51
|
Rawat V, Malvi P, Della Manna D, Yang ES, Bugide S, Zhang X, Gupta R, Wajapeyee N. PSPH promotes melanoma growth and metastasis by metabolic deregulation-mediated transcriptional activation of NR4A1. Oncogene 2021; 40:2448-2462. [PMID: 33674745 PMCID: PMC8026604 DOI: 10.1038/s41388-021-01683-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023]
Abstract
Metabolic deregulation, a hallmark of cancer, fuels cancer cell growth and metastasis. Here, we show that phosphoserine phosphatase (PSPH), an enzyme of the serine metabolism pathway, is upregulated in patient-derived melanoma samples. PSPH knockdown using short hairpin RNAs (shRNAs) blocks melanoma tumor growth and metastasis in both cell culture and mice. To elucidate the mechanism underlying PSPH action, we evaluated PSPH shRNA-expressing melanoma cells using global metabolomics and targeted mRNA expression profiling. Metabolomics analysis showed an increase in 2-hydroxyglutarate (2-HG) levels in PSPH knockdown cells. 2-HG inhibits the TET family of DNA demethylases and the Jumonji family of histone demethylases (KDM and JMJD), which is known to impact gene expression. Consistent with these data, PSPH knockdown in melanoma cells showed reduced DNA 5-hydroxymethylcytosine (5hmC) and increased histone H3K4me3 modifications. 2-HG treatment also inhibited melanoma growth. The nCounter PanCancer Pathways Panel-based mRNA expression profiling revealed attenuation of a number of cancer-promoting pathways upon PSPH knockdown. In particular, PSPH was necessary for nuclear receptor NR4A1 expression. Ectopic NR4A1 expression partly rescued the growth of melanoma cells expressing PSPH shRNA. Collectively, these results link PSPH to the facilitation of melanoma growth and metastasis through suppression of 2-HG and thus activation of pro-oncogenic gene expression.
Collapse
Affiliation(s)
- Vipin Rawat
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Deborah Della Manna
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Suresh Bugide
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America,Corresponding Author: Narendra Wajapeyee, Department of Biochemistry and Molecular Genetics, The University of Alabama, Birmingham, AL, 35294, USA,
| |
Collapse
|
52
|
Seong HA, Ha H. Ablation of AMPK-Related Kinase MPK38/MELK Leads to Male-Specific Obesity in Aged Mature Adult Mice. Diabetes 2021; 70:386-399. [PMID: 33268463 DOI: 10.2337/db20-0436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022]
Abstract
Murine protein serine-threonine kinase 38 (MPK38)/maternal embryonic leucine zipper kinase (MELK) is implicated in diverse biological processes, including the cell cycle, apoptosis, and tumorigenesis; however, its physiological role is unknown. Using mice lacking MPK38 (MPK38-/-), we found that MPK38-/- male, but not female, mice (7 months of age) became obese while consuming a standard diet, displayed impairments in metabolism and inflammation, became more obese than wild-type mice while consuming a high-fat diet, and exhibited no castration/testosterone replacement-induced metabolic changes. The adenoviral restoration of MPK38 ameliorated the obesity-induced adverse metabolic profile of the obese male, but not female, mice. Seven-month-old MPK38-/- males displayed typical postcastration concentrations of serum testosterone with an accompanying decrease in serum luteinizing hormone (LH) levels, suggesting a role for MPK38 in the age-related changes in serum testosterone in aged mature adult male mice. The stability and activity of MPK38 were increased by dihydrotestosterone but reduced by estradiol (E2). These findings suggest MPK38 as a therapeutic target for obesity-related metabolic disorders in males.
Collapse
Affiliation(s)
- Hyun-A Seong
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyunjung Ha
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
53
|
Wang X, Li G, Guo C, Zhang J, Kong J, He J, Li F, Liu Y, Yang Y, Lu Z, Liu J. Ethyl 2-[2,3,4-Trimethoxy-6-(1-Octanoyl)Phenyl] Acetate (TMPA) Ameliorates Lipid Accumulation by Disturbing the Combination of LKB1 with Nur77 and Activating the AMPK Pathway in HepG2 Cells and Mice Primary Hepatocytes. Diabetes Metab Syndr Obes 2021; 14:4165-4177. [PMID: 34629883 PMCID: PMC8495146 DOI: 10.2147/dmso.s321246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The AMP-activated protein kinase alpha (AMPKα) pathway has widely been considered a key factor in energy metabolism. Ethyl 2-[2,3,4-trimethoxy-6-(1-octanoyl)phenyl] acetate (TMPA) is a novel AMPK agonist, which influences the stability of Nuclear Receptor Subfamily 4, Group A, Member 1 (Nur77)-serine-threonine kinase 11 (LKB1) in the nucleus. A recent study has determined that TMPA can ameliorate the reduction of insulin resistance in type II db/db mice. However, the role of TMPA in hepatocyte lipid metabolism has not been elucidated. OBJECTIVE To investigate whether TMPA could ameliorate liver lipid accumulation under the stimulation of free fatty acids (FFAs) in vitro. METHODS We evaluated differences of Nur77 and AMPK pathway in mice fed a high-fat diet and those fed a normal diet. In vitro, TMPA was added to HepG2 cells and primary hepatocytes before FFAs stimulation. Oil red O staining, Nile red staining were used to evaluate lipid deposition. Western blot and immunofluorescence were used to quantify related proteins. RESULTS Nur77, AMPKα, LKB1, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), acetyl-CoA carboxylase phosphorylation (p-ACC), and carnitine palmitoyltransferase 1 (CPT1A) showed significant differences in vivo. Under the intervention of TMPA, HepG2 cells and primary hepatocytes showed considerable amelioration of lipid deposition and improved the expression of phosphorylated (p)-AMPKα (p-AMPKα), p-LKB1, p-ACC, and CPT1A. Furthermore, Western blotting and immunofluorescence studies indicated that LKB1 dramatically increased expression in the cytoplasm but decreased in the nucleus. Further, AMPKα phosphorylation (p-AMPKα) also showed a higher expression in cytoplasm instead of the nucleus. CONCLUSION TMPA ameliorated lipid accumulation by influencing the stability of Nur77-LKB1 in vitro.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Guangbing Li
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Changfa Guo
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Cheeloo College of Medicine, Jinan, Shandong, People’s Republic of China
| | - Jiayao Zhang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Junjie Kong
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jingyi He
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Feiyu Li
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yong Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yang Yang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Ziwen Lu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Correspondence: Jun Liu Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China Email
| |
Collapse
|
54
|
Mohammed I, Hollenberg MD, Ding H, Triggle CR. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front Endocrinol (Lausanne) 2021; 12:718942. [PMID: 34421827 PMCID: PMC8374068 DOI: 10.3389/fendo.2021.718942] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
The numerous beneficial health outcomes associated with the use of metformin to treat patients with type 2 diabetes (T2DM), together with data from pre-clinical studies in animals including the nematode, C. elegans, and mice have prompted investigations into whether metformin has therapeutic utility as an anti-aging drug that may also extend lifespan. Indeed, clinical trials, including the MILES (Metformin In Longevity Study) and TAME (Targeting Aging with Metformin), have been designed to assess the potential benefits of metformin as an anti-aging drug. Preliminary analysis of results from MILES indicate that metformin may induce anti-aging transcriptional changes; however it remains controversial as to whether metformin is protective in those subjects free of disease. Furthermore, despite clinical use for over 60 years as an anti-diabetic drug, the cellular mechanisms by which metformin exerts either its actions remain unclear. In this review, we have critically evaluated the literature that has investigated the effects of metformin on aging, healthspan and lifespan in humans as well as other species. In preparing this review, particular attention has been placed on the strength and reproducibility of data and quality of the study protocols with respect to the pharmacokinetic and pharmacodynamic properties of metformin. We conclude that despite data in support of anti-aging benefits, the evidence that metformin increases lifespan remains controversial. However, via its ability to reduce early mortality associated with various diseases, including diabetes, cardiovascular disease, cognitive decline and cancer, metformin can improve healthspan thereby extending the period of life spent in good health. Based on the available evidence we conclude that the beneficial effects of metformin on aging and healthspan are primarily indirect via its effects on cellular metabolism and result from its anti-hyperglycemic action, enhancing insulin sensitivity, reduction of oxidative stress and protective effects on the endothelium and vascular function.
Collapse
Affiliation(s)
- Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
- *Correspondence: Chris R. Triggle, ; Ibrahim Mohammed,
| | - Morley D. Hollenberg
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Hong Ding
- Department of Medical Education, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
- Departments of Medical Education and Pharmacology, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
| | - Chris R. Triggle
- Department of Medical Education, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
- Departments of Medical Education and Pharmacology, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
- *Correspondence: Chris R. Triggle, ; Ibrahim Mohammed,
| |
Collapse
|
55
|
Munoz-Tello P, Lin H, Khan P, de Vera IMS, Kamenecka TM, Kojetin DJ. Assessment of NR4A Ligands That Directly Bind and Modulate the Orphan Nuclear Receptor Nurr1. J Med Chem 2020; 63:15639-15654. [PMID: 33289551 PMCID: PMC8006468 DOI: 10.1021/acs.jmedchem.0c00894] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nurr1/NR4A2 is an orphan nuclear receptor transcription factor implicated as a drug target for neurological disorders including Alzheimer's and Parkinson's diseases. Previous studies identified small-molecule NR4A nuclear receptor modulators, but it remains unclear if these ligands affect transcription via direct binding to Nurr1. We assessed 12 ligands reported to affect NR4A activity for Nurr1-dependent and Nurr1-independent transcriptional effects and the ability to bind the Nurr1 ligand-binding domain (LBD). Protein NMR structural footprinting data show that amodiaquine, chloroquine, and cytosporone B bind the Nurr1 LBD; ligands that do not bind include C-DIM12, celastrol, camptothecin, IP7e, isoalantolactone, ethyl 2-[2,3,4-trimethoxy-6-(1-octanoyl)phenyl]acetate (TMPA), and three high-throughput screening hit derivatives. Importantly, ligands that modulate Nurr1 transcription also show Nurr1-independent effects on transcription in a cell type-specific manner, indicating that care should be taken when interpreting the functional response of these ligands in transcriptional assays. These findings should help focus medicinal chemistry efforts that desire to optimize Nurr1-binding ligands.
Collapse
Affiliation(s)
- Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Hua Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Pasha Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Ian Mitchelle S. de Vera
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Theodore M. Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Douglas J. Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
56
|
Zhang C, Zhang B, Zhang X, Sun G, Sun X. Targeting Orphan Nuclear Receptors NR4As for Energy Homeostasis and Diabetes. Front Pharmacol 2020; 11:587457. [PMID: 33328994 PMCID: PMC7728612 DOI: 10.3389/fphar.2020.587457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Orphan nuclear receptors are important members of the nuclear receptor family and may regulate cell proliferation, metabolism, differentiation, and apoptosis. NR4As, a subfamily of orphan nuclear receptors, have been reported to play key roles in carbohydrate and lipid metabolism and energy homeostasis. Popularity of obesity has resulted in a series of metabolic diseases such as diabetes and its complications. While imbalance of energy intake and expenditure is the main cause of obesity, the concrete mechanism of obesity has not been fully understood. It has been reported that NR4As have significant regulatory effects on energy homeostasis and diabetes and are expected to become new targets for discovering drugs for metabolic syndrome. A number of studies have demonstrated that abnormalities in metabolism induced by altered levels of NR4As may contribute to numerous diseases, such as chronic inflammation, tumorigenesis, diabetes and its complications, atherosclerosis, and other cardiovascular diseases. However, systematic reviews focusing on the roles of NR4As in mediating energy homeostasis and diabetes remain limited. Therefore, this article reviews the structure and regulation of NR4As and their critical function in energy homeostasis and diabetes, as well as small molecules that may regulate NR4As. Our work is aimed at providing valuable support for the research and development of drugs targeting NR4As for the treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Chenyang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuelian Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
57
|
Tu X, Chen X, Zhang D, Gao M, Liang J, Bao G, Zhang J, Peng S, Zhang X, Zeng Z, Su Y. Optimization of novel oxidative DIMs as Nur77 modulators of the Nur77-Bcl-2 apoptotic pathway. Eur J Med Chem 2020; 211:113020. [PMID: 33279290 DOI: 10.1016/j.ejmech.2020.113020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022]
Abstract
Nur77, an orphan nuclear receptor, is a member of the nuclear receptor superfamily. Nur77 plays important roles in various biological processes. Previously we reported that BI1071(DIM-C-pPhCF3+MeSO3-), an oxidized form and methanesulfonate salt of (4-CF3-Ph-C-DIM), can modulate Nur77's non-genomic apoptotic pathway through that Nur77 translocated from the nucleus to mitochondria to induce cytochrome c releasing and promote apoptosis of cancer cell. Here we report our efforts to further optimize BI1071. A series of BI1071 analogs were designed, synthesized and their apoptosis potency was systematically evaluated. Our preliminary structure-activity relationship study identified compound 10b as a better modulator with strong binding to Nur77 and enhanced apoptotic activity. Binding studies demonstrated that 10b could bind to its target Nur77 with an affinity value of 33 nM. Furthermore, mechanism studies reveal that 10b acts as an anticancer agent by utilizing the Nur77-Bcl-2 apoptotic pathway.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Female
- Humans
- Male
- Mice
- Mice, Transgenic
- Molecular Docking Simulation
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Oxidation-Reduction
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Rats
- Rats, Sprague-Dawley
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Xuhuang Tu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Xiaohui Chen
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Dongliang Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Meichun Gao
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Jingmei Liang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Guoliang Bao
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Jie Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Shuangzhou Peng
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Xiaokun Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Zhiping Zeng
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China.
