51
|
Majumder A. Evolving CAR-T-Cell Therapy for Cancer Treatment: From Scientific Discovery to Cures. Cancers (Basel) 2023; 16:39. [PMID: 38201467 PMCID: PMC10777914 DOI: 10.3390/cancers16010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, chimeric antigen receptor (CAR)-T-cell therapy has emerged as the most promising immunotherapy for cancer that typically uses patients' T cells and genetically engineered them to target cancer cells. Although recent improvements in CAR-T-cell therapy have shown remarkable success for treating hematological malignancies, the heterogeneity in tumor antigens and the immunosuppressive nature of the tumor microenvironment (TME) limits its efficacy in solid tumors. Despite the enormous efforts that have been made to make CAR-T-cell therapy more effective and have minimal side effects for treating hematological malignancies, more research needs to be conducted regarding its use in the clinic for treating various other types of cancer. The main concern for CAR-T-cell therapy is severe toxicities due to the cytokine release syndrome, whereas the other challenges are associated with complexity and immune-suppressing TME, tumor antigen heterogeneity, the difficulty of cell trafficking, CAR-T-cell exhaustion, and reduced cytotoxicity in the tumor site. This review discussed the latest discoveries in CAR-T-cell therapy strategies and combination therapies, as well as their effectiveness in different cancers. It also encompasses ongoing clinical trials; current challenges regarding the therapeutic use of CAR-T-cell therapy, especially for solid tumors; and evolving treatment strategies to improve the therapeutic application of CAR-T-cell therapy.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
52
|
Alwithenani A, Taha Z, Thomson M, Chen A, Wong B, Arulanandam R, Diallo JS. Unlocking the potential of dimethyl fumarate: enhancing oncolytic HSV-1 efficacy for wider cancer applications. Front Immunol 2023; 14:1332929. [PMID: 38169670 PMCID: PMC10758402 DOI: 10.3389/fimmu.2023.1332929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Immunotherapy and specifically oncolytic virotherapy has emerged as a promising option for cancer patients, with oncolytic herpes simplex virus-1 (oHSV-1) expressing granulocyte macrophage colony stimulating factor being the first OV to be approved by the FDA for treatment of melanoma. However, not all cancers are sensitive and responsive to oncolytic viruses (OVs). Our group has demonstrated that fumaric and maleic acid esters (FMAEs) are very effective in sensitizing cancer cells to OV infection. Of note, these FMAEs include dimethyl fumarate (DMF, also known as Tecfidera®), an approved treatment for multiple sclerosis and psoriasis. This study aimed to assess the efficacy of DMF in combination with oncolytic HSV-1 in preclinical cancer models. We demonstrate herewith that pre-treatment with DMF or other FMAEs leads to a significant increase in viral growth of oHSV-1 in several cancer cell lines, including melanoma, while decreasing cell viability. Additionally, DMF was able to enhance ex vivo oHSV-1 infection of mouse-derived tumor cores as well as human patient tumor samples but not normal tissue. We further reveal that the increased viral spread and oncolysis of the combination therapy occurs via inhibition of type I IFN production and response. Finally, we demonstrate that DMF in combination with oHSV-1 can improve therapeutic outcomes in aggressive syngeneic murine cancer models. In sum, this study demonstrates the synergistic potential of two approved therapies for clinical evaluation in cancer patients.
Collapse
Affiliation(s)
- Akram Alwithenani
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zaid Taha
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Max Thomson
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Andrew Chen
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Boaz Wong
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Rozanne Arulanandam
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jean-Simon Diallo
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| |
Collapse
|
53
|
Menotti L, Vannini A. Oncolytic Viruses in the Era of Omics, Computational Technologies, and Modeling: Thesis, Antithesis, and Synthesis. Int J Mol Sci 2023; 24:17378. [PMID: 38139207 PMCID: PMC10743452 DOI: 10.3390/ijms242417378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Oncolytic viruses (OVs) are the frontier therapy for refractory cancers, especially in integration with immunomodulation strategies. In cancer immunovirotherapy, the many available "omics" and systems biology technologies generate at a fast pace a challenging huge amount of data, where apparently clashing information mirrors the complexity of individual clinical situations and OV used. In this review, we present and discuss how currently big data analysis, on one hand and, on the other, simulation, modeling, and computational technologies, provide invaluable support to interpret and integrate "omic" information and drive novel synthetic biology and personalized OV engineering approaches for effective immunovirotherapy. Altogether, these tools, possibly aided in the future by artificial intelligence as well, will allow for the blending of the information into OV recombinants able to achieve tumor clearance in a patient-tailored way. Various endeavors to the envisioned "synthesis" of turning OVs into personalized theranostic agents are presented.
Collapse
Affiliation(s)
- Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | | |
Collapse
|
54
|
Delwar Z, Tatsiy O, Chouljenko DV, Lee IF, Liu G, Liu X, Bu L, Ding J, Singh M, Murad YM, Jia WWG. Prophylactic Vaccination and Intratumoral Boost with HER2-Expressing Oncolytic Herpes Simplex Virus Induces Robust and Persistent Immune Response against HER2-Positive Tumor Cells. Vaccines (Basel) 2023; 11:1805. [PMID: 38140209 PMCID: PMC10747554 DOI: 10.3390/vaccines11121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The development of effective cancer vaccines remains a significant challenge due to immune tolerance and limited clinical benefits. Oncolytic herpes simplex virus type 1 (oHSV-1) has shown promise as a cancer therapy, but efficacy is often limited in advanced cancers. In this study, we constructed and characterized a novel oHSV-1 virus (VG22401) expressing the human epidermal growth factor receptor 2 (HER2), a transmembrane glycoprotein overexpressed in many carcinomas. VG22401 exhibited efficient replication and HER2 payload expression in both human and mouse colorectal cancer cells. Mice immunized with VG22401 showed significant binding of serum anti-HER2 antibodies to HER2-expressing tumor cells, inducing antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Furthermore, mice primed with VG22401 and intratumorally boosted with the same virus showed enhanced antitumor efficacy in a bilateral syngeneic HER2(+) tumor model, compared to HER2-null backbone virus. This effect was accompanied by the induction of anti-HER2 T cell responses. Our findings suggest that peripheral priming with HER2-expressing oHSV-1 followed by an intratumoral boost with the same virus can significantly enhance antitumor immunity and efficacy, presenting a promising strategy for cancer immunotherapy.
Collapse
|
55
|
Zheng H, Li M, Wu L, Liu W, Liu Y, Gao J, Lu Z. Progress in the application of hydrogels in immunotherapy of gastrointestinal tumors. Drug Deliv 2023; 30:2161670. [PMID: 36587630 PMCID: PMC9809389 DOI: 10.1080/10717544.2022.2161670] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Gastrointestinal tumors are the most common cancers with the highest morbidity and mortality worldwide. Surgery accompanied by chemotherapy, radiotherapy and targeted therapy remains the first option for gastrointestinal tumors. However, poor specificity for tumor cells of these postoperative treatments often leads to severe side effects and poor prognosis. Tumor immunotherapy, including checkpoint blockade and tumor vaccines, has developed rapidly in recent years, showing good curative effects and minimal side effects in the treatment of gastrointestinal tumors. National Comprehensive Cancer Network guidelines recommend tumor immunotherapy as part of the treatment of gastrointestinal tumors. However, the heterogeneity of tumor cells, complicacy of the tumor microenvironment and poor tumor immunogenicity hamper the effectiveness of tumor immunotherapy. Hydrogels, defined as three-dimensional, hydrophilic, and water-insoluble polymeric networks, could significantly improve the overall response rate of immunotherapy due to their superior drug loading efficacy, controlled release and drug codelivery ability. In this article, we briefly describe the research progress made in recent years on hydrogel delivery systems in immunotherapy for gastrointestinal tumors and discuss the potential future application prospects and challenges to provide a reference for the clinical application of hydrogels in tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zheng
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenshang Liu
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China,Jie Gao Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Zhengmao Lu
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China,CONTACT Zhengmao Lu Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai200433, China
| |
Collapse
|
56
|
Wang Y, Liu S, Yan J, Baseer-Tariq S, Salla B, Ji L, Li M, Chi P, Deng L. Activating neutrophils by co-administration of immunogenic recombinant modified vaccinia virus Ankara and granulocyte colony-stimulating factor for the treatment of malignant peripheral nerve sheath tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569123. [PMID: 38076896 PMCID: PMC10705442 DOI: 10.1101/2023.11.29.569123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a rare, aggressive soft-tissue sarcoma with a poor prognosis and is insensitive to immune checkpoint blockade (ICB) therapy. Loss-of-function of the histone modifying polycomb repressive complex 2 (PRC2) components, EED or SUZ12, is one of the main mechanisms of malignant transformation. In a murine model of MPNST, PRC2-loss tumors have an "immune desert" phenotype and intratumoral (IT) delivery immunogenic modified vaccinia virus Ankara (MVA) sensitized the PRC2-loss tumors to ICB. Here we show that IT MQ833, a second-generation recombinant modified vaccinia virus Ankara virus, results in neutrophil recruitment and activation and neutrophil-dependent tumor killing in the MPNST model. MQ833 was engineered by deleting three viral immune evasion genes, E5R, E3L, and WR199, and expressing three transgenes, including the two membrane-bound Flt3L and OX40L, and IL-12 with an extracellular matrix anchoring signal. Furthermore, we explored strategies to enhance anti-tumor effects of MQ833 by co-administration of granulocyte colony-stimulating factor (G-CSF).
Collapse
|
57
|
Li H, Zhu Y, Wang X, Feng Y, Qian Y, Ma Q, Li X, Chen Y, Chen K. Joining Forces: The Combined Application of Therapeutic Viruses and Nanomaterials in Cancer Therapy. Molecules 2023; 28:7679. [PMID: 38005401 PMCID: PMC10674375 DOI: 10.3390/molecules28227679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer, on a global scale, presents a monumental challenge to our healthcare systems, posing a significant threat to human health. Despite the considerable progress we have made in the diagnosis and treatment of cancer, realizing precision cancer therapy, reducing side effects, and enhancing efficacy remain daunting tasks. Fortunately, the emergence of therapeutic viruses and nanomaterials provides new possibilities for tackling these issues. Therapeutic viruses possess the ability to accurately locate and attack tumor cells, while nanomaterials serve as efficient drug carriers, delivering medication precisely to tumor tissues. The synergy of these two elements has led to a novel approach to cancer treatment-the combination of therapeutic viruses and nanomaterials. This advantageous combination has overcome the limitations associated with the side effects of oncolytic viruses and the insufficient tumoricidal capacity of nanomedicines, enabling the oncolytic viruses to more effectively breach the tumor's immune barrier. It focuses on the lesion site and even allows for real-time monitoring of the distribution of therapeutic viruses and drug release, achieving a synergistic effect. This article comprehensively explores the application of therapeutic viruses and nanomaterials in tumor treatment, dissecting their working mechanisms, and integrating the latest scientific advancements to predict future development trends. This approach, which combines viral therapy with the application of nanomaterials, represents an innovative and more effective treatment strategy, offering new perspectives in the field of tumor therapy.
