51
|
Meng FY, Chen ZS, Han M, Hu XP, He XX, Liu Y, He WT, Huang W, Guo H, Zhou P. Porcine hepatocyte isolation and reversible immortalization mediated by retroviral transfer and site-specific recombination. World J Gastroenterol 2010; 16:1660-4. [PMID: 20355246 PMCID: PMC2848376 DOI: 10.3748/wjg.v16.i13.1660] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop a hepatocyte cell line, we immortalized primary porcine hepatocytes with a retroviral vector SSR#69 containing the Simian Virus 40 T antigen (SV40Tag).
METHODS: We first established a method of porcine hepatocyte isolation with a modified four-step retrograde perfusion technique. Then the porcine hepatocytes were immortalized with retroviral vector SSR#69 expressing SV40T and hygromycin-resistance genes flanked by paired loxP recombination targets. SV40T cDNA in the expanded cells was subsequently excised by Cre/LoxP site-specific recombination.
RESULTS: The resultant hepatocytes with high viability (97%) were successfully immortalized with retroviral vector SSR#69. One of the immortalized clones showed the typical morphological appearance, TJPH-1, and was selected by clone rings and expanded in culture. After excision of the SV40T gene with Cre-recombinase, cells stopped growing. The population of reverted cells exhibited the characteristics of differentiated hepatocytes.
CONCLUSION: In conclusion, we herein describe a modified method of hepatocyte isolation and subsequently established a porcine hepatocyte cell line mediated by retroviral transfer and site-specific recombination.
Collapse
|
52
|
Zhang Y, Nuglozeh E, Touré F, Schmidt AM, Vunjak-Novakovic G. Controllable expansion of primary cardiomyocytes by reversible immortalization. Hum Gene Ther 2010; 20:1687-96. [PMID: 19708763 DOI: 10.1089/hum.2009.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cardiac tissue engineering will remain only a prospect unless large numbers of therapeutic cells can be provided, either from small samples of cardiac cells or from stem cell sources. In contrast to most adult cells, cardiomyocytes are terminally differentiated and cannot be expanded in culture. We explored the feasibility of enabling the in vitro expansion of primary neonatal rat cardiomyocytes by lentivector-mediated cell immortalization, and then reverting the phenotype of the expanded cells back to the cardiomyocyte state. Primary rat cardiomyocytes were transduced with simian virus 40 large T antigen (TAg), or with Bmi-1 followed by the human telomerase reverse transcriptase (hTERT) gene; the cells were expanded; and the transduced genes were removed by adenoviral vector expressing Cre recombinase. The TAg gene was more efficient in cell transduction than the Bmi-1/hTERT gene, based on the rate of cell proliferation. Immortalized cells exhibited the morphological features of dedifferentiation (increased vimentin expression, and reduced expression of troponin I and Nkx2.5) along with the continued expression of cardiac markers (alpha-actin, connexin-43, and calcium transients). After the immortalization was reversed, cells returned to their differentiated state. This strategy for controlled expansion of primary cardiomyocytes by gene transfer has potential for providing large amounts of a patient's own cardiomyocytes for cell therapy, and the cardiomyocytes derived by this method could be a useful cellular model by which to study cardiogenesis.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
53
|
Abstract
In diabetes, a loss of pancreatic beta-cells causes insulin dependency. When insulin dependency is caused by type 1 diabetes or pancreatic diabetes, for example, pancreatic beta-cells need to be regenerated for definitive treatment. The methods for generating pancreatic beta-cells include a method of creating pancreatic beta-cells in vitro and implanting them into the body and a method of regenerating pancreatic beta-cells in the body via gene introduction or the administration of differential proliferation factors to the body. Moreover, the number of pancreatic beta-cells is also low in type 2 diabetes, caused by the compounding factors of insulin secretory failure and insulin resistance; therefore, if pancreatic beta-cells can be regenerated in a living body, then a further amelioration of the pathology can be expected. The development of pancreatic beta-cell-targeting regenerative medicine can lead to the next generation of diabetes treatment.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | | | | |
Collapse
|
54
|
Holmes A, Brown R, Shakesheff K. Engineering tissue alternatives to animals: applying tissue engineering to basic research and safety testing. Regen Med 2009; 4:579-92. [PMID: 19580406 DOI: 10.2217/rme.09.26] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The focus for the rapid progress in the field of tissue engineering has been the clinical potential of the technology to repair, replace, maintain or enhance the function of a particular tissue or organ. However, tissue engineering has much wider applicability in basic research and safety testing, which is often not recognized owing to the clinical focus of tissue engineers. Using examples from a recent National Centre for the Replacement, Refinement and Reduction of Animals in Research/Biotechnology and Biological Sciences Research Council symposium, which brought together tissue engineers and scientists from other research communities, this review highlights the potential of tissue engineering to provide scientifically robust alternatives to animals to address basic research questions and improve drug and chemical development in the pharmaceutical and chemical industries.
Collapse
Affiliation(s)
- Anthony Holmes
- National Centre for the Replacement, Refinement & Reduction of Animals in Research, 20 Park Crescent, London, W1B 1AL, UK.
| | | | | |
Collapse
|
55
|
Shimizu H, Ohashi K, Utoh R, Ise K, Gotoh M, Yamato M, Okano T. Bioengineering of a functional sheet of islet cells for the treatment of diabetes mellitus. Biomaterials 2009; 30:5943-9. [PMID: 19674781 DOI: 10.1016/j.biomaterials.2009.07.042] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 07/22/2009] [Indexed: 12/18/2022]
Abstract
The present study was designed to establish a novel tissue engineering approach for diabetes mellitus (DM) by fabricating a tissue sheet composed of pancreatic islet cells for in vivo transplantation. Pancreatic islet cell suspensions were obtained from Lewis rats, and plated onto temperature-responsive culture dishes coated with extracellular matrix (ECM) proteins. After the cells reached confluency, islet cells cultured on laminin-5 coated dishes were successfully harvested as a uniformly spread tissue sheet by lowering the culture temperature to 20 degrees C for 20 min. The functional activity of the islet cell sheets was confirmed by histological examination and Insulin secretion assay prior to in vivo transplantation. Histological examination revealed that the harvested islet cell sheet was comprised of insulin- (76%) and glucagon- (19%) positive cells, respectively. In vivo functionality of the islet cell sheet was maintained even 7 days after transplantation into the subcutaneous space of Lewis rats. The present study describes an approach to generate a functional sheet of pancreatic islet cells on laminin-5 coated temperature-responsive dishes, which can be subsequently transplanted in vivo. This study serves as the foundation for the creation of a novel cell-based therapy for DM to provide patients an alternative method.
Collapse
Affiliation(s)
- Hirofumi Shimizu
- Department of Surgery 1, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | |
Collapse
|
56
|
Nakahara H, Misawa H, Hayashi T, Kondo E, Yuasa T, Kubota Y, Seita M, Kawamoto H, Hassan WARA, Hassan RARA, Javed SM, Tanaka M, Endo H, Noguchi H, Matsumoto S, Takata K, Tashiro Y, Nakaji S, Ozaki T, Kobayashi N. Bone repair by transplantation of hTERT-immortalized human mesenchymal stem cells in mice. Transplantation 2009; 88:346-53. [PMID: 19667936 DOI: 10.1097/tp.0b013e3181ae5ba2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Human mesenchymal stem cells (hMSCs) are multipotent stem cells found in the adult bone marrow that have the capacity to differentiate into various mesenchymal cell types. The hMSCs may provide a potential therapy to restore damaged tissues or organs of mesenchymal origin; however, a drawback is their limited life span in vitro. METHODS We immortalized normal hMSCs with retrovirally transmitted human telomerase reverse transcriptase cDNA. One of the immortalized clones (YKNK-12) was established, and the biological characteristics were investigated in vitro and in vivo. RESULTS YKNK-12 cells were capable of differentiating adipocytes, osetoblasts, and chondrocytes. Osteogenically differentiated YKNK-12 cells produced significant levels of growth factors BMP4, BMP6, FGF6, FGF7, transforming growth factor-beta1, and transforming growth factor-beta3.. Microcomputer tomography T and soft X-ray assays showed an excellent calvarial bone healing in mice after transplantation of osteogenically differentiated YKNK-12 cells. These cells expressed human-specific osteocalcin and increased the gene expression of runt-related transcription factor 2, alkaline phosphatase, osteocalcin, and osterix in the bone regenerating area. YKNK-12 cell transplant corrected the bone defect without inducing any adverse effects. CONCLUSIONS We conclude that hMSCs immortalized by transduction with human telomerase reverse transcriptase may provide an unlimited source of cells for therapeutic use in bone regeneration.
