether whole exome sequencing (WES) could add another layer of evidence to elucidate the pathogenicity of MMR variants with conflicting interpretations. WES was performed on formalin-fixed paraffin-embedded tumor tissue of eight patients with a constitutional MMR VUS (seven families), including eight colorectal and two endometrial carcinomas and one ovarian carcinoma. Cell-free CIMRA assays were performed to assign Odds of Pathogenicity to these VUSs. In four families, seven tumors showed MMR deficiency-associated mutational signatures, supporting the pathogenicity of the VUS. Moreover, somatic (second) MMR hits identified in the WES data were found to explain MMR staining patterns when the MMR staining was discordant with the reported germline MMR gene variant. In conclusion, WES did not significantly reclassify VUS in these cases but clarified some phenotypic aspects such as age of onset and explanations in case of discordant MMR stainings.
Collapse
Affiliation(s)
| | - Noah C Helderman
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnoud Boot
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Diantha Terlouw
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailian Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Inge M M Lakeman
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Emmelien Aten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nandy Hofland
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Pia A M de Koning Gans
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Emily Rayner
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Carli Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
56
|
Zhang H, Liu C, Wang S, Wang Q, Feng X, Jiang H, Xiao L, Luo C, Zhang L, Hou F, Zhou M, Deng Z, Li H, Zhang Y, Su X, Li G. Proteogenomic analysis of air-pollution-associated lung cancer reveals prevention and therapeutic opportunities. eLife 2024; 13:RP95453. [PMID: 39432560 PMCID: PMC11493407 DOI: 10.7554/elife.95453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Air pollution significantly impacts lung cancer progression, but there is a lack of a comprehensive molecular characterization of clinical samples associated with air pollution. Here, we performed a proteogenomic analysis of lung adenocarcinoma (LUAD) in 169 female never-smokers from the Xuanwei area (XWLC cohort), where coal smoke is the primary contributor to the high lung cancer incidence. Genomic mutation analysis revealed XWLC as a distinct subtype of LUAD separate from cases associated with smoking or endogenous factors. Mutational signature analysis suggested that Benzo[a]pyrene (BaP) is the major risk factor in XWLC. The BaP-induced mutation hotspot, EGFR-G719X, was present in 20% of XWLC which endowed XWLC with elevated MAPK pathway activations and worse outcomes compared to common EGFR mutations. Multi-omics clustering of XWLC identified four clinically relevant subtypes. These subgroups exhibited distinct features in biological processes, genetic alterations, metabolism demands, immune landscape, and radiomic features. Finally, MAD1 and TPRN were identified as novel potential therapeutic targets in XWLC. Our study provides a valuable resource for researchers and clinicians to explore prevention and treatment strategies for air-pollution-associated lung cancers.
Collapse
Affiliation(s)
- Honglei Zhang
- Center for Scientific Research, Yunnan University of Chinese MedicineKunmingChina
| | - Chao Liu
- Department of Nuclear Medicine, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Shuting Wang
- Department of Thoracic Surgery II, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Qing Wang
- Department of Oncology, Qujing First People’s HospitalKumingChina
| | - Xu Feng
- Center for Scientific Research, Yunnan University of Chinese MedicineKunmingChina
| | - Huawei Jiang
- Department of Ophthalmology, Second People's Hospital of Yunnan ProvinceKunmingChina
| | - Li Xiao
- Department of Oncology, Qujing First People’s HospitalKumingChina
| | - Chao Luo
- Department of Thoracic Surgery II, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Lu Zhang
- Department of Nuclear Medicine, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Fei Hou
- Department of Nuclear Medicine, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Minjun Zhou
- Department of Family Medicine, Community Health Service CenterKunmingChina
| | - Zhiyong Deng
- Department of Nuclear Medicine, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Heng Li
- Department of Thoracic Surgery II, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| | - Yong Zhang
- Department of Nephrology, Institutes for Systems Genetics, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan UniversityChengduChina
| | - Xiaosan Su
- Center for Scientific Research, Yunnan University of Chinese MedicineKunmingChina
| | - Gaofeng Li
- Department of Thoracic Surgery II, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingChina
| |
Collapse
|
57
|
Wang CW, Liu TC, Lai PJ, Muzakky H, Wang YC, Yu MH, Wu CH, Chao TK. Ensemble transformer-based multiple instance learning to predict pathological subtypes and tumor mutational burden from histopathological whole slide images of endometrial and colorectal cancer. Med Image Anal 2024; 99:103372. [PMID: 39461079 DOI: 10.1016/j.media.2024.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
In endometrial cancer (EC) and colorectal cancer (CRC), in addition to microsatellite instability, tumor mutational burden (TMB) has gradually gained attention as a genomic biomarker that can be used clinically to determine which patients may benefit from immune checkpoint inhibitors. High TMB is characterized by a large number of mutated genes, which encode aberrant tumor neoantigens, and implies a better response to immunotherapy. Hence, a part of EC and CRC patients associated with high TMB may have higher chances to receive immunotherapy. TMB measurement was mainly evaluated by whole-exome sequencing or next-generation sequencing, which was costly and difficult to be widely applied in all clinical cases. Therefore, an effective, efficient, low-cost and easily accessible tool is urgently needed to distinguish the TMB status of EC and CRC patients. In this study, we present a deep learning framework, namely Ensemble Transformer-based Multiple Instance Learning with Self-Supervised Learning Vision Transformer feature encoder (ETMIL-SSLViT), to predict pathological subtype and TMB status directly from the H&E stained whole slide images (WSIs) in EC and CRC patients, which is helpful for both pathological classification and cancer treatment planning. Our framework was evaluated on two different cancer cohorts, including an EC cohort with 918 histopathology WSIs from 529 patients and a CRC cohort with 1495 WSIs from 594 patients from The Cancer Genome Atlas. The experimental results show that the proposed methods achieved excellent performance and outperforming seven state-of-the-art (SOTA) methods in cancer subtype classification and TMB prediction on both cancer datasets. Fisher's exact test further validated that the associations between the predictions of the proposed models and the actual cancer subtype or TMB status are both extremely strong (p<0.001). These promising findings show the potential of our proposed methods to guide personalized treatment decisions by accurately predicting the EC and CRC subtype and the TMB status for effective immunotherapy planning for EC and CRC patients.
Collapse
Affiliation(s)
- Ching-Wei Wang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Tzu-Chien Liu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Po-Jen Lai
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Hikam Muzakky
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yu-Chi Wang
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei, 114202, Taiwan; Department of Gynecology and Obstetrics, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Mu-Hsien Yu
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei, 114202, Taiwan; Department of Gynecology and Obstetrics, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Chia-Hua Wu
- Department of Pathology, Tri-Service General Hospital, Taipei, 114202, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, Taipei, 114202, Taiwan; Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
58
|
Couzinet A, Suzuki T, Nakatsura T. Progress and challenges in glypican-3 targeting for hepatocellular carcinoma therapy. Expert Opin Ther Targets 2024:1-15. [PMID: 39428649 DOI: 10.1080/14728222.2024.2416975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Glypican-3 (GPC3) is a cell membrane-anchored heparan sulfate proteoglycan that has recently garnered attention as a cancer antigen owing to its high expression in numerous cancers, particularly hepatocellular carcinoma (HCC), and to limited expression in adult normal tissue. AREAS COVERED Here, we propose the potential of GPC3 as a cancer antigen based on our experience with the GPC3 peptide vaccine against HCC, having developed a vaccine that progressed from preclinical studies to first-in-human clinical trials. In this review, we present a summary of the current status and future prospects of immunotherapies targeting GPC3 by focusing on clinical trials; peptide vaccines, mRNA vaccines, antibody therapy, and chimeric antigen receptor/T-cell receptor - T-cell therapy and discuss additional strategies for effectively eliminating HCC through immunotherapy. EXPERT OPINION GPC3 is an ideal cancer antigen for HCC immunotherapy. In resectable HCC, immunotherapies that leverage physiological immune surveillance, immune checkpoint inhibitors, and GPC3-target cancer vaccines appear promising in preventing recurrence and could be considered as a prophylactic adjuvant therapy. However, in advanced HCC, clinical trials have not demonstrated sufficient anti-tumor efficacy, in contrast with preclinical studies. Reverse translation, bedside-to-bench research, is crucial to identify the factors that have hindered GPC3 target immunotherapies.
Collapse
Affiliation(s)
- Arnaud Couzinet
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
59
|
Muijlwijk T, Nauta IH, van der Lee A, Grünewald KJT, Brink A, Ganzevles SH, Baatenburg de Jong RJ, Atanesyan L, Savola S, van de Wiel MA, Peferoen LAN, Bloemena E, van de Ven R, Leemans CR, Poell JB, Brakenhoff RH. Hallmarks of a genomically distinct subclass of head and neck cancer. Nat Commun 2024; 15:9060. [PMID: 39428388 PMCID: PMC11491468 DOI: 10.1038/s41467-024-53390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer is caused by an accumulation of somatic mutations and copy number alterations (CNAs). Besides mutations, these copy number changes are key characteristics of cancer development. Nonetheless, some tumors show hardly any CNAs, a remarkable phenomenon in oncogenesis. Head and neck squamous cell carcinomas (HNSCCs) arise by either exposure to carcinogens, or infection with the human papillomavirus (HPV). HPV-negative HNSCCs are generally characterized by many CNAs and frequent mutations in CDKN2A, TP53, FAT1, and NOTCH1. Here, we present the hallmarks of the distinct subgroup of HPV-negative HNSCC with no or few CNAs (CNA-quiet) by genetic profiling of 802 oral cavity squamous cell carcinomas (OCSCCs). In total, 73 OCSCC (9.1%) are classified as CNA-quiet and 729 as CNA-other. The CNA-quiet group is characterized by wild-type TP53, frequent CASP8 and HRAS mutations, and a less immunosuppressed tumor immune microenvironment with lower density of regulatory T cells. Patients with CNA-quiet OCSCC are older, more often women, less frequently current smokers, and have a better 5-year overall survival compared to CNA-other OCSCC. This study demonstrates that CNA-quiet OCSCC should be considered as a distinct, clinically relevant subclass. Given the clinical characteristics, the patient group with these tumors will rapidly increase in the aging population.
Collapse
Affiliation(s)
- Tara Muijlwijk
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Irene H Nauta
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Anabel van der Lee
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Kari J T Grünewald
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Arjen Brink
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Sonja H Ganzevles
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | | | | | - Suvi Savola
- MRC Holland, Oncogenetics, Amsterdam, The Netherlands
| | - Mark A van de Wiel
- Amsterdam UMC, Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Laura A N Peferoen
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Pathology, Amsterdam, The Netherlands
- Academic Center for Dentistry, Maxillofacial Surgery/ Oral Pathology, Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Pathology, Amsterdam, The Netherlands
- Academic Center for Dentistry, Maxillofacial Surgery/ Oral Pathology, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - C René Leemans
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Jos B Poell
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| | - Ruud H Brakenhoff
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Otolaryngology / Head and Neck Surgery, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
60
|
Zhang J, Cao J, Wang L, Li S, Meng F, Liang X, Jiang H, Luo R, Zhu D, Zhang F, Zhang L, Zhang X, Mei L. Neoantigen sequestrated autophagosomes as therapeutic cancer vaccines. J Control Release 2024; 376:369-381. [PMID: 39413847 DOI: 10.1016/j.jconrel.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Neoantigens serve as ideal personalized cancer vaccines because of their high immunogenicity, ability to evade central thymic tolerance, and minimal risk of eliciting autoimmune responses. Herein, we describe a genetically engineered autophagosome-based neoantigen vaccine (APNV) in combination with an immune checkpoint inhibitor (anti-PD-1 antibody) for cancer immunotherapy. The APNV was derived from engineered NIH 3T3 cells, which co-express melanoma neoantigens and autophagosome maker microtubule-associated proteins 1 A/1B light chain 3B (LC3), from which the LC3-labeled neoantigen-autophagosomes were isolated. These purified autophagosomes, in conjunction with vaccine adjuvants high-mobility group box 1 (HMGB1) and granulocyte-macrophage colony-stimulating factor (GM-CSF), were integrated into a hydrogel to create an APNV. The APNV effectively activated dendritic cells both in vitro and in vivo. Moreover, APNV, in combination with checkpoint blockade therapy, significantly hampered post-surgical tumor recurrence in a subcutaneous melanoma tumor model and effectively impeded metastatic progression in a melanoma lung metastasis model. This APNV may be conducive to making personalized therapeutic neoantigen vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Jinxie Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Jiahui Cao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Liuchang Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Sitong Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Fanqiang Meng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China
| | - Hanyu Jiang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China; Guangdong Second Provincial General Hospital, Guangdong Medical University, Guangzhou 510317, PR China
| | - Ran Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Dunwan Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Fan Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Linhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China.
