51
|
Bird JA, Sánchez-Borges M, Ansotegui IJ, Ebisawa M, Ortega Martell JA. Skin as an immune organ and clinical applications of skin-based immunotherapy. World Allergy Organ J 2018; 11:38. [PMID: 30555619 PMCID: PMC6284278 DOI: 10.1186/s40413-018-0215-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023] Open
Abstract
Background The prevalence of food allergy is increasing, and allergen avoidance continues to be the main standard of care. There is a critical need for safe and effective forms of immunotherapy for patients with food allergy as well as other allergic diseases. Findings The skin is a multifunctional organ with unique immunologic properties, making it a favorable administration route for allergen-specific immunotherapy. Epicutaneous immunotherapy (EPIT) takes advantage of the skin’s immune properties to modulate allergic responses and is thus one of the allergen-specific immunotherapy approaches currently being investigated for food allergy. Advances made in the understanding of how epicutaneously applied proteins interact with the immune system and in the technology for facilitating such interactions offer many opportunities for clinical application. Research has shown that allergen delivered to intact skin via EPIT is taken up in the superficial layers of the skin by Langerhans cells, avoiding passive movement of allergen through the dermis and limiting systemic circulation. EPIT brings about allergen desensitization by activating a population of regulatory T cells (Tregs) with unique properties and the potential for inducing a sustained effect as well as the possibility (seen in animal models) for protection against further sensitizations. Several clinical trials investigating the therapeutic efficacy of EPIT for treatment of peanut allergy have been completed, as well as a Phase 2 trial for treatment of milk allergy. Conclusions Taken together, the reviewed literature supports the concept that EPIT activates the natural desensitization pathway of the skin, offering a progressive, possibly sustained response. EPIT offers a potential alternative for allergen immunotherapy that is less invasive and carries a lower risk for systemic reactions than oral immunotherapy.
Collapse
Affiliation(s)
- J Andrew Bird
- 1Department of Pediatrics, Division of Pediatric Allergy and Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9063 USA
| | | | | | | | | |
Collapse
|
52
|
Abstract
BACKGROUND Personalized medicine offers new perspectives for diagnostic measurements and medical treatment, but also puts greater demands on the physician. OBJECTIVES Developments, potentials and potential pitfalls of personalized medicine in allergology. METHODS Overview, evaluation and discussion of the current state of science on the basis of selected examples. RESULTS Allergic diseases like allergic rhinitis, atopic eczema or anaphylaxis can be classified into various clinical phenotypes, which are based on different immunological endotypes. These can be captured and categorized by a wide variety of omics technologies. The identification of endotype specific biomarkers holds promising opportunities of more precise diagnostics, the implementation of novel targeted therapies or the development of optimized preventive strategies. However, individualized analysis and assessment of the significance of the measurements represent special challenges. CONCLUSIONS Findings of the complex omics technologies need to be evaluated by comprehensive prospective studies in order to validate their clinical relevance and suitability for personalized medicine in allergology.
Collapse
Affiliation(s)
- W Pfützner
- Klinik für Dermatologie und Allergologie, Allergie Zentrum Hessen, Universitätsklinikum Gießen und Marburg, Standort Marburg, Philipps-Universität Marburg, Baldinger Str., 35043, Marburg, Deutschland.
| | - J Pickert
- Klinik für Dermatologie und Allergologie, Allergie Zentrum Hessen, Universitätsklinikum Gießen und Marburg, Standort Marburg, Philipps-Universität Marburg, Baldinger Str., 35043, Marburg, Deutschland
| | - C Möbs
- Klinik für Dermatologie und Allergologie, Allergie Zentrum Hessen, Universitätsklinikum Gießen und Marburg, Standort Marburg, Philipps-Universität Marburg, Baldinger Str., 35043, Marburg, Deutschland
| |
Collapse
|
53
|
Hernández-Ruiz E, Toll A, García-Diez I, Andrades E, Ferrandiz-Pulido C, Masferrer E, Yébenes M, Jaka A, Gimeno J, Gimeno R, García-Patos V, Pujol RM, Hernández-Muñoz I. The Polycomb proteins RING1B and EZH2 repress the tumoral pro-inflammatory function in metastasizing primary cutaneous squamous cell carcinoma. Carcinogenesis 2018; 39:503-513. [PMID: 29394319 DOI: 10.1093/carcin/bgy016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common malignancy in humans and approximately 5% metastasize, usually to regional lymph nodes. Epigenetic regulation of gene expression may allow tumoral cells to acquire new functions in order to escape from the primary tumor. The aim of this study was to investigate the expression and function of proteins of the Polycomb family of epigenetic regulators in the metastatic process of cSCC. A higher expression of RING1B and EZH2 was detected by immunohistochemistry in a series of primary cSCC tumors that metastasized (MSCCs) when compared with non-metastasizing cSCCs (non-MSCCs). Stable downregulation of RING1B and EZH2 in cSCC cells results in enhanced expression of inflammatory cytokines and activation of the NF-κB signaling pathway. Accordingly, non-MSCCs display higher levels of membranous pS176-inhibitor of NF-kB kinase, and their stroma is enriched in neutrophils and eosinophils when compared with MSCCs. In vitro, hematopoietic cells exhibit a substantial migratory response to supernatants from Polycomb-depleted cSCC cells. Altogether, these data indicate that RING1B and EZH2 repress the innate inflammatory cSCC function and impair tumor immunosurveillance and suggest that patients with high-risk cSCCs could benefit from clinical therapies addressed to harness the immune response.
Collapse
Affiliation(s)
- Eugenia Hernández-Ruiz
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Agustí Toll
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | - Evelyn Andrades
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Carla Ferrandiz-Pulido
- Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Emili Masferrer
- Department of Dermatology, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Mireia Yébenes
- Department of Dermatology, Corporació Sanitària i Universitària Parc Taulí, Sabadell, Spain
| | - Ane Jaka
- Department of Dermatology, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Javier Gimeno
- Department of Pathology, Hospital del Mar. Parc de Salut Mar, Barcelona, Spain
| | - Ramón Gimeno
- Department of Immunology, Hospital del Mar. Parc de Salut Mar, Barcelona, Spain
| | - Vicenç García-Patos
- Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramón M Pujol
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Inmaculada Hernández-Muñoz
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
54
|
Guzmán M, Miglio MS, Zgajnar NR, Colado A, Almejún MB, Keitelman IA, Sabbione F, Fuentes F, Trevani AS, Giordano MN, Galletti JG. The mucosal surfaces of both eyes are immunologically linked by a neurogenic inflammatory reflex involving TRPV1 and substance P. Mucosal Immunol 2018; 11:1441-1453. [PMID: 29867077 DOI: 10.1038/s41385-018-0040-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/08/2018] [Accepted: 04/15/2018] [Indexed: 02/04/2023]
Abstract
Immunological interdependence between the two eyes has been reported for the cornea and the retina but not for the ocular mucosal surface. Intriguingly, patients frequently report ocular surface-related symptoms in the other eye after unilateral ocular surgery. Here we show how unilateral eye injuries in mice affect the mucosal immune response of the opposite ocular surface. We report that, despite the lack of lymphatic cross-drainage, a neurogenic inflammatory reflex in the contralateral conjunctiva is sufficient to increase, first, epithelial nuclear factor kappa B signaling, then, dendritic cell maturation, and finally, expansion of effector, instead of regulatory, T cells in the draining lymph node, leading to disrupted ocular mucosal tolerance. We also show that damage to ocular surface nerves is required. Using pharmacological inhibitors and agonists, we identified transient receptor potential vanilloid 1 (TRPV1) channel as the receptor sensing tissue damage in the injured eye and substance P released in the opposite ocular surface as the effector of the sympathetic response. Finally, blocking either step prevented subsequent ocular allergic reactions in the opposite eye in a unilateral corneal alkali burn model. This study demonstrates that both ocular surfaces are immunologically linked and suggests potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Mauricio Guzmán
- Immunology Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Maximiliano S Miglio
- Immunology Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Nadia R Zgajnar
- Nuclear Receptors Laboratory, Institute of Experimental Biology & Medicine (IBYME)-CONICET, Buenos Aires, Argentina
| | - Ana Colado
- Immunology Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - María B Almejún
- Immunology Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Irene A Keitelman
- Immunology Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Florencia Sabbione
- Immunology Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Federico Fuentes
- Immunology Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Analía S Trevani
- Immunology Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina.,Microbiology, Parasitology & Immunology Department, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Mirta N Giordano
- Immunology Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina.,Microbiology, Parasitology & Immunology Department, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Jeremías G Galletti
- Immunology Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
55
|
Trivedi PJ, Adams DH. Chemokines and Chemokine Receptors as Therapeutic Targets in Inflammatory Bowel Disease; Pitfalls and Promise. J Crohns Colitis 2018; 12:S641-S652. [PMID: 30137309 PMCID: PMC6104621 DOI: 10.1093/ecco-jcc/jjx145] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The principal targets for anti-chemokine therapy in inflammatory bowel disease (IBD) have been the receptors CCR9 and CXCR3 and their respective ligands CCL25 and CXCL10. More recently CCR6 and its ligand CCL20 have also received attention, the expression of the latter in enterocytes being manipulated through Smad7 signalling. These pathways, selected based on their fundamental role in regulating mucosal immunity, have led to the development of several therapeutic candidates that have been tested in early phase clinical trials with variable clinical efficacy. In this article, we appraise the status of chemokine-directed therapy in IBD, review recent developments, and nominate future areas for therapeutic focus.
Collapse
Affiliation(s)
- Palak J Trivedi
- National Institute for Health Research (NIHR) Birmingham, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Centre for Rare Diseases, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - David H Adams
- National Institute for Health Research (NIHR) Birmingham, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| |
Collapse
|
56
|
Pietka W, Khnykin D, Bertelsen V, Lossius AH, Stav-Noraas TE, Hol Fosse J, Galtung HK, Haraldsen G, Sundnes O. Hypo-osmotic Stress Drives IL-33 Production in Human Keratinocytes-An Epidermal Homeostatic Response. J Invest Dermatol 2018; 139:81-90. [PMID: 30120934 DOI: 10.1016/j.jid.2018.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
Although inflammation has traditionally been considered a response to either exogenous pathogen-associated signals or endogenous signals of cell damage, other perturbations of homeostasis, generally referred to as stress, may also induce inflammation. The relationship between stress and inflammation is, however, not well defined. Here, we describe a mechanism of IL-33 induction driven by hypo-osmotic stress in human keratinocytes and also report interesting differences when comparing the responsiveness of other inflammatory mediators. The induction of IL-33 was completely dependent on EGFR and calcium signaling, and inhibition of calcium signaling not only abolished IL-33 induction but also dramatically changed the transcriptional pattern of other cytokines upon hypo-osmotic stress. IL-33 was not secreted but instead showed nuclear sequestration, conceivably acting as a failsafe mechanism whereby it is induced by potential danger but released only upon more extreme homeostatic perturbations that result in cell death. Finally, stress-induced IL-33 was also confirmed in an ex vivo human skin model, translating this mechanism to a potential tissue-relevant signal in the human epidermis. In conclusion, we describe hypo-osmotic stress as an inducer of IL-33 expression, linking cellular stress to nuclear accumulation of a strong proinflammatory cytokine.
