51
|
A hybrid soluble gp130/spike-nanobody fusion protein simultaneously blocks IL-6 trans-signaling and cellular infection with SARS-CoV2. J Virol 2021; 96:e0162221. [PMID: 34935434 PMCID: PMC8865451 DOI: 10.1128/jvi.01622-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can induce mild to life-threatening symptoms. Especially individuals over 60 years of age or with underlying comorbidities, including heart or lung disease and diabetes, or immunocompromised patients are at a higher risk. Fatal multiorgan damage in coronavirus disease 2019 (COVID-19) patients can be attributed to an interleukin-6 (IL-6)-dominated cytokine storm. Consequently, IL-6 receptor (IL-6R) monoclonal antibody treatment for severe COVID-19 cases has been approved for therapy. High concentrations of soluble IL-6R (sIL-6R) were found in COVID-19 intensive care unit patients, suggesting the involvement of IL-6 trans-signaling in disease pathology. Here, in analogy to bispecific antibodies (bsAbs), we developed the first bispecific IL-6 trans-signaling inhibitor, c19s130Fc, which blocks viral infection and IL-6 trans-signaling. c19s130Fc is a designer protein of the IL-6 trans-signaling inhibitor cs130 fused to a single-domain nanobody directed against the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. c19s130Fc binds with high affinity to IL-6:sIL-6R complexes as well as the spike protein of SARS-CoV-2, as shown by surface plasmon resonance. Using cell-based assays, we demonstrate that c19s130Fc blocks IL-6 trans-signaling-induced proliferation and STAT3 phosphorylation in Ba/F3-gp130 cells as well as SARS-CoV-2 infection and STAT3 phosphorylation in Vero cells. Taken together, c19s130Fc represents a new class of bispecific inhibitors consisting of a soluble cytokine receptor fused to antiviral nanobodies and principally demonstrates the multifunctionalization of trans-signaling inhibitors. IMPORTANCE The availability of effective SARS-CoV-2 vaccines is a large step forward in managing the pandemic situation. In addition, therapeutic options, e.g., monoclonal antibodies to prevent viral cell entry and anti-inflammatory therapies, including glucocorticoid treatment, are currently developed or in clinical use to treat already infected patients. Here, we report a novel dual-specificity inhibitor to simultaneously target SARS-CoV-2 infection and virus-induced hyperinflammation. This was achieved by fusing an inhibitor of viral cell entry with a molecule blocking IL-6, a key mediator of SARS-CoV-2-induced hyperinflammation. Through this dual action, this molecule may have the potential to efficiently ameliorate symptoms of COVID-19 in infected individuals.
Collapse
|
52
|
Berg AF, Ettich J, Weitz HT, Krusche M, Floss DM, Scheller J, Moll JM. Exclusive inhibition of IL-6 trans-signaling by soluble gp130 FlyRFc. Cytokine X 2021; 3:100058. [PMID: 34927050 PMCID: PMC8649222 DOI: 10.1016/j.cytox.2021.100058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/15/2021] [Accepted: 11/23/2021] [Indexed: 01/09/2023] Open
Abstract
A variety of sgp130Fc muteins was generated. Introduction of a gp130 SNP (R281Q) into sgp130Fc increases IL-6 specificity. The sgp130Fc variant sgp130FlyR exclusively affects IL-6 trans-signaling.
gp130 is the signal-transducing receptor for the Interleukin (IL)-6 type cytokines IL-6 and IL-11. To induce signaling, IL-6 forms a complex with IL-6 receptor (IL-6R) and IL-11 with IL-11 receptor (IL-11R). Membrane-bound IL-6R and IL-11R in complex with gp130 and the cytokine mediate classic-signaling, whereas trans-signaling needs soluble IL-6R and IL-11R variants. Interleukin (IL)-6 trans-signaling is of particular importance because it drives the development of autoimmune diseases, including rheumatoid arthritis and chronic inflammatory bowel diseases, whereas a role for IL-11 trans-signaling remains elusive. Soluble gp130 selectively inhibits trans-signaling of IL-6 whereas both, classic- and trans-signaling are abrogated by IL-6- and IL-6R-antibodies. Recently, we described an optimized sgp130 variant, which carries three amino acid substitutions T102Y/Q113F/N114L (sgp130FlyFc) resulting in reduced inhibition of IL-11 trans-signaling by increasing the affinity of sgp130 for the site I of IL-6. Moreover, we described that the patient mutation R281Q in gp130 results in reduced IL-11 signaling. Here, we show that the combination of T102Y/Q113F/N114L and R281Q in the new variant sgp130FlyRFc results in complete preservation of IL-11 mediated trans-signaling, whereas inhibition of IL-6 trans-signaling is maintained. Since sgp130Fc (olamkicept) has successfully completed a phase IIa trial in Crohn’s disease (CD) and ulcerative colitis, sgp130FlyRFc might serve as second-generation therapeutic to diminish IL-11 trans-signaling cross-reactivity.
Collapse
Affiliation(s)
- Anna F Berg
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hendrik T Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Matthias Krusche
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
53
|
Lokau J, Garbers Y, Grötzinger J, Garbers C. A single aromatic residue in sgp130Fc/olamkicept allows the discrimination between interleukin-6 and interleukin-11 trans-signaling. iScience 2021; 24:103309. [PMID: 34765926 PMCID: PMC8571719 DOI: 10.1016/j.isci.2021.103309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Blocking the activity of cytokines is an efficient strategy to combat inflammatory diseases. Interleukin-6 (IL-6) fulfills its pro-inflammatory properties via its soluble receptor (IL-6 trans-signaling). The selective trans-signaling inhibitor olamkicept (sgp130Fc) is currently in clinical development. We have previously shown that sgp130Fc can also efficiently block trans-signaling of the closely related cytokine IL-11, which elicits the question how selectivity for one of the two cytokines can be achieved. Using structural information, we show that the interfaces between IL-6R-gp130 and IL-11R-gp130, respectively, within the so-called site III are different between the two cytokines. Modification of an aromatic cluster around Q113 of gp130 within these interfaces allows the discrimination between IL-6 and IL-11 trans-signaling. Using recombinant sgp130Fc variants, we demonstrate that these differences can indeed be exploited to generate a truly selective IL-6 trans-signaling inhibitor. Our data highlight how the selectivity of a clinically relevant designer protein can be further improved.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Yvonne Garbers
- Institute of Psychology, Kiel University, 24118 Kiel, Germany
| | | | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| |
Collapse
|
54
|
Rose-John S. Local and systemic effects of interleukin-6 (IL-6) in inflammation and cancer. FEBS Lett 2021; 596:557-566. [PMID: 34738234 DOI: 10.1002/1873-3468.14220] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Interleukin-6 (IL-6) is an inflammatory cytokine, the level of which is highly elevated in most, if not all, inflammatory states. IL-6 triggers cell type-specific responses and acts on target cells via a specific interleukin-6 receptor (IL-6R), which, together with IL-6, binds to and induces the dimerization of a second receptor subunit, gp130. IL-6 also binds to soluble IL-6R, and this complex interacts with gp130, regardless of IL-6R expression. This allows cells that do not express IL-6R and would be otherwise insensitive to IL-6 to respond to it. We have generated a constitutively active version of gp130 by forced leucine-zipper-mediated dimerization, named L-gp130. Once inserted into the Rosa26 locus of mice, L-gp130 can be activated in a cell-autonomous manner by crossing these mice with any Cre-recombinase transgenic mouse strain. Activation of gp130 in hepatocytes produced liver-specific effects such as the induction of acute-phase proteins, but it also had profound systemic effects on the immune system. Such local and systemic effects of interleukin-6 will be reviewed.
Collapse
|
55
|
Gellrich A, Scharfenberg F, Peters F, Sammel M, Helm O, Armbrust F, Schmidt F, Lokau J, Garbers C, Sebens S, Arnold P, Becker-Pauly C. Characterization of the Cancer-Associated Meprin Βeta Variants G45R and G89R. Front Mol Biosci 2021; 8:702341. [PMID: 34692768 PMCID: PMC8526939 DOI: 10.3389/fmolb.2021.702341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Meprin β is a metalloprotease associated with neurodegeneration, inflammation, extracellular matrix homeostasis, transendothelial cell migration, and cancer. In this study, we investigated two melanoma-associated variants of meprin β, both exhibiting a single amino acid exchange, namely, meprin β G45R and G89R. Based on the structural data of meprin β and with regard to the position of the amino acid exchanges, we hypothesized an increase in proteolytic activity in the case of the G45R variant due to the induction of a potential new activation site and a decrease in proteolytic activity from the G89R variant due to structural instability. Indeed, the G89R variant showed, overall, a reduced expression level compared to wild-type meprin β, accompanied by decreased activity and lower cell surface expression but strong accumulation in the endoplasmic reticulum. This was further supported by the analysis of the shedding of the interleukin-6 receptor (IL-6R) by meprin β and its variants. In transfected HEK cells, the G89R variant was found to generate less soluble IL-6R, whereas the expression of meprin β G45R resulted in increased shedding of the IL-6R compared to wild-type meprin β and the G89R variant. A similar tendency of the induced shedding capacity of G45R was seen for the well-described meprin β substrate CD99. Furthermore, employing an assay for cell migration in a collagen IV matrix, we observed that the transfection of wild-type meprin β and the G45R variant resulted in increased migration of HeLa cells, while the G89R variant led to diminished mobility.
Collapse
Affiliation(s)
| | | | - Florian Peters
- Department of Ophthalmology, Laboratory for Retinal Cell Biology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Sammel
- Biochemical Institute, Kiel University, Kiel, Germany
| | - Ole Helm
- Institute for Experimental Cancer Research, Kiel University, Kiel, Germany
| | - Fred Armbrust
- Biochemical Institute, Kiel University, Kiel, Germany
| | | | - Juliane Lokau
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Christoph Garbers
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University, Kiel, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, FAU Erlangen, Erlangen, Germany
| | | |
Collapse
|
56
|
Fung KY, Louis C, Metcalfe RD, Kosasih CC, Wicks IP, Griffin MDW, Putoczki TL. Emerging roles for IL-11 in inflammatory diseases. Cytokine 2021; 149:155750. [PMID: 34689057 DOI: 10.1016/j.cyto.2021.155750] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
Interleukin-11 (IL-11) is a cytokine that has been strongly implicated in the pathogenesis of fibrotic diseases and solid malignancies. Elevated IL-11 expression is also associated with several non-malignant inflammatory diseases where its function remains less well-characterized. Here, we summarize current literature surrounding the contribution of IL-11 to the pathogenesis of autoimmune inflammatory diseases, including rheumatoid arthritis, multiple sclerosis, diabetes and systemic sclerosis, as well as other chronic inflammatory conditions such as periodontitis, asthma, chronic obstructive pulmonary disease, psoriasis and colitis.
Collapse
Affiliation(s)
- Ka Yee Fung
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3053, Australia.
| | - Cynthia Louis
- Department of Medical Biology, University of Melbourne, Victoria 3053, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia
| | - Riley D Metcalfe
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Clara C Kosasih
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Ian P Wicks
- Department of Medical Biology, University of Melbourne, Victoria 3053, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Rheumatology Unit, The Royal Melbourne Hospital, Victoria 3050, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3053, Australia.
| |
Collapse
|
57
|
Fiebelkow J, Guendel A, Guendel B, Mehwald N, Jetka T, Komorowski M, Waldherr S, Schaper F, Dittrich A. The tyrosine phosphatase SHP2 increases robustness and information transfer within IL-6-induced JAK/STAT signalling. Cell Commun Signal 2021; 19:94. [PMID: 34530865 PMCID: PMC8444181 DOI: 10.1186/s12964-021-00770-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Background Cell-to-cell heterogeneity is an inherent feature of multicellular organisms and is central in all physiological and pathophysiological processes including cellular signal transduction. The cytokine IL-6 is an essential mediator of pro- and anti-inflammatory processes. Dysregulated IL-6-induced intracellular JAK/STAT signalling is associated with severe inflammatory and proliferative diseases. Under physiological conditions JAK/STAT signalling is rigorously controlled and timely orchestrated by regulatory mechanisms such as expression of the feedback-inhibitor SOCS3 and activation of the protein-tyrosine phosphatase SHP2 (PTPN11). Interestingly, the function of negative regulators seems not to be restricted to controlling the strength and timely orchestration of IL-6-induced STAT3 activation. Exemplarily, SOCS3 increases robustness of late IL-6-induced STAT3 activation against heterogenous STAT3 expression and reduces the amount of information transferred through JAK/STAT signalling. Methods Here we use multiplexed single-cell analyses and information theoretic approaches to clarify whether also SHP2 contributes to robustness of STAT3 activation and whether SHP2 affects the amount of information transferred through IL-6-induced JAK/STAT signalling. Results SHP2 increases robustness of both basal, cytokine-independent STAT3 activation and early IL-6-induced STAT3 activation against differential STAT3 expression. However, SHP2 does not affect robustness of late IL-6-induced STAT3 activation. In contrast to SOCS3, SHP2 increases the amount of information transferred through IL-6-induced JAK/STAT signalling, probably by reducing cytokine-independent STAT3 activation and thereby increasing sensitivity of the cells. These effects are independent of SHP2-dependent MAPK activation. Conclusion In summary, the results of this study extend our knowledge of the functions of SHP2 in IL-6-induced JAK/STAT signalling. SHP2 is not only a repressor of basal and cytokine-induced STAT3 activity, but also ensures robustness and transmission of information.![]() Plain English summary Cells within a multicellular organism communicate with each other to exchange information about the environment. Communication between cells is facilitated by soluble molecules that transmit information from one cell to the other. Cytokines such as interleukin-6 are important soluble mediators that are secreted when an organism is faced with infections or inflammation. Secreted cytokines bind to receptors within the membrane of their target cells. This binding induces activation of an intracellular cascade of reactions called signal transduction, which leads to cellular responses. An important example of intracellular signal transduction is JAK/STAT signalling. In healthy organisms signalling is controlled and timed by regulatory mechanisms, whose activation results in a controlled shutdown of signalling pathways. Interestingly, not all cells within an organism are identical. They differ in the amount of proteins involved in signal transduction, such as STAT3. These differences shape cellular communication and responses to intracellular signalling. Here, we show that an important negative regulatory protein called SHP2 (or PTPN11) is not only responsible for shutting down signalling, but also for steering signalling in heterogeneous cell populations. SHP2 increases robustness of STAT3 activation against variable STAT3 amounts in individual cells. Additionally, it increases the amount of information transferred through JAK/STAT signalling by increasing the dynamic range of pathway activation in heterogeneous cell populations. This is an amazing new function of negative regulatory proteins that contributes to communication in heterogeneous multicellular organisms in health and disease. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00770-7.