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
61
|
Fox NS, Tian M, Markowitz AL, Haider S, Li CH, Boutros PC. iSubGen generates integrative disease subtypes by pairwise similarity assessment. CELL REPORTS METHODS 2024:100884. [PMID: 39447572 DOI: 10.1016/j.crmeth.2024.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/06/2023] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
There are myriad types of biomedical data-molecular, clinical images, and others. When a group of patients with the same underlying disease exhibits similarities across multiple types of data, this is called a subtype. Existing subtyping approaches struggle to handle diverse data types with missing information. To improve subtype discovery, we exploited changes in the correlation-structure between different data types to create iSubGen, an algorithm for integrative subtype generation. iSubGen can accommodate any feature that can be compared with a similarity metric to create subtypes versatilely. It can combine arbitrary data types for subtype discovery, such as merging genetic, transcriptomic, proteomic, and pathway data. iSubGen recapitulates known subtypes across multiple cancers even with substantial missing data and identifies subtypes with distinct clinical behaviors. It performs equally with or superior to other subtyping methods, offering greater stability and robustness to missing data and flexibility to new data types. It is available at https://cran.r-project.org/web/packages/iSubGen.
Collapse
Affiliation(s)
- Natalie S Fox
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Mao Tian
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Alexander L Markowitz
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Constance H Li
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA; Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
62
|
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol 2024:10.1038/s41423-024-01226-x. [PMID: 39406966 DOI: 10.1038/s41423-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
63
|
Du L, Oksenych V, Wan H, Ye X, Dong J, Ye AY, Abolhassani H, Vlachiotis S, Zhang X, de la Rosa K, Hammarström L, van der Burg M, Alt FW, Pan-Hammarström Q. Orientation Regulation of Class-switch Recombination in Human B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1093-1104. [PMID: 39248600 PMCID: PMC11457721 DOI: 10.4049/jimmunol.2300842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
We developed a linear amplification-mediated high-throughput genome-wide translocation sequencing method to profile Ig class-switch recombination (CSR) in human B cells in an unbiased and quantitative manner. This enables us to characterize CSR junctions resulting from either deletional recombination or inversion for each Ig class/subclass. Our data showed that more than 90% of CSR junctions detected in peripheral blood in healthy control subjects were due to deletional recombination. We further identified two major CSR junction signatures/patterns in human B cells. Signature 1 consists of recombination junctions resulting from both IgG and IgA switching, with a dominance of Sµ-Sγ junctions (72%) and deletional recombination (87%). Signature 2 is contributed mainly by Sµ-Sα junctions (96%), and these junctions were almost all due to deletional recombination (99%) and were characterized by longer microhomologies. CSR junctions identified in healthy individuals can be assigned to both signatures but with a dominance of signature 1, whereas almost all CSR junctions found in patients with defects in DNA-PKcs or Artemis, two classical nonhomologous end joining (c-NHEJ) factors, align with signature 2. Thus, signature 1 may represent c-NHEJ activity during CSR, whereas signature 2 is associated with microhomology-mediated alternative end joining in the absence of the studied c-NHEJ factors. Our findings suggest that in human B cells, the efficiency of the c-NHEJ machinery and the features of switch regions are crucial for the regulation of CSR orientation. Finally, our high-throughput method can also be applied to study the mechanism of rare types of recombination, such as switching to IgD and locus suicide switching.
Collapse
Affiliation(s)
- Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Valentyn Oksenych
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hui Wan
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaofei Ye
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Adam Yongxin Ye
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stelios Vlachiotis
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xuefei Zhang
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Kathrin de la Rosa
- Department of Cancer and Immunology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frederick W. Alt
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
64
|
Zang Y, Lu Y, Yu J, Dong Q, Shi Y, Ying G, Liang Z. FOXP3 inhibits proliferation and migration by competitively inhibiting YAP1 in nasopharyngeal carcinoma. Oral Oncol 2024; 159:107066. [PMID: 39413576 DOI: 10.1016/j.oraloncology.2024.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/18/2024]
Abstract
Hippo signalling is involved in the coordination of extracellular signals that control tissue homeostasis and organ size. Yes-associated protein 1 (YAP1) is regulated primarily by Hippo signalling through coactivation of transcription factors with GATA domains called TEADs. However, small-molecule orthosteric inhibitors of YAP1 are difficult to develop due to its tight binding to TEAD4 via a flat interface. Previous studies have shown that chlorpromazine (CPZ) can inhibit YAP1 expression. MTT, colony formation, wound healing, Transwell migration and Western blot assays were performed to explore how CPZ affects nasopharyngeal carcinoma (NPC) cells through FOXP3. In addition, immunofluorescence and live-cell imaging were used to detect YAP1 intracellular localization after CPZ administration. Through the HDOCK website, we predicted protein binding regions between FOXP3 and TEAD4. Western blot and co-IP experiments were used to verify the relationship between FOXP3 and YAP1. The UCSC Xena database, LinkedOmics database and KM plotter website were used to assess the prognostic value of FOXP3 in head and neck squamous cell carcinoma (HNSCC). Age, sex, pathological tumour-node-metastasis (pTMN) stage, grade, smoking status and FOXP3 expression were included in an overall survival nomogram model. Our findings revealed that FOXP3 has the ability to competitively interacts competitively with TEAD4 to inhibit YAP1 expression. By increasing FOXP3 expression, CPZ induces YAP1 nuclear export and phosphorylation, consequently suppressing NPC cell proliferation and migration. Collectively, our findings indicate that FOXP3 competitively binds TEAD4 to regulate YAP1 localization in the nucleus and cytoplasm to suppress NPC progression. Consequently, FOXP3 may be a prognostic indicator for HNSCC.
Collapse
Affiliation(s)
- Yiqing Zang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Yi Lu
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Jiaxi Yu
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Qiuping Dong
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, PR China
| | - Yue Shi
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, PR China
| | - Guoguang Ying
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, PR China.
| | - Zheng Liang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, PR China.
| |
Collapse
|
65
|
Vijayraghavan S, Blouin T, McCollum J, Porcher L, Virard F, Zavadil J, Feghali-Bostwick C, Saini N. Widespread mutagenesis and chromosomal instability shape somatic genomes in systemic sclerosis. Nat Commun 2024; 15:8889. [PMID: 39406724 PMCID: PMC11480385 DOI: 10.1038/s41467-024-53332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Systemic sclerosis is a connective tissue disorder characterized by excessive fibrosis that primarily affects women, and can present as a multisystem pathology. Roughly 4-22% of patients with systemic sclerosis develop cancer, which drastically worsens prognosis. However, the mechanisms underlying systemic sclerosis initiation, propagation, and cancer development are poorly understood. We hypothesize that the inflammation and immune response associated with systemic sclerosis can trigger DNA damage, leading to elevated somatic mutagenesis, a hallmark of pre-cancerous tissues. To test our hypothesis, we culture clonal lineages of fibroblasts from the lung tissues of controls and systemic sclerosis patients and compare their mutation burdens and spectra. We find an overall increase in all major mutation types in systemic sclerosis samples compared to control lung samples, from small-scale events such as single base substitutions and insertions/deletions, to chromosome-level changes, including copy-number changes and structural variants. In the genomes of patients with systemic sclerosis, we find evidence of somatic hypermutation or kategis (typically only seen in cancer genomes), we identify mutation signatures closely resembling the error-prone translesion polymerase Polη activity, and observe an activation-induced deaminase-like mutation signature, which overlaps with genomic regions displaying kataegis.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Blouin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - James McCollum
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Latarsha Porcher
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - François Virard
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer WHO, Epigenomics and Mechanisms Branch, Lyon, France
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
66
|
Corti G, Buzo K, Berrino E, Miotto M, Aquilano MC, Lentini M, Bellomo SE, Lorenzato A, Bartolini A, Mauri G, Lazzari L, Russo M, Di Nicolantonio F, Siena S, Marsoni S, Marchiò C, Bardelli A, Arena S. Prediction of homologous recombination deficiency identifies colorectal tumors sensitive to PARP inhibition. NPJ Precis Oncol 2024; 8:231. [PMID: 39402170 PMCID: PMC11473949 DOI: 10.1038/s41698-024-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/09/2024] [Indexed: 10/17/2024] Open
Abstract
The synthetic lethal effect observed with the use of PARP inhibitors (PARPi) with tumors characterized by the loss of key players in the homologous recombination (HR) pathway, commonly referred to as "BRCAness", is maintaining high interest in oncology. While BRCAness is a well-established feature in breast, ovarian, prostate, and pancreatic carcinomas, our recent findings indicate that up to 15% of colorectal cancers (CRC) also harbor defects in the HR pathway, presenting promising opportunities for innovative therapeutic strategies in CRC patients. We developed a new tool called HRDirect, which builds upon the HRDetect algorithm and is able to predict HR deficiency (HRD) from reference-free tumor samples. We validated HRDirect using matched breast cancer and CRC patient samples. Subsequently, we assessed its efficacy in predicting response to the PARP inhibitor olaparib by comparing it with two other commercial assays: AmoyDx HRD by Amoy Diagnostics and the TruSight Oncology 500 HRD (TSO500-HRD) panel by Illumina NGS technology. While all three approaches successfully identified the most PARPi-sensitive CRC models, HRDirect demonstrated superior precision in distinguishing resistant models compared to AmoyDX and TSO500-HRD, which exhibited overlapping scores between sensitive and resistant cells. Furthermore, we propose integrating HRDirect scoring with ATM and RAD51C immunohistochemical analysis as part of our "composite biomarker approach" to enhance the identification of HRD tumors, with an immediate translational and clinical impact for CRC personalized treatment.
Collapse
Affiliation(s)
- Giorgio Corti
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Kristi Buzo
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Martina Miotto
- Department of Oncology, University of Torino, Torino, Italy
| | - Maria Costanza Aquilano
- Department of Hematology, Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marilena Lentini
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | | | | | | | - Gianluca Mauri
- Department of Hematology, Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Luca Lazzari
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Salvatore Siena
- Department of Hematology, Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Silvia Marsoni
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Torino, Italy.
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Sabrina Arena
- Department of Oncology, University of Torino, Torino, Italy.