Collapse
Affiliation(s)
- Wojciech Pietka
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Denis Khnykin
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Vibeke Bertelsen
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Astrid Haaskjold Lossius
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Tor Espen Stav-Noraas
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Johanna Hol Fosse
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Hilde Kanli Galtung
- Department of Oral Biology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Guttorm Haraldsen
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Olav Sundnes
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Rheumatology, Dermatology and Infectious Diseases, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
57
|
Weimer BC, Chen P, Desai PT, Chen D, Shah J. Whole Cell Cross-Linking to Discover Host-Microbe Protein Cognate Receptor/Ligand Pairs. Front Microbiol 2018; 9:1585. [PMID: 30072965 PMCID: PMC6060266 DOI: 10.3389/fmicb.2018.01585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 06/26/2018] [Indexed: 12/31/2022] Open
Abstract
Bacterial surface ligands mediate interactions with the host cell during association that determines the specific outcome for the host–microbe association. The association begins with receptors on the host cell binding ligands on the microbial cell to form a partnership that initiates responses in both cells. Methods to determine the specific cognate partnerships are lacking. Determining these molecular interactions between the host and microbial surfaces are difficult, yet crucial in defining biologically important events that are triggered during association of the microbiome, and critical in defining the initiating signal from the host membrane that results in pathology or commensal association. In this study, we designed an approach to discover cognate host–microbe receptor/ligand pairs using a covalent cross-linking strategy with whole cells. Protein/protein cross-linking occurred when the interacting molecules were within 9–12 Å, allowing for identification of specific pairs of proteins from the host and microbe that define the molecular interaction during association. To validate the method three different bacteria with three previously known protein/protein partnerships were examined. The exact interactions were confirmed and led to discovery of additional partnerships that were not recognized as cognate partners, but were previously reported to be involved in bacterial interactions. Additionally, three unknown receptor/ligand partners were discovered and validated with in vitro infection assays by blocking the putative host receptor and deleting the bacterial ligand. Subsequently, Salmonella enterica sv. Typhimurium was cross-linked to differentiated colonic epithelial cells (caco-2) to discover four previously unknown host receptors bound to three previously undefined host ligands for Salmonella. This approach resulted in a priori discovery of previously unknown and biologically important molecules for host/microbe association that were casually reported to mediate bacterial invasion. The whole cell cross-linking approach promises to enable discovery of possible targets to modulate interaction of the microbiome with the host that are important in infection and commensalism, both of with initiate a host response.
Collapse
Affiliation(s)
- Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Poyin Chen
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Prerak T Desai
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Department of Dietetics, Nutrition and Food Sciences, Utah State University, Logan, UT, United States
| | - Dong Chen
- Department of Biology, Utah State University, Logan, UT, United States
| | - Jigna Shah
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Department of Dietetics, Nutrition and Food Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
58
|
Israr M, Rosenthal D, Frejo-Navarro L, DeVoti J, Meyers C, Bonagura VR. Microarray analysis of human keratinocytes from different anatomic sites reveals site-specific immune signaling and responses to human papillomavirus type 16 transfection. Mol Med 2018; 24:23. [PMID: 30134802 PMCID: PMC6016891 DOI: 10.1186/s10020-018-0022-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stratified human keratinocytes (SHKs) are an essential part of mucosal innate immune response that modulates adaptive immunity to microbes encountered in the environment. The importance of these SHKs in mucosal integrity and development has been well characterized, however their regulatory immunologic role at different mucosal sites, has not. In this study we compared the immune gene expression of SHKs from five different anatomical sites before and after HPV16 transfection using microarray analyses. METHODS Individual pools of human keratinocytes from foreskin, cervix, vagina, gingiva, and tonsils (HFKs, HCKs, HVKs, HGKs and HTLKs) were prepared. Organotypic (raft) cultures were established for both normal and HPV16 immortalized HFKs, HCKs, HVKs, HGKs and HTLKs lines which stably maintained episomal HPV16 DNA. Microarray analysis was carried out using the HumanHT-12 V4 gene chip (Illumina). Immune gene expression profiles were obtained by global gene chip (GeneSifter) and Ingenuity pathway analysis (IPA) for each individual site, with or without HPV16 transfection. RESULTS We examined site specific innate immune response gene expression in SHKs from all five different anatomical sites before and after HPV16 transfection. We observed marked differences in SHK immune gene repertoires within and between mucosal tracts before HPV 16 infection. In addition, we observed additional changes in SHKs immune gene repertoire patterns when these SHKs were productively transfected with HPV16. Some immune response genes were similarly expressed by SHKs from different sites. However, there was also variable expression of non-immune response genes, such as keratin genes, by the different SHKs. CONCLUSIONS Our results suggest that keratinocytes from different anatomical sites are likely hard wired in their innate immune responses, and that these immune responses are unique depending on the anatomical site from which the SHKs were derived. These observations may help explain why select HPV types predominate at different mucosal sites, cause persistent infection at these sites, and on occasion, lead to HPV induced malignant and benign tumor development.
Collapse
Affiliation(s)
- Mohd Israr
- The Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Allergy and Immunology, Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - David Rosenthal
- The Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Allergy and Immunology, Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Lidia Frejo-Navarro
- Department of Genomic Medicine, Otology and Neurotology Group CTS495, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - James DeVoti
- The Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Allergy and Immunology, Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Vincent R Bonagura
- The Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Allergy and Immunology, Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA.
| |
Collapse
|
59
|
McCarthy NE, Eberl M. Human γδ T-Cell Control of Mucosal Immunity and Inflammation. Front Immunol 2018; 9:985. [PMID: 29867962 PMCID: PMC5949325 DOI: 10.3389/fimmu.2018.00985] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 01/26/2023] Open
Abstract
Human γδ T-cells include some of the most common "antigen-specific" cell types in peripheral blood and are enriched yet further at mucosal barrier sites where microbial infection and tumors often originate. While the γδ T-cell compartment includes multiple subsets with highly flexible effector functions, human mucosal tissues are dominated by host stress-responsive Vδ1+ T-cells and microbe-responsive Vδ2+ T-cells. Widely recognized for their potent cytotoxicity, emerging data suggest that γδ T-cells also exert strong influences on downstream adaptive immunity to pathogens and tumors, in particular via activation of antigen-presenting cells and/or direct stimulation of other mucosal leukocytes. These unique functional attributes and lack of MHC restriction have prompted considerable interest in therapeutic targeting of γδ T-cells. Indeed, several drugs already in clinical use, including vedolizumab, infliximab, and azathioprine, likely owe their efficacy in part to modulation of γδ T-cell function. Recent clinical trials of Vδ2+ T-cell-selective treatments indicate a good safety profile in human patients, and efficacy is set to increase as more potent/targeted drugs continue to be developed. Key advances will include identifying methods of directing γδ T-cell recruitment to specific tissues to enhance host protection against invading pathogens, or alternatively, retaining these cells in the circulation to limit peripheral inflammation and/or improve responses to blood malignancies. Human γδ T-cell control of mucosal immunity is likely exerted via multiple mechanisms that induce diverse responses in other types of tissue-resident leukocytes. Understanding the microenvironmental signals that regulate these functions will be critical to the development of new γδ T-cell-based therapies.
Collapse
Affiliation(s)
- Neil E. McCarthy
- Centre for Immunobiology, Bart’s and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
60
|
Kim B, Kim TH. Fundamental role of dendritic cells in inducing Th2 responses. Korean J Intern Med 2018; 33:483-489. [PMID: 29502361 PMCID: PMC5943655 DOI: 10.3904/kjim.2016.227] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/05/2017] [Indexed: 12/24/2022] Open
Abstract
A mysterious puzzle in immunology is how the immune system decides what types of immune response to initiate against various stimuli. Although much is known about control of T helper 1 (Th1) and Th17 responses, the mechanisms that initiate Th2 responses remain obscure. Antigen-presenting cells, particularly dendritic cells (DCs), are mandatory for the induction of a Th cell response. Numerous studies have documented the organizing role of DCs in this process. The present review summarizes the fundamental roles of DCs in inducing Th2 responses.
Collapse
Affiliation(s)
- Byoungjae Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul, Korea
- Allergy Immunology Center, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
61
|
Hernández-Santos N, Wiesner DL, Fites JS, McDermott AJ, Warner T, Wüthrich M, Klein BS. Lung Epithelial Cells Coordinate Innate Lymphocytes and Immunity against Pulmonary Fungal Infection. Cell Host Microbe 2018; 23:511-522.e5. [PMID: 29576482 DOI: 10.1016/j.chom.2018.02.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/23/2017] [Accepted: 02/09/2018] [Indexed: 01/21/2023]
Abstract
Lung epithelial cells (LECs) are strategically positioned in the airway mucosa to provide barrier defense. LECs also express pattern recognition receptors and a myriad of immune genes, but their role in immunity is often concealed by the activities of "professional" immune cells, particularly in the context of fungal infection. Here, we demonstrate that NF-κB signaling in LECs is essential for immunity against the pulmonary fungal pathogen Blastomyces dermatitidis. LECs orchestrate innate antifungal immunity by augmenting the numbers of interleukin-17A (IL-17A)- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing innate lymphocytes, specifically "natural" Th17 (nTh17) cells. Innate lymphocyte-derived IL-17A and GM-CSF in turn enable phagocyte-driven fungal killing. LECs regulate the numbers of nTh17 cells via the production of chemokines such as CCL20, a process dependent on IL-1α-IL-1 receptor (IL-1R) signaling on LECs. Therefore, LECs orchestrate IL-17A- and GM-CSF-mediated immunity in an IL-1R-dependent manner and represent an essential component of innate immunity to pulmonary fungal pathogens.
Collapse
Affiliation(s)
- Nydiaris Hernández-Santos
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Darin L Wiesner
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Internal Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - J Scott Fites
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Andrew J McDermott
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Thomas Warner
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Marcel Wüthrich
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Bruce S Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Internal Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA.
| |
Collapse
|
62
|
Hu MD, Jia L, Edelblum KL. Policing the intestinal epithelial barrier: Innate immune functions of intraepithelial lymphocytes. CURRENT PATHOBIOLOGY REPORTS 2018; 6:35-46. [PMID: 29755893 PMCID: PMC5943048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE OF REVIEW This review will explore the contribution of IELs to mucosal innate immunity and highlight the similarities in IEL functional responses to bacteria, viruses and protozoan parasite invasion. RECENT FINDINGS IELs rapidly respond to microbial invasion by activating host defense responses, including the production of mucus and antimicrobial peptides to prevent microbes from reaching the epithelial surface. During active infection, IELs promote epithelial cytolysis, cytokine and chemokine production to limit pathogen invasion, replication and dissemination. Commensal-induced priming of IEL effector function or continuous surveillance of the epithelium may be important contributing factors to the rapidity of response. SUMMARY Impaired microbial recognition, dysregulated innate immune signaling or microbial dysbiosis may limit the protective function of IELs and increase susceptibility to disease. Further understanding of the mechanisms regulating IEL surveillance and sentinel function may provide insight into the development of more effective targeted therapies designed to reinforce the mucosal barrier.