| | - Ying Su
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China; NucMito Pharmaceuticals, Xiamen 361000, China.
| |
Collapse
|
58
|
Pu ZQ, Liu D, Lobo Mouguegue HPP, Jin CW, Sadiq E, Qin DD, Yu TF, Zong C, Chen JC, Zhao RX, Lin JY, Cheng J, Yu X, Li X, Zhang YC, Liu YT, Guan QB, Wang XD. NR4A1 counteracts JNK activation incurred by ER stress or ROS in pancreatic β-cells for protection. J Cell Mol Med 2020; 24:14171-14183. [PMID: 33124187 PMCID: PMC7754045 DOI: 10.1111/jcmm.16028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Sustained hyperglycaemia and hyperlipidaemia incur endoplasmic reticulum stress (ER stress) and reactive oxygen species (ROS) overproduction in pancreatic β‐cells. ER stress or ROS causes c‐Jun N‐terminal kinase (JNK) activation, and the activated JNK triggers apoptosis in different cells. Nuclear receptor subfamily 4 group A member 1 (NR4A1) is an inducible multi‐stress response factor. The aim of this study was to explore the role of NR4A1 in counteracting JNK activation induced by ER stress or ROS and the related mechanism. qPCR, Western blotting, dual‐luciferase reporter and ChIP assays were applied to detect gene expression or regulation by NR4A1. Immunofluorescence was used to detect a specific protein expression in β‐cells. Our data showed that NR4A1 reduced the phosphorylated JNK (p‐JNK) in MIN6 cells encountering ER stress or ROS and reduced MKK4 protein in a proteasome‐dependent manner. We found that NR4A1 increased the expression of cbl‐b (an E3 ligase); knocking down cbl‐b expression increased MKK4 and p‐JNK levels under ER stress or ROS conditions. We elucidated that NR4A1 enhanced the transactivation of cbl‐b promoter by physical association. We further confirmed that cbl‐b expression in β‐cells was reduced in NR4A1‐knockout mice compared with WT mice. NR4A1 down‐regulates JNK activation by ER stress or ROS in β‐cells via enhancing cbl‐b expression.
Collapse
Affiliation(s)
- Ze-Qing Pu
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Dong Liu
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | | | - Cheng-Wen Jin
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Esha Sadiq
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Dan-Dan Qin
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Tian-Fu Yu
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Chen Zong
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Ji-Cui Chen
- Blood Transfusion Department, Qilu Hospital of Shandong University, Jinan, China
| | - Ru-Xing Zhao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Yu Lin
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Jie Cheng
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Xiao Yu
- Department of Physiology, Shandong University School of Medicine, Jinan, China.,Key Laboratory of Protein Sciences for Chronic Degenerative Diseases in Universities of Shandong (Shandong University), Jinan, China
| | - Xia Li
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Yu-Chao Zhang
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao, China
| | - Yuan-Tao Liu
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao, China
| | - Qing-Bo Guan
- Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, China
| | - Xiang-Dong Wang
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China.,Key Laboratory of Protein Sciences for Chronic Degenerative Diseases in Universities of Shandong (Shandong University), Jinan, China
| |
Collapse
|
59
|
Blocking PPARγ interaction facilitates Nur77 interdiction of fatty acid uptake and suppresses breast cancer progression. Proc Natl Acad Sci U S A 2020; 117:27412-27422. [PMID: 33087562 DOI: 10.1073/pnas.2002997117] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nuclear receptor Nur77 participates in multiple metabolic regulations and plays paradoxical roles in tumorigeneses. Herein, we demonstrated that the knockout of Nur77 stimulated mammary tumor development in two mouse models, which would be reversed by a specific reexpression of Nur77 in mammary tissues. Mechanistically, Nur77 interacted and recruited corepressors, the SWI/SNF complex, to the promoters of CD36 and FABP4 to suppress their transcriptions, which hampered the fatty acid uptake, leading to the inhibition of cell proliferation. Peroxisome proliferator-activated receptor-γ (PPARγ) played an antagonistic role in this process through binding to Nur77 to facilitate ubiquitin ligase Trim13-mediated ubiquitination and degradation of Nur77. Cocrystallographic and functional analysis revealed that Csn-B, a Nur77-targeting compound, promoted the formation of Nur77 homodimer to prevent PPARγ binding by steric hindrance, thereby strengthening the Nur77's inhibitory role in breast cancer. Therefore, our study reveals a regulatory function of Nur77 in breast cancer via impeding fatty acid uptake.
Collapse
|
60
|
NR4A nuclear receptors restrain B cell responses to antigen when second signals are absent or limiting. Nat Immunol 2020; 21:1267-1279. [PMID: 32868928 PMCID: PMC8081071 DOI: 10.1038/s41590-020-0765-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
Antigen stimulation (signal 1) triggers B cell proliferation, and primes B cells to recruit, engage, and respond to T cell help (signal 2). Failure to receive signal 2 within a defined time window results in B cell apoptosis, yet the mechanisms that enforce dependence upon co-stimulation are incompletely understood. Nr4a1-3 encode a small family of orphan nuclear receptors that are rapidly induced by B cell antigen receptor (BCR) stimulation. Here we showed that Nr4a1 and Nr4a3 play partially redundant roles to restrain B cell responses to antigen in the absence of co-stimulation, and do so in part by repressing expression of BATF and consequently MYC. The NR4A family also restrains B cell access to T cell help by repressing expression of the T cell chemokines CCL3 and CCL4, as well as CD86 and ICAM1. Such NR4A-mediated regulation plays a role specifically under conditions of competition for limiting T cell help.
Collapse
|
61
|
Rajan S, Jang Y, Kim CH, Kim W, Toh HT, Jeon J, Song B, Serra A, Lescar J, Yoo JY, Beldar S, Ye H, Kang C, Liu XW, Feitosa M, Kim Y, Hwang D, Goh G, Lim KL, Park HM, Lee CH, Oh SF, Petsko GA, Yoon HS, Kim KS. PGE1 and PGA1 bind to Nurr1 and activate its transcriptional function. Nat Chem Biol 2020; 16:876-886. [PMID: 32451509 DOI: 10.1038/s41589-020-0553-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The orphan nuclear receptor Nurr1 is critical for the development, maintenance and protection of midbrain dopaminergic (mDA) neurons. Here we show that prostaglandin E1 (PGE1) and its dehydrated metabolite, PGA1, directly interact with the ligand-binding domain (LBD) of Nurr1 and stimulate its transcriptional function. We also report the crystallographic structure of Nurr1-LBD bound to PGA1 at 2.05 Å resolution. PGA1 couples covalently to Nurr1-LBD by forming a Michael adduct with Cys566, and induces notable conformational changes, including a 21° shift of the activation function-2 helix (H12) away from the protein core. Furthermore, PGE1/PGA1 exhibit neuroprotective effects in a Nurr1-dependent manner, prominently enhance expression of Nurr1 target genes in mDA neurons and improve motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse models of Parkinson's disease. Based on these results, we propose that PGE1/PGA1 represent native ligands of Nurr1 and can exert neuroprotective effects on mDA neurons, via activation of Nurr1's transcriptional function.
Collapse
Affiliation(s)
- Sreekanth Rajan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yongwoo Jang
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Chun-Hyung Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Paean Biotechnology, Daejeon, Korea
| | - Woori Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Hui Ting Toh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Bin Song
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Aida Serra
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Jun Yeob Yoo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Serap Beldar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hong Ye
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Nanos, Singapore, Singapore
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Melissa Feitosa
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Yeahan Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Dabin Hwang
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Geraldine Goh
- National Neuroscience Institute, Singapore, Singapore
| | - Kah-Leong Lim
- National Neuroscience Institute, Singapore, Singapore.,Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Hye Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Sungwhan F Oh
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory A Petsko
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA. .,Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
62
|
Xiong Y, Ran J, Xu L, Tong Z, Adel Abdo MS, Ma C, Xu K, He Y, Wu Z, Chen Z, Hu P, Jiang L, Bao J, Chen W, Wu L. Reactivation of NR4A1 Restrains Chondrocyte Inflammation and Ameliorates Osteoarthritis in Rats. Front Cell Dev Biol 2020; 8:158. [PMID: 32258036 PMCID: PMC7090231 DOI: 10.3389/fcell.2020.00158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease and uncontrolled inflammation is now recognized to play vital roles in OA development. Targeting the endogenous counterpart of inflammation may develop new therapeutic approaches in resolving inflammation persistence and treating inflammatory disease including OA. The orphan nuclear receptor 4A1 (NR4A1) is a key negative regulator of inflammatory responses but its role in osteoarthritis remains unclear. In the present study, we found that the NR4A1 expression was elevated in human osteoarthritis cartilage and in vitro OA model, which could be blocked by NF-κB signal inhibitor JSH23. The overexpression of NR4A1 inhibited, whereas knockdown of NR4A1 enhanced IL-1β induced COX-2, iNOS, MMP3, MMP9 and MMP13 expression, and luciferase reporter activity of NF-κB response element. Though NR4A1 was upregulated in inflammatory stimulation and creates a negative feedback loop, persistent inflammatory stimulation inhibited NR4A1 expression and activation. The expression of NR4A1 declined rapidly after an initial peak in conditions of chronic IL-1β stimulation, which could be partially restored by HDACs inhibitor SAHA. The phosphorylation of NR4A1 was increased in human osteoarthritis cartilage, and p38 inhibitor SB203580, JNK inhibitor SP600125 and ERK inhibitor FR180204 could significantly inhibited IL-1β induced NR4A1 phosphorylation. Reactivation of NR4A1 by its agonist cytosporone B could inhibit IL-1β induced chondrocyte inflammation and expression of COX-2, iNOS, MMP3, MMP9, and MMP13. In rat OA model, intra-articular injection of cytosporone B protected cartilage damage and ameliorated osteoarthritis. Thus, our study demonstrated that the NR4A1 is a key endogenous inhibitor of chondrocyte inflammation, which was relatively inactivated under chronic inflammatory stimulation through HDACs mediated transcriptional suppression and MAKP dependent phosphorylation in osteoarthritis. NR4A1 agonist cytosporone B could reactivate and restore the inhibitory regulatory ability of NR4A1, prevent excessive inflammation, and ameliorates osteoarthritis.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Langhai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou Tong
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Moqbel Safwat Adel Abdo
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chiyuan Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhipeng Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhonggai Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengfei Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifeng Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiapeng Bao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiping Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
63
|
Lu X, Fu H, Chen R, Wang Y, Zhan Y, Song G, Hu T, Xia C, Tian X, Zhang B. Phosphoinositide specific phospholipase Cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma A549 cells in vivo and in vitro. Int J Biol Sci 2020; 16:1427-1440. [PMID: 32210730 PMCID: PMC7085223 DOI: 10.7150/ijbs.42962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Our previous studies indicated that phosphoinositide specific phospholipase Cγ1 (PLCγ1) was involved in autophagy induction in colon and hepatic carcinoma cells. However, whether and how PLCγ1 regulation in human lung adenocarcinoma is linked to autophagy remains unclear. Here, we assessed the protein expression of PLCγ1 in human lung adenocarcinoma tissue using immunohistochemistry assay and the relationship between PLCG1 and autophagy in The Cancer Genome Atlas Network (TCGA) using Spearman correlation analysis and GSEA software. Furthermore, the interaction between PLCγ1 and autophagy-related signal molecules was investigated in human lung adenocarcinoma A549 cells treated with different inhibitors or transduction with lentivirus-mediated PLCγ1 gene short-hairpin RNA (shRNA) vectors using MTT, clonogenicity, Transwell migration, RT-PCR, Caspase-3, mitochondrial transmembrane potential, and western blotting assays, as well as transmission electron microscope technique. Additionally, the effect of shRNA/PLCγ1 alone or combined with autophagic activator Lithium Chloride (LiCl) on tumor growth and metastasis was measured using immunohistochemistry and assays in A549 xenograft nude mouse model. The results showed that increased PLCγ1 expression occurred frequently in human lung adenocarcinoma tissue with higher grades of T in TNM staging classification. PLCγ1 significantly enriched in autophagic process and regulation, which negatively regulating autophagy was enriched in higher expression of PLCγ1. PLCγ1 inhibition partially reduced cell proliferation and migration of A549 cells, with an increased autophagic flux involving alterations of AMPKα, mTOR, and ERK levels. However, PLCγ1 inhibition-driven autophagy led to cell death without depending on Caspase-3 and RIP1. Additionally, the abrogation of PLCγ1 signaling by shRNA and combination with autophagic activator LiCl could efficaciously suppress tumor growth and metastasis in A549 xenograft nude mice, in combination with a decrease in P62 level. These findings collectively suggest that reduction of cell proliferation and migration by PLCγ1 inhibition could be partially attributed to PLCγ1 inhibition-driven autophagic cell death (ACD). It highlights the potential role of a combination between targeting PLCγ1 and autophagy pathway in anti-tumor therapy, which may be an efficacious new strategy to overcome the autophagy addition of tumor and acquired resistance to current therapy.