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| |
Collapse
|
67
|
Nzitakera A, Uwamariya D, Kato H, Surwumwe JB, Mbonigaba A, Ndoricyimpaye EL, Uwamungu S, Manirakiza F, Ndayisaba MC, Ntakirutimana G, Seminega B, Dusabejambo V, Rutaganda E, Kamali P, Ngabonziza F, Ishikawa R, Watanabe H, Rugwizangoga B, Baba S, Yamada H, Yoshimura K, Sakai Y, Sugimura H, Shinmura K. TP53 mutation status and consensus molecular subtypes of colorectal cancer in patients from Rwanda. BMC Cancer 2024; 24:1266. [PMID: 39394554 PMCID: PMC11468329 DOI: 10.1186/s12885-024-13009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Mutations in the TP53 tumor suppressor gene are well-established drivers of colorectal cancer (CRC) development. However, data on the prevalence of TP53 variants and their association with consensus molecular subtype (CMS) classification in patients with CRC from Rwanda are currently lacking. This study addressed this knowledge gap by investigating TP53 mutation status concerning CMS classification in a CRC cohort from Rwanda. METHODS Formalin-fixed paraffin-embedded (FFPE) tissue blocks were obtained from 51 patients with CRC at the University Teaching Hospital of Kigali, Rwanda. Exons 4 to 11 and their flanking intron-exon boundaries in the TP53 gene were sequenced using Sanger sequencing to identify potential variants. The recently established immunohistochemistry-based classifier was employed to determine the CMS of each tumor. RESULTS Sequencing analysis of cancerous tissue DNA revealed TP53 pathogenic variants in 23 of 51 (45.1%) patients from Rwanda. These variants were predominantly missense types (18/23, 78.3%). The most frequent were c.455dup (p.P153Afs*28), c.524G > A (p.R175H), and c.733G > A (p.G245S), each identified in three tumors. Trinucleotide sequence context analysis of the 23 mutations (20 of which were single-base substitutions) revealed a predominance of the [C > N] pattern among single-base substitutions (SBSs) (18/20; 90.0%), with C[C > T]G being the most frequent mutation (5/18, 27.8%). Furthermore, pyrimidine bases (C and T) were preferentially found at the 5' flanking position of the mutated cytosine (13/18; 72.2%). Analysis of CMS subtypes revealed the following distribution: CMS1 (microsatellite instability-immune) (6/51, 11.8%), CMS2 (canonical) (28/51, 54.9%), CMS3 (metabolic) (9/51, 17.6%), and CMS4 (mesenchymal) (8/51, 15.7%). Interestingly, the majority of TP53 variants were in the CMS2 subgroup (14/23; 60.1%). CONCLUSION Our findings indicate a high frequency of TP53 variants in CRC patients from Rwanda. Importantly, these variants are enriched in the CMS2 subtype. This study, representing the second investigation into molecular alterations in patients with CRC from Rwanda and the first to explore TP53 mutations and CMS classification, provides valuable insights into the molecular landscape of CRC in this understudied population.
Collapse
Affiliation(s)
- Augustin Nzitakera
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Delphine Uwamariya
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Jean Bosco Surwumwe
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - André Mbonigaba
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Ella Larissa Ndoricyimpaye
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Université Catholique de Louvain, Médecine Expérimentale, Brussels, 1348, Belgium
| | - Schifra Uwamungu
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-40530, Sweden
| | - Felix Manirakiza
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Marie Claire Ndayisaba
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Gervais Ntakirutimana
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Benoit Seminega
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Vincent Dusabejambo
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Eric Rutaganda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Placide Kamali
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - François Ngabonziza
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Rei Ishikawa
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hirofumi Watanabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Belson Rugwizangoga
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Tumor Immunology Laboratory, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SE- 40530, Sweden
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Medicine, 1- 20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Haruhiko Sugimura
- Sasaki Institute Sasaki Foundation, 2-2 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
68
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
69
|
Chi WY, Hu Y, Huang HC, Kuo HH, Lin SH, Kuo CTJ, Tao J, Fan D, Huang YM, Wu AA, Hung CF, Wu TC. Molecular targets and strategies in the development of nucleic acid cancer vaccines: from shared to personalized antigens. J Biomed Sci 2024; 31:94. [PMID: 39379923 PMCID: PMC11463125 DOI: 10.1186/s12929-024-01082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024] Open
Abstract
Recent breakthroughs in cancer immunotherapies have emphasized the importance of harnessing the immune system for treating cancer. Vaccines, which have traditionally been used to promote protective immunity against pathogens, are now being explored as a method to target cancer neoantigens. Over the past few years, extensive preclinical research and more than a hundred clinical trials have been dedicated to investigating various approaches to neoantigen discovery and vaccine formulations, encouraging development of personalized medicine. Nucleic acids (DNA and mRNA) have become particularly promising platform for the development of these cancer immunotherapies. This shift towards nucleic acid-based personalized vaccines has been facilitated by advancements in molecular techniques for identifying neoantigens, antigen prediction methodologies, and the development of new vaccine platforms. Generating these personalized vaccines involves a comprehensive pipeline that includes sequencing of patient tumor samples, data analysis for antigen prediction, and tailored vaccine manufacturing. In this review, we will discuss the various shared and personalized antigens used for cancer vaccine development and introduce strategies for identifying neoantigens through the characterization of gene mutation, transcription, translation and post translational modifications associated with oncogenesis. In addition, we will focus on the most up-to-date nucleic acid vaccine platforms, discuss the limitations of cancer vaccines as well as provide potential solutions, and raise key clinical and technical considerations in vaccine development.
Collapse
Affiliation(s)
- Wei-Yu Chi
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yingying Hu
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hui-Hsuan Kuo
- Pharmacology PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, TX, USA
| | - Chun-Tien Jimmy Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Julia Tao
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Darrell Fan
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Yi-Min Huang
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Annie A Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - T-C Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
70
|
Williams JS, Lujan SA, Arana ME, Burkholder AB, Tumbale PP, Williams RS, Kunkel TA. High fidelity DNA ligation prevents single base insertions in the yeast genome. Nat Commun 2024; 15:8730. [PMID: 39379399 PMCID: PMC11461686 DOI: 10.1038/s41467-024-53063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Finalization of eukaryotic nuclear DNA replication relies on DNA ligase 1 (LIG1) to seal DNA nicks generated during Okazaki Fragment Maturation (OFM). Using a mutational reporter in Saccharomyces cerevisiae, we previously showed that mutation of the high-fidelity magnesium binding site of LIG1Cdc9 strongly increases the rate of single-base insertions. Here we show that this rate is increased across the nuclear genome, that it is synergistically increased by concomitant loss of DNA mismatch repair (MMR), and that the additions occur in highly specific sequence contexts. These discoveries are all consistent with incorporation of an extra base into the nascent lagging DNA strand that can be corrected by MMR following mutagenic ligation by the Cdc9-EEAA variant. There is a strong preference for insertion of either dGTP or dTTP into 3-5 base pair mononucleotide sequences with stringent flanking nucleotide requirements. The results reveal unique LIG1Cdc9-dependent mutational motifs where high fidelity DNA ligation of a subset of OFs is critical for preventing mutagenesis across the genome.
Collapse
Affiliation(s)
- Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Mercedes E Arana
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Adam B Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Percy P Tumbale
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
71
|
Hosoi S, Hirose T, Matsumura S, Otsubo Y, Saito K, Miyazawa M, Suzuki T, Masumura K, Sugiyama KI. Effect of sequencing platforms on the sensitivity of chemical mutation detection using Hawk-Seq™. Genes Environ 2024; 46:20. [PMID: 39385252 PMCID: PMC11462924 DOI: 10.1186/s41021-024-00313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Error-corrected next-generation sequencing (ecNGS) technologies have enabled the direct evaluation of genome-wide mutations after exposure to mutagens. Previously, we reported an ecNGS methodology, Hawk-Seq™, and demonstrated its utility in evaluating mutagenicity. The evaluation of technical transferability is essential to further evaluate the reliability of ecNGS-based assays. However, cutting-edge sequencing platforms are continually evolving, which can affect the sensitivity of ecNGS. Therefore, the effect of differences in sequencing instruments on mutation data quality should be evaluated. RESULTS We assessed the performance of four sequencing platforms (HiSeq2500, NovaSeq6000, NextSeq2000, and DNBSEQ-G400) with the Hawk-Seq™ protocol for mutagenicity evaluation using DNA samples from mouse bone marrow exposed to benzo[a]pyrene (BP). The overall mutation (OM) frequencies per 106 bp in vehicle-treated samples were 0.22, 0.36, 0.46, and 0.26 for HiSeq2500, NovaSeq6000, NextSeq2000, and DNBSEQ-G400, respectively. The OM frequency of NextSeq2000 was significantly higher than that of HiSeq2500, suggesting the difference to be based on the platform. The relatively higher value in NextSeq2000 was a consequence of the G:C to C:G mutations in NextSeq2000 data (0.67 per 106 G:C bp), which was higher than the mean of the four platforms by a ca. of 0.25 per 106 G:C bp. A clear dose-dependent increase in G:C to T:A mutation frequencies was observed in all four sequencing platforms after BP exposure. The cosine similarity values of the 96-dimensional trinucleotide mutation patterns between HiSeq and the three other platforms were 0.93, 0.95, and 0.92 for NovaSeq, NextSeq, and DNBSeq, respectively. These results suggest that all platforms can provide equivalent data that reflect the characteristics of the mutagens. CONCLUSIONS All platforms sensitively detected mutagen-induced mutations using the Hawk-Seq™ analysis. The substitution types and frequencies of the background errors differed depending on the platform. The effects of sequencing platforms on mutagenicity evaluation should be assessed before experimentation.
Collapse
Affiliation(s)
- Sayaka Hosoi
- R&D - Safety Science Research, Kao Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-0821, Japan
| | - Takako Hirose
- R&D - Safety Science Research, Kao Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-0821, Japan
| | - Shoji Matsumura
- R&D - Safety Science Research, Kao Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-0821, Japan.
| | - Yuki Otsubo
- R&D - Safety Science Research, Kao Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-0821, Japan
| | - Kazutoshi Saito
- R&D - Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497, Japan
| | - Masaaki Miyazawa
- R&D - Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497, Japan
| | - Takayoshi Suzuki
- Division of Genome Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Kenichi Masumura
- Division of Risk Assessment, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Kei-Ichi Sugiyama
- Division of Genome Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
72
|
Axelsson J, LeBlanc D, Shojaeisaadi H, Meier MJ, Fitzgerald DM, Nachmanson D, Carlson J, Golubeva A, Higgins J, Smith T, Lo FY, Pilsner R, Williams A, Salk J, Marchetti F, Yauk C. Frequency and spectrum of mutations in human sperm measured using duplex sequencing correlate with trio-based de novo mutation analyses. Sci Rep 2024; 14:23134. [PMID: 39379474 PMCID: PMC11461794 DOI: 10.1038/s41598-024-73587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
De novo mutations (DNMs) are drivers of genetic disorders. However, the study of DNMs is hampered by technological limitations preventing accurate quantification of ultra-rare mutations. Duplex Sequencing (DS) theoretically has < 1 error/billion base-pairs (bp). To determine the DS utility to quantify and characterize DNMs, we analyzed DNA from blood and spermatozoa from six healthy, 18-year-old Swedish men using the TwinStrand DS mutagenesis panel (48 kb spanning 20 genic and intergenic loci). The mean single nucleotide variant mutation frequency (MF) was 1.2 × 10- 7 per bp in blood and 2.5 × 10- 8 per bp in sperm, with the most common base substitution being C > T. Blood MF and substitution spectrum were similar to those reported in blood cells with an orthogonal method. The sperm MF was in the same order of magnitude and had a strikingly similar spectrum to DNMs from publicly available whole genome sequencing data from human pedigrees (1.2 × 10- 8 per bp). DS revealed much larger numbers of insertions and deletions in sperm over blood, driven by an abundance of putative extra-chromosomal circular DNAs. The study indicates the strong potential of DS to characterize human DNMs to inform factors that contribute to disease susceptibility and heritable genetic risks.