Collapse
Affiliation(s)
- Hiroyuki Nakahara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Jin J, Park J, Kim K, Kang Y, Park SG, Kim JH, Park KS, Jun H, Kim Y. Detection of differential proteomes of human beta-cells during islet-like differentiation using iTRAQ labeling. J Proteome Res 2009; 8:1393-403. [PMID: 19199707 DOI: 10.1021/pr800765t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A human beta-cell line, RNAKT-15, was recently established from human pancreatic islets, whereby its differentiation into islet-like beta-cells (islet-like RNAKT-15) increased its expression of insulin 2-fold compared with RNAKT-15 cells. To characterize the differentiation of RNAKT-15 cells into islet-like RNAKT-15, microarray and quantitative proteomics were performed. Our analysis of differential proteomic and mRNA expression has resulted in a greater understanding of the molecular functions that are involved in beta-cell differentiation and insulin synthesis and release.
Collapse
Affiliation(s)
- Jonghwa Jin
- Departments of Biomedical Sciences and Internal Medicine, Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
Human islet research is crucial to understanding the cellular biology of the pancreas in developing therapeutic options for diabetes patients and in attempting to prevent the development of this disease. The national Islet Cell Resource Center Consortium provides human pancreatic islets for diabetes research while simultaneously addressing the need to improve islet isolation and transplantation technologies. Since its inception in 2001, the consortium has supplied 297.6 million islet equivalents to 151 national and international scientists for use in clinical and laboratory projects. Data on the volume, quality, and frequency of shipments substantiate the importance of human islets for diabetes research, as do the number of funded grants for beta-cell projects and publications produced as a direct result of islets supplied by this resource. Limitations in using human islets are discussed, along with the future of islet distribution centers. The information presented here is instructive to clinicians, basic science investigators, and policy makers who determine the availability of funding for such work. Organ procurement coordinators also may find the information useful in explaining to donor families why research consent is so valuable.
Collapse
Affiliation(s)
- John S Kaddis
- Department of Information Sciences, City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA 91010-3000, USA.
| | | | | | | | | | | |
Collapse
|
59
|
A new strategy to generate functional insulin-producing cell lines by somatic gene transfer into pancreatic progenitors. PLoS One 2009; 4:e4731. [PMID: 19266046 PMCID: PMC2649535 DOI: 10.1371/journal.pone.0004731] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/04/2009] [Indexed: 01/25/2023] Open
Abstract
Background There is increasing interest in developing human cell lines to be used to better understand cell biology, but also for drug screening, toxicology analysis and future cell therapy. In the endocrine pancreatic field, functional human beta cell lines are extremely scarce. On the other hand, rodent insulin producing beta cells have been generated during the past years with great success. Many of such cell lines were produced by using transgenic mice expressing SV40T antigen under the control of the insulin promoter, an approach clearly inadequate in human. Our objective was to develop and validate in rodent an alternative transgenic-like approach, applicable to human tissue, by performing somatic gene transfer into pancreatic progenitors that will develop into beta cells. Methods and Findings In this study, rat embryonic pancreases were transduced with recombinant lentiviral vector expressing the SV40T antigen under the control of the insulin promoter. Transduced tissues were next transplanted under the kidney capsule of immuno-incompetent mice allowing insulinoma development from which beta cell lines were established. Gene expression profile, insulin content and glucose dependent secretion, normalization of glycemia upon transplantation into diabetic mice validated the approach to generate beta cell lines. Conclusions Somatic gene transfer into pancreatic progenitors represents an alternative strategy to generate functional beta cell lines in rodent. Moreover, this approach can be generalized to derive cells lines from various tissues and most importantly from tissues of human origin.
Collapse
|
60
|
Life support of artificial liver: development of a bioartificial liver to treat liver failure. ACTA ACUST UNITED AC 2008; 16:113-7. [PMID: 19110648 DOI: 10.1007/s00534-008-0022-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 07/15/2008] [Indexed: 12/20/2022]
Abstract
In recent years there has been a particular focus on research regarding tissue engineering targeting the liver, especially in terms of what types of cells and extracellular matrices should be organized and in what type of environments to create an artificial liver, i.e., a life-saving organ. The ideal is to use healthy human liver cells as a source of cells for such research, but there is an extreme shortage of human-donor livers that can be used for cell isolation. Therefore, we are presently working on the differentiation of embryonic stem cells into liver cells as well as reversibly immortalized human liver cell lines that can be cultured in large quantities and at low cost. We are also working on the development of a bioartificial liver (BAL) using such cells as a source. Herein, we introduce our findings on the current status of BAL development.
Collapse
|
61
|
Abstract
In developing cell therapy, normal human cells are ideal as a cell source, but considering the serious lack of donor organs, it is unlikely to obtain a large enough amount of human cells. Moreover, even with current culturing techniques, the long-term culturing of normal human cells is difficult. On the other hand, in using xenogenic porcine cells and human tumor tissue-derived cell lines, there is concern that species-specific pathogens can be transmitted (such as infection by porcine endogenous retroviruses), and possible cancer may thus develop in recipients. Therefore, we are making efforts toward establishing reversible immortalized human cell lines that can be economically grown in tissue culture using the techniques of gene transfer in order to solve these problems. I here describe a strategy for establishing human reversibly immortalized cell lines that are intended for practical application in cell therapies. I would like to further contribute toward the realization of tissue engineering in fusional coordination with cell-processing technology by the utilization of such cell line constructing techniques.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| |
Collapse
|
62
|
Navarro-Alvarez N, Rivas-Carrillo JD, Soto-Gutierrez A, Yuasa T, Okitsu T, Noguchi H, Matsumoto S, Takei J, Tanaka N, Kobayashi N. Reestablishment of microenvironment is necessary to maintain in vitro and in vivo human islet function. Cell Transplant 2008; 17:111-9. [PMID: 18468241 DOI: 10.3727/000000008783907125] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Islet transplantation is associated with an elevated rate of early graft failure. The isolation process leads to structural and functional abnormalities. The reestablishment of the cell-matrix relationship is important to modulate the survival and function of islets. Thus, we evaluated the effect of human fibronectin (hFN) and self-assembling peptide nanofiber (SAPNF) in the ability to support islet function in vitro and after transplantation into streptozotocin (STZ)-induced diabetic severe combined immunodeficiency (SCID) mice. Human isolated islets were cultured with hFN or SAPNF for 7 days. Their ability to maintain insulin production/glucose responsiveness over time was evaluated. Islets embedded in hFN, SAPNF, or alone were transplanted into STZ-induced diabetic SCID mice. Islet grafts were removed after 14 days to evaluate insulin content, insulin expression, and apoptosis. SAPNF-entrapped islets maintained satisfactory morphology/viability and capability of glucose-dependent insulin secretion for over 7 days, whereas islets cultured in hFN underwent widespread deterioration. In vivo grafts containing human islets in SAPNF showed remarkably higher insulin content and expression when compared with human islets in hFn or alone. RT-PCR revealed lower caspase-3 expression in SAPNF islets grafts. These studies indicate that the reestablishment of the cell-matrix interactions by a synthetic matrix in the immediate postisolation period is a useful tool to maintain islet functions in vitro and in vivo.