Collapse
Affiliation(s)
- Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
- Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Yunhuan Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xin Wang
- Center of Infectious Disease Research, School of Life Science, Westlake University, Hangzhou 310024, China;
| | - Yilu Feng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yuncheng Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Qiman Ma
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xinyuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yihan Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| |
Collapse
|
58
|
Nyalali AMK, Leonard AU, Xu Y, Li H, Zhou J, Zhang X, Rugambwa TK, Shi X, Li F. CD147: an integral and potential molecule to abrogate hallmarks of cancer. Front Oncol 2023; 13:1238051. [PMID: 38023152 PMCID: PMC10662318 DOI: 10.3389/fonc.2023.1238051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
CD147 also known as EMMPRIN, basigin, and HAb18G, is a single-chain type I transmembrane protein shown to be overexpressed in aggressive human cancers of CNS, head and neck, breasts, lungs, gastrointestinal, genitourinary, skin, hematological, and musculoskeletal. In these malignancies, the molecule is integral to the diverse but complimentary hallmarks of cancer: it is pivotal in cancerous proliferative signaling, growth propagation, cellular survival, replicative immortality, angiogenesis, metabolic reprogramming, immune evasion, invasion, and metastasis. CD147 also has regulatory functions in cancer-enabling characteristics such as DNA damage response (DDR) and immune evasion. These neoplastic functions of CD147 are executed through numerous and sometimes overlapping molecular pathways: it transduces signals from upstream molecules or ligands such as cyclophilin A (CyPA), CD98, and S100A9; activates a repertoire of downstream molecules and pathways including matrix metalloproteinases (MMPs)-2,3,9, hypoxia-inducible factors (HIF)-1/2α, PI3K/Akt/mTOR/HIF-1α, and ATM/ATR/p53; and also functions as an indispensable chaperone or regulator to monocarboxylate, fatty acid, and amino acid transporters. Interestingly, induced loss of functions to CD147 prevents and reverses the acquired hallmarks of cancer in neoplastic diseases. Silencing of Cd147 also alleviates known resistance to chemoradiotherapy exhibited by malignant tumors like carcinomas of the breast, lung, pancreas, liver, gastric, colon, ovary, cervix, prostate, urinary bladder, glioblastoma, and melanoma. Targeting CD147 antigen in chimeric and induced-chimeric antigen T cell or antibody therapies is also shown to be safer and more effective. Moreover, incorporating anti-CD147 monoclonal antibodies in chemoradiotherapy, oncolytic viral therapy, and oncolytic virus-based-gene therapies increases effectiveness and reduces on and off-target toxicity. This study advocates the expedition and expansion by further exploiting the evidence acquired from the experimental studies that modulate CD147 functions in hallmarks of cancer and cancer-enabling features and strive to translate them into clinical practice to alleviate the emergency and propagation of cancer, as well as the associated clinical and social consequences.
Collapse
Affiliation(s)
- Alphonce M. K. Nyalali
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Surgery, Songwe Regional Referral Hospital, Mbeya, Tanzania
- Department of Orthopedics and Neurosurgery, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
| | - Angela U. Leonard
- Department of Pediatrics and Child Health, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
- Department of Public Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Yongxiang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huayu Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Junlin Zhou
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinrui Zhang
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Tibera K. Rugambwa
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Internal Medicine, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
| | - Xiaohan Shi
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Feng Li
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
59
|
Wong B, Bergeron A, Maznyi G, Ng K, Jirovec A, Birdi HK, Serrano D, Spinelli M, Thomson M, Taha Z, Alwithenani A, Chen A, Lorimer I, Vanderhyden B, Arulanandam R, Diallo JS. Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, sensitizes cancer cells to VSVΔ51 oncolytic virotherapy. Mol Ther 2023; 31:3176-3192. [PMID: 37766429 PMCID: PMC10638453 DOI: 10.1016/j.ymthe.2023.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical efficacy of VSVΔ51 oncolytic virotherapy has been limited by tumor resistance to viral infection, so strategies to transiently repress antiviral defenses are warranted. Pevonedistat is a first-in-class NEDD8-activating enzyme (NAE) inhibitor currently being tested in clinical trials for its antitumor potential. In this study, we demonstrate that pevonedistat sensitizes human and murine cancer cells to increase oncolytic VSVΔ51 infection, increase tumor cell death, and improve therapeutic outcomes in resistant syngeneic murine cancer models. Increased VSVΔ51 infectivity was also observed in clinical human tumor samples. We further identify the mechanism of this effect to operate via blockade of the type 1 interferon (IFN-1) response through neddylation-dependent interferon-stimulated growth factor 3 (ISGF3) repression and neddylation-independent inhibition of NF-κB nuclear translocation. Together, our results identify a role for neddylation in regulating the innate immune response and demonstrate that pevonedistat can improve the therapeutic outcomes of strategies using oncolytic virotherapy.
Collapse
Affiliation(s)
- Boaz Wong
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Anabel Bergeron
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Glib Maznyi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kristy Ng
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Anna Jirovec
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Harsimrat K Birdi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Serrano
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marcus Spinelli
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Max Thomson
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Zaid Taha
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Akram Alwithenani
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Andrew Chen
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ian Lorimer
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Barbara Vanderhyden
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rozanne Arulanandam
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
60
|
Ramaj T, Zou X. On the treatment of melanoma: A mathematical model of oncolytic virotherapy. Math Biosci 2023; 365:109073. [PMID: 37660975 DOI: 10.1016/j.mbs.2023.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 08/02/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
We develop and analyze a mathematical model of oncolytic virotherapy in the treatment of melanoma. We begin with a special, local case of the model, in which we consider the dynamics of the tumour cells in the presence of an oncolytic virus at the primary tumour site. We then consider the more general regional model, in which we incorporate a linear network of lymph nodes through which the tumour cells and the oncolytic virus may spread. The modelling also considers the impact of hypoxia on the disease dynamics. The modelling takes into account both the effects of hypoxia on tumour growth and spreading, as well as the impact of hypoxia on oncolytic virotherapy as a treatment modality. We find that oxygen-rich environments are favourable for the use of adenoviruses as oncolytic agents, potentially suggesting the use of complementary external oxygenation as a key aspect of treatment. Furthermore, the delicate balance between a virus' infection capabilities and its oncolytic capabilities should be considered when engineering an oncolytic virus. If the virus is too potent at killing tumour cells while not being sufficiently effective at infecting them, the infected tumour cells are destroyed faster than they are able to infect additional tumour cells, leading less favourable clinical results. Numerical simulations are performed in order to support the analytic results and to further investigate the impact of various parameters on the outcomes of treatment. Our modelling provides further evidence indicating the importance of three key factors in treatment outcomes: tumour microenvironment oxygen concentration, viral infection rates, and viral oncolysis rates. The numerical results also provide some estimates on these key model parameters which may be useful in the engineering of oncolytic adenoviruses.
Collapse
Affiliation(s)
- Tedi Ramaj
- Department of Mathematics, Western University, London, On Canada.
| | - Xingfu Zou
- Department of Mathematics, Western University, London, On Canada
| |
Collapse
|
61
|
Wong B, Birtch R, Rezaei R, Jamieson T, Crupi MJF, Diallo JS, Ilkow CS. Optimal delivery of RNA interference by viral vectors for cancer therapy. Mol Ther 2023; 31:3127-3145. [PMID: 37735876 PMCID: PMC10638062 DOI: 10.1016/j.ymthe.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
In recent years, there has been a surge in the innovative modification and application of the viral vector-based gene therapy field. Significant and consistent improvements in the engineering, delivery, and safety of viral vectors have set the stage for their application as RNA interference (RNAi) delivery tools. Viral vector-based delivery of RNAi has made remarkable breakthroughs in the treatment of several debilitating diseases and disorders (e.g., neurological diseases); however, their novelty has yet to be fully applied and utilized for the treatment of cancer. This review highlights the most promising and emerging viral vector delivery tools for RNAi therapeutics while discussing the variables limiting their success and suitability for cancer therapy. Specifically, we outline different integrating and non-integrating viral platforms used for gene delivery, currently employed RNAi targets for anti-cancer effect, and various strategies used to optimize the safety and efficacy of these RNAi therapeutics. Most importantly, we provide great insight into what challenges exist in their application as cancer therapeutics and how these challenges can be effectively navigated to advance the field.
Collapse
Affiliation(s)
- Boaz Wong
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rayanna Birtch
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Reza Rezaei
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taylor Jamieson
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J F Crupi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
62
|
Guan D, Liu X, Shi Q, He B, Zheng C, Meng X. Breast cancer organoids and their applications for precision cancer immunotherapy. World J Surg Oncol 2023; 21:343. [PMID: 37884976 PMCID: PMC10601270 DOI: 10.1186/s12957-023-03231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Immunotherapy is garnering increasing attention as a therapeutic strategy for breast cancer (BC); however, the application of precise immunotherapy in BC has not been fully studied. Further studies on BC immunotherapy have a growing demand for preclinical models that reliably recapitulate the composition and function of the tumor microenvironment (TME) of BC. However, the classic two-dimensional in vitro and animal in vivo models inadequately recapitulate the intricate TME of the original tumor. Organoid models which allow the regular culture of primitive human tumor tissue are increasingly reported that they can incorporate immune components. Therefore, organoid platforms can be used to replicate the BC-TME to achieve the immunotherapeutic reaction modeling and facilitate relevant preclinical trial. In this study, we have investigated different organoid culture methods for BC-TME modeling and their applications for precision immunotherapy in BC.
Collapse
Affiliation(s)
- Dandan Guan
- College of Medicine, Soochow University, Soochow, China
- General Surgery, Department of Breast Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema of Breast Cancer, Hangzhou, Zhejiang, China
| | - Xiaozhen Liu
- General Surgery, Department of Breast Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema of Breast Cancer, Hangzhou, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qingyang Shi
- Department of Urology, Haining Central Hospital, Haining Branch of Zhejiang Provincial People's Hospital, Jiaxing, Zhejiang, China
| | - Bangjie He
- Department of General Surgery, Traditional Chinese Medicine Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Chaopeng Zheng
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xuli Meng
- General Surgery, Department of Breast Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema of Breast Cancer, Hangzhou, Zhejiang, China.
| |
Collapse
|
63
|
Chen X, Liu J, Li Y, Zeng Y, Wang F, Cheng Z, Duan H, Pan G, Yang S, Chen Y, Li Q, Shen X, Li Y, Qin Z, Chen J, Huang Y, Wang X, Lu Y, Shu M, Zhang Y, Wang G, Li K, Lin X, Xing F, Zhang H. IDH1 mutation impairs antiviral response and potentiates oncolytic virotherapy in glioma. Nat Commun 2023; 14:6781. [PMID: 37880243 PMCID: PMC10600173 DOI: 10.1038/s41467-023-42545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
IDH1 mutations frequently occur early in human glioma. While IDH1 mutation has been shown to promote gliomagenesis via DNA and histone methylation, little is known regarding its regulation in antiviral immunity. Here, we discover that IDH1 mutation inhibits virus-induced interferon (IFN) antiviral responses in glioma cells. Mechanistically, D2HG produced by mutant IDH1 enhances the binding of DNMT1 to IRF3/7 promoters such that IRF3/7 are downregulated, leading to impaired type I IFN response in glioma cells, which enhances the susceptibility of gliomas to viral infection. Furthermore, we identify DNMT1 as a potential biomarker predicting which IDH1mut gliomas are most likely to respond to oncolytic virus. Finally, both D2HG and ectopic mutant IDH1 can potentiate the replication and oncolytic efficacy of VSVΔ51 in female mouse models. These findings reveal a pivotal role for IDH1 mutation in regulating antiviral response and demonstrate that IDH1 mutation confers sensitivity to oncolytic virotherapy.