Collapse
Affiliation(s)
- Jonatan Axelsson
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Reproductive Medicine Centre, Skåne University Hospital, Malmö, Sweden.
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Danielle LeBlanc
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | | | | | | | | | | | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Richard Pilsner
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, USA
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Jesse Salk
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
73
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
74
|
Jayakrishnan R, Kwiatkowski DJ, Rose MG, Nassar AH. Topography of mutational signatures in non-small cell lung cancer: emerging concepts, clinical applications, and limitations. Oncologist 2024; 29:833-841. [PMID: 38907669 PMCID: PMC11449018 DOI: 10.1093/oncolo/oyae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 06/24/2024] Open
Abstract
The genome of a cell is continuously battered by a plethora of exogenous and endogenous processes that can lead to damaged DNA. Repair mechanisms correct this damage most of the time, but failure to do so leaves mutations. Mutations do not occur in random manner, but rather typically follow a more or less specific pattern due to known or imputed mutational processes. Mutational signature analysis is the process by which the predominant mutational process can be inferred for a cancer and can be used in several contexts to study both the genesis of cancer and its response to therapy. Recent pan-cancer genomic efforts such as "The Cancer Genome Atlas" have identified numerous mutational signatures that can be categorized into single base substitutions, doublet base substitutions, or small insertions/deletions. Understanding these mutational signatures as they occur in non-small lung cancer could improve efforts at prevention, predict treatment response to personalized treatments, and guide the development of therapies targeting tumor evolution. For non-small cell lung cancer, several mutational signatures have been identified that correlate with exposures such as tobacco smoking and radon and can also reflect endogenous processes such as aging, APOBEC activity, and loss of mismatch repair. Herein, we provide an overview of the current knowledge of mutational signatures in non-small lung cancer.
Collapse
Affiliation(s)
- Ritujith Jayakrishnan
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - David J Kwiatkowski
- Department of Pulmonary Medicine, Brigham and Women's Hospital, Boston, MA, 02115, United States
| | - Michal G Rose
- Yale University School of Medicine and Cancer Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, United States
- Department of Medicine, Medical Oncology Division, Yale Cancer Center, New Haven, CT, United States
| | - Amin H Nassar
- Yale University School of Medicine and Cancer Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, United States
| |
Collapse
|
75
|
Alsharabasy AM, Aljaabary A, Farràs P, Pandit A. Engineering hemin-loaded hyaluronan needle-like microparticles with photoprotective properties against UV-induced tissue damage. J Mater Chem B 2024; 12:9639-9655. [PMID: 39194146 DOI: 10.1039/d4tb01529k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
This study aimed to develop hyaluronan (HA)-based hydrogel microparticles (MPs) loaded with hemin to address the limitations of traditional macroscale hydrogels. The objective is to design MPs such that they can modulate their physicochemical properties. Given the widespread use of ultraviolet C (UVC) light in various industries and the need for protective measures against accidental exposure, this study evaluated the potential of hemin-loaded MPs to protect human dermal fibroblasts from oxidative stress and cell death caused by UVC exposure. Multiple MP formulations were developed and analysed for size, surface charge, swelling behaviour, degradation rate, and radical scavenging capabilities, both with and without hemin loading. The most promising formulations were tested against UVC-exposed cells to assess cell viability, intracellular nitric oxide (˙NO) and reactive oxygen species levels, and protein carbonylation. The fabricated particles were in the form of microneedles, and the degree of their crosslinking and the role of hemin in the chemical crosslinking reaction were found to influence the surface charge and hydrodynamic diameter of the MPs. Increased crosslinking resulted in reduced swelling, slower degradation, and decreased hemin release rate. MPs with a higher degree of swelling were capable of releasing hemin into the culture medium, leading to enhanced bilirubin generation in dermal fibroblasts following cellular uptake. Pre-treatment with these MPs protected the cells from UVC-induced cell death, nitrosative stress, and protein carbonylation. These findings highlight the potential of the studied MPs to release hemin and to minimise the harmful effects of UVC on dermal fibroblasts.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| | - Amal Aljaabary
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| | - Pau Farràs
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, H91 TK33, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| |
Collapse
|
76
|
Rencinai A, Tollapi E, Marianantoni G, Brunetti J, Henriquez T, Pini A, Bracci L, Falciani C. Branched oncolytic peptides target HSPGs, inhibit metastasis, and trigger the release of molecular determinants of immunogenic cell death in pancreatic cancer. Front Mol Biosci 2024; 11:1429163. [PMID: 39417004 PMCID: PMC11479992 DOI: 10.3389/fmolb.2024.1429163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Immunogenic cell death (ICD) can be exploited to treat non-immunoreactive tumors that do not respond to current standard and innovative therapies. Not all chemotherapeutics trigger ICD, among those that do exert this effect, there are anthracyclines, irinotecan, some platinum derivatives and oncolytic peptides. We studied two new branched oncolytic peptides, BOP7 and BOP9 that proved to elicit the release of damage-associated molecular patterns DAMPS, mediators of ICD, in pancreatic cancer cells. The two BOPs selectively bound and killed tumor cells, particularly PANC-1 and Mia PaCa-2, but not cells of non-tumor origin such as RAW 264.7, CHO-K1 and pgsA-745. The cancer selectivity of the two BOPs may be attributed to their repeated cationic sequences, which enable multivalent binding to heparan sulfate glycosaminoglycans (HSPGs), bearing multiple anionic sulfation patterns on cancer cells. This interaction of BOPs with HSPGs not only fosters an anti-metastatic effect in vitro, as demonstrated by reduced adhesion and migration of PANC-1 cancer cells, but also shows promising tumor-specific cytotoxicity and low hemolytic activity. Remarkably, the cytotoxicity induced by BOPs triggers the release of DAMPs, particularly HMGB1, IFN-β and ATP, by dying cells, persisting longer than the cytotoxicity of conventional chemotherapeutic agents such as irinotecan and daunorubicin. An in vivo assay in nude mice showed an encouraging 20% inhibition of tumor grafting and growth in a pancreatic cancer model by BOP9.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
77
|
D’Angelo SP, Lebbé C, Nghiem P, Brohl AS, Mrowiec T, Leslie T, Georges S, Güzel G, Shah P. Biomarker Analyses Investigating Disease Biology and Associations with Outcomes in the JAVELIN Merkel 200 Trial of Avelumab in Metastatic Merkel Cell Carcinoma. Clin Cancer Res 2024; 30:4352-4362. [PMID: 39047170 PMCID: PMC11443199 DOI: 10.1158/1078-0432.ccr-23-0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE Avelumab (anti-PD-L1) became the first approved treatment for metastatic Merkel cell carcinoma (mMCC) based on results from the phase II JAVELIN Merkel 200 trial. In this study, we report exploratory biomarker analyses from the trial. PATIENTS AND METHODS Patients with mMCC (n = 88) with or without prior first-line chemotherapy received avelumab 10 mg/kg every 2 weeks. We conducted analyses on somatic mutations, mutational signatures, and tumor mutational burden using paired whole-exome sequencing. Additionally, we examined gene and gene set expression, immune content from RNA sequencing profiles, as well as tumor PD-L1 and CD8 statuses from IHC and CD8 status from digital pathology. RESULTS Tumors positive for Merkel cell polyomavirus (MCPyV) were characterized by an absence of driver mutations and a low tumor mutational burden, consistent with previous studies. A novel MCPyV-specific host gene expression signature was identified. MCPyV+ tumors had increased levels of immunosuppressive M2 macrophages in the tumor microenvironment, which seemed to correlate with PD-L1 expression; high CD8+ T-cell density in these tumors did not predict response to avelumab. Conversely, in patients with MCPyV- tumors, higher CD8+ T-cell density seemed to be associated with response to avelumab. Mutations in several genes were associated with treatment outcomes. Compared with tumors sampled before chemotherapy, tumors sampled after chemotherapy had downregulated gene signatures for immune responses, including reduced expression of IFNγ-related pathways. Levels of activated dendritic cells in responding patients were higher in patients assessed after versus before chemotherapy. CONCLUSIONS Exploratory analyses provide insights into mMCC biology and potential associations with response to avelumab. Chemotherapy seems to negatively modulate the immune microenvironment.
Collapse
MESH Headings
- Humans
- Carcinoma, Merkel Cell/drug therapy
- Carcinoma, Merkel Cell/pathology
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Biomarkers, Tumor/genetics
- Female
- Male
- Aged
- Middle Aged
- Mutation
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Skin Neoplasms/drug therapy
- Skin Neoplasms/pathology
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Tumor Microenvironment/immunology
- Tumor Microenvironment/drug effects
- Aged, 80 and over
- Merkel cell polyomavirus
- Exome Sequencing
- Treatment Outcome
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
Collapse
Affiliation(s)
- Sandra P. D’Angelo
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York.
| | - Céleste Lebbé
- INSERM U976, Université Paris Cite, Dermato-Oncology and CIC AP-HP, Hôpital Saint Louis, Cancer Institute APHP, Nord-Université, Paris, France.
| | - Paul Nghiem
- University of Washington Medical Center at South Lake Union, Seattle, Washington.
| | | | - Thomas Mrowiec
- The healthcare business of Merck KGaA, Darmstadt, Germany.
| | | | | | - Gülseren Güzel
- The healthcare business of Merck KGaA, Darmstadt, Germany.
| | | |
Collapse
|
78
|
Ferré VM, Coppée R, Gbeasor-Komlanvi FA, Vacher S, Bridier-Nahmias A, Bucau M, Salou M, Lameiras S, Couvelard A, Dagnra AC, Bieche I, Descamps D, Ekouevi DK, Ghosn J, Charpentier C. Viral whole genome sequencing reveals high variations in APOBEC3 editing between HPV risk categories. J Med Virol 2024; 96:e70002. [PMID: 39400339 DOI: 10.1002/jmv.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
High-risk human papillomavirus (HPV) infections are responsible for cervical cancer. However, little is known about the differences between HPV types and risk categories regarding their genetic diversity and particularly APOBEC3-induced mutations - which contribute to the innate immune response to HPV. Using a capture-based next-generation sequencing, 156 HPV whole genome sequences covering 43 HPV types were generated from paired cervical and anal swabs of 30 Togolese female sex workers (FSWs) sampled in 2017. Genetic diversity and APOBEC3-induced mutations were assessed at the viral whole genome and gene levels. Thirty-four pairwise sequence comparisons covering 24 HPV types in cervical and anal swabs revealed identical infections in the two anatomical sites. Differences in genetic diversity among HPV types was observed between patients. The E6 gene was significantly less conserved in low-risk HPVs (lrHPVs) compared to high-risk HPVs (hrHPVs) (p = 0.009). APOBEC3-induced mutations were found to be more common in lrHPVs than in hrHPVs (p = 0.005), supported by our data and by using large HPV sequence collections from the GenBank database. Focusing on the most common lrHPVs 6 and 11 and hrHPVs 16 and 18, APOBEC3-induced mutations were predominantly found in the E4 and E6 genes in lrHPVs, but were almost absent in these genes in hrHPVs. The variable APOBEC3 mutational signatures could contribute to the different oncogenic potentials between HPVs. Further studies are needed to conclusively determine whether APOBEC3 editing levels are associated to the carcinogenic potential of HPVs at the type and sublineage scales.
