51
|
McCallion O, Bilici M, Hester J, Issa F. Regulatory T-cell therapy approaches. Clin Exp Immunol 2023; 211:96-107. [PMID: 35960852 PMCID: PMC10019137 DOI: 10.1093/cei/uxac078] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs) have enormous therapeutic potential to treat a variety of immunopathologies characterized by aberrant immune activation. Adoptive transfer of ex vivo expanded autologous Tregs continues to progress through mid- to late-phase clinical trials in several disease spaces and has generated promising preliminary safety and efficacy signals to date. However, the practicalities of this strategy outside of the clinical trial setting remain challenging. Here, we review the current landscape of regulatory T-cell therapy, considering emergent approaches and technologies presenting novel ways to engage Tregs, and reflect on the progress necessary to deliver their therapeutic potential to patients.
Collapse
Affiliation(s)
- Oliver McCallion
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Merve Bilici
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Correspondence. Fadi Issa, Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
52
|
Subramanian K, Paul S, Libby A, Patterson J, Arterbery A, Knight J, Castaldi C, Wang G, Avitzur Y, Martinez M, Lobritto S, Deng Y, Geliang G, Kroemer A, Fishbein T, Mason A, Dominguez-Villar M, Mariappan M, Ekong UD. HERV1-env Induces Unfolded Protein Response Activation in Autoimmune Liver Disease: A Potential Mechanism for Regulatory T Cell Dysfunction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:732-744. [PMID: 36722941 PMCID: PMC10691554 DOI: 10.4049/jimmunol.2100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
Regulatory T cells (Tregs) are not terminally differentiated but can acquire effector properties. Here we report an increased expression of human endogenous retrovirus 1 (HERV1-env) proteins in Tregs of patients with de novo autoimmune hepatitis and autoimmune hepatitis, which induces endoplasmic reticulum (ER) stress. HERV1-env-triggered ER stress activates all three branches (IRE1, ATF6, and PERK) of the unfolded protein response (UPR). Our coimmunoprecipitation studies show an interaction between HERV1-env proteins and the ATF6 branch of the UPR. The activated form of ATF6α activates the expression of RORC and STAT3 by binding to promoter sequences and induces IL-17A production. Silencing of HERV1-env results in recovery of Treg suppressive function. These findings identify ER stress and UPR activation as key factors driving Treg plasticity (species: human).
Collapse
Affiliation(s)
- Kumar Subramanian
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Saikat Paul
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Andrew Libby
- Dept of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Jordan Patterson
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - Adam Arterbery
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, USA
| | - James Knight
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
| | | | - Guilin Wang
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
| | - Yaron Avitzur
- Division of Gastroenterology, Hepatology, and Nutrition, Hospital for Sick Children, Toronto, ON, Canada
| | - Mercedes Martinez
- Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University, New York, NY, USA
| | - Steve Lobritto
- Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University, New York, NY, USA
| | - Yanhong Deng
- Yale Center for Analytical Sciences, New Haven, CT, USA
| | - Gan Geliang
- Yale Center for Analytical Sciences, New Haven, CT, USA
| | - Alexander Kroemer
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Thomas Fishbein
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Andrew Mason
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | | | | | - Udeme D. Ekong
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
53
|
Fujii M, Tanaka Y, Okimura H, Maeda E, Hamaguchi M, Fukui M, Kitawaki J, Mori T. Decrease in activated regulatory T cell populations in the endometrium during ovulation in endometriosis. J Reprod Immunol 2023; 156:103825. [PMID: 36758472 DOI: 10.1016/j.jri.2023.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Endometriosis is a serious disorder that can lead to infertility. The immune system, particularly regulatory T cells (Tregs), is involved in endometriosis and infertility; however, endometriosis-associated infertility is poorly understood. Tregs, which have an immunosuppressive function, fluctuate during the menstrual cycle. They are functionally heterogeneous and can be divided into subsets, with only activated Tregs (aTregs) having a true immunosuppressive function. The purpose of this study is to investigate the role of aTregs in endometriosis and how they contribute to endometriosis-associated infertility. We enrolled 72 women with (n = 39) and without (n = 33) endometriosis. Subpopulations of Tregs were examined in normal endometrium (NE), eutopic endometrium from women with endometriosis (EE), normal peritoneal fluid (N-PF), and peritoneal fluid from women with endometriosis (E-PF) via flow cytometry. The proportion of aTregs during the ovulatory phase was higher in NE than in EE (P < 0.05), and that during ovulatory and secretory phases was significantly higher in NE than in N-PF (P < 0.01 and 0.05, respectively). aTreg populations did not significantly differ between EE and E-PF. During the ovulatory phase, the proportion of resting Treg (rTreg) in the N-PF was significantly higher than during the proliferative phase (P < 0.05). The E-PF of rTreg populations did not differ significantly throughout the menstrual cycle. We found that Treg subsets were altered in the endometrium and PF of patients with endometriosis during the menstrual cycle. Our findings, particularly the reduction of aTregs in the EE, may provide an insight into the mechanism of endometriosis-associated infertility.
Collapse
Affiliation(s)
- Maya Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yukiko Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Hiroyuki Okimura
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Eiko Maeda
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
54
|
Martinez HA, Koliesnik I, Kaber G, Reid JK, Nagy N, Barlow G, Falk BA, Medina CO, Hargil A, Vlodavsky I, Li JP, Pérez-Cruz M, Tang SW, Meyer EH, Wrenshall LE, Lord JD, Garcia KC, Palmer TD, Steinman L, Nepom GT, Wight TN, Bollyky PL, Kuipers HF. FOXP3 + regulatory T cells use heparanase to access IL-2 bound to ECM in inflamed tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.529772. [PMID: 36909599 PMCID: PMC10002643 DOI: 10.1101/2023.02.26.529772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
FOXP3+ regulatory T cells (Treg) depend on exogenous IL-2 for their survival and function, but circulating levels of IL-2 are low, making it unclear how Treg access this critical resource in vivo. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their tolerogenic function in vivo. Together, these data identify novel roles for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.
Collapse
Affiliation(s)
- Hunter A Martinez
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Ievgen Koliesnik
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Gernot Kaber
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Jacqueline K Reid
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary; Calgary, Canada
| | - Nadine Nagy
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Graham Barlow
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Ben A Falk
- Matrix Biology Program, Benaroya Research Institute; Seattle, USA
| | - Carlos O Medina
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Aviv Hargil
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Israel Vlodavsky
- Tumor Integrated Cancer Center, Technion-Israel Institute of Technology; Haifa, Israel
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University; Uppsala, Finland
| | - Magdiel Pérez-Cruz
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Sai-Wen Tang
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Everett H Meyer
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Lucile E Wrenshall
- Department of Surgery, Boonshoft School of Medicine, Wright State University; Dayton, USA
| | - James D Lord
- Translational Research Program, Benaroya Research Institute; Seattle, USA
| | - K Christopher Garcia
- Department of Molecular & Cellular Physiology, Stanford University; Stanford, USA
| | - Theo D Palmer
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine; Stanford, USA
| | - Gerald T Nepom
- Immune Tolerance Network, Benaroya Research Institute; Seattle, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute; Seattle, USA
| | - Paul L Bollyky
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Hedwich F Kuipers
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary; Calgary, Canada
| |
Collapse
|
55
|
Dikiy S, Rudensky AY. Principles of regulatory T cell function. Immunity 2023; 56:240-255. [PMID: 36792571 DOI: 10.1016/j.immuni.2023.01.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Regulatory T (Treg) cells represent a distinct lineage of cells of the adaptive immune system indispensable for forestalling fatal autoimmune and inflammatory pathologies. The role of Treg cells as principal guardians of the immune system can be attributed to their ability to restrain all currently recognized major types of inflammatory responses through modulating the activity of a wide range of cells of the innate and adaptive immune system. This broad purview over immunity and inflammation is afforded by the multiple modes of action Treg cells exert upon their diverse molecular and cellular targets. Beyond the suppression of autoimmunity for which they were originally recognized, Treg cells have been implicated in tissue maintenance, repair, and regeneration under physiologic and pathologic conditions. Herein, we discuss the current and emerging understanding of Treg cell effector mechanisms in the context of the basic properties of Treg cells that endow them with such functional versatility.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
56
|
Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4 + T cells. Cytokine Growth Factor Rev 2023; 69:14-27. [PMID: 36028461 DOI: 10.1016/j.cytogfr.2022.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.
Collapse
Affiliation(s)
| | - Girdhari Lal
- National Centre for Cell Science, SPPU campus, Ganeshkhind, Pune, MH 411007, India.
| |
Collapse
|
57
|
Malviya V, Yshii L, Junius S, Garg AD, Humblet-Baron S, Schlenner SM. Regulatory T-cell stability and functional plasticity in health and disease. Immunol Cell Biol 2023; 101:112-129. [PMID: 36479949 DOI: 10.1111/imcb.12613] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
FOXP3-expressing regulatory T cells (Treg ) are indispensable for immune homeostasis and tolerance, and in addition tissue-resident Treg have been found to perform noncanonical, tissue-specific functions. For optimal tolerogenic function during inflammatory disease, Treg are equipped with mechanisms that assure lineage stability. Treg lineage stability is closely linked to the installation and maintenance of a lineage-specific epigenetic landscape, specifically a Treg -specific DNA demethylation pattern. At the same time, for local and directed immune regulation Treg must possess a level of functional plasticity that requires them to partially acquire T helper cell (TH ) transcriptional programs-then referred to as TH -like Treg . Unleashing TH programs in Treg , however, is not without risk and may threaten the epigenetic stability of Treg with consequently pathogenic ex-Treg contributing to (auto-) inflammatory conditions. Here, we review how the Treg -stabilizing epigenetic landscape is installed and maintained, and further discuss the development, necessity and lineage instability risks of TH 1-, TH 2-, TH 17-like Treg and follicular Treg .