Collapse
Affiliation(s)
- Xueqin Chen
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jun Liu
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Yuqin Li
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Yuequan Zeng
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Fang Wang
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Zexiong Cheng
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 510060, Guangzhou, Guangdong, China
| | - Guopeng Pan
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Shangqi Yang
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Yuling Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Ministry of Education (MOE) & Ministry of Health (MOH) Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Qing Li
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Xi Shen
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Ying Li
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Zixi Qin
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Jiahong Chen
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Youwei Huang
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Xiangyu Wang
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Yuli Lu
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
- Shantou Centre for Disease Control and Prevention, 515000, Shantou, Guangdong, China
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Ministry of Education (MOE) & Ministry of Health (MOH) Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Yubo Zhang
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Guocai Wang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Kai Li
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, Guangdong, China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China.
| | - Fan Xing
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China.
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, 510632, Guangzhou, Guangdong, China.
| |
Collapse
|
64
|
Tamura K, Fujiyuki T, Moritoh K, Akimoto H, Iizuka K, Sato H, Asano K, Yoneda M, Kai C. Anti-tumor activity of a recombinant measles virus against canine lung cancer cells. Sci Rep 2023; 13:18168. [PMID: 37875555 PMCID: PMC10597997 DOI: 10.1038/s41598-023-42305-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/07/2023] [Indexed: 10/26/2023] Open
Abstract
Canine primary lung cancer with metastasis has a poor prognosis with no effective treatment. We previously generated a recombinant measles virus (MV) that lost binding affinity to a principal receptor, SLAM, to eliminate its virulence as a new cancer treatment strategy. The virus, rMV-SLAMblind, targets nectin-4, recently listed as a tumor marker, and exerts antitumor activity against nectin-4-positive canine mammary cancer and urinary bladder transitional cell carcinoma cells. However, the effectivity of rMV-SLAMblind for other types of canine cancers is still unknown. Here we evaluated the antitumor effect of rMV-SLAMblind to canine lung cancer. Nectin-4 is expressed on three canine lung cancer cell lines (CLAC, AZACL1, AZACL2) and rMV-SLAMblind was able to infect these cell lines. CLAC cells showed reduced cell viability after virus infection. In the CLAC xenograft nude mouse model, intratumoral administration of rMV-SLAMblind significantly suppressed tumor growth. In rMV-SLAMblind-treated mice, natural killer cells were activated, and Cxcl10 and Il12a levels were significantly increased in comparison with levels in the control group. In addition, the depletion of NK cells reduced the anti-tumor effect. To understand difference in efficacy among canine lung cancer cell lines, we compared virus growth and gene expression pattern after virus treatment in the three canine lung cancer cell lines; virus growth was highest in CLAC cells compared with the other cell lines and the induction of interferon (IFN)-beta and IFN-stimulated genes was at lower levels in CLAC cells. These results suggested that rMV-SLAMblind exhibits oncolytic effect against some canine lung cancer cells and the cellular response after the virus infection may influence its efficacy.
Collapse
Affiliation(s)
- Kei Tamura
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Tomoko Fujiyuki
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kanako Moritoh
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hayato Akimoto
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Keigo Iizuka
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hiroki Sato
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kazushi Asano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
65
|
Liu D, Che X, Wang X, Ma C, Wu G. Tumor Vaccines: Unleashing the Power of the Immune System to Fight Cancer. Pharmaceuticals (Basel) 2023; 16:1384. [PMID: 37895855 PMCID: PMC10610367 DOI: 10.3390/ph16101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This comprehensive review delves into the rapidly evolving arena of cancer vaccines. Initially, we examine the intricate constitution of the tumor microenvironment (TME), a dynamic factor that significantly influences tumor heterogeneity. Current research trends focusing on harnessing the TME for effective tumor vaccine treatments are also discussed. We then provide a detailed overview of the current state of research concerning tumor immunity and the mechanisms of tumor vaccines, describing the complex immunological processes involved. Furthermore, we conduct an exhaustive analysis of the contemporary research landscape of tumor vaccines, with a particular focus on peptide vaccines, DNA/RNA-based vaccines, viral-vector-based vaccines, dendritic-cell-based vaccines, and whole-cell-based vaccines. We analyze and summarize these categories of tumor vaccines, highlighting their individual advantages, limitations, and the factors influencing their effectiveness. In our survey of each category, we summarize commonly used tumor vaccines, aiming to provide readers with a more comprehensive understanding of the current state of tumor vaccine research. We then delve into an innovative strategy combining cancer vaccines with other therapies. By studying the effects of combining tumor vaccines with immune checkpoint inhibitors, radiotherapy, chemotherapy, targeted therapy, and oncolytic virotherapy, we establish that this approach can enhance overall treatment efficacy and offset the limitations of single-treatment approaches, offering patients more effective treatment options. Following this, we undertake a meticulous analysis of the entire process of personalized cancer vaccines, elucidating the intricate process from design, through research and production, to clinical application, thus helping readers gain a thorough understanding of its complexities. In conclusion, our exploration of tumor vaccines in this review aims to highlight their promising potential in cancer treatment. As research in this field continues to evolve, it undeniably holds immense promise for improving cancer patient outcomes.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Chuanyu Ma
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| |
Collapse
|
66
|
Singer ZS, Pabón J, Huang H, Rice CM, Danino T. Engineered bacteria launch and control an oncolytic virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559873. [PMID: 37808855 PMCID: PMC10557668 DOI: 10.1101/2023.09.28.559873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The ability of bacteria and viruses to selectively replicate in tumors has led to synthetic engineering of new microbial therapies. Here we design a cooperative strategy whereby S. typhimurium bacteria transcribe and deliver the Senecavirus A RNA genome inside host cells, launching a potent oncolytic viral infection. Then, we engineer the virus to require a bacterially delivered protease in order to achieve virion maturation, demonstrating bacterial control over the virus. This work extends bacterially delivered therapeutics to viral genomes, and the governing of a viral population through engineered microbial interactions. One-Sentence Summary Bacteria are engineered to act as a synthetic "capsid" delivering Senecavirus A genome and controlling its spread.
Collapse
|
67
|
Shimizu K, Kahramanian A, Jabbar MADA, Turna Demir F, Gokyer D, Uthamacumaran A, Rajan A, Saad MA, Gorham J, Wakimoto H, Martuza RL, Rabkin SD, Hasan T, Wakimoto H. Photodynamic augmentation of oncolytic virus therapy for central nervous system malignancies. Cancer Lett 2023; 572:216363. [PMID: 37619813 PMCID: PMC10529118 DOI: 10.1016/j.canlet.2023.216363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Oncolytic viruses (OVs) have emerged as a clinical therapeutic modality potentially effective for cancers that evade conventional therapies, including central nervous system malignancies. Rationally designed combinatorial strategies can augment the efficacy of OVs by boosting tumor-selective cytotoxicity and modulating the tumor microenvironment (TME). Photodynamic therapy (PDT) of cancer not only mediates direct neoplastic cell death but also primes the TME to sensitize the tumor to secondary therapies, allowing for the combination of two potentially synergistic therapies with broader targets. Here, we created G47Δ-KR, clinical oncolytic herpes simplex virus G47Δ that expresses photosensitizer protein KillerRed (KR). Optical properties and cytotoxic effects of G47Δ-KR infection followed by amber LED illumination (peak wavelength: 585-595 nm) were examined in human glioblastoma (GBM) and malignant meningioma (MM) models in vitro. G47Δ-KR infection of tumor cells mediated KR expression that was activated by LED and produced reactive oxygen species, leading to cell death that was more robust than G47Δ-KR without light. In vivo, we tested photodynamic-oncolytic virus (PD-OV) therapy employing intratumoral injection of G47Δ-KR followed by laser light tumor irradiation (wavelength: 585 nm) in GBM and MM xenografts. PD-OV therapy was feasible in these models and resulted in potent anti-tumor effects that were superior to G47Δ-KR alone (without laser light) or laser light alone. RNA sequencing analysis of post-treatment tumor samples revealed PD-OV therapy-induced increases in TME infiltration of variable immune cell types. This study thus demonstrated the proof-of-concept that G47Δ-KR enables PD-OV therapy for neuro-oncological malignancies and warrants further research to advance potential clinical translation.
Collapse
Affiliation(s)
- Kazuhide Shimizu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Andranik Kahramanian
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Australia
| | | | - Fatma Turna Demir
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| | - Dilan Gokyer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Abicumaran Uthamacumaran
- McGill University, McGill Genome Center, Montreal, Canada; Douglas Mental Health University Institute, Department of Psychiatry, Montreal, Canada
| | - Anant Rajan
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Mohammad Ahsan Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Robert L Martuza
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Samuel D Rabkin
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
68
|
Hao Z, Yin X, Ding R, Chen L, Hao C, Duan H. A novel oncolytic virus-based biomarker participates in prognosis and tumor immune infiltration of glioma. Front Microbiol 2023; 14:1249289. [PMID: 37808305 PMCID: PMC10556503 DOI: 10.3389/fmicb.2023.1249289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Background Glioma is the most common central nervous malignancy. Due to its poor survival outcomes, it is essential to identify novel individualized therapy. Oncolytic virus (OV) treatment is a key therapy regulating tumor microenvironment in malignant glioma. Herein, we aim to identify the key genes after OV infection and its role in glioma. Methods Performing an RNA-seq analysis, the differentially expressed genes (DEGs) between EV-A71-infection and mock group were screened with GFold values. DAVID online analysis was performed to identify the functional classification. Overall survival (OS) or disease-free survival (DFS) was evaluated to analyze the relation between PTBP1 expression levels and prognosis of glioma patients. Additionally, the ssGSEA and TIMER algorithms were applied for evaluating immune cell infiltration in glioma. Results Following EV-A71 infection in glioma cells, PTBP1, one of the downregulated DEGs, was found to be associated with multiple categories of GO and KEGG enrichment analysis. We observed elevated expression levels of PTBP1 across various tumor grades of glioma in comparison to normal brain samples. High PTBP1 expression had a notable impact on the OS of patients with low-grade glioma (LGG). Furthermore, we observed an obvious association between PTBP1 levels and immune cell infiltration in LGG. Notably, PTBP1 was regarded as an essential prognostic biomarker in immune cells of LGG. Conclusion Our research uncovered a critical role of PTBP1 in outcomes and immune cell infiltration of glioma patients, particularly in those with LGG.
Collapse
Affiliation(s)
- Zheng Hao
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Yin
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Ding
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Laizhao Chen
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hubin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
69
|
Peribañez-Dominguez S, Parra-Guillen ZP, Freshwater T, Troconiz IF. A physiologically based pharmacokinetic model for V937 oncolytic virus in mice. Front Pharmacol 2023; 14:1211452. [PMID: 37771727 PMCID: PMC10524596 DOI: 10.3389/fphar.2023.1211452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction: Oncolytic viruses (OVs) represent a novel therapeutic strategy in oncology due to their capability to selectively infect and replicate in cancer cells, triggering a direct and/or immune-induced tumor lysis. However, the mechanisms governing OV pharmacokinetics are still poorly understood. This work aims to develop a physiologically based pharmacokinetic model of the novel OV, V937, in non-tumor-bearing mice to get a quantitative understanding of its elimination and tissue uptake processes. Materials and methods: Model development was performed using data obtained from 60 mice. Viral levels were quantified from eight tissues after a single intravenous V937 dose. An external dataset was used for model validation. This test set included multiple-dose experiments with different routes of administration. V937 distribution in each organ was described using a physiological structure based on mouse-specific organ blood flows and volumes. Analyses were performed using the non-linear mixed-effects approach with NONMEM 7.4. Results: Viral levels showed a drop from 108 to 105 copies/µg RNA at day 1 in blood, reflected in a high estimate of total clearance (18.2 mL/h). A well-stirred model provided an adequate description for all organs except the muscle and heart, where a saturable uptake process improved data description. The highest numbers of viral copies were observed in the brain, lymph node, kidney, liver, lung, and spleen on the first day after injection. On the other hand, the maximum amount of viral copies in the heart, muscle, and pancreas occurred 3 days after administration. Conclusion: To the best of our knowledge, this is the first physiologically based pharmacokinetic model developed to characterize OV biodistribution, representing a relevant source of quantitative knowledge regarding the in vivo behavior of OVs. This model can be further expanded by adding a tumor compartment, where OVs could replicate.