Collapse
Affiliation(s)
- Valentine Marie Ferré
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Virologie, AP-HP, Hôpital Bichat - Claude Bernard, Paris, F-75018, France
| | - Romain Coppée
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
| | - Fifonsi A Gbeasor-Komlanvi
- Département de Santé Publique, Université de Lomé, Faculté des Sciences de la Santé, Lomé, Togo
- Centre Africain de Recherche en Epidémiologie et en Santé Publique (CARESP), Lomé, Togo
| | - Sophie Vacher
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | | | - Margot Bucau
- Département de Pathologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
| | - Mounerou Salou
- Université de Lomé, Centre de Biologie Moléculaire et d'Immunologie, Lomé, Togo
| | - Sonia Lameiras
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, Paris, France
| | - Anne Couvelard
- Département de Pathologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
- Université de Paris, Centre of Research on Inflammation, Paris, INSERM U1149, France
| | - Anoumou Claver Dagnra
- Université de Lomé, Centre de Biologie Moléculaire et d'Immunologie, Lomé, Togo
- Programme national de lutte contre le sida et les infections sexuellement transmissibles, Lomé, Togo
| | - Ivan Bieche
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
- INSERM U1016, Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, Paris, France
| | - Diane Descamps
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Virologie, AP-HP, Hôpital Bichat - Claude Bernard, Paris, F-75018, France
| | - Didier K Ekouevi
- Département de Santé Publique, Université de Lomé, Faculté des Sciences de la Santé, Lomé, Togo
- ISPED, Université de Bordeaux & Centre INSERM U1219 - Bordeaux Population Health, Bordeaux, France
| | - Jade Ghosn
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Maladies Infectieuses et Tropicales, AP-HP, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
| | - Charlotte Charpentier
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Virologie, AP-HP, Hôpital Bichat - Claude Bernard, Paris, F-75018, France
| |
Collapse
|
79
|
Budczies J, Kazdal D, Menzel M, Beck S, Kluck K, Altbürger C, Schwab C, Allgäuer M, Ahadova A, Kloor M, Schirmacher P, Peters S, Krämer A, Christopoulos P, Stenzinger A. Tumour mutational burden: clinical utility, challenges and emerging improvements. Nat Rev Clin Oncol 2024; 21:725-742. [PMID: 39192001 DOI: 10.1038/s41571-024-00932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Tumour mutational burden (TMB), defined as the total number of somatic non-synonymous mutations present within the cancer genome, varies across and within cancer types. A first wave of retrospective and prospective research identified TMB as a predictive biomarker of response to immune-checkpoint inhibitors and culminated in the disease-agnostic approval of pembrolizumab for patients with TMB-high tumours based on data from the Keynote-158 trial. Although the applicability of outcomes from this trial to all cancer types and the optimal thresholds for TMB are yet to be ascertained, research into TMB is advancing along three principal avenues: enhancement of TMB assessments through rigorous quality control measures within the laboratory process, including the mitigation of confounding factors such as limited panel scope and low tumour purity; refinement of the traditional TMB framework through the incorporation of innovative concepts such as clonal, persistent or HLA-corrected TMB, tumour neoantigen load and mutational signatures; and integration of TMB with established and emerging biomarkers such as PD-L1 expression, microsatellite instability, immune gene expression profiles and the tumour immune contexture. Given its pivotal functions in both the pathogenesis of cancer and the ability of the immune system to recognize tumours, a profound comprehension of the foundational principles and the continued evolution of TMB are of paramount relevance for the field of oncology.
Collapse
Affiliation(s)
- Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Michael Menzel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Susanne Beck
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Klaus Kluck
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Christian Altbürger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Solange Peters
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumour Diseases at Heidelberg University Hospital, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.
| |
Collapse
|
80
|
Straube J, Janardhanan Y, Haldar R, Bywater MJ. Immune control in acute myeloid leukemia. Exp Hematol 2024; 138:104256. [PMID: 38876254 DOI: 10.1016/j.exphem.2024.104256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease, in that a multitude of oncogenic drivers and chromosomal abnormalities have been identified and associated with the leukemic transformation of myeloid blasts. However, little is known as to how individual mutations influence the interaction between the immune system and AML cells and the efficacy of the immune system in AML disease control. In this review, we will discuss how AML cells potentially activate the immune system and what evidence there is to support the role of the immune system in controlling this disease. We will specifically examine the importance of antigen presentation in fostering an effective anti-AML immune response, explore the disruption of immune responses during AML disease progression, and discuss the emerging role of the oncoprotein MYC in driving immune suppression in AML.
Collapse
Affiliation(s)
- Jasmin Straube
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland, Brisbane, Queensland, Australia
| | | | - Rohit Haldar
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Megan J Bywater
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
81
|
Tsaalbi-Shtylik A, Mingard C, Räz M, Oka R, Manders F, Van Boxtel R, De Wind N, Sturla SJ. DNA mismatch repair controls the mutagenicity of Polymerase ζ-dependent translesion synthesis at methylated guanines. DNA Repair (Amst) 2024; 142:103755. [PMID: 39216121 DOI: 10.1016/j.dnarep.2024.103755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
By replicating damaged nucleotides, error-prone DNA translesion synthesis (TLS) enables the completion of replication, albeit at the expense of fidelity. TLS of helix-distorting DNA lesions, that usually have reduced capacity of basepairing, comprises insertion opposite the lesion followed by extension, the latter in particular by polymerase ζ (Pol ζ). However, little is known about involvement of Pol ζ in TLS of non- or poorly-distorting, but miscoding, lesions such as O6-methyldeoxyguanosine (O6-medG). Using purified Pol ζ we describe that the enzyme can misincorporate thymidine opposite O6-medG and efficiently extend from terminal mismatches, suggesting its involvement in the mutagenicity of O6-medG. Surprisingly, O6-medG lesions induced by the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) appeared more, rather than less, mutagenic in Pol ζ-deficient mouse embryonic fibroblasts (MEFs) than in wild type MEFs. This suggested that in vivo Pol ζ participates in non-mutagenic TLS of O6-medG. However, we found that the Pol ζ-dependent misinsertions at O6-medG lesions are efficiently corrected by DNA mismatch repair (MMR), which masks the error-proneness of Pol ζ. We also found that the MNNG-induced mutational signature is determined by the adduct spectrum, and modulated by MMR. The signature mimicked single base substitution signature 11 in the catalogue of somatic mutations in cancer, associated with treatment with the methylating drug temozolomide. Our results unravel the individual roles of the major contributors to methylating drug-induced mutagenesis. Moreover, these results warrant caution as to the classification of TLS as mutagenic or error-free based on in vitro data or on the analysis of mutations induced in MMR-proficient cells.
Collapse
Affiliation(s)
| | - Cécile Mingard
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Michael Räz
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Rurika Oka
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, 3584CS, the Netherlands
| | - Freek Manders
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, 3584CS, the Netherlands
| | - Ruben Van Boxtel
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, 3584CS, the Netherlands
| | - Niels De Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333AL, the Netherlands.
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland.
| |
Collapse
|
82
|
Mian H, Kaiser M, Fonseca R. Still high risk? A review of translocation t(14;16) in multiple myeloma. Am J Hematol 2024; 99:1979-1987. [PMID: 38874195 DOI: 10.1002/ajh.27419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Multiple myeloma (MM) is a heterogeneous and complex disease, both in mutational biology as well as in the clinical presentation of patients. While tailored and biomarker-targeted therapy remains the direct goal for patient-centric management, existing therapies in MM remain largely uniform. Translocation t(14;16) is a rare primary genetic event found in less than 5% of patients with newly diagnosed MM. Here, we present an overview of the biology of t(14;16), epidemiology, clinical presentation, prognostic impact, and discuss the future clinical and therapeutic strategies for targeting this rare yet high-risk group in MM to optimize patient outcomes.
Collapse
Affiliation(s)
- Hira Mian
- Department of Oncology, McMaster University, Ontario, Canada
| | - Martin Kaiser
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Department of Haematology, The Royal Marsden Hospital, London, UK
| | - Rafael Fonseca
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| |
Collapse
|
83
|
Andersen L, Christensen DS, Kjær A, Knudsen M, Andersen AK, Laursen MB, Ahrenfeldt J, Laursen BE, Birkbak NJ. Exploring the molecular landscape of cancer of unknown primary: A comparative analysis with other metastatic cancers. Mol Oncol 2024; 18:2393-2406. [PMID: 38750007 PMCID: PMC11459033 DOI: 10.1002/1878-0261.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 05/03/2024] [Indexed: 10/09/2024] Open
Abstract
Cancer of unknown primary (CUP) tumors are biologically very heterogeneous, which complicates stratification of patients for treatment. Consequently, these patients face limited treatment options and a poor prognosis. With this study, we aim to expand on the current knowledge of CUP biology by analyzing two cohorts: a well-characterized cohort of 44 CUP patients, and 213 metastatic patients with known primary. These cohorts were treated at the same institution and characterized by identical molecular assessments. Through comparative analysis of genomic and transcriptomic data, we found that CUP tumors were characterized by high expression of immune-related genes and pathways compared to other metastatic tumors. Moreover, CUP tumors uniformly demonstrated high levels of tumor-infiltrating leukocytes and circulating T cells, indicating a strong immune response. Finally, the genetic landscape of CUP tumors resembled that of other metastatic cancers and demonstrated mutations in established cancer genes. In conclusion, CUP tumors possess a distinct immunophenotype that distinguishes them from other metastatic cancers. These results may suggest an immune response in CUP that facilitates metastatic tumor growth while limiting growth of the primary tumor.
Collapse
Affiliation(s)
- Laura Andersen
- Department of Molecular MedicineAarhus University HospitalDenmark
- Department of Clinical MedicineAarhus UniversityDenmark
- Bioinformatics Research CenterAarhus UniversityDenmark
| | - Ditte S. Christensen
- Department of Molecular MedicineAarhus University HospitalDenmark
- Department of Clinical MedicineAarhus UniversityDenmark
- Department of OncologyAarhus University HospitalDenmark
| | - Asbjørn Kjær
- Department of Molecular MedicineAarhus University HospitalDenmark
- Department of Clinical MedicineAarhus UniversityDenmark
- Bioinformatics Research CenterAarhus UniversityDenmark
| | - Michael Knudsen
- Department of Molecular MedicineAarhus University HospitalDenmark
- Department of Clinical MedicineAarhus UniversityDenmark
| | | | - Maria B. Laursen
- Department of Molecular MedicineAarhus University HospitalDenmark
- Department of Clinical MedicineAarhus UniversityDenmark
| | - Johanne Ahrenfeldt
- Department of Molecular MedicineAarhus University HospitalDenmark
- Department of Clinical MedicineAarhus UniversityDenmark
- Bioinformatics Research CenterAarhus UniversityDenmark
| | - Britt E. Laursen
- Department of Molecular MedicineAarhus University HospitalDenmark
- Department of Clinical MedicineAarhus UniversityDenmark
- Department of OncologyAarhus University HospitalDenmark
| | - Nicolai J. Birkbak
- Department of Molecular MedicineAarhus University HospitalDenmark
- Department of Clinical MedicineAarhus UniversityDenmark
- Bioinformatics Research CenterAarhus UniversityDenmark
| |
Collapse
|
84
|
Yamamoto K, Lee Y, Masuda T, Ozono K, Iwatani Y, Watanabe M, Okada Y, Sakai N. Functional landscape of genome-wide postzygotic somatic mutations between monozygotic twins. DNA Res 2024; 31:dsae028. [PMID: 39306676 PMCID: PMC11472055 DOI: 10.1093/dnares/dsae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Monozygotic (MZ) twins originate from a single fertilized egg, making them genetically identical at the time of conception. However, postzygotic somatic mutations (PZMs) can introduce genetic differences after separation. Although whole-genome sequencing (WGS) sheds light on somatic mutations in cancer genomics, its application in genomic studies of MZ twins remains limited. In this study, we investigate PZMs in 30 healthy MZ twin pairs from the Osaka University Center for Twin Research using WGS (average depth = 23.8) and a robust germline-calling algorithm. We find high genotype concordance rates (exceeding 99%) in MZ twins. We observe an enrichment of PZMs with variant allele frequency around 0.5 in twins with highly concordant genotypes. These PZMs accumulate more frequently in non-coding regions compared with protein-coding regions, which could potentially influence gene expression. No significant association is observed between the number of PZMs and age or sex. Direct sequencing confirms a missense mutation in the ANKRD35 gene among the PZMs. By applying a genome-wide mutational signature pattern technique, we detect an age-related clock-like signature in these early postzygotic somatic mutations in MZ twins. Our study provides insights that contribute to a deeper understanding of genetic variation in MZ twins.