Collapse
Affiliation(s)
- Xiaohong Lu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Haijing Fu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Rui Chen
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Yue Wang
- Zhongshan Hospital, Xiamen University,361004, Xiamen, Fujian, China
| | - Yanyan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Chun Xia
- Zhongshan Hospital, Xiamen University,361004, Xiamen, Fujian, China
| | - Xuemei Tian
- School of Life Sciences, South China Normal University, 510631, Guangzhou, Gangdong, China
| | - Bing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| |
Collapse
|
64
|
Kuramoto K, Yamada H, Shin T, Sawada Y, Azami H, Yamada T, Nagashima T, Ohnuki K. Development of a potent and orally active activator of adenosine monophosphate-activated protein kinase (AMPK), ASP4132, as a clinical candidate for the treatment of human cancer. Bioorg Med Chem 2020; 28:115307. [PMID: 32007387 DOI: 10.1016/j.bmc.2020.115307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 01/09/2023]
Abstract
Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a key role in maintaining cellular metabolism. AMP or adenosine diphosphate (ADP) levels rise during metabolic stress, such as during nutrient starvation, hypoxia and muscle contraction, and bind to AMPK to induce activity. Recently, activation of AMPK has been considered an attractive therapeutic strategy in the field of human oncology. Structural optimization of lead compound 2, a new type of AMPK activator with potent AMPK activation activity and attractive selective growth inhibition against human cancer cells, improved aqueous solubility, metabolic stability and animal pharmacokinetics (PK) and culminated in the identification of (5-{1-[(6-methoxypyridin-3-yl)methyl]piperidin-4-yl}-1H-benzimidazol-2-yl)(4-{[4-(trifluoromethyl)phenyl]methyl}piperazin-1-yl)methanone ditosylate, ASP4132 (28). Studies on ASP4132 had advanced to clinical trials for the treatment of cancer.
Collapse
Affiliation(s)
- Kazuyuki Kuramoto
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | - Hiroyoshi Yamada
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Takashi Shin
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Yuki Sawada
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Hidenori Azami
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Tomohiro Yamada
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Takeyuki Nagashima
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Kei Ohnuki
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| |
Collapse
|
65
|
Jiang L, Dai S, Li J, Liang X, Qu L, Chen X, Guo M, Chen Z, Chen L, Wei H, Chen Y. Structural basis of binding of homodimers of the nuclear receptor NR4A2 to selective Nur-responsive DNA elements. J Biol Chem 2019; 294:19795-19803. [PMID: 31723028 PMCID: PMC6926456 DOI: 10.1074/jbc.ra119.010730] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/11/2019] [Indexed: 01/07/2023] Open
Abstract
Proteins of nuclear receptor subfamily 4 group A (NR4A), including NR4A1/NGFI-B, NR4A2/Nurr1, and NR4A3/NOR-1, are nuclear transcription factors that play important roles in metabolism, apoptosis, and proliferation. NR4A proteins recognize DNA response elements as monomers or dimers to regulate the transcription of a variety of genes involved in multiple biological processes. In this study, we determined two crystal structures of the NR4A2 DNA-binding domain (NR4A2-DBD) bound to two Nur-responsive elements: an inverted repeat and an everted repeat at 2.6-2.8 Å resolution. The structures revealed that two NR4A2-DBD molecules bind independently to the everted repeat, whereas two other NR4A2-DBD molecules form a novel dimer interface on the inverted repeat. Moreover, substitution of the interfacial residue valine 298 to lysine as well as mutation of DNA bases involved in the interactions abolished the dimerization. Overall, our structural, biochemical, and bioinformatics analyses provide a molecular basis for the binding of the NR4A2 protein dimers to NurREs and advance our understanding of the dimerization specificity of nuclear receptors.
Collapse
Affiliation(s)
- Longying Jiang
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuyan Dai
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Li
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xujun Liang
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lingzhi Qu
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaojuan Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming Guo
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuchu Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China,Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California 90089
| | - Hudie Wei
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China, To whom correspondence may be addressed. Tel.:
86-731-84327542; Fax:
86-731-84327542; E-mail:
| | - Yongheng Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China, To whom correspondence may be addressed. Tel.:
86-731-84327542; Fax:
86-731-84327542; E-mail:
| |
Collapse
|
66
|
Kari S, Vasko VV, Priya S, Kirschner LS. PKA Activates AMPK Through LKB1 Signaling in Follicular Thyroid Cancer. Front Endocrinol (Lausanne) 2019; 10:769. [PMID: 31798532 PMCID: PMC6874117 DOI: 10.3389/fendo.2019.00769] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023] Open
Abstract
Thyroid cancer affects about one percent of the population, and has seen rising incidence in recent years. Follicular thyroid cancer (FTC) comprises 10-15% of all thyroid cancers. Although FTC is often localized, it can behave aggressively with hematogenous metastasis, leading to an increased risk of cancer death. We previously described a mouse model for FTC caused by tissue-specific ablation of the Protein Kinase A (PKA) regulatory subunit Prkar1a, either by itself or in combination with knockout of Pten. Loss of Prkar1a causes enhanced activity of PKA, whereas ablation of Pten causes activation of Akt signaling. At the molecular level, these genetic manipulations caused activation of mTOR signaling, which was also observed in human FTC cases. To understand the mechanism by which PKA activates mTOR, we began by studying intracellular kinases known to modulate mTOR function. Although AMP-activated kinase (AMPK) has been characterized as a negative regulator of mTOR activity, our tumor model exhibited activation of both AMPK and mTOR. To understand the mechanism by which AMPK was turned on, we next studied kinases known to cause its phosphorylation. In this paper, we report that PKA leads to AMPK activation through the LKB1 kinase. Although LKB1 has traditionally been considered a tumor suppressor, our data indicates that it may have a complex role in the thyroid gland, where its activation appears to be frequently associated with follicular thyroid carcinoma in both mice and humans.
Collapse
Affiliation(s)
- Suresh Kari
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Vasyl V. Vasko
- Uniformed Services University of Health Sciences, Bethesda, MD, United States
| | - Shivam Priya
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Lawrence S. Kirschner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
67
|
Chen Z, Zhang D, Yan S, Hu C, Huang Z, Li Z, Peng S, Li X, Zhu Y, Yu H, Lian B, Kang Q, Li M, Zeng Z, Zhang XK, Su Y. SAR study of celastrol analogs targeting Nur77-mediated inflammatory pathway. Eur J Med Chem 2019; 177:171-187. [DOI: 10.1016/j.ejmech.2019.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
|
68
|
Ren Y, Shen HM. Critical role of AMPK in redox regulation under glucose starvation. Redox Biol 2019; 25:101154. [PMID: 30853530 PMCID: PMC6859544 DOI: 10.1016/j.redox.2019.101154] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/09/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
Glucose starvation is one of the major forms of metabolic stress in cancer cells. Deprivation of glucose impairs glycolysis and the pentose phosphate pathway, which elicits oxidative stress due to enhanced production of reactive oxygen species (ROS) and impaired antioxidant system, leading to redox imbalance and cell death. Under glucose starvation, the 5' AMP-activated protein kinase (AMPK) plays a critical role in maintaining redox homeostasis and cell survival via multiple pathways, such as regulation of fatty acid metabolism and antioxidant response. Convergence of ROS and the glucose metabolic pathway reveals novel molecular targets for the development of effective cancer therapeutic strategies. Interestingly, AMPK, along with its upstream kinase liver kinase B1 (LKB1), has been regarded to play a tumor suppressor role. However, emerging studies have provided novel insights into the pro-tumor survival function of the LKB1-AMPK pathway. Therefore, targeting metabolic and oxidative stress in cancer cells, with manipulation of AMPK activity, is a promising strategy in developing novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Yi Ren
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore.
| |
Collapse
|
69
|
Jin F, Li X, Deng Y, Timilshina M, Huang B, Kim DY, Chang JH, Ichinose H, Baek SH, Murakami M, Lee YJ, Chang HW. The orphan nuclear receptor NR4A1 promotes FcεRI-stimulated mast cell activation and anaphylaxis by counteracting the inhibitory LKB1/AMPK axis. Allergy 2019; 74:1145-1156. [PMID: 30565708 DOI: 10.1111/all.13702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Nuclear receptor subfamily 4 group A member 1 (NR4A1), an orphan nuclear receptor, has been implicated in several biological events such as metabolism, apoptosis, and inflammation. Recent studies indicate a potential role for NR4A1 in mast cells, yet its role in allergic responses remains largely unknown. OBJECTIVES The aim of this study was to clarify the role of NR4A1 in mast cell activation and anaphylaxis. METHODS To evaluate the function of NR4A1 in mast cells, the impacts of siRNA knockdown, gene knockout, adenoviral overexpression, and pharmacological inhibition of NR4A1 on FcεRI signaling and effector functions in mouse bone marrow-derived mast cells (BMMCs) in vitro and on anaphylactic responses in vivo were evaluated. RESULTS Knockdown or knockout of NR4A1 markedly suppressed degranulation and lipid mediator production by FcεRI-crosslinked BMMCs, while its overexpression augmented these responses. Treatment with a NR4A1 antagonist also blocked mast cell activation to a similar extent as NR4A1 knockdown or knockout. Moreover, mast cell-specific NR4A1-deficient mice displayed dampened anaphylactic responses in vivo. Mechanistically, NR4A1 promoted FcεRI signaling by counteracting the liver kinase B1 (LKB1)/adenosine monophosphate-activated protein kinase (AMPK) axis. Following FcεRI crosslinking, NR4A1 bound to the LKB1/AMPK complex and sequestered it in the nucleus, thereby promoting FcεRI downstream signaling pathways. Silencing or knockout of LKB1/AMPK largely abrogated the effect of NR4A1 on mast cell activation. Additionally, NR4A1 facilitated spleen tyrosine kinase activation independently of LKB1/AMPK. CONCLUSIONS Nuclear receptor subfamily 4 group A member 1 positively regulates mast cell activation by antagonizing the LKB1-AMPK-dependent negative regulatory axis. This finding may provide a novel therapeutic strategy for the development of anti-allergic compounds.
Collapse
Affiliation(s)
- Fansi Jin
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | - Xian Li
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | - Yifeng Deng
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | | | - Bin Huang
- Department of Biochemistry and Molecular Biology; College of Medicine; Yeungnam University; Daegu Korea
| | - Dong-Young Kim
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | - Jae-Hoon Chang
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | - Hiroshi Ichinose
- School of Life Science and Technology; Tokyo Institute of Technology; Yokohama Japan
| | - Suk-Hwan Baek
- Department of Biochemistry and Molecular Biology; College of Medicine; Yeungnam University; Daegu Korea
| | - Makoto Murakami
- Laboratory of Microenvironmental Metabolic Health Sciences; Center for Disease Biology and Integrative Medicine; Graduate School of Medicine; The University of Tokyo; Hongo, Bunkyo-ku Japan
| | - Youn Ju Lee
- Department of Pharmacology; School of Medicine; Catholic University of Daegu; Daegu Korea
| | | |
Collapse
|
70
|
Bruning JM, Wang Y, Oltrabella F, Tian B, Kholodar SA, Liu H, Bhattacharya P, Guo S, Holton JM, Fletterick RJ, Jacobson MP, England PM. Covalent Modification and Regulation of the Nuclear Receptor Nurr1 by a Dopamine Metabolite. Cell Chem Biol 2019; 26:674-685.e6. [PMID: 30853418 PMCID: PMC7185887 DOI: 10.1016/j.chembiol.2019.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/06/2018] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
Nurr1, a nuclear receptor essential for the development, maintenance, and survival of midbrain dopaminergic neurons, is a potential therapeutic target for Parkinson's disease, a neurological disorder characterized by the degeneration of these same neurons. Efforts to identify Nurr1 agonists have been hampered by the recognition that it lacks several classic regulatory elements of nuclear receptor function, including the canonical ligand-binding pocket. Here we report that the dopamine metabolite 5,6-dihydroxyindole (DHI) binds directly to and modulates the activity of Nurr1. Using biophysical assays and X-ray crystallography, we show that DHI binds to the ligand-binding domain within a non-canonical pocket, forming a covalent adduct with Cys566. In cultured cells and zebrafish, DHI stimulates Nurr1 activity, including the transcription of target genes underlying dopamine homeostasis. These findings suggest avenues for developing synthetic Nurr1 ligands to ameliorate the symptoms and progression of Parkinson's disease.