Collapse
Affiliation(s)
- Sara Peribañez-Dominguez
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Zinnia P. Parra-Guillen
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Tomoko Freshwater
- Quantitative Pharmacology and Pharmacometrics Immune/Oncology (QP2-I/O) Merck & Co., Inc., Rahway, NJ, United States
| | - Iñaki F. Troconiz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Institute of Data Science and Artificial Intelligence (DATAI), University of Navarra, Pamplona, Spain
| |
Collapse
|
70
|
Zuo Z, Yin H, Zhang Y, Xie C, Wang Q. A cytotoxic T cell inspired oncolytic nanosystem promotes lytic cell death by lipid peroxidation and elicits antitumor immune responses. Nat Commun 2023; 14:5456. [PMID: 37673934 PMCID: PMC10482857 DOI: 10.1038/s41467-023-41335-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023] Open
Abstract
Lytic cell death triggers an antitumour immune response. However, cancer cells evade lytic cell death by several mechanisms. Moreover, a prolonged and uncontrolled immune response conversely leads to T-cell exhaustion. Therefore, an oncolytic system capable of eliciting an immune response by killing cancer cells in a controlled manner is needed. Here, we establish a micro-scale cytotoxic T-cell-inspired oncolytic system (TIOs) to precisely lyse cancer cells by NIR-light-controlled lipid peroxidation. Our TIOs present antigen-based cell recognition, tumour-targeting and catalytic cell-lysis ability; thus, the TIOs induce oncolysis in vivo. We apply TIOs to preclinical cancer models, showing anti-tumor activity with negligible side-effects. Tumour regression is correlated with a T-cell based anti-tumour immune response and TIOs also improve responses to anti-PD-1 therapy or STING activation. Our study provides insights to design oncolytic systems for antitumour immunity. Moreover, activation of STING can reverse T-cell exhaustion in oncolysis.
Collapse
Affiliation(s)
- Zhigui Zuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Hao Yin
- Institute for Advanced Research, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yu Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Congying Xie
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Qinyang Wang
- Institute for Advanced Research, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
| |
Collapse
|
71
|
Sun N, Zhang J, Zhang C, Xie T, Zhang Z, Wang X, Li W, Zhang Y, Chen Z, Zheng J, Fang L, Wang G. Inhibition of human adenovirus replication by TRIM35-mediated degradation of E1A. J Virol 2023; 97:e0070023. [PMID: 37578239 PMCID: PMC10506487 DOI: 10.1128/jvi.00700-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Human adenovirus (HAdV) is ubiquitous in the human population, constituting a significant burden of global respiratory diseases. Children and individuals with low immunity are at risk of developing severe infections without approved antiviral treatment for HAdV. Our study demonstrated that TRIM35 inhibited HAdV-C5 early gene transcription, early protein expression, genome replication, and infectious virus progeny production. Furthermore, TRIM35 was found to inhibit HAdV replication by attenuating E1A expression. Mechanistically, TRIM35 interacts with and degrades E1A by promoting its K48-linked ubiquitination. Additionally, K253 and K285 are the key sites necessary for TRIM35 degradation. Moreover, an oncolytic adenovirus carrying shTRIM35 was constructed and observed to exhibit improved oncolysis in vivo, providing new ideas for clinical tumor treatment. Our results expand the broad antiviral activity of TRIM35 and mechanically support its application as a HAdV replication inhibitor. IMPORTANCE E1A is an essential human adenovirus (HAdV) protein responsible for the early replication of adenovirus while interacting with multiple host proteins. Understanding the interaction between HAdV E1A and TRIM35 helps identify effective antiviral therapeutic targets. The viral E1A protein is a crucial activator and regulator of viral transcription during the early infection stages. We first reported that TRIM35 interacts with E1A to resist adenovirus infection. Our study demonstrated that TRIM35 targets E1A to resist adenovirus, indicating the applicability of targeting virus-dependent host factors as a suitable antiviral strategy.
Collapse
Affiliation(s)
- Nan Sun
- Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | - Chen Zhang
- Xuzhou Medical University, Xuzhou, China
| | - Tan Xie
- Xuzhou Medical University, Xuzhou, China
| | - Zeyu Zhang
- Xuzhou Medical University, Xuzhou, China
| | | | - Wanjing Li
- Xuzhou Medical University, Xuzhou, China
| | - Yi Zhang
- Xuzhou Medical University, Xuzhou, China
| | | | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lin Fang
- Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Gang Wang
- Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
72
|
Slama Y, Ah-Pine F, Khettab M, Arcambal A, Begue M, Dutheil F, Gasque P. The Dual Role of Mesenchymal Stem Cells in Cancer Pathophysiology: Pro-Tumorigenic Effects versus Therapeutic Potential. Int J Mol Sci 2023; 24:13511. [PMID: 37686315 PMCID: PMC10488262 DOI: 10.3390/ijms241713511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells involved in numerous physiological events, including organogenesis, the maintenance of tissue homeostasis, regeneration, or tissue repair. MSCs are increasingly recognized as playing a major, dual, and complex role in cancer pathophysiology through their ability to limit or promote tumor progression. Indeed, these cells are known to interact with the tumor microenvironment, modulate the behavior of tumor cells, influence their functions, and promote distant metastasis formation through the secretion of mediators, the regulation of cell-cell interactions, and the modulation of the immune response. This dynamic network can lead to the establishment of immunoprivileged tissue niches or the formation of new tumors through the proliferation/differentiation of MSCs into cancer-associated fibroblasts as well as cancer stem cells. However, MSCs exhibit also therapeutic effects including anti-tumor, anti-proliferative, anti-inflammatory, or anti-oxidative effects. The therapeutic interest in MSCs is currently growing, mainly due to their ability to selectively migrate and penetrate tumor sites, which would make them relevant as vectors for advanced therapies. Therefore, this review aims to provide an overview of the double-edged sword implications of MSCs in tumor processes. The therapeutic potential of MSCs will be reviewed in melanoma and lung cancers.
Collapse
Affiliation(s)
- Youssef Slama
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Franck Ah-Pine
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Mohamed Khettab
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Angelique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Mickael Begue
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Fabien Dutheil
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
| |
Collapse
|
73
|
Tao JC, Yu D, Shao W, Zhou DR, Wang Y, Hou SQ, Deng K, Lin N. Interactions between microglia and glioma in tumor microenvironment. Front Oncol 2023; 13:1236268. [PMID: 37700840 PMCID: PMC10493873 DOI: 10.3389/fonc.2023.1236268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Gliomas, the most prevalent primary tumors in the central nervous system, are marked by their immunosuppressive properties and consequent poor patient prognosis. Current evidence emphasizes the pivotal role of the tumor microenvironment in the progression of gliomas, largely attributed to tumor-associated macrophages (brain-resident microglia and bone marrow-derived macrophages) that create a tumor microenvironment conducive to the growth and invasion of tumor cells. Yet, distinguishing between these two cell subgroups remains a challenge. Thus, our review starts by analyzing the heterogeneity between these two cell subsets, then places emphasis on elucidating the complex interactions between microglia and glioma cells. Finally, we conclude with a summary of current attempts at immunotherapy that target microglia. However, given that independent research on microglia is still in its initial stages and has many shortcomings at the present time, we express our related concerns and hope that further research will be carried out to address these issues in the future.
Collapse
Affiliation(s)
- Jin-Cheng Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong Yu
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Wei Shao
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Dong-Rui Zhou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Yu Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Shi-Qiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Ke Deng
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| |
Collapse
|
74
|
Kaczmarek M, Poznańska J, Fechner F, Michalska N, Paszkowska S, Napierała A, Mackiewicz A. Cancer Vaccine Therapeutics: Limitations and Effectiveness-A Literature Review. Cells 2023; 12:2159. [PMID: 37681891 PMCID: PMC10486481 DOI: 10.3390/cells12172159] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
In recent years, there has been a surge of interest in tumor microenvironment-associated cancer vaccine therapies. These innovative treatments aim to activate and enhance the body's natural immune response against cancer cells by utilizing specific antigens present in the tumor microenvironment. The goal is to achieve a complete clinical response, where all measurable cancer cells are either eliminated or greatly reduced in size. With their potential to revolutionize cancer treatment, these therapies represent a promising avenue for researchers and clinicians alike. Despite over 100 years of research, the success of therapeutic cancer vaccines has been variable, particularly in advanced cancer patients, with various limitations, including the heterogeneity of the tumor microenvironment, the presence of immunosuppressive cells, and the potential for tumor escape mechanisms. Additionally, the effectiveness of these therapies may be limited by the variability of the patient's immune system response and the difficulty in identifying appropriate antigens for each patient. Despite these challenges, tumor microenvironment-targeted vaccine cancer therapies have shown promising results in preclinical and clinical studies and have the potential to become a valuable addition to current cancer treatment and "curative" options. While chemotherapeutic and monoclonal antibody treatments remain popular, ongoing research is needed to optimize the design and delivery of these therapies and to identify biomarkers that can predict response and guide patient selection. This comprehensive review explores the mechanisms of cancer vaccines, various delivery methods, and the role of adjuvants in improving treatment outcomes. It also discusses the historical background of cancer vaccine research and examines the current state of major cancer vaccination immunotherapies. Furthermore, the limitations and effectiveness of each vaccine type are analyzed, providing insights into the future of cancer vaccine development.