Collapse
Affiliation(s)
- Nalú Navarro-Alvarez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Sordi V, Bertuzzi F, Piemonti L. Diabetes mellitus: an opportunity for therapy with stem cells? Regen Med 2008; 3:377-97. [PMID: 18462060 DOI: 10.2217/17460751.3.3.377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In both Type 1 and 2 diabetes, insufficient numbers of insulin-producing beta-cells are a major cause of defective control of blood glucose and its complications. Restoration of damaged beta-cells by endocrine pancreas regeneration would be an ideal therapeutic option. The possibility of generating insulin-secreting cells with adult pancreatic stem or progenitor cells has been investigated extensively. The conversion of differentiated cells such as hepatocytes into beta-cells is being attempted using molecular insights into the transcriptional make-up of beta-cells. Additionally, the enhanced proliferation of beta-cells in vivo or in vitro is being pursued as a strategy for regenerative medicine for diabetes. Advances have also been made in directing the differentiation of embryonic stem cells into beta-cells. Although progress is encouraging, major gaps in our understanding of developmental biology of the pancreas and adult beta-cell dynamics remain to be bridged before a therapeutic application is made possible.
Collapse
Affiliation(s)
- Valeria Sordi
- Laboratory of Experimental Surgery, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | | | | |
Collapse
|
64
|
Chuang JC, Cha JY, Garmey JC, Mirmira RG, Repa JJ. Research resource: nuclear hormone receptor expression in the endocrine pancreas. Mol Endocrinol 2008; 22:2353-63. [PMID: 18669644 DOI: 10.1210/me.2007-0568] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The endocrine pancreas comprises the islets of Langerhans, tiny clusters of cells that contribute only about 2% to the total pancreas mass. However, this little endocrine organ plays a critical role in maintaining glucose homeostasis by the regulated secretion of insulin (by beta-cells) and glucagon (by alpha-cells). The rapid increase in the incidence of diabetes worldwide has spurred renewed interest in islet cell biology. Some of the most widely prescribed oral drugs for treating type 2 diabetes include agents that bind and activate the nuclear hormone receptor, peroxisome proliferator-activated receptor-gamma. As a first step in addressing potential roles of peroxisome proliferator-activated receptor-gamma and other nuclear hormone receptors (NHRs) in the biology of the endocrine pancreas, we have used quantitative real-time PCR to profile the expression of all 49 members of the mouse NHR superfamily in primary islets, and cell lines that represent alpha-cells (alphaTC1) and beta-cells (betaTC6 and MIN6). In summary, 19 NHR members were highly expressed in both alpha- and beta-cell lines, 13 receptors showed predominant expression (at least an 8-fold difference) in alpha- vs. beta-cell lines, and 10 NHRs were not expressed in the endocrine pancreas. In addition we evaluated the relative expression of these transcription factors during hyperglycemia and found that 16 NHRs showed significantly altered mRNA levels in mouse islets. A similar survey was conducted in primary human islets to reveal several significant differences in NHR expression between mouse and man. These data identify potential therapeutic targets in the endocrine pancreas for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Jen-Chieh Chuang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9077, USA
| | | | | | | | | |
Collapse
|
65
|
Quantitative In Vivo Islet Potency Assay in Normoglycemic Nude Mice Correlates With Primary Graft Function After Clinical Transplantation. Transplantation 2008; 86:360-3. [DOI: 10.1097/tp.0b013e31817ef846] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
66
|
Kwon YJ, Peng CA. Differential interaction of retroviral vector with target cell: quantitative effect of cellular receptor, soluble proteoglycan, and cell type on gene delivery efficiency. Tissue Eng Part A 2008; 14:1497-506. [PMID: 18620488 DOI: 10.1089/ten.tea.2007.0436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Retroviral vectors are powerful tools for gene therapy and stem cell engineering. To improve efficiency of retroviral gene delivery, quantitative understanding of interactions of a retroviral vector and a cell is crucial. Effects of nonspecific adsorption of retrovirus on a cell via proteoglycans and receptor-mediated binding of retrovirus to a cell on overall transduction efficiency were quantified by combining a mathematical model and experimental data. Results represented by transduction rate constant, a lumped parameter of overall transduction efficiency, delineated that chondroitin sulfate C (CSC) plays dual roles as either enhancer or inhibitor of retroviral transduction, depending on its concentrations in the retroviral supernatant. At the concentration of 20 microg/mL, CSC enhanced the transduction efficiency up to threefold but inhibited more than sevenfold at the concentration of 100 microg/mL. Transduction rate constants for amphotropic retroviral infection of NIH 3T3 cells under phosphate-depleted culture condition showed a proportional relationship between cellular receptor density on a cell and transduction efficiency. It was finally shown that amphotropic retrovirus transduced human fibroblast HT1080 cells more efficiently than NIH 3T3 cells. On the contrary, the transduction efficiency of NIH 3T3 cells by vesicular stomatitis virus G protein pseudotyped retroviruses was eightfold higher than that of HT1080 cells. This study implies usefulness of using quantitative analysis of retroviral transduction in understanding and optimizing retroviral gene delivery systems for therapeutic approaches to tissue engineering.
Collapse
Affiliation(s)
- Young Jik Kwon
- Department of Chemical Engineering, University of Southern California, Los Angeles, California 92697, USA.
| | | |
Collapse
|
67
|
Isolation of major pancreatic cell types and long-term culture-initiating cells using novel human surface markers. Stem Cell Res 2008; 1:183-94. [PMID: 19383399 DOI: 10.1016/j.scr.2008.04.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/15/2008] [Accepted: 04/23/2008] [Indexed: 11/22/2022] Open
Abstract
We have developed a novel panel of cell-surface markers for the isolation and study of all major cell types of the human pancreas. Hybridomas were selected after subtractive immunization of Balb/C mice with intact or dissociated human islets and assessed for cell-type specificity and cell-surface reactivity by immunohistochemistry and flow cytometry. Antibodies were identified by specific binding of surface antigens on islet (panendocrine or alpha-specific) and nonislet pancreatic cell subsets (exocrine and duct). These antibodies were used individually or in combination to isolate populations of alpha, beta, exocrine, or duct cells from primary human pancreas by FACS and to characterize the detailed cell composition of human islet preparations. They were also employed to show that human islet expansion cultures originated from nonendocrine cells and that insulin expression levels could be increased to up to 1% of normal islet cells by subpopulation sorting and overexpression of the transcription factors Pdx-1 and ngn3, an improvement over previous results with this culture system. These methods permit the analysis and isolation of functionally distinct pancreatic cell populations with potential for cell therapy.
Collapse
|
68
|
Shin S, Li N, Kobayashi N, Yoon JW, Jun HS. Remission of Diabetes by β-Cell Regeneration in Diabetic Mice Treated With a Recombinant Adenovirus Expressing Betacellulin. Mol Ther 2008; 16:854-861. [DOI: 10.1038/mt.2008.22] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 01/20/2008] [Indexed: 11/09/2022] Open
|
69
|
Naiche LA, Papaioannou VE. Cre activity causes widespread apoptosis and lethal anemia during embryonic development. Genesis 2008; 45:768-75. [PMID: 18064676 DOI: 10.1002/dvg.20353] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cre-mediated excision of targeted loxP sites is widely used to delete or to activate gene expression in temporal or tissue-specific fashions. We examine three previously described cre alleles and find that Cre activity alone causes dramatic developmental defects, such as loss of hematopoietic activity and dramatically upregulated apoptosis in many embryonic tissues in two of these lines. These results demonstrate that cre expression generates spurious phenotypes that can confound genetics analyses. We also find that most recently published studies fail to include cre-positive controls, and thus may have attributed roles to a targeted gene, which were in reality partly or wholly due to Cre toxicity. This information will be critical in both evaluating previously published work using cre alleles and in designing future experiments.