Collapse
Affiliation(s)
- Vanshika Malviya
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| | - Lidia Yshii
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Steffie Junius
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| | - Susan M Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
58
|
Fang D, Healy A, Zhu J. Differential regulation of lineage-determining transcription factor expression in innate lymphoid cell and adaptive T helper cell subsets. Front Immunol 2023; 13:1081153. [PMID: 36685550 PMCID: PMC9846361 DOI: 10.3389/fimmu.2022.1081153] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
CD4 T helper (Th) cell subsets, including Th1, Th2 and Th17 cells, and their innate counterparts innate lymphoid cell (ILC) subsets consisting of ILC1s, ILC2s and ILC3s, display similar effector cytokine-producing capabilities during pro-inflammatory immune responses. These lymphoid cell subsets utilize the same set of lineage-determining transcription factors (LDTFs) for their differentiation, development and functions. The distinct ontogeny and developmental niches between Th cells and ILCs indicate that they may adopt different external signals for the induction of LDTF during lineage commitment. Increasing evidence demonstrates that many conserved cis-regulatory elements at the gene loci of LDTFs are often preferentially utilized for the induction of LDTF expression during Th cell differentiation and ILC development at different stages. In this review, we discuss the functions of lineage-related cis-regulatory elements in inducing T-bet, GATA3 or RORγt expression based on the genetic evidence provided in recent publications. We also review and compare the upstream signals involved in LDTF induction in Th cells and ILCs both in vitro and in vivo. Finally, we discuss the possible mechanisms and physiological importance of regulating LDTF dynamic expression during ILC development and activation.
Collapse
Affiliation(s)
- Difeng Fang
- *Correspondence: Difeng Fang, ; Jinfang Zhu,
| | | | - Jinfang Zhu
- *Correspondence: Difeng Fang, ; Jinfang Zhu,
| |
Collapse
|
59
|
Verreycken J, Baeten P, Broux B. Regulatory T cell therapy for multiple sclerosis: Breaching (blood-brain) barriers. Hum Vaccin Immunother 2022; 18:2153534. [PMID: 36576251 PMCID: PMC9891682 DOI: 10.1080/21645515.2022.2153534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder causing demyelination and neurodegeneration in the central nervous system. MS is characterized by disturbed motor performance and cognitive impairment. Current MS treatments delay disease progression and reduce relapse rates with general immunomodulation, yet curative therapies are still lacking. Regulatory T cells (Tregs) are able to suppress autoreactive immune cells, which drive MS pathology. However, Tregs are functionally impaired in people with MS. Interestingly, Tregs were recently reported to also have regenerative capacity. Therefore, experts agree that Treg cell therapy has the potential to ameliorate the disease. However, to perform their local anti-inflammatory and regenerative functions in the brain, they must first migrate across the blood-brain barrier (BBB). This review summarizes the reported results concerning the migration of Tregs across the BBB and the influence of Tregs on migration of other immune subsets. Finally, their therapeutic potential is discussed in the context of MS.
Collapse
Affiliation(s)
- Janne Verreycken
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Paulien Baeten
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium,CONTACT Bieke Broux Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Martelarenlaan 42, Hasselt 3500, Belgium
| |
Collapse
|
60
|
Maher AK, Burnham KL, Jones EM, Tan MMH, Saputil RC, Baillon L, Selck C, Giang N, Argüello R, Pillay C, Thorley E, Short CE, Quinlan R, Barclay WS, Cooper N, Taylor GP, Davenport EE, Dominguez-Villar M. Transcriptional reprogramming from innate immune functions to a pro-thrombotic signature by monocytes in COVID-19. Nat Commun 2022; 13:7947. [PMID: 36572683 PMCID: PMC9791976 DOI: 10.1038/s41467-022-35638-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
Although alterations in myeloid cells have been observed in COVID-19, the specific underlying mechanisms are not completely understood. Here, we examine the function of classical CD14+ monocytes in patients with mild and moderate COVID-19 during the acute phase of infection and in healthy individuals. Monocytes from COVID-19 patients display altered expression of cell surface receptors and a dysfunctional metabolic profile that distinguish them from healthy monocytes. Secondary pathogen sensing ex vivo leads to defects in pro-inflammatory cytokine and type-I IFN production in moderate COVID-19 cases, together with defects in glycolysis. COVID-19 monocytes switch their gene expression profile from canonical innate immune to pro-thrombotic signatures and are functionally pro-thrombotic, both at baseline and following ex vivo stimulation with SARS-CoV-2. Transcriptionally, COVID-19 monocytes are characterized by enrichment of pathways involved in hemostasis, immunothrombosis, platelet aggregation and other accessory pathways to platelet activation and clot formation. These results identify a potential mechanism by which monocyte dysfunction may contribute to COVID-19 pathology.
Collapse
Affiliation(s)
- Allison K Maher
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Katie L Burnham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma M Jones
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Michelle M H Tan
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Rocel C Saputil
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Laury Baillon
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Claudia Selck
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Nicolas Giang
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Rafael Argüello
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clio Pillay
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Emma Thorley
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Charlotte-Eve Short
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Rachael Quinlan
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Wendy S Barclay
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Nichola Cooper
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Graham P Taylor
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Emma E Davenport
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | |
Collapse
|
61
|
Dutta A, Hung CY, Chen TC, Chang CS, Hsiao SH, Lin YC, Lin CY, Huang CT. The origin of regulatory from the effector cells in LAG-3-marked Th1 immunity against severe influenza virus infection. Immunol Suppl 2022; 169:167-184. [PMID: 36522294 DOI: 10.1111/imm.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
In severe respiratory virus infections, including influenza, an exaggerated host immune response has been linked to the severe disease and death. Control of the overwhelming immune response is thus essential. Efforts with broad-spectrum immunosuppressive agents such as steroids are disappointing. A better understanding of host immune response using animal experimental system is required to avoid undesired outcome of experimental manipulation. Following severe influenza virus infection in influenza hemagglutinin antigen-specific transgenic mouse experimental model, step-wise evolving cells from a pool of naïve hemagglutinin-specific CD4+ T cells were studied for phenotypic, genomic, and functional characterization in vivo. Naïve CD4+ T cells respond with Th1 commitment in the absolute majority. They first develop into LAG-3Med IFN-γ-secreting Th1 effectors and then evolve into LAG-3High IFN-γ-not-secreting regulators with increasing LAG-3 expression upon continuous activation and cell division. The LAG-3Med IFN-γ-secreting effectors contribute to inflammation, boost inflammatory response of cognate antigen-specific CD8+ T cells, and aggravate the disease despite facilitated virus clearance. In contrast, LAG-3High regulators do not contribute to inflammation, suppress CD8+ T cell inflammatory response, alleviate lung pathology, and ameliorate the disease with preserved virus clearance. Moderated CD8+ T cells retain proliferative capacity, and persist beyond virus clearance. Such moderation is distinct from Foxp-3+ regulator-mediated suppression, which suppresses proliferative and inflammatory responses of the CD8+ T cells and impairs virus clearance with inflammation alleviation. Origin of regulatory from the effector cells of LAG-3-marked Th1 immunity alleviates lung inflammation without impairment of virus eradication.
Collapse
Affiliation(s)
- Avijit Dutta
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Chen-Yiu Hung
- Division of Thoracic Medicine, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Tse-Ching Chen
- Department of Pathology, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan
| | - Chia-Shiang Chang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Sung-Han Hsiao
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Yung-Chang Lin
- College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Chun-Yen Lin
- College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan.,Division of Hepatogastroenterology, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Ching-Tai Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan
| |
Collapse
|
62
|
Axisa PP, Yoshida TM, Lucca LE, Kasler HG, Lincoln MR, Pham GH, Del Priore D, Carpier JM, Lucas CL, Verdin E, Sumida TS, Hafler DA. A multiple sclerosis-protective coding variant reveals an essential role for HDAC7 in regulatory T cells. Sci Transl Med 2022; 14:eabl3651. [PMID: 36516268 DOI: 10.1126/scitranslmed.abl3651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies identifying hundreds of susceptibility loci for autoimmune diseases indicate that genes active in immune cells predominantly mediate risk. However, identification and functional characterization of causal variants remain challenging. Here, we focused on the immunomodulatory role of a protective variant of histone deacetylase 7 (HDAC7). This variant (rs148755202, HDAC7.p.R166H) was identified in a study of low-frequency coding variation in multiple sclerosis (MS). Through transcriptomic analyses, we demonstrate that wild-type HDAC7 regulates genes essential for the function of Foxp3+ regulatory T cells (Tregs), an immunosuppressive subset of CD4 T cells that is generally dysfunctional in patients with MS. Moreover, Treg-specific conditional hemizygous deletion of HDAC7 increased the severity of experimental autoimmune encephalitis (EAE), a mouse model of neuroinflammation. In contrast, Tregs transduced with the protective HDAC7 R166H variant exhibited higher suppressive capacity in an in vitro functional assay, mirroring phenotypes previously observed in patient samples. In vivo modeling of the human HDAC7 R166H variant by generation of a knock-in mouse model bearing an orthologous R150H substitution demonstrated decreased EAE severity linked to transcriptomic alterations of brain-infiltrating Tregs, as assessed by single-cell RNA sequencing. Our data suggest that dysregulation of epigenetic modifiers, a distinct molecular class associated with disease risk, may influence disease onset. Last, our approach provides a template for the translation of genetic susceptibility loci to detailed functional characterization, using in vitro and in vivo modeling.