Collapse
Affiliation(s)
- Madeleine D Hu
- Center for Immunity and Inflammation, Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Luo Jia
- Center for Immunity and Inflammation, Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
63
|
Bao Q, Li C, Xu C, Zhang R, Zhao K, Duan Z. Porcine enterocyte protein Btnl5 negatively regulates NF-kappa B pathway by interfering p65 nuclear translocation. Gene 2018; 646:47-55. [DOI: 10.1016/j.gene.2017.11.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/12/2017] [Accepted: 11/28/2017] [Indexed: 01/04/2023]
|
64
|
Yu SX, Chen W, Liu ZZ, Zhou FH, Yan SQ, Hu GQ, Qin XX, Zhang J, Ma K, Du CT, Gu JM, Deng XM, Han WY, Yang YJ. Non-Hematopoietic MLKL Protects Against Salmonella Mucosal Infection by Enhancing Inflammasome Activation. Front Immunol 2018; 9:119. [PMID: 29456533 PMCID: PMC5801401 DOI: 10.3389/fimmu.2018.00119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/15/2018] [Indexed: 12/21/2022] Open
Abstract
The intestinal mucosal barrier is critical for host defense against pathogens infection. Here, we demonstrate that the mixed lineage kinase-like protein (MLKL), a necroptosis effector, promotes intestinal epithelial barrier function by enhancing inflammasome activation. MLKL−/− mice were more susceptible to Salmonella infection compared with wild-type counterparts, with higher mortality rates, increased body weight loss, exacerbated intestinal inflammation, more bacterial colonization, and severe epithelial barrier disruption. MLKL deficiency promoted early epithelial colonization of Salmonella prior to developing apparent intestinal pathology. Active MLKL was predominantly expressed in crypt epithelial cells, and experiments using bone marrow chimeras found that the protective effects of MLKL were dependent on its expression in non-hematopoietic cells. Intestinal mucosa of MLKL−/− mice had impaired caspase-1 and gasdermin D cleavages and decreased interleukin (IL)-18 release. Moreover, administration of exogenous recombinant IL-18 rescued the phenotype of increased bacterial colonization in MLKL−/− mice. Thus, our results uncover the role of MLKL in enhancing inflammasome activation in intestinal epithelial cells to inhibit early bacterial colonization.
Collapse
Affiliation(s)
- Shui-Xing Yu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhen-Zhen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng-Hua Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shi-Qing Yan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gui-Qiu Hu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiao-Xia Qin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jie Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ke Ma
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chong-Tao Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing-Min Gu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xu-Ming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wen-Yu Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong-Jun Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
65
|
Deckers J, Hammad H, Hoste E. Langerhans Cells: Sensing the Environment in Health and Disease. Front Immunol 2018; 9:93. [PMID: 29449841 PMCID: PMC5799717 DOI: 10.3389/fimmu.2018.00093] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, our understanding of Langerhans cells (LCs) has drastically changed based on novel findings regarding the developmental origin and biological functions of these epidermis-specific resident immune cells. It has become clear that LCs not only exert pivotal roles in immune surveillance and homeostasis but also impact on pathology by either inducing tolerance or mediating inflammation. Their unique capabilities to self-renew within the epidermis, while also being able to migrate to lymph nodes in order to present antigen, place LCs in a key position to sample the local environment and decide on the appropriate cutaneous immune response. Exciting new data distinguishing LCs from Langerin+ dermal dendritic cells (DCs) on a functional and ontogenic level reveal crucial roles for LCs in trauma and various skin pathologies, which will be thoroughly discussed here. However, despite rapid progress in the field, the exact role of LCs during immune responses has not been completely elucidated. This review focuses on what mouse models that have been developed in order to enable the study of murine LCs and other Langerin-expressing DCs have taught us about LC development and function.
Collapse
Affiliation(s)
- Julie Deckers
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
66
|
Ipci K, Oktemer T, Muluk NB, Şahin E, Altıntoprak N, Bafaqeeh SA, Kurt Y, Mladina R, Šubarić M, Cingi C. Alternative products to treat allergic rhinitis and alternative routes for allergy immunotherapy. Am J Rhinol Allergy 2018; 30:8-10. [PMID: 29025464 DOI: 10.2500/ajra.2016.30.4364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Some alternative products instead of immunotherapy are used in patients with allergic rhinitis (AR). METHODS In this paper, alternative products to treat allergic rhinitis and alternative routes for allergy immunotherapy are reviewed. RESULTS Alternative products and methods used instead of immunotherapy are tea therapy, acupuncture, Nigella sativa, cinnamon bark, Spanish needle, acerola, capsaicin (Capsicum annum), allergen-absorbing ointment, and cellulose powder. N. sativa has been used in AR treatment due to its anti-inflammatory effects. N. sativa oil also inhibits the cyclooxygenase and 5-lipoxygenase pathways of arachidonic acid metabolism. The beneficial effects of N. sativa seed supplementation on the symptoms of AR may be due to its antihistaminic properties. To improve the efficacy of immunotherapy, some measures are taken regarding known immunotherapy applications and alternative routes of intralymphatic immunotherapy and epicutaneous immunotherapy are used. CONCLUSION There are alternative routes and products to improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Kagan Ipci
- Ear, Nose and Throat (ENT) Department, Ankara Koru Hospital, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Policing the Intestinal Epithelial Barrier: Innate Immune Functions of Intraepithelial Lymphocytes. CURRENT PATHOBIOLOGY REPORTS 2018. [DOI: 10.1007/s40139-018-0157-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
68
|
Hernandez P, Gronke K, Diefenbach A. A catch-22: Interleukin-22 and cancer. Eur J Immunol 2018; 48:15-31. [PMID: 29178520 DOI: 10.1002/eji.201747183] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/31/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022]
Abstract
Barrier surfaces of multicellular organisms are in constant contact with the environment and infractions to the integrity of epithelial surfaces is likely a frequent event. Interestingly, components of the immune system, that can be activated by environmental compounds such as the microbiota or nutrients, are interspersed among epithelial cells or directly underlie the epithelium. It is now appreciated that immune cells continuously receive and integrate signals from the environment. Curiously, such continuous reception of stimulation does not normally trigger an inflammatory response but mediators produced by immune cells in response to such signals seem to rather promote barrier integrity and repair. The molecular mediators involved in this process are poorly understood. In recent years, the cytokine interleukin-22, produced mainly by group 3 innate lymphoid cells (ILCs), has been studied as a paradigm for how immune cells can control various aspects of epithelial cell function because expression of its receptor is restricted to non-hematopoietic cells. We will summarize here the diverse roles of IL-22 for the malignant transformation of epithelial cells, for tumor growth, wound healing and tissue repair. Furthermore, we will discuss IL-22 as a potential therapeutic target.
Collapse
Affiliation(s)
- Pedro Hernandez
- Institute of Microbiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Macrophages et Développement de l'Immunité, Institut Pasteur, Paris Cedex 15, France
- Max-Planck-Institute for Immunobiology und Epigenetics, Freiburg, Germany
| | - Konrad Gronke
- Institute of Microbiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Max-Planck-Institute for Immunobiology und Epigenetics, Freiburg, Germany
- Institute of Medical Microbiology and Hygiene and Research Centre Immunology, University of Mainz Medical Centre, Mainz, Germany
| | - Andreas Diefenbach
- Institute of Microbiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
69
|
Roth M, Usemann J, Bisig C, Comte P, Czerwinski J, Mayer AC, Beier K, Rothen-Rutishauser B, Latzin P, Müller L. Effects of gasoline and ethanol-gasoline exhaust exposure on human bronchial epithelial and natural killer cells in vitro. Toxicol In Vitro 2017; 45:101-110. [DOI: 10.1016/j.tiv.2017.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/16/2022]
|
70
|
Vakrakou AG, Polyzos A, Kapsogeorgou EK, Thanos D, Manoussakis MN. Impaired anti-inflammatory activity of PPARγ in the salivary epithelia of Sjögren's syndrome patients imposed by intrinsic NF-κB activation. J Autoimmun 2017; 86:62-74. [PMID: 29033144 DOI: 10.1016/j.jaut.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Abstract
Sjögren's syndrome (SS) patients manifest inflammation in the salivary glands (SG) and evidence of persistent intrinsic activation of ductal SG epithelial cells (SGEC), demonstrable in non-neoplastic SGEC lines derived from patients (SS-SGEC). The peroxisome-proliferator-activated receptor-γ (PPARγ) mediates important anti-inflammatory activities in epithelial cells. Herein, the comparative analysis of SG biopsies and SGEC lines obtained from SS patients and controls had revealed constitutively reduced PPARγ expression, transcriptional activity and anti-inflammatory function in the ductal epithelia of SS patients that were associated with cell-autonomously activated NF-κB and IL-1β pathways. Transcriptome profiling analysis revealed several differentially expressed proinflammatory and metabolism-related gene sets in SS-SGEC lines. These aberrations largely correlated with the severity of histopathologic lesions, the disease activity and the occurrence of adverse manifestations in SS patients studied, a fact which corroborates the key role of the persistently-activated epithelia in the pathogenesis of both local and systemic features of this disease. The treatment of control SGEC lines with PPARγ agonists was found to diminish the NF-κB activation and apoptosis induced by proinflammatory agents. In addition, the in-vitro application of PPARγ agonists and pharmacologic inhibitors of IL-1β and NF-κB had significant beneficial effects on SS-SGEC lines, such as the restoration of PPARγ functions and the reduction of their intrinsic activation, a fact which may advocate the future clinical study of the above agents as therapeutic modalities for SS.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Hellenic Pasteur Institute, Laboratory of Molecular Immunology, Athens, Greece
| | | | - Efstathia K Kapsogeorgou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Thanos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Menelaos N Manoussakis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Hellenic Pasteur Institute, Laboratory of Molecular Immunology, Athens, Greece; Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
71
|
Danesh Mesgaran S, Gärtner MA, Wagener K, Drillich M, Ehling-Schulz M, Einspanier R, Gabler C. Different inflammatory responses of bovine oviductal epithelial cells in vitro to bacterial species with distinct pathogenicity characteristics and passage number. Theriogenology 2017; 106:237-246. [PMID: 29096271 DOI: 10.1016/j.theriogenology.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/24/2022]
Abstract
The bovine oviduct provides the site for fertilization and early embryonic development. Modifications to this physiological environment, for instance the presence of pathogenic bacterial species, could diminish reproductive success at early stages of pregnancy. The aim of this study was to elucidate the inflammatory responses of bovine oviductal epithelial cells (BOEC) to a pathogenic bacterial species (Trueperella pyogenes) and a potentially pathogenic bacterium (Bacillus pumilus). BOEC from four healthy animals were isolated, cultured in passage 0 (P0) and passaged until P3. Trypan blue staining determined BOEC viability during 24 h co-culture with different multiplicities of infection (MOI) of T. pyogenes (MOI 0.01, 0.05, 0.1 and 1) or B. pumilus (MOI 1 and 10). BOEC remained viable when co-cultured with T. pyogenes at MOI 0.01 and with B. pumilus at MOI 1 and 10. Extracted total RNA from control and bacteria co-cultured samples was subjected to reverse transcription-quantitative polymerase chain reaction (RTq-PCR) to determine mRNA expression of various studied genes. The rate of release of interleukin 8 (IL8) and prostaglandin E2 (PGE2) from BOEC was measured by ELISA after 24 h co-culture with bacteria. RT-qPCR of various selected pro-inflammatory factors revealed similar mRNA expression of pro-inflammatory factors in BOEC co-cultured with T. pyogenes and in the controls. Higher mRNA expression of IL 1A, -1B, tumor necrosis factor alpha and CXC ligand (CXCL) 1/2, -3, -5 and IL8 and PG synthesis enzymes in BOEC co-cultured with B. pumilus was observed. In the presence of B. pumilus a higher amount of IL8 and PGE2 was released from BOEC than from controls. The viability and pro-inflammatory response of P3 BOEC incubated with bacteria was lower than in P0 BOEC. These findings illustrate the pathogenicity of T. pyogenes towards BOEC in detail and the potential role of B. pumilus in generating inflammation in oviductal cells. Culturing conditions influenced the pro-inflammatory responses of BOEC towards bacteria. Therefore, researchers conducting epithelial-bacterial in vitro co-culture should not underestimate the effects of these parameters.