Collapse
Affiliation(s)
- L A Naiche
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
70
|
Shitara S, Kakeda M, Nagata K, Hiratsuka M, Sano A, Osawa K, Okazaki A, Katoh M, Kazuki Y, Oshimura M, Tomizuka K. Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector. Biochem Biophys Res Commun 2008; 369:807-11. [PMID: 18328257 DOI: 10.1016/j.bbrc.2008.02.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 02/08/2008] [Indexed: 01/13/2023]
Abstract
Telomerase-mediated life-span extension enables the expansion of normal cells without malignant transformation, and thus has been thought to be useful in cell therapies. Currently, integrating vectors including the retrovirus are used for human telomerase reverse transcriptase (hTERT)-mediated expansion of normal cells; however, the use of these vectors potentially causes unexpected insertional mutagenesis and/or activation of oncogenes. Here, we established normal human fibroblast (hPF) clones retaining non-integrating human artificial chromosome (HAC) vectors harboring the hTERT expression cassette. In hTERT-HAC/hPF clones, we observed the telomerase activity and the suppression of senescent-associated SA-beta-galactosidase activity. Furthermore, the hTERT-HAC/hPF clones continued growing beyond 120days after cloning, whereas the hPF clones retaining the silent hTERT-HAC senesced within 70days. Thus, hTERT-HAC-mediated episomal expression of hTERT allows the extension of the life-span of human primary cells, implying that gene delivery by non-integrating HAC vectors can be used to control cellular proliferative capacity of primary cultured cells.
Collapse
Affiliation(s)
- Shingo Shitara
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, 86 Nishimachi, Yonago, Tottori 683-8503, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Chen NKF, Wong JS, Kee IHC, Lai SH, Thng CH, Ng WH, Ng RTH, Tan SY, Lee SY, Tan MEH, Sivalingam J, Chow PKH, Kon OL. Nonvirally modified autologous primary hepatocytes correct diabetes and prevent target organ injury in a large preclinical model. PLoS One 2008; 3:e1734. [PMID: 18320053 PMCID: PMC2249706 DOI: 10.1371/journal.pone.0001734] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 01/22/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Current gene- and cell-based therapies have significant limitations which impede widespread clinical application. Taking diabetes mellitus as a paradigm, we have sought to overcome these limitations by ex vivo electrotransfer of a nonviral insulin expression vector into primary hepatocytes followed by immediate autologous reimplantation in a preclinical model of diabetes. METHODS AND RESULTS In a single 3-hour procedure, hepatocytes were isolated from a surgically resected liver wedge, electroporated with an insulin expression plasmid ex vivo and reimplanted intraparenchymally under ultrasonic guidance into the liver in each of 10 streptozotocin-induced diabetic Yorkshire pigs. The vector was comprised of a bifunctional, glucose-responsive promoter linked to human insulin cDNA. Ambient glucose concentrations appropriately altered human insulin mRNA expression and C-peptide secretion within minutes in vitro and in vivo. Treated swine showed correction of hyperglycemia, glucose intolerance, dyslipidemia and other metabolic abnormalities for > or = 47 weeks. Metabolic correction correlated significantly with the number of hepatocytes implanted. Importantly, we observed no hypoglycemia even under fasting conditions. Direct intrahepatic implantation of hepatocytes did not alter biochemical indices of liver function or induce abnormal hepatic lobular architecture. About 70% of implanted hepatocytes functionally engrafted, appeared histologically normal, retained vector DNA and expressed human insulin for > or = 47 weeks. Based on structural tissue analyses and transcriptome data, we showed that early correction of diabetes attenuated and even prevented pathological changes in the eye, kidney, liver and aorta. CONCLUSIONS We demonstrate that autologous hepatocytes can be efficiently, simply and safely modified by electroporation of a nonviral vector to express, process and secrete insulin durably. This strategy, which achieved significant and sustained therapeutic efficacy in a large preclinical model without adverse effects, warrants consideration for clinical development especially as it could have broader future applications for the treatment of other acquired and inherited diseases for which systemic reconstitution of a specific protein deficiency is critical.
Collapse
Affiliation(s)
- Nelson K. F. Chen
- Division of Medical Sciences, National Cancer Centre, Singapore, Republic of Singapore
| | - Jen San Wong
- Division of Medical Sciences, National Cancer Centre, Singapore, Republic of Singapore
- Department of General Surgery, Singapore General Hospital, Singapore, Republic of Singapore
| | - Irene H. C. Kee
- Department of Experimental Surgery, Singapore General Hospital, Singapore, Republic of Singapore
| | - Siang Hui Lai
- Centre for Forensic Medicine, Health Sciences Authority, Singapore, Republic of Singapore
| | - Choon Hua Thng
- Department of Oncologic Imaging, National Cancer Centre, Singapore, Republic of Singapore
| | - Wai Har Ng
- Division of Medical Sciences, National Cancer Centre, Singapore, Republic of Singapore
| | - Robert T. H. Ng
- Department of Experimental Surgery, Singapore General Hospital, Singapore, Republic of Singapore
| | - Soo Yong Tan
- Department of Pathology, Singapore General Hospital, Singapore, Republic of Singapore
| | - Shu Yen Lee
- Singapore National Eye Centre, Singapore, Republic of Singapore
| | - Mark E. H. Tan
- Division of Medical Sciences, National Cancer Centre, Singapore, Republic of Singapore
| | | | - Pierce K. H. Chow
- Department of General Surgery, Singapore General Hospital, Singapore, Republic of Singapore
- Department of Experimental Surgery, Singapore General Hospital, Singapore, Republic of Singapore
| | - Oi Lian Kon
- Division of Medical Sciences, National Cancer Centre, Singapore, Republic of Singapore
| |
Collapse
|
72
|
Limbert C, Päth G, Jakob F, Seufert J. Beta-cell replacement and regeneration: Strategies of cell-based therapy for type 1 diabetes mellitus. Diabetes Res Clin Pract 2008; 79:389-99. [PMID: 17854943 DOI: 10.1016/j.diabres.2007.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Accepted: 06/20/2007] [Indexed: 01/09/2023]
Abstract
Pancreatic islet transplantation has demonstrated that long-term insulin independence may be achieved in patients suffering from diabetes mellitus type 1. However, because of limited availability of islet tissue, new sources of insulin producing cells that are responsive to glucose are required. Development of pancreatic beta-cell lines from rodent or human origin has progressed slowly in recent years. Current experiments for ex vivo expansion of beta cells and in vitro differentiation of embryonic and adult stem cells into insulin producing beta-cell phenotypes led to promising results. Nevertheless, the cells generated to date lack important characteristics of mature beta cells and generally display reduced insulin secretion and loss of proliferative capacity. Therefore, much better understanding of the mechanisms that regulate expansion and differentiation of stem/progenitor cells is necessary. Here, we review recent advances in the identification of potential cellular sources, and the development of strategies to regenerate or fabricate insulin producing and glucose sensing cells that might enable future cell-based therapies of diabetes mellitus type 1.