Collapse
Affiliation(s)
- Jessica Fiebelkow
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - André Guendel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Beate Guendel
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.,Karolinska Institutet, Clintec, Huddinge, Sweden
| | - Nora Mehwald
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Tomasz Jetka
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong, Hong Kong
| | - Michal Komorowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warszawa, Poland
| | | | - Fred Schaper
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Dynamic Systems: Systems Engineering (CDS), Otto-von-Guericke University, Magdeburg, Germany.,Magdeburg Center for Systems Biology (MACS), Otto-von-Guericke University, Magdeburg, Germany
| | - Anna Dittrich
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany. .,Center for Dynamic Systems: Systems Engineering (CDS), Otto-von-Guericke University, Magdeburg, Germany. .,Magdeburg Center for Systems Biology (MACS), Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
58
|
Nara H, Watanabe R. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. Int J Mol Sci 2021; 22:ijms22189889. [PMID: 34576053 PMCID: PMC8471880 DOI: 10.3390/ijms22189889] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-6 has been studied since its discovery for its role in health and diseases. It is one of the most important pro-inflammatory cytokines. IL-6 was reported as an exacerbating factor in coronavirus disease. In recent years, it has become clear that the function of muscle-derived IL-6 is different from what has been reported so far. Exercise is accompanied by skeletal muscle contraction, during which, several bioactive substances, collectively named myokines, are secreted from the muscles. Many reports have shown that IL-6 is the most abundant myokine. Interestingly, it was indicated that IL-6 plays opposing roles as a myokine and as a pro-inflammatory cytokine. In this review, we discuss why IL-6 has different functions, the signaling mode of hyper-IL-6 via soluble IL-6 receptor (sIL-6R), and the involvement of soluble glycoprotein 130 in the suppressive effect of hyper-IL-6. Furthermore, the involvement of a disintegrin and metalloprotease family molecules in the secretion of sIL-6R is described. One of the functions of muscle-derived IL-6 is lipid metabolism in the liver. However, the differences between the functions of IL-6 as a pro-inflammatory cytokine and the functions of muscle-derived IL-6 are unclear. Although the involvement of myokines in lipid metabolism in adipocytes was previously discussed, little is known about the direct relationship between nonalcoholic fatty liver disease and muscle-derived IL-6. This review is the first to discuss the relationship between the function of IL-6 in diseases and the function of muscle-derived IL-6, focusing on IL-6 signaling and lipid metabolism in the liver.
Collapse
|
59
|
Rose-John S. Blocking only the bad side of IL-6 in inflammation and cancer. Cytokine 2021; 148:155690. [PMID: 34474215 DOI: 10.1016/j.cyto.2021.155690] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6) is considered an inflammatory cytokine, which is involved not only in most inflammatory states but it also plays a prominent role in inflammation associated cancers. The response of cells to the cytokine strictly depends on the presence of the IL-6 receptor (IL-6R),which presents IL-6 to the signal transducing receptor subunit gp130, which is expressed on all cells of the body. The expression of IL-6R is limited to some cells, which are therefore IL-6 target cells. The IL-6R can be cleaved by proteases and the thus generated soluble IL-6R (sIL-6R) still binds the ligand IL-6. The complex of IL-6 and sIL-6R can bind to gp130 on any cell, induce dimerization of gp130 and intracellular signaling. This process has been named IL-6 trans-signaling. A fusion protein of soluble gp130 with the constant portion of human IgG1 (sgp130Fc) turned out to be a potent and specific inhibitor of IL-6 trans-signaling. In many animal models of human diseases the significance of IL-6 trans-signaling has been analyzed. It turned out that the activities of IL-6 mediated by the sIL-6R are the pro-inflammatory activities of the cytokine whereas activities of IL-6 mediated by the membrane-bound IL-6R are rather protective and regenerative. The sgp130Fc protein has recently been developed into a biologic. The possible consequences of a specific IL-6 trans-signaling blockade is discussed in the light of the recent successfully concluded phase II clinical trials in patients with inflammatory bowel disease.
Collapse
|
60
|
Dong J, Viswanathan S, Adami E, Schafer S, Kuthubudeen FF, Widjaja AA, Cook SA. The pro-regenerative effects of hyperIL6 in drug-induced liver injury are unexpectedly due to competitive inhibition of IL11 signaling. eLife 2021; 10:68843. [PMID: 34435951 PMCID: PMC8445623 DOI: 10.7554/elife.68843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/24/2021] [Indexed: 01/20/2023] Open
Abstract
It is generally accepted that IL6-mediated STAT3 signaling in hepatocytes, mediated via glycoprotein 130 (gp130; IL6ST), is beneficial and that the synthetic IL6:IL6ST fusion protein (HyperIL6) promotes liver regeneration. Recently, autocrine IL11 activity that also acts via IL6ST but uses ERK rather than STAT3 to signal, was found to be hepatotoxic. Here we examined whether the beneficial effects of HyperIL6 could reflect unappreciated competitive inhibition of IL11-dependent IL6ST signaling. In human and mouse hepatocytes, HyperIL6 reduced N-acetyl-p-aminophenol (APAP)-induced cell death independent of STAT3 activation and instead, dose-dependently, inhibited IL11-related signaling and toxicities. In mice, expression of HyperIl6 reduced ERK activation and promoted STAT3-independent hepatic regeneration (PCNA, Cyclin D1, Ki67) following administration of either IL11 or APAP. Inhibition of putative intrinsic IL6 trans-signaling had no effect on liver regeneration in mice. Following APAP, mice deleted for Il11 exhibited spontaneous liver repair but HyperIl6, despite robustly activating STAT3, had no effect on liver regeneration in this strain. These data show that synthetic IL6ST binding proteins such as HyperIL6 can have unexpected, on-target effects and suggest IL11, not IL6, as important for liver regeneration.
Collapse
Affiliation(s)
- Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Eleonora Adami
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Fathima F Kuthubudeen
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, United Kingdom
| |
Collapse
|
61
|
Heise D, Derrac Soria A, Hansen S, Dambietz C, Akbarzadeh M, Berg AF, Waetzig GH, Jones SA, Dvorsky R, Ahmadian MR, Scheller J, Moll JM. Selective inhibition of IL-6 trans-signaling by a miniaturized, optimized chimeric soluble gp130 inhibits T H17 cell expansion. Sci Signal 2021; 14:eabc3480. [PMID: 34404751 DOI: 10.1126/scisignal.abc3480] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cytokine interleukin-6 (IL-6) signals through three mechanisms called classic signaling, trans-signaling, and trans-presentation. IL-6 trans-signaling is distinctly mediated through a soluble form of its transmembrane receptor IL-6R (sIL-6R) and the coreceptor gp130 and is implicated in multiple autoimmune diseases. Although a soluble form of gp130 (sgp130) inhibits only IL-6 trans-signaling, it also blocks an analogous trans-signaling mechanism of IL-11 and its soluble receptor sIL-11R. Here, we report miniaturized chimeric soluble gp130 variants that efficiently trap IL-6:sIL-6R but not IL-11:sIL-11R complexes. We designed a novel IL-6 trans-signaling trap by fusing a miniaturized sgp130 variant to an IL-6:sIL-6R complex-binding nanobody and the Fc portion of immunoglobulin G (IgG). This trap, called cs-130Fc, exhibited improved inhibition of as well as increased selectivity for IL-6 trans-signaling compared to the conventional fusion protein sgp130Fc. We introduced affinity-enhancing mutations in cs-130Fc and sgp130Fc that further improved selectivity toward IL-6 trans-signaling. Moreover, cs-130Fc efficiently inhibited the expansion of T helper 17 (TH17) cells in cultures of mouse CD4+ T cells treated with IL-6:sIL-6R. Thus, these variants may provide or lead to the development of more precisely targeted therapeutics for inflammatory disorders associated with IL-6 trans-signaling.
Collapse
Affiliation(s)
- Denise Heise
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Alicia Derrac Soria
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Selina Hansen
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Christine Dambietz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Mohammad Akbarzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Anna F Berg
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Georg H Waetzig
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel 24105, Germany
- CONARIS Research Institute AG, Kiel 24118, Germany
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany.
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany.
| |
Collapse
|
62
|
Kim L, Park SA, Park H, Kim H, Heo TH. Bazedoxifene, a GP130 Inhibitor, Modulates EMT Signaling and Exhibits Antitumor Effects in HPV-Positive Cervical Cancer. Int J Mol Sci 2021; 22:ijms22168693. [PMID: 34445405 PMCID: PMC8395523 DOI: 10.3390/ijms22168693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Persistent HPV (Human Papillomavirus) infection is the primary cause of cervical cancer. Despite the development of the HPV vaccine to prevent infections, cervical cancer is still a fatal malignant tumor and metastatic disease, and it is often difficult to treat, so a new treatment strategy is needed. The FDA-approved drug Bazedoxifene is a novel inhibitor of protein–protein interactions between IL-6 and GP130. Multiple ligand simultaneous docking and drug repositioning approaches have demonstrated that an IL-6/GP130 inhibitor can act as a selective estrogen modulator. However, the molecular basis for GP130 activation in cervical cancer remains unclear. In this study, we investigated the anticancer properties of Bazedoxifene in HPV-positive cervical cancer cells. In vitro and in vivo experiments showed that Bazedoxifene inhibited cell invasion, migration, colony formation, and tumor growth in cervical cancer cells. We also confirmed that Bazedoxifene inhibits the GP130/STAT3 pathway and suppresses the EMT (Epithelial-mesenchymal transition) sub-signal. Thus, these data not only suggest a molecular mechanism by which the GP130/STAT3 pathway may promote cancer, but also may provide a basis for cervical cancer replacement therapy.
Collapse
Affiliation(s)
| | | | | | - Heejung Kim
- Correspondence: (H.K.); (T.-H.H.); Tel.: +82-2-2164-4088 (T.-H.H. & H.K.)
| | - Tae-Hwe Heo
- Correspondence: (H.K.); (T.-H.H.); Tel.: +82-2-2164-4088 (T.-H.H. & H.K.)
| |
Collapse
|
63
|
Reusswig F, Fazel Modares N, Brechtenkamp M, Wienands L, Krüger I, Behnke K, Lee‐Sundlov MM, Herebian D, Scheller J, Hoffmeister KM, Häussinger D, Elvers M. Efficiently Restored Thrombopoietin Production by Ashwell-Morell Receptor and IL-6R Induced Janus Kinase 2/Signal Transducer and Activator of Transcription Signaling Early After Partial Hepatectomy. Hepatology 2021; 74:411-427. [PMID: 33369745 PMCID: PMC8236498 DOI: 10.1002/hep.31698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/09/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Thrombocytopenia has been described in most patients with acute and chronic liver failure. Decreased platelet production and decreased half-life of platelets might be a consequence of low levels of thrombopoietin (TPO) in these patients. Platelet production is tightly regulated to avoid bleeding complications after vessel injury and can be enhanced under elevated platelet destruction as observed in liver disease. Thrombopoietin (TPO) is the primary regulator of platelet biogenesis and supports proliferation and differentiation of megakaryocytes. APPROACH AND RESULTS Recent work provided evidence for the control of TPO mRNA expression in liver and bone marrow (BM) by scanning circulating platelets. The Ashwell-Morell receptor (AMR) was identified to bind desialylated platelets to regulate hepatic thrombopoietin (TPO) production by Janus kinase (JAK2)/signal transducer and activator of transcription (STAT3) activation. Two-thirds partial hepatectomy (PHx) was performed in mice. Platelet activation and clearance by AMR/JAK2/STAT3 signaling and TPO production were analyzed at different time points after PHx. Here, we demonstrate that PHx in mice led to thrombocytopenia and platelet activation defects leading to bleeding complications, but unaltered arterial thrombosis, in these mice. Platelet counts were rapidly restored by up-regulation and crosstalk of the AMR and the IL-6 receptor (IL-6R) to induce JAK2-STAT3-TPO activation in the liver, accompanied by an increased number of megakaryocytes in spleen and BM before liver was completely regenerated. CONCLUSIONS The AMR/IL-6R-STAT3-TPO signaling pathway is an acute-phase response to liver injury to reconstitute hemostasis. Bleeding complications were attributable to thrombocytopenia and platelet defects induced by elevated PGI2 , NO, and bile acid plasma levels early after PHx that might also be causative for the high mortality in patients with liver disease.