Collapse
Affiliation(s)
- S Danesh Mesgaran
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - M A Gärtner
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - K Wagener
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria; Institute of Microbiology, Functional Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - M Drillich
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - M Ehling-Schulz
- Institute of Microbiology, Functional Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - R Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - C Gabler
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
72
|
Loxham M, Davies DE. Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients. J Allergy Clin Immunol 2017; 139:1736-1751. [PMID: 28583446 PMCID: PMC5457128 DOI: 10.1016/j.jaci.2017.04.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
The bronchial epithelium is continuously exposed to a multitude of noxious challenges in inhaled air. Cellular contact with most damaging agents is reduced by the action of the mucociliary apparatus and by formation of a physical barrier that controls passage of ions and macromolecules. In conjunction with these defensive barrier functions, immunomodulatory cross-talk between the bronchial epithelium and tissue-resident immune cells controls the tissue microenvironment and barrier homeostasis. This is achieved by expression of an array of sensors that detect a wide variety of viral, bacterial, and nonmicrobial (toxins and irritants) agents, resulting in production of many different soluble and cell-surface molecules that signal to cells of the immune system. The ability of the bronchial epithelium to control the balance of inhibitory and activating signals is essential for orchestrating appropriate inflammatory and immune responses and for temporally modulating these responses to limit tissue injury and control the resolution of inflammation during tissue repair. In asthmatic patients abnormalities in many aspects of epithelial barrier function have been identified. We postulate that such abnormalities play a causal role in immune dysregulation in the airways by translating gene-environment interactions that underpin disease pathogenesis and exacerbation.
Collapse
Affiliation(s)
- Matthew Loxham
- Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton, United Kingdom
| | - Donna E Davies
- Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton, United Kingdom.
| |
Collapse
|
73
|
Hu MD, Edelblum KL. Sentinels at the frontline: the role of intraepithelial lymphocytes in inflammatory bowel disease. ACTA ACUST UNITED AC 2017; 3:321-334. [PMID: 29242771 DOI: 10.1007/s40495-017-0105-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of review Intestinal mucosal immunity is tightly regulated to ensure effective host defense against invasive microorganisms while limiting the potential for aberrant damage. In inflammatory bowel disease (IBD), an imbalance between effector and regulatory T cell populations results in an uncontrolled inflammatory response to commensal bacteria. Intraepithelial lymphocytes (IEL) are perfectly positioned within the intestinal epithelium to provide the first line of mucosal defense against luminal microbes or rapidly respond to epithelial injury. This review will highlight how IELs promote protective intestinal immunity and discuss the evidence indicating that altered IEL responses contribute to the pathogenesis of IBD. Recent findings Although the role of IELs in mucosal homeostasis has been largely underappreciated, many of the same factors that contribute to the dysregulation of host defense in IBD also adversely affect IELs. For example, IL-23 and the endoplasmic reticulum stress response can enhance IEL lytic activity toward enterocytes. Microbial dysbiosis or defective microbial recognition results in the loss of regulatory IELs, further amplifying these pro-inflammatory effects. Migration of T cells into or within the intraepithelial compartment has a profound effect on their differentiation or effector function demonstrating that IELs are exquisitely sensitive to changes in the local intestinal microenvironment. Summary Enhanced mechanistic insight into the regulation of IEL survival, differentiation and effector function may provide useful tools to modulate IEL surveillance or enhance IEL regulatory function. Elucidation of these processes may result in the development of novel therapeutics to reduce intestinal inflammation and reinforce the mucosal barrier in IBD.
Collapse
Affiliation(s)
- Madeleine D Hu
- Center for Immunity and Inflammation, Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
74
|
Reins RY, Courson J, Lema C, Redfern RL. MyD88 contribution to ocular surface homeostasis. PLoS One 2017; 12:e0182153. [PMID: 28796783 PMCID: PMC5552092 DOI: 10.1371/journal.pone.0182153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
The cornea must maintain homeostasis, enabling rapid response to injury and microbial insult, to protect the eye from insult and infection. Toll-like receptors (TLRs) are critical to this innate immune response through the recognition and response to pathogens. Myeloid differentiation primary response (MyD88) is a key signaling molecule necessary for Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R)-mediated immune defense and has been shown to be necessary for corneal defense during infection. Here, we examined the intrinsic role of TLR signaling in ocular surface tissues by determining baseline levels of inflammatory mediators, the response to mechanical stimuli, and corneal infection in MyD88-deficient mice (MyD88-/-). In addition, cytokine, chemokine, and matrix metalloproteinase (MMP) expression was determined in ocular surface cells exposed to a panel of TLR agonists. Compared to wild-type (WT) animals, MyD88-/- mice expressed lower MMP-9 levels in the cornea and conjunctiva. Corneal IL-1α, TNFα, and conjunctival IL-1α, IL-2, IL-6, and IL-9 levels were also significantly reduced. Additionally, CXCL1 and RANTES expression was lower in both MyD88-/- tissues compared to WT and IL-1R-/- mice. Interestingly, MyD88-/- mice had lower corneal sensitivities (1.01±0.31 gm/mm2) than both WT (0.59±0.16 gm/mm2) and IL-1R-/- (0.52±0.08 gm/mm2). Following Pseudomonas aeruginosa challenge, MyD88-/- mice had better clinical scores (0.5±0.0) compared to IL-1R-/- (1.5±0.6) and WT (2.3±0.3) animals, but had significantly more corneal bacterial isolates. However, no signs of infection were detected in inoculated uninjured corneas from either MyD88 or IL-1R-deficient mice. This work furthers our understanding of the importance of TLR signaling in corneal defense and immune homeostasis, showing that a lack of MyD88 may compromise the baseline innate response to insult.
Collapse
Affiliation(s)
- Rose Y. Reins
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Justin Courson
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Carolina Lema
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Rachel L. Redfern
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
75
|
Ahmed N, French T, Rausch S, Kühl A, Hemminger K, Dunay IR, Steinfelder S, Hartmann S. Toxoplasma Co-infection Prevents Th2 Differentiation and Leads to a Helminth-Specific Th1 Response. Front Cell Infect Microbiol 2017; 7:341. [PMID: 28791259 PMCID: PMC5524676 DOI: 10.3389/fcimb.2017.00341] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023] Open
Abstract
Nematode infections, in particular gastrointestinal nematodes, are widespread and co-infections with other parasites and pathogens are frequently encountered in humans and animals. To decipher the immunological effects of a widespread protozoan infection on the anti-helminth immune response we studied a co-infection with the enteric nematode Heligmosomoides polygyrus in mice previously infected with Toxoplasma gondii. Protective immune responses against nematodes are dependent on parasite-specific Th2 responses associated with IL-4, IL-5, IL-13, IgE, and IgG1 antibodies. In contrast, Toxoplasma gondii infection elicits a strong and protective Th1 immune response characterized by IFN-γ, IL-12, and IgG2a antibodies. Co-infected animals displayed significantly higher worm fecundity although worm burden remained unchanged. In line with this, the Th2 response to H. polygyrus in co-infected animals showed a profound reduction of IL-4, IL-5, IL-13, and GATA-3 expressing T cells. Co-infection also resulted in the lack of eosinophilia and reduced expression of the Th2 effector molecule RELM-β in intestinal tissue. In contrast, the Th1 response to the protozoan parasite was not diminished and parasitemia of T. gondii was unaffected by concurrent helminth infection. Importantly, H. polygyrus specific restimulation of splenocytes revealed H. polygyrus-reactive CD4+ T cells that produce a significant amount of IFN-γ in co-infected animals. This was not observed in animals infected with the nematode alone. Increased levels of H. polygyrus-specific IgG2a antibodies in co-infected mice mirrored this finding. This study suggests that polarization rather than priming of naive CD4+ T cells is disturbed in mice previously infected with T. gondii. In conclusion, a previous T. gondii infection limits a helminth-specific Th2 immune response while promoting a shift toward a Th1-type immune response.
Collapse
Affiliation(s)
- Norus Ahmed
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Timothy French
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Sebastian Rausch
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Anja Kühl
- Division of Gastroenterology, Medical Department, Infection and Rheumatology, Research Center ImmunoSciencesBerlin, Germany
| | - Katrin Hemminger
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Svenja Steinfelder
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
76
|
|
77
|
Lamb CA, Mansfield JC, Tew GW, Gibbons D, Long AK, Irving P, Diehl L, Eastham-Anderson J, Price MB, O'Boyle G, Jones DEJ, O'Byrne S, Hayday A, Keir ME, Egen JG, Kirby JA. αEβ7 Integrin Identifies Subsets of Pro-Inflammatory Colonic CD4+ T Lymphocytes in Ulcerative Colitis. J Crohns Colitis 2017; 11:610-620. [PMID: 28453768 PMCID: PMC5815571 DOI: 10.1093/ecco-jcc/jjw189] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/28/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The αEβ7 integrin is crucial for retention of T lymphocytes at mucosal surfaces through its interaction with E-cadherin. Pathogenic or protective functions of these cells during human intestinal inflammation, such as ulcerative colitis [UC], have not previously been defined, with understanding largely derived from animal model data. Defining this phenotype in human samples is important for understanding UC pathogenesis and is of translational importance for therapeutic targeting of αEβ7-E-cadherin interactions. METHODS αEβ7+ and αEβ7- colonic T cell localization, inflammatory cytokine production and expression of regulatory T cell-associated markers were evaluated in cohorts of control subjects and patients with active UC by immunohistochemistry, flow cytometry and real-time PCR of FACS-purified cell populations. RESULTS CD4+αEβ7+ T lymphocytes from both healthy controls and UC patients had lower expression of regulatory T cell-associated genes, including FOXP3, IL-10, CTLA-4 and ICOS in comparison with CD4+αEβ7- T lymphocytes. In UC, CD4+αEβ7+ lymphocytes expressed higher levels of IFNγ and TNFα in comparison with CD4+αEβ7- lymphocytes. Additionally the CD4+αEβ7+ subset was enriched for Th17 cells and the recently described Th17/Th1 subset co-expressing both IL-17A and IFNγ, both of which were found at higher frequencies in UC compared to control. CONCLUSION αEβ7 integrin expression on human colonic CD4+ T cells was associated with increased production of pro-inflammatory Th1, Th17 and Th17/Th1 cytokines, with reduced expression of regulatory T cell-associated markers. These data suggest colonic CD4+αEβ7+ T cells are pro-inflammatory and may play a role in UC pathobiology.