Collapse
Affiliation(s)
- Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Children’s health and Genetics, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoko Lee
- Center for Twin Research, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Child Healthcare and Genetic Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
- Graduate School of Humanities and Sciences, Nara Women’s University, Nara, Japan
| | - Tatsuo Masuda
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Promoting Treatment of Intractable Diseases, ISEIKAI International General Hospital, Osaka, Japan
| | - Yoshinori Iwatani
- Center for Twin Research, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Mikio Watanabe
- Center for Twin Research, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Premium Research Institute for Human Medicine (WPI-PRIMe), Osaka University, Suita, Japan
| | - Norio Sakai
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Child Healthcare and Genetic Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Promoting Treatment of Intractable Diseases, ISEIKAI International General Hospital, Osaka, Japan
| |
Collapse
|
85
|
Ren P, Zhang J, Vijg J. Somatic mutations in aging and disease. GeroScience 2024; 46:5171-5189. [PMID: 38488948 PMCID: PMC11336144 DOI: 10.1007/s11357-024-01113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Time always leaves its mark, and our genome is no exception. Mutations in the genome of somatic cells were first hypothesized to be the cause of aging in the 1950s, shortly after the molecular structure of DNA had been described. Somatic mutation theories of aging are based on the fact that mutations in DNA as the ultimate template for all cellular functions are irreversible. However, it took until the 1990s to develop the methods to test if DNA mutations accumulate with age in different organs and tissues and estimate the severity of the problem. By now, numerous studies have documented the accumulation of somatic mutations with age in normal cells and tissues of mice, humans, and other animals, showing clock-like mutational signatures that provide information on the underlying causes of the mutations. In this review, we will first briefly discuss the recent advances in next-generation sequencing that now allow quantitative analysis of somatic mutations. Second, we will provide evidence that the mutation rate differs between cell types, with a focus on differences between germline and somatic mutation rate. Third, we will discuss somatic mutational signatures as measures of aging, environmental exposure, and activities of DNA repair processes. Fourth, we will explain the concept of clonally amplified somatic mutations, with a focus on clonal hematopoiesis. Fifth, we will briefly discuss somatic mutations in the transcriptome and in our other genome, i.e., the genome of mitochondria. We will end with a brief discussion of a possible causal contribution of somatic mutations to the aging process.
Collapse
Affiliation(s)
- Peijun Ren
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Zhang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jan Vijg
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
86
|
Liu F, Hu N, Jiang K, Liu H, Wang M, Hu Y, Zhang T, Wu HH, Yang H, Weng H, Dong P, Giffen C, Zhu B, Lee MP, Abnet CC, Taylor PR, Liu Y, Liu Y, Goldstein AM. Mutational signatures in 175 Chinese gastric cancer patients. BMC Cancer 2024; 24:1208. [PMID: 39350044 PMCID: PMC11440915 DOI: 10.1186/s12885-024-12968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Gastric cancer (GC), a molecularly heterogeneous disease, is the third leading cause of cancer death worldwide. The majority of GC cases worldwide occur in East Asia, predominantly China. Mutational Signature Framework offers an elegant approach to identify mutational processes present in tumors. METHODS To identify mutational signature patterns, we conducted whole exome sequencing (WES) analysis in Chinese patients with GC. Mutect2 and MutsigCV were used to identify significantly mutated genes in 175 Chinese GC cases using paired tumor-normal tissues. We investigated mutational signatures using Catalogue of Somatic Mutations in Cancer (COSMIC) Version 2 (V2) and Version 3 (V3). RESULTS We identified 104 mutated genes with P < 0.01. Seven genes (OR6B1, B2M, ELF3, RHOA, RPL22, TP53, ARIDIA) had q < 0.0001, including six previously associated with GC. Mutational signatures (COSMIC-V3) observed include 14 single base substitutions (SBS), one doublet base substitution (DBS) Signature A, and one InDel (ID2). The most frequent SBS signatures (SBS05, SBS01, SBS15, SBS20, SBS40) were also observed in 254 White GC cases from The Cancer Genome Atlas (TCGA) Project. However, SBS01 and SBS20 showed significant differences between Whites vs. All Asians (19.3% vs. 11.3% for SBS 1 (P = 0.012) and 11.4% vs. 5.9% for SBS20 (P = 0.025), respectively). Using COSMIC V2, signatures 6, 15, and 1 were the most frequent in Chinese GC cases. Further, most Chinese GC cases carried multiple signatures. CONCLUSIONS This effort represents the most detailed mutational signatures analysis of GC cases from China to date. Results hold promise for new insights in understanding risk and prognosis factors in GC.
Collapse
Affiliation(s)
- Fatao Liu
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, P. R. China
- Department of General Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200092, P. R. China
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Kewei Jiang
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing, 100044, P. R. China
| | - Huaitian Liu
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mingyi Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ying Hu
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ho-Hsiang Wu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Howard Yang
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Hao Weng
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, P. R. China
- Department of General Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200092, P. R. China
| | - Ping Dong
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, P. R. China
- Department of General Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200092, P. R. China
| | - Carol Giffen
- Information Management Services, Inc, Silver Spring, Bethesda, MD, 20904, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Maxwell P Lee
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Philip R Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Yun Liu
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, P. R. China.
| | - Yingbin Liu
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, P. R. China.
- Department of General Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200092, P. R. China.
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
87
|
Elbashir MK, Almotilag A, Mahmood MA, Mohammed M. Enhancing Non-Small Cell Lung Cancer Survival Prediction through Multi-Omics Integration Using Graph Attention Network. Diagnostics (Basel) 2024; 14:2178. [PMID: 39410583 PMCID: PMC11475495 DOI: 10.3390/diagnostics14192178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Cancer survival prediction is vital in improving patients' prospects and recommending therapies. Understanding the molecular behavior of cancer can be enhanced through the integration of multi-omics data, including mRNA, miRNA, and DNA methylation data. In light of these multi-omics data, we proposed a graph attention network (GAT) model in this study to predict the survival of non-small cell lung cancer (NSCLC). Methods: The different omics data were obtained from The Cancer Genome Atlas (TCGA) and preprocessed and combined into a single dataset using the sample ID. We used the chi-square test to select the most significant features to be used in our model. We used the synthetic minority oversampling technique (SMOTE) to balance the dataset and the concordance index (C-index) to measure the performance of our model on different combinations of omics data. Results: Our model demonstrated superior performance, with the highest value of the C-index obtained when we used both mRNA and miRNA data. This demonstrates that the multi-omics approach could be effective in predicting survival. Further pathway analysis conducted with KEGG showed that our GAT model provided high weights to the features that are associated with the viral entry pathways, such as the Epstein-Barr virus and Influenza A pathways, which are involved in lung cancer development. From our findings, it can be observed that the proposed GAT model leads to a significantly improved prediction of survival by exploiting the strengths of multiple omics datasets and the findings from the enriched pathways. Our GAT model outperforms other state-of-the-art methods that are used for NSCLC prediction. Conclusions: In this study, we developed a new model for the survival prediction of NSCLC using the GAT based on multi-omics data. Our model showed outstanding predictive values, and the KEGG analysis of the selected significant features showed that they were implicated in pivotal biological processes underlying pathways such as Influenza A and the Epstein-Barr virus infection, which are linked to lung cancer progression.
Collapse
Affiliation(s)
- Murtada K. Elbashir
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72441, Saudi Arabia; (A.A.); (M.A.M.)
| | - Abdullah Almotilag
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72441, Saudi Arabia; (A.A.); (M.A.M.)
| | - Mahmood A. Mahmood
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72441, Saudi Arabia; (A.A.); (M.A.M.)
| | - Mohanad Mohammed
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa;
| |
Collapse
|
88
|
Mirek J, Bal W, Olbryt M. Melanoma genomics - will we go beyond BRAF in clinics? J Cancer Res Clin Oncol 2024; 150:433. [PMID: 39340537 PMCID: PMC11438618 DOI: 10.1007/s00432-024-05957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
In the era of next-generation sequencing, the genetic background of cancer, including melanoma, appears to be thoroughly established. However, evaluating the oncogene BRAF mutation in codon V600 is still the only companion diagnostic genomic test commonly implemented in clinics for molecularly targeted treatment of advanced melanoma. Are we wasting the collected genomic data? Will we implement our current genomic knowledge of melanoma in clinics soon? This question is rather urgent because new therapeutic targets and biomarkers are needed to implement more personalized, patient-tailored therapy in clinics. Here, we provide an update on the molecular background of melanoma, including a description of four already established molecular subtypes: BRAF+, NRAS+, NF1+, and triple WT, as well as relatively new NGS-derived melanoma genes such as PREX2, ERBB4, PPP6C, FBXW7, PIK3CA, and IDH1. We also present a comparison of genomic profiles obtained in recent years with a focus on the most common melanoma genes. Finally, we propose our melanoma gene panel consisting of 22 genes that, in our opinion, are "must-have" genes in both melanoma-specific genomic tests and pan-cancer tests established to improve the treatment of melanoma further.
Collapse
Affiliation(s)
- Justyna Mirek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Wiesław Bal
- Chemotherapy Day Unit, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland.
| |
Collapse
|
89
|
Chen S, Tyagi IS, Mat WK, Khan MA, Fan W, Wu Z, Hu T, Yang C, Xue H. Forward-reverse mutation cycles in cancer cell lines under chemical treatments. Hum Genomics 2024; 18:106. [PMID: 39334413 PMCID: PMC11437743 DOI: 10.1186/s40246-024-00661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Spontaneous forward-reverse mutations were reported by us earlier in clinical samples from various types of cancers and in HeLa cells under normal culture conditions. To investigate the effects of chemical stimulations on such mutation cycles, the present study examined single nucleotide variations (SNVs) and copy number variations (CNVs) in HeLa and A549 cells exposed to wogonin-containing or acidic medium. In wogonin, both cell lines showed a mutation cycle during days 16-18. In acidic medium, both cell lines displayed multiple mutation cycles of different magnitudes. Genomic feature colocalization analysis suggests that CNVs tend to occur in expanded and unstable regions, and near promoters, histones, and non-coding transcription sites. Moreover, phenotypic variations in cell morphology occurred during the forward-reverse mutation cycles under both types of chemical treatments. In conclusion, chemical stresses imposed by wogonin or acidity promoted cyclic forward-reverse mutations in both HeLa and A549 cells to different extents.
Collapse
Affiliation(s)
- Si Chen
- Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, Nansha, Guangzhou, 511458, China
- Division of Life Science and Center of Applied Genomics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Iram S Tyagi
- Division of Life Science and Center of Applied Genomics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wai Kin Mat
- Division of Life Science and Center of Applied Genomics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Muhammad A Khan
- Division of Life Science and Center of Applied Genomics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Weijian Fan
- Division of Life Science and Center of Applied Genomics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhenggang Wu
- Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, Nansha, Guangzhou, 511458, China
- Division of Life Science and Center of Applied Genomics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Taobo Hu
- Division of Life Science and Center of Applied Genomics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Can Yang
- Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, Nansha, Guangzhou, 511458, China.
- Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Hong Xue
- Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, Nansha, Guangzhou, 511458, China.
- Division of Life Science and Center of Applied Genomics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
90
|
Lillesand M, Kvikstad V, Gudlaugsson E, Skaland I, Slewa Johannessen A, Nigatu Tesfahun A, Sperstad SV, Janssen EAM, Austdal M. Integrating Genetic Alterations and Histopathological Features for Enhanced Risk Stratification in Non-Muscle-Invasive Bladder Cancer. Diagnostics (Basel) 2024; 14:2137. [PMID: 39410541 PMCID: PMC11482629 DOI: 10.3390/diagnostics14192137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Urothelial carcinoma presents as non-muscle-invasive bladder cancer (NMIBC) in ~75% of primary cases. Addressing the limitations of the TNM and WHO04/16 classification systems, this study investigates genetic alterations, the mitotic activity index (MAI), and immunohistochemistry (IHC) markers CK20, p53, and CD25 as better prognostic biomarkers in NMIBC. METHODS Using the Oncomine™ Focus Assay for targeted next-generation sequencing (NGS), 409 single-nucleotide variations (SNVs) and 193 copy number variations (CNVs) were identified across 287 patients with TaT1 tumors. RESULTS FGFR3 and PIK3CA alterations were significantly more prevalent in Ta tumors, while T1 tumors had significant ERBB2 alterations. Low-grade (LG) tumors were enriched with FGFR3 alterations, while high-grade (HG) tumors were significantly associated with ERBB2 alterations, as well as FGFR1 and CCND1 amplifications. FGFR3 alterations were linked to shorter recurrence-free survival (RFS; p = 0.033) but improved progression-free survival (PFS; p < 0.001). Conversely, ERBB2 alterations (p < 0.001), ERBB3 mutations (p = 0.044), and both MYC (p < 0.001) and MYCN (p = 0.011) amplifications were associated with shorter PFS. Survival analysis of gene sets revealed inverse associations between PIK3CA and ERBB2 (p = 0.003), as well as PIK3CA and MYC (p = 0.005), with PFS. CONCLUSIONS In multivariate Cox regression, MAI was the strongest predictor for PFS. Integrating genetic alterations and histopathological features may improve risk stratification in NMIBC.
Collapse
Affiliation(s)
- Melinda Lillesand
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
| | - Vebjørn Kvikstad
- Department of Forensic Medicine, Oslo University Hospital, 0372 Oslo, Norway;
| | - Einar Gudlaugsson
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
| | - Ivar Skaland
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
| | - Aida Slewa Johannessen
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
| | - Almaz Nigatu Tesfahun
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
| | - Sigmund Vegard Sperstad
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
| | - Emiel A. M. Janssen
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
| | - Marie Austdal
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (E.G.); (I.S.); (A.S.J.); (A.N.T.); (S.V.S.); (E.A.M.J.); (M.A.)
- Department of Research, Section for Biostatistics, Stavanger University Hospital, 4011 Stavanger, Norway
| |
Collapse
|
91
|
Xu J, Hao J, Liao X, Shang X, Li X. SSCI: Self-Supervised Deep Learning Improves Network Structure for Cancer Driver Gene Identification. Int J Mol Sci 2024; 25:10351. [PMID: 39408682 PMCID: PMC11476395 DOI: 10.3390/ijms251910351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The pathogenesis of cancer is complex, involving abnormalities in some genes in organisms. Accurately identifying cancer genes is crucial for the early detection of cancer and personalized treatment, among other applications. Recent studies have used graph deep learning methods to identify cancer driver genes based on biological networks. However, incompleteness and the noise of the networks will weaken the performance of models. To address this, we propose a cancer driver gene identification method based on self-supervision for graph convolutional networks, which can efficiently enhance the structure of the network and further improve predictive accuracy. The reliability of SSCI is verified by the area under the receiver operating characteristic curves (AUROC), the area under the precision-recall curves (AUPRC), and the F1 score, with respective values of 0.966, 0.964, and 0.913. The results show that our method can identify cancer driver genes with strong discriminative power and biological interpretability.
Collapse
Affiliation(s)
- Jialuo Xu
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; (J.X.); (J.H.); (X.L.); (X.S.)
| | - Jun Hao
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; (J.X.); (J.H.); (X.L.); (X.S.)
| | - Xingyu Liao
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; (J.X.); (J.H.); (X.L.); (X.S.)
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; (J.X.); (J.H.); (X.L.); (X.S.)
| | - Xingyi Li
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; (J.X.); (J.H.); (X.L.); (X.S.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
92
|
Chen X, Habib S, Alexandru M, Chauhan J, Evan T, Troka JM, Rahimi A, Esapa B, Tull TJ, Ng WZ, Fitzpatrick A, Wu Y, Geh JLC, Lloyd-Hughes H, Palhares LCGF, Adams R, Bax HJ, Whittaker S, Jacków-Malinowska J, Karagiannis SN. Chondroitin Sulfate Proteoglycan 4 (CSPG4) as an Emerging Target for Immunotherapy to Treat Melanoma. Cancers (Basel) 2024; 16:3260. [PMID: 39409881 PMCID: PMC11476251 DOI: 10.3390/cancers16193260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Immunotherapies, including checkpoint inhibitor antibodies, have precipitated significant improvements in clinical outcomes for melanoma. However, approximately half of patients do not benefit from approved treatments. Additionally, apart from Tebentafusp, which is approved for the treatment of uveal melanoma, there is a lack of immunotherapies directly focused on melanoma cells. This is partly due to few available targets, especially those expressed on the cancer cell surface. Chondroitin sulfate proteoglycan 4 (CSPG4) is a cell surface molecule overexpressed in human melanoma, with restricted distribution and low expression in non-malignant tissues and involved in several cancer-promoting and dissemination pathways. Here, we summarize the current understanding of the expression and functional significance of CSPG4 in health and melanoma, and we outline immunotherapeutic strategies. These include monoclonal antibodies, antibody-drug conjugates (ADCs), chimeric-antigen receptor (CAR) T cells, and other strategies such as anti-idiotypic and mimotope vaccines to raise immune responses against CSPG4-expressing melanomas. Several showed promising functions in preclinical models of melanoma, yet few have reached clinical testing, and none are approved for therapeutic use. Obstacles preventing that progress include limited knowledge of CSPG4 function in human cancer and a lack of in vivo models that adequately represent patient immune responses and human melanoma biology. Despite several challenges, immunotherapy directed to CSPG4-expressing melanoma harbors significant potential to transform the treatment landscape.
Collapse
Affiliation(s)
- Xinyi Chen
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Shabana Habib
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Madalina Alexandru
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Jitesh Chauhan
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Theodore Evan
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Joanna M. Troka
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Avigail Rahimi
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Benjamina Esapa
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Thomas J. Tull
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Wen Zhe Ng
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Amanda Fitzpatrick
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Oncology Department, Guy’s and St Thomas’ Hospitals, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
| | - Yin Wu
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
- Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Jenny L. C. Geh
- St John’s Institute of Dermatology, Guy’s, King’s and St. Thomas’ Hospitals NHS Foundation Trust, London SE1 9RT, UK
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London SE1 9RT, UK
| | - Hawys Lloyd-Hughes
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London SE1 9RT, UK
| | - Lais C. G. F. Palhares
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Heather J. Bax
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Sean Whittaker
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Joanna Jacków-Malinowska
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
| |
Collapse
|
93
|
Fischer GM, Mahadevan NR, Hornick JL, Fletcher CDM, Russell-Goldman E. A Comparative Genomic Study of Conventional and Undifferentiated Melanoma. Mod Pathol 2024; 37:100626. [PMID: 39332711 DOI: 10.1016/j.modpat.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/05/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
Undifferentiated melanoma, defined as melanoma that has lost all usual phenotypic and immunohistochemical characteristics of conventional melanoma, can pose significant diagnostic challenges. Molecular studies have advanced our understanding of undifferentiated melanoma by demonstrating that a subset of these tumors harbors known melanoma driver alterations in genes such as BRAF, NRAS, and NF1. However, there is a paucity of data describing genetic alterations that may distinguish undifferentiated melanoma from conventional melanoma. In this study, we directly compared the genomic profiles of undifferentiated melanoma to a cohort of conventional melanomas, including 14 undifferentiated melanoma cases (comprised of 2 primary cases, 2 cutaneous recurrences, and 10 metastases) and a cohort of 127 conventional melanomas including primary, recurrent, and metastatic cases. Targeted sequencing of 447 cancer-associated genes was performed, including identification of mutations and copy number alterations. NRAS was the most frequent melanoma driver in undifferentiated melanoma (8/14 cases, 57%), although notably, only 1 undifferentiated melanoma harbored an NRAS Q61R mutation. Compared with the conventional melanoma cohort, undifferentiated melanoma demonstrated statistically significant enrichment of pathogenic activating RAC1 mutations (6/14 total cases, 43%), including P29S (4/6 cases), P29L (1/6 cases), and D11E (1/6 cases). In addition to providing insight into the molecular pathogenesis of undifferentiated melanoma, these findings also suggest that RAS Q61R immunohistochemistry may have limited utility for its diagnosis. The presence of recurrent RAC1 mutations in undifferentiated melanoma is also notable as these alterations may contribute to mitogen-activated protein kinase pathway-targeted therapy resistance. Furthermore, the RAC1 alterations identified in this cohort have been shown to drive a melanocytic to mesenchymal switch in melanocytes, offering a possible explanation for the undifferentiated phenotype of these melanomas.
Collapse
Affiliation(s)
- Grant M Fischer
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Navin R Mahadevan
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christopher D M Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eleanor Russell-Goldman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
94
|
Ji M, Yu Q, Yang XZ, Yu X, Wang J, Xiao C, An NA, Han C, Li CY, Ding W. Long-range alternative splicing contributes to neoantigen specificity in glioblastoma. Brief Bioinform 2024; 25:bbae503. [PMID: 39401143 PMCID: PMC11472750 DOI: 10.1093/bib/bbae503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/14/2024] [Indexed: 10/17/2024] Open
Abstract
Recent advances in neoantigen research have accelerated the development of immunotherapies for cancers, such as glioblastoma (GBM). Neoantigens resulting from genomic mutations and dysregulated alternative splicing have been studied in GBM. However, these studies have primarily focused on annotated alternatively-spliced transcripts, leaving non-annotated transcripts largely unexplored. Circular ribonucleic acids (circRNAs), abnormally regulated in tumors, are correlated with the presence of non-annotated linear transcripts with exon skipping events. But the extent to which these linear transcripts truly exist and their functions in cancer immunotherapies remain unknown. Here, we found the ubiquitous co-occurrence of circRNA biogenesis and alternative splicing across various tumor types, resulting in large amounts of long-range alternatively-spliced transcripts (LRs). By comparing tumor and healthy tissues, we identified tumor-specific LRs more abundant in GBM than in normal tissues and other tumor types. This may be attributable to the upregulation of the protein quaking in GBM, which is reported to promote circRNA biogenesis. In total, we identified 1057 specific and recurrent LRs in GBM. Through in silico translation prediction and MS-based immunopeptidome analysis, 16 major histocompatibility complex class I-associated peptides were identified as potential immunotherapy targets in GBM. This study revealed long-range alternatively-spliced transcripts specifically upregulated in GBM may serve as recurrent, immunogenic tumor-specific antigens.