Collapse
Affiliation(s)
- C Limbert
- Division of Endocrinology and Diabetology, Department of Internal Medicine II, University Hospital Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
73
|
Bao S, Jacobson DA, Wohltmann M, Bohrer A, Jin W, Philipson LH, Turk J. Glucose homeostasis, insulin secretion, and islet phospholipids in mice that overexpress iPLA2beta in pancreatic beta-cells and in iPLA2beta-null mice. Am J Physiol Endocrinol Metab 2008; 294:E217-29. [PMID: 17895289 PMCID: PMC2268609 DOI: 10.1152/ajpendo.00474.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studies with genetically modified insulinoma cells suggest that group VIA phospholipase A(2) (iPLA(2)beta) participates in amplifying glucose-induced insulin secretion. INS-1 insulinoma cells that overexpress iPLA(2)beta, for example, exhibit amplified insulin-secretory responses to glucose and cAMP-elevating agents. To determine whether similar effects occur in whole animals, we prepared transgenic (TG) mice in which the rat insulin 1 promoter (RIP) drives iPLA(2)beta overexpression, and two characterized TG mouse lines exhibit similar phenotypes. Their pancreatic islet iPLA(2)beta expression is increased severalfold, as reflected by quantitative PCR of iPLA(2)beta mRNA, immunoblotting of iPLA(2)beta protein, and iPLA(2)beta enzymatic activity. Immunofluorescence microscopic studies of pancreatic sections confirm iPLA(2)beta overexpression in RIP-iPLA(2)beta-TG islet beta-cells without obviously perturbed islet morphology. Male RIP-iPLA(2)beta-TG mice exhibit lower blood glucose and higher plasma insulin concentrations than wild-type (WT) mice when fasting and develop lower blood glucose levels in glucose tolerance tests, but WT and TG blood glucose levels do not differ in insulin tolerance tests. Islets from male RIP-iPLA(2)beta-TG mice exhibit greater amplification of glucose-induced insulin secretion by a cAMP-elevating agent than WT islets. In contrast, islets from male iPLA(2)beta-null mice exhibit blunted insulin secretion, and those mice have impaired glucose tolerance. Arachidonate incorporation into and the phospholipid composition of RIP-iPLA(2)beta-TG islets are normal, but they exhibit reduced Kv2.1 delayed rectifier current and prolonged glucose-induced action potentials and elevations of cytosolic Ca(2+) concentration that suggest a molecular mechanism for the physiological role of iPLA(2)beta to amplify insulin secretion.
Collapse
MESH Headings
- Animals
- Arachidonic Acid/metabolism
- Blood Glucose/metabolism
- Blood Glucose/physiology
- Blotting, Western
- Calcium/physiology
- Cell Line, Tumor
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Fasting/metabolism
- Gene Expression Regulation, Enzymologic/physiology
- Genotype
- Glucose Tolerance Test
- Group IV Phospholipases A2/biosynthesis
- Group IV Phospholipases A2/genetics
- Homeodomain Proteins/genetics
- Homeostasis/physiology
- Insulin/blood
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/metabolism
- Insulinoma/metabolism
- Islets of Langerhans/metabolism
- Kv1.2 Potassium Channel/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Fluorescence
- Pancreatic Neoplasms/metabolism
- Patch-Clamp Techniques
- Phospholipids/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Spectrometry, Mass, Electrospray Ionization
- Trans-Activators/genetics
Collapse
Affiliation(s)
- Shunzhong Bao
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Recent advances in islet transplantation using highly purified islets and effective immunosuppression strategies have resulted in substantial improvement in achieving insulin independence in type 1 diabetes patients. However, there are side effects from long-term immunosuppression, and transplant rejection and/or the recurrence of autoimmune attack of the transplanted islets cannot be completely prevented, even with immunosuppressive treatment. Therefore, construction of a safe and functional bioartificial pancreas (BAP) that provides an adequate environment for islet cells may be an important approach to treat diabetic patients. Various types of BAP devices have been developed and examined in animals. In this review, I introduce the previous BAP studies and our approach of BAP development.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
75
|
Shawi M, Autexier C. Telomerase, senescence and ageing. Mech Ageing Dev 2007; 129:3-10. [PMID: 18215413 DOI: 10.1016/j.mad.2007.11.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/23/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
Telomeres serve to camouflage chromosome ends from the DNA damage response machinery. Telomerase activity is required to maintain telomeres. One consequence of telomere dysfunction is cellular senescence, a permanent growth arrest state. We review the key regulators of cellular senescence and recent in vivo evidence which supports p53-dependent senescence induced by short telomeres as a potent tumor suppressor pathway. The in vivo link between cellular senescence and tumor regression is also discussed. The relationship between short telomere length and ageing or disease states in various cells of the body is increasingly reported. Paradoxically, the introduction of telomerase is proposed as a method to combat ageing via cell therapy and a possible method to regenerate tissue, while telomerase inhibition and telomere shortening is suggested as a possible therapy to defeat cancers with intact p53. Researchers thus face the challenge of understanding the complex processes which regulate the potential benefits of both telomerase inhibition and activation.
Collapse
Affiliation(s)
- May Shawi
- Department of Medicine, Division of Experimental Medicine, McGill University, Canada
| | | |
Collapse
|
76
|
Moldaver MV, Dashinimaev EB, Vishnyakova KS, Chumakov PM, Yegorov YE. Influence of oxygen on three different types of telomerized cells derived from a single donor. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2007. [DOI: 10.1134/s1990747807040034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
77
|
Abstract
Human islet transplantation could represent an attractive alternative to insulin injections for the treatment of diabetes type 1. However, such an approach requires a better understanding of the molecular and cellular switches controlling β-cell function in general as well as after transplantation into the liver. Although much research has been done into the suitability of stem or progenitor cells to generate a limitless supply of human β-cells, a reproducible and efficient protocol for the differentiation of such cells into stably insulin-secreting β-cells suitable for transplantation has yet to be reported. Fueled by recent findings showing that mature β-cells are able to regenerate, many efforts have been undertaken to expand this cell pool. Unfortunately, also these approaches had problems to yield sufficiently differentiated human islet cells. The aim of this review is to summarize recent findings describing some of the molecular and cellular key players of islet biology. A more complete understanding of their orchestration and the use of new methods such as real time confocal imaging for the assessment of islet quality may yield the necessary advancements for more successful human islet transplantation.
Collapse
Affiliation(s)
- M Hermann
- KMT Laboratory, Innsbruck Medical University, Austria.
| | | | | |
Collapse
|
78
|
Lock LT, Tzanakakis ES. Stem/Progenitor cell sources of insulin-producing cells for the treatment of diabetes. ACTA ACUST UNITED AC 2007; 13:1399-412. [PMID: 17550339 DOI: 10.1089/ten.2007.0047] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patients with diabetes experience decreased insulin secretion that is linked to a significant reduction in the number of islet cells. Reversal of diabetes can be achieved through islet transplantation, but the scarcity of donor islets severely hinders wide application of this therapeutic modality. Toward that end, embryonic stem cells, adult tissue-residing progenitor cells, and regenerating native beta-cells may serve as sources of islet cell surrogates. Insulin-producing cells generated from stem or progenitor cells display subsets of native beta-cell attributes, indicating the need for further development of methods for differentiation to completely functional beta-cells. Pharmacological approaches aiming at stimulating the in vivo/ex vivo regeneration of beta-cells have also been proposed as a way of augmenting islet cell mass. We review the current state of the generation of insulin-producing cells from different sources with emphasis on embryonic stem cells and adult progenitor cells. Challenges for the clinical use of these sources are also discussed.