Collapse
Affiliation(s)
- Christopher A Lamb
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - John C Mansfield
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Gaik W Tew
- Research & Early Development, Genentech, South San Francisco, CA 94080, USA
| | - Deena Gibbons
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, UK
- London Research Institute, Cancer Research UK, London WC2, UK
| | - Anna K Long
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Peter Irving
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, UK
- Department of Gastroenterology, Guys and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Lauri Diehl
- Research & Early Development, Genentech, South San Francisco, CA 94080, USA
| | | | - Maria B Price
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Graeme O'Boyle
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David E J Jones
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Sharon O'Byrne
- Research & Early Development, Genentech, South San Francisco, CA 94080, USA
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, UK
- London Research Institute, Cancer Research UK, London WC2, UK
| | - Mary E Keir
- Research & Early Development, Genentech, South San Francisco, CA 94080, USA
| | - Jackson G Egen
- Research & Early Development, Genentech, South San Francisco, CA 94080, USA
| | - John A Kirby
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
78
|
Galletti JG, Guzmán M, Giordano MN. Mucosal immune tolerance at the ocular surface in health and disease. Immunology 2017; 150:397-407. [PMID: 28108991 DOI: 10.1111/imm.12716] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/28/2016] [Accepted: 01/12/2017] [Indexed: 12/15/2022] Open
Abstract
The ocular surface is constantly exposed to environmental irritants, allergens and pathogens, against which it can mount a prompt immune response to preserve its integrity. But to avoid unnecessary inflammation, the ocular surface's mucosal immune system must also discriminate between harmless and potentially dangerous antigens, a seemingly complicated task. Despite its unique features, the ocular surface is a mucosal lining, and as such, it shares some homeostatic and pathophysiological mechanisms with other mucosal surfaces. The purpose of this review is to explore the mucosal homeostatic immune function of the ocular surface in both the healthy and diseased states, with a special focus on mucosal immunology concepts. The information discussed in this review has been retrieved by PubMed searches for literature published from January 1981 to October 2016.
Collapse
Affiliation(s)
- Jeremías G Galletti
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Mauricio Guzmán
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Mirta N Giordano
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| |
Collapse
|
79
|
Dajnoki Z, Béke G, Kapitány A, Mócsai G, Gáspár K, Rühl R, Hendrik Z, Juhász I, Zouboulis CC, Bácsi A, Bíró T, Törőcsik D, Szegedi A. Sebaceous Gland-Rich Skin Is Characterized by TSLP Expression and Distinct Immune Surveillance Which Is Disturbed in Rosacea. J Invest Dermatol 2017; 137:1114-1125. [PMID: 28131815 DOI: 10.1016/j.jid.2016.12.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/11/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
The microbial community exhibits remarkable diversity on topographically distinct skin regions, which may be accompanied by differences in skin immune characteristics. Our aim was to compare the immune milieu of healthy sebaceous gland-rich (SGR) and sebaceous gland-poor skin areas, and to analyze its changes in an inflammatory disease of SGR skin. For this purpose, immunohistochemical, immunocytochemical, and quantitative real-time PCR analyses of thymic stromal lymphopoietin (TSLP) and other cytokines, phenotypic immune cell markers and transcription factors were carried out in samples from sebaceous gland-poor, SGR skin and from papulopustular rosacea. TSLP mRNA and protein production was also studied in cultured keratinocytes. In SGR skin, higher TSLP expression, dendritic cell appearance without prominent activation, and T cell presence with IL-17/IL-10 cytokine milieu were detected compared with sebaceous gland-poor skin. Linoleic acid, a major sebum component, was found to induce TSLP expression dose-dependently in keratinocytes. In papulopustular rosacea, significantly decreased TSLP level and influx of inflammatory dendritic cells and T cells with IL-17/interferon-γ cytokine milieu were observed. According to our results, SGR skin is characterized by a distinct, noninflammatory immune surveillance, which may explain the preferred localization of inflammatory skin diseases, and can influence future barrier repair therapeutic concepts.
Collapse
Affiliation(s)
- Zsolt Dajnoki
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Béke
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anikó Kapitány
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Mócsai
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztián Gáspár
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ralph Rühl
- MTA-DE Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary; Paprika Bioanalytics Bt, Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Juhász
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; DE-MTA "Lendület" Cellular Physiology Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
80
|
Ceulemans LJ, Verbeke L, Decuypere JP, Farré R, De Hertogh G, Lenaerts K, Jochmans I, Monbaliu D, Nevens F, Tack J, Laleman W, Pirenne J. Farnesoid X Receptor Activation Attenuates Intestinal Ischemia Reperfusion Injury in Rats. PLoS One 2017; 12:e0169331. [PMID: 28060943 PMCID: PMC5218501 DOI: 10.1371/journal.pone.0169331] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The farnesoid X receptor (FXR) is abundantly expressed in the ileum, where it exerts an enteroprotective role as a key regulator of intestinal innate immunity and homeostasis, as shown in pre-clinical models of inflammatory bowel disease. Since intestinal ischemia reperfusion injury (IRI) is characterized by hyperpermeability, bacterial translocation and inflammation, we aimed to investigate, for the first time, if the FXR-agonist obeticholic acid (OCA) could attenuate intestinal ischemia reperfusion injury. MATERIAL AND METHODS In a validated rat model of intestinal IRI (laparotomy + temporary mesenteric artery clamping), 3 conditions were tested (n = 16/group): laparotomy only (sham group); ischemia 60min+ reperfusion 60min + vehicle pretreatment (IR group); ischemia 60min + reperfusion 60min + OCA pretreatment (IR+OCA group). Vehicle or OCA (INT-747, 2*30mg/kg) was administered by gavage 24h and 4h prior to IRI. The following end-points were analyzed: 7-day survival; biomarkers of enterocyte viability (L-lactate, I-FABP); histology (morphologic injury to villi/crypts and villus length); intestinal permeability (Ussing chamber); endotoxin translocation (Lipopolysaccharide assay); cytokines (IL-6, IL-1-β, TNFα, IFN-γ IL-10, IL-13); apoptosis (cleaved caspase-3); and autophagy (LC3, p62). RESULTS It was found that intestinal IRI was associated with high mortality (90%); loss of intestinal integrity (structurally and functionally); increased endotoxin translocation and pro-inflammatory cytokine production; and inhibition of autophagy. Conversely, OCA-pretreatment improved 7-day survival up to 50% which was associated with prevention of epithelial injury, preserved intestinal architecture and permeability. Additionally, FXR-agonism led to decreased pro-inflammatory cytokine release and alleviated autophagy inhibition. CONCLUSION Pretreatment with OCA, an FXR-agonist, improves survival in a rodent model of intestinal IRI, preserves the gut barrier function and suppresses inflammation. These results turn FXR into a promising target for various conditions associated with intestinal ischemia.
Collapse
Affiliation(s)
- Laurens J Ceulemans
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Len Verbeke
- Liver and Biliopancreatic Disorders, University Hospitals Leuven, KU Leuven, Belgium
| | - Jean-Paul Decuypere
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Ricard Farré
- Gastro-enterology, University Hospitals Leuven, & Translational Research in Gastro-Intestinal Disorders (TARGID), KU Leuven, Belgium
| | - Gert De Hertogh
- Translational Cell and Tissue Research, University Hospitals Leuven, & Department of Imaging and Pathology, KU Leuven, Belgium
| | - Kaatje Lenaerts
- Department of Surgery, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, the Netherlands
| | - Ina Jochmans
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Diethard Monbaliu
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Frederik Nevens
- Liver and Biliopancreatic Disorders, University Hospitals Leuven, KU Leuven, Belgium
| | - Jan Tack
- Gastro-enterology, University Hospitals Leuven, & Translational Research in Gastro-Intestinal Disorders (TARGID), KU Leuven, Belgium
| | - Wim Laleman
- Liver and Biliopancreatic Disorders, University Hospitals Leuven, KU Leuven, Belgium
| | - Jacques Pirenne
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| |
Collapse
|
81
|
Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, Reber LL, Pirottin D, Kim J, Chambon P, Roers A, Antoine N, Kawakami Y, Kawakami T, Bureau F, Tam SY, Tsai M, Galli SJ. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest 2016; 126:4497-4515. [PMID: 27820702 PMCID: PMC5127679 DOI: 10.1172/jci86359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023] Open
Abstract
Epidermal keratinocytes form a structural and immune barrier that is essential for skin homeostasis. However, the mechanisms that regulate epidermal barrier function are incompletely understood. Here we have found that keratinocyte-specific deletion of the gene encoding RAB guanine nucleotide exchange factor 1 (RABGEF1, also known as RABEX-5) severely impairs epidermal barrier function in mice and induces an allergic cutaneous and systemic phenotype. RABGEF1-deficient keratinocytes exhibited aberrant activation of the intrinsic IL-1R/MYD88/NF-κB signaling pathway and MYD88-dependent abnormalities in expression of structural proteins that contribute to skin barrier function. Moreover, ablation of MYD88 signaling in RABGEF1-deficient keratinocytes or deletion of Il1r1 restored skin homeostasis and prevented development of skin inflammation. We further demonstrated that epidermal RABGEF1 expression is reduced in skin lesions of humans diagnosed with either atopic dermatitis or allergic contact dermatitis as well as in an inducible mouse model of allergic dermatitis. Our findings reveal a key role for RABGEF1 in dampening keratinocyte-intrinsic MYD88 signaling and sustaining epidermal barrier function in mice, and suggest that dysregulation of RABGEF1 expression may contribute to epidermal barrier dysfunction in allergic skin disorders in mice and humans. Thus, RABGEF1-mediated regulation of IL-1R/MYD88 signaling might represent a potential therapeutic target.
Collapse
Affiliation(s)
- Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Laboratory of Cellular and Molecular Immunology, GIGA-Research and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Nicolas Gaudenzio
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Sophie El Abbas
- Laboratory of Cellular and Molecular Immunology, GIGA-Research and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Riccardo Sibilano
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Oliwia Zurek
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Philipp Starkl
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Laurent L. Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Dimitri Pirottin
- Laboratory of Cellular and Molecular Immunology, GIGA-Research and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Jinah Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104/INSERM U964, Collège de France, Université de Strasbourg, Illkirch Cedex, France
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl-Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadine Antoine
- Department of Morphology and Pathology, Laboratory of Animal Histology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Research Unit for Allergy, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Research Unit for Allergy, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA-Research and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - See-Ying Tam
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
82
|
Park JH, Jeong DY, Peyrin-Biroulet L, Eisenhut M, Shin JI. Insight into the role of TSLP in inflammatory bowel diseases. Autoimmun Rev 2016; 16:55-63. [PMID: 27697608 DOI: 10.1016/j.autrev.2016.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Proinflammatory cytokines are thought to modulate pathogeneses of various inflammatory bowel diseases (IBDs). Thymic stromal lymphopoietin (TSLP), which has been studied in various allergic diseases such as asthma, atopic dermatitis (AD) and eosinophilic esophagitis (EoE), has been less considered to be involved in IBDs. However, mucosal dendritic cells (DCs) induced by various cytokines including TSLP were reported to cause polarization of T cell toward Th2 response, the differentiation of regulatory T-cell (Treg), and secretion of IgA by B cells. In this review, we discuss the concept that decreased TSLP has the potential to accelerate the development of Th1 response dominant diseases such as the Crohn's disease (CD) while increased TSLP has the potential to lead to a development of Th2 cell dominant diseases such the ulcerative colitis (UC). To examine TSLP's role as a potential determining factor for differentiating UC and CD, we analyzed the effects of other genes regulated by TSLP in regards to the UC and CD pathogeneses using data from online open access resources such as NetPath, GeneMania, and the String database. Our findings indicate that TSLP is a key mediator in the pathogenesis of IBDs and that further studies are needed to evaluate its role.