Collapse
Affiliation(s)
- Friedrich Reusswig
- Clinic of Vascular and Endovascular SurgeryMedical Faculty and University HospitalDüsseldorfGermany
| | - Nastaran Fazel Modares
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Marius Brechtenkamp
- Clinic of Vascular and Endovascular SurgeryMedical Faculty and University HospitalDüsseldorfGermany
| | - Leonard Wienands
- Clinic of Vascular and Endovascular SurgeryMedical Faculty and University HospitalDüsseldorfGermany
| | - Irena Krüger
- Clinic of Vascular and Endovascular SurgeryMedical Faculty and University HospitalDüsseldorfGermany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | | | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric CardiologyMedical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | | | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious DiseasesMedical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Margitta Elvers
- Clinic of Vascular and Endovascular SurgeryMedical Faculty and University HospitalDüsseldorfGermany
| |
Collapse
|
64
|
Schmidt-Arras D, Rose-John S. Endosomes as Signaling Platforms for IL-6 Family Cytokine Receptors. Front Cell Dev Biol 2021; 9:688314. [PMID: 34141712 PMCID: PMC8204807 DOI: 10.3389/fcell.2021.688314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin-6 (IL-6) is the name-giving cytokine of a family of eleven members, including IL-6, CNTF, LIF, and IL-27. IL-6 was first recognized as a B-cell stimulating factor but we now know that the cytokine plays a pivotal role in the orchestration of inflammatory processes as well as in inflammation associated cancer. Moreover, IL-6 is involved in metabolic regulation and it has been shown to be involved in major neural activities such as neuroprotection, which can help to repair and to reduce brain damage. Receptor complexes of all members formed at the plasma membrane contain one or two molecules of the signaling receptor subunit GP130 and the mechanisms of signal transduction are well understood. IL-6 type cytokines can also signal from endomembranes, in particular the endosome, and situations have been reported in which endocytosis of receptor complexes are a prerequisite of intracellular signaling. Moreover, pathogenic GP130 variants were shown to interfere with spatial activation of downstream signals. We here summarize the molecular mechanisms underlying spatial regulation of IL-6 family cytokine signaling and discuss its relevance for pathogenic processes.
Collapse
Affiliation(s)
- Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
65
|
Schreiber S, Aden K, Bernardes JP, Conrad C, Tran F, Höper H, Volk V, Mishra N, Blase JI, Nikolaus S, Bethge J, Kühbacher T, Röcken C, Chen M, Cottingham I, Petri N, Rasmussen BB, Lokau J, Lenk L, Garbers C, Feuerhake F, Rose-John S, Waetzig GH, Rosenstiel P. Therapeutic Interleukin-6 Trans-signaling Inhibition by Olamkicept (sgp130Fc) in Patients With Active Inflammatory Bowel Disease. Gastroenterology 2021; 160:2354-2366.e11. [PMID: 33667488 DOI: 10.1053/j.gastro.2021.02.062] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS A large unmet therapeutic need exists in inflammatory bowel disease (IBD). Inhibition of interleukin (IL)-6 appears to be effective, but the therapeutic benefit of a complete IL6/IL6 receptor (IL6R) blockade is limited by profound immunosuppression. Evidence has emerged that chronic proinflammatory activity of IL6 is mainly mediated by trans-signaling via a complex of IL6 bound to soluble IL6R engaging the gp130 co-receptor without the need for membrane-bound IL6R. We have developed a decoy protein, sgp130Fc, that exclusively blocks IL6 proinflammatory trans-signaling and has shown efficacy in preclinical models of IBD, without signs of immunosuppression. METHODS We present a 12-week, open-label, prospective phase 2a trial (FUTURE) in 16 patients with active IBD treated with the trans-signaling inhibitor olamkicept (sgp130Fc) to assess the molecular mechanisms, safety, and effectiveness of IL6 trans-signaling blockade in vivo. We performed in-depth molecular profiling at various timepoints before and after therapy induction to identify the mechanism of action of olamkicept. RESULTS Olamkicept was well tolerated and induced clinical response in 44% and clinical remission in 19% of patients. Clinical effectiveness coincided with target inhibition (reduction of phosphorylated STAT3) and marked transcriptional changes in the inflamed mucosa. An olamkicept-specific transcriptional signature, distinguishable from remission signatures of anti-tumor necrosis factor (infliximab) or anti-integrin (vedolizumab) therapies was identified. CONCLUSIONS Our data suggest that blockade of IL6 trans-signaling holds great promise for the therapy of IBD and should undergo full clinical development as a new immunoregulatory therapy for IBD. (EudraCT no., Nu 2016-000205-36).
Collapse
Affiliation(s)
- Stefan Schreiber
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Konrad Aden
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Joana P Bernardes
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Claudio Conrad
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Florian Tran
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hanna Höper
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Valery Volk
- Institute for Pathology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johanna Ira Blase
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Susanna Nikolaus
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johannes Bethge
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Christoph Röcken
- Department of Pathology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Minhu Chen
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Niclas Petri
- Ferring Pharmaceuticals A/S, Copenhagen S, Denmark
| | | | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Lennart Lenk
- Department of Pediatrics I, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Friedrich Feuerhake
- Institute for Pathology, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Georg H Waetzig
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Conaris Research Institute AG, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
66
|
Rose-John S. Therapeutic targeting of IL-6 trans-signaling. Cytokine 2021; 144:155577. [PMID: 34022535 DOI: 10.1016/j.cyto.2021.155577] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine, which is involved in innate and acquired immunity, in neural cell maintenance and in metabolism. IL-6 can be synthesized by many different cells including myeloid cells, fibroblasts, endothelial cells and lymphocytes. The synthesis of IL-6 is strongly stimulated by Toll like receptors and by IL-1. Therefore, IL-6 levels in the body are high during infection and inflammatory processes. Moreover, IL-6 is a prominent growth factor of tumor cells and plays a major role in inflammation associated cancer. On target cells, IL-6 binds to an IL-6 receptor, which is not signaling competent. The complex of IL-6 and IL-6 receptor associate with a second receptor subunit, glycoprotein gp130, which dimerizes and initiates intracellular signaling. Cells, which do not express the IL-6 receptor are not responsive to IL-6. They can, however, be stimulated by the complex of IL-6 and a soluble form of the IL-6 receptor, which is generated by limited proteolysis and to a lesser extent by translation from an alternatively spliced mRNA. This process has been named IL-6 trans-signaling. This review article will explain the biology of IL-6 trans-signaling and the specific inhibition of this mode of signaling, which has been recognized to be fundamental in inflammation and cancer.
Collapse
|
67
|
Sharma S. Interleukin-6 Trans-signaling: A Pathway With Therapeutic Potential for Diabetic Retinopathy. Front Physiol 2021; 12:689429. [PMID: 34093244 PMCID: PMC8170152 DOI: 10.3389/fphys.2021.689429] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Affiliation(s)
- Shruti Sharma
- Center for Biotechnology & Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
68
|
Zuaiter M, Axelrod JH, Pizov G, Gofrit ON. Hyper-Interleukin-6 Protects Against Renal Ischemic-Reperfusion Injury-A Mouse Model. Front Surg 2021; 8:605675. [PMID: 34055865 PMCID: PMC8155529 DOI: 10.3389/fsurg.2021.605675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/15/2021] [Indexed: 01/20/2023] Open
Abstract
Background: Most of the ischemia-reperfusion injury (IR-I) occurs during reperfusion and is mediated by the immune system. In this study we determined whether immunomodulation with hyper-Interleukin-6 (a recombinant designer cytokine composed of interleukin-6 linked to its soluble receptor) is protective against IR-I in mice kidneys. Methods: Hyper-Interleukin-6 (HIL-6) was administered by in vivo plasmid DNA transfection to 10 male mice. Twenty-four hours later, unilateral nephrectomy was done. IR-I immediately followed by closure of the remaining kidney vascular pedicle for 40 min. Seven mice transfected with non-coding control plasmid served as the control group. The functional and morphological effects of IR-I and its effect on mice longevity were explored. This was done by serial blood tests and by histopathology done upon sacrifice of the animals at post-operative day 7. Findings: Mice pretreated with HIL-6 had a mean creatinine level at post-operative day 1 of 35.45 ± 4.03 μmol/l and mean Urea level was 14.18 ± 2.69 mmol/l, whereas mean creatinine was 89.33 ± 69.27 μmol/l (P = 0.025), and mean urea was 38.17 ± 20.77 mmol/l (P = 0.0024) in the control group. Histological changes in the control group included inflammatory infiltration, tubular damage, and architectural distortion. These were not seen in the treatment group. Seven days post-operatively the survival rate of treated mice was 100% compared to 50% in the control group (P = 0.015). Interpretation: In this single kidney mouse model, pretreatment with HIL-6 administration effectively protected against IR-I both morphologically and functionally. Further studies are needed to better understand the mechanism and feasibility of using this immunomodulator.
Collapse
Affiliation(s)
- Mohammad Zuaiter
- Department of Urology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Jonathan H Axelrod
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Galina Pizov
- Department of Pathology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Ofer N Gofrit
- Department of Urology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
69
|
Mossner S, Floss DM, Scheller J. Pro- and anti-apoptotic fate decisions induced by di- and trimeric synthetic cytokine receptors. iScience 2021; 24:102471. [PMID: 34113818 PMCID: PMC8169946 DOI: 10.1016/j.isci.2021.102471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/30/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022] Open
Abstract
Synthetic strategies to activate cytokine receptors so far only address standard dimeric cytokine receptor assemblies. The 19 ligands of the tumor necrosis factor superfamily (TNFSF), however, form noncovalent trimers and receptor trimerization is considered to be essential for receptor activation. Synthetic TNFR1, TNFR2, and Fas/CD95 receptors were activated by synthetic trimeric ligands which induced NF-κB signaling or Caspase-induced apoptosis. Albeit dimeric receptor activation did not induce synthetic TNFR1 and TNFR2 signaling, dimeric FasL induced extenuated apoptosis. Simultaneous integration of dimeric Interleukin (IL-)6 receptor gp130 and trimeric Fas as synthetic cytokine receptors in one cell enabled binary cell fate decisions, gp130-mediated proliferation or Fas-mediated apoptosis. In summary, our modular fully synthetic cytokine signaling system allows precisely orchestrated cellular responses to selectively induce pro- and anti-apoptotic signaling via canonical dimeric receptors of the IL-6 family and non-canonical trimeric receptor complexes of the TNF superfamily. SyCyRs induce TNFR1 or TNFR2 mediated NF-κB activation as trimers or oligomers. Fas-SyCyR induces Caspase-induced apoptosis as trimer and as dimer. Synthetic loss of function Fas-SyCyR fails to induce Caspase mediated apoptosis. gp130-and Fas-SyCyR in one cell enable proliferation via gp130 or apoptosis via Fas.
Collapse
Affiliation(s)
- Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Doreen Manuela Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
70
|
Wilmes S, Jeffrey PA, Martinez-Fabregas J, Hafer M, Fyfe PK, Pohler E, Gaggero S, López-García M, Lythe G, Taylor C, Guerrier T, Launay D, Mitra S, Piehler J, Molina-París C, Moraga I. Competitive binding of STATs to receptor phospho-Tyr motifs accounts for altered cytokine responses. eLife 2021; 10:66014. [PMID: 33871355 PMCID: PMC8099432 DOI: 10.7554/elife.66014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/18/2021] [Indexed: 12/29/2022] Open
Abstract
Cytokines elicit pleiotropic and non-redundant activities despite strong overlap in their usage of receptors, JAKs and STATs molecules. We use IL-6 and IL-27 to ask how two cytokines activating the same signaling pathway have different biological roles. We found that IL-27 induces more sustained STAT1 phosphorylation than IL-6, with the two cytokines inducing comparable levels of STAT3 phosphorylation. Mathematical and statistical modeling of IL-6 and IL-27 signaling identified STAT3 binding to GP130, and STAT1 binding to IL-27Rα, as the main dynamical processes contributing to sustained pSTAT1 levels by IL-27. Mutation of Tyr613 on IL-27Rα decreased IL-27-induced STAT1 phosphorylation by 80% but had limited effect on STAT3 phosphorgylation. Strong receptor/STAT coupling by IL-27 initiated a unique gene expression program, which required sustained STAT1 phosphorylation and IRF1 expression and was enriched in classical Interferon Stimulated Genes. Interestingly, the STAT/receptor coupling exhibited by IL-6/IL-27 was altered in patients with systemic lupus erythematosus (SLE). IL-6/IL-27 induced a more potent STAT1 activation in SLE patients than in healthy controls, which correlated with higher STAT1 expression in these patients. Partial inhibition of JAK activation by sub-saturating doses of Tofacitinib specifically lowered the levels of STAT1 activation by IL-6. Our data show that receptor and STATs concentrations critically contribute to shape cytokine responses and generate functional pleiotropy in health and disease.