Collapse
Affiliation(s)
- Mariusz Kaczmarek
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, 61-866 Poznań, Poland
| | - Justyna Poznańska
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Filip Fechner
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Natasza Michalska
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Sara Paszkowska
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Adrianna Napierała
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Andrzej Mackiewicz
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, 61-866 Poznań, Poland
| |
Collapse
|
75
|
Li M, Zhang M, Ye Q, Liu Y, Qian W. Preclinical and clinical trials of oncolytic vaccinia virus in cancer immunotherapy: a comprehensive review. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0202. [PMID: 37615308 PMCID: PMC10546091 DOI: 10.20892/j.issn.2095-3941.2023.0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Oncolytic virotherapy has emerged as a promising treatment for human cancers owing to an ability to elicit curative effects via systemic administration. Tumor cells often create an unfavorable immunosuppressive microenvironment that degrade viral structures and impede viral replication; however, recent studies have established that viruses altered via genetic modifications can serve as effective oncolytic agents to combat hostile tumor environments. Specifically, oncolytic vaccinia virus (OVV) has gained popularity owing to its safety, potential for systemic delivery, and large gene insertion capacity. This review highlights current research on the use of engineered mutated viruses and gene-armed OVVs to reverse the tumor microenvironment and enhance antitumor activity in vitro and in vivo, and provides an overview of ongoing clinical trials and combination therapies. In addition, we discuss the potential benefits and drawbacks of OVV as a cancer therapy, and explore different perspectives in this field.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Minghuan Zhang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qian Ye
- Hangzhou Rong-Gu Biotechnology Limited Company, Hangzhou 310056, China
| | - Yunhua Liu
- Department of Pathology & Pathophysiology and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
76
|
Vannini A, Parenti F, Barboni C, Forghieri C, Leoni V, Sanapo M, Bressanin D, Zaghini A, Campadelli-Fiume G, Gianni T. Efficacy of Systemically Administered Retargeted Oncolytic Herpes Simplex Viruses-Clearance and Biodistribution in Naïve and HSV-Preimmune Mice. Cancers (Basel) 2023; 15:4042. [PMID: 37627072 PMCID: PMC10452237 DOI: 10.3390/cancers15164042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
We investigated the anticancer efficacy, blood clearance, and tissue biodistribution of systemically administered retargeted oncolytic herpes simplex viruses (ReHVs) in HSV-naïve and HSV-preimmunized (HSV-IMM) mice. Efficacy was tested against lung tumors formed upon intravenous administration of cancer cells, a model of metastatic disease, and against subcutaneous distant tumors. In naïve mice, HER2- and hPSMA-retargeted viruses, both armed with mIL-12, were highly effective, even when administered to mice with well-developed tumors. Efficacy was higher for combination regimens with immune checkpoint inhibitors. A significant amount of infectious virus persisted in the blood for at least 1 h. Viral genomes, or fragments thereof, persisted in the blood and tissues for days. Remarkably, the only sites of viral replication were the lungs of tumor-positive mice and the subcutaneous tumors. No replication was detected in other tissues, strengthening the evidence of the high cancer specificity of ReHVs, a property that renders ReHVs suitable for systemic administration. In HSV-IMM mice, ReHVs administered at late times failed to exert anticancer efficacy, and the circulating virus was rapidly inactivated. Serum stability and in vivo whole blood stability assays highlighted neutralizing antibodies as the main factor in virus inactivation. Efforts to deplete mice of the neutralizing antibodies are ongoing.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (C.F.)
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Federico Parenti
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (C.F.)
| | - Catia Barboni
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (C.B.); (A.Z.)
| | - Cristina Forghieri
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (C.F.)
| | - Valerio Leoni
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (C.F.)
| | - Mara Sanapo
- Animal Facility Unit, Biogem, 83031 Ariano Irpino, Italy;
| | - Daniela Bressanin
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (C.F.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (C.B.); (A.Z.)
| | - Gabriella Campadelli-Fiume
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (C.F.)
| | - Tatiana Gianni
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (C.F.)
| |
Collapse
|
77
|
Huang H, Liu M, Sun M, Duan S, Pan S, Liu P, Cheng Z, Ergonul O, Can F, Wang Z, Pang Z, Liu F. Virus-Protein Corona Replacement Strategy to Improve the Antitumor Efficacy of Intravenously Injected Oncolytic Adenovirus. ACS NANO 2023; 17:14461-14474. [PMID: 37367941 DOI: 10.1021/acsnano.3c00847] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Intravenous administration of oncolytic adenoviruses (OVs) is a hopeful tumor therapeutic modality. However, the sharp clearance of OVs by the immune system dampens its effectiveness. Many studies have attempted to extend the circulation of intravenously administered OVs, almost all by preventing OVs from binding to neutralizing antibodies and complements in the blood, but the results have not been satisfactory. In contrast to previous conclusions, we found that the key to improving the circulation of OVs is to prevent the formation of the virus-protein corona rather than simply preventing the binding of neutralizing antibodies or complements to OVs. After identifying the key protein components of the virus-protein corona, we proposed a virus-protein corona replacement strategy, where an artificial virus-protein corona was formed on OVs to completely prevent the interaction of OVs with key virus-protein corona components in the plasma. It was found that this strategy dramatically prolonged the circulation time of OVs by over 30 fold and increased the distribution of OVs in tumors by over 10-fold, resulting in superior antitumor efficacy in primary and metastatic tumor models. Our finding provides a perspective on intravenous delivery of OVs, shifting the focus of future studies from preventing OV binding with neutralization antibodies and complements to preventing OVs from interacting with key virus-protein corona components in the plasma.
Collapse
Affiliation(s)
- Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, 200120 Shanghai, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, 110000, Heping District, Shenyang, China
| | - Mingyang Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, 200120 Shanghai, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, 110000, Heping District, Shenyang, China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, 200120 Shanghai, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, 110000, Heping District, Shenyang, China
| | - Siwei Pan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, 110000, Heping District, Shenyang, China
| | - Pengfei Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, 110000, Heping District, Shenyang, China
| | - Zhenguo Cheng
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Onder Ergonul
- Koç University Iş Bank Center for Infectious Diseases (KUISCID), Koç University School of Medicine and American Hospital, Istanbul 34450, Turkey
| | - Füsun Can
- Koç University Iş Bank Center for Infectious Diseases (KUISCID), Koç University School of Medicine and American Hospital, Istanbul 34450, Turkey
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, 110000, Heping District, Shenyang, China
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, 200120 Shanghai, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Phase I Clinical Trials Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang 110102, Liaoning, China
| |
Collapse
|
78
|
Yang N, Wang Y, Liu S, Tariq SB, Luna JM, Mazo G, Tan A, Zhang T, Wang J, Yan W, Choi J, Rossi A, Xiang JZ, Rice CM, Merghoub T, Wolchok JD, Deng L. OX40L-expressing recombinant modified vaccinia virus Ankara induces potent antitumor immunity via reprogramming Tregs. J Exp Med 2023; 220:e20221166. [PMID: 37145142 PMCID: PMC10165539 DOI: 10.1084/jem.20221166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/05/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
Effective depletion of immune suppressive regulatory T cells (Tregs) in the tumor microenvironment without triggering systemic autoimmunity is an important strategy for cancer immunotherapy. Modified vaccinia virus Ankara (MVA) is a highly attenuated, non-replicative vaccinia virus with a long history of human use. Here, we report rational engineering of an immune-activating recombinant MVA (rMVA, MVA∆E5R-Flt3L-OX40L) with deletion of the vaccinia E5R gene (encoding an inhibitor of the DNA sensor cyclic GMP-AMP synthase, cGAS) and expression of two membrane-anchored transgenes, Flt3L and OX40L. Intratumoral (IT) delivery of rMVA (MVA∆E5R-Flt3L-OX40L) generates potent antitumor immunity, dependent on CD8+ T cells, the cGAS/STING-mediated cytosolic DNA-sensing pathway, and type I IFN signaling. Remarkably, IT rMVA (MVA∆E5R-Flt3L-OX40L) depletes OX40hi regulatory T cells via OX40L/OX40 interaction and IFNAR signaling. Single-cell RNA-seq analyses of tumors treated with rMVA showed the depletion of OX40hiCCR8hi Tregs and expansion of IFN-responsive Tregs. Taken together, our study provides a proof-of-concept for depleting and reprogramming intratumoral Tregs via an immune-activating rMVA.
Collapse
Affiliation(s)
- Ning Yang
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Wang
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shuaitong Liu
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shanza Baseer Tariq
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph M. Luna
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Gregory Mazo
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrian Tan
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, USA
| | - Tuo Zhang
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, USA
| | | | - Wei Yan
- IMVAQ Therapeutics, Sammamish, WA, USA
| | - John Choi
- IMVAQ Therapeutics, Sammamish, WA, USA
| | - Anthony Rossi
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jenny Zhaoying Xiang
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, USA
| | - Charles M. Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Taha Merghoub
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jedd D. Wolchok
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Liang Deng
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Dermatology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
79
|
Miladinovic M, Klusmann JH. Influenza A (H1N1) virus induced long-term remission in a refractory acute myeloid leukaemia. Br J Haematol 2023; 202:713-714. [PMID: 37423608 DOI: 10.1111/bjh.18911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 07/11/2023]
Abstract
You et al. present an extraordinary case of a refractory acute myeloid leukaemia (AML) patient who achieved long-term complete remission after infection with Influenza A. Using mouse models, the researchers examined the underlying immunological mechanisms and discovered a decrease in leukaemia proliferation and improved survival in Influenza-A virus-infected mice. These results indicate the potential therapeutic relevance of Influenza A in the treatment of haematological cancers. Commentary on: You et al. Influenza A (H1N1) virus induced long-term remission in a refractory acute myeloid leukemia. Br J Haematol 2023;202:745-748.
Collapse
Affiliation(s)
- Milica Miladinovic
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
80
|
Jiang B, Zhou Y, Liu Y, He S, Liao B, Peng T, Yao L, Qi L. Research Progress on the Role and Mechanism of IL-37 in Liver Diseases. Semin Liver Dis 2023; 43:336-350. [PMID: 37582401 PMCID: PMC10620037 DOI: 10.1055/a-2153-8836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Cytokines are important components of the immune system that can predict or influence the development of liver diseases. IL-37, a new member of the IL-1 cytokine family, exerts potent anti-inflammatory and immunosuppressive effects inside and outside cells. IL-37 expression differs before and after liver lesions, suggesting that it is associated with liver disease; however, its mechanism of action remains unclear. This article mainly reviews the biological characteristics of IL-37, which inhibits hepatitis, liver injury, and liver fibrosis by inhibiting inflammation, and inhibits the development of hepatocellular carcinoma (HCC) by regulating the immune microenvironment. Based on additional evidence, combining IL-37 with liver disease markers for diagnosis and treatment can achieve more significant effects, suggesting that IL-37 can be developed into a powerful tool for the clinical adjuvant treatment of liver diseases, especially HCC.
Collapse
Affiliation(s)
- Baoyi Jiang
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yulin Zhou
- Department of Clinical Laboratory, Shunde New Rongqi Hospital, Foshan, China
| | - Yanting Liu
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Siqi He
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Baojian Liao
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Tieli Peng
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Leyi Yao
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ling Qi
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
81
|
Brănişteanu DE, Porumb-Andrese E, Porumb V, Stărică A, Moraru AD, Nicolescu AC, Zemba M, Brănişteanu CI, Brănişteanu G, Brănişteanu DC. New Treatment Horizons in Uveal and Cutaneous Melanoma. Life (Basel) 2023; 13:1666. [PMID: 37629523 PMCID: PMC10455832 DOI: 10.3390/life13081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is a complex and heterogeneous malignant tumor with distinct genetic characteristics and therapeutic challenges in both cutaneous melanoma (CM) and uveal melanoma (UM). This review explores the underlying molecular features and genetic alterations in these melanoma subtypes, highlighting the importance of employing specific model systems tailored to their unique profiles for the development of targeted therapies. Over the past decade, significant progress has been made in unraveling the molecular and genetic characteristics of CM and UM, leading to notable advancements in treatment options. Genetic mutations in the mitogen-activated protein kinase (MAPK) pathway drive CM, while UM is characterized by mutations in genes like GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Chromosomal aberrations, including monosomy 3 in UM and monosomy 10 in CM, play significant roles in tumorigenesis. Immune cell infiltration differs between CM and UM, impacting prognosis. Therapeutic advancements targeting these genetic alterations, including oncolytic viruses and immunotherapies, have shown promise in preclinical and clinical studies. Oncolytic viruses selectively infect malignant cells, inducing oncolysis and activating antitumor immune responses. Talimogene laherparepvec (T-VEC) is an FDA-approved oncolytic virus for CM treatment, and other oncolytic viruses, such as coxsackieviruses and HF-10, are being investigated. Furthermore, combining oncolytic viruses with immunotherapies, such as CAR-T cell therapy, holds great potential. Understanding the intrinsic molecular features of melanoma and their role in shaping novel therapeutic approaches provides insights into targeted interventions and paves the way for more effective treatments for CM and UM.