Collapse
Affiliation(s)
- John M Bruning
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yan Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Francesca Oltrabella
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Boxue Tian
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Svetlana A Kholodar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Harrison Liu
- Bioengineering Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paulomi Bhattacharya
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - James M Holton
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Robert J Fletterick
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Pamela M England
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
71
|
Ahsan A, Zheng YR, Wu XL, Tang WD, Liu MR, Ma SJ, Jiang L, Hu WW, Zhang XN, Chen Z. Urolithin A-activated autophagy but not mitophagy protects against ischemic neuronal injury by inhibiting ER stress in vitro and in vivo. CNS Neurosci Ther 2019; 25:976-986. [PMID: 30972969 PMCID: PMC6698978 DOI: 10.1111/cns.13136] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022] Open
Abstract
Aim Mitochondrial autophagy (mitophagy) clears damaged mitochondria and attenuates ischemic neuronal injury. Urolithin A (Uro‐A) activates mitophagy in mammal cells and Caenorhabditis elegans. We explored neuroprotection of Uro‐A against ischemic neuronal injury. Methods Mice were subjected to middle cerebral artery occlusion. The brain infarct and neurological deficit scores were measured. The N2a cells and primary cultured mice cortical neurons were subjected to oxygen‐glucose deprivation and reperfusion (OGD/R). Uro‐A was incubated during OGD/R, and cell injury was determined by MTT and LDH. Autophagosomes were visualized by transfecting mCherry‐microtubule‐associated protein 1 light chain 3 (LC3). The protein levels of LC3‐II, p62, Translocase Of Inner Mitochondrial Membrane 23 (TIMM23), and cytochrome c oxidase subunit 4 isoform 1 (COX4I1) were detected by Western blot. The ER stress markers, activating transcription factor 6 (ATF6) and C/EBP homologous protein (CHOP), were determined by reverse transcription‐polymerase chain reaction (RT‐PCR). Results Urolithin A alleviated OGD/R‐induced injury in N2a cells and neurons and reduced ischemic brain injury in mice. Uro‐A reinforced ischemia‐induced autophagy. Furthermore, Uro‐A‐conferred protection was abolished by 3‐methyladenine, suggesting the requirement of autophagy for neuroprotection. However, mitophagy was not further activated by Uro‐A. Instead, Uro‐A attenuated OGD/R‐induced ER stress, which was abolished by 3‐methyladenosine. Additionally, neuroprotection was reversed by ER stress inducer. Conclusion Urolithin A protected against ischemic neuronal injury by reinforcing autophagy rather than mitophagy. Autophagy activation by Uro‐A attenuated ischemic neuronal death by suppressing ER stress.
Collapse
Affiliation(s)
- Anil Ahsan
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Yan-Rong Zheng
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Xiao-Li Wu
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Wei-Dong Tang
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Meng-Ru Liu
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Shi-Jia Ma
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Lei Jiang
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Wei-Wei Hu
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Xiang-Nan Zhang
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- College of Pharmaceutical Sciences, NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Pharmacology & Toxicology, Zhejiang University, Hangzhou, China
| |
Collapse
|
72
|
Meijer FA, Leijten-van de Gevel IA, de Vries RMJM, Brunsveld L. Allosteric small molecule modulators of nuclear receptors. Mol Cell Endocrinol 2019; 485:20-34. [PMID: 30703487 DOI: 10.1016/j.mce.2019.01.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
Nuclear Receptors (NRs) are multi-domain proteins, whose natural regulation occurs via ligands for a classical, orthosteric, binding pocket and via intra- and inter-domain allosteric mechanisms. Allosteric modulation of NRs via synthetic small molecules has recently emerged as an interesting entry to address the need for small molecules targeting NRs in pathology, via novel modes of action and with beneficial profiles. In this review the general concept of allosteric modulation in drug discovery is first discussed, serving as a background and inspiration for NRs. Subsequently, the review focuses on examples of small molecules that allosterically modulate NRs, with a strong focus on structural information and the ligand binding domain. Recently discovered nanomolar potent allosteric site NR modulators are catapulting allosteric targeting of NRs to the center of attention. The obtained insights serve as a basis for recommendations for the next steps to take in allosteric small molecular targeting of NRs.
Collapse
Affiliation(s)
- Femke A Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Iris A Leijten-van de Gevel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Rens M J M de Vries
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands.
| |
Collapse
|
73
|
Sun R, Bao M, Long X, Yuan Y, Wu M, Li X, Bao J. Metabolic gene NR4A1 as a potential therapeutic target for non-smoking female non-small cell lung cancer patients. Thorac Cancer 2019; 10:715-727. [PMID: 30806032 PMCID: PMC6449245 DOI: 10.1111/1759-7714.12989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Although cigarette smoking is considered one of the key risk factors for lung cancer, 15% of male patients and 53% of female patients with lung cancer are non-smokers. Metabolic changes are critical features of cancer. Therapeutic target identification from a metabolic perspective in non-small cell lung cancer (NSCLC) tissue of female non-smokers has long been ignored. RESULTS Based on microarray data retrieved from Affymetrix expression arrays E-GEOD-19804, we found that the downregulated genes in non-smoking female NSCLC patients tended to participate in protein/amino acid and lipid metabolism, while upregulated genes were more involved in protein/amino acid and carbohydrate metabolism. Combining nutrient metabolic co-expression, protein-protein interaction network construction and overall survival assessment, we identified NR4A1 and TIE1 as potential therapeutic targets for NSCLC in female non-smokers. To accelerate the drug development for non-smoking female NSCLC patients, we identified nilotinib as a potential agonist targeting NR4A1 encoded protein by molecular docking and molecular dynamic stimulation. We also show that nilotinib inhibited proliferation and induced senescence of cells in non-smoking female NSCLC patients in vitro. CONCLUSIONS These results not only uncover nutrient metabolic characteristics in non-smoking female NSCLC patients, but also provide a new paradigm for identifying new targets and drugs for novel therapy for such patients.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Down-Regulation
- Drug Screening Assays, Antitumor
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Non-Smokers/statistics & numerical data
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/chemistry
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Protein Interaction Maps
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Receptor, TIE-1/genetics
- Receptor, TIE-1/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Rong Sun
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Min‐Yue Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Long
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Yuan Yuan
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Miao‐Miao Wu
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Xin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jin‐Ku Bao
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
74
|
Chen X, Cao X, Tu X, Alitongbieke G, Xia Z, Li X, Chen Z, Yin M, Xu D, Guo S, Li Z, Chen L, Zhang X, Xu D, Gao M, Liu J, Zeng Z, Zhou H, Su Y, Zhang XK. BI1071, a Novel Nur77 Modulator, Induces Apoptosis of Cancer Cells by Activating the Nur77-Bcl-2 Apoptotic Pathway. Mol Cancer Ther 2019; 18:886-899. [PMID: 30926635 DOI: 10.1158/1535-7163.mct-18-0918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/28/2018] [Accepted: 03/14/2019] [Indexed: 11/16/2022]
Abstract
Nur77 (also called TR3 or NGFI-B), an orphan member of the nuclear receptor superfamily, induces apoptosis by translocating to mitochondria where it interacts with Bcl-2 to convert Bcl-2 from an antiapoptotic to a pro-apoptotic molecule. Nur77 posttranslational modification such as phosphorylation has been shown to induce Nur77 translocation from the nucleus to mitochondria. However, small molecules that can bind directly to Nur77 to trigger its mitochondrial localization and Bcl-2 interaction remain to be explored. Here, we report our identification and characterization of DIM-C-pPhCF3 +MeSO3 - (BI1071), an oxidized product derived from indole-3-carbinol metabolite, as a modulator of the Nur77-Bcl-2 apoptotic pathway. BI1071 binds Nur77 with high affinity, promotes Nur77 mitochondrial targeting and interaction with Bcl-2, and effectively induces apoptosis of cancer cells in a Nur77- and Bcl-2-dependent manner. Studies with animal model showed that BI1071 potently inhibited the growth of tumor cells in animals through its induction of apoptosis. Our results identify BI1071 as a novel Nur77-binding modulator of the Nur77-Bcl-2 apoptotic pathway, which may serve as a promising lead for treating cancers with overexpression of Bcl-2.
Collapse
Affiliation(s)
- Xiaohui Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Xihua Cao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Xuhuang Tu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Gulimiran Alitongbieke
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Zebin Xia
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Xiaotong Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Ziwen Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | | | - Dan Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Shangjie Guo
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Zongxi Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Liqun Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Xindao Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Dingyu Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Meichun Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Ying Su
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China. .,Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|
75
|
Kang JI, Choi Y, Cui CH, Lee D, Kim SC, Kim HM. Pro-angiogenic Ginsenosides F1 and Rh1 Inhibit Vascular Leakage by Modulating NR4A1. Sci Rep 2019; 9:4502. [PMID: 30872732 PMCID: PMC6418182 DOI: 10.1038/s41598-019-41115-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a key role in angiogenesis, but VEGF-induced angiogenesis is often accompanied by a vascular permeability response. Ginsenosides are triterpenoid saponins from the well-known medicinal plant, ginseng, and have been considered a candidate for modulating angiogenesis. Here, we systemically investigated the effects of 10 different ginsenosides on human umbilical vein endothelial cells and newly identified that two PPT-type ginsenosides, F1 and Rh1 induce the migration and proliferation of endothelial cells. Interestingly, RNA transcriptome analysis showed that gene regulation induced by VEGF in endothelial cells is distinct from that of ginsenoside F1 and Rh1. In addition, F1 and Rh1 significantly inhibited vascular leakage both in vitro and in vivo, which are induced by vascular endothelial growth factor. Furthermore, comparative transcriptome analysis revealed that these effects of F1 and Rh1 on vascular leakage restoration are mainly caused by changes in VEGF-mediated TNFα signaling via NFκB, particularly by the suppression of expression and transcriptional activity of NR4A1 by F1 and Rh1, even in the presence of VEGF. These findings demonstrate that ginsenosides F1 and Rh1 can be a promising herbal remedy for vessel normalization in ischemic disease and cancer and that NR4A1 is the key target.