Collapse
Affiliation(s)
| | | | - Laurent Peyrin-Biroulet
- Inserm U954 and Department of Gastroenterology, Nancy University Hospital, Université de Lorraine, France
| | - Michael Eisenhut
- Luton & Dunstable University Hospital NHS Foundation Trust, Luton, United Kingdom
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
83
|
Senti G, Kündig TM. Novel Delivery Routes for Allergy Immunotherapy: Intralymphatic, Epicutaneous, and Intradermal. Immunol Allergy Clin North Am 2016; 36:25-37. [PMID: 26617225 DOI: 10.1016/j.iac.2015.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Current allergy immunotherapy protocols suffer from two main problems: long treatment duration and systemic allergic side effects of the allergen administrations. The immunologic effects of allergen administration could be enhanced and the number of allergen administrations and treatment duration reduced by choosing a tissue for administration that contains a high density of antigen-presenting cells. Local side effects could be reduced by choosing a route characterized by a low density of mast cells, and systemic side effects could be reduced by administration to nonvascularized tissues, so that inadvertent systemic distribution of the allergen and consequent systemic allergic side effects are minimized.
Collapse
Affiliation(s)
- Gabriela Senti
- Clinical Trials Center, University Hospital Zurich, Moussonstrasse 2, Zurich 8044, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zurich, Gloriatrasse 31, Zurich 8091, Switzerland.
| |
Collapse
|
84
|
Szczepanik M, Majewska-Szczepanik M. Transdermal immunotherapy: Past, present and future. Pharmacol Rep 2016; 68:773-81. [DOI: 10.1016/j.pharep.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
|
85
|
Guzmán M, Keitelman I, Sabbione F, Trevani AS, Giordano MN, Galletti JG. Mucosal tolerance disruption favors disease progression in an extraorbital lacrimal gland excision model of murine dry eye. Exp Eye Res 2016; 151:19-22. [PMID: 27443502 DOI: 10.1016/j.exer.2016.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/06/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Dry eye is a highly prevalent immune disorder characterized by a dysfunctional tear film and a Th1/Th17 T cell response at the ocular surface. The specificity of these pathogenic effector T cells remains to be determined, but auto-reactivity is considered likely. However, we have previously shown that ocular mucosal tolerance to an exogenous antigen is disrupted in a scopolamine-induced murine dry eye model and that it is actually responsible for disease progression. Here we report comparable findings in an entirely different murine model of dry eye that involves resection of the extraorbital lacrimal glands but no systemic muscarinic receptor blockade. Upon ocular instillation of ovalbumin, a delayed breakdown in mucosal tolerance to this antigen was observed in excised but not in sham-operated mice, which was mediated by interferon γ- and interleukin 17-producing antigen-specific T cells. Consistently, antigen-specific regulatory T cells were detectable in sham-operated but not in excised mice. As for other models of ocular surface disorders, epithelial activation of the NF-κB pathway by desiccating stress was determinant in the mucosal immune outcome. Underscoring the role of mucosal tolerance disruption in dry eye pathogenesis, its prevention by a topical NF-κB inhibitor led to reduced corneal damage in excised mice. Altogether these results show that surgically originated desiccating stress also initiates an abnormal Th1/Th17 T cell response to harmless exogenous antigens that reach the ocular surface. This event might actually contribute to corneal damage and challenges the conception of dry eye as a strictly autoimmune disease.
Collapse
Affiliation(s)
- Mauricio Guzmán
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Irene Keitelman
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Florencia Sabbione
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Analía S Trevani
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Mirta N Giordano
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Jeremías G Galletti
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
86
|
Marey MA, Yousef MS, Kowsar R, Hambruch N, Shimizu T, Pfarrer C, Miyamoto A. Local immune system in oviduct physiology and pathophysiology: attack or tolerance? Domest Anim Endocrinol 2016; 56 Suppl:S204-11. [PMID: 27345318 DOI: 10.1016/j.domaniend.2016.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 10/21/2022]
Abstract
The local immune system in the oviduct has a unique ability to deal with pathogens, allogeneic spermatozoa, and the semi-allogeneic embryo. To achieve this, it seems likely that the oviduct possesses an efficient and strictly controlled immune system that maintains optimal conditions for fertilization and early embryo development. The presence of a proper sperm and/or embryo-oviduct interaction begs the question of whether the local immune system in the oviduct exerts beneficial or deleterious effects on sperm and early embryo; support or attack?. A series of studies has revealed that bovine oviduct epithelial cells (BOECs) are influenced by preovulatory levels of Estradiol-17β, progesterone, and LH to maintain an immunologic homeostasis in bovine oviduct, via inhibition of proinflammatory responses that are detrimental to allogenic sperm. Under pathologic conditions, the mucosal immune system initiates the inflammatory response to the infection; the bacterial lipopolysaccharide (LPS) at low concentrations induces a proinflammatory response with increased expression of TLR-4, PTGS2, IL-1β, NFκB1, and TNFα, resulting in tissue damage. At higher concentrations, however, LPS induces a set of anti-inflammatory genes (TLR-2, IL-4, IL-10, and PTGES) that may initiate a tissue repair. This response of BOECs is accompanied by the secretion of acute phase protein, suggesting that BOECs react to LPS with a typical acute proinflammatory response. Under physiological conditions, polymorphonuclear neutrophils (PMN) are existent in the oviductal fluid during preovulatory period in the bovine. Interestingly, the bovine oviduct downregulates sperm phagocytosis by PMN via prostaglandin E2 (PGE2) action. In addition, the angiotensin-endothelin-PGE2 system controlling oviduct contraction may fine-tune the PMN phagocytic behavior to sperm in the oviduct. Importantly, a physiological range of PGE2 supplies anti-inflammatory balance in BOEC. Our recent results show that the sperm binding to BOECs further shift the local immunity toward anti-inflammatory conditions with upregulation of IL-10, TGFβ, and PGE2. In addition, this local environment leads PMN to express anti-inflammatory cytokines. In conclusion, the oviduct displays mucosal immunity that maintains an anti-inflammatory environment under physiological conditions that supports the sperm. Under pathologic condition, however, the oviduct supplies the innate immunity that may attack the sperm. Moreover, the oviduct-sperm interaction further suppresses the innate immune cells and strengthens the anti-inflammatory balance in the oviduct. Therefore, the oviduct immunity ensures sperm viability before fertilization.
Collapse
Affiliation(s)
- M A Marey
- Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan; Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt
| | - M S Yousef
- Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan; Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - R Kowsar
- Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan; Department of Animal Science, Isfahan University of Technology, Isfahan, Iran
| | - N Hambruch
- Department of Anatomy, University of Veterinary Medicine Hannover, Hannover, D-30173, Germany
| | - T Shimizu
- Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan
| | - C Pfarrer
- Department of Anatomy, University of Veterinary Medicine Hannover, Hannover, D-30173, Germany
| | - A Miyamoto
- Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan.
| |
Collapse
|
87
|
Bøgh KL, van Bilsen J, Głogowski R, López-Expósito I, Bouchaud G, Blanchard C, Bodinier M, Smit J, Pieters R, Bastiaan-Net S, de Wit N, Untersmayr E, Adel-Patient K, Knippels L, Epstein MM, Noti M, Nygaard UC, Kimber I, Verhoeckx K, O'Mahony L. Current challenges facing the assessment of the allergenic capacity of food allergens in animal models. Clin Transl Allergy 2016; 6:21. [PMID: 27313841 PMCID: PMC4910256 DOI: 10.1186/s13601-016-0110-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/09/2016] [Indexed: 01/16/2023] Open
Abstract
Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured.
Collapse
Affiliation(s)
| | | | | | - Iván López-Expósito
- Department of Bioactivity and Food Analysis, Institute for Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | | | | | | | - Joost Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Raymond Pieters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Shanna Bastiaan-Net
- Food and Biobased Research, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Nicole de Wit
- Food and Biobased Research, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Eva Untersmayr
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Karine Adel-Patient
- UMR-INRA-CEA, Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Leon Knippels
- Danone Nutricia Research, Utrecht, The Netherlands ; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michelle M Epstein
- Experimental Allergy Laboratory, DIAID, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Mario Noti
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Ian Kimber
- University of Manchester, Manchester, UK
| | | | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos Platz, Switzerland
| |
Collapse
|
88
|
|
89
|
Reisacher WR, Suurna MV, Rochlin K, Bremberg MG, Tropper G. Oral mucosal immunotherapy for allergic rhinitis: A pilot study. ALLERGY & RHINOLOGY 2016; 7:21-8. [PMID: 27103556 PMCID: PMC4837130 DOI: 10.2500/ar.2016.7.0150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The sublingual mucosa has been used for many years to apply allergenic extracts for the purpose of specific immunotherapy (IT). Although sublingual IT (SLIT) is both safe and efficacious, the density of antigen-presenting cells is higher in other regions of the oral cavity and vestibule, which make them a potentially desirable target for IT. OBJECTIVE To present the concept of oral mucosal IT (OMIT) and to provide pilot data for this extended application of SLIT. METHODS An open-label, 12-month, prospective study was undertaken as a preliminary step before a full-scale clinical investigation. Twenty-four individuals with allergic rhinitis received IT by applying allergenic extracts daily to either the oral vestibule plus oral cavity mucosa by using a glycerin-based toothpaste or to the sublingual mucosa by using 50% glycerin liquid drops. Adverse events, adherence rates, total combined scores, rhinoconjunctivitis quality-of-life questionnaire scores, changes in skin reactivity, and changes in serum antibody levels were measured for each participant. RESULTS No severe adverse events occurred in either group. The adherence rate was 80% for the OMIT group and 62% for the SLIT group (p = 0.61). Decreased total combined scores were demonstrated for both the OMIT group (15.6%) and the SLIT group (22.3%), although this decrease did not reach statistical significance in either group. Both groups achieved a meaningful clinical improvement of at least 0.5 points on rhinoconjunctivitis quality-of-life questionnaire. A statistically significant rise in specific immunoglobulin G4 (IgG4) was seen in both groups over the first 6 months of treatment. CONCLUSION OMIT and SLIT demonstrated similar safety profiles and adherence rates. Measurements of clinical efficacy improved for both groups, but only changes in IgG4 achieved statistical significance. These pilot data provide enough evidence to proceed with a full-scale investigation to explore the role of OMIT in the long-term management of allergic rhinitis.