Collapse
Affiliation(s)
- Daciana Elena Brănişteanu
- Department of Medical Specialties (III)-Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Railway Clinical Hospital, 700506 Iasi, Romania;
| | - Elena Porumb-Andrese
- Department of Medical Specialties (III)-Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Railway Clinical Hospital, 700506 Iasi, Romania;
| | - Vlad Porumb
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Military Emergency Clinical Hospital “Dr. Iacob Czihac”, 700506 Iasi, Romania
| | | | - Andreea Dana Moraru
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | | | - Mihail Zemba
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | | | - George Brănişteanu
- “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.I.B.); (G.B.)
| | - Daniel Constantin Brănişteanu
- Railway Clinical Hospital, 700506 Iasi, Romania;
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
82
|
Wang X, Shen Y, Wan X, Hu X, Cai WQ, Wu Z, Xin Q, Liu X, Gui J, Xin HY, Xin HW. Oncolytic virotherapy evolved into the fourth generation as tumor immunotherapy. J Transl Med 2023; 21:500. [PMID: 37491263 PMCID: PMC10369732 DOI: 10.1186/s12967-023-04360-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/16/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Oncolytic virotherapy (OVT) is a promising anti-tumor modality that utilizes oncolytic viruses (OVs) to preferentially attack cancers rather than normal tissues. With the understanding particularly in the characteristics of viruses and tumor cells, numerous innovative OVs have been engineered to conquer cancers, such as Talimogene Laherparepvec (T-VEC) and tasadenoturev (DNX-2401). However, the therapeutic safety and efficacy must be further optimized and balanced to ensure the superior safe and efficient OVT in clinics, and reasonable combination therapy strategies are also important challenges worthy to be explored. MAIN BODY Here we provided a critical review of the development history and status of OVT, emphasizing the mechanisms of enhancing both safety and efficacy. We propose that oncolytic virotherapy has evolved into the fourth generation as tumor immunotherapy. Particularly, to arouse T cells by designing OVs expressing bi-specific T cell activator (BiTA) is a promising strategy of killing two birds with one stone. Amazing combination of therapeutic strategies of OVs and immune cells confers immense potential for managing cancers. Moreover, the attractive preclinical OVT addressed recently, and the OVT in clinical trials were systematically reviewed. CONCLUSION OVs, which are advancing into clinical trials, are being envisioned as the frontier clinical anti-tumor agents coming soon.
Collapse
Affiliation(s)
- Xianwang Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| | - Yihua Shen
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xingxia Wan
- College of Arts and Sciences, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xiaoqing Hu
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Wen-Qi Cai
- Xinzhou Traditional Chinese Medicine Hospital, Zhongnan Hospital of Wuhan University (Xinzhou), Wuhan, 430000, Hubei, China
| | - Zijun Wu
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Qiang Xin
- School of Graduate Students, Inner Mongolia Medical University, Inner Mongolian Autonomous Region, Hohhot, 010110, China
| | - Xiaoqing Liu
- College of Arts and Sciences, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hong-Yi Xin
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong, 524400, China.
- The Doctoral Scientific Research Center, Affiliated People's Hospital of Lianjiang, Guangdong Medical University, Guangdong, 524400, China.
| | - Hong-Wu Xin
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| |
Collapse
|
83
|
Macapagal SC, Bennani NN. Nodal peripheral T-cell lymphoma: Chemotherapy-free management, are we there yet? Blood Rev 2023; 60:101071. [PMID: 36898933 DOI: 10.1016/j.blre.2023.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Peripheral T-cell lymphomas (PTCLs) are a diverse and uncommon type of lymphoid malignancies with a dismal prognosis. Recent advances in genomic studies have shown recurring mutations that are changing our knowledge of the disease's molecular genetics and pathogenesis. As such, new targeted therapies and treatments to improve disease outcomes are currently being explored. In this review, we discussed the current understanding of the nodal PTCL biology with potential therapeutic implications and gave our insights on the promising novel therapies that are currently under study such as immunotherapy, chimeric antigen receptor T-cell therapy, and oncolytic virotherapy.
Collapse
Affiliation(s)
| | - N Nora Bennani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
84
|
Abstract
The host immune system possesses an intrinsic ability to target and kill cancer cells in a specific and adaptable manner that can be further enhanced by cancer immunotherapy, which aims to train the immune system to boost the antitumor immune response. Several different categories of cancer immunotherapy have emerged as new standard cancer therapies in the clinic, including cancer vaccines, immune checkpoint inhibitors, adoptive T cell therapy, and oncolytic virus therapy. Despite the remarkable survival benefit for a subset of patients, the low response rate and immunotoxicity remain the major challenges for current cancer immunotherapy. Over the last few decades, nanomedicine has been intensively investigated with great enthusiasm, leading to marked advancements in nanoparticle platforms and nanoengineering technology. Advances in nanomedicine and immunotherapy have also led to the emergence of a nascent research field of nano-immunotherapy, which aims to realize the full therapeutic potential of immunotherapy with the aid of nanomedicine. In particular, nanocarriers present an exciting opportunity in immuno-oncology to boost the activity, increase specificity, decrease toxicity, and sustain the antitumor efficacy of immunological agents by potentiating immunostimulatory activity and favorably modulating pharmacological properties. This review discusses the potential of nanocarriers for cancer immunotherapy and introduces preclinical studies designed to improve clinical cancer immunotherapy modalities using nanocarrier-based engineering approaches. It also discusses the potential of nanocarriers to address the challenges currently faced by immuno-oncology as well as the challenges for their translation to clinical applications.
Collapse
Affiliation(s)
- Isra Rana
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jaeeun Oh
- Department of Biological Sciences, Inha University, Incheon, 22212, South Korea
| | - Juwon Baig
- Department of Biological Sciences, Inha University, Incheon, 22212, South Korea
| | - Jeong Hyun Moon
- Department of Biological Sciences, Inha University, Incheon, 22212, South Korea
| | - Sejin Son
- Department of Biological Sciences, Inha University, Incheon, 22212, South Korea.
- Department of Biological Sciences and Bioengineering, Inha University/Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon, South Korea.
| | - Jutaek Nam
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
85
|
Pan L, Mora J, Walravens K, Wagner L, Hopper S, Loo L, Bettoun D, Bond S, Dessy F, Downing S, Garofolo F, Gupta S, Henderson N, Irwin C, Ishii-Watabe A, Kar S, Jawa V, Joseph J, Malvaux L, Marshall JC, McDevitt J, Mohapatra S, Seitzer J, Smith J, Solstad T, Sugimoto H, Tounekti O, Wu B, Wu Y, Xu Y, Xu J, Yamamoto T, Yang L, Torri A, Kirshner S, Maxfield K, Vasconcelos JP, Abhari MR, Verthelyi D, Brodsky E, Carrasco-Triguero M, Kamerud J, Andisik M, Baltrukonis D, Bivi N, Cludts I, Coble K, Gorovits B, Gunn GR, Gupta S, Millner AH, Joyce A, Kubiak RJ, Kumar S, Liao K, Manangeeswaran M, Partridge M, Pine S, Poetzl J, Rajadhyaksha M, Rasamoelisolo M, Richards S, Song Y, Swanson S, Thacker S, Wadhwa M, Wolf A, Zhang L, Zhou L. 2022 White Paper on Recent Issues in Bioanalysis: FDA Draft Guidance on Immunogenicity Information in Prescription Drug Labeling, LNP & Viral Vectors Therapeutics/Vaccines Immunogenicity, Prolongation Effect, ADA Affinity, Risk-based Approaches, NGS, qPCR, ddPCR Assays ( Part 3 - Recommendations on Gene Therapy, Cell Therapy, Vaccines Immunogenicity & Technologies; Immunogenicity & Risk Assessment of Biotherapeutics and Novel Modalities; NAb Assays Integrated Approach). Bioanalysis 2023; 15:773-814. [PMID: 37526071 DOI: 10.4155/bio-2023-0135] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
The 2022 16th Workshop on Recent Issues in Bioanalysis (WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity. Part 1 (Mass Spectrometry and ICH M10) and Part 2 (LBA, Biomarkers/CDx and Cytometry) are published in volume 15 of Bioanalysis, issues 16 and 15 (2023), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Vibha Jawa
- Bristol Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuan Song
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Laface C, Memeo R, Maselli FM, Santoro AN, Iaia ML, Ambrogio F, Laterza M, Cazzato G, Guarini C, De Santis P, Perrone M, Fedele P. Immunotherapy and Pancreatic Cancer: A Lost Challenge? Life (Basel) 2023; 13:1482. [PMID: 37511856 PMCID: PMC10381818 DOI: 10.3390/life13071482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Although immunotherapy has proved to be a very efficient therapeutic strategy for many types of tumors, the results for pancreatic cancer (PC) have been very poor. Indeed, chemotherapy remains the standard treatment for this tumor in the advanced stage. Clinical data showed that only a small portion of PC patients with high microsatellite instability/mismatch repair deficiency benefit from immunotherapy. However, the low prevalence of these alterations was not sufficient to lead to a practice change in the treatment strategy of this tumor. The main reasons for the poor efficacy of immunotherapy probably lie in the peculiar features of the pancreatic tumor microenvironment in comparison with other malignancies. In addition, the biomarkers usually evaluated to define immunotherapy efficacy in other cancers appear to be useless in PC. This review aims to describe the main features of the pancreatic tumor microenvironment from an immunological point of view and to summarize the current data on immunotherapy efficacy and immune biomarkers in PC.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, "F. Miulli" General Regional Hospital, 70021 Acquaviva Delle Fonti, Italy
| | | | | | - Maria Laura Iaia
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Marigia Laterza
- Division of Cardiac Surgery, University of Bari, 70124 Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Chiara Guarini
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Pierluigi De Santis
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Martina Perrone
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
87
|
Shahbaz A, Mahmood T, Javed MU, Abbasi BH. Current advances in microbial-based cancer therapies. Med Oncol 2023; 40:207. [PMID: 37330997 DOI: 10.1007/s12032-023-02074-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Microbes have an immense metabolic capability and can adapt to a wide variety of environments; as a result, they share complicated relationships with cancer. The goal of microbial-based cancer therapy is to treat patients with cancers that are not easily treatable, by using tumor-specific infectious microorganisms. Nevertheless, a number of difficulties have been encountered as a result of the harmful effects of chemotherapy, radiotherapy, and alternative cancer therapies, such as the toxicity to non-cancerous cells, the inability of medicines to penetrate deep tumor tissue, and the ongoing problem of rising drug resistance in tumor cells. Due to these difficulties, there is now a larger need for designing alternative strategies that are more effective and selective when targeting tumor cells. The fight against cancer has advanced significantly owing to cancer immunotherapy. The researchers have greatly benefited from their understanding of tumor-invading immune cells as well as the immune responses that are specifically targeted against cancer. Application of bacterial and viral cancer therapeutics offers promising potential to be employed as cancer treatments among immunotherapies. As a novel therapeutic strategy, microbial targeting of tumors has been created to address the persisting hurdles of cancer treatment. This review outlines the mechanisms by which both bacteria and viruses target and inhibit the proliferation of tumor cells. Their ongoing clinical trials and possible modifications that can be made in the future have also been addressed in the following sections. These microbial-based cancer medicines have the ability to suppress cancer that builds up and multiplies in the tumor microenvironment and triggers antitumor immune responses, in contrast to other cancer medications.