Collapse
Affiliation(s)
- Pierre-Paul Axisa
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tomomi M Yoshida
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Liliana E Lucca
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Matthew R Lincoln
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Giang H Pham
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Dante Del Priore
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jean-Marie Carpier
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Carrie L Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|
63
|
Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol 2022; 22:734-750. [PMID: 35508809 DOI: 10.1038/s41577-022-00718-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Our incomplete understanding of the causes and pathways involved in the onset and progression of multiple sclerosis (MS) limits our ability to effectively treat this complex neurological disease. Recent studies explore the role of immune cells at different stages of MS and how they interact with cells of the central nervous system (CNS). The findings presented here begin to question the exclusivity of an antigen-specific cause and highlight how seemingly distinct immune cell types can share common functions that drive disease. Innovative techniques further expose new disease-associated immune cell populations and reinforce how environmental context is critical to their phenotype and subsequent role in disease. Importantly, the differentiation of immune cells into a pathogenic state is potentially reversible through therapeutic manipulation. As such, understanding the mechanisms that provide plasticity to causal cell types is likely key to uncoupling these disease processes and may identify novel therapeutic targets that replace the need for cell ablation.
Collapse
Affiliation(s)
- Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, University of Oxford, Oxford, UK
| | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Max Kaufmann
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, University of Oxford, Oxford, UK.
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
64
|
Cheung J, Zahorowska B, Suranyi M, Wong JKW, Diep J, Spicer ST, Verma ND, Hodgkinson SJ, Hall BM. CD4 +CD25 + T regulatory cells in renal transplantation. Front Immunol 2022; 13:1017683. [PMID: 36426347 PMCID: PMC9681496 DOI: 10.3389/fimmu.2022.1017683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
The immune response to an allograft activates lymphocytes with the capacity to cause rejection. Activation of CD4+CD25+Foxp3+T regulatory cells (Treg) can down-regulate allograft rejection and can induce immune tolerance to the allograft. Treg represent <10% of peripheral CD4+T cells and do not markedly increase in tolerant hosts. CD4+CD25+Foxp3+T cells include both resting and activated Treg that can be distinguished by several markers, many of which are also expressed by effector T cells. More detailed characterization of Treg to identify increased activated antigen-specific Treg may allow reduction of non-specific immunosuppression. Natural thymus derived resting Treg (tTreg) are CD4+CD25+Foxp3+T cells and only partially inhibit alloantigen presenting cell activation of effector cells. Cytokines produced by activated effector cells activate these tTreg to more potent alloantigen-activated Treg that may promote a state of operational tolerance. Activated Treg can be distinguished by several molecules they are induced to express, or whose expression they have suppressed. These include CD45RA/RO, cytokine receptors, chemokine receptors that alter pathways of migration and transcription factors, cytokines and suppression mediating molecules. As the total Treg population does not increase in operational tolerance, it is the activated Treg which may be the most informative to monitor. Here we review the methods used to monitor peripheral Treg, the effect of immunosuppressive regimens on Treg, and correlations with clinical outcomes such as graft survival and rejection. Experimental therapies involving ex vivo Treg expansion and administration in renal transplantation are not reviewed.
Collapse
Affiliation(s)
- Jason Cheung
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
| | | | - Michael Suranyi
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | - Jason Diep
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Stephen T. Spicer
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Nirupama D. Verma
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Suzanne J. Hodgkinson
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Bruce M. Hall
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
65
|
Direct AKT activation in tumor-infiltrating lymphocytes markedly increases interferon-γ (IFN-γ) for the regression of tumors resistant to PD-1 checkpoint blockade. Sci Rep 2022; 12:18509. [PMID: 36323740 PMCID: PMC9630443 DOI: 10.1038/s41598-022-23016-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
PD-1 immune checkpoint blockade against inhibitory receptors such as receptor programmed cell death-1 (PD-1), has revolutionized cancer treatment. Effective immune reactivity against tumour antigens requires the infiltration and activation of tumour-infiltrating T-cells (TILs). In this context, ligation of the antigen-receptor complex (TCR) in combination with the co-receptor CD28 activates the intracellular mediator AKT (or PKB, protein kinase B) and its downstream targets. PD-1 inhibits the activation of AKT/PKB. Given this, we assessed whether the direct activation of AKT might be effective in activating the immune system to limit the growth of tumors that are resistant to PD-1 checkpoint blockade. We found that the small molecule activator of AKT (SC79) limited growth of a B16 tumor and an EMT-6 syngeneic breast tumor model that are poorly responsive to PD-1 immunotherapy. In the case of B16 tumors, direct AKT activation induced (i) a reduction of suppressor regulatory (Treg) TILs and (ii) an increase in effector CD8+ TILs. SC79 in vivo therapy caused a major increase in the numbers of CD4+ and CD8+ TILs to express interferon-γ (IFN-γ). This effect on IFN-γ expression distinguished responsive from non-responsive anti-tumor responses and could be recapitulated ex vivo with human T-cells. In CD4+FoxP3+Treg TILs, AKT induced IFN-γ expression was accompanied by a loss of suppressor activity, the conversation to CD4+ helper Th1-like TILs and a marked reduction in phospho-SHP2. In CD8+ TILs, we observed an increase in the phospho-activation of PLC-γ. Further, the genetic deletion of the transcription factor T-bet (Tbx21) blocked the increased IFN-γ expression on all subsets while ablating the therapeutic benefits of SC79 on tumor growth. Our study shows that AKT activation therapy acts to induce IFN-γ on CD4 and CD8 TILs that is accompanied by the intra-tumoral conversation of suppressive Tregs into CD4+Th1-like T-cells and augmented CD8 responses.
Collapse
|
66
|
Guo C, Liu Q, Zong D, Zhang W, Zuo Z, Yu Q, Sha Q, Zhu L, Gao X, Fang J, Tao J, Wu Q, Li X, Qu K. Single-cell transcriptome profiling and chromatin accessibility reveal an exhausted regulatory CD4+ T cell subset in systemic lupus erythematosus. Cell Rep 2022; 41:111606. [DOI: 10.1016/j.celrep.2022.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
|
67
|
Li R, Li H, Yang X, Hu H, Liu P, Liu H. Crosstalk between dendritic cells and regulatory T cells: Protective effect and therapeutic potential in multiple sclerosis. Front Immunol 2022; 13:970508. [PMID: 36177043 PMCID: PMC9513370 DOI: 10.3389/fimmu.2022.970508] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system related to autoimmunity and is characterized by demyelination, neuroinflammation, and neurodegeneration. Cell therapies mediated by dendritic cells (DCs) and regulatory T cells (Tregs) have gradually become accumulating focusing in MS, and the protective crosstalk mechanisms between DCs and Tregs provide the basis for the efficacy of treatment regimens. In MS and its animal model experimental autoimmune encephalomyelitis, DCs communicate with Tregs to form immune synapses and complete a variety of complex interactions to counteract the unbalanced immune tolerance. Through different co-stimulatory/inhibitory molecules, cytokines, and metabolic enzymes, DCs regulate the proliferation, differentiation and function of Tregs. On the other hand, Tregs inhibit the mature state and antigen presentation ability of DCs, ultimately improving immune tolerance. In this review, we summarized the pivotal immune targets in the interaction between DCs and Tregs, and elucidated the protective mechanisms of DC-Treg cell crosstalk in MS, finally interpreted the complex cell interplay in the manner of inhibitory feedback loops to explore novel therapeutic directions for MS.
Collapse
Affiliation(s)
- Ruoyu Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiru Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peidong Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hongbo Liu,
| |
Collapse
|
68
|
Kerdidani D, Papaioannou NE, Nakou E, Alissafi T. Rebooting Regulatory T Cell and Dendritic Cell Function in Immune-Mediated Inflammatory Diseases: Biomarker and Therapy Discovery under a Multi-Omics Lens. Biomedicines 2022; 10:2140. [PMID: 36140240 PMCID: PMC9495698 DOI: 10.3390/biomedicines10092140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a group of autoimmune and chronic inflammatory disorders with constantly increasing prevalence in the modern world. The vast majority of IMIDs develop as a consequence of complex mechanisms dependent on genetic, epigenetic, molecular, cellular, and environmental elements, that lead to defects in immune regulatory guardians of tolerance, such as dendritic (DCs) and regulatory T (Tregs) cells. As a result of this dysfunction, immune tolerance collapses and pathogenesis emerges. Deeper understanding of such disease driving mechanisms remains a major challenge for the prevention of inflammatory disorders. The recent renaissance in high throughput technologies has enabled the increase in the amount of data collected through multiple omics layers, while additionally narrowing the resolution down to the single cell level. In light of the aforementioned, this review focuses on DCs and Tregs and discusses how multi-omics approaches can be harnessed to create robust cell-based IMID biomarkers in hope of leading to more efficient and patient-tailored therapeutic interventions.