Collapse
Affiliation(s)
- Ji In Kang
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Yoonjung Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Chang-Hau Cui
- Intelligent Synthetic Biology Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea. .,Intelligent Synthetic Biology Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| | - Ho Min Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea. .,Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Korea. .,Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| |
Collapse
|
76
|
Zubiete-Franco I, García-Rodríguez JL, Lopitz-Otsoa F, Serrano-Macia M, Simon J, Fernández-Tussy P, Barbier-Torres L, Fernández-Ramos D, Gutiérrez-de-Juan V, López de Davalillo S, Carlevaris O, Beguiristain Gómez A, Villa E, Calvisi D, Martín C, Berra E, Aspichueta P, Beraza N, Varela-Rey M, Ávila M, Rodríguez MS, Mato JM, Díaz-Moreno I, Díaz-Quintana A, Delgado TC, Martínez-Chantar ML. SUMOylation regulates LKB1 localization and its oncogenic activity in liver cancer. EBioMedicine 2018; 40:406-421. [PMID: 30594553 PMCID: PMC6412020 DOI: 10.1016/j.ebiom.2018.12.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Abstract
Background Even though liver kinase B1 (LKB1) is usually described as a tumor suppressor in a wide variety of tissues, it has been shown that LKB1 aberrant expression is associated with bad prognosis in Hepatocellular Carcinoma (HCC). Methods Herein we have overexpressed LKB1 in human hepatoma cells and by using histidine pull-down assay we have investigated the role of the hypoxia-related post-translational modification of Small Ubiquitin-related Modifier (SUMO)ylation in the regulation of LKB1 oncogenic role. Molecular modelling between LKB1 and its interactors, involved in regulation of LKB1 nucleocytoplasmic shuttling and LKB1 activity, was performed. Finally, high affinity SUMO binding entities-based technology were used to validate our findings in a pre-clinical mouse model and in clinical HCC. Findings We found that in human hepatoma cells under hypoxic stress, LKB1 overexpression increases cell viability and aggressiveness in association with changes in LKB1 cellular localization. Moreover, by using site-directed mutagenesis, we have shown that LKB1 is SUMOylated by SUMO-2 at Lys178 hampering LKB1 nucleocytoplasmic shuttling and fueling hepatoma cell growth. Molecular modelling of SUMO modified LKB1 further confirmed steric impedance between SUMOylated LKB1 and the STe20-Related ADaptor cofactor (STRADα), involved in LKB1 export from the nucleus. Finally, we provide evidence that endogenous LKB1 is modified by SUMO in pre-clinical mouse models of HCC and clinical HCC, where LKB1 SUMOylation is higher in fast growing tumors. Interpretation Overall, SUMO-2 modification of LKB1 at Lys178 mediates LKB1 cellular localization and its oncogenic role in liver cancer. Fund This work was supported by grants from NIH (US Department of Health and Human services)-R01AR001576-11A1 (J.M.M and M.L.M-C.), Gobierno Vasco-Departamento de Salud 2013111114 (to M.L.M.-C), ELKARTEK 2016, Departamento de Industria del Gobierno Vasco (to M.L.M.-C), MINECO: SAF2017–87301-R and SAF2014–52097-R integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovación 2013–2016 cofinanciado con Fondos FEDER (to M.L.M.-C and J.M.M., respectively), BFU2015–71017/BMC MINECO/FEDER, EU (to A.D.Q. and I.D.M.), BIOEF (Basque Foundation for Innovation and Health Research): EITB Maratoia BIO15/CA/014; Instituto de Salud Carlos III:PIE14/00031, integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovacion 2013–2016 cofinanciado con Fondos FEDER (to M.L.M.-C and J.M.M), Asociación Española contra el Cáncer (T.C.D, P·F-T and M.L.M-C), Daniel Alagille award from EASL (to T.C.D), Fundación Científica de la Asociación Española Contra el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017 (to M.L.M and M.A), La Caixa Foundation Program (to M.L.M), Programma di Ricerca Regione-Università 2007–2009 and 2011–2012, Regione Emilia-Romagna (to E.V.), Ramón Areces Foundation and the Andalusian Government (BIO-198) (A.D.Q. and I.D.M.), ayudas para apoyar grupos de investigación del sistema Universitario Vasco IT971–16 (P.A.), MINECO:SAF2015–64352-R (P.A.), Institut National du Cancer, FRANCE, INCa grant PLBIO16–251 (M.S.R.), MINECO - BFU2016–76872-R to (E.B.). Work produced with the support of a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (M.V-R). Finally, Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III. We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644). Funding sources had no involvement in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. Overexpression of LKB1 in human hepatoma cells during hypoxic stress induces deregulated cell growth and survival. SUMO-2 modifications of LKB1 at Lys178 occur in human hepatoma cells hampering its nucleocytoplasmic shuttling. LKB1 SUMOylation is augmented in pre-clinical mouse models and clinical HCC, being a hallmark of more aggressive HCC tumors.
Collapse
Affiliation(s)
- Imanol Zubiete-Franco
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Juan L García-Rodríguez
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Marina Serrano-Macia
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Jorge Simon
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Pablo Fernández-Tussy
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Lucía Barbier-Torres
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - David Fernández-Ramos
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Virginia Gutiérrez-de-Juan
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Sergio López de Davalillo
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Onintza Carlevaris
- Physiopathology of the Hypoxia-Signalling Pathway Lab, CIC bioGUNE, 48160 Derio, Bizkaia, Spain
| | | | - Erica Villa
- Department of Gastroenterology, Azienda Ospedaliero-Universitaria & University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Diego Calvisi
- Institute of Pathology, University Klinic of Regensburg, 93053 Regensburg, Germany
| | - César Martín
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, UPV/EHU, 48940 Leioa, Spain
| | - Edurne Berra
- Physiopathology of the Hypoxia-Signalling Pathway Lab, CIC bioGUNE, 48160 Derio, Bizkaia, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Bizkaia, Spain; Biocruces Health Research Institute, 48093 Barakaldo, Bizkaia, Spain
| | - Naiara Beraza
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Marta Varela-Rey
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Matias Ávila
- Hepatology Department, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Manuel S Rodríguez
- UbiCARE, Advanced Technology Institute in Life Sciences (ITAV)-CNRS-IPBS, 31106 Toulouse, France
| | - José M Mato
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain
| | - Teresa C Delgado
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain.
| | - María L Martínez-Chantar
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
77
|
Jung YS, Lee HS, Cho HR, Kim KJ, Kim JH, Safe S, Lee SO. Dual targeting of Nur77 and AMPKα by isoalantolactone inhibits adipogenesis in vitro and decreases body fat mass in vivo. Int J Obes (Lond) 2018; 43:952-962. [PMID: 30538281 DOI: 10.1038/s41366-018-0276-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/10/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Suppression of adipogenesis has been considered as a potential target for the prevention and treatment of obesity and associated metabolic disorders, and the nuclear receptor 4A1 (NR4A1/Nur77) and AMPKα are known to play important roles during early and intermediate stages of adipogenesis. Therefore, we hypothesized that dual targeting Nur77 and AMPKα would show strong inhibitory effect on adipogenesis. METHODS We screened a herbal medicine-based small molecule library to identify novel natural compounds dual targeting Nur77 and AMPKα, and the antiadipogenic effects and mechanisms of action of a "hit" compound were studied in 3T3-L1 cells. In vivo antiobesity effects of the compound were also investigated in high-fat diet (HFD)-induced obese mice. RESULTS We identified isoalantolactone (ISO) as a new NR4A1 inactivator that also activates AMPKα in 3T3-L1 cells. ISO, as expected, inhibited adipogenic differentiation of 3T3-L1 preadipocytes, accompanied by reduced mitotic clonal expansion (MCE) which occurs in the early stage of adipogenesis and decreased expression of genes required for MCE and cell cycle markers including cyclin A, cyclin D1. Furthermore, ISO reduced body weight gain and fat mass (epididymal, subcutaneous, perirenal, and inguinal white adipose tissues) in the high-fat diet-fed C57BL/6 N mice. Serum levels of triglycerides, aspartate transaminase, and alanine transaminase and hepatic steatosis were also significantly improved in the ISO-treated group compared to the high-fat diet control group. CONCLUSIONS These results suggest that ISO dual targeting Nur77 and AMPKα during adipogenesis represents a novel class of mechanism-based antiadipogenic agents for treatment of obesity and associated metabolic disorders, including hyperlipidemia and fatty liver.
Collapse
Affiliation(s)
- Yeon-Seop Jung
- Department of Food Science and Technology, Keimyung University, Daegu, 42601, Republic of Korea.,Gyeongnam Biological Resource Research Center, Korea Institute of Toxicology, Jinju, Gyeongsangnam, 666-844, Republic of Korea
| | - Hyo-Seon Lee
- Department of Food Science and Technology, Keimyung University, Daegu, 42601, Republic of Korea
| | - Hye-Rin Cho
- Department of Food Science and Technology, Keimyung University, Daegu, 42601, Republic of Korea
| | - Keuk-Jun Kim
- Department of Biomedical Laboratory Science, Daekyeung College, Gyeongsan, 38547, Republic of Korea
| | - Joung-Hee Kim
- Department of Biomedical Laboratory Science, Daekyeung College, Gyeongsan, 38547, Republic of Korea
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
78
|
Chen GQ, Xu Y, Shen SM, Zhang J. Phenotype and target-based chemical biology investigations in cancers. Natl Sci Rev 2018; 6:1111-1127. [PMID: 34691990 PMCID: PMC8291603 DOI: 10.1093/nsr/nwy124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
Chemical biology has been attracting a lot of attention because of the key roles of chemical methods and techniques in helping to decipher and manipulate biological systems. Although chemical biology encompasses a broad field, this review will focus on chemical biology aimed at using exogenous chemical probes to interrogate, modify and manipulate biological processes, at the cellular and organismal levels, in a highly controlled and dynamic manner. In this area, many advances have been achieved for cancer biology and therapeutics, from target identification and validation based on active anticancer compounds (forward approaches) to discoveries of anticancer molecules based on some important targets including protein-protein interaction (reverse approaches). Herein we attempt to summarize some recent progresses mainly from China through applying chemical biology approaches to explore molecular mechanisms of carcinogenesis. Additionally, we also outline several new strategies for chemistry to probe cellular activities such as proximity-dependent labeling methods for identifying protein-protein interactions, genetically encoded sensors, and light activating or repressing gene expression system.
Collapse
Affiliation(s)
- Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ying Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Shao-Ming Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|
79
|
Rungsung I, Rajagopalan M, Ramaswamy A. Molecular dynamics study of TMPA mediated dissociation of Nur77-LKB1 complex. Comput Biol Chem 2018; 76:67-78. [DOI: 10.1016/j.compbiolchem.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/26/2018] [Accepted: 06/17/2018] [Indexed: 11/26/2022]
|
80
|
Wu L, Chen L. Characteristics of Nur77 and its ligands as potential anticancer compounds (Review). Mol Med Rep 2018; 18:4793-4801. [PMID: 30272297 PMCID: PMC6236262 DOI: 10.3892/mmr.2018.9515] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/05/2018] [Indexed: 01/01/2023] Open
Abstract
Nuclear receptor subfamily 4 group A member 1 (NR4A1; also termed Nur77/TR3/NGFIB), a member of the nuclear receptor superfamily, is expressed as an early response gene to regulate the expression of multiple target genes. Nur77 has the typical structure of a nuclear receptor, including an N‑terminal domain, a DNA binding domain, and a ligand‑binding domain. The expression and localization of Nur77 are closely associated with its roles in cell proliferation and apoptosis. Nur77 was first identified as an orphan receptor, the endogenous ligand of which has not yet been identified; however, an increasing number of compounds targeting Nur77 have been reported to have beneficial effects in the treatment of cancer and other diseases. This review provides a brief overview of the identification, structure, expression and localization, transcriptional role and non‑genomic function of Nur77, and summarizes the ligands that have been shown to interact with Nur77, including cytosporone B, cisplatin, TMPA, PDNPA, CCE9, THPN, Z‑ligustilide, celastrol and bisindole methane compounds, which may potentially be used to treat cancer in humans.
Collapse
Affiliation(s)
- Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
81
|
Huang B, Pei HZ, Chang HW, Baek SH. The E3 ubiquitin ligase Trim13 regulates Nur77 stability via casein kinase 2α. Sci Rep 2018; 8:13895. [PMID: 30224829 PMCID: PMC6141542 DOI: 10.1038/s41598-018-32391-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/24/2018] [Indexed: 01/23/2023] Open
Abstract
Nur77 is a member of the NR4A subfamily of nuclear receptors and has been shown to regulate various biological processes such as apoptosis and inflammation. Here, we show that Nur77 ubiquitination is mediated by the tripartite motif 13 (Trim13), a RING-type E3 ubiquitin ligase. The interaction between Nur77 and Trim13 was confirmed by co-immunoprecipitation. Moreover, we found that Lys539 in Nur77 ubiquitination is targeted for Trim13, which leads to Nur77 degradation. The Trim13-mediated ubiquitination of Nur77 was optimal in the presence of the E2 enzyme UbcH5. Importantly, in addition to Trim13-mediated ubiquitination, the stability of Nur77 was also regulated by casein kinase 2α (CK2α). Pharmacological inhibition of CK2 markedly increased Nur77 levels, whereas overexpression of CK2α, but not its inactive mutant, dramatically decreased Nur77 levels by promoting Nur77 ubiquitination. CK2α phosphorylated Ser154 in Nur77 and thereby regulated Nur77 protein levels by promoting its ubiquitin-mediated degradation. Importantly, we also show that degradation of Nur77 is involved in TNFα-mediated IL-6 production via CK2α and Trim13. Taken together, these results suggest that the sequential phosphorylation and ubiquitination of Nur77 controls its degradation, and provide a therapeutic approach for regulating Nur77 activity through the CK2α-Trim13 axis as a mechanism to control the inflammatory response.