Collapse
Affiliation(s)
- William R Reisacher
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | |
Collapse
|
90
|
Guzmán M, Keitelman I, Sabbione F, Trevani AS, Giordano MN, Galletti JG. Desiccating stress-induced disruption of ocular surface immune tolerance drives dry eye disease. Clin Exp Immunol 2016; 184:248-56. [PMID: 26690299 DOI: 10.1111/cei.12759] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Dry eye is an allegedly autoimmune disorder for which the initiating mechanisms and the targeted antigens in the ocular surface are not known, yet there is extensive evidence that a localized T helper type 1 (Th1)/Th17 effector T cell response is responsible for its pathogenesis. In this work, we explore the reconciling hypothesis that desiccating stress, which is usually considered an exacerbating factor, could actually be sufficient to skew the ocular surface's mucosal response to any antigen and therefore drive the disease. Using a mouse model of dry eye, we found that desiccating stress causes a nuclear factor kappa B (NF-κB)- and time-dependent disruption of the ocular surface's immune tolerance to exogenous ovalbumin. This pathogenic event is mediated by increased Th1 and Th17 T cells and reduced regulatory T cells in the draining lymph nodes. Conversely, topical NF-κB inhibitors reduced corneal epithelial damage and interleukin (IL)-1β and IL-6 levels in the ocular surface of mice under desiccating stress. The observed effect was mediated by an augmented regulatory T cell response, a finding that highlights the role of mucosal tolerance disruption in dry eye pathogenesis. Remarkably, the NF-κB pathway is also involved in mucosal tolerance disruption in other ocular surface disorders. Together, these results suggest that targeting of mucosal NF-κB activation could have therapeutic potential in dry eye.
Collapse
Affiliation(s)
- M Guzmán
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - I Keitelman
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - F Sabbione
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - A S Trevani
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - M N Giordano
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - J G Galletti
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| |
Collapse
|
91
|
Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs MJ, Willart M, Ibañez LI, Hammad H, Lambrecht BN, Beyaert R, Saelens X, van Loo G. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog 2016; 12:e1005410. [PMID: 26815999 PMCID: PMC4731390 DOI: 10.1371/journal.ppat.1005410] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/31/2015] [Indexed: 12/24/2022] Open
Abstract
A20 negatively regulates multiple inflammatory signalling pathways. We here addressed the role of A20 in club cells (also known as Clara cells) of the bronchial epithelium in their response to influenza A virus infection. Club cells provide a niche for influenza virus replication, but little is known about the functions of these cells in antiviral immunity. Using airway epithelial cell-specific A20 knockout (A20AEC-KO) mice, we show that A20 in club cells critically controls innate immune responses upon TNF or double stranded RNA stimulation. Surprisingly, A20AEC-KO mice are better protected against influenza A virus challenge than their wild type littermates. This phenotype is not due to decreased viral replication. Instead host innate and adaptive immune responses and lung damage are reduced in A20AEC-KO mice. These attenuated responses correlate with a dampened cytotoxic T cell (CTL) response at later stages during infection, indicating that A20AEC-KO mice are better equipped to tolerate Influenza A virus infection. Expression of the chemokine CCL2 (also named MCP-1) is particularly suppressed in the lungs of A20AEC-KO mice during later stages of infection. When A20AEC-KO mice were treated with recombinant CCL2 the protective effect was abrogated demonstrating the crucial contribution of this chemokine to the protection of A20AEC-KO mice to Influenza A virus infection. Taken together, we propose a mechanism of action by which A20 expression in club cells controls inflammation and antiviral CTL responses in response to influenza virus infection. Influenza viruses are a major public health threat. Each year, the typical seasonal flu epidemic affects millions of people with sometimes fatal outcomes, especially in high risk groups such as young children and elderly. The sporadic pandemic outbreaks can have even more disastrous consequences. The protein A20 is an important negative regulator of antiviral immune responses. We show that the specific deletion of A20 in bronchial epithelial cells improves the protection against influenza virus infections. This increased protection correlates with a dampened pulmonary cytotoxic T cell response and a strongly suppressed expression of the chemokine CCL2 during later stages of infection.
Collapse
Affiliation(s)
- Jonathan Maelfait
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kenny Roose
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Lars Vereecke
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Conor Mc Guire
- Medical Biotechnology Center, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Mozes Sze
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Martijn J Schuijs
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Monique Willart
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Lorena Itati Ibañez
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Hamida Hammad
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Geert van Loo
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
92
|
Siebeneicher S, Reuter S, Wangorsch A, Krause M, Foetisch K, Heinz A, Naito S, Reuter A, Taube C, Vieths S, Scheurer S, Toda M. Epicutaneous immunotherapy with a hypoallergenic Bet v 1 suppresses allergic asthma in a murine model. Allergy 2015; 70:1559-68. [PMID: 26304061 DOI: 10.1111/all.12732] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Due to reduced allergic potency, hypoallergenic variants have been suggested as safer and potentially more efficacious alternative to the corresponding wild-type allergens in allergen-specific immunotherapy. Here, we aimed at investigating the efficacy of recombinant Bet v 1B2, a hypoallergenic folding variant of Bet v 1, in epicutaneous immunotherapy to suppress asthmatic features using a murine model of birch pollen allergy. METHODS AND RESULTS Before, or after sensitization with rBet v 1 plus ALUMW and intranasal challenges with birch pollen extract, BALB/c mice received epicutaneous immunization (EPI) with rBet v 1, or rBet v 1B2 on their depilated back. Prophylactic EPI with rBet v 1B2, but not with rBet v 1, suppressed serum levels of Bet v 1-specific IgE antibodies and reduced the number of eosinophils and the concentrations of Th2 cytokines in bronchoalveolar lavage. In an established allergic condition, serum levels of Bet v 1-specific IgE antibodies were similar between PBS-treated control mice and EPI-treated mice. However, therapeutic EPI with rBet v 1B2, but not with rBet v 1, significantly suppressed the development of airway inflammation and lung function impairment. CONCLUSION This study is the first to show the effect of therapeutic EPI with a recombinant form of a hypoallergenic folding variant on the suppression of asthmatic features. Our results suggest that rBet v 1B2 along with its reduced IgE-binding capacity could be a preferred therapeutic allergen than wild-type rBet v 1 in epicutaneous immunotherapy of birch pollen-induced allergic asthma, in particular due to a lower risk of allergic side effect.
Collapse
Affiliation(s)
- S. Siebeneicher
- Junior Research Group 1 ‘Experimental Allergy Models’; Paul-Ehrlich-Institut; Langen Germany
| | - S. Reuter
- The III Medical Department; University Medical Centre; Mainz Germany
- Experimental Asthma Research; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Borstel Germany
| | - A. Wangorsch
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
| | - M. Krause
- Junior Research Group 1 ‘Experimental Allergy Models’; Paul-Ehrlich-Institut; Langen Germany
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
| | - K. Foetisch
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - A. Heinz
- The III Medical Department; University Medical Centre; Mainz Germany
| | - S. Naito
- Department of Quality Assurance and Radiological Protection; The National Institute of Infectious Diseases; Tokyo Japan
| | - A. Reuter
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - C. Taube
- Department of Pulmonology; Leiden University Medical Center; Leiden the Netherlands
| | - S. Vieths
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - S. Scheurer
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - M. Toda
- Junior Research Group 1 ‘Experimental Allergy Models’; Paul-Ehrlich-Institut; Langen Germany
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
| |
Collapse
|
93
|
Abstract
The skin epidermis is densely innervated by peripheral sensory nerve endings. Nociceptive neurons, whose terminals are in close contact with epidermal keratinocytes, can be activated directly by noxious physical and chemical stimuli to trigger pain. However, whether keratinocytes can signal acutely to sensory nerve terminals to initiate pain in vivo remains unclear. Here, using the keratin 5 promoter to selectively express the capsaicin receptor TRPV1 in keratinocytes of TRPV1-knockout mice, we achieved specific stimulation of keratinocytes with capsaicin. Using this approach, we found that keratinocyte stimulation was sufficient to induce strong expression of the neuronal activation marker, c-fos, in laminae I and II of the ipsilateral spinal cord dorsal horn and to evoke acute paw-licking nocifensive behavior and conditioned place aversion. These data provide direct evidence that keratinocyte stimulation is sufficient to evoke acute nociception-related responses.
Collapse
|
94
|
Yang H, Schramek D, Adam RC, Keyes BE, Wang P, Zheng D, Fuchs E. ETS family transcriptional regulators drive chromatin dynamics and malignancy in squamous cell carcinomas. eLife 2015; 4:e10870. [PMID: 26590320 PMCID: PMC4739765 DOI: 10.7554/elife.10870] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023] Open
Abstract
Tumor-initiating stem cells (SCs) exhibit distinct patterns of transcription factors and gene expression compared to healthy counterparts. Here, we show that dramatic shifts in large open-chromatin domain (super-enhancer) landscapes underlie these differences and reflect tumor microenvironment. By in vivo super-enhancer and transcriptional profiling, we uncover a dynamic cancer-specific epigenetic network selectively enriched for binding motifs of a transcription factor cohort expressed in squamous cell carcinoma SCs (SCC-SCs). Many of their genes, including Ets2 and Elk3, are themselves regulated by SCC-SC super-enhancers suggesting a cooperative feed-forward loop. Malignant progression requires these genes, whose knockdown severely impairs tumor growth and prohibits progression from benign papillomas to SCCs. ETS2-deficiency disrupts the SCC-SC super-enhancer landscape and downstream cancer genes while ETS2-overactivation in epidermal-SCs induces hyperproliferation and SCC super-enhancer-associated genes Fos, Junb and Klf5. Together, our findings unearth an essential regulatory network required for the SCC-SC chromatin landscape and unveil its importance in malignant progression. DOI:http://dx.doi.org/10.7554/eLife.10870.001 Many cancers contain a mixture of different types of cells. Of these, cells known as cancer stem cells can form new tumours and drive the growth and spread of the cancer around the body. A central question is how cancer stem cells differ from healthy adult stem cells. Recent evidence suggests that, in addition to having genetic mutations, cancer stem cells live in a very different environment to other cells within the tumour. This 'microenvironment'also has a major impact on how these cells behave compared to normal stem cells. Together, the genetic and environmental differences profoundly change the way genes are expressed in the cancer cells. In 2013, a group of researchers identified regions of DNA called super-enhancers. These regions are long stretches of DNA that proteins called transcription factors can interact with to coordinate the expression of nearby genes to alter the production of certain proteins. Super-enhancers contain several transcription factor-binding sites that are close to each other with the different sites being associated with transcription factors that are only active in specific types of cells. Furthermore, super-enhancers are often self-regulatory, meaning that the binding of transcription factors to a super-enhancer can lead to an increase in the expression of the genes that encode the same transcription factors. Yang, Schramek et al. have now identified the super-enhancers in a skin cancer called squamous cell carcinoma and showed that they differ dramatically from the super-enhancers of normal skin stem cells. Their experiments show that the active super-enhancers in cancer stem cells are associated with a very different set of genes that are highly and often specifically expressed in cancer stem cells. In the cancer stem cells, a transcription factor called ETS2 binds to the super-enhancers and reprograms the expression of genes to promote the development of cancer. Yang, Schramek et al. also show that over-active ETS2 is a major driver of squamous cell carcinoma. Furthermore, ETS2 also increases the expression of genes that cause inflammation and promote the growth of cancers. Yang, Schramek et al.’s findings reveal a new regulatory network that governs the expression of genes involved in cancer. Furthermore, the experiments show that high levels of ETS2 are linked with poor outcomes for patients with head and neck squamous cell carcinoma, which is one of the most life-threatening cancers world-wide. In the future, these findings might lead to the development of new therapies to treat these cancers. DOI:http://dx.doi.org/10.7554/eLife.10870.002
Collapse
Affiliation(s)
- Hanseul Yang
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Daniel Schramek
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Rene C Adam
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Brice E Keyes
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Ping Wang
- Department of Neurology, Albert Einstein College of Medicine, New York, United States
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, New York, United States.,Departments of Genetics and Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| |
Collapse
|
95
|
Skin-Specific Unsaturated Fatty Acids Boost the Staphylococcus aureus Innate Immune Response. Infect Immun 2015; 84:205-15. [PMID: 26502910 DOI: 10.1128/iai.00822-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/20/2015] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial fatty acids (AFAs) protect the human epidermis against invasion by pathogenic bacteria. In this study, we questioned whether human skin fatty acids (FAs) can be incorporated into the lipid moiety of lipoproteins and whether such incorporation would have an impact on innate immune stimulation in the model organism Staphylococcus aureus USA300 JE2. This organism synthesized only saturated FAs. However, when feeding USA300 with unsaturated FAs present on human skin (C16:1, C18:1, or C18:2), those were taken up, elongated stepwise by two carbon units, and finally found in the bacterial (phospho)lipid fraction. They were also observed in the lipid moiety of lipoproteins. When USA300 JE2 was fed with the unsaturated FAs, the cells and cell lysates showed an increased innate immune activation with various immune cells and peripheral blood mononuclear cells (PBMCs). Immune activation was highest with linoleic acid (C18:2). There are several pieces of evidence that the enhanced immune stimulating effect was due to the incorporation of unsaturated FAs in lipoproteins. First, the enhanced stimulation was dependent on Toll-like receptor 2 (TLR2). Second, an lgt mutant, unable to carry out lipidation of prolipoproteins, was unable to carry out immune stimulation when fed with unsaturated FAs. Third, the supplied FAs did not significantly affect growth, protein release, or expression of the model lipoprotein Lpl1. Although S. aureus is unable to synthesize unsaturated FAs, it incorporates long-chain unsaturated FAs into its lipoproteins, with the effect that the cells are better recognized by the innate immune system. This is an additional mechanism how our skin controls bacterial colonization and infection.