Collapse
Affiliation(s)
- Dimitra Kerdidani
- Immune Regulation Laboratory, Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikos E. Papaioannou
- Immune Regulation Laboratory, Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evangelia Nakou
- Immune Regulation Laboratory, Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Themis Alissafi
- Immune Regulation Laboratory, Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
69
|
Schlöder J, Shahneh F, Schneider FJ, Wieschendorf B. Boosting regulatory T cell function for the treatment of autoimmune diseases – That’s only half the battle! Front Immunol 2022; 13:973813. [PMID: 36032121 PMCID: PMC9400058 DOI: 10.3389/fimmu.2022.973813] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023] Open
Abstract
Regulatory T cells (Treg) represent a subset of specialized T cells that are essential for the regulation of immune responses and maintenance of peripheral tolerance. Once activated, Treg exert powerful immunosuppressive properties, for example by inhibiting T cell-mediated immune responses against self-antigens, thereby protecting our body from autoimmunity. Autoimmune diseases such as multiple sclerosis, rheumatoid arthritis or systemic lupus erythematosus, exhibit an immunological imbalance mainly characterized by a reduced frequency and impaired function of Treg. In addition, there has been increasing evidence that – besides Treg dysfunction – immunoregulatory mechanisms fail to control autoreactive T cells due to a reduced responsiveness of T effector cells (Teff) for the suppressive properties of Treg, a process termed Treg resistance. In order to efficiently treat autoimmune diseases and thus fully induce immunological tolerance, a combined therapy aimed at both enhancing Treg function and restoring Teff responsiveness could most likely be beneficial. This review provides an overview of immunomodulating drugs that are currently used to treat various autoimmune diseases in the clinic and have been shown to increase Treg frequency as well as Teff sensitivity to Treg-mediated suppression. Furthermore, we discuss strategies on how to boost Treg activity and function, and their potential use in the treatment of autoimmunity. Finally, we present a humanized mouse model for the preclinical testing of Treg-activating substances in vivo.
Collapse
Affiliation(s)
- Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Janine Schlöder,
| | - Fatemeh Shahneh
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Franz-Joseph Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Björn Wieschendorf
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
70
|
Th1-like Treg in vitiligo: An incompetent regulator in immune tolerance. J Autoimmun 2022; 131:102859. [DOI: 10.1016/j.jaut.2022.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022]
|
71
|
Thangavelu G, Andrejeva G, Bolivar-Wagers S, Jin S, Zaiken MC, Loschi M, Aguilar EG, Furlan SN, Brown CC, Lee YC, Hyman CM, Feser CJ, Panoskaltsis-Mortari A, Hippen KL, MacDonald KP, Murphy WJ, Maillard I, Hill GR, Munn DH, Zeiser R, Kean LS, Rathmell JC, Chi H, Noelle RJ, Blazar BR. Retinoic acid signaling acts as a rheostat to balance Treg function. Cell Mol Immunol 2022; 19:820-833. [PMID: 35581350 PMCID: PMC9243059 DOI: 10.1038/s41423-022-00869-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 04/14/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T cells (Tregs) promote immune homeostasis by maintaining self-tolerance and regulating inflammatory responses. Under certain inflammatory conditions, Tregs can lose their lineage stability and function. Previous studies have reported that ex vivo exposure to retinoic acid (RA) enhances Treg function and stability. However, it is unknown how RA receptor signaling in Tregs influences these processes in vivo. Herein, we employed mouse models in which RA signaling is silenced by the expression of the dominant negative receptor (DN) RARα in all T cells. Despite the fact that DNRARα conventional T cells are hypofunctional, Tregs had increased CD25 expression, STAT5 pathway activation, mTORC1 signaling and supersuppressor function. Furthermore, DNRARα Tregs had increased inhibitory molecule expression, amino acid transporter expression, and metabolic fitness and decreased antiapoptotic proteins. Supersuppressor function was observed when wild-type mice were treated with a pharmacologic pan-RAR antagonist. Unexpectedly, Treg-specific expression of DNRARα resulted in distinct phenotypes, such that a single allele of DNRARα in Tregs heightened their suppressive function, and biallelic expression led to loss of suppression and autoimmunity. The loss of Treg function was not cell intrinsic, as Tregs that developed in a noninflammatory milieu in chimeric mice reconstituted with DNRARα and wild-type bone marrow maintained the enhanced suppressive capacity. Fate mapping suggested that maintaining Treg stability in an inflammatory milieu requires RA signaling. Our findings indicate that RA signaling acts as a rheostat to balance Treg function in inflammatory and noninflammatory conditions in a dose-dependent manner.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Gabriela Andrejeva
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara Bolivar-Wagers
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Sujeong Jin
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Michael C Zaiken
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Michael Loschi
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Ethan G Aguilar
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Scott N Furlan
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chrysothemis C Brown
- Howard Hughes Medical Institute, Immunology Program, and Ludwig Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Chi Lee
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, USA
| | - Cameron McDonald Hyman
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Colby J Feser
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | | - Keli L Hippen
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Kelli P MacDonald
- Department of Immunology, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute and School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - David H Munn
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Robert Zeiser
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Centre, Freiburg, Germany
| | - Leslie S Kean
- Boston Children's Hospital and the Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jeffrey C Rathmell
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, USA
| | - Bruce R Blazar
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
72
|
Frazzei G, van Vollenhoven RF, de Jong BA, Siegelaar SE, van Schaardenburg D. Preclinical Autoimmune Disease: a Comparison of Rheumatoid Arthritis, Systemic Lupus Erythematosus, Multiple Sclerosis and Type 1 Diabetes. Front Immunol 2022; 13:899372. [PMID: 35844538 PMCID: PMC9281565 DOI: 10.3389/fimmu.2022.899372] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
The preclinical phase of autoimmune disorders is characterized by an initial asymptomatic phase of varying length followed by nonspecific signs and symptoms. A variety of autoimmune and inflammatory manifestations can be present and tend to increase in the last months to years before a clinical diagnosis can be made. The phenotype of an autoimmune disease depends on the involved organs, the underlying genetic susceptibility and pathophysiological processes. There are different as well as shared genetic or environmental risk factors and pathophysiological mechanisms between separate diseases. To shed more light on this, in this narrative review we compare the preclinical disease course of four important autoimmune diseases with distinct phenotypes: rheumatoid arthritis (RA), Systemic Lupus Erythematosus (SLE), multiple sclerosis (MS) and type 1 diabetes (T1D). In general, we observed some notable similarities such as a North-South gradient of decreasing prevalence, a female preponderance (except for T1D), major genetic risk factors at the HLA level, partly overlapping cytokine profiles and lifestyle risk factors such as obesity, smoking and stress. The latter risk factors are known to produce a state of chronic systemic low grade inflammation. A central characteristic of all four diseases is an on average lengthy prodromal phase with no or minor symptoms which can last many years, suggesting a gradually evolving interaction between the genetic profile and the environment. Part of the abnormalities may be present in unaffected family members, and autoimmune diseases can also cluster in families. In conclusion, a promising strategy for prevention of autoimmune diseases might be to address adverse life style factors by public health measures at the population level.
Collapse
Affiliation(s)
- Giulia Frazzei
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Giulia Frazzei,
| | - Ronald F. van Vollenhoven
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Rheumatology Center, Amsterdam, Netherlands
| | - Brigit A. de Jong
- Department of Neurology, MS Center Amsterdam, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Sarah E. Siegelaar
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Dirkjan van Schaardenburg
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, Netherlands
| |
Collapse
|
73
|
Bednar KJ, Lee JH, Ort T. Tregs in Autoimmunity: Insights Into Intrinsic Brake Mechanism Driving Pathogenesis and Immune Homeostasis. Front Immunol 2022; 13:932485. [PMID: 35844555 PMCID: PMC9280893 DOI: 10.3389/fimmu.2022.932485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
CD4+CD25highFoxp3+ regulatory T-cells (Tregs) are functionally characterized for their ability to suppress the activation of multiple immune cell types and are indispensable for maintaining immune homeostasis and tolerance. Disruption of this intrinsic brake system assessed by loss of suppressive capacity, cell numbers, and Foxp3 expression, leads to uncontrolled immune responses and tissue damage. The conversion of Tregs to a pathogenic pro-inflammatory phenotype is widely observed in immune mediated diseases. However, the molecular mechanisms that underpin the control of Treg stability and suppressive capacity are incompletely understood. This review summarizes the concepts of Treg cell stability and Treg cell plasticity highlighting underlying mechanisms including translational and epigenetic regulators that may enable translation to new therapeutic strategies. Our enhanced understanding of molecular mechanism controlling Tregs will have important implications into immune homeostasis and therapeutic potential for the treatment of immune-mediated diseases.
Collapse
|
74
|
Liston A, Dooley J, Yshii L. Brain-resident regulatory T cells and their role in health and disease. Immunol Lett 2022; 248:26-30. [PMID: 35697195 DOI: 10.1016/j.imlet.2022.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023]
Abstract
Regulatory T cells (Tregs) control inflammation and maintain immune homeostasis. The well-characterised circulatory population of CD4+Foxp3+ Tregs is effective at preventing autoimmunity and constraining the immune response, through direct and indirect restraint of conventional T cell activation. Recent advances in Treg cell biology have identified tissue-resident Tregs, with tissue-specific functions that contribute to the maintenance of tissue homeostasis and repair. A population of brain-resident Tregs, characterised as CD69+, has recently been identified in the healthy brain of mice and humans, with rapid population expansion observed under a number of neuroinflammatory conditions. During neuroinflammation, brain-resident Tregs have been proposed to control astrogliosis through the production of amphiregulin, polarize microglia into neuroprotective states, and restrain inflammatory responses by releasing IL-10. While protective effects for Tregs have been demonstrated in a number of neuroinflammatory pathologies, a clear demarcation between the role of circulatory and brain-resident Tregs has been difficult to achieve. Here we review the state-of-the-art for brain-resident Treg population, and describe their potential utilization as a therapeutic target across different neuroinflammatory conditions.