Collapse
Affiliation(s)
- Stephan Wilmes
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Polly-Anne Jeffrey
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Jonathan Martinez-Fabregas
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Maximillian Hafer
- Department of Biology and Centre of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Paul K Fyfe
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Elizabeth Pohler
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Silvia Gaggero
- Université de Lille, INSERM UMR1277 CNRS UMR9020-CANTHER and Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Martín López-García
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Charles Taylor
- Department of Statistics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Thomas Guerrier
- Univ. Lille, Univ. LilleInserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - David Launay
- Univ. Lille, Univ. LilleInserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Suman Mitra
- Université de Lille, INSERM UMR1277 CNRS UMR9020-CANTHER and Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Jacob Piehler
- Department of Biology and Centre of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom.,T-6 Theoretical Division, Los Alamos National Laboratory, Los Alamos, United States
| | - Ignacio Moraga
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
71
|
Functional and structural analysis of cytokine-selective IL6ST defects that cause recessive hyper-IgE syndrome. J Allergy Clin Immunol 2021; 148:585-598. [PMID: 33771552 DOI: 10.1016/j.jaci.2021.02.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Biallelic variants in IL6ST, encoding GP130, cause a recessive form of hyper-IgE syndrome (HIES) characterized by high IgE level, eosinophilia, defective acute phase response, susceptibility to bacterial infections, and skeletal abnormalities due to cytokine-selective loss of function in GP130, with defective IL-6 and IL-11 and variable oncostatin M (OSM) and IL-27 levels but sparing leukemia inhibitory factor (LIF) signaling. OBJECTIVE Our aim was to understand the functional and structural impact of recessive HIES-associated IL6ST variants. METHODS We investigated a patient with HIES by using exome, genome, and RNA sequencing. Functional assays assessed IL-6, IL-11, IL-27, OSM, LIF, CT-1, CLC, and CNTF signaling. Molecular dynamics simulations and structural modeling of GP130 cytokine receptor complexes were performed. RESULTS We identified a patient with compound heterozygous novel missense variants in IL6ST (p.Ala517Pro and the exon-skipping null variant p.Gly484_Pro518delinsArg). The p.Ala517Pro variant resulted in a more profound IL-6- and IL-11-dominated signaling defect than did the previously identified recessive HIES IL6ST variants p.Asn404Tyr and p.Pro498Leu. Molecular dynamics simulations suggested that the p.Ala517Pro and p.Asn404Tyr variants result in increased flexibility of the extracellular membrane-proximal domains of GP130. We propose a structural model that explains the cytokine selectivity of pathogenic IL6ST variants that result in recessive HIES. The variants destabilized the conformation of the hexameric cytokine receptor complexes, whereas the trimeric LIF-GP130-LIFR complex remained stable through an additional membrane-proximal interaction. Deletion of this membrane-proximal interaction site in GP130 consequently caused additional defective LIF signaling and Stüve-Wiedemann syndrome. CONCLUSION Our data provide a structural basis to understand clinical phenotypes in patients with IL6ST variants.
Collapse
|
72
|
Transgenic inhibition of interleukin-6 trans-signaling does not prevent skeletal pathologies in mucolipidosis type II mice. Sci Rep 2021; 11:3556. [PMID: 33574442 PMCID: PMC7878873 DOI: 10.1038/s41598-021-82802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Severe skeletal alterations are common symptoms in patients with mucolipidosis type II (MLII), a rare lysosomal storage disorder of childhood. We have previously reported that progressive bone loss in a mouse model for MLII is caused by an increased number of bone-resorbing osteoclasts, which is accompanied by elevated expression of the cytokine interleukin-6 (IL-6) in the bone microenvironment. In the present study we addressed the question, if pharmacological blockade of IL-6 can prevent the low bone mass phenotype of MLII mice. Since the cellular IL-6 response can be mediated by either the membrane-bound (classic signaling) or the soluble IL-6 receptor (trans-signaling), we first performed cell culture assays and found that both pathways can increase osteoclastogenesis. We then crossed MLII mice with transgenic mice expressing the recombinant soluble fusion protein sgp130Fc, which represents a natural inhibitor of IL-6 trans-signaling. By undecalcified histology and bone-specific histomorphometry we found that high circulating sgp130Fc levels do not affect skeletal growth or remodeling in wild-type mice. Most importantly, blockade of IL-6 trans-signaling did neither reduce osteoclastogenesis, nor increase bone mass in MLII mice. Therefore, our data clearly demonstrate that the bone phenotype of MLII mice cannot be corrected by blocking the IL-6 trans-signaling.
Collapse
|
73
|
Bongartz H, Seiß EA, Bock J, Schaper F. Glucocorticoids attenuate interleukin-6-induced c-Fos and Egr1 expression and impair neuritogenesis in PC12 cells. J Neurochem 2021; 157:532-549. [PMID: 33454999 DOI: 10.1111/jnc.15305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/15/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine primarily known for immune regulation. There is also growing evidence that IL-6 triggers neurogenesis and impacts neural development, both life-long occurring processes that can be impaired by early-life and adult stress. Stress induces the release of glucocorticoids by activation of the hypothalamic-pituitary-adrenal (HPA) axis. On the cellular level, glucocorticoids act via the ubiquitously expressed glucocorticoid receptor. Thus, we aimed to elucidate whether glucocorticoids affect IL-6-induced neural development. Here, we show that IL-6 signalling induces neurite outgrowth in adrenal pheochromocytoma PC12 cells in a mitogen-activated protein kinase (MAPK) pathway-dependent manner, since neurite outgrowth was diminished upon Mek-inhibitor treatment. Using quantitative biochemical approaches, such as qRT-PCR analysis of Hyper-IL-6 treated PC12 cells, we show that neurite outgrowth induced by IL-6 signalling is accompanied by early and transient MAPK-dependent mRNA expression of immediate early genes coding for proteins such as early growth response protein 1 (Egr1) and c-Fos. This correlates with reduced proliferation and prolonged G0/G1 cell cycle arrest as determined by monitoring the cellular DNA content using flow cytometry. These results indicate for IL-6 signalling-induced neural differentiation. Interestingly, the glucocorticoid Dexamethasone impairs early IL-6 signalling-induced mRNA expression of c-Fos and Egr1 and restrains neurite outgrowth. Impaired Egr1 and c-Fos expression in neural development is implicated in the aetiology of neuropathologies. Thus, it appears likely that stress-induced release of glucocorticoids, as well as therapeutically administered glucocorticoids, contribute to the development of neuropathologies by reducing the expression of Egr1 and c-Fos, and by restraining IL-6-dependent neural differentiation.
Collapse
Affiliation(s)
- Hannes Bongartz
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Elena Anne Seiß
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jörg Bock
- Institute of Biology, PG "Epigenetics and Structural Plasticity", Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University, Magdeburg, Germany
| | - Fred Schaper
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Dynamic Systems: Systems Engineering (CDS), Otto-von-Guericke University, Magdeburg, Germany.,Magdeburg Center for Systems Biology (MACS), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
74
|
NOTCH Activation via gp130/STAT3 Signaling Confers Resistance to Chemoradiotherapy. Cancers (Basel) 2021; 13:cancers13030455. [PMID: 33530306 PMCID: PMC7865718 DOI: 10.3390/cancers13030455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Resistance to chemoradiotherapy represents a fundamental problem in modern oncology because it exposes patients to the potential negative side-effects of both radiation and chemotherapy without any clinical benefit. This study uncovers that the inflammatory signaling hub STAT3 conspires with the cell fate regulator NOTCH in rendering tumor cells refractory to chemoradiotherapy. The dichotomic signal alliance is based on a so-far unknown STAT3 target gene, RBPJ, providing the transcriptionally active partner of NOTCH intracellular domain. Unexpectedly, the latter is permanently produced by tonic proteolysis. Tumor mouse models and cancer patient cohorts demonstrate the usefulness of the STAT3/NOTCH axis as biomarker for patient stratification, and importantly, that STAT3 inhibition is a promising treatment option for re-sensitization of CRT-refractory tumors. Abstract Resistance of tumor cells to chemoradiotherapy represents a fundamental problem in clinical oncology. The underlying mechanisms are actively debated. Here we show that blocking inflammatory cytokine receptor signaling via STAT3 re-sensitized treatment-refractory cancer cells and abolished tumor growth in a xenograft mouse model when applied together with chemoradiotherapy. STAT3 executed treatment resistance by triggering the expression of RBPJ, the key transcriptional regulator of the NOTCH pathway. The mandatory RBPJ interaction partner, NOTCH intracellular domain, was provided by tumor cell-intrinsic expression of NOTCH ligands that caused tonic NOTCH proteolysis. In fact, NOTCH inhibition phenocopied the effect of blocking STAT3 signaling. Moreover, genetic profiling of rectal cancer patients revealed the importance of the STAT3/NOTCH axis as NOTCH expression correlated with clinical outcome. Our data uncovered an unprecedented signal alliance between inflammation and cellular development that orchestrated resistance to chemoradiotherapy. Clinically, our findings allow for biomarker-driven patient stratification and offer novel treatment options.
Collapse
|
75
|
Anandam KY, Srinivasan P, Yasujima T, Al-Juburi S, Said HM. Proinflammatory cytokines inhibit thiamin uptake by human and mouse pancreatic acinar cells: involvement of transcriptional mechanism(s). Am J Physiol Gastrointest Liver Physiol 2021; 320:G108-G116. [PMID: 33146542 PMCID: PMC8112188 DOI: 10.1152/ajpgi.00361.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 01/31/2023]
Abstract
Thiamin (vitamin B1) plays critical roles in normal metabolism and function of all mammalian cells. Pancreatic acinar cells (PACs) import thiamin from circulation via specific carrier-mediated uptake that involves thiamin transporter-1 and -2 (THTR-1 and -2; products of SLC19A2 and SLC19A3, respectively). Our aim in this study was to investigate the effect(s) of proinflammatory cytokines on thiamin uptake by PACs. We used human primary (h)PACs, PAC 266-6 cells, and mice in vivo as models in the investigations. First, we examined the level of expression of THTR-1 and -2 mRNA in pancreatic tissues of patients with chronic pancreatitis and observed severe reduction in their expression compared with normal control subjects. Exposing hPACs and PAC 266-6 to proinflammatory cytokines (hyper IL-6, TNF-α, and IL-1β) was found to lead to a significant inhibition in thiamin uptake. Focusing on hyper-IL-6 (which also inhibited thiamin uptake by primary mouse PACs), the inhibition in thiamin uptake was found to be associated with significant reduction in THTR-1 and -2 proteins and mRNA expression as well as in activity of the SLC19A2 and SLC19A3 promoters; it was also associated with reduction in level of expression of the transcription factor Sp1 (which is required for activity of these promoters). Finally, blocking the intracellular Stat3 signaling pathway was found to lead to a significant reversal in the inhibitory effect of hyper IL-6 on thiamin uptake by PAC 266-6. These results show that exposure of PACs to proinflammatory cytokines negatively impacts thiamin uptake via (at least in part) transcriptional mechanism(s).NEW & NOTEWORTHY Findings of the current study demonstrate, for the first time, that exposure of pancreatic acinar cells to proinflammatory cytokines (including hyper IL-6) cause significant inhibition in vitamin B1 (thiamin; a micronutrient that is essential for normal cellular energy metabolism) and that this effect is mediated at the level of transcription of the thiamin transporter genes SLC19A2 and SLC19A3.