Collapse
Affiliation(s)
- Bin Huang
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Han Zhong Pei
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Hyeun-Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea.
| | - Suk-Hwan Baek
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, Daegu, South Korea.
| |
Collapse
|
82
|
Tel-Karthaus N, Kers-Rebel ED, Looman MW, Ichinose H, de Vries CJ, Ansems M. Nuclear Receptor Nur77 Deficiency Alters Dendritic Cell Function. Front Immunol 2018; 9:1797. [PMID: 30123220 PMCID: PMC6085422 DOI: 10.3389/fimmu.2018.01797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are the professional antigen-presenting cells of the immune system. Proper function of DCs is crucial to elicit an effective immune response against pathogens and to induce antitumor immunity. Different members of the nuclear receptor (NR) family of transcription factors have been reported to affect proper function of immune cells. Nur77 is a member of the NR4A subfamily of orphan NRs that is expressed and has a function within the immune system. We now show that Nur77 is expressed in different murine DCs subsets in vitro and ex vivo, in human monocyte-derived DCs (moDCs) and in freshly isolated human BDCA1+ DCs, but its expression is dispensable for DC development in the spleen and lymph nodes. We show, by siRNA-mediated knockdown of Nur77 in human moDCs and by using Nur77-/- murine DCs, that Nur77-deficient DCs have enhanced inflammatory responses leading to increased T cell proliferation. Treatment of human moDCs with 6-mercaptopurine, an activator of Nur77, leads to diminished DC activation resulting in an impaired capacity to induce IFNγ production by allogeneic T cells. Altogether, our data show a yet unexplored role for Nur77 in modifying the activation status of murine and human DCs. Ultimately, targeting Nur77 may prove to be efficacious in boosting or diminishing the activation status of DCs and may lead to the development of improved DC-based immunotherapies in, respectively, cancer treatment or treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nina Tel-Karthaus
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Esther D Kers-Rebel
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maaike W Looman
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Carlie J de Vries
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Marleen Ansems
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
83
|
Sanchez M, Xia Z, Rico-Bautista E, Cao X, Cuddy M, Castro DJ, Correa RG, Chen L, Yu J, Bobkov A, Ruvolo V, Andreeff M, Oshima RG, Matsuzawa SI, Reed JC, Zhang XK, Hansel D, Wolf DA, Dawson MI. Oxidized analogs of Di(1 H-indol-3-yl)methyl-4-substituted benzenes are NR4A1-dependent UPR inducers with potent and safe anti-cancer activity. Oncotarget 2018; 9:25057-25074. [PMID: 29861853 PMCID: PMC5982742 DOI: 10.18632/oncotarget.25285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/06/2018] [Indexed: 12/04/2022] Open
Abstract
Di(1H-indol-3-yl)(4-trifluoromethylphenyl)methane (DIM-Ph-4-CF3) is an analog of orphan nuclear receptor 4A1 (NR4A1) ligand cytosporone B. We have synthesized several oxidation products of DIM-Ph-4-CF3, focusing on analogs with electron-withdrawing or donating groups at their phenyl ring 4-positions, and examined their anti-cancer activity and mechanism-of-action. Mesylates (DIM-Ph-4-X+ OMs-s) having CF3, CO2Me and Cl groups were more effective inhibitors of cancer cell viability than their precursors. 19F NMR spectroscopy and differential scanning calorimetry strongly indicated interactions of DIM-Ph-4-CF3+ OMs- with the NR4A1 ligand binding domain, and compound-induced apoptosis of prostate cancer cells was dependent on NR4A1. DIM-Ph-4-CF3+ OMs- showed robust inhibition of LNCaP prostate cancer xenografts with no apparent toxicity. In vitro and in vivo, DIM-Ph-4-CF3+ OMs- activated proapoptotic unfolded protein response (UPR) signaling in prostate cancer cells. Independently of DIM-Ph-4-CF3+ OMs-, the bulk of NR4A1 localized to the cytoplasm in various cancer cell lines, suggesting a cytoplasmic mechanism-of-action of DIM-Ph-4-CF3+ OMs- in UPR induction and cell death. In summary, the data suggest that oxidized analogs of DIM-Ph-4-CF3 possess potent and safe anti-cancer activity which is mediated through UPR signaling downstream of NR4A1 binding.
Collapse
Affiliation(s)
- Marisa Sanchez
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Zebin Xia
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | | | - Xihua Cao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Michael Cuddy
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - David J. Castro
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
- Oregon Health and Science University School of Medicine, Portland, OR, USA
| | - Ricardo G. Correa
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Liqun Chen
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Jinghua Yu
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Andrey Bobkov
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Vivian Ruvolo
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, USA
| | - Robert G. Oshima
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Shu-Ichi Matsuzawa
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
- Present address: Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - John C. Reed
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
- Present address: Roche, Pharma Research and Early Development, Basel, Switzerland
| | - Xiao-Kun Zhang
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research and Center for Stress Signaling Networks, Xiamen University, Xiamen, China
| | - Donna Hansel
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - Dieter A. Wolf
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research and Center for Stress Signaling Networks, Xiamen University, Xiamen, China
| | - Marcia I. Dawson
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| |
Collapse
|
84
|
Mohankumar K, Lee J, Wu CS, Sun Y, Safe S. Bis-Indole-Derived NR4A1 Ligands and Metformin Exhibit NR4A1-Dependent Glucose Metabolism and Uptake in C2C12 Cells. Endocrinology 2018; 159:1950-1963. [PMID: 29635345 PMCID: PMC5888234 DOI: 10.1210/en.2017-03049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/09/2018] [Indexed: 12/16/2022]
Abstract
Treatment of C2C12 muscle cells with metformin or the NR4A1 ligand 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) induced NR4A1 and Glut4 messenger RNA and protein expression. Similar results were observed with buttressed (3- or 3,5-substituted) analogs of DIM-C-pPhOH, including 1,1-bis(3'-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (DIM-C-pPhOH-3-Cl-5-OCH3), and the buttressed analogs were more potent than DIM-C-pPhOH NR4A1 agonists. Metformin and the bis-indole substituted analogs also induced expression of several glycolytic genes and Rab4, which has previously been linked to enhancing cell membrane accumulation of Glut4 and overall glucose uptake in C2C12 cells, and these responses were also observed after treatment with metformin and the NR4A1 ligands. The role of NR4A1 in mediating the responses induced by the bis-indoles and metformin was determined by knockdown of NR4A1, and this resulted in attenuating the gene and protein expression and enhanced glucose uptake responses induced by these compounds. Our results demonstrate that the bis-indole-derived NR4A1 ligands represent a class of drugs that enhance glucose uptake in C2C12 muscle cells, and we also show that the effects of metformin in this cell line are NR4A1-dependent.
Collapse
Affiliation(s)
- Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Chia Shan Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Yuxiang Sun
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
- Correspondence: Stephen Safe, PhD, Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, Texas 77843. E-mail:
| |
Collapse
|
85
|
Lee SH, Kundu A, Han SH, Mishra NK, Kim KS, Choi MH, Pandey AK, Park JS, Kim HS, Kim IS. Synthesis of TMPA Derivatives through Sequential Ir(III)-Catalyzed C-H Alkylation and Their Antidiabetic Evaluation. ACS OMEGA 2018; 3:2661-2672. [PMID: 30023845 PMCID: PMC6045468 DOI: 10.1021/acsomega.8b00179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
The synthesis and antidiabetic evaluation of ethyl 2-[2,3,4-trimethoxy-6-(1-octanoyl)phenyl]acetate (TMPA) and its structural analogs are described. The construction of TMPA derivatives has been successfully achieved in only two steps, which involve the iridium(III)-catalyzed α-alkylation of acetophenones with alcohols and the ketone-directed iridium(III)- or rhodium(III)-catalyzed redox-neutral C-H alkylation of α-alkylated acetophenones using Meldrum's diazo compounds. This synthetic protocol efficiently provides a range of TMPA derivatives with site selectivity and functional group compatibility. In addition, the site-selective demethylation of TMPA derivative affords the naturally occurring phomopsin C in good yield. Moreover, all synthetic compounds were screened for in vitro adenosine 5'-monophosphate-activated protein kinase (AMPK) activation using HepG2 cells. Furthermore, TMPA (5ac) and 5cd showing the most potent AMPK activation were treated for the in vivo antidiabetic experiment. Notably, our synthetic compound 5cd was found to display the powerful antidiabetic effect, stronger than that of metformin and TMPA (5ac).
Collapse
Affiliation(s)
- Suk Hun Lee
- School
of Pharmacy, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon 16419, Republic
of Korea
| | - Amit Kundu
- School
of Pharmacy, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon 16419, Republic
of Korea
| | - Sang Hoon Han
- School
of Pharmacy, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon 16419, Republic
of Korea
| | - Neeraj Kumar Mishra
- School
of Pharmacy, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon 16419, Republic
of Korea
| | - Kyeong Seok Kim
- School
of Pharmacy, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon 16419, Republic
of Korea
| | - Myung Hoon Choi
- College
of Pharmacy, Catholic University of Daegu, Hayang-ro, Hayang-eup, Gyeongsan 38430, Republic
of Korea
| | - Ashok Kumar Pandey
- School
of Pharmacy, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon 16419, Republic
of Korea
| | - Jung Su Park
- Department
of Chemistry, Sookmyung Women’s University, Cheongpa-ro, Yongsan-gu, Seoul 04310, Republic
of Korea
| | - Hyung Sik Kim
- School
of Pharmacy, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon 16419, Republic
of Korea
| | - In Su Kim
- School
of Pharmacy, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon 16419, Republic
of Korea
| |
Collapse
|
86
|
Zhang L, Liu W, Wang Q, Li Q, Wang H, Wang J, Teng T, Chen M, Ji A, Li Y. New Drug Candidate Targeting the 4A1 Orphan Nuclear Receptor for Medullary Thyroid Cancer Therapy. Molecules 2018; 23:molecules23030565. [PMID: 29498706 PMCID: PMC6017334 DOI: 10.3390/molecules23030565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/15/2018] [Accepted: 02/28/2018] [Indexed: 01/10/2023] Open
Abstract
Medullary thyroid cancer (MTC) is a relatively rare thyroid cancer responsible for a substantial fraction of thyroid cancer mortality. More effective therapeutic drugs with low toxicity for MTC are urgently needed. Orphan nuclear receptor 4A1 (NR4A1) plays a pivotal role in regulating the proliferation and apoptosis of a variety of tumor cells. Based on the NR4A1 protein structure, 2-imino-6-methoxy-2H-chromene-3-carbothioamide (IMCA) was identified from the Specs compounds database using the protein structure-guided virtual screening approach. Computationally-based molecular modeling studies suggested that IMCA has a high affinity for the ligand binding pocket of NR4A1. MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] and apoptosis assays demonstrated that IMCA resulted in significant thyroid cancer cell death. Immunofluorescence assays showed that IMCA induced NR4A1 translocation from the nucleus to the cytoplasm in thyroid cancer cell lines, which may be involved in the cell apoptotic process. In this study, the quantitative polymerase chain reaction results showed that the IMCA-induced upregulation of sestrin1 and sestrin2 was dose-dependent in thyroid cancer cell lines. Western blot showed that IMCA increased phosphorylation of adenosine 5′-monophosphate-activated protein kinase (AMPK) and decreased phosphorylation of ribosomal protein S6 kinase (p70S6K), which is the key enzyme in the mammalian target of rapamycin (mTOR) pathway. The experimental results suggest that IMCA is a drug candidate for MTC therapy and may work by increasing the nuclear export of NR4A1 to the cytoplasm and the tumor protein 53 (p53)-sestrins-AMPK-mTOR signaling pathway.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Benzopyrans/chemistry
- Benzopyrans/pharmacology
- Binding Sites
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Molecular Docking Simulation
- Molecular Targeted Therapy/methods
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/chemistry
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phosphorylation
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Structure, Secondary
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Thyroid Gland/drug effects
- Thyroid Gland/metabolism
- Thyroid Gland/pathology
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Lei Zhang
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China.
- Henan University Medical bioinformatics institute, Kaifeng 475004, China.
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Wen Liu
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Qun Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Qinpei Li
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Huijuan Wang
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China.
- Henan University Medical bioinformatics institute, Kaifeng 475004, China.
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Jun Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Tieshan Teng
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China.
- Henan University Medical bioinformatics institute, Kaifeng 475004, China.
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Mingliang Chen
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China.
- Henan University Medical bioinformatics institute, Kaifeng 475004, China.
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Ailing Ji
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China.
- Henan University Medical bioinformatics institute, Kaifeng 475004, China.
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Yanzhang Li
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China.
- Henan University Medical bioinformatics institute, Kaifeng 475004, China.