Collapse
Affiliation(s)
- Areej Shahbaz
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medicine Goettingen, Göttingen, Germany
| | - Tehreem Mahmood
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Uzair Javed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
88
|
Zhao G, Wang S, Li N. Adenovirotherapy delivering cross-hybrid IgGA Fc engineering PD-L1 inhibitors for enhanced cancer immunotherapy. Mol Ther Oncolytics 2023; 29:125-126. [PMID: 37250972 PMCID: PMC10213180 DOI: 10.1016/j.omto.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Affiliation(s)
- Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
89
|
Dingli D. Radiovirotherapy at twenty. Mol Ther Oncolytics 2023; 29:127-128. [PMID: 37260766 PMCID: PMC10227365 DOI: 10.1016/j.omto.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Affiliation(s)
- David Dingli
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
90
|
Dong T, Shah JR, Phung AT, Larson C, Sanchez AB, Aisagbonhi O, Blair SL, Oronsky B, Trogler WC, Reid T, Kummel AC. A Local and Abscopal Effect Observed with Liposomal Encapsulation of Intratumorally Injected Oncolytic Adenoviral Therapy. Cancers (Basel) 2023; 15:3157. [PMID: 37370769 PMCID: PMC10296131 DOI: 10.3390/cancers15123157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This study evaluated the in vivo therapeutic efficacy of oncolytic serotype 5 adenovirus TAV255 in CAR-deficient tumors. In vitro experiments were performed with cell lines that expressed different levels of CAR (HEK293, A549, CT26, 4T1, and MCF-7). Low CAR cells, such as CT26, were poorly transduced by Ad in vitro unless the adenovirus was encapsulated in liposomes. However, the CT26 tumor in an immune-competent mouse model responded to the unencapsulated TAV255; 33% of the tumors were induced into complete remission, and mice with complete remission rejected the rechallenge with cancer cell injection. Encapsulation of TAV255 improves its therapeutic efficacy by transducing more CT26 cells, as expected from in vitro results. In a bilateral tumor model, nonencapsulated TAV255 reduced the growth rate of the locally treated tumors but had no effect on the growth rate of the distant tumor site. Conversely, encapsulated TAV255-infected CT26 induced a delayed growth rate of both the primary injected tumor and the distant tumor, consistent with a robust immune response. In vivo, intratumorally injected unencapsulated adenoviruses infect CAR-negative cells with only limited efficiency. However, unencapsulated adenoviruses robustly inhibit the growth of CAR-deficient tumors, an effect that constitutes an 'in situ vaccination' by stimulating cytotoxic T cells.
Collapse
Affiliation(s)
- Tao Dong
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jaimin R. Shah
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Abraham T. Phung
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Omonigho Aisagbonhi
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92037, USA
| | - Sarah L. Blair
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | | | - William C. Trogler
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Reid
- EpicentRx, Inc., La Jolla, CA 92037, USA
| | - Andrew C. Kummel
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
91
|
Zhu X, Fan C, Xiong Z, Chen M, Li Z, Tao T, Liu X. Development and application of oncolytic viruses as the nemesis of tumor cells. Front Microbiol 2023; 14:1188526. [PMID: 37440883 PMCID: PMC10335770 DOI: 10.3389/fmicb.2023.1188526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Viruses and tumors are two pathologies that negatively impact human health, but what occurs when a virus encounters a tumor? A global consensus among cancer patients suggests that surgical resection, chemotherapy, radiotherapy, and other methods are the primary means to combat cancer. However, with the innovation and development of biomedical technology, tumor biotherapy (immunotherapy, molecular targeted therapy, gene therapy, oncolytic virus therapy, etc.) has emerged as an alternative treatment for malignant tumors. Oncolytic viruses possess numerous anti-tumor properties, such as directly lysing tumor cells, activating anti-tumor immune responses, and improving the tumor microenvironment. Compared to traditional immunotherapy, oncolytic virus therapy offers advantages including high killing efficiency, precise targeting, and minimal side effects. Although oncolytic virus (OV) therapy was introduced as a novel approach to tumor treatment in the 19th century, its efficacy was suboptimal, limiting its widespread application. However, since the U.S. Food and Drug Administration (FDA) approved the first OV therapy drug, T-VEC, in 2015, interest in OV has grown significantly. In recent years, oncolytic virus therapy has shown increasingly promising application prospects and has become a major research focus in the field of cancer treatment. This article reviews the development, classification, and research progress of oncolytic viruses, as well as their mechanisms of action, therapeutic methods, and routes of administration.
Collapse
Affiliation(s)
- Xiao Zhu
- Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Department of Biological and Chemical Sciences, New York Institute of Technology—Manhattan Campus, New York, NY, United States
| | - Chenyang Fan
- Department of Clinical Medicine, Medicine and Technology, School of Zunyi Medical University, Zunyi, China
| | - Zhuolong Xiong
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Mingwei Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital(Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Xiuqing Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
92
|
Kharouf N, Flanagan TW, Hassan SY, Shalaby H, Khabaz M, Hassan SL, Megahed M, Haikel Y, Santourlidis S, Hassan M. Tumor Microenvironment as a Therapeutic Target in Melanoma Treatment. Cancers (Basel) 2023; 15:3147. [PMID: 37370757 DOI: 10.3390/cancers15123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The role of the tumor microenvironment in tumor growth and therapy has recently attracted more attention in research and drug development. The ability of the microenvironment to trigger tumor maintenance, progression, and resistance is the main cause for treatment failure and tumor relapse. Accumulated evidence indicates that the maintenance and progression of tumor cells is determined by components of the microenvironment, which include stromal cells (endothelial cells, fibroblasts, mesenchymal stem cells, and immune cells), extracellular matrix (ECM), and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles). As a solid tumor, melanoma is not only a tumor mass of monolithic tumor cells, but it also contains supporting stroma, ECM, and soluble molecules. Melanoma cells are continuously in interaction with the components of the microenvironment. In the present review, we focus on the role of the tumor microenvironment components in the modulation of tumor progression and treatment resistance as well as the impact of the tumor microenvironment as a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Naji Kharouf
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Sofie-Yasmin Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Marla Khabaz
- Department of Production, Beta Factory for Veterinary Pharmaceutical Industries, Damascus 0100, Syria
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany
| | - Youssef Haikel
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Mohamed Hassan
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
93
|
Nagalo BM, Zhou Y, Loeuillard EJ, Dumbauld C, Barro O, Elliott NM, Baker AT, Arora M, Bogenberger JM, Meurice N, Petit J, Uson PLS, Aslam F, Raupach E, Gabere M, Basnakian A, Simoes CC, Cannon MJ, Post SR, Buetow K, Chamcheu JC, Barrett MT, Duda DG, Jacobs B, Vile R, Barry MA, Roberts LR, Ilyas S, Borad MJ. Characterization of Morreton virus as an oncolytic virotherapy platform for liver cancers. Hepatology 2023; 77:1943-1957. [PMID: 36052732 DOI: 10.1002/hep.32769] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Morreton virus (MORV) is an oncolytic Vesiculovirus , genetically distinct from vesicular stomatitis virus (VSV). AIM To report that MORV induced potent cytopathic effects (CPEs) in cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) in vitro models. APPROACH AND RESULTS In preliminary safety analyses, high intranasal doses (up to 10 10 50% tissue culture infectious dose [TCID 50 ]) of MORV were not associated with significant adverse effects in immune competent, non-tumor-bearing mice. MORV was shown to be efficacious in a Hep3B hepatocellular cancer xenograft model but not in a CCA xenograft HuCCT1 model. In an immune competent, syngeneic murine CCA model, single intratumoral treatments with MORV (1 × 10 7 TCID 50 ) triggered a robust antitumor immune response leading to substantial tumor regression and disease control at a dose 10-fold lower than VSV (1 × 10 8 TCID 50 ). MORV led to increased CD8 + cytotoxic T cells without compensatory increases in tumor-associated macrophages and granulocytic or monocytic myeloid-derived suppressor cells. CONCLUSIONS Our findings indicate that wild-type MORV is safe and can induce potent tumor regression via immune-mediated and immune-independent mechanisms in HCC and CCA animal models without dose limiting adverse events. These data warrant further development and clinical translation of MORV as an oncolytic virotherapy platform.
Collapse
Affiliation(s)
- Bolni Marius Nagalo
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Yumei Zhou
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Emilien J Loeuillard
- Division of Gastroenterology and Hepatology , Mayo Clinic , Rochester , Minnesota , USA
| | - Chelsae Dumbauld
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Oumar Barro
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Natalie M Elliott
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Alexander T Baker
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Mansi Arora
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - James M Bogenberger
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Nathalie Meurice
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Joachim Petit
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Pedro Luiz Serrano Uson
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
- Center for Personalized Medicine , Hospital Israelita Albert Einstein , São Paulo , Brazil
| | - Faaiq Aslam
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Elizabeth Raupach
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Musa Gabere
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Alexei Basnakian
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- Department of Pharmacology and Toxicology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Camila C Simoes
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Martin J Cannon
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Steven R Post
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Kenneth Buetow
- Computational Sciences and Informatics Program for Complex Adaptive System Arizona State University , Tempe , Arizona , USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences , College of Pharmacy, University of Louisiana , Monroe , Louisiana , USA
| | - Michael T Barrett
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Dan G Duda
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts , USA
| | - Bertram Jacobs
- Center for Infectious Diseases and Vaccinology , the Biodesign Institute, Arizona State University , Tempe , Arizona , USA
| | - Richard Vile
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Mayo Clinic Comprehensive Cancer Center , Phoenix , Minnesota , USA
| | - Michael A Barry
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Mayo Clinic Comprehensive Cancer Center , Phoenix , Minnesota , USA
- Division of Infectious Diseases, Department of Internal Medicine , Mayo Clinic Rochester , Rochester , Minnesota , USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology , Mayo Clinic , Rochester , Minnesota , USA
| | - Sumera Ilyas
- Division of Gastroenterology and Hepatology , Mayo Clinic , Rochester , Minnesota , USA
| | - Mitesh J Borad
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
- Mayo Clinic Comprehensive Cancer Center , Phoenix , Minnesota , USA
- Mayo Clinic Center for Individualized Medicine , Rochester , Minnesota , USA
| |
Collapse
|
94
|
Kanaya N, Kitamura Y, Vazquez ML, Franco A, Chen KS, van Schaik TA, Farzani TA, Borges P, Ichinose T, Seddiq W, Kuroda S, Boland G, Jahan N, Fisher D, Wakimoto H, Shah K. Gene-edited and -engineered stem cell platform drives immunotherapy for brain metastatic melanomas. Sci Transl Med 2023; 15:eade8732. [PMID: 37256936 PMCID: PMC10799631 DOI: 10.1126/scitranslmed.ade8732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Oncolytic virus therapy has shown activity against primary melanomas; however, its efficacy in brain metastases remains challenging, mainly because of the delivery and immunosuppressive nature of tumors in the brain. To address this challenge, we first established PTEN-deficient melanoma brain metastasis mouse models and characterized them to be more immunosuppressive compared with primary melanoma, mimicking the clinical settings. Next, we developed an allogeneic twin stem cell (TSC) system composed of two tumor-targeting stem cell (SC) populations. One SC was loaded with oncolytic herpes simplex virus (oHSV), and the other SC was CRISPR-Cas9 gene-edited to knock out nectin 1 (N1) receptor (N1KO) to acquire resistance to oHSV and release immunomodulators, such as granulocyte-macrophage colony-stimulating factor (GM-CSF). Using mouse models of brain metastatic BRAFV600E/PTEN-/- and BRAFV600E/wt/PTEN-/- mutant melanomas, we show that locoregional delivery of TSCs releasing oHSV and GM-CSF (TSC-G) activated dendritic cell- and T cell-mediated immune responses. In addition, our strategy exhibited greater therapeutic efficacy when compared with the existing oncolytic viral therapeutic approaches. Moreover, the TSCs composed of SC-oHSV and SCN1KO-releasing GM-CSF and single-chain variable fragment anti-PD-1 (TSC-G/P) had therapeutic efficacy in both syngeneic and patient-derived humanized mouse models of leptomeningeal metastasis. Our findings provide a promising allogeneic SC-based immunotherapeutic strategy against melanomas in the CNS and a road map toward clinical translation.