Collapse
Affiliation(s)
- Kasin Yadunandam Anandam
- Departments of Physiology/Biophysics, School of Medicine, University of California, Irvine, California
- Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Padmanabhan Srinivasan
- Departments of Physiology/Biophysics, School of Medicine, University of California, Irvine, California
- Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Saleh Al-Juburi
- Departments of Physiology/Biophysics, School of Medicine, University of California, Irvine, California
| | - Hamid M Said
- Departments of Physiology/Biophysics, School of Medicine, University of California, Irvine, California
- Department of Medicine, School of Medicine, University of California, Irvine, California
- Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
76
|
Yousif AS, Ronsard L, Shah P, Omatsu T, Sangesland M, Bracamonte Moreno T, Lam EC, Vrbanac VD, Balazs AB, Reinecker HC, Lingwood D. The persistence of interleukin-6 is regulated by a blood buffer system derived from dendritic cells. Immunity 2020; 54:235-246.e5. [PMID: 33357409 PMCID: PMC7836640 DOI: 10.1016/j.immuni.2020.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/17/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
The interleukin-6 (IL-6) membrane receptor and its circulating soluble form, sIL-6R, can be targeted by antibody therapy to reduce deleterious immune signaling caused by chronic overexpression of the pro-inflammatory cytokine IL-6. This strategy may also hold promise for treating acute hyperinflammation, such as observed in coronavirus disease 2019 (COVID-19), highlighting a need to define regulators of IL-6 homeostasis. We found that conventional dendritic cells (cDCs), defined in mice via expression of the transcription factor Zbtb46, were a major source of circulating sIL-6R and, thus, systemically regulated IL-6 signaling. This was uncovered through identification of a cDC-dependent but T cell-independent modality that naturally adjuvants plasma cell differentiation and antibody responses to protein antigens. This pathway was then revealed as part of a broader biological buffer system in which cDC-derived sIL-6R set the in-solution persistence of IL-6. This control axis may further inform the development of therapeutic agents to modulate pro-inflammatory immune reactions.
Collapse
Affiliation(s)
- Ashraf S Yousif
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Pankaj Shah
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Tatsushi Omatsu
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Thalia Bracamonte Moreno
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Evan C Lam
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Vladimir D Vrbanac
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Alejandro B Balazs
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Hans-Christian Reinecker
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; The Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
77
|
Ritter K, Rousseau J, Hölscher C. The Role of gp130 Cytokines in Tuberculosis. Cells 2020; 9:E2695. [PMID: 33334075 PMCID: PMC7765486 DOI: 10.3390/cells9122695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Protective immune responses to Mycobacterium tuberculosis (Mtb) infection substantially depend on a delicate balance within cytokine networks. Thus, immunosuppressive therapy by cytokine blockers, as successfully used in the management of various chronic inflammatory diseases, is often connected with an increased risk for tuberculosis (TB) reactivation. Hence, identification of alternative therapeutics which allow the treatment of inflammatory diseases without compromising anti-mycobacterial immunity remains an important issue. On the other hand, in the context of novel therapeutic approaches for the management of TB, host-directed adjunct therapies, which combine administration of antibiotics with immunomodulatory drugs, play an increasingly important role, particularly to reduce the duration of treatment. In both respects, cytokines/cytokine receptors related to the common receptor subunit gp130 may serve as promising target candidates. Within the gp130 cytokine family, interleukin (IL)-6, IL-11 and IL-27 are most explored in the context of TB. This review summarizes the differential roles of these cytokines in protection and immunopathology during Mtb infection and discusses potential therapeutic implementations with respect to the aforementioned approaches.
Collapse
Affiliation(s)
- Kristina Ritter
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.R.)
| | - Jasmin Rousseau
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.R.)
| | - Christoph Hölscher
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.R.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck-Riems, D-23845 Borstel, Germany
| |
Collapse
|
78
|
Cathepsin S provokes interleukin-6 (IL-6) trans-signaling through cleavage of the IL-6 receptor in vitro. Sci Rep 2020; 10:21612. [PMID: 33303781 PMCID: PMC7730449 DOI: 10.1038/s41598-020-77884-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
The cytokine interleukin-6 (IL-6) fulfills its pleiotropic functions via different modes of signaling. Regenerative and anti-inflammatory activities are mediated via classic signaling, in which IL-6 binds to the membrane-bound IL-6 receptor (IL-6R). For IL-6 trans-signaling, which accounts for the pro-inflammatory properties of the cytokine, IL-6 activates its target cells via soluble forms of the IL-6R (sIL-6R). We have previously shown that the majority of sIL-6R in human serum originates from proteolytic cleavage and mapped the cleavage site of the IL-6R. The cleavage occurs between Pro-355 and Val-356, which is the same cleavage site that the metalloprotease ADAM17 uses in vitro. However, sIL-6R serum levels are unchanged in hypomorphic ADAM17ex/ex mice, making the involvement of ADAM17 questionable. In order to identify other proteases that could be relevant for sIL-6R generation in vivo, we perform a screening approach based on the known cleavage site. We identify several candidate proteases and characterize the cysteine protease cathepsin S (CTSS) in detail. We show that CTSS is able to cleave the IL-6R in vitro and that the released sIL-6R is biologically active and can induce IL-6 trans-signaling. However, CTSS does not use the Pro-355/Val-356 cleavage site, and sIL-6R serum levels are not altered in Ctss-/- mice. In conclusion, we identify a novel protease of the IL-6R that can induce IL-6 trans-signaling, but does not contribute to steady-state sIL-6R serum levels.
Collapse
|
79
|
Martinez-Fabregas J, Wang L, Pohler E, Cozzani A, Wilmes S, Kazemian M, Mitra S, Moraga I. CDK8 Fine-Tunes IL-6 Transcriptional Activities by Limiting STAT3 Resident Time at the Gene Loci. Cell Rep 2020; 33:108545. [PMID: 33357429 PMCID: PMC7773550 DOI: 10.1016/j.celrep.2020.108545] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/28/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cytokines are highly pleiotropic ligands that regulate the immune response. Here, using interleukin-6 (IL-6) as a model system, we perform detailed phosphoproteomic and transcriptomic studies in human CD4+ T helper 1 (Th-1) cells to address the molecular bases defining cytokine functional pleiotropy. We identify CDK8 as a negative regulator of STAT3 transcriptional activities, which interacts with STAT3 upon IL-6 stimulation. Inhibition of CDK8 activity, using specific small molecule inhibitors, reduces the IL-6-induced phosphoproteome by 23% in Th-1 cells, including STAT3 S727 phosphorylation. STAT3 binding to target DNA sites in the genome is increased upon CDK8 inhibition, which results in a concomitant increase in STAT3-mediated transcriptional activity. Importantly, inhibition of CDK8 activity under Th-17 polarizing conditions results in an enhancement of Th-17 differentiation. Our results support a model where CDK8 regulates STAT3 transcriptional processivity by modulation of its gene loci resident time, critically contributing to diversification of IL-6 responses. CDK8 regulates IL-6-mediated STAT3 S727 phosphorylation in primary human T cells CDK8 controls STAT3 activity by limiting its resident time at gene loci CDK8 inhibition increases IL-6-mediated Th17 differentiation
Collapse
Affiliation(s)
| | - Luopin Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Elizabeth Pohler
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Adeline Cozzani
- Université de Lille, INSERM UMR1277 CNRS UMR9020-CANTHER and Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Stephan Wilmes
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Majid Kazemian
- Department of Computer Science, Purdue University, West Lafayette, IN, USA; Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
| | - Suman Mitra
- Université de Lille, INSERM UMR1277 CNRS UMR9020-CANTHER and Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France.
| | - Ignacio Moraga
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
80
|
Kaur N, Chugh H, Sakharkar MK, Dhawan U, Chidambaram SB, Chandra R. Neuroinflammation Mechanisms and Phytotherapeutic Intervention: A Systematic Review. ACS Chem Neurosci 2020; 11:3707-3731. [PMID: 33146995 DOI: 10.1021/acschemneuro.0c00427] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is indicated in the pathogenesis of several acute and chronic neurological disorders. Acute lesions in the brain parenchyma induce intense and highly complex neuroinflammatory reactions with similar mechanisms among various disease prototypes. Microglial cells in the CNS sense tissue damage and initiate inflammatory responses. The cellular and humoral constituents of the neuroinflammatory reaction to brain injury contribute significantly to secondary brain damage and neurodegeneration. Inflammatory cascades such as proinflammatory cytokines from invading leukocytes and direct cell-mediated cytotoxicity between lymphocytes and neurons are known to cause "collateral damage" in models of acute brain injury. In addition to degeneration and neuronal cell loss, there are secondary inflammatory mechanisms that modulate neuronal activity and affect neuroinflammation which can even be detected at the behavioral level. Hence, several of health conditions result from these pathogenetic conditions which are underlined by progressive neuronal function loss due to chronic inflammation and oxidative stress. In the first part of this Review, we discuss critical neuroinflammatory mediators and their pathways in detail. In the second part, we review the phytochemicals which are considered as potential therapeutic molecules for treating neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Navrinder Kaur
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| | - Heerak Chugh
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Meena K. Sakharkar
- College of Pharmacy and Nutrition, University of Sasketchwan, Saskatoon S7N 5E5, Canada
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), S.S. Nagar, Mysuru-570015, India
- Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research JSS AHER, Mysuru-570015, India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| |
Collapse
|
81
|
Jiang Z, Liao R, Lv J, Li S, Zheng D, Qin L, Wu D, Chen S, Long Y, Wu Q, Wang S, Lin S, Huang X, Tang Z, Shi P, Zhou H, Liu Q, Zhao R, Li Y, Jie Y, Wei W, Lai P, Du X, Cui S, Weinkove R, Liu P, Pei D, Yao Y, Li P. IL-6 trans-signaling promotes the expansion and anti-tumor activity of CAR T cells. Leukemia 2020; 35:1380-1391. [PMID: 33168950 DOI: 10.1038/s41375-020-01085-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/27/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapies lead to high clinical response rates in B cell malignancies, and are under investigation for treatment of solid tumors. While high systemic interleukin- (IL-) 6 levels are associated with clinical cytokine release syndrome (CRS), the role of IL-6 trans-signaling within CAR T-cells has not been reported. We generated CAR T cells that constitutively express hyper IL-6 (HIL-6), a designer cytokine that activates the trans-signaling pathway. HIL-6-expressing CAR T-cells exhibited enhanced proliferation and antitumor efficacy in vitro and in xenograft models. However, HIL-6 CAR T cells caused severe graft-versus-host disease (GVHD). Transcriptomic profiling revealed that HIL-6 stimulation of CAR T cells upregulated genes associated with T cell migration, early memory differentiation, and IL-6/GP130/STAT3 signaling. Since IL-6 trans-signaling acts via surface GP130, we generated CAR T cells expressing a constitutively-active form of GP130 and found these retained improved antitumor activity without signs of GVHD in preclinical models of B-cell leukemia and solid tumors. Taken together, these results show that IL-6 trans-signaling can enhance expansion and antitumor activity of CAR T cells via the GP130/STAT3 pathway, and suggest that expression of GP130 within CAR T cells could lead to improved antitumor efficacy without systemic IL-6 trans-signaling.
Collapse
Affiliation(s)
- Zhiwu Jiang
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Rui Liao
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Lv
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shanglin Li
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Diwei Zheng
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Le Qin
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Di Wu
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Suimin Chen
- Huangpu Hospital of Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Youguo Long
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiting Wu
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Suna Wang
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Simiao Lin
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaohan Huang
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhaoyang Tang
- Guangdong Zhaotai Invivo Biomedicine Ltd., Guangzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruocong Zhao
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Yang Jie
- Guangdong Women and Children Hospital, 521-523 Xing Nan Road, Guangzhou, China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangzhou, Guangdong, China
| | - Peilong Lai
- Department of Hematology, Guangdong General Hospital, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital, Guangzhou, China
| | - Shuzhong Cui
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Centre, University of Hong Kong, Hong Kong, China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Yao
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Peng Li
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
82
|
Zhang X, Zhu M, Jiang XL, Liu X, Liu X, Liu P, Wu XX, Yang ZW, Qin T. P-selectin glycoprotein ligand 1 deficiency prevents development of acute pancreatitis by attenuating leukocyte infiltration. World J Gastroenterol 2020; 26:6361-6377. [PMID: 33244198 PMCID: PMC7656215 DOI: 10.3748/wjg.v26.i41.6361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/13/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is rapid-onset pancreatic inflammation that causes local and systemic inflammatory response syndrome (SIRS) with high morbidity and mortality, but no approved therapies are currently available. P-selectin glycoprotein ligand 1 (PSGL-1) is a transmembrane glycoprotein to initiate inflammatory responses. We hypothesized that PSGL-1 may be involved in the development of AP and would be a new target for the treatment of AP.
AIM To investigate the role and mechanism of PSGL-1 in the development of AP.
METHODS The PSGL-1 expression on leukocytes was detected in peripheral blood of AP patients and volunteers. Pancreatic injury, inflammatory cytokines expression, and inflammatory cell infiltration was measured in AP mouse models induced with PSGL-1 knockout (PSGL-1-/-) and wild-type (PSGL-1+/+) mice. Leukocyte-endothelial cell adhesion was measured in a peripheral blood mononuclear cell (PBMC)-endothelial cell coculture system.
RESULTS The expression of PSGL-1 on monocytes and neutrophils was significantly increased in AP patients. Compared with PSGL-1+/+ mice, PSGL-1-/- AP mice induced by caerulein exhibited lower serum amylase, less Interleukin-1beta (IL-1beta) and Interleukin-6 (IL-6) expression, less neutrophil and macrophage infiltration, and reduced peripheral neutrophil and monocyte accounts. PSGL-1 deficiency alleviated leukocyte-endothelial cell adhesion via IL-6 but not IL-1beta.