Collapse
Affiliation(s)
- Adrian Liston
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT United Kingdom.
| | - James Dooley
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT United Kingdom
| | - Lidia Yshii
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven 3000, Belgium.
| |
Collapse
|
75
|
Lee AY, Foulsham W. Regulatory T Cells: Therapeutic Opportunities in Uveitis. FRONTIERS IN OPHTHALMOLOGY 2022; 2:901144. [PMID: 38983511 PMCID: PMC11182269 DOI: 10.3389/fopht.2022.901144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 07/11/2024]
Abstract
Regulatory T cells (Tregs) are critical for the maintenance of immune tolerance and the suppression of excessive inflammation. Many inflammatory autoimmune disorders, including autoimmune uveitis, involve the loss of the suppressive capacities of Tregs. Over the past decade, Tregs' therapeutic potential in uveitis has garnered increasing attention. Specific subsets of Tregs, including TIGIT+ and PD-1+ Tregs, have emerged as potent immunosuppressors that may be particularly well-suited to cell-based therapeutics. Studies have elucidated the interaction between Treg development and the gut microbiome as well as various intracellular signaling pathways. Numerous cell-based therapies and therapeutic molecules have been proposed and investigated using the murine experimental autoimmune uveitis (EAU) model. However, certain challenges remain to be addressed. Studies involving the use of Tregs in human patients with uveitis are lacking, and there are concerns regarding Tregs' production and purification for practical use, their plasticity towards inflammatory phenotypes, immunogenicity, and tumorigenicity. Nevertheless, recent research has brought Tregs closer to yielding viable treatment options for uveitis.
Collapse
Affiliation(s)
| | - William Foulsham
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
76
|
The Regulatory-T-Cell Memory Phenotype: What We Know. Cells 2022; 11:cells11101687. [PMID: 35626725 PMCID: PMC9139615 DOI: 10.3390/cells11101687] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
In immunology, the discovery of regulatory T (Treg) cells was a major breakthrough. Treg cells play a key role in pregnancy maintenance, in the prevention of autoimmune responses, and in the control of all immune responses, including responses to self cells, cancer, infection, and a transplant. It is currently unclear whether Treg cells are capable of long-term memory of an encounter with an antigen. Although the term “immunological memory” usually means an enhanced ability to protect the body from reinfection, the memory of the suppressive activity of Treg cells helps to avoid the state of generalized immunosuppression that may result from the second activation of the immune system. In this review, we would like to discuss the concept of regulatory memory and in which tissues memory Treg cells can perform their functions.
Collapse
|
77
|
Fujiwara M, Raheja R, Garo LP, Ajay AK, Kadowaki-Saga R, Karandikar SH, Gabriely G, Krishnan R, Beynon V, Paul A, Patel A, Saxena S, Hu D, Healy BC, Chitnis T, Gandhi R, Weiner HL, Murugaiyan G. microRNA-92a promotes CNS autoimmunity by modulating the regulatory and inflammatory T cell balance. J Clin Invest 2022; 132:e155693. [PMID: 35298438 PMCID: PMC9106347 DOI: 10.1172/jci155693] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/16/2022] [Indexed: 01/11/2023] Open
Abstract
A disequilibrium between immunosuppressive Tregs and inflammatory IL-17-producing Th17 cells is a hallmark of autoimmune diseases, including multiple sclerosis (MS). However, the molecular mechanisms underlying the Treg and Th17 imbalance in CNS autoimmunity remain largely unclear. Identifying the factors that drive this imbalance is of high clinical interest. Here, we report a major disease-promoting role for microRNA-92a (miR-92a) in CNS autoimmunity. miR-92a was elevated in experimental autoimmune encephalomyelitis (EAE), and its loss attenuated EAE. Mechanistically, miR-92a mediated EAE susceptibility in a T cell-intrinsic manner by restricting Treg induction and suppressive capacity, while supporting Th17 responses, by directly repressing the transcription factor Foxo1. Although miR-92a did not directly alter Th1 differentiation, it appeared to indirectly promote Th1 cells by inhibiting Treg responses. Correspondingly, miR-92a inhibitor therapy ameliorated EAE by concomitantly boosting Treg responses and dampening inflammatory T cell responses. Analogous to our findings in mice, miR-92a was elevated in CD4+ T cells from patients with MS, and miR-92a silencing in patients' T cells promoted Treg development but limited Th17 differentiation. Together, our results demonstrate that miR-92a drives CNS autoimmunity by sustaining the Treg/Th17 imbalance and implicate miR-92a as a potential therapeutic target for MS.
Collapse
Affiliation(s)
- Mai Fujiwara
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Radhika Raheja
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lucien P. Garo
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Amrendra K. Ajay
- Renal Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ryoko Kadowaki-Saga
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sukrut H. Karandikar
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Vanessa Beynon
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anu Paul
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amee Patel
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shrishti Saxena
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dan Hu
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian C. Healy
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Roopali Gandhi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
78
|
Pompura SL, Hafler DA, Dominguez-Villar M. Fatty Acid Metabolism and T Cells in Multiple Sclerosis. Front Immunol 2022; 13:869197. [PMID: 35603182 PMCID: PMC9116144 DOI: 10.3389/fimmu.2022.869197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Cellular metabolic remodeling is intrinsically linked to the development, activation, differentiation, function, and survival of T cells. T cells transition from a catabolic, naïve state to an anabolic effector state upon T cell activation. Subsequently, specialization of T cells into T helper (Th) subsets, including regulatory T cells (Treg), requires fine-tuning of metabolic programs that better support and optimize T cell functions for that particular environment. Increasingly, studies have shown that changes in nutrient availability at both the cellular and organismal level during disease states can alter T cell function, highlighting the importance of better characterizing metabolic-immune axes in both physiological and disease settings. In support of these data, a growing body of evidence is emerging that shows specific lipid species are capable of altering the inflammatory functional phenotypes of T cells. In this review we summarize the metabolic programs shown to support naïve and effector T cells, and those driving Th subsets. We then discuss changes to lipid profiles in patients with multiple sclerosis, and focus on how the presence of specific lipid species can alter cellular metabolism and function of T cells.
Collapse
Affiliation(s)
- Saige L. Pompura
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
79
|
Qu G, Chen J, Li Y, Yuan Y, Liang R, Li B. Current status and perspectives of regulatory T cell-based therapy. J Genet Genomics 2022; 49:599-611. [DOI: 10.1016/j.jgg.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 02/08/2023]
|
80
|
Jiang Z, Zhu H, Wang P, Que W, Zhong L, Li X, Du F. Different subpopulations of regulatory T cells in human autoimmune disease, transplantation, and tumor immunity. MedComm (Beijing) 2022; 3:e137. [PMID: 35474948 PMCID: PMC9023873 DOI: 10.1002/mco2.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
CD4+CD25+ regulatory T cells (Tregs), a subpopulation of naturally CD4+ T cells that characteristically express transcription factor Forkhead box P3 (FOXP3), play a pivotal role in the maintenance of immune homeostasis and the prevention of autoimmunity. With the development of biological technology, the understanding of plasticity and stability of Tregs has been further developed. Recent studies have suggested that human Tregs are functionally and phenotypically diverse. The functions and mechanisms of different phenotypes of Tregs in different disease settings, such as tumor microenvironment, autoimmune diseases, and transplantation, have gradually become hot spots of immunology research that arouse extensive attention. Among the complex functions, CD4+CD25+FOXP3+ Tregs possess a potent immunosuppressive capacity and can produce various cytokines, such as IL‐2, IL‐10, and TGF‐β, to regulate immune homeostasis. They can alleviate the progression of diseases by resisting inflammatory immune responses, whereas promoting the poor prognosis of diseases by helping cells evade immune surveillance or suppressing effector T cells activity. Therefore, methods for targeting Tregs to regulate their functions in the immune microenvironment, such as depleting them to strengthen tumor immunity or expanding them to treat immunological diseases, need to be developed. Here, we discuss that different subpopulations of Tregs are essential for the development of immunotherapeutic strategies involving Tregs in human diseases.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Haitao Zhu
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guizhou P. R. China
| | - Pusen Wang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Weitao Que
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Lin Zhong
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Xiao‐Kang Li
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
- Division of Transplantation Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Futian Du
- Department of Hepatobiliary Surgery Weifang People's Hospital Shandong P. R. China
| |
Collapse
|
81
|
Piao W, Li L, Saxena V, Iyyathurai J, Lakhan R, Zhang Y, Lape IT, Paluskievicz C, Hippen KL, Lee Y, Silverman E, Shirkey MW, Riella LV, Blazar BR, Bromberg JS. PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration. Nat Commun 2022; 13:2176. [PMID: 35449134 PMCID: PMC9023578 DOI: 10.1038/s41467-022-29930-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Programmed death-1 (PD-1) and its ligand PD-L1 are checkpoint molecules which regulate immune responses. Little is known about their functions in T cell migration and there are contradictory data about their roles in regulatory T cell (Treg) function. Here we show activated Tregs and CD4 effector T cells (Teffs) use PD-1/PD-L1 and CD80/PD-L1, respectively, to regulate transendothelial migration across lymphatic endothelial cells (LECs). Antibody blockade of Treg PD-1, Teff CD80 (the alternative ligand for PD-L1), or LEC PD-L1 impairs Treg or Teff migration in vitro and in vivo. PD-1/PD-L1 signals through PI3K/Akt and ERK to regulate zipper junctional VE-cadherin, and through NFκB-p65 to up-regulate VCAM-1 expression on LECs. CD80/PD-L1 signaling up-regulates VCAM-1 through ERK and NFκB-p65. PD-1 and CD80 blockade reduces tumor egress of PD-1high fragile Tregs and Teffs into draining lymph nodes, respectively, and promotes tumor regression. These data provide roles for PD-L1 in cell migration and immune regulation.
