51
|
Kleinman AJ, Sivanandham S, Sette P, Sivanandham R, Policicchio BB, Xu C, Penn E, Brocca-Cofano E, Le Hingrat Q, Ma D, Pandrea I, Apetrei C. Changes to the Simian Immunodeficiency Virus (SIV) Reservoir and Enhanced SIV-Specific Responses in a Rhesus Macaque Model of Functional Cure after Serial Rounds of Romidepsin Administrations. J Virol 2022; 96:e0044522. [PMID: 35638831 PMCID: PMC9215247 DOI: 10.1128/jvi.00445-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
HIV persistence requires lifelong antiretroviral therapy (ART), calling for a cure. The histone deacetylase inhibitor, romidepsin, is used in the "shock and kill" approach with the goal of reactivating virus and subsequently clearing infected cells through cell-mediated immune responses. We tested serial and double infusions of romidepsin in a rhesus macaque (RM) model of SIV functional cure, which controls virus without ART. Off ART, romidepsin reactivated SIV in all RMs. Subsequent infusions resulted in diminished reactivation, and two RMs did not reactivate the virus after the second or third infusions. Therefore, those two RMs received CD8-depleting antibody to assess the replication competence of the residual reservoir. The remaining RMs received double infusions, i.e., two doses separated by 48-h. Double infusions were well tolerated, induced immune activation, and effectively reactivated SIV. Although reactivation was gradually diminished, cell-associated viral DNA was minimally changed, and viral outgrowth occurred in 4/5 RMs. In the RM which did not reactivate after CD8 depletion, viral outgrowth was not detected in peripheral blood mononuclear cells (PBMC)-derived CD4+ cells. The frequency of SIV-specific CD8+ T cells increased after romidepsin administration, and the increased SIV-specific immune responses were associated, although not statistically, with the diminished reactivation. Thus, our data showing sequential decreases in viral reactivation with repeated romidepsin administrations with all RMs and absence of viral reactivation after CD8+ T-cell depletion in one animal suggest that, in the context of healthy immune responses, romidepsin affected the inducible viral reservoir and gradually increased immune-mediated viral control. Given the disparities between the results of romidepsin administration to ART-suppressed SIVmac239-infected RMs and HIV-infected normal progressors compared to our immune-healthy model, our data suggest that improving immune function for greater SIV-specific responses should be the starting point of HIV cure strategies. IMPORTANCE HIV cure is sought after due to the prevalence of comorbidities that occur in persons with HIV. One of the most investigated HIV cure strategies is the "shock and kill" approach. Our study investigated the use of romidepsin, a histone deacetylase (HDAC) inhibitor, in our rhesus macaque model of functional cure, which allows for better resolution of viral reactivation due to the lack of antiretroviral therapy. We found that repeated rounds of romidepsin resulted in gradually diminished viral reactivation. One animal inevitably lacked replication-competent virus in the blood. With the accompanying enhancement of the SIV-specific immune response, our data suggest that there is a reduction of the viral reservoir in one animal by the cell-mediated immune response. With the differences observed between our model and persons living with HIV (PWH) treated with romidepsin, specifically in the context of a healthy immune system in our model, our data thereby indicate the importance of restoring the immune system for cure strategies.
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sindhuja Sivanandham
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paola Sette
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ranjit Sivanandham
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin B. Policicchio
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ellen Penn
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Egidio Brocca-Cofano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Quentin Le Hingrat
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dongzhu Ma
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
52
|
Romero-Martín L, Tarrés-Freixas F, Pedreño-López N, de la Concepción MLR, Cunyat F, Hartigan-O'Connor D, Carrillo J, Mothe B, Blanco J, Ruiz-Riol M, Brander C, Olvera A. T-Follicular-Like CD8 + T Cell Responses in Chronic HIV Infection Are Associated With Virus Control and Antibody Isotype Switching to IgG. Front Immunol 2022; 13:928039. [PMID: 35784304 PMCID: PMC9241491 DOI: 10.3389/fimmu.2022.928039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/26/2023] Open
Abstract
T cell responses are considered critical for the in vivo control of HIV, but the contribution of different T cell subsets to this control remains unclear. Using a boosted flow cytometric approach that is able to differentiate CD4+ and CD8+ T cell Th1/Tc1, Th2/Tc2, Th17/Tc17, Treg and Tfh/Tfc-like HIV-specific T cell populations, we identified CD8+ Tfc responses that were related to HIV plasma viral loads and associated with rate of antibody isotype class switching to IgG. This favorable balance towards IgG responses positively correlated with increased virus neutralization, higher avidity of neutralizing antibodies and more potent antibody-dependent cell cytotoxicity (ADCC) in PBMCs from HIV controllers compared to non-controllers. Our results identified the CD8+ Tfc-like T-cell response as a component of effective virus control which could possibly be exploited therapeutically.