Collapse
Affiliation(s)
- Mingjun Ji
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Qing Yu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Xin-Zhuang Yang
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China
| | - Xianhong Yu
- Academic Department, Shanghai MobiDrop Co., Ltd., Room 308, Building 1, No. 351 Guoshoujing Road, Shanghai Free Trade Pilot Zone, Shanghai 200000, China
| | - Jiaxin Wang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Ni A An
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Chuanhui Han
- School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Chinese Institute for Brain Research, No. 26 Science Park Road, Changping District, Beijing 102206, China
- Southwest United Graduate School, 121 Dajie, Wuhua District, Kunming 650092, China
| | - Wanqiu Ding
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Bioinformatics Core Facility, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
95
|
Cai J, Zhang W, Lu Y, Liu W, Zhou H, Liu M, Bi X, Liu J, Chen J, Yin Y, Deng Y, Luo Z, Yang Y, Chen Q, Chen X, Xu Z, Zhang Y, Wu C, Long Q, Huang C, Yan C, Liu Y, Guo L, Li W, Yuan P, Jiao Y, Song W, Wang X, Huang Z, Ying J, Zhao H. Single-cell exome sequencing reveals polyclonal seeding and TRPS1 mutations in colon cancer metastasis. Signal Transduct Target Ther 2024; 9:247. [PMID: 39307879 PMCID: PMC11417107 DOI: 10.1038/s41392-024-01960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/22/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Liver metastasis remains the primary cause of mortality in patients with colon cancer. Identifying specific driver gene mutations that contribute to metastasis may offer viable therapeutic targets. To explore clonal evolution and genetic heterogeneity within the metastasis, we conducted single-cell exome sequencing on 150 single cells isolated from the primary tumor, liver metastasis, and lymphatic metastasis from a stage IV colon cancer patient. The genetic landscape of the tumor samples revealed that both lymphatic and liver metastases originated from the same region of the primary tumor. Notably, the liver metastasis was derived directly from the primary tumor, bypassing the lymph nodes. Comparative analysis of the sequencing data for individual cell pairs within different tumors demonstrated that the genetic heterogeneity of both liver and lymphatic metastases was also greater than that of the primary tumor. This finding indicates that liver and lymphatic metastases arose from clusters of circulating tumor cell (CTC) of a polyclonal origin, rather than from a single cell from the primary tumor. Single-cell transcriptome analysis suggested that higher EMT score and CNV scores were associated with more polyclonal metastasis. Additionally, a mutation in the TRPS1 (Transcriptional repressor GATA binding 1) gene, TRPS1 R544Q, was enriched in the single cells from the liver metastasis. The mutation significantly increased CRC invasion and migration both in vitro and in vivo through the TRPS1R544Q/ZEB1 axis. Further TRPS1 mutations were detected in additional colon cancer cases, correlating with advanced-stage disease and inferior prognosis. These results reveal polyclonal seeding and TRPS1 mutation as potential mechanisms driving the development of liver metastases in colon cancer.
Collapse
Affiliation(s)
- Jianqiang Cai
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yalan Lu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wenjie Liu
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhou
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmei Liu
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghua Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjiang Yin
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiqiao Deng
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwen Luo
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Xu
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueyang Zhang
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaoling Wu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Qizhao Long
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Chunyuan Huang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yan Liu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Lei Guo
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Li
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Yuan
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yucheng Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaobing Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jianming Ying
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hong Zhao
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
96
|
Syrimi E, Khan N, Murray P, Willcox C, Haigh T, Willcox B, Masand N, Bowen C, Dimakou DB, Zuo J, Barone SM, Irish JM, Kearns P, Taylor GS. Defects in NK cell immunity of pediatric cancer patients revealed by deep immune profiling. iScience 2024; 27:110837. [PMID: 39310750 PMCID: PMC11416690 DOI: 10.1016/j.isci.2024.110837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/21/2023] [Accepted: 08/24/2024] [Indexed: 09/25/2024] Open
Abstract
Systemic immunity plays an important role in cancer immune surveillance and response to therapy, but little is known about the immune status of children with solid cancers. We performed a high-dimensional single-cell analysis of systemic immunity in 50 treatment-naive pediatric cancer patients, comparing them to age-matched healthy children. Children with cancer had a lower frequency of peripheral NK cells, which was not due to tumor sequestration, had lower surface levels of activating receptors and increased levels of the inhibitory NKG2A receptor. Furthermore, the natural killer (NK) cells of pediatric cancer patients were less mature and less cytotoxic when tested in vitro. Culture of these NK cells with interleukin-2 restored their cytotoxicity. Collectively, our data show that NK cells in pediatric cancer patients are impaired through multiple mechanisms and identify rational strategies to restore their functionality.
Collapse
Affiliation(s)
- Eleni Syrimi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Paul Murray
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Health research Institute, University of Limerick, Limerick, Ireland
| | - Carrie Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Tracey Haigh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Benjamin Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Navta Masand
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Claire Bowen
- Pathology department, Birmingham Children’s Hospital, Birmingham, UK
| | - Danai B. Dimakou
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sierra M. Barone
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M. Irish
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pamela Kearns
- Cancer Research UK Clinical Trials Unit, National Institute for Health Research Birmingham Biomedical Research Centre, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
97
|
Yao L, Krasnick BA, Bi Y, Sethuraman S, Goedegebuure S, Weerasinghe A, Wetzel C, Gao Q, Oyedeji A, Mudd J, Wyczalkowski MA, Wendl M, Ding L, Fields RC. Treatment resistance to melanoma therapeutics on a single cell level. Sci Rep 2024; 14:21915. [PMID: 39300183 DOI: 10.1038/s41598-024-72255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Therapy targeting the BRAF-MEK cascade created a treatment revolution for patients with BRAF mutant advanced melanoma. Unfortunately, 80% patients treated will progress by 5 years follow-up. Thus, it is imperative we study mechanisms of melanoma progression and therapeutic resistance. We created a scRNA (single cell RNA) atlas of 128,230 cells from 18 tumors across the treatment spectrum, discovering melanoma cells clustered strongly by transcriptome profiles of patients of origins. Our cell-level investigation revealed gains of 1q and 7q as likely early clonal events in metastatic melanomas. By comparing patient tumors and their derivative cell lines, we observed that PD1 responsive tumor fraction disappears when cells are propagated in vitro. We further established three anti-BRAF-MEK treatment resistant cell lines using three BRAF mutant tumors. ALDOA and PGK1 were found to be highly expressed in treatment resistant cell populations and metformin was effective in targeting the resistant cells. Our study suggests that the investigation of patient tumors and their derivative lines is essential for understanding disease progression, treatment response and resistance.
Collapse
Affiliation(s)
- Lijun Yao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Bradley A Krasnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ye Bi
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Sunantha Sethuraman
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Simon Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Amila Weerasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Chris Wetzel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Qingsong Gao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Abimbola Oyedeji
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Michael Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Ryan C Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
98
|
Amhis N, Carignan J, Tai LH. Transforming pancreaticobiliary cancer treatment: Exploring the frontiers of adoptive cell therapy and cancer vaccines. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200825. [PMID: 39006944 PMCID: PMC11246060 DOI: 10.1016/j.omton.2024.200825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Pancreaticobiliary cancer, encompassing malignancies of both the pancreatic and biliary tract, presents a formidable clinical challenge marked by a uniformly bleak prognosis. The asymptomatic nature of its early stages often leads to delayed detection, contributing to an unfavorable 5-year overall survival rate. Conventional treatment modalities have shown limited efficacy, underscoring the urgent need for alternative therapeutic approaches. In recent years, immunotherapy has emerged as a promising avenue in the fight against pancreaticobiliary cancer. Strategies such as therapeutic vaccines and the use of tumor-infiltrating lymphocytes have garnered attention for their potential to elicit more robust and durable responses. This review seeks to illuminate the landscape of emerging immunotherapeutic interventions, offering insights from both clinical and research perspectives. By deepening our understanding of pancreaticobiliary cancer and exploring innovative treatment modalities, we aim to catalyze improvements in patient outcomes and quality of life.
Collapse
Affiliation(s)
- Nawal Amhis
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Department of Surgery, Division of General Surgery, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Julie Carignan
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| | - Lee-Hwa Tai
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
99
|
Diossy M, Tisza V, Li H, Sahgal P, Zhou J, Sztupinszki Z, Young D, Nousome D, Kuo C, Jiang J, Chen Y, Ebner R, Sesterhenn IA, Moncur JT, Chesnut GT, Petrovics G, Klus GT, Valcz G, Nuzzo PV, Ribli D, Börcsök J, Prosz A, Krzystanek M, Ried T, Szuts D, Rizwan K, Kaochar S, Pathania S, D'Andrea AD, Csabai I, Srivastava S, Freedman ML, Dobi A, Spisak S, Szallasi Z. Frequent CHD1 deletions in prostate cancers of African American men is associated with rapid disease progression. NPJ Precis Oncol 2024; 8:208. [PMID: 39294262 PMCID: PMC11411125 DOI: 10.1038/s41698-024-00705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
We analyzed genomic data from the prostate cancer of African- and European American men to identify differences contributing to racial disparity of outcome. We also performed FISH-based studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CHD1-deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. Subclonal deletion of CHD1 was nearly three times as frequent in prostate tumors of African American than in European American men and it associates with rapid disease progression. CHD1 deletion was not associated with HR deficiency associated mutational signatures or HR deficiency as detected by RAD51 foci formation. This was consistent with the moderate increase of olaparib and talazoparib sensitivity with several CHD1 deficient cell lines showing talazoparib sensitivity in the clinically relevant concentration range. CHD1 loss may contribute to worse disease outcome in African American men.
Collapse
Affiliation(s)
- Miklos Diossy
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Viktoria Tisza
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hua Li
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Pranshu Sahgal
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Zsofia Sztupinszki
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Denise Young
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Darryl Nousome
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Claire Kuo
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Jiji Jiang
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Yongmei Chen
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | | | | | | | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Gregory T Klus
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gabor Valcz
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, 1051, Hungary
| | - Pier Vitale Nuzzo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dezso Ribli
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | | | - Aurel Prosz
- Danish Cancer Institute, Copenhagen, Denmark
| | | | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David Szuts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Kinza Rizwan
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Salma Kaochar
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA, USA
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA.
| | - Sandor Spisak
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Zoltan Szallasi
- Danish Cancer Institute, Copenhagen, Denmark.
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- 2nd Department of Pathology and Department of Bioinformatics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
100
|
Jiang J, Xu J, Ji S, Yu X, Chen J. Unraveling the mysteries of MGMT: Implications for neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189184. [PMID: 39303858 DOI: 10.1016/j.bbcan.2024.189184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of tumors that arise from neuroendocrine cells and are commonly found in various organs. A considerable proportion of NET patients were diagnosed at an advanced or metastatic stage. Alkylating agents are the primary treatment for NET, and O6-methylguanine methyltransferase (MGMT) remains the first-line of defense against DNA damage caused by these agents. Clinical trials have indicated that MGMT promoter methylation or its low/lacked expression can predict a favorable outcome with Temozolomide in NETs. Its status could help select NET patients who can benefit from alkylating agents. Therefore, MGMT status serves as a biomarker to guide decisions on the efficacy of Temozolomide as a personalized treatment option. Additionally, delving into the regulatory mechanisms of MGMT status can lead to the development of MGMT-targeted therapies, benefiting individuals with high levels of MGMT expression. This review aims to explore the polymorphism of MGMT regulation and summarize its clinical implications in NETs, which would help establish the role of MGMT as a biomarker and its potential as a therapeutic target in NETs. Additionally, we explore the benefits of combining Temozolomide and immunotherapy in MGMT hypermethylated subgroups. Future studies can focus on optimizing Temozolomide administration to induce specific immunomodulatory changes.
Collapse
Affiliation(s)
- Jianyun Jiang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|