Collapse
Affiliation(s)
- Nobuhiko Kanaya
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yohei Kitamura
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Lopez Vazquez
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arnaldo Franco
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kok-Siong Chen
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thijs A. van Schaik
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Touraj Aligholipour Farzani
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paulo Borges
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Toru Ichinose
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Waleed Seddiq
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Genevieve Boland
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nusrat Jahan
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David Fisher
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hiroaki Wakimoto
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
95
|
Wang M, Wang X, Jin X, Zhou J, Zhang Y, Yang Y, Liu Y, Zhang J. Cell-based and cell-free immunotherapies for glioblastoma: current status and future directions. Front Immunol 2023; 14:1175118. [PMID: 37304305 PMCID: PMC10248152 DOI: 10.3389/fimmu.2023.1175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Glioblastoma (GBM) is among the most fatal and recurring malignant solid tumors. It arises from the GBM stem cell population. Conventional neurosurgical resection, temozolomide (TMZ)-dependent chemotherapy and radiotherapy have rendered the prognosis of patients unsatisfactory. Radiotherapy and chemotherapy can frequently induce non-specific damage to healthy brain and other tissues, which can be extremely hazardous. There is therefore a pressing need for a more effective treatment strategy for GBM to complement or replace existing treatment options. Cell-based and cell-free immunotherapies are currently being investigated to develop new treatment modalities against cancer. These treatments have the potential to be both selective and successful in minimizing off-target collateral harm in the normal brain. In this review, several aspects of cell-based and cell-free immunotherapies related to GBM will be discussed.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiaojie Wang
- Basic Medical School, Shenyang Medical College, Shenyang, Liaoning, China
| | - Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jingjing Zhou
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yiyuan Yang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
96
|
Reale A, Krutzke L, Cadamuro M, Vitiello A, von Einem J, Kochanek S, Palù G, Parolin C, Calistri A. Human Monocytes Are Suitable Carriers for the Delivery of Oncolytic Herpes Simplex Virus Type 1 In Vitro and in a Chicken Embryo Chorioallantoic Membrane Model of Cancer. Int J Mol Sci 2023; 24:ijms24119255. [PMID: 37298206 DOI: 10.3390/ijms24119255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Oncolytic viruses (OVs) are promising therapeutics for tumors with a poor prognosis. An OV based on herpes simplex virus type 1 (oHSV-1), talimogene laherparepvec (T-VEC), has been recently approved by the Food and Drug Administration (FDA) and by the European Medicines Agency (EMA) for the treatment of unresectable melanoma. T-VEC, like most OVs, is administered via intratumoral injection, underlining the unresolved problem of the systemic delivery of the oncolytic agent for the treatment of metastases and deep-seated tumors. To address this drawback, cells with a tropism for tumors can be loaded ex vivo with OVs and used as carriers for systemic oncolytic virotherapy. Here, we evaluated human monocytes as carrier cells for a prototype oHSV-1 with a similar genetic backbone as T-VEC. Many tumors specifically recruit monocytes from the bloodstream, and autologous monocytes can be obtained from peripheral blood. We demonstrate here that oHSV-1-loaded primary human monocytes migrated in vitro towards epithelial cancer cells of different origin. Moreover, human monocytic leukemia cells selectively delivered oHSV-1 to human head-and-neck xenograft tumors grown on the chorioallantoic membrane (CAM) of fertilized chicken eggs after intravascular injection. Thus, our work shows that monocytes are promising carriers for the delivery of oHSV-1s in vivo, deserving further investigation in animal models.
Collapse
Affiliation(s)
- Alberto Reale
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Lea Krutzke
- Department of Gene Therapy, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Adriana Vitiello
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University Medical Center, 89081 Ulm, Germany
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| |
Collapse
|
97
|
Sun F, Xu Y, Deng Z, Yang P. A recombinant oncolytic influenza virus expressing a PD-L1 antibody induces CD8 + T-cell activation via the cGas-STING pathway in mice with hepatocellular carcinoma. Int Immunopharmacol 2023; 120:110323. [PMID: 37207446 DOI: 10.1016/j.intimp.2023.110323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
OBJECTIVE To evaluate targeted killing of hepatocellular carcinoma (HCC) cells by a recombinant oncolytic influenza virus expressing a PD-L1 antibody (rgFlu/PD-L1) and to develop a novel immunotherapy for HCC. METHODS Using influenza virus reverse genetics, a recombinant oncolytic virus was generated in the background of the A/Puerto Rico/8/34 (PR8) virus, then identified via screening and passage in specific pathogen-free chicken embryos. Hepatocellular carcinoma cell killing by rgFlu/PD-L1 was confirmed in vitro and in vivo. Transcriptome analyses were used to explore PD-L1 expression and function. Western blotting revealed that PD-L1 activated the cGas-STING pathway. RESULTS rgFlu/PD-L1 expressed the PD-L1 heavy and light chain in PB1 and PA, respectively; PR8 served as the backbone. The hemagglutinin titer of rgFlu/PD-L1 was 29, and the virus titer was 9-10 logTCID50/mL. Electron microscopy revealed that the rgFlu/PD-L1 morphology and size were consistent with wild-type influenza virus. The MTS assay showed that rgFlu/PD-L1 induced significant killing of HCC cells but not normal cells. rgFlu/PD-L1 inhibited PD-L1 expression and induced apoptosis in HepG2 cells. Notably, rgFlu/PD-L1 controlled the viability and function of CD8+ T cells by activating the cGas-STING pathway. CONCLUSION rgFlu/PD-L1 activated the cGas-STING pathway in CD8+ T cells, causing them to kill HCC cells. This approach represents a novel immunotherapy for liver cancer.
Collapse
Affiliation(s)
- Fang Sun
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Centre, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China; National Clinical Research Center for Infectious Diseases, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Xu
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Centre, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Zhuoya Deng
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Centre, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Penghui Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Centre, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China.
| |
Collapse
|
98
|
Chaurasiya S, Valencia H, Zhang Z, Kim SI, Yang A, Lu J, Woo Y, Warner SG, Ede NJ, Fong Y. An oncolytic poxvirus encoding hNIS, shows anti-tumor efficacy and allows tumor imaging in a liver cancer model. Mol Cancer Ther 2023; 22:MCT-22-0635. [PMID: 37196156 PMCID: PMC10320468 DOI: 10.1158/1535-7163.mct-22-0635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/25/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023]
Abstract
Oncolytic viruses (OVs) are live viruses that can selectively replicate in cancer cells. We have engineered an OV (CF33) to make it cancer-selective through the deletion of its J2R (thymidine kinase) gene. Additionally, this virus has been armed with a reporter gene, human sodium iodide symporter (hNIS), to facilitate non-invasive imaging of tumors using positron emission tomography (PET). In this study we evaluated the oncolytic properties of the virus (CF33-hNIS) in liver cancer model, and its usefulness in tumor imaging. The virus was found to efficiently kill liver cancer cells and the virus-mediated cell death exhibited characteristics of immunogenic death based on the analysis of 3 damage associate molecular patterns (DAMPs): calreticulin, ATP and HMGB1. Furthermore, local or systemic administration of a single dose of the virus showed anti-tumor efficacy against a liver cancer xenograft model in mice and significantly increased survival of treated mice. Lastly, PET scanning was performed following injection of the radioisotope I-124, for imaging of tumors, and a single dose of virus as low as 1E03 pfu, administered intratumorally (I.T.) or intravenously (I.V.), allowed for PET imaging of tumors. In conclusion, CF33-hNIS is safe and effective in controlling human tumor xenografts in nude mice, and it also facilitates non-invasive imaging of tumors.
Collapse
Affiliation(s)
| | - Hannah Valencia
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | - Zhifang Zhang
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | - Annie Yang
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | | | | | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
99
|
Kciuk M, Yahya EB, Mohamed Ibrahim Mohamed M, Rashid S, Iqbal MO, Kontek R, Abdulsamad MA, Allaq AA. Recent Advances in Molecular Mechanisms of Cancer Immunotherapy. Cancers (Basel) 2023; 15:2721. [PMID: 37345057 DOI: 10.3390/cancers15102721] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is among the current leading causes of death worldwide, despite the novel advances that have been made toward its treatment, it is still considered a major public health concern. Considering both the serious impact of cancer on public health and the significant side effects and complications of conventional therapeutic options, the current strategies towards targeted cancer therapy must be enhanced to avoid undesired toxicity. Cancer immunotherapy has become preferable among researchers in recent years compared to conventional therapeutic options, such as chemotherapy, surgery, and radiotherapy. The understanding of how to control immune checkpoints, develop therapeutic cancer vaccines, genetically modify immune cells as well as enhance the activation of antitumor immune response led to the development of novel cancer treatments. In this review, we address recent advances in cancer immunotherapy molecular mechanisms. Different immunotherapeutic approaches are critically discussed, focusing on the challenges, potential risks, and prospects involving their use.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| |
Collapse
|
100
|
Long L, Gao J, Zhang R. PTTG1 Enhances Oncolytic Adenovirus 5 Entry into Pancreatic Adenocarcinoma Cells by Increasing CXADR Expression. Viruses 2023; 15:v15051153. [PMID: 37243239 DOI: 10.3390/v15051153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Pituitary tumor-transforming gene 1 (PTTG1) is overexpressed in various types of tumors and functions as an oncogene; it could also be a potential target in tumor therapy. Meanwhile, the high mortality of pancreatic adenocarcinoma (PAAD) largely depends on the limited effectiveness of therapy. Based on the promising potential of PTTG1 in cancer treatment, we explored the influence of PTTG1 on the treatment of PAAD in this study. The Cancer Genome Atlas Program (TCGA) data showed that higher expression of PTTG1 was associated with higher clinical stages and worse prognosis of pancreatic cancer. In addition, the CCK-8 assay showed that the IC50 of gemcitabine and 5-fluorouracil (5-FU) was increased in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells. The TIDE algorithm indicated that the immune checkpoint blockades' (ICBs) efficiency is poor in the PTTG1 high group. Furthermore, we found that the efficiency of OAd5 was enhanced in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells and poor in BxPC-3-PTTG1low and MIA PaCa-2-PTTG1low cells. We used the OAd5 expressing GFP for transduction. As a result, the fluorescence intensity was enhanced in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells and decreased in BxPC-3-PTTG1low and MIA PaCa-2-PTTG1low cells 24 h after OAd5 transduction. The fluorescence intensity indicated that PTTG1 increased OAd5 entry. The flow cytometry assay showed that OAd5 receptor CXADR expression was enhanced by PTTG1. PTTG1 failed to further enhance OAd5 transduction in the case of CXADR knockdown. In summary, PTTG1 enhanced OAd5 transduction into pancreatic cancer cells by increasing CXADR expression on the cell surface.
Collapse
Affiliation(s)
- Lu Long
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jian Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Ruiyang Zhang
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|