Collapse
Affiliation(s)
- Lye T Lock
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | |
Collapse
|
79
|
Sadrzadeh N, Glembourtt MJ, Stevenson CL. Peptide Drug Delivery Strategies for the Treatment of Diabetes. J Pharm Sci 2007; 96:1925-54. [PMID: 17286287 DOI: 10.1002/jps.20848] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drug delivery strategies for diabetes have included a wide range of scientific and engineering approaches, including molecular design, formulation and device design. Molecular engineering has resulted in modified pharmacokinetics, such as rapid-acting or slow-release analogs of insulin. Long-acting insulin formulations are designed to meet the body's basal needs, whereas rapid-acting insulin formulations are designed to cover mealtime glucose spikes. Furthermore, the discovery of new therapeutic biomolecules, which like insulin need to be injected, will drive the need for more flexible and universally applicable delivery systems. Formulation design, such as particle engineering, can be used to modify pharmacokinetic profiles. In general, suspension formulations of insulin commonly demonstrate reduced solubility and result in sustained release. Similarly, depot injections can result in precipitation of insulin at the site of injection, again resulting in lower solubility and sustained release. Particle engineering also has been applied to pulmonary formulations for delivery to the deep lung. The creation of novel drug delivery methods for the treatment of diabetes should remove barriers to insulin therapy and increase patient acceptance and compliance. Eliminating routine injections with needle-free injectors, insulin pumps, inhalation, buccal sprays, intra-nasal delivery, and transdermal patches may offer increasingly attractive alternatives.
Collapse
Affiliation(s)
- Negar Sadrzadeh
- Nektar Therapeutics, 150 Industrial Road, San Carlos, California 94070-6039, USA
| | | | | |
Collapse
|
80
|
Abstract
Aiming for regeneration of severed or lost parts of the body, the combined application of gene therapy and tissue engineering has received much attention by regenerative medicine. Techniques of molecular biology can enhance the regenerative potential of a biomaterial by co-delivery of therapeutic genes, and several different strategies have been used to achieve that goal. Possibilities for application are many-fold and have been investigated to regenerate tissues such as skin, cartilage, bone, nerve, liver, pancreas and blood vessels. This review discusses advantages and problems encountered with the different gene delivery strategies as far as they relate to tissue engineering, analyses the positive aspects of polymeric gene delivery from matrices and discusses advances and future challenges of gene transfer strategies in selected tissues.
Collapse
Affiliation(s)
- Oliver Bleiziffer
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
- *Correspondence to: Ulrich KNESER, M.D. Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Krankenhausstr. 12, 91054 Erlangen, Germany. Tel.: +49-9131-85-33277; Fax: +49-9131-85-39327 E-mail:
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Feng Yao
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
| | - Ulrich Kneser
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
- *Correspondence to: Ulrich KNESER, M.D. Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Krankenhausstr. 12, 91054 Erlangen, Germany. Tel.: +49-9131-85-33277; Fax: +49-9131-85-39327 E-mail:
| |
Collapse
|
81
|
Lees JG, Tuch BE. Conversion of embryonic stem cells into pancreatic beta-cell surrogates guided by ontogeny. Regen Med 2007; 1:327-36. [PMID: 17465786 DOI: 10.2217/17460751.1.3.327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cellular therapies to treat Type 1 diabetes are being devised and the use of human embryonic stem cells (hESCs) offers a solution to the issue of supply, because hESCs can be maintained in a pluripotent state indefinitely. Furthermore, hESCs have advantages in terms of their plasticity and reduced immunogenicity. Several strategies that have so far been investigated indicate that hESCs are capable of differentiating into insulin producing beta-cell surrogates. However the efficiency of the differentiation procedures used is generally quite low and the cell populations derived are often highly heterogenous. A strategy that appears to have long term potential is to design differentiation procedures based on the ontogeny of the beta-cell. The focus of this strategy is to replicate signaling processes that are known to be involved in the maturation of a beta-cell. The earliest pancreatic progenitors found in the developing vertebrate fetus are produced via a process known as gastrulation and form part of the definitive endoderm germ layer. hESCs have recently been differentiated into definitive endoderm with high efficiency using a differentiation procedure that mimics the signaling that occurs during gastrulation and the formation of the definitive endoderm. Subsequent events during pancreas development involve a section of the definitive endoderm forming into pancreatic epithelium, which then branches into the pancreatic mesenchyme to form islet clusters of endocrine cells. A proportion of the endocrine precursor cells within islets develop into insulin producing beta-cells. The challenge currently is to design hESC differentiation procedures that mimic the combined events of these stages of beta-cell development.
Collapse
Affiliation(s)
- Justin G Lees
- Diabetes Transplant Unit, Prince of Wales Hospital/University of New South Wales, Randwick, New South Wales, Australia
| | | |
Collapse
|
82
|
Rivas-Carrillo JD, Soto-Gutierrez A, Navarro-Alvarez N, Noguchi H, Okitsu T, Chen Y, Yuasa T, Tanaka K, Narushima M, Miki A, Misawa H, Tabata Y, Jun HS, Matsumoto S, Fox IJ, Tanaka N, Kobayashi N. Cell-permeable pentapeptide V5 inhibits apoptosis and enhances insulin secretion, allowing experimental single-donor islet transplantation in mice. Diabetes 2007; 56:1259-67. [PMID: 17287463 DOI: 10.2337/db06-1679] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Treatment of diabetic patients by pancreatic islet transplantation often requires the use of islets from two to four donors to produce insulin independence in a single recipient. Following isolation and transplantation, islets are susceptible to apoptosis, which limits their function and probably long-term islet graft survival. RESEARCH DESIGN AND METHODS To address this issue, we examined the effect of the cell-permeable apoptosis inhibitor pentapeptide Val-Pro-Met-Leu-Lys, V5, on pancreatic islets in a mouse model. RESULTS V5 treatment upregulated expression of anti-apoptotic proteins Bcl-2 and XIAP (X-linked inhibitor of apoptosis protein) by more than 3- and 11-fold and downregulated expression of apoptosis-inducing proteins Bax, Bad, and nuclear factor-kappaB-p65 by 10, 30, and nearly 50%, respectively. Treatment improved the recovered islet mass following collagenase digestion and isolation by 44% and in vitro glucose-responsive insulin secretion nearly fourfold. Following transplantation in streptozotocin-induced diabetic mice, 150 V5-treated islet equivalents functioned as well as 450 control untreated islet equivalents in normalizing blood glucose. CONCLUSIONS These studies indicate that inhibition of apoptosis by V5 significantly improves islet function following isolation and improves islet graft function following transplantation. Use of this reagent in clinical islet transplantation could have a dramatic impact on the number of patients that might benefit from this therapy and could affect long-term graft survival.
Collapse
Affiliation(s)
- Jorge D Rivas-Carrillo
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Yegorov YE, Moldaver MV, Vishnyakova KS, Terekhov SM, Dashinimaev EB, Cheglakov IB, Toropygin IY, Yarygin KN, Chumakov PM, Korochkin LI, Antonova GA, Rybalkina EY, Saburina IN, Burnaevskii NS, Zelenin AV. Enhanced control of proliferation in telomerized cells. Russ J Dev Biol 2007. [DOI: 10.1134/s106236040702004x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
84
|
Kobayashi N. (3) Reversible immortalization of human pancreatic beta cells to develop diabetes-targeted cell therapy. Xenotransplantation 2007. [DOI: 10.1111/j.1399-3089.2007.00386_5.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
85
|
Han J, Lee HH, Kwon H, Shin S, Yoon JW, Jun HS. Engineered enteroendocrine cells secrete insulin in response to glucose and reverse hyperglycemia in diabetic mice. Mol Ther 2007; 15:1195-202. [PMID: 17299398 DOI: 10.1038/sj.mt.6300117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Type 1 diabetes is a metabolic disorder caused by loss of insulin-producing pancreatic beta-cells. Expression of insulin in non-beta-cells to create beta-cell surrogates has been tried to treat type 1 diabetes. Enteroendocrine K cells have characteristics similar to pancreatic beta-cells, such as a glucose-sensing system and insulin-processing proteases. In this study, we genetically engineered an enteroendocrine cell line (STC-1) to express insulin under the control of the glucose-dependent insulinotropic polypeptide promoter. We screened clones and chose one, Gi-INS-7, based on its high production of insulin. Gi-INS-7 cells expressed glucose transporter 2 (GLUT2) and glucokinase (GK) and secreted insulin in response to elevated glucose levels in vitro. To determine whether Gi-INS-7 cells can control blood glucose levels in diabetic mice, we transplanted these cells under the kidney capsule of streptozotocin (STZ)-induced diabetic mice and found that blood glucose levels became normal within 2 weeks of transplantation. In addition, glucose tolerance tests in mice that became normoglycemic after transplantation with Gi-INS-7 cells showed that exogenous glucose was cleared appropriately. These results suggest that engineered K cells may be promising surrogate beta-cells for possible therapeutic use for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Jaeseok Han
- Julia McFarlane Diabetes Research Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
86
|
Singh AK, Gudehithlu KP, Litbarg NO, Sethupathi P, Arruda JAL, Dunea G. Transplanting fragments of diabetic pancreas into activated omentum gives rise to new insulin producing cells. Biochem Biophys Res Commun 2007; 355:258-62. [PMID: 17292859 DOI: 10.1016/j.bbrc.2007.01.152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 01/29/2007] [Indexed: 12/19/2022]
Abstract
To determine if pancreatic progenitor cells can be induced to form insulin producing cells in vivo, we auto-transplanted fragments of streptozotocin-induced diabetic pancreas into omentum pre-injected with a foreign material. As shown previously, omentum pre-activated in this manner becomes rich in growth factors and progenitor cells. After auto-transplanting diabetic pancreas in the activated omentum, new insulin secreting cells appeared in the omentum in niches surrounding the foreign particles--a site previously shown to harbor progenitor cells. Extracts of these omenta contained measurable insulin. Four of eight diabetic animals treated in this manner became normoglycemic. This shows that new insulin producing cells can be regenerated from diabetic pancreas by auto-transplanting pancreatic fragments into the activated omentum, an environment rich in growth factors and progenitor cells.