Collapse
Affiliation(s)
- Luis Romero-Martín
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Departament de Biologia Cellular, de Fisiologia i d’Immunologia, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Ferran Tarrés-Freixas
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Núria Pedreño-López
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Maria L. Rodríguez de la Concepción
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Francesc Cunyat
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Dennis Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Fundació Lluita contra la Sida, Infectious Disease Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- AELIX Therapeutics, Barcelona, Spain
| | - Alex Olvera
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| |
Collapse
|
53
|
Jiang S, Chan CN, Rovira-Clavé X, Chen H, Bai Y, Zhu B, McCaffrey E, Greenwald NF, Liu C, Barlow GL, Weirather JL, Oliveria JP, Nakayama T, Lee IT, Matter MS, Carlisle AE, Philips D, Vazquez G, Mukherjee N, Busman-Sahay K, Nekorchuk M, Terry M, Younger S, Bosse M, Demeter J, Rodig SJ, Tzankov A, Goltsev Y, McIlwain DR, Angelo M, Estes JD, Nolan GP. Combined protein and nucleic acid imaging reveals virus-dependent B cell and macrophage immunosuppression of tissue microenvironments. Immunity 2022; 55:1118-1134.e8. [PMID: 35447093 PMCID: PMC9220319 DOI: 10.1016/j.immuni.2022.03.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/13/2021] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Abstract
Understanding the mechanisms of HIV tissue persistence necessitates the ability to visualize tissue microenvironments where infected cells reside; however, technological barriers limit our ability to dissect the cellular components of these HIV reservoirs. Here, we developed protein and nucleic acid in situ imaging (PANINI) to simultaneously quantify DNA, RNA, and protein levels within these tissue compartments. By coupling PANINI with multiplexed ion beam imaging (MIBI), we measured over 30 parameters simultaneously across archival lymphoid tissues from healthy or simian immunodeficiency virus (SIV)-infected nonhuman primates. PANINI enabled the spatial dissection of cellular phenotypes, functional markers, and viral events resulting from infection. SIV infection induced IL-10 expression in lymphoid B cells, which correlated with local macrophage M2 polarization. This highlights a potential viral mechanism for conditioning an immunosuppressive tissue environment for virion production. The spatial multimodal framework here can be extended to decipher tissue responses in other infectious diseases and tumor biology.
Collapse
Affiliation(s)
- Sizun Jiang
- Department of Pathology, Stanford University, Stanford, CA, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Chi Ngai Chan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | | | - Han Chen
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Yunhao Bai
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Bokai Zhu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Erin McCaffrey
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Candace Liu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Graham L Barlow
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Jason L Weirather
- Center of Immuno-Oncology, Dana-Faber Cancer Institute, Boston, MA, USA
| | - John Paul Oliveria
- Department of Pathology, Stanford University, Stanford, CA, USA; Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Tsuguhisa Nakayama
- Department of Pathology, Stanford University, Stanford, CA, USA; Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Ivan T Lee
- Department of Pathology, Stanford University, Stanford, CA, USA; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthias S Matter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Anne E Carlisle
- Center of Immuno-Oncology, Dana-Faber Cancer Institute, Boston, MA, USA
| | - Darci Philips
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Gustavo Vazquez
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Margaret Terry
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Skyler Younger
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Marc Bosse
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Janos Demeter
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yury Goltsev
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA; Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
54
|
Lawrence SP, Elser SE, Torben W, Blair RV, Pahar B, Aye PP, Schiro F, Szeltner D, Doyle-Meyers LA, Haggarty BS, Jordan APO, Romano J, Leslie GJ, Alvarez X, O’Connor DH, Wiseman RW, Fennessey CM, Li Y, Piatak M, Lifson JD, LaBranche CC, Lackner AA, Keele BF, Maness NJ, Marsh M, Hoxie JA. A cellular trafficking signal in the SIV envelope protein cytoplasmic domain is strongly selected for in pathogenic infection. PLoS Pathog 2022; 18:e1010507. [PMID: 35714165 PMCID: PMC9275724 DOI: 10.1371/journal.ppat.1010507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/12/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023] Open