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| |
Collapse
|
87
|
Zhang L, Wang Q, Liu W, Liu F, Ji A, Li Y. The Orphan Nuclear Receptor 4A1: A Potential New Therapeutic Target for Metabolic Diseases. J Diabetes Res 2018; 2018:9363461. [PMID: 30013988 PMCID: PMC6022324 DOI: 10.1155/2018/9363461] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Orphan nuclear receptor 4A1 (NR4A1) is a transcriptional factor of the nuclear orphan receptor (NR4A) superfamily that has sparked interest across different research fields in recent years. Several studies have demonstrated that ligand-independent NR4A1 is an immediate-early response gene and the protein product is rapidly induced by a variety of stimuli. Hyperfunction or dysfunction of NR4A1 is implicated in various metabolic processes, including carbohydrate metabolism, lipid metabolism, and energy balance, in major metabolic tissues, such as liver, skeletal muscle, pancreatic tissues, and adipose tissues. No endogenous ligands for NR4A1 have been identified, but numerous compounds that bind and activate or inactivate nuclear NR4A1 or induce cytoplasmic localization of NR4A1 have been identified. This review summarizes recent advances in our understanding of the molecular biology and physiological functions of NR4A1. And we focus on the physiological functions of NR4A1 receptor to the development of the metabolic diseases, with a special focus on the impact on carbohydrate and lipid metabolism in skeletal muscle, liver, adipose tissue, and islet.
Collapse
Affiliation(s)
- Lei Zhang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Qun Wang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Wen Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Fangyan Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| |
Collapse
|
88
|
Nuclear receptor 4A1 (NR4A1) as a drug target for treating rhabdomyosarcoma (RMS). Oncotarget 2017; 7:31257-69. [PMID: 27144436 PMCID: PMC5058754 DOI: 10.18632/oncotarget.9112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/16/2016] [Indexed: 01/05/2023] Open
Abstract
The orphan nuclear receptor NR4A1 is expressed in tumors from rhabdomyosarcoma (RMS) patients and Rh30 and RD RMS cell lines, and we used RNA interference (RNAi) to investigate the role of this receptor in RMS cells. Knockdown of NR4A1 in Rh30 cells decreased cell proliferation, induced Annexin V staining and induced polyADPribose polymerase (PARP) cleavage and these results were similar to those observed in other solid tumors. Previous studies show that NR4A1 regulates expression of growth promoting/pro-survival genes with GC-rich promoters, activates mTOR through suppression of p53, and maintains low oxidative stress by regulating expression of isocitrate dehydrogenase 1 (IDH1) and thioredoxin domain containing 5 (TXNDC5). Results of RNAi studies demonstrated that NR4A1 also regulates these pathways and associated genes in RMS cells and thereby exhibits pro-oncogenic activity. 1,1-Bis(3-indolyl)-1-(p-substituted phenyl)methane (C-DIM) analogs containing p-hydroxyl (DIM-C-pPhOH) and p-carboxymethyl (DIM-C-pPhCO2Me) substituents are NR4A1 ligands that decreased NR4A1-dependent transactivation in RMS cells and inhibited RMS cell and tumor growth and induced apoptosis. Moreover, the effects of NR4A1 knockdown and the C-DIM/NR4A1 antagonists were comparable as inhibitors of NR4A1-dependent genes/pathways. Both NR4A1 knockdown and treatment with DIM-C-pPhOH and DIM-C-pPhCO2Me also induced ROS which activated stress genes and induced sestrin 2 which activated AMPK and inhibited mTOR in the mutant p53 RMS cells. Since NR4A1 regulates several growth-promoting/pro-survival pathways in RMS, the C-DIM/NR4A1 antagonists represent a novel mechanism-based approach for treating this disease alone or in combination and thereby reducing the adverse effects of current cytotoxic therapies.
Collapse
|
89
|
Huizar J, Tan C, Noviski M, Mueller JL, Zikherman J. Nur77 Is Upregulated in B-1a Cells by Chronic Self-Antigen Stimulation and Limits Generation of Natural IgM Plasma Cells. Immunohorizons 2017; 1:188-197. [PMID: 29152611 DOI: 10.4049/immunohorizons.1700048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
B-1a cells are a unique population of innate-like B cells with a highly restricted and self-reactive BCR repertoire. Preimmune "natural" IgM produced by B-1a-derived plasma cells is essential for homeostatic clearance of cellular debris and forms a primary layer of protection against infection. In this study, we take advantage of a fluorescent reporter of BCR signaling to show that expression of the orphan nuclear hormone receptor Nur77 is upregulated under steady-state conditions in self-reactive B-1a cells in response to chronic Ag stimulation. Nur77-deficient mice exhibit elevated natural serum IgM (but not IgG) and marked expansion of IgM plasma cells of B-1a origin. Moreover, we show that Nur77 restrains the turnover of B-1a cells and the accumulation of immature IgM plasma cells. Thus, we identify a new critical negative-regulatory pathway that serves to maintain B-1a cells in a quiescent state in the face of chronic endogenous Ag stimulation.
Collapse
Affiliation(s)
- John Huizar
- Howard Hughes Medical Institute Medical Fellows Program, University of California, San Francisco, San Francisco, CA 94143
| | - Corey Tan
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143
| | - Mark Noviski
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143
| | - James L Mueller
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Julie Zikherman
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
90
|
Stouth DW, Manta A, Ljubicic V. Protein arginine methyltransferase expression, localization, and activity during disuse-induced skeletal muscle plasticity. Am J Physiol Cell Physiol 2017; 314:C177-C190. [PMID: 29092819 DOI: 10.1152/ajpcell.00174.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein arginine methyltransferase 1 (PRMT1), PRMT4, and PRMT5 catalyze the methylation of arginine residues on target proteins. Previous work suggests that these enzymes regulate skeletal muscle plasticity. However, the function of PRMTs during disuse-induced muscle remodeling is unknown. The purpose of our study was to determine whether denervation-induced muscle disuse alters PRMT expression and activity in skeletal muscle, as well as to contextualize PRMT biology within the early disuse-evoked events that precede atrophy, which remain largely undefined. Mice were subjected to 6, 12, 24, 72, or 168 h of unilateral hindlimb denervation. Muscle mass decreased by ~30% after 72 or 168 h of neurogenic disuse, depending on muscle fiber type composition. The expression, localization, and activities of PRMT1, PRMT4, and PRMT5 were modified, exhibiting changes in gene expression and activity that were PRMT-specific. Rapid alterations in canonical muscle atrophy signaling such as forkhead box protein O1, muscle RING-finger protein-1, as well as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) content, AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase, were observed before measurable decrements in muscle mass. Denervation-induced modifications in AMPK-PRMT1 and PGC-1α-PRMT1 binding revealed a novel, putative PRMT1-AMPK-PGC-1α signaling axis in skeletal muscle. Here, PGC-1α-PRMT1 binding was elevated after 6 h of disuse, whereas AMPK-PRMT1 interactions were reduced following 168 h of denervation. Our data suggest that PRMT biology is integral to the mechanisms that precede and initiate skeletal muscle atrophy during conditions of neurogenic disuse. This study furthers our understanding of the role of PRMTs in governing skeletal muscle plasticity.
Collapse
Affiliation(s)
- Derek W Stouth
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Alexander Manta
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
91
|
Phosphoinositide-specific phospholipase Cγ1 inhibition induces autophagy in human colon cancer and hepatocellular carcinoma cells. Sci Rep 2017; 7:13912. [PMID: 29066806 PMCID: PMC5654964 DOI: 10.1038/s41598-017-13334-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
Phosphoinositide-specific phospholipase C (PLC) γ1 has been reported to be involved in cancer cell proliferation and metastasis. However, whether PLCγ1 modulates autophagy and the underlying mechanism remains unclear. Here, we investigated the relationship between PLCγ1 and autophagy in the human colon cancer cell line HCT116 and hepatocellular carcinoma cell line HepG2. The results indicated that PLCγ1 inhibition via lentivirus-mediated transduction with shRNA/PLCγ1 or transient transfection with pRK5-PLCγ1 (Y783A) vector increased LC3B-II levels and the number of autophagic vacuoles and decreased p62 levels. Addition of an autophagy inhibitor led to LC3B and p62 accumulation. Furthermore, AMPK activation promoted the autophagy induced by PLCγ1 inhibition by blocking the FAK/PLCγ1 axis. In addition, PLCγ1 inhibition either blocked the mTOR/ULK1 axis or enhanced dissociation of the Beclin1-IP3R-Bcl-2 complex to induce autophagy. Taken together, our findings revealed that PLCγ1 inhibition induced autophagy and the FAK/PLCγ1 axis is a potential downstream effector of the AMPK activation-dependent autophagy signalling cascade. Both blockade of the mTOR/ULK1 axis and dissociation of the Beclin1-IP3R-Bcl-2 complex contributed to the induction of autophagy by PLCγ1 inhibition. Consequently, these findings provide novel insight into autophagy regulation by PLCγ1 in colon cancer and hepatocellular carcinoma cells.
Collapse
|
92
|
Lee HS, Safe S, Lee SO. Inactivation of the orphan nuclear receptor NR4A1 contributes to apoptosis induction by fangchinoline in pancreatic cancer cells. Toxicol Appl Pharmacol 2017; 332:32-39. [PMID: 28754437 DOI: 10.1016/j.taap.2017.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022]
Abstract
Previous studies have demonstrated that the orphan nuclear receptor NR4A1 is overexpressed in human pancreatic cancer and antagonizing this receptor promotes apoptosis and inhibits pancreatic cancer cells and tumor growth. In the present study, we identified fangchinoline, a bisbenzyltetrahydroisoquinoline alkaloid from Stephania tetrandra, as a new inactivator of nuclear NR4A1 and demonstrated that fangchinoline inhibits cell proliferation and induces apoptosis, in part, via the NR4A1-dependent pro-apoptotic pathways in human pancreatic cancer cells. It decreased expression of the antiapoptotic protein survivin by inhibiting Sp1-mediated transcription and induced oxidative stress-mediated endoplasmic reticulum (ER) stress in pancreatic cancer cells. These results suggest that inhibition of NR4A1-mediated transcriptional activity was involved in the anticancer effects of fangchinoline, and fangchinoline represents a novel class of mechanism-based anticancer agents targeting NR4A1 that is overexpressed in pancreatic cancer.
Collapse
Affiliation(s)
- Hyo-Seon Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea; The center for Traditional Microorganism Resource (TMR), Keimyung University, Daegu 42601, Republic of Korea.
| |
Collapse
|
93
|
Celastrol-Induced Nur77 Interaction with TRAF2 Alleviates Inflammation by Promoting Mitochondrial Ubiquitination and Autophagy. Mol Cell 2017; 66:141-153.e6. [PMID: 28388439 DOI: 10.1016/j.molcel.2017.03.008] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/19/2016] [Accepted: 03/10/2017] [Indexed: 01/09/2023]
Abstract
Mitochondria play an integral role in cell death, autophagy, immunity, and inflammation. We previously showed that Nur77, an orphan nuclear receptor, induces apoptosis by targeting mitochondria. Here, we report that celastrol, a potent anti-inflammatory pentacyclic triterpene, binds Nur77 to inhibit inflammation and induce autophagy in a Nur77-dependent manner. Celastrol promotes Nur77 translocation from the nucleus to mitochondria, where it interacts with tumor necrosis factor receptor-associated factor 2 (TRAF2), a scaffold protein and E3 ubiquitin ligase important for inflammatory signaling. The interaction is mediated by an LxxLL motif in TRAF2 and results not only in the inhibition of TRAF2 ubiquitination but also in Lys63-linked Nur77 ubiquitination. Under inflammatory conditions, ubiquitinated Nur77 resides at mitochondria, rendering them sensitive to autophagy, an event involving Nur77 interaction with p62/SQSTM1. Together, our results identify Nur77 as a critical intracellular target for celastrol and unravel a mechanism of Nur77-dependent clearance of inflamed mitochondria to alleviate inflammation.
Collapse
|
94
|
Transforming Growth Factor β/NR4A1-Inducible Breast Cancer Cell Migration and Epithelial-to-Mesenchymal Transition Is p38α (Mitogen-Activated Protein Kinase 14) Dependent. Mol Cell Biol 2017; 37:MCB.00306-17. [PMID: 28674186 DOI: 10.1128/mcb.00306-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor β (TGF-β)-induced migration of triple-negative breast cancer (TNBC) cells is dependent on nuclear export of the orphan receptor NR4A1, which plays a role in proteasome-dependent degradation of SMAD7. In this study, we show that TGF-β induces p38α (mitogen-activated protein kinase 14 [MAPK14]), which in turn phosphorylates NR4A1, resulting in nuclear export of the receptor. TGF-β/p38α and NR4A1 also play essential roles in the induction of epithelial-to-mesenchymal transition (EMT) and induction of β-catenin in TNBC cells, and these TGF-β-induced responses and nuclear export of NR4A1 are blocked by NR4A1 antagonists, the p38 inhibitor SB202190, and kinase-dead [p38(KD)] and dominant-negative [p38(DN)] forms of p38α. Inhibition of NR4A1 nuclear export results in nuclear export of TGF-β-induced β-catenin, which then undergoes proteasome-dependent degradation. TGF-β-induced β-catenin also regulates NR4A1 expression through formation of the β-catenin-TCF-3/TCF-4/LEF-1 complex on the NR4A1 promoter. Thus, TGF-β-induced nuclear export of NR4A1 in TNBC cells plays an essential role in cell migration, SMAD7 degradation, EMT, and induction of β-catenin, and all of these pathways are inhibited by bis-indole-derived NR4A1 antagonists that inhibit nuclear export of the receptor and thereby block TGF-β-induced migration and EMT.