Collapse
Affiliation(s)
- Wenji Piao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Lushen Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jegan Iyyathurai
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ram Lakhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yigang Zhang
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN, 55455, USA
| | - Isadora Tadeval Lape
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, Boston, MA, 02114, USA
| | - Christina Paluskievicz
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Keli L Hippen
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN, 55455, USA
| | - Young Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Emma Silverman
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Marina W Shirkey
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, Boston, MA, 02114, USA
| | - Bruce R Blazar
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN, 55455, USA
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
82
|
Joudi AM, Reyes Flores CP, Singer BD. Epigenetic Control of Regulatory T Cell Stability and Function: Implications for Translation. Front Immunol 2022; 13:861607. [PMID: 35309306 PMCID: PMC8924620 DOI: 10.3389/fimmu.2022.861607] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
FoxP3+ regulatory T (Treg) cells maintain immune homeostasis, promote self-tolerance, and have an emerging role in resolving acute inflammation, providing tissue protection, and repairing tissue damage. Some data suggest that FoxP3+ T cells are plastic, exhibiting susceptibility to losing their function in inflammatory cytokine-rich microenvironments and paradoxically contributing to inflammatory pathology. As a result, plasticity may represent a barrier to Treg cell immunotherapy. Here, we discuss controversies surrounding Treg cell plasticity and explore determinants of Treg cell stability in inflammatory microenvironments, focusing on epigenetic mechanisms that clinical protocols could leverage to enhance efficacy and limit toxicity of Treg cell-based therapeutics.
Collapse
Affiliation(s)
- Anthony M. Joudi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Canning Thoracic Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Carla P. Reyes Flores
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Canning Thoracic Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Benjamin D. Singer
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Canning Thoracic Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
83
|
Arjomandnejad M, Kopec AL, Keeler AM. CAR-T Regulatory (CAR-Treg) Cells: Engineering and Applications. Biomedicines 2022; 10:287. [PMID: 35203496 PMCID: PMC8869296 DOI: 10.3390/biomedicines10020287] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Regulatory T cells are critical for maintaining immune tolerance. Recent studies have confirmed their therapeutic suppressive potential to modulate immune responses in organ transplant and autoimmune diseases. However, the unknown and nonspecific antigen recognition of polyclonal Tregs has impaired their therapeutic potency in initial clinical findings. To address this limitation, antigen specificity can be conferred to Tregs by engineering the expression of transgenic T-cell receptor (TCR) or chimeric antigen receptor (CAR). In contrast to TCR Tregs, CAR Tregs are major histocompatibility complex (MHC) independent and less dependent on interleukin-2 (IL-2). Furthermore, CAR Tregs maintain Treg phenotype and function, home to the target tissue and show enhanced suppressive efficacy compared to polyclonal Tregs. Additional development of engineered CAR Tregs is needed to increase Tregs' suppressive function and stability, prevent CAR Treg exhaustion, and assess their safety profile. Further understanding of Tregs therapeutic potential will be necessary before moving to broader clinical applications. Here, we summarize recent studies utilizing CAR Tregs in modulating immune responses in autoimmune diseases, transplantation, and gene therapy and future clinical applications.
Collapse
Affiliation(s)
- Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (M.A.); (A.L.K.)
| | - Acadia L. Kopec
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (M.A.); (A.L.K.)
| | - Allison M. Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (M.A.); (A.L.K.)
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
84
|
Ahmad Z, Somanath PR. AKT Isoforms in the Immune Response in Cancer. Curr Top Microbiol Immunol 2022; 436:349-366. [PMID: 36243852 DOI: 10.1007/978-3-031-06566-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
AKT is a protein kinase that exists in three isoforms: AKT1, AKT2, and AKT3. Though similar in structure, these isoforms display different effects. AKT is activated downstream of PI3K, and together, this signaling pathway helps regulate cellular processes including cell growth, proliferation, metabolism, survival, and apoptosis. Disruption in these pathways has been associated with disorders including cardiovascular diseases, developmental disorders, inflammatory responses, autoimmune diseases, neurologic disorders, type 2 diabetes, and several cancers. In cancer, deregulation in the PI3K/AKT pathway can be manifested as tumorigenesis, pathological angiogenesis, and metastasis. Increased activity has been correlated with tumor progression and resistance to cancer treatments. Recent studies have suggested that inhibition of the PI3K/AKT pathway plays a significant role in the development, expansion, and proliferation of cells of the immune system. Additionally, AKT has been found to play an important role in differentiating regulatory T cells, activating B cells, and augmenting tumor immunosurveillance. This emphasizes AKT as a potential target for inhibition in cancer therapy. This chapter reviews AKT structure and regulation, its different isoforms, its role in immune cells, and its modulation in oncotherapy.
Collapse
Affiliation(s)
- Zayd Ahmad
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
- Georgia Cancer Center, Vascular Biology Center and Department of Medicine, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
85
|
Blinova VG, Gladilina YA, Eliseeva DD, Lobaeva TA, Zhdanov DD. [Increased suppressor activity of transformed ex vivo regulatory T-cells in comparison with unstimulated cells of the same donor]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:55-67. [PMID: 35221297 DOI: 10.18097/pbmc20226801055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Regulatory T-cells CD4⁺CD25⁺FoxP3⁺CD127low (Tregs) play a key role in the maintenance of tolerance to auto antigens, inhibit function of effector T and B lymphocytes, and provide a balance between effector and regulatory arms of immunity. Patients with autoimmune diseases have decreased Treg numbers and impaired suppressive activity. Transformed ex vivo autologous Tregs could restore destroyed balance of the immune system. We developed a method for Treg precursor cell cultivation. Following the method, we were able to grown up 300-400 million of Tregs cells from 50 ml of peripheral blood during a week. Transformed ex vivo Tregs are 90-95% CD4⁺CD25⁺FoxP3⁺CD127low and have increased expression of transcription genes FoxP3 and Helios. Transformed ex vivo Tregs have increased demethylation of FoxP3 promoter and activated genes of proliferation markers Cycline B1, Ki67 and LGALS 1. Transformed ex vivo Tregs have increased suppressive activity and up to 80-90% these cells secrete cytokines TNFα и IFNγ. Our data suggest transformed ex vivo autologous Tregs have genetic, immunophenotypic and functional characteristics for regulatory T-cells and further can be used for adoptive immunotherapy autoimmune diseases and inhibition of transplantation immunity.
Collapse
Affiliation(s)
- V G Blinova
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - T A Lobaeva
- Department of Biochemistry, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia; Department of Biochemistry, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
86
|
CAR Treg: A new approach in the treatment of autoimmune diseases. Int Immunopharmacol 2021; 102:108409. [PMID: 34863655 DOI: 10.1016/j.intimp.2021.108409] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/07/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
Regulatory T cells (Tregs) have the role of regulating self-tolerance, and suppressing immune responses. Defects in Treg function and number can lead to in loss of tolerance or autoimmune disease. To treat or control autoimmune diseases, one of the options is to develop immune tolerance for Tregs cell therapy, which includes promotion and activation. Recently, cell-based treatment as a promising approach to increase cells function and number has been developed. Cell therapy by chimeric T antigen receptor (CAR-T) cells has shown significant efficacy in the treatment of leukemia, which has led researchers to use CAR-T cells in other diseases like autoimmune diseases. Here, we describe the existing treatments for autoimmune diseases and the available treatments based on Treg, their benefits and restrictions for implementation in clinical trials. We also discussed potential solutions to overcome these limitations. It seems novel designs of CARs to be new hope for autoimmune diseases and expected to be a potential cure option in a wide array of disease in the future. Therefore, it is very important to address this issue and increase information about it.
Collapse
|
87
|
Kuchroo JR, Hafler DA, Sharpe AH, Lucca LE. The double-edged sword: Harnessing PD-1 blockade in tumor and autoimmunity. Sci Immunol 2021; 6:eabf4034. [PMID: 34739340 DOI: 10.1126/sciimmunol.abf4034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immune checkpoint blockade has demonstrated success in treating cancer but can lead to immune-related adverse events (irAEs), illustrating the centrality of these pathways in tolerance. Here, we describe programmed cell death protein 1 (PD-1) control of T cell responses, focusing on its unique restraint of regulatory T cell function. We examine successes and limitations of checkpoint blockade immunotherapy and review clinical and mechanistic features of irAEs. Last, we discuss strategies to modulate PD-1 blockade to enhance antitumor immunity while limiting autoimmunity.
Collapse
Affiliation(s)
- Juhi R Kuchroo
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Liliana E Lucca
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
88
|
Casalegno Garduño R, Däbritz J. New Insights on CD8 + T Cells in Inflammatory Bowel Disease and Therapeutic Approaches. Front Immunol 2021; 12:738762. [PMID: 34707610 PMCID: PMC8542854 DOI: 10.3389/fimmu.2021.738762] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
CD8+ T cells are involved in the pathogenesis of inflammatory bowel disease (IBD), a complex multifactorial chronic disease. Here, we present an overview of the current research with the controversial findings of CD8+ T cell subsets and discuss some possible perspectives on their therapeutic value in IBD. Studies on the role of CD8+ T cells in IBD have contradictory outcomes, which might be related to the heterogeneity of the cells. Recent data suggest that cytotoxic CD8+ T cells (Tc1) and interleukin (IL) 17-producing CD8+ (Tc17) cells contribute to the pathogenesis of IBD. Moreover, subsets of regulatory CD8+ T cells are abundant at sites of inflammation and can exhibit pro-inflammatory features. Some subsets of tissue resident memory CD8+ T cells (Trm) might be immunosuppressant, whereas others might be pro-inflammatory. Lastly, exhausted T cells might indicate a positive outcome for patients. The function and plasticity of different subsets of CD8+ T cells in health and IBD remain to be further investigated in a challenging field due to the limited availability of mucosal samples and adequate controls.