Collapse
Affiliation(s)
- Ashok K Singh
- The Division of Nephrology, Stroger Hospital of Cook County, 637 South Wood Street (Durand Bldg 2nd Floor), Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
87
|
In Vitro Expansion of Tissue Cells by Conditional Proliferation. METHODS IN MOLECULAR MEDICINE™ 2007; 140:1-15. [DOI: 10.1007/978-1-59745-443-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
88
|
Rivas-Carrillo JD, Okitsu T, Kobayashi N. Current Cell-based Approaches for the Treatment of Diabetes Mellitus. Biotechnol Genet Eng Rev 2007; 24:281-95. [DOI: 10.1080/02648725.2007.10648104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
89
|
Cheng SY, Constantinidis I, Sambanis A. Insulin secretion dynamics of free and alginate-encapsulated insulinoma cells. Cytotechnology 2006; 51:159-70. [PMID: 19002886 DOI: 10.1007/s10616-006-9025-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 09/15/2006] [Indexed: 10/23/2022] Open
Abstract
This study investigates the effect of alginate/poly-L: -lysine/alginate (APA) encapsulation on the insulin secretion dynamics exhibited by an encapsulated cell system. Experiments were performed with the aid of a home-built perfusion apparatus providing a 1 min temporal resolution. Insulin profiles were measured from: (i) murine insulinoma betaTC3 cells encapsulated in calcium alginate/poly-L: -lysine/alginate (APA) beads generated with high guluronic (G) or high mannuoric (M) content alginate, and (ii) murine insulinoma betaTC-tet cells encapsulated in high M APA beads and propagated in the presence and absence of tetracycline. Results show that encapsulation in APA beads did not affect the insulin secretion profile shortly post-encapsulation. However, remodeling of the beads due to cell proliferation affected the insulin secretion profiles; and inhibiting remodeling by suppressing cell growth preserved the secretion profile. The implications of these findings regarding the in vivo function of encapsulated insulin secreting cells are discussed.
Collapse
Affiliation(s)
- Shing-Yi Cheng
- Chemical & Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, IBB Building, Room 1306, Atlanta, GA, 30332, USA
| | | | | |
Collapse
|
90
|
Soto-Gutiérrez A, Kobayashi N, Rivas-Carrillo JD, Navarro-Alvarez N, Zhao D, Zhao D, Okitsu T, Noguchi H, Basma H, Tabata Y, Chen Y, Tanaka K, Narushima M, Miki A, Ueda T, Jun HS, Yoon JW, Lebkowski J, Tanaka N, Fox IJ. Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell-derived hepatocytes. Nat Biotechnol 2006; 24:1412-9. [PMID: 17086173 DOI: 10.1038/nbt1257] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 10/06/2006] [Indexed: 01/10/2023]
Abstract
Severe acute liver failure, even when transient, must be treated by transplantation and lifelong immune suppression. Treatment could be improved by bioartificial liver (BAL) support, but this approach is hindered by a shortage of human hepatocytes. To generate an alternative source of cells for BAL support, we differentiated mouse embryonic stem (ES) cells into hepatocytes by coculture with a combination of human liver nonparenchymal cell lines and fibroblast growth factor-2, human activin-A and hepatocyte growth factor. Functional hepatocytes were isolated using albumin promoter-based cell sorting. ES cell-derived hepatocytes expressed liver-specific genes, secreted albumin and metabolized ammonia, lidocaine and diazepam. Treatment of 90% hepatectomized mice with a subcutaneously implanted BAL seeded with ES cell-derived hepatocytes or primary hepatocytes improved liver function and prolonged survival, whereas treatment with a BAL seeded with control cells did not. After functioning in the BAL, ES cell-derived hepatocytes developed characteristics nearly identical to those of primary hepatocytes.
Collapse
Affiliation(s)
- Alejandro Soto-Gutiérrez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Real Science, Biological Bodies and Stem Cells: Constructing Images of β-Cells in the Biomedical Science Lab. SOCIAL THEORY & HEALTH 2006. [DOI: 10.1057/palgrave.sth.8700075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
92
|
Soto-Gutierrez A, Navarro-Alvarez N, Rivas-Carrillo JD, Chen Y, Yamatsuji T, Tanaka N, Kobayashi N. Differentiation of human embryonic stem cells to hepatocytes using deleted variant of HGF and poly-amino-urethane-coated nonwoven polytetrafluoroethylene fabric. Cell Transplant 2006; 15:335-41. [PMID: 16898227 DOI: 10.3727/000000006783981945] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human embryonic stem (hES) cells have recently been studied as an attractive source for the development of a bioartificial liver (BAL). Here we evaluate the differentiation capacity of hES cells into hepatocytes. hES cells were subjected to suspension culture for 5 days, and then cultured onto poly-amino-urethane (PAU)-coated, nonwoven polytetrafluoroethylene (PTFE) fabric in the presence of fibroblast growth factor-2 (bFGF) (100 ng/ml) for 3 days, then with deleted variant of hepatocyte growth factor (dHGF) (100 ng/ml) and 1% dimethyl sulfoxide (DMSO) for 8 days, and finally with dexamethasone (10(-7) M) for 3 days. The hES cells showed gene expression of albumin in a time-dependent manner of the hepatic differentiation process. The resultant hES-derived hepatocytes metabolized the loaded ammonia and lidocaine at 7.8% and 23.6%, respectively. A million of such hepatocytes produced albumin and urea at 351.2 ng and urea at 7.0 microg. Scanning electron microscopy showed good attachment of the cells on the surface of the PTFE fabric and well-developed glycogen rosettes and Gap junction. In the present work we have demonstrated the efficient differentiation of hES cells to functional hepatocytes. The findings are useful to develop a BAL.