Collapse
|
96
|
Liu Y, Qin XQ, Weber HC, Xiang Y, Liu C, Liu HJ, Yang H, Jiang J, Qu X. Bombesin Receptor-Activated Protein (BRAP) Modulates NF-κB Activation in Bronchial Epithelial Cells by Enhancing HDAC Activity. J Cell Biochem 2015; 117:1069-77. [PMID: 26460487 DOI: 10.1002/jcb.25406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/09/2015] [Indexed: 01/01/2023]
Abstract
Our previous studies provided evidence that bombesin receptor-activated protein (BRAP), encoded by C6ORF89, is widely expressed in human airway epithelial cells and may play a role in the stress response of lung epithelia. In this study, we demonstrated that BRAP has a regulatory effect on NF-κB transcriptional activity in cultured human bronchial epithelial cells (HBECs). BRAP overexpression by gene transfer inhibited both basal and inducible NF-κB transcriptional activity in HBECs, whereas BRAP knockdown had the opposite effect. BRAP was shown to regulate NF-κB activity by enhancing histone deacetylase (HDAC) activity. In addition, BRAP might increase HDAC activity that leads to NF-κB activation via its putative C-terminal domain. Our study suggests that the BRAP protein is an important regulator of immune and inflammatory responses in the human airway epithelium.
Collapse
Affiliation(s)
- Ying Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Xiao-Qun Qin
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Horst Christian Weber
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Section of Gastroenterology, Boston, 02118, Massachusetts
| | - Yang Xiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Chi Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Hui-Jun Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Huan Yang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xiangping Qu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
97
|
Ali MA, Thrower SL, Hanna SJ, Coulman SA, Birchall JC, Wong FS, Dayan CM, Tatovic D. Topical steroid therapy induces pro-tolerogenic changes in Langerhans cells in human skin. Immunology 2015; 146:411-22. [PMID: 26293297 PMCID: PMC4610630 DOI: 10.1111/imm.12518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/30/2015] [Accepted: 07/30/2015] [Indexed: 12/11/2022] Open
Abstract
We have investigated the efficacy of conditioning skin Langerhans cells (LCs) with agents to promote tolerance and reduce inflammation, with the goal of improving the outcomes of antigen-specific immunotherapy. Topical treatments were assessed ex vivo, using excised human breast skin maintained in organ bath cultures, and in vivo in healthy volunteers by analysing skin biopsies and epidermal blister roof samples. Following topical treatment with a corticosteroid, tumour necrosis factor-α levels were reduced in skin biopsy studies and blister fluid samples. Blister fluid concentrations of monocyte chemoattractant protein-1, macrophage inflammatory proteins -1α and 1β and interferon-γ inducible protein-10 were also reduced, while preserving levels of interleukin-1α (IL-1α), IL-6, IL-8 and IL-10. Steroid pre-treatment of the skin reduced the ability of LCs to induce proliferation, while supernatants showed an increase in the IL-10/interferon-γ ratio. Phenotypic changes following topical steroid treatment were also observed, including reduced expression of CD83 and CD86 in blister-derived LCs, but preservation of the tolerogenic signalling molecules immunoglobulin-like transcript 3 and programmed death-1. Reduced expression of HLA-DR, CD80 and CD86 were also apparent in LCs derived from excised human skin. Topical therapy with a vitamin D analogue (calcipotriol) and steroid, calcipotriol alone or vitamin A elicited no significant changes in the parameters studied. These experiments suggest that pre-conditioning the skin with topical corticosteroid can modulate LCs by blunting their pro-inflammatory signals and potentially enhancing tolerance. We suggest that such modulation before antigen-specific immunotherapy might provide an inexpensive and safe adjunct to current approaches to treat autoimmune diseases.
Collapse
Affiliation(s)
- Mohammad Alhadj Ali
- Diabetes Research Group, Institute for Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| | | | - Stephanie J Hanna
- Diabetes Research Group, Institute for Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - Sion A Coulman
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - James C Birchall
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - F Susan Wong
- Diabetes Research Group, Institute for Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - Colin Mark Dayan
- Diabetes Research Group, Institute for Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - Danijela Tatovic
- Diabetes Research Group, Institute for Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
98
|
8-Oxoguanine DNA glycosylase-1-driven DNA base excision repair: role in asthma pathogenesis. Curr Opin Allergy Clin Immunol 2015; 15:89-97. [PMID: 25486379 DOI: 10.1097/aci.0000000000000135] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW To provide both an overview and evidence of the potential cause of oxidative DNA base damage and repair signaling in chronic inflammation and histological changes associated with asthma. RECENT FINDINGS Asthma is initiated/maintained by immunological, genetic/epigenetic, and environmental factors. It is a world-wide health problem, as current therapies suppress symptoms rather than prevent/reverse the disease, largely due to gaps in understanding its molecular mechanisms. Inflammation, oxidative stress, and DNA damage are inseparable phenomena, but their molecular roles in asthma pathogenesis are unclear. It was found that among oxidatively modified DNA bases, 8-oxoguanine (8-oxoG) is one of the most abundant, and its levels in DNA and body fluids are considered a biomarker of ongoing asthmatic processes. Free 8-oxoG forms a complex with 8-oxoG DNA glycosylase-1 and activates RAS-family GTPases that induce gene expression to mobilize innate and adaptive immune systems, along with genes regulating airway hyperplasia, hyper-responsiveness, and lung remodeling in atopic and nonatopic asthma. SUMMARY DNA's integrity must be maintained to prevent mutation, so its continuous repair and downstream signaling 'fuel' chronic inflammatory processes in asthma and form the basic mechanism whose elucidation will allow the development of new drug targets for the prevention/reversal of lung diseases.
Collapse
|
99
|
Maternal High-fat Diet Accelerates Development of Crohn's Disease-like Ileitis in TNFΔARE/WT Offspring. Inflamm Bowel Dis 2015; 21:2016-25. [PMID: 26284294 DOI: 10.1097/mib.0000000000000465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Maternal high-fat diet (HFD) and obesity increases the risk of the offspring to develop inflammatory processes in various organs including the gut. We hypothesized that maternal diet-induced obesity programs the fetal gut towards inflammation in a mouse model of genetically-driven Crohn's disease (CD)-like ileitis. METHODS TNF(WT/WT) and TNF(ΔARE/WT) dams were fed an experimental control diet (CTRLD; 13 kJ% fat) or HFD (48 kJ%). Offspring mice were fed CTRLD or HFD at 4 weeks of age. Metabolic characteristics and severity of CD-like ileitis was assessed in 8- and 12-week old WT and ARE offspring measuring tissue histopathology and markers of inflammation in the distal ileum as well as plasma cytokine and LPS levels. To study prenatal effects, we laser microdissected fetal intestinal epithelial cells at 17.5 days postconception and performed microarray-based global gene expression analysis. RESULTS Maternal HFD significantly accelerated the severity of CD-like ileitis in HFD-fed ARE mice at early life stages associated with increased mucosal neutrophil infiltration, Il12p40 expression, and portal vein LPS levels. In contrast to WT mice, metabolic characteristics of ARE offspring were not affected by maternal HFD. Gene expression patterns in fetal intestinal epithelial cells of ARE mice remained largely unchanged under conditions of maternal diet-induced obesity suggesting that the positive association of intestinal inflammation, portal vein endotoxemia, and plasma TNF levels is independent of prenatal conditioning of the gut epithelium. CONCLUSIONS Maternal HFD promotes the early onset of severe CD-like ileitis in genetically susceptible offspring independent of metabolic alterations.
Collapse
|
100
|
Ram A, Mabalirajan U, Jaiswal A, Rehman R, Singh VP, Ghosh B. Parabromophenacyl bromide inhibits subepithelial fibrosis by reducing TGF-β1 in a chronic mouse model of allergic asthma. Int Arch Allergy Immunol 2015; 167:110-8. [PMID: 26303861 DOI: 10.1159/000434679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/28/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Our previous study showed that parabromophenacyl bromide (PBPB) inhibits the features of allergic airway inflammation and airway hyperresponsiveness (AHR). However, its effect on airway remodeling, e.g. subepithelial fibrosis in a chronic allergic asthma model, was not investigated. We examined this issue in this study. METHODS PBPB was administered to mice with an induced chronic asthmatic condition. AHR was estimated at the end of the experiment, followed by euthanasia. Lung sections were stained with hematoxylin and eosin, periodic acid-Schiff and Masson's trichrome to determine airway inflammation, goblet cell metaplasia and subepithelial fibrosis, respectively. Transforming growth factor-β1 (TGF-β1) was estimated in lung homogenates. To determine the effect of PBPB on smooth-muscle hyperplasia, immunohistochemistry against α-smooth-muscle actin was performed on the lung sections. RESULTS Chronic ovalbumin challenges in a mouse model of allergic asthma caused significant subepithelial fibrosis and elevated TGF-β1, along with significant AHR. PBPB attenuated subepithelial fibrosis with a reduction of lung TGF-β1, airway inflammation and AHR without affecting goblet cell metaplasia. It also attenuated smooth-muscle hyperplasia with a reduction in the expression of α-smooth-muscle actin in the lungs. CONCLUSION Our findings indicate that PBPB attenuates some crucial features of airway remodeling such as subepithelial fibrosis and smooth-muscle hyperplasia. These data suggest that PBPB could therefore be a therapeutic drug for chronic asthma.
Collapse
Affiliation(s)
- Arjun Ram
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | | | | | |
Collapse
|