Collapse
Affiliation(s)
- Rosaely Casalegno Garduño
- Mucosal Immunology Group, Department of Pediatrics, Rostock University Medical Center, Rostock, Germany
| | - Jan Däbritz
- Mucosal Immunology Group, Department of Pediatrics, Rostock University Medical Center, Rostock, Germany.,Center for Immunobiology, Blizard Institute, The Barts and the London School of Medicine and Dentistry, Queen Mary University, London, United Kingdom
| |
Collapse
|
89
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
90
|
Lam AJ, Uday P, Gillies JK, Levings MK. Helios is a marker, not a driver, of human Treg stability. Eur J Immunol 2021; 52:75-84. [PMID: 34561855 DOI: 10.1002/eji.202149318] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/24/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Treg therapy holds promise as a potentially curative approach to establish immune tolerance in transplantation and autoimmune disease. An outstanding question is whether therapeutic Tregs have the potential to transdifferentiate into effector T-cells and, thus, exacerbate rather than suppress immune responses. In mice, the transcription factor Helios is thought to promote Treg lineage stability in a range of inflammatory contexts. In humans, the role of Helios in Tregs is less clear, in part, due to the inability to enrich and study subsets of Helios-positive versus Helios-negative Tregs. Using an in vitro expansion system, we found that loss of high Helios expression and emergence of an intermediate Helios (Heliosmid )-expressing population correlated with Treg destabilization. We used CRISPR/Cas9 to genetically ablate Helios expression in human naive or memory Tregs and found that Helios-KO and unedited Tregs were equivalent in their suppressive function and stability in inflammation. Thus, high Helios expression is a marker, but not a driver, of human Treg stability in vitro. These data highlight the importance of monitoring Helios expression in therapeutic Treg manufacturing and provide new insight into the biological function of this transcription factor in human T-cells.
Collapse
Affiliation(s)
- Avery J Lam
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Prakruti Uday
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jana K Gillies
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
91
|
Meyer A, Yan S, Golumba-Nagy V, Esser RL, Barbarino V, Blakemore SJ, Rusyn L, Nikiforov A, Seeger-Nukpezah T, Grüll H, Pallasch CP, Kofler DM. Kinase activity profiling reveals contribution of G-protein signaling modulator 2 deficiency to impaired regulatory T cell migration in rheumatoid arthritis. J Autoimmun 2021; 124:102726. [PMID: 34555678 DOI: 10.1016/j.jaut.2021.102726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022]
Abstract
The ability of regulatory T (Treg) cells to migrate into inflammatory sites is reduced in autoimmune diseases, including rheumatoid arthritis (RA). The reasons for impaired Treg cell migration remain largely unknown. We performed multiplex human kinase activity arrays to explore possible differences in the post-translational phosphorylation status of kinase related proteins that could account for altered Treg cell migration in RA. Results were verified by migration assays and Western blot analysis of CD4+ T cells from RA patients and from mice with collagen type II induced arthritis. Kinome profiling of CD4+ T cells from RA patients revealed significantly altered post-translational phosphorylation of kinase related proteins, including G-protein-signaling modulator 2 (GPSM2), protein tyrosine kinase 6 (PTK6) and vitronectin precursor (VTNC). These proteins have not been associated with RA until now. We found that GPSM2 expression is reduced in CD4+ T cells from RA patients and is significantly downregulated in experimental autoimmune arthritis following immunization of mice with collagen type II. Interestingly, GPSM2 acts as a promoter of Treg cell migration in healthy individuals. Treatment of RA patients with interleukin-6 receptor (IL-6R) blocking antibodies restores GPSM2 expression, thereby improving Treg cell migration. Our study highlights the potential of multiplex kinase activity arrays as a tool for the identification of RA-related proteins which could serve as targets for novel treatments.
Collapse
Affiliation(s)
- Anja Meyer
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Viktoria Golumba-Nagy
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ruth L Esser
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Barbarino
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stuart J Blakemore
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lisa Rusyn
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anastasia Nikiforov
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tamina Seeger-Nukpezah
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Holger Grüll
- Institute of Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| | - Christian P Pallasch
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David M Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany.
| |
Collapse
|
92
|
Sjaastad LE, Owen DL, Tracy SI, Farrar MA. Phenotypic and Functional Diversity in Regulatory T Cells. Front Cell Dev Biol 2021; 9:715901. [PMID: 34631704 PMCID: PMC8495164 DOI: 10.3389/fcell.2021.715901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022] Open
Abstract
The concept that a subset of T cells exists that specifically suppresses immune responses was originally proposed over 50 years ago. It then took the next 30 years to solidify the concept of regulatory T cells (Tregs) into the paradigm we understand today - namely a subset of CD4+ FOXP3+ T-cells that are critical for controlling immune responses to self and commensal or environmental antigens that also play key roles in promoting tissue homeostasis and repair. Expression of the transcription factor FOXP3 is a defining feature of Tregs, while the cytokine IL2 is necessary for robust Treg development and function. While our initial conception of Tregs was as a monomorphic lineage required to suppress all types of immune responses, recent work has demonstrated extensive phenotypic and functional diversity within the Treg population. In this review we address the ontogeny, phenotype, and function of the large number of distinct effector Treg subsets that have been defined over the last 15 years.
Collapse
Affiliation(s)
- Louisa E. Sjaastad
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - David L. Owen
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Sean I. Tracy
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Michael A. Farrar
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
93
|
Hatzioannou A, Boumpas A, Papadopoulou M, Papafragkos I, Varveri A, Alissafi T, Verginis P. Regulatory T Cells in Autoimmunity and Cancer: A Duplicitous Lifestyle. Front Immunol 2021; 12:731947. [PMID: 34539668 PMCID: PMC8446642 DOI: 10.3389/fimmu.2021.731947] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
Regulatory T (Treg) cells, possess a strategic role in the maintenance of immune homeostasis, and their function has been closely linked to development of diverse pathologies including autoimmunity and cancer. Comprehensive studies in various disease contexts revealed an increased plasticity as a characteristic of Treg cells. Although Treg cell plasticity comes in various flavors, the major categories enclose the loss of Foxp3 expression, which is the master regulator of Treg cell lineage, giving rise to “ex-Treg” cells and the “fragile” Treg cells in which FOXP3 expression is retained but accompanied by the engagement of an inflammatory program and attenuation of the suppressive activity. Treg cell plasticity possess a tremendous therapeutic potential either by inducing Treg cell de-stabilization to promote anti-tumor immunity, or re-enforcing Treg cell stability to attenuate chronic inflammation. Herein, we review the literature on the Treg cell plasticity with lessons learned in autoimmunity and cancer and discuss challenges and open questions with potential therapeutic implications.
Collapse
Affiliation(s)
- Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Athina Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Miranta Papadopoulou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Iosif Papafragkos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece.,Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Athina Varveri
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Themis Alissafi
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panayotis Verginis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece.,Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
94
|
Ma X, Qin C, Chen M, Yu HH, Chu YH, Chen TJ, Bosco DB, Wu LJ, Bu BT, Wang W, Tian DS. Regulatory T cells protect against brain damage by alleviating inflammatory response in neuromyelitis optica spectrum disorder. J Neuroinflammation 2021; 18:201. [PMID: 34526069 PMCID: PMC8444427 DOI: 10.1186/s12974-021-02266-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Background and purpose Neuromyelitis optica spectrum disorder (NMOSD) is mainly an anti-aquaporin 4 (anti-AQP4) autoantibodies-mediated idiopathic inflammatory demyelinating disease of the central nervous system. Systemic and local inflammatory responses play a key role in the pathophysiology of NMOSD. However, the role of the crucial immunomodulators CD4+CD25+ forkhead box P3+ (Foxp3) regulatory T cells (Tregs) has not been investigated in NMOSD. Methods Twenty-five patients with anti-AQP4-postive NMOSD undergoing an attack and 21 healthy controls (HCs) were enrolled. Frequencies of T cell subsets and Tregs in the peripheral blood were assessed by flow cytometry. Additionally, a model of NMOSD using purified immunoglobulin G from anti-AQP4-antibodies-positive patients with NMOSD and human complement injected into brain of female adult C57BL/6J mice was established. Infiltrated Tregs into NMOSD mouse brain lesions were analyzed by flow cytometry, histological sections, and real-time quantitative Polymerase Chain Reaction. Astrocyte loss, demyelination, and inflammatory response were also evaluated in our NMOSD mouse model. Finally, we examined the effects of both depletion and adoptive transfer of Tregs. Results The percentage of Tregs, especially naïve Tregs, among total T cells in peripheral blood was significantly decreased in NMOSD patients at acute stage when compared to HCs. Within our animal model, the number and proportion of Tregs among CD4+ T cells were increased in the lesion of mice with NMOSD. Depletion of Tregs profoundly enhanced astrocyte loss and demyelination in these mice, while adoptive transfer of Tregs attenuated brain damage. Mechanistically, the absence of Tregs induced more macrophage infiltration, microglial activation, and T cells invasion, and modulated macrophages/microglia toward a classical activation phenotype, releasing more chemokines and pro-inflammatory cytokines. In contrast, Tregs transfer ameliorated immune cell infiltration in NMOSD mice, including macrophages, neutrophils, and T cells, and skewed macrophages and microglia towards an alternative activation phenotype, thereby decreasing the level of chemokines and pro-inflammatory cytokines. Conclusion Tregs may be key immunomodulators ameliorating brain damage via dampening inflammatory response after NMOSD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02266-0.