Collapse
|
95
|
Peng R. Promoting active learning of graduate student by deep reading in biochemistry and microbiology pharmacy curriculum. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 45:305-312. [PMID: 28059472 DOI: 10.1002/bmb.21038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
To promote graduate students' active learning, deep reading of high quality papers was done by graduate students enrolled in biochemistry and microbiology pharmacy curriculum offered by college of life science, Jiangxi Normal University from 2013 to 2015. The number of graduate students, who participated in the course in 2013, 2014, and 2015 were eleven, thirteen and fifteen, respectively. Through deep reading of papers, presentation, and group discussion in the lecture, these graduate students have improved their academic performances effectively, such as literature search, PPT document production, presentation management, specialty document reading, academic inquiry, and analytical and comprehensive ability. The graduate students also have increased their understanding level of frontier research, scientific research methods, and experimental methods. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):305-312, 2017.
Collapse
Affiliation(s)
- Ren Peng
- Department of Bioengineering, College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
96
|
Hedrick E, Lee SO, Safe S. The nuclear orphan receptor NR4A1 regulates β1-integrin expression in pancreatic and colon cancer cells and can be targeted by NR4A1 antagonists. Mol Carcinog 2017; 56:2066-2075. [PMID: 28418095 DOI: 10.1002/mc.22662] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/13/2017] [Indexed: 12/22/2022]
Abstract
β1-Integrin is highly expressed and is a negative prognostic factor for colon and pancreatic cancer patients and the gene plays a functional role in cell migration and invasion. In this study, we demonstrate that β1-integrin expression is regulated in pancreatic and colon cancer cells by the pro-oncogenic orphan nuclear receptor 4A1 (NR4A1, Nur77, TR3) and knockdown of this receptor by RNA interference decreases β1-integrin protein and mRNA expression, α5-integrin, and also expression of β1-integrin-dependent phosphorylation of FAK (pFak). Knockdown of NR4A1 also decreased migration and fibronectin-induced adhesion in pancreatic (Panc1, L3.6 pL, and MiaPaCa2) and colon (RKO and SW480) cancer cells. 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methane (C-DIM) compounds containing p-hydroxy (DIM-C-pPhOH) and p-carbomethoxy (DIM-C-pPhCO2 Me) groups are NR4A1 ligands that act as antagonists for this receptor. Treatment of pancreatic and colon cancer cells with DIM-C-pPhOH or DIM-C-pPhCO2 Me mimics the effects of NR4A1 knockdown and decreases β1-integrin expression, β1-integrin regulated genes and responses including migration and adhesion. The results demonstrate a novel method for targeting β1-integrin in colon and pancreatic cancer cells and indicate possible clinical applications for C-DIM/NR4A1 antagonists for pancreatic and colon cancer therapy.
Collapse
Affiliation(s)
- Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
97
|
Soto-Acosta R, Bautista-Carbajal P, Cervantes-Salazar M, Angel-Ambrocio AH, del Angel RM. DENV up-regulates the HMG-CoA reductase activity through the impairment of AMPK phosphorylation: A potential antiviral target. PLoS Pathog 2017; 13:e1006257. [PMID: 28384260 PMCID: PMC5383345 DOI: 10.1371/journal.ppat.1006257] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/24/2017] [Indexed: 01/01/2023] Open
Abstract
Dengue is the most common mosquito-borne viral disease in humans. Changes of lipid-related metabolites in endoplasmic reticulum of dengue virus (DENV) infected cells have been associated with replicative complexes formation. Previously, we reported that DENV infection inhibits HMGCR phosphorylation generating a cholesterol-enriched cellular environment in order to favor viral replication. In this work, using enzymatic assays, ELISA, and WB we found a significant higher activity of HMGCR in DENV infected cells, associated with the inactivation of AMPK. AMPK activation by metformin declined the HMGCR activity suggesting that AMPK inactivation mediates the enhanced activity of HMGCR. A reduction on AMPK phosphorylation activity was observed in DENV infected cells at 12 and 24 hpi. HMGCR and cholesterol co-localized with viral proteins NS3, NS4A and E, suggesting a role for HMGCR and AMPK activity in the formation of DENV replicative complexes. Furthermore, metformin and lovastatin (HMGCR inhibitor) altered this co-localization as well as replicative complexes formation supporting that active HMGCR is required for replicative complexes formation. In agreement, metformin prompted a significant dose-dependent antiviral effect in DENV infected cells, while compound C (AMPK inhibitor) augmented the viral genome copies and the percentage of infected cells. The PP2A activity, the main modulating phosphatase of HMGCR, was not affected by DENV infection. These data demonstrate that the elevated activity of HMGCR observed in DENV infected cells is mediated through AMPK inhibition and not by increase in PP2A activity. Interestingly, the inhibition of this phosphatase showed an antiviral effect in an HMGCR-independent manner. These results suggest that DENV infection increases HMGCR activity through AMPK inactivation leading to higher cholesterol levels in endoplasmic reticulum necessary for replicative complexes formation. This work provides new information about the mechanisms involved in host lipid metabolism during DENV replicative cycle and identifies new potential antiviral targets for DENV replication. DENV replicative complexes formation is associated with changes of lipid-related metabolites in endoplasmic reticulum, such as an increase in cholesterol synthesis. This increase correlates with a significant augment in the activity of HMGCoA reductase (the limiting enzyme in cholesterol synthesis), favoring a cholesterol-enriched cellular environment. The augment in the activity of the HMGCR observed in infected cells is caused by a decrease in the phosphorylation level of the HMGCR, associated with the inactivation of AMPK. In agreement, AMPK activation by metformin reduces HMGCR activity and affects viral replication. The role HMGCR and AMPK activity in DENV replicative complexes formation was confirmed by the co-localization of HMGCR and cholesterol with the viral proteins NS3, NS4A and E. Furthermore, metformin and lovastatin (HMGCR inhibitor) treatments altered this co-localization as well as replicative complexes formation supporting that active HMGCR is required for replicative complexes formation. The results show that during DENV infection, an increase in the HMGCR activity occurs through AMPK inactivation, leading to higher cholesterol levels in endoplasmic reticulum necessary for replicative complexes formation. This work provides new information about the mechanisms involved in host lipid metabolism during DENV replicative cycle and identifies potential new antiviral targets for DENV replication.
Collapse
Affiliation(s)
- Rubén Soto-Acosta
- Departmento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, México, D.F., México
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | | | | | | | - Rosa M. del Angel
- Departmento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, México, D.F., México
- * E-mail:
| |
Collapse
|
98
|
Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation. Nat Commun 2017; 8:14420. [PMID: 28240261 PMCID: PMC5333363 DOI: 10.1038/ncomms14420] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
Gluconeogenesis, an essential metabolic process for hepatocytes, is downregulated in hepatocellular carcinoma (HCC). Here we show that the nuclear receptor Nur77 is a tumour suppressor for HCC that regulates gluconeogenesis. Low Nur77 expression in clinical HCC samples correlates with poor prognosis, and a Nur77 deficiency in mice promotes HCC development. Nur77 interacts with phosphoenolpyruvate carboxykinase (PEPCK1), the rate-limiting enzyme in gluconeogenesis, to increase gluconeogenesis and suppress glycolysis, resulting in ATP depletion and cell growth arrest. However, PEPCK1 becomes labile after sumoylation and is degraded via ubiquitination, which is augmented by the p300 acetylation of ubiquitin-conjugating enzyme 9 (Ubc9). Although Nur77 attenuates sumoylation and stabilizes PEPCK1 via impairing p300 activity and preventing the Ubc9-PEPCK1 interaction, Nur77 is silenced in HCC samples due to Snail-mediated DNA methylation of the Nur77 promoter. Our study reveals a unique mechanism to suppress HCC by switching from glycolysis to gluconeogenesis through Nur77 antagonism of PEPCK1 degradation.
Collapse
|
99
|
Chen JH, Zheng JJ, Guo Q, Liu C, Luo B, Tang SB, Cheng JD, Huang EW. A novel mutation in the STK11 gene causes heritable Peutz-Jeghers syndrome - a case report. BMC MEDICAL GENETICS 2017; 18:19. [PMID: 28231849 PMCID: PMC5324205 DOI: 10.1186/s12881-017-0373-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
Background Peutz-Jeghers syndrome (PJS) is a rare disorder characterized by multiple gastrointestinal hamartomatous polyps and mucocutaneous pigmentation. STK11 has been identified as a causative gene for this disease. Case presentation Herein we report a Chinese Han kindred with PJS. Onset for the PJS signs in three of the patients was rarely as early as at birth. We identified a novel heterozygous mutation (c.440_441delGT, p.Arg147Leufs*15) in the gene STK11, causing a short frameshift followed by a deletion of 63% of the amino acids in the STK protein. This mutation co-segregated with the PJS phenotype, and was absent in two hundred of unrelated ethnicity-matched controls. The mutation led to expression decrease of unaffected STK11 protein in patients than in controls, as well in PJ polyps than in circulating leucocytes from the patients. Phosphorylation levels of the downstream kinase AMPKα altered according with the expression of STK11. These results indicated the possibility that haploinsufficiency and epigenetic reduction of STK11 contributed to the pathogenesis of the disease. Conclusion This study identifies a novel mutation in the pathogenic gene STK11 leading to PJS. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0373-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing-Hui Chen
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing-Jing Zheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan 2 Road, Guangzhou, 510080, China
| | - Qin Guo
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangdong Medical University, Guangzhou, Guangdong, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan 2 Road, Guangzhou, 510080, China.,Guangzhou Forensic Science Institute, Guangdong Provincial Key Laboratory of Forensic Genetics, Guangzhou, Guangdong, China
| | - Bin Luo
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan 2 Road, Guangzhou, 510080, China
| | - Shuang-Bo Tang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan 2 Road, Guangzhou, 510080, China
| | - Jian-Ding Cheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan 2 Road, Guangzhou, 510080, China.
| | - Er-Wen Huang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan 2 Road, Guangzhou, 510080, China.
| |
Collapse
|
100
|
Rodríguez-Calvo R, Tajes M, Vázquez-Carrera M. The NR4A subfamily of nuclear receptors: potential new therapeutic targets for the treatment of inflammatory diseases. Expert Opin Ther Targets 2017; 21:291-304. [PMID: 28055275 DOI: 10.1080/14728222.2017.1279146] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Prolonged inflammatory response contributes to the pathogenesis of chronic disease-related disturbances. Among nuclear receptors (NRs), the orphan NR4A subfamily, which includes Nur77 (NR4A1), Nurr1 (NR4A2) and NOR1 (NR4A3), has recently emerged as a therapeutic target for the treatment of inflammation. Areas covered: This review focuses on the capacity of NR4A receptors to counter-regulate the development of the inflammatory response, with a special focus on the molecular transrepression mechanisms. Expert opinion: Recent studies have highlighted the role of NR4A receptors as significant regulators of the inflammatory response. NR4A receptors are rapidly induced by inflammatory stimuli, thus suggesting that they are required for the initiation of inflammation. Nevertheless, NR4A anti-inflammatory properties indicate that this acute regulation could be a protective reaction aimed at resolving inflammation in the later stages. Therefore, NR4A receptors are involved in a negative feedback mechanism to maintain the inflammatory balance. However, the underlying mechanisms are not entirely clear. Only a small number of NR4A-target genes have been identified, and the transcriptional repression mechanisms are only beginning to emerge. Despite further research is needed to fully understand the role of NR4A receptors in inflammation, these NRs should be considered as targets for new therapeutic approaches to inflammatory diseases.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Calvo
- a Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Pere Virgili Health Research Institute (IISPV) and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Medicine and Health Sciences , Rovira i Virgili University , Reus , Spain
| | - Marta Tajes
- b Heart Diseases Biomedical Research Group, Inflammatory and Cardiovascular Disorders Program , Hospital del Mar Medical Research Institute (IMIM), Parc de Salut Mar , Barcelona , Spain
| | - Manuel Vázquez-Carrera
- c Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Pharmacy, Diagonal 643 , University of Barcelona , Barcelona , Spain
| |
Collapse
|