Abstract
The HIV/SIV envelope glycoprotein (Env) cytoplasmic domain contains a highly conserved Tyr-based trafficking signal that mediates both clathrin-dependent endocytosis and polarized sorting. Despite extensive analysis, the role of these functions in viral infection and pathogenesis is unclear. An SIV molecular clone (SIVmac239) in which this signal is inactivated by deletion of Gly-720 and Tyr-721 (SIVmac239ΔGY), replicates acutely to high levels in pigtail macaques (PTM) but is rapidly controlled. However, we previously reported that rhesus macaques and PTM can progress to AIDS following SIVmac239ΔGY infection in association with novel amino acid changes in the Env cytoplasmic domain. These included an R722G flanking the ΔGY deletion and a nine nucleotide deletion encoding amino acids 734-736 (ΔQTH) that overlaps the rev and tat open reading frames. We show that molecular clones containing these mutations reconstitute signals for both endocytosis and polarized sorting. In one PTM, a novel genotype was selected that generated a new signal for polarized sorting but not endocytosis. This genotype, together with the ΔGY mutation, was conserved in association with high viral loads for several months when introduced into naïve PTMs. For the first time, our findings reveal strong selection pressure for Env endocytosis and particularly for polarized sorting during pathogenic SIV infection in vivo.
Collapse
Affiliation(s)
- Scott P. Lawrence
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Samra E. Elser
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Workineh Torben
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Robert V. Blair
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Bapi Pahar
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Pyone P. Aye
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Faith Schiro
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Dawn Szeltner
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Lara A. Doyle-Meyers
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Beth S. Haggarty
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrea P. O. Jordan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Josephine Romano
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George J. Leslie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Xavier Alvarez
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - David H. O’Connor
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Yuan Li
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Celia C. LaBranche
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Andrew A. Lackner
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - James A. Hoxie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
55
|
Rahman SA, Billingsley JM, Sharma AA, Styles TM, Govindaraj S, Shanmugasundaram U, Babu H, Riberio SP, Ali SA, Tharp GK, Ibegbu C, Waggoner SN, Johnson RP, Sekaly RP, Villinger F, Bosinger SE, Amara RR, Velu V. Lymph node CXCR5+ NK cells associate with control of chronic SHIV infection. JCI Insight 2022; 7:155601. [PMID: 35271506 PMCID: PMC9089783 DOI: 10.1172/jci.insight.155601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/04/2022] [Indexed: 11/28/2022] Open
Abstract
The persistence of virally infected cells as reservoirs despite effective antiretroviral therapy is a major barrier to an HIV/SIV cure. These reservoirs are predominately contained within cells present in the B cell follicles (BCFs) of secondary lymphoid tissues, a site that is characteristically difficult for most cytolytic antiviral effector cells to penetrate. Here, we identified a population of NK cells in macaque lymph nodes that expressed BCF-homing receptor CXCR5 and accumulated within BCFs during chronic SHIV infection. These CXCR5+ follicular NK cells exhibited an activated phenotype coupled with heightened effector functions and a unique transcriptome characterized by elevated expression of cytolytic mediators (e.g., perforin and granzymes, LAMP-1). CXCR5+ NK cells exhibited high expression of FcγRIIa and FcγRIIIa, suggesting a potential for elevated antibody-dependent effector functionality. Consistently, accumulation of CXCR5+ NK cells showed a strong inverse association with plasma viral load and the frequency of germinal center follicular Th cells that comprise a significant fraction of the viral reservoir. Moreover, CXCR5+ NK cells showed increased expression of transcripts associated with IL-12 and IL-15 signaling compared with the CXCR5- subset. Indeed, in vitro treatment with IL-12 and IL-15 enhanced the proliferation of CXCR5+ granzyme B+ NK cells. Our findings suggest that follicular homing NK cells might be important in immune control of chronic SHIV infection, and this may have important implications for HIV cure strategies.