Collapse
Affiliation(s)
- Xue Ma
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hai-Han Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ting-Jun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bi-Tao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
95
|
Pompura SL, Wagner A, Kitz A, LaPerche J, Yosef N, Dominguez-Villar M, Hafler DA. Oleic acid restores suppressive defects in tissue-resident FOXP3 Tregs from patients with multiple sclerosis. J Clin Invest 2021; 131:138519. [PMID: 33170805 DOI: 10.1172/jci138519] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
FOXP3+ Tregs rely on fatty acid β-oxidation-driven (FAO-driven) oxidative phosphorylation (OXPHOS) for differentiation and function. Recent data demonstrate a role for Tregs in the maintenance of tissue homeostasis, with tissue-resident Tregs possessing tissue-specific transcriptomes. However, specific signals that establish tissue-resident Treg programs remain largely unknown. Tregs metabolically rely on FAO, and considering the lipid-rich environments of tissues, we hypothesized that environmental lipids drive Treg homeostasis. First, using human adipose tissue to model tissue residency, we identified oleic acid as the most prevalent free fatty acid. Mechanistically, oleic acid amplified Treg FAO-driven OXPHOS metabolism, creating a positive feedback mechanism that increased the expression of FOXP3 and phosphorylation of STAT5, which enhanced Treg-suppressive function. Comparing the transcriptomic program induced by oleic acid with proinflammatory arachidonic acid, we found that Tregs sorted from peripheral blood and adipose tissue of healthy donors transcriptomically resembled the Tregs treated in vitro with oleic acid, whereas Tregs from patients with multiple sclerosis (MS) more closely resembled an arachidonic acid transcriptomic profile. Finally, we found that oleic acid concentrations were reduced in patients with MS and that exposure of MS Tregs to oleic acid restored defects in their suppressive function. These data demonstrate the importance of fatty acids in regulating tissue inflammatory signals.
Collapse
Affiliation(s)
- Saige L Pompura
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Allon Wagner
- Department of Electrical Engineering and Computer Science, and the Center for Computational Biology, University of California Berkeley, Berkeley, California, USA
| | - Alexandra Kitz
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jacob LaPerche
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, and the Center for Computational Biology, University of California Berkeley, Berkeley, California, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology (MIT) and Harvard University, Boston, Massachusetts, USA.,Chan-Zuckerberg Biohub, San Francisco, California, USA
| | - Margarita Dominguez-Villar
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA.,Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
96
|
23Na imaging: Worth its salt for understanding multiple sclerosis. Proc Natl Acad Sci U S A 2021; 118:2110799118. [PMID: 34376559 DOI: 10.1073/pnas.2110799118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
97
|
Puleston DJ, Baixauli F, Sanin DE, Edwards-Hicks J, Villa M, Kabat AM, Kamiński MM, Stanckzak M, Weiss HJ, Grzes KM, Piletic K, Field CS, Corrado M, Haessler F, Wang C, Musa Y, Schimmelpfennig L, Flachsmann L, Mittler G, Yosef N, Kuchroo VK, Buescher JM, Balabanov S, Pearce EJ, Green DR, Pearce EL. Polyamine metabolism is a central determinant of helper T cell lineage fidelity. Cell 2021; 184:4186-4202.e20. [PMID: 34216540 PMCID: PMC8358979 DOI: 10.1016/j.cell.2021.06.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/16/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4+ helper T cells (TH) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH cell subsets. Polyamines control TH differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus TH cell subset fidelity.
Collapse
Affiliation(s)
- Daniel J Puleston
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Francesc Baixauli
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - David E Sanin
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Joy Edwards-Hicks
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Matteo Villa
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Agnieszka M Kabat
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Marcin M Kamiński
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michal Stanckzak
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Hauke J Weiss
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Katarzyna M Grzes
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Klara Piletic
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Cameron S Field
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Mauro Corrado
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Fabian Haessler
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Chao Wang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yaarub Musa
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | | | - Lea Flachsmann
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Stefan Balabanov
- Division of Haematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; The Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; The Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
98
|
Lam AJ, Lin DTS, Gillies JK, Uday P, Pesenacker AM, Kobor MS, Levings MK. Optimized CRISPR-mediated gene knockin reveals FOXP3-independent maintenance of human Treg identity. Cell Rep 2021; 36:109494. [PMID: 34348163 DOI: 10.1016/j.celrep.2021.109494] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
Regulatory T cell (Treg) therapy is a promising curative approach for a variety of immune-mediated conditions. CRISPR-based genome editing allows precise insertion of transgenes through homology-directed repair, but its use in human Tregs has been limited. We report an optimized protocol for CRISPR-mediated gene knockin in human Tregs with high-yield expansion. To establish a benchmark of human Treg dysfunction, we target the master transcription factor FOXP3 in naive and memory Tregs. Although FOXP3-ablated Tregs upregulate cytokine expression, effects on suppressive capacity in vitro manifest slowly and primarily in memory Tregs. Moreover, FOXP3-ablated Tregs retain their characteristic protein, transcriptional, and DNA methylation profile. Instead, FOXP3 maintains DNA methylation at regions enriched for AP-1 binding sites. Thus, although FOXP3 is important for human Treg development, it has a limited role in maintaining mature Treg identity. Optimized gene knockin with human Tregs will enable mechanistic studies and the development of tailored, next-generation Treg cell therapies.
Collapse
Affiliation(s)
- Avery J Lam
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - David T S Lin
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Jana K Gillies
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Prakruti Uday
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Anne M Pesenacker
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
99
|
Regulation of autoreactive CD4 T cells by FoxO1 signaling in CNS autoimmunity. J Neuroimmunol 2021; 359:577675. [PMID: 34403862 DOI: 10.1016/j.jneuroim.2021.577675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023]
Abstract
Myelin-specific CD4 T effector cells (Teffs), Th1 and Th17 cells, are encephalitogenic in experimental autoimmune encephalomyelitis (EAE), a well-defined murine model of multiple sclerosis (MS) and implicated in MS pathogenesis. Forkhead box O 1 (FoxO1) is a conserved effector molecule in PI3K/Akt signaling and critical in the differentiation of CD4 T cells into T helper subsets. However, it is unclear whether FoxO1 may be a target for redirecting CD4 T cell differentiation and benefit CNS autoimmunity. Using a selective FoxO1 inhibitor AS1842856, we show that inhibition of FoxO1 suppressed the differentiation and expansion of Th1 cells. The transdifferentiation of Th17 cells into encephalitogenic Th1-like cells was suppressed by FoxO1 inhibition upon reactivation of myelin-specific CD4 T cells from EAE mice. The transcriptional balance skewed from the Th1 transcription factor T-bet toward the Treg transcription factor Foxp3. Myelin-specific CD4 T cells treated with the FoxO1 inhibitor were less encephalitogenic in adoptive transfer EAE studies. Inhibition of FoxO1 in T cells from MS patients significantly suppressed the expansion of Th1 cells. Furthermore, FoxO1 inhibition with AS1842856 promoted the development of functional iTreg cells. The immune checkpoint programmed cell death protein-1 (PD-1)-induced Foxp3 expression in CD4 T cells was impaired by FoxO1 inhibition. These data illustrate an important role of FoxO1 signaling in CNS autoimmunity via regulating autoreactive Teff and Treg balance.
Collapse
|
100
|
Shimojima Y, Ichikawa T, Kishida D, Takamatsu R, Sekijima Y. Circulating regulatory T cells in adult-onset Still's disease: Focusing on their plasticity and stability. Clin Exp Immunol 2021; 206:184-195. [PMID: 34319596 DOI: 10.1111/cei.13648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022] Open
Abstract
We investigated the characteristics of regulatory T cells in adult-onset Still's disease (AOSD) with a focus on their plasticity, stability and relationship to disease severity. The proportion of circulating CD4+ CD25+ forkhead box protein 3 (FoxP3+ ) cells (Tregs ) and intracellular expression of effector cytokines, including interferon (IFN)-γ, interleukin (IL)-17 and IL-4, was analysed in 27 untreated patients with AOSD (acute AOSD), 11 of the 27 patients after remission and 16 healthy controls (HC) using flow cytometry. The suppressive ability of Tregs was also evaluated. Regression analyses of the results were performed. The proportion of Tregs was significantly lower in patients with acute AOSD than in the HC. The expression levels of IFN-γ, IL-17 and IL-4 in Tregs were significantly increased in patients with acute AOSD. IFN-γ and IL-4 expression levels were inversely correlated with the proportion of Tregs and positively correlated with serum ferritin levels. Decreased expression of FoxP3 in CD4+ CD25+ cells, which was correlated with increased expression of IL-17, and impaired suppressive function were observed in Tregs in acute AOSD. However, these aberrant findings in Tregs , including the reduced circulating proportion and functional ability and altered intracellular expression levels of cytokines and FoxP3, were significantly improved after remission. In acute AOSD, Tregs show plastic changes, including effector cytokine production and reductions in their proportion and functional activity. IFN-γ and IL-4 expression levels in Tregs may be associated with disease severity. Also, down-regulation of FoxP3 may be related to IL-17 expression in Tregs . Importantly, the stability of Tregs can be restored in remission.
Collapse
Affiliation(s)
- Yasuhiro Shimojima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Takanori Ichikawa
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Dai Kishida
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryota Takamatsu
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|