CONCLUSION PSGL-1 deficiency effectively inhibits the development of AP by preventing leukocyte-endothelial cell adhesion via IL-6 stimulation and may become a potential therapeutic target for treating AP.
Collapse
Affiliation(s)
- Xu Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450003, Henan Province, China
- Department of Hepato-Biliary-Pancreatic Surgery, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou 450003, Henan Province, China
| | - Ming Zhu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510000, Guangdong Province, China
| | - Xiao-Liang Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Xing Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Xue Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Pan Liu
- Department of Hepato-Biliary-Pancreatic Surgery, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou 450003, Henan Province, China
| | - Xian-Xian Wu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Zhi-Wei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Tao Qin
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450003, Henan Province, China
- Department of Hepato-Biliary-Pancreatic Surgery, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou 450003, Henan Province, China
| |
Collapse
|
83
|
Conceição M, Forcina L, Wiklander OPB, Gupta D, Nordin JZ, Vrellaku B, McClorey G, Mäger I, Gӧrgens A, Lundin P, Musarò A, Wood MJA, Andaloussi SE, Roberts TC. Engineered extracellular vesicle decoy receptor-mediated modulation of the IL6 trans-signalling pathway in muscle. Biomaterials 2020; 266:120435. [PMID: 33049461 DOI: 10.1016/j.biomaterials.2020.120435] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 12/28/2022]
Abstract
The cytokine interleukin 6 (IL6) is a key mediator of inflammation that contributes to skeletal muscle pathophysiology. IL6 activates target cells by two main mechanisms, the classical and trans-signalling pathways. While classical signalling is associated with the anti-inflammatory activities of the cytokine, the IL6 trans-signalling pathway mediates chronic inflammation and is therefore a target for therapeutic intervention. Extracellular vesicles (EVs) are natural, lipid-bound nanoparticles, with potential as targeted delivery vehicles for therapeutic macromolecules. Here, we engineered EVs to express IL6 signal transducer (IL6ST) decoy receptors to selectively inhibit the IL6 trans-signalling pathway. The potency of the IL6ST decoy receptor EVs was optimized by inclusion of a GCN4 dimerization domain and a peptide sequence derived from syntenin-1 which targets the decoy receptor to EVs. The resulting engineered EVs were able to efficiently inhibit activation of the IL6 trans-signalling pathway in reporter cells, while having no effect on the IL6 classical signalling. IL6ST decoy receptor EVs, were also capable of blocking the IL6 trans-signalling pathway in C2C12 myoblasts and myotubes, thereby inhibiting the phosphorylation of STAT3 and partially reversing the anti-differentiation effects observed when treating cells with IL6/IL6R complexes. Treatment of a Duchenne muscular dystrophy mouse model with IL6ST decoy receptor EVs resulted in a reduction in STAT3 phosphorylation in the quadriceps and gastrocnemius muscles of these mice, thereby demonstrating in vivo activity of the decoy receptor EVs as a potential therapy. Taken together, this study reveals the IL6 trans-signalling pathway as a promising therapeutic target in DMD, and demonstrates the therapeutic potential of IL6ST decoy receptor EVs.
Collapse
Affiliation(s)
- Mariana Conceição
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, IMM, Sapienza University of Rome, Rome, Italy
| | - Oscar P B Wiklander
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Dhanu Gupta
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Joel Z Nordin
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | | | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | - André Gӧrgens
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK; Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Per Lundin
- Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, IMM, Sapienza University of Rome, Rome, Italy; Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
84
|
Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency. Nat Commun 2020; 11:4977. [PMID: 33020483 PMCID: PMC7536220 DOI: 10.1038/s41467-020-18701-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Although thousands of breast cancer cells disseminate and home to bone marrow until primary surgery, usually less than a handful will succeed in establishing manifest metastases months to years later. To identify signals that support survival or outgrowth in patients, we profile rare bone marrow-derived disseminated cancer cells (DCCs) long before manifestation of metastasis and identify IL6/PI3K-signaling as candidate pathway for DCC activation. Surprisingly, and similar to mammary epithelial cells, DCCs lack membranous IL6 receptor expression and mechanistic dissection reveals IL6 trans-signaling to regulate a stem-like state of mammary epithelial cells via gp130. Responsiveness to IL6 trans-signals is found to be niche-dependent as bone marrow stromal and endosteal cells down-regulate gp130 in premalignant mammary epithelial cells as opposed to vascular niche cells. PIK3CA activation renders cells independent from IL6 trans-signaling. Consistent with a bottleneck function of microenvironmental DCC control, we find PIK3CA mutations highly associated with late-stage metastatic cells while being extremely rare in early DCCs. Our data suggest that the initial steps of metastasis formation are often not cancer cell-autonomous, but also depend on microenvironmental signals. Metastatic dissemination in breast cancer patients occurs early in malignant transformation, raising questions about how disseminated cancer cells (DCC) progress at distant sites. Here, the authors show that DCCs in bone marrow are activated via IL6-trans-signaling and thereby acquire stemness traits relevant for metastasis formation.
Collapse
|
85
|
Widjaja AA, Chothani SP, Cook SA. Different roles of interleukin 6 and interleukin 11 in the liver: implications for therapy. Hum Vaccin Immunother 2020; 16:2357-2362. [PMID: 32530750 PMCID: PMC7644218 DOI: 10.1080/21645515.2020.1761203] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
The interleukin 6 (IL6) family of proteins regulate important cellular processes and act through a variety of signaling pathways via a shared gp130 receptor. In the liver, there is a large body of evidence showing a protective and pro-regenerative role for IL6 cis and trans signaling. While a few studies suggest a pathological role for IL6 trans-signaling in the liver. IL11 is often thought of as similar to IL6 and redundancy has been inferred. However, recent studies reveal that IL6R and IL11RA are expressed on dissimilar cell types and these cytokines actually have very different roles in biology and pathology. In the liver, IL6R is mostly expressed on immune cells, whereas IL11RA is highly expressed on hepatocytes and hepatic stellate cells, both of which exhibit autocrine IL11 activity. In contrast to the beneficial effects of IL6 in the liver, IL11 causes liver disease and its expression in stromal and parenchymal cells leads to fibrosis, inflammation, steatosis and hepatic failure. In this review, we address IL6 and IL11 in the context of liver function. We end by discussing the possibility of IL6 gain-of-function versus IL11 inhibition as therapeutic approaches to treat liver disease. 1,2.
Collapse
Affiliation(s)
- Anissa A. Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Sonia P. Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Stuart A. Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
86
|
Abstract
Biochemically, interleukin-6 belongs to the class of four-helical cytokines. The cytokine can be synthesised and secreted by many cells. It acts via a cell surface-expressed interleukin-6 receptor, which is not signalling competent. This receptor, when complexed with interleukin-6, associates with the signalling receptor glycoprotein 130 kDa (gp130), which becomes dimerised and initiates intracellular signalling via the Janus kinase/signal transducer and activator of transcription and rat sarcoma proto oncogene/mitogen-activated protein kinase/phosphoinositide-3 kinase pathways. Physiologically, interleukin-6 is involved in the regulation of haematopoiesis and the coordination of the innate and acquired immune systems. Additionally, interleukin-6 plays an important role in the regulation of metabolism, in neural development and survival, and in the development and maintenance of various cancers. Although interleukin-6 is mostly regarded as a pro-inflammatory cytokine, there are numerous examples of protective and regenerative functions of this cytokine. This review will explain the molecular mechanisms of the, in part opposing, activities of the cytokine interleukin-6.
Collapse
Affiliation(s)
- Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-Universitaet zu Kiel, Olshausenstrasse 40, D24098 Kiel, Germany
| |
Collapse
|
87
|
The glutathione peroxidase 8 (GPX8)/IL-6/STAT3 axis is essential in maintaining an aggressive breast cancer phenotype. Proc Natl Acad Sci U S A 2020; 117:21420-21431. [PMID: 32817494 DOI: 10.1073/pnas.2010275117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One of the emerging hallmarks of cancer illustrates the importance of metabolic reprogramming, necessary to synthesize the building blocks required to fulfill the high demands of rapidly proliferating cells. However, the proliferation-independent instructive role of metabolic enzymes in tumor plasticity is still unclear. Here, we provide evidence that glutathione peroxidase 8 (GPX8), a poorly characterized enzyme that resides in the endoplasmic reticulum, is an essential regulator of tumor aggressiveness. We found that GPX8 expression was induced by the epithelial-mesenchymal transition (EMT) program. Moreover, in breast cancer patients, GPX8 expression significantly correlated with known mesenchymal markers and poor prognosis. Strikingly, GPX8 knockout in mesenchymal-like cells (MDA-MB-231) resulted in an epithelial-like morphology, down-regulation of EMT characteristics, and loss of cancer stemness features. In addition, GPX8 knockout significantly delayed tumor initiation and decreased its growth rate in mice. We found that these GPX8 loss-dependent phenotypes were accompanied by the repression of crucial autocrine factors, in particular, interleukin-6 (IL-6). In these cells, IL-6 bound to the soluble receptor (sIL6R), stimulating the JAK/STAT3 signaling pathway by IL-6 trans-signaling mechanisms, so promoting cancer aggressiveness. We observed that in GPX8 knockout cells, this signaling mechanism was impaired as sIL6R failed to activate the JAK/STAT3 signaling pathway. Altogether, we present the GPX8/IL-6/STAT3 axis as a metabolic-inflammatory pathway that acts as a robust regulator of cancer cell aggressiveness.
Collapse
|
88
|
Willis EF, MacDonald KPA, Nguyen QH, Garrido AL, Gillespie ER, Harley SBR, Bartlett PF, Schroder WA, Yates AG, Anthony DC, Rose-John S, Ruitenberg MJ, Vukovic J. Repopulating Microglia Promote Brain Repair in an IL-6-Dependent Manner. Cell 2020; 180:833-846.e16. [PMID: 32142677 DOI: 10.1016/j.cell.2020.02.013] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022]
Abstract
Cognitive dysfunction and reactive microglia are hallmarks of traumatic brain injury (TBI), yet whether these cells contribute to cognitive deficits and secondary inflammatory pathology remains poorly understood. Here, we show that removal of microglia from the mouse brain has little effect on the outcome of TBI, but inducing the turnover of these cells through either pharmacologic or genetic approaches can yield a neuroprotective microglial phenotype that profoundly aids recovery. The beneficial effects of these repopulating microglia are critically dependent on interleukin-6 (IL-6) trans-signaling via the soluble IL-6 receptor (IL-6R) and robustly support adult neurogenesis, specifically by augmenting the survival of newborn neurons that directly support cognitive function. We conclude that microglia in the mammalian brain can be manipulated to adopt a neuroprotective and pro-regenerative phenotype that can aid repair and alleviate the cognitive deficits arising from brain injury.
Collapse
Affiliation(s)
- Emily F Willis
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kelli P A MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Quan H Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Adahir Labrador Garrido
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Samuel B R Harley
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Perry F Bartlett
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Wayne A Schroder
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Environment and Science, Griffith University, QLD, Brisbane, Australia
| | - Abi G Yates
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Daniel C Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Stefan Rose-John
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
89
|
Park YH, Jang YJ, Choi Y, Lee K, Kim HJ, Cho O, Lee HR, Heo TH. Combination of LMT-28 and Metformin Improves Beneficial Anti-Inflammatory Effect in Collagen-Induced Arthritis. Pharmacology 2020; 106:53-59. [PMID: 32674107 DOI: 10.1159/000507451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/22/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The interleukin-6 (IL-6)-mediated signaling pathway plays an essential role in the development of rheumatoid arthritis. LMT-28 suppresses the activation of the IL-6-mediated signaling by direct targeting of gp130. Although LMT-28 and metformin both possess anti-inflammatory activity, the beneficial effect of LMT-28 and metformin combination on a collagen-induced arthritis (CIA) model has not yet been investigated. This study aimed to investigate the anti-inflammatory effect and mechanism of a combination of LMT-28 and metformin in a CIA model. METHODS In MH7A cells, cell proliferation and the IL-6-mediated signaling pathway following administration of LMT-28 and metformin combination was analyzed through MTT assay and Western blotting. The level of T helper 17 (Th17) cell differentiation from CD4+ T cells was analyzed in mouse splenocytes and human peripheral blood mononuclear cells. Arthritis score, incidence rate, inflammatory cytokine, and T-cell subsets were measured in CIA mice following administration of LMT-28 and metformin combination. RESULTS Combination treatment with LMT-28 and metformin diminished proliferation of MH7A cells and IL-6-mediated gp130, STAT3, and ERK signaling more than in individual treatments. Furthermore, the differentiation of CD4+ T cells into Th17 cells was attenuated more by combination treatment with LMT-28 and metformin than individual treatments. The combination of LMT-28 and metformin ameliorated the arthritic score better than individual treatments. The combination significantly reduced tumor necrosis factor and IL-6 levels in the sera and had an anti-inflammatory effect on the distribution of Treg/Th17 cells in the lymph nodes. CONCLUSION Combination treatment with LMT-28 and metformin significantly ameliorates arthritic symptoms in CIA by suppressing Th17 differentiation and IL-6 signaling.