Collapse
Affiliation(s)
- Sheikh Abdul Rahman
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Microbiology and Immunology and
| | - James M Billingsley
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Ashish Arunkumar Sharma
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tiffany M Styles
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sakthivel Govindaraj
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Uma Shanmugasundaram
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Hemalatha Babu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Susan Pereira Riberio
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Syed A Ali
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Gregory K Tharp
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Chris Ibegbu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Stephen N Waggoner
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - R Paul Johnson
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Microbiology and Immunology and.,Infectious Disease Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Steve E Bosinger
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Microbiology and Immunology and
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
56
|
Rosen EP, Deleage C, White N, Sykes C, Brands C, Adamson L, Luciw P, Estes JD, Kashuba ADM. Antiretroviral drug exposure in lymph nodes is heterogeneous and drug dependent. J Int AIDS Soc 2022; 25:e25895. [PMID: 35441468 PMCID: PMC9018350 DOI: 10.1002/jia2.25895] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction HIV reservoirs and infected cells may persist in tissues with low concentrations of antiretrovirals (ARVs). Traditional pharmacology methods cannot assess variability in ARV concentrations within morphologically complex tissues, such as lymph nodes (LNs). We evaluated the distribution of six ARVs into LNs and the proximity of these ARVs to CD4+ T cells and cell‐associated RT‐SHIV viral RNA. Methods Between December 2014 and April 2017, RT‐SHIV infected (SHIV+; N = 6) and healthy (SHIV–; N = 6) male rhesus macaques received two selected four‐drug combinations of six ARVs over 10 days to attain steady‐state conditions. Serial cryosections of axillary LN were analysed by a multimodal imaging approach that combined mass spectrometry imaging (MSI) for ARV disposition, RNAscope in situ hybridization for viral RNA (vRNA) and immunohistochemistry for CD4+ T cell and collagen expression. Spatial relationships across these four imaging domains were investigated by nearest neighbour search on co‐registered images using MATLAB. Results Through MSI, ARV‐dependent, heterogeneous concentrations were observed in different morphological LN regions, such as the follicles and medullary sinuses. After 5–6 weeks of infection, more limited ARV penetration into LN tissue relative to the blood marker heme was found in SHIV+ animals (SHIV+: 0.7 [0.2–1.4] mm; SHIV–: 1.3 [0.5–1.7] mm), suggesting alterations in the microcirculation. However, we found no detectable increase in collagen deposition. Regimen‐wide maps of composite ARV distribution indicated that up to 27% of SHIV+ LN tissue area was not exposed to detectable ARVs. Regions associated with B cell follicles had median 1.15 [0.94–2.69] ‐fold reduction in areas with measurable drug, though differences were only statistically significant for tenofovir (p = 0.03). Median co‐localization of drug with CD4+ target cells and vRNA varied widely by ARV (5.1–100%), but nearest neighbour analysis indicated that up to 10% of target cells and cell‐associated vRNA were not directly contiguous to at least one drug at concentrations greater than the IC50 value. Conclusions Our investigation of the spatial distributions of drug, virus and target cells underscores the influence of location and microenvironment within LN, where a small population of T cells may remain vulnerable to infection and low‐level viral replication during suppressive ART.
Collapse
Affiliation(s)
- Elias P Rosen
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Nicole White
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Craig Sykes
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Catherine Brands
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Lourdes Adamson
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Paul Luciw
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
57
|
Harper J, Ribeiro SP, Chan CN, Aid M, Deleage C, Micci L, Pino M, Cervasi B, Raghunathan G, Rimmer E, Ayanoglu G, Wu G, Shenvi N, Barnard RJ, Del Prete GQ, Busman-Sahay K, Silvestri G, Kulpa DA, Bosinger SE, Easley KA, Howell BJ, Gorman D, Hazuda DJ, Estes JD, Sekaly RP, Paiardini M. Interleukin-10 contributes to reservoir establishment and persistence in SIV-infected macaques treated with antiretroviral therapy. J Clin Invest 2022; 132:e155251. [PMID: 35230978 PMCID: PMC9012284 DOI: 10.1172/jci155251] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Interleukin-10 (IL-10) is an immunosuppressive cytokine that signals through STAT3 to regulate T follicular helper (Tfh) cell differentiation and germinal center formation. In SIV-infected macaques, levels of IL-10 in plasma and lymph nodes (LNs) were induced by infection and not normalized with antiretroviral therapy (ART). During chronic infection, plasma IL-10 and transcriptomic signatures of IL-10 signaling were correlated with the cell-associated SIV-DNA content within LN CD4+ memory subsets, including Tfh cells, and predicted the frequency of CD4+ Tfh cells and their cell-associated SIV-DNA content during ART, respectively. In ART-treated rhesus macaques, cells harboring SIV-DNA by DNAscope were preferentially found in the LN B cell follicle in proximity to IL-10. Finally, we demonstrated that the in vivo neutralization of soluble IL-10 in ART-treated, SIV-infected macaques reduced B cell follicle maintenance and, by extension, LN memory CD4+ T cells, including Tfh cells and those expressing PD-1 and CTLA-4. Thus, these data support a role for IL-10 in maintaining a pool of target cells in lymphoid tissue that serve as a niche for viral persistence. Targeting IL-10 signaling to impair CD4+ T cell survival and improve antiviral immune responses may represent a novel approach to limit viral persistence in ART-suppressed people living with HIV.