Collapse
Affiliation(s)
- Alejandro Soto-Gutierrez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | |
Collapse
|
93
|
de Andrade PBM, Rubi B, Frigerio F, van den Ouweland JMW, Maassen JA, Maechler P. Diabetes-associated mitochondrial DNA mutation A3243G impairs cellular metabolic pathways necessary for beta cell function. Diabetologia 2006; 49:1816-26. [PMID: 16736129 DOI: 10.1007/s00125-006-0301-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS Mitochondrial DNA (mtDNA) mutations cause several diseases, including mitochondrial inherited diabetes and deafness (MIDD), typically associated with the mtDNA A3243G point mutation on tRNALeu gene. The common hypothesis to explain the link between the genotype and the phenotype is that the mutation might impair mitochondrial metabolism expressly required for beta cell functions. However, this assumption has not yet been tested. METHODS We used clonal osteosarcoma cytosolic hybrid cells (namely cybrids) harbouring mitochondria derived from MIDD patients and containing either exclusively wild-type or mutated (A3243G) mtDNA. According to the importance of mitochondrial metabolism in beta cells, we studied the impact of the mutation on key parameters by comparing stimulation of these cybrids by the main insulin secretagogue glucose and the mitochondrial substrate pyruvate. RESULTS Compared with control mtDNA from the same patient, the A3243G mutation markedly modified metabolic pathways leading to a high glycolytic rate (2.8-fold increase), increased lactate production (2.5-fold), and reduced glucose oxidation (-83%). We also observed impaired NADH responses (-56%), negligible mitochondrial membrane potential, and reduced, only transient ATP generation. Moreover, cybrid cells carrying patient-derived mutant mtDNA exhibited deranged cell calcium handling with increased cytosolic loads (1.4-fold higher), and elevated reactive oxygen species (2.6-fold increase) under glucose deprivation. CONCLUSIONS/INTERPRETATION The present study demonstrates that the mtDNA A3243G mutation impairs crucial metabolic events required for proper cell functions, such as coupling of glucose recognition to insulin secretion.
Collapse
Affiliation(s)
- P B M de Andrade
- Department of Cell Physiology and Metabolism, University Medical Center, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
94
|
Cozar-Castellano I, Fiaschi-Taesch N, Bigatel TA, Takane KK, Garcia-Ocaña A, Vasavada R, Stewart AF. Molecular control of cell cycle progression in the pancreatic beta-cell. Endocr Rev 2006; 27:356-70. [PMID: 16638909 DOI: 10.1210/er.2006-0004] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Type 1 and type 2 diabetes both result from inadequate production of insulin by the beta-cells of the pancreatic islet. Accordingly, strategies that lead to increased pancreatic beta-cell mass, as well as retained or enhanced function of islets, would be desirable for the treatment of diabetes. Although pancreatic beta-cells have long been viewed as terminally differentiated and irreversibly arrested, evidence now indicates that beta-cells can and do replicate, that this replication can be enhanced by a variety of maneuvers, and that beta-cell replication plays a quantitatively significant role in maintaining pancreatic beta-cell mass and function. Because beta-cells have been viewed as being unable to proliferate, the science of beta-cell replication is undeveloped. In the past several years, however, this has begun to change at a rapid pace, and many laboratories are now focused on elucidating the molecular details of the control of cell cycle in the beta-cell. In this review, we review the molecular details of cell cycle control as they relate to the pancreatic beta-cell. Our hope is that this review can serve as a common basis and also a roadmap for those interested in developing novel strategies for enhancing beta-cell replication and improving insulin production in animal models as well as in human pancreatic beta-cells.
Collapse
Affiliation(s)
- Irene Cozar-Castellano
- Division of Endocrinology and Metabolism, BST E-1140, The University of Pittsburgh School of Medicine, 200 Lothrop Street, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Diabetes mellitus types 1 and 2 are characterized by absolute versus relative lack of insulin-producing beta cells, respectively. Reconstitution of a functional beta-cell mass by cell therapy--using organ donor islets of Langerhans--has been demonstrated to restore euglycaemia in the absence of insulin treatment. This remarkable achievement has stimulated the search for appropriate stem cell sources from which adequate expansion and maturation of therapeutic beta cells can be achieved. This recent activity is reviewed and presented with particular focus on directed differentiation from pluripotent embryonic stem cells (versus other stem/progenitor cell sources) based on knowledge from pancreatic beta-cell development and the parallel approach to controlling endogenous beta-cell neogenesis.
Collapse
|
96
|
Ungrin MD, Harrington L. Strict control of telomerase activation using Cre-mediated inversion. BMC Biotechnol 2006; 6:10. [PMID: 16504006 PMCID: PMC1403769 DOI: 10.1186/1472-6750-6-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 02/20/2006] [Indexed: 01/25/2023] Open
Abstract
Background Human cells appear exquisitely sensitive to the levels of hTERT expression, the telomerase reverse transcriptase. In primary cells that do not express hTERT, telomeres erode with each successive cell division, leading to the eventual loss of telomere DNA, an induction of a telomere DNA damage response, and the onset of cellular senescence or crisis. In some instances, an average of less than one appropriately spliced hTERT transcript per cell appears sufficient to restore telomerase activity and telomere maintenance, and overcome finite replicative capacity. Results To underscore this sensitivity, we showed that a widely used system of transcriptional induction involving ecdysone (muristerone) led to sufficient expression of hTERT to immortalize human fibroblasts, even in the absence of induction. To permit tightly regulated expression of hTERT, or any other gene of interest, we developed a method of transcriptional control using an invertible expression cassette flanked by antiparallel loxP recombination sites. When introduced into human fibroblasts with the hTERT cDNA positioned in the opposite orientation relative to a constitutively active promoter, no telomerase activity was detected, and the cell population retained a mortal phenotype. Upon inversion of the hTERT cDNA to a transcriptionally competent orientation via the action of Cre recombinase, cells acquired telomerase activity, telomere DNA was replenished, and the population was immortalized. Further, using expression of a fluorescent protein marker, we demonstrated the ability to repeatedly invert specific transcripts between an active and inactive state in an otherwise isogenic cell background. Conclusion This binary expression system thus provides a useful genetic means to strictly regulate the expression of a given gene, or to control the expression of at least two different genes in a mutually exclusive manner.
Collapse
Affiliation(s)
- Mark D Ungrin
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario, M5S 3E1, USA
| | - Lea Harrington
- Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, and Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Toronto, ON M5G 2C1, USA
| |
Collapse
|
97
|
Black SP, Constantinidis I, Cui H, Tucker-Burden C, Weber CJ, Safley SA. Immune responses to an encapsulated allogeneic islet β-cell line in diabetic NOD mice. Biochem Biophys Res Commun 2006; 340:236-43. [PMID: 16375863 DOI: 10.1016/j.bbrc.2005.11.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 11/22/2005] [Indexed: 02/02/2023]
Abstract
Our goal is to develop effective islet grafts for treating type 1 diabetes. Since human islets are scarce, we evaluated the efficacy of a microencapsulated insulin-secreting conditionally transformed allogeneic beta-cell line (betaTC-tet) in non-obese diabetic mice treated with tetracycline to inhibit cell growth. Relatively low serum levels of tetracycline controlled proliferation of betaTC-tet cells without inhibiting effective control of hyperglycemia in recipients. There was no significant host cellular reaction to the allografts or host cell adherence to microcapsules, and host cytokine levels were similar to those of sham-operated controls. We conclude that encapsulated allogeneic beta-cell lines may be clinically relevant, because they effectively restore euglycemia and do not elicit a strong cellular immune response following transplantation. To our knowledge, this is the first extensive characterization of the kinetics of host cellular and cytokine responses to an encapsulated islet cell line in an animal model of type 1 diabetes.
Collapse
Affiliation(s)
- Sasha P Black
- Charles River Laboratories, Pre-clinical Services Montreal, Senneville, Que., Canada H9X 3R3.
| | | | | | | | | | | |
Collapse
|
98
|
Can gene therapy make pancreas and islet transplantation obsolete? Curr Opin Organ Transplant 2006. [DOI: 10.1097/01.mot.0000209297.87535.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
99
|
|