Collapse
Affiliation(s)
- Yeon-Hwa Park
- Laboratory of Pharmacoimmunology, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - You-Jin Jang
- Laboratory of Pharmacoimmunology, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang-si, Republic of Korea
| | - Hee Jung Kim
- Laboratory of Pharmacoimmunology, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Okki Cho
- Laboratory of Pharmacoimmunology, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Hae-Ri Lee
- Laboratory of Pharmacoimmunology, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, The Catholic University of Korea, Bucheon-si, Republic of Korea,
| |
Collapse
|
90
|
Metcalfe RD, Putoczki TL, Griffin MDW. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front Immunol 2020; 11:1424. [PMID: 32765502 PMCID: PMC7378365 DOI: 10.3389/fimmu.2020.01424] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small signaling proteins that have central roles in inflammation and cell survival. In the half-century since the discovery of the first cytokines, the interferons, over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common signaling receptor, gp130. In the last decade, there have been numerous advances in our understanding of the structural mechanisms of IL-6 family signaling, particularly for IL-6 itself. However, our understanding of the detailed structural mechanisms underlying signaling by most IL-6 family members remains limited. With the emergence of new roles for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular disease, lung disease, and cancer, there is an emerging need to develop therapeutics that can progress to clinical use. Here we outline our current knowledge of the structural mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge allows us to understand the mechanism of action of currently available inhibitors targeting IL-6 family cytokine signaling, and most importantly how it allows for improved opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on the need to develop and understand inhibitors that disrupt IL-11 signaling.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
91
|
Schwerd T, Krause F, Twigg SRF, Aschenbrenner D, Chen YH, Borgmeyer U, Müller M, Manrique S, Schumacher N, Wall SA, Jung J, Damm T, Glüer CC, Scheller J, Rose-John S, Jones EY, Laurence A, Wilkie AOM, Schmidt-Arras D, Uhlig HH. A variant in IL6ST with a selective IL-11 signaling defect in human and mouse. Bone Res 2020; 8:24. [PMID: 32566365 PMCID: PMC7289831 DOI: 10.1038/s41413-020-0098-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
The GP130 cytokine receptor subunit encoded by IL6ST is the shared receptor for ten cytokines of the IL-6 family. We describe a homozygous non-synonymous variant in IL6ST (p.R281Q) in a patient with craniosynostosis and retained deciduous teeth. We characterize the impact of the variant on cytokine signaling in vitro using transfected cell lines as well as primary patient-derived cells and support these findings using a mouse model with the corresponding genome-edited variant Il6st p.R279Q. We show that human GP130 p.R281Q is associated with selective loss of IL-11 signaling without affecting IL-6, IL-27, OSM, LIF, CT1, CLC, and CNTF signaling. In mice Il6st p.R279Q lowers litter size and causes facial synostosis and teeth abnormalities. The effect on IL-11 signaling caused by the GP130 variant shows incomplete penetrance but phenocopies aspects of IL11RA deficiency in humans and mice. Our data show that a genetic variant in a pleiotropic cytokine receptor can have remarkably selective defects.
Collapse
Affiliation(s)
- Tobias Schwerd
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Pediatrics, Dr von Hauner Children’s Hospital, LMU Munich, Munich, Germany
| | - Freia Krause
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - Stephen R. F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Dominik Aschenbrenner
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yin-Huai Chen
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Uwe Borgmeyer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miryam Müller
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
- Present Address: The Beatson Institute for Cancer Research, Glasgow, UK
| | - Santiago Manrique
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Neele Schumacher
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - Steven A. Wall
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Jonathan Jung
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Present Address: School of Medicine, University of Glasgow, Glasgow, UK
| | - Timo Damm
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Claus-Christian Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefan Rose-John
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Arian Laurence
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Andrew O. M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Dirk Schmidt-Arras
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
92
|
Esch A, Masiarz A, Mossner S, Moll JM, Grötzinger J, Schröder J, Scheller J, Floss DM. Deciphering site 3 interactions of interleukin 12 and interleukin 23 with their cognate murine and human receptors. J Biol Chem 2020; 295:10478-10492. [PMID: 32518162 DOI: 10.1074/jbc.ra120.013935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/03/2020] [Indexed: 01/04/2023] Open
Abstract
Interleukin (IL)-12 and IL-23 belong to the IL-12 type family and are composite cytokines, consisting of the common β subunit p40 and the specific cytokine α subunit p35 and p19, respectively. IL-12 signals via the IL-12Rβ1·IL-12Rβ2 receptor complex, and IL-23 uses also IL-12Rβ1 but engages IL-23R as second receptor. Importantly, binding of IL-12 and IL-23 to IL-12Rβ1 is mediated by p40, and binding to IL-12Rβ2 and IL-23R is mediated by p35 and p19, respectively. Previously, we have identified a W157A substitution at site 3 of murine IL-23p19 that abrogates binding to murine IL-23R. Here, we demonstrate that the analogous Y185R site 3 substitution in murine and Y189R site 3 substitution in human IL-12p35 abolishes binding to IL-12Rβ2 in a cross-species manner. Although Trp157 is conserved between murine and human IL-23p19 (Trp156 in the human ortholog), the site 3 W156A substitution in hIL-23p19 did not affect signaling of cells expressing human IL-12Rβ1 and IL-23R, suggesting that the interface of murine IL-23p19 required for binding to IL-23R is different from that in the human ortholog. Hence, we introduced additional hIL-23p19 substitutions within its binding interface to hIL-23R and found that the combined site 3 substitutions of W156A and L160E, which become buried at the complex interface, disrupt binding of hIL-23p19 to hIL-23R. In summary, we have identified substitutions in IL-12p35 and IL-23p19 that disrupt binding to their cognate receptors IL-12Rβ2 and IL-23R in a murine/human cross-species manner.
Collapse
Affiliation(s)
- Alessandra Esch
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Anna Masiarz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
| | - Jutta Schröder
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
93
|
Arnold P, Lückstädt W, Li W, Boll I, Lokau J, Garbers C, Lucius R, Rose-John S, Becker-Pauly C. Joint Reconstituted Signaling of the IL-6 Receptor via Extracellular Vesicles. Cells 2020; 9:cells9051307. [PMID: 32456348 PMCID: PMC7291149 DOI: 10.3390/cells9051307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Interleukin-6 (IL-6) signaling is a crucial regulatory event important for many biological functions, such as inflammation and tissue regeneration. Accordingly, several pathological conditions are associated with dysregulated IL-6 activity, making it an attractive therapeutic target. For instance, blockade of IL-6 or its α-receptor (IL-6R) by monoclonal antibodies has been successfully used to treat rheumatoid arthritis. However, based on different signaling modes, IL-6 function varies between pro- and anti-inflammatory activity, which is critical for therapeutic intervention. So far, three modes of IL-6 signaling have been described, the classic anti-inflammatory signaling, as well as pro-inflammatory trans-signaling, and trans-presentation. The IL-6/IL-6R complex requires an additional β-receptor (gp130), which is expressed on almost all cells of the human body, to induce STAT3 (signal transducer and activator of signal transcription 3) phosphorylation and subsequent transcriptional regulation. In contrast, the IL-6R is expressed on a limited number of cells, including hepatocytes and immune cells. However, the proteolytic release of the IL-6R enables trans-signaling on cells expressing gp130 only. Here, we demonstrate a fourth possibility of IL-6 signaling that we termed joint reconstituted signaling (JRS). We show that IL-6R on extracellular vesicles (EVs) can also be transported to and fused with other cells that lack the IL-6R on their surface. Importantly, JRS via EVs induces delayed STAT3 phosphorylation compared to the well-established trans-signaling mode. EVs isolated from human serum were already shown to carry the IL-6R, and thus this new signaling mode should be considered with regard to signal intervention.
Collapse
Affiliation(s)
- Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 8, 24118 Kiel, Germany; (W.L.); (W.L.); (R.L.)
- MSH Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
- Correspondence: (P.A.); (C.B.-P.)
| | - Wiebke Lückstädt
- Anatomical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 8, 24118 Kiel, Germany; (W.L.); (W.L.); (R.L.)
| | - Wenjia Li
- Anatomical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 8, 24118 Kiel, Germany; (W.L.); (W.L.); (R.L.)
| | - Inga Boll
- Biochemical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 9, 24118 Kiel, Germany; (I.B.); (S.R.-J.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Juliane Lokau
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (J.L.); (C.G.)
| | - Christoph Garbers
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (J.L.); (C.G.)
| | - Ralph Lucius
- Anatomical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 8, 24118 Kiel, Germany; (W.L.); (W.L.); (R.L.)
| | - Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 9, 24118 Kiel, Germany; (I.B.); (S.R.-J.)
| | - Christoph Becker-Pauly
- Biochemical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 9, 24118 Kiel, Germany; (I.B.); (S.R.-J.)
- Correspondence: (P.A.); (C.B.-P.)
| |
Collapse
|
94
|
Chaudhari S, Yazdizadeh Shotorbani P, Tao Y, Davis ME, Mallet RT, Ma R. Inhibition of interleukin-6 on matrix protein production by glomerular mesangial cells and the pathway involved. Am J Physiol Renal Physiol 2020; 318:F1478-F1488. [PMID: 32390515 DOI: 10.1152/ajprenal.00043.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation of immunological pathways and disturbances of extracellular matrix (ECM) dynamics are important contributors to the pathogenesis of chronic kidney diseases. Glomerular mesangial cells (MCs) are critical for homeostasis of glomerular ECM dynamics. Interleukin-6 (IL-6) can act as a pro/anti-inflammatory agent relative to cell types and conditions. This study investigated whether IL-6 influences ECM protein production by MCs and the regulatory pathways involved. Experiments were carried out in cultured human MCs (HMCs) and in mice. We found that overexpression of IL-6 and its receptor decreased the abundance of fibronectin and collagen type IV in MCs. ELISA and immunoblot analysis demonstrated that thapsigargin [an activator of store-operated Ca2+ entry (SOCE)], but not the endoplasmic reticulum stress inducer tunicamycin, significantly increased IL-6 content. This thapsigargin effect was abolished by GSK-7975A, a selective inhibitor of SOCE, and by silencing Orai1 (the channel protein mediating SOCE). Furthermore, inhibition of NF-κB pharmacologically and genetically significantly reduced SOCE-induced IL-6 production. Thapsigargin also stimulated nuclear translocation of the p65 subunit of NF-κB. Moreover, MCs overexpressing IL-6 and its receptor in HMCs increased the content of the glucagon-like peptide-1 receptor (GLP-1R), and IL-6 inhibition of fibronectin was attenuated by the GLP-1R antagonist exendin 9-39. In agreement with the HMC data, specific knockdown of Orai1 in MCs using the targeted nanoparticle delivery system in mice significantly reduced glomerular GLP-1R levels. Taken together, our results suggest a novel SOCE/NF-κB/IL-6/GLP-1R signaling pathway that inhibits ECM protein production by MCs.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | | | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Mark E Davis
- Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
95
|
Mossner S, Phan HT, Triller S, Moll JM, Conrad U, Scheller J. Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands. PLoS One 2020; 15:e0230804. [PMID: 32236103 PMCID: PMC7112226 DOI: 10.1371/journal.pone.0230804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 01/28/2023] Open
Abstract
Cytokine signaling is transmitted by cell surface receptors which act as natural biological switches to control cellular functions such as immune reactions. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of green fluorescent protein (GFP)- and mCherry-nanobodies fused to the transmembrane and intracellular domains of cytokine receptors. Following stimulation with homo- and heterodimeric GFP-mCherry fusion proteins, the resulting receptors phenocopied signaling induced by physiologically occurring cytokines. GFP and mCherry fusion proteins were produced in E. coli or CHO-K1 cells, but the overall yield and stability was low. Therefore, we applied two alternative multimerization strategies and achieved immunoglobulin Fc-mediated dimeric and coiled-coil GCN4pII-mediated trimeric assemblies. GFP- and/or mCherry-Fc homodimers activated synthetic gp130 cytokine receptors, which naturally respond to Interleukin 6 family cytokines. Activation of these synthetic gp130 receptors resulted in STAT3 and ERK phosphorylation and subsequent proliferation of Ba/F3-gp130 cells. Half-maximal effective concentrations (EC50) of 8.1 ng/ml and 0.64 ng/ml were determined for dimeric GFP-Fc and mCherry-Fc, respectively. This is well within the expected EC50 range of the native cytokines. Moreover, we generated tetrameric and hexameric GFP-mCherry-Fc fusion proteins, which were also biologically active. This highlighted the importance of close juxtaposition of two cytokine receptors for efficient receptor activation. Finally, we used a trimeric GCN4pII motif to generate homo-trimeric GFP and mCherry complexes. These synthetic cytokines showed improved EC50 values (GFP3: 0.58 ng/ml; mCherrry3: 0.37 ng/ml), over dimeric Fc fused variants. In conclusion, we successfully generated highly effective and stable multimeric synthetic cytokine receptor ligands for activation of synthetic cytokine receptors.