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Susan P. Ribeiro
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chi Ngai Chan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Discovery Oncology, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Barbara Cervasi
- Flow Cytometry Core, Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | | | - Eric Rimmer
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., South San Francisco, California, USA
| | - Gulesi Ayanoglu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., South San Francisco, California, USA
| | - Guoxin Wu
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Neeta Shenvi
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Richard J.O. Barnard
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deanna A. Kulpa
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kirk A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Bonnie J. Howell
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | - Daria J. Hazuda
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
58
|
Sengupta S, Board NL, Wu F, Moskovljevic M, Douglass J, Zhang J, Reinhold BR, Duke-Cohan J, Yu J, Reed MC, Tabdili Y, Azurmendi A, Fray EJ, Zhang H, Hsiue EHC, Jenike K, Ho YC, Gabelli SB, Kinzler KW, Vogelstein B, Zhou S, Siliciano JD, Sadegh-Nasseri S, Reinherz EL, Siliciano RF. TCR-mimic bispecific antibodies to target the HIV-1 reservoir. Proc Natl Acad Sci U S A 2022; 119:e2123406119. [PMID: 35394875 PMCID: PMC9169739 DOI: 10.1073/pnas.2123406119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infection is incurable due to the persistence of the virus in a latent reservoir of resting memory CD4+ T cells. “Shock-and-kill” approaches that seek to induce HIV-1 gene expression, protein production, and subsequent targeting by the host immune system have been unsuccessful due to a lack of effective latency-reversing agents (LRAs) and kill strategies. In an effort to develop reagents that could be used to promote killing of infected cells, we constructed T cell receptor (TCR)-mimic antibodies to HIV-1 peptide-major histocompatibility complexes (pMHC). Using phage display, we panned for phages expressing antibody-like variable sequences that bound HIV-1 pMHC generated using the common HLA-A*02:01 allele. We targeted three epitopes in Gag and reverse transcriptase identified and quantified via Poisson detection mass spectrometry from cells infected in vitro with a pseudotyped HIV-1 reporter virus (NL4.3 dEnv). Sequences isolated from phages that bound these pMHC were cloned into a single-chain diabody backbone (scDb) sequence, such that one fragment is specific for an HIV-1 pMHC and the other fragment binds to CD3ε, an essential signal transduction subunit of the TCR. Thus, these antibodies utilize the sensitivity of T cell signaling as readouts for antigen processing and as agents to promote killing of infected cells. Notably, these scDbs are exquisitely sensitive and specific for the peptide portion of the pMHC. Most importantly, one scDb caused killing of infected cells presenting a naturally processed target pMHC. This work lays the foundation for a novel therapeutic killing strategy toward elimination of the HIV-1 reservoir.