Collapse
Affiliation(s)
- Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hoang T. Phan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany
| | - Saskia Triller
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany
| | - Jens M. Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
96
|
Gąbka-Buszek A, Kwiatkowska-Borowczyk E, Jankowski J, Kozłowska AK, Mackiewicz A. Novel Genetic Melanoma Vaccines Based on Induced Pluripotent Stem Cells or Melanosphere-Derived Stem-Like Cells Display High Efficacy in a Murine Tumor Rejection Model. Vaccines (Basel) 2020; 8:vaccines8020147. [PMID: 32224883 PMCID: PMC7348754 DOI: 10.3390/vaccines8020147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Therapeutic cancer vaccines have elicited renewed interest due to the development of immune checkpoint inhibitors. The role of these vaccines is to induce specific effector cells for killing cancer cells. Cancer stem cells (CSCs) are responsible for tumor growth and progression. Accordingly, they are targets for various cancer therapies, including immunotherapy. Here, we demonstrate the effectiveness of melanoma vaccines composed of genetically modified tumor cells admixed with melanoma stem-like cells (MSC) or induced pluripotent stem cells (iPSCs). Two vaccines were constructed. The first vaccine contained cells derived from B16F10 melanospheres (SFs) with CSC characteristics. The second vaccine contained syngeneic murine induced pluripotent stem cells (miPSCs). iPSCs or SF cells were admixed with B16F10 cells, modified with the designer cytokine Hyper-IL6(H6) (B16/H6). Control mice received B16/H6 cells, B16F10 cells or PBS. Immunization with either vaccine significantly inhibited tumor growth and increased disease-free survival (DFS) and overall survival (OS) in C57BL/6 mice. Mice treated with the SF or iPSC vaccine demonstrated increased activation of the immune response in the vaccination site and tumor microenvironment compared to those treated with B16/H6, B16F10 or PBS. Higher infiltration of dendritic cells (DCs) monocytes, and natural killer (NK) cells; lower numbers of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs); higher levels of the cytokines INFγ and IL-12 were observed with the novel vaccines than with the control treatments. In vitro restimulation of splenocytes derived from mice immunized with B16F10 cell, SF cell or miPSC lysates increased the proliferation of CD4+ T helper lymphocytes and secretion of cytokines. An increased serum titer of antibodies directed against B16F10 cells was found in mice immunized with the SF vaccine. The most effective DFS and OS extensions were reached with the miPSCs vaccine. The described results form the basis for a novel platform for the next generation of cancer vaccines composed of allogeneic cancer-specific cells modified with a molecular adjuvant gene and admixed with allogeneic miPSCs or SFs.
Collapse
Affiliation(s)
- Agnieszka Gąbka-Buszek
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8, Rokietnicka Street, 60-806 Poznan, Poland; (E.K.-B.); (J.J.); (A.K.K.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15, Garbary Street, 61-866 Poznan, Poland
- Correspondence:
| | - Eliza Kwiatkowska-Borowczyk
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8, Rokietnicka Street, 60-806 Poznan, Poland; (E.K.-B.); (J.J.); (A.K.K.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15, Garbary Street, 61-866 Poznan, Poland
| | - Jakub Jankowski
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8, Rokietnicka Street, 60-806 Poznan, Poland; (E.K.-B.); (J.J.); (A.K.K.); (A.M.)
| | - Anna Karolina Kozłowska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8, Rokietnicka Street, 60-806 Poznan, Poland; (E.K.-B.); (J.J.); (A.K.K.); (A.M.)
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8, Rokietnicka Street, 60-806 Poznan, Poland; (E.K.-B.); (J.J.); (A.K.K.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15, Garbary Street, 61-866 Poznan, Poland
| |
Collapse
|
97
|
Park YH, Kim HJ, Lee K, Choi Y, Heo TH. Combination of gp130-targeting and TNF-targeting small molecules in alleviating arthritis through the down-regulation of Th17 differentiation and osteoclastogenesis. Biochem Biophys Res Commun 2020; 522:1030-1036. [PMID: 31818460 DOI: 10.1016/j.bbrc.2019.11.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic, chronic inflammatory disease that is characterized by T helper 17 (Th17) cell- and osteoclast-induced joint destruction and inflammation. In RA, several cytokines (interleukin (IL)-1, 6,17, and tumor necrosis factor (TNF)) are involved in almost all aspects of articular inflammation and destruction. This study aimed to evaluate the combinatorial effect of TNF and IL-6 inhibitors on the differentiation and activation of Th17 cells and osteoclasts in the context of RA, and to identify the RA-related mechanisms through IL-6 signaling. Tetrahydropapaverine (THP) showed direct binding to TNF in screening-ELISA, and SPR and TNF-neutralization assays. In a previous study, the therapeutic effect of gp130-targeting LMT-28 was confirmed in RA. Combinatorial treatment with LMT-28 and THP reduced the arthritis index and showed protective effects against bone and cartilage destruction in CIA mice. The secretion levels of TNF, IL-6, and IL-1β significantly decreased upon combinatorial treatment with LMT-28 and THP. Further, the LMT-28 and THP combination suppressed the differentiation and activation of Th17 cells in mouse splenocytes and human PBMCs. In human RA-FLS, the LMT-28 and THP combination inhibited cell proliferation and downregulated IL-6 and/or TNF-mediated signaling relative to that observed upon independent treatment with LMT-28 or THP. Furthermore, the combination of LMT-28 and THP significantly inhibited the differentiation of mouse bone marrow monocytes (BMMs) into osteoclasts. In conclusion, the LMT-28 and THP combination can attenuate RA through the inhibition of Th17 differentiation and osteoclastogenesis, and suppression of IL-6 or TNF-induced signaling pathways. This combinatorial therapy could be used as a new strategy for the treatment of RA.
Collapse
Affiliation(s)
- Yeon-Hwa Park
- Laboratory of Pharmacoimmunology, The Catholic University of Korea, Bucheon, 420-743, Republic of Korea
| | - Hee Jung Kim
- Laboratory of Pharmacoimmunology, The Catholic University of Korea, Bucheon, 420-743, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, The Catholic University of Korea, Bucheon, 420-743, Republic of Korea.
| |
Collapse
|
98
|
Park YH, Kim HJ, Heo TH. A directly GP130-targeting small molecule ameliorates collagen-induced arthritis (CIA) by inhibiting IL-6/GP130 signalling and Th17 differentiation. Clin Exp Pharmacol Physiol 2020; 47:628-639. [PMID: 31742738 DOI: 10.1111/1440-1681.13215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis is a chronic inflammatory disease associated with joint inflammation and destruction driven by T helper 17 (Th17) cells. Interleukin-6 (IL-6) is secreted by many cell types, including macrophages and synovial fibroblasts. It induces the differentiation and function of Th17 cells that can increase lymphocytic infiltration in the joint. LMT-28 can suppress IL-6 signalling through direct binding to glycoprotein-130 and alleviate inflammatory diseases such as rheumatoid arthritis and inflammatory bowel disease. The purpose of this study was to assess whether LMT-28 could potently inhibit Th17 differentiation and to determine the mechanism involved in the attenuating effect of LMT-28 on rheumatoid arthritis through the IL-6 signalling pathway. LMT-28 reduced the arthritis score and showed protective effects against bone and cartilage destruction in collagen-induced arthritis (CIA) mice. In mice with CIA, LMT-28 markedly decreased serum levels of IL-6, TNF and IL-1β compared to vehicle control. Moreover, LMT-28 attenuated Th17 cell activation in lymph nodes of CIA mice. We demonstrated that LMT-28 suppressed differentiation of Th17 in mouse splenocytes and human peripheral blood mononuclear cells (PBMCs). Additionally, LMT-28 inhibited phosphorylation of GP130, STAT3 and ERK induced by Hyper-IL-6 in human fibroblast-like synoviocytes (FLS). Collectively, these results suggest that LMT-28 can inhibit differentiated/activated-Th17 cells in rheumatoid arthritis by blocking activation of the STAT3 pathway. LMT-28 can attenuate rheumatoid arthritis by inhibiting differentiation/activation of Th17 cells and suppressing the proliferation and signalling activation of the IL-6/solubleIL-6 receptor complex stimulated FLS.
Collapse
Affiliation(s)
- Yeon-Hwa Park
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Hee Jung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
99
|
Kretschmer T, Schulze-Edinghausen M, Turnwald EM, Janoschek R, Bae-Gartz I, Zentis P, Handwerk M, Wohlfarth M, Schauss A, Hucklenbruch-Rother E, Dötsch J, Appel S. Effect of Maternal Obesity in Mice on IL-6 Levels and Placental Endothelial Cell Homeostasis. Nutrients 2020; 12:nu12020296. [PMID: 31979004 PMCID: PMC7071123 DOI: 10.3390/nu12020296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
Obesity during pregnancy is a known health risk for mother and child. Since obesity is associated with increased inflammatory markers, our objectives were to determine interleukin-6 (IL-6) levels in obese mice and to examine the effect of IL-6 on placental endothelial cells. Placentas, blood, and adipose tissue of C57BL/6N mice, kept on high fat diet before and during pregnancy, were harvested at E15.5. Serum IL-6 levels were determined and endothelial cell markers and IL-6 expression were measured by qRT-PCR and western blot. Immunostaining was used to determine surface and length densities of fetal capillary profiles and placental endothelial cell homeostasis. Human placental vein endothelial cells were cultured and subjected to proliferation, apoptosis, senescence, and tube formation assays after stimulation with hyperIL-6. Placental endothelial cell markers were downregulated and the percentage of senescent endothelial cells was higher in the placental exchange zone of obese dams and placental vascularization was strongly reduced. Additionally, maternal IL-6 serum levels and IL-6 protein levels in adipose tissue were increased. Stimulation with hyperIL-6 provoked a dose dependent increase of senescence in cultured endothelial cells without any effects on proliferation or apoptosis. Diet-induced maternal obesity led to an IUGR phenotype accompanied by increased maternal IL-6 serum levels. In the placenta of obese dams, this may result in a disturbed endothelial cell homeostasis and impaired fetal vasculature. Cell culture experiments confirmed that IL-6 is capable of inducing endothelial cell senescence.
Collapse
Affiliation(s)
- Tobias Kretschmer
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany
- Correspondence: ; Tel.: +49-221-478-89672
| | - Merle Schulze-Edinghausen
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Eva-Maria Turnwald
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Peter Zentis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Core Facility Imaging, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; (P.Z.); (A.S.)
| | - Marion Handwerk
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Maria Wohlfarth
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Core Facility Imaging, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; (P.Z.); (A.S.)
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| |
Collapse
|
100
|
Czerwinska P, Rucinski M, Wlodarczyk N, Jaworska A, Grzadzielewska I, Gryska K, Galus L, Mackiewicz J, Mackiewicz A. Therapeutic melanoma vaccine with cancer stem cell phenotype represses exhaustion and maintains antigen-specific T cell stemness by up-regulating BCL6. Oncoimmunology 2020; 9:1710063. [PMID: 32002306 PMCID: PMC6959432 DOI: 10.1080/2162402x.2019.1710063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 01/17/2023] Open
Abstract
We developed a therapeutic, gene-modified, allogeneic melanoma vaccine (AGI-101H), which, upon genetic modification, acquired melanoma stem cell-like phenotype. Since its initial clinical trial in 1997, the vaccine has resulted in the long-term survival of a substantial fraction of immunized patients (up to 20 years). Here, we investigated the potential molecular mechanisms underlying the long-lasting effect of AGI-101H using transcriptome profiling of patients' peripheral T lymphocytes. Magnetically-separated T lymphocytes from AGI-101H-immunized long-term survivors, untreated melanoma patients, and healthy controls were subjected to transcriptome profiling using the microarray analyses. Data were analyzed with a multitude of bioinformatics tools (WebGestalt, DAVID, GSEA) and the results were validated with RT-qPCR. We found substantial differences in the transcriptomes of healthy controls and melanoma patients (both untreated and AGI-101H-vaccinated). AGI-101H immunization induced similar profiles of peripheral T cells as tumor residing in untreated patients. This suggests that whole stem cells immunization mobilizes analogous peripheral T cells to the natural adaptive anti-melanoma response. Moreover, AGI-101H treatment activated the TNF-α and TGF-β signaling pathways and dampened IL2-STAT5 signaling in T cells, which finally resulted in the significant up-regulation of a BCL6 transcriptional repressor, a known amplifier of the proliferative capacity of central memory T cells and mediator of a progenitor fate in antigen-specific T cells. In the present study, high levels of BCL6 transcripts negatively correlated with the expression of several exhaustion markers (CTLA4, KLRG1, PTGER2, IKZF2, TIGIT). Therefore, Bcl6 seems to promote a progenitor fate for cancer-experienced T cells from AGI-101H-vaccinated patients by repressing the exhaustion markers.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Nikola Wlodarczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Anna Jaworska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Iga Grzadzielewska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Gryska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Lukasz Galus
- Department of Medical and Experimental Oncology, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, Poznan, Poland.,Department of Chemotherapy, Greater Poland Cancer Centre, Poznan, Poland
| | - Jacek Mackiewicz
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland.,Department of Medical and Experimental Oncology, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|