Collapse
Affiliation(s)
- Srona Sengupta
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Nathan L. Board
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Fengting Wu
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Milica Moskovljevic
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Josephine Zhang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bruce R. Reinhold
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Jonathan Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Jeanna Yu
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Madison C. Reed
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yasmine Tabdili
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Aitana Azurmendi
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Emily J. Fray
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Katharine Jenike
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Kenneth W. Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
- HHMI, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
| | - Janet D. Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Ellis L. Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Robert F. Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- HHMI, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
59
|
Anang DC, Ramwadhdoebe TH, Hähnlein JS, van Kuijk B, Smits N, van Lienden KP, Maas M, Gerlag DM, Tak PP, de Vries N, van Baarsen LGM. Increased Frequency of CD4+ Follicular Helper T and CD8+ Follicular T Cells in Human Lymph Node Biopsies during the Earliest Stages of Rheumatoid Arthritis. Cells 2022; 11:cells11071104. [PMID: 35406668 PMCID: PMC8997933 DOI: 10.3390/cells11071104] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Follicular T helper cells (Tfh cells) provide key B-cell help and are essential in germinal center formation and (auto) antibody generation. To gain more insight into their role during the earliest phase of rheumatoid arthritis (RA), we analyzed their frequencies, phenotypes, and cytokine profiles in peripheral blood and lymph node biopsies of healthy controls (HCs), autoantibody-positive individuals at risk for developing RA (RA-risk individuals), and early RA patients. Subsequently, we confirmed their presence in lymph nodes and synovial tissue of RA patients using immunofluorescence microscopy. In the blood, the frequency of Tfh cells did not differ between study groups. In lymphoid and synovial tissues, Tfh cells were localized in B-cell areas, and their frequency correlated with the frequency of CD19+ B cells. Compared to lymphoid tissues of healthy controls, those of RA patients and RA-risk individuals showed more CD19+ B cells, CD4+CXCR5+ follicular helper T cells, and CD8+CXCR5+ follicular T cells. These Tfh cells produced less IL-21 upon ex vivo stimulation. These findings suggest that Tfh cells may present a novel rationale for therapeutic targeting during the preclinical stage of RA to prevent further disease progression.
Collapse
Affiliation(s)
- Dornatien Chuo Anang
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Tamara H. Ramwadhdoebe
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Janine S. Hähnlein
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Bo van Kuijk
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Noortje Smits
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Krijn P. van Lienden
- Department of Radiology, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands; (K.P.v.L.); (M.M.)
| | - Mario Maas
- Department of Radiology, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands; (K.P.v.L.); (M.M.)
| | - Daniëlle M. Gerlag
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- UCB Pharma, Slough SL1 3XE, UK
| | - Paul P. Tak
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Candel Therapeutics, Needham, MA 02494, USA
- Department of Internal Medicine, Cambridge University, Cambridge CB2 0QQ, UK
| | - Niek de Vries
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Lisa G. M. van Baarsen
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-56-64969; Fax: +31-20-69-19658
| |
Collapse
|
60
|
Richardson ZA, Deleage C, Tutuka CSA, Walkiewicz M, Del Río-Estrada PM, Pascoe RD, Evans VA, Reyesteran G, Gonzales M, Roberts-Thomson S, González-Navarro M, Torres-Ruiz F, Estes JD, Lewin SR, Cameron PU. Multiparameter immunohistochemistry analysis of HIV DNA, RNA and immune checkpoints in lymph node tissue. J Immunol Methods 2022; 501:113198. [PMID: 34863818 PMCID: PMC9036546 DOI: 10.1016/j.jim.2021.113198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022]
Abstract
The main barrier to a cure for HIV is the persistence of long-lived and proliferating latently infected CD4+ T-cells despite antiretroviral therapy (ART). Latency is well characterized in multiple CD4+ T-cell subsets, however, the contribution of regulatory T-cells (Tregs) expressing FoxP3 as well as immune checkpoints (ICs) PD-1 and CTLA-4 as targets for productive and latent HIV infection in people living with HIV on suppressive ART is less well defined. We used multiplex detection of HIV DNA and RNA with immunohistochemistry (mIHC) on formalin-fixed paraffin embedded (FFPE) cells to simultaneously detect HIV RNA and DNA and cellular markers. HIV DNA and RNA were detected by in situ hybridization (ISH) (RNA/DNAscope) and IHC was used to detect cellular markers (CD4, PD-1, FoxP3, and CTLA-4) by incorporating the tyramide system amplification (TSA) system. We evaluated latently infected cell lines, a primary cell model of HIV latency and excisional lymph node (LN) biopsies collected from people living with HIV (PLWH) on and off ART. We clearly detected infected cells that coexpressed HIV RNA and DNA (active replication) and DNA only (latently infected cells) in combination with IHC markers in the in vitro infection model as well as LN tissue from PLWH both on and off ART. Combining ISH targeting HIV RNA and DNA with IHC provides a platform to detect and quantify HIV persistence within cells identified by multiple markers in tissue samples from PLWH on ART or to study HIV latency.
Collapse
Affiliation(s)
- Zuwena A Richardson
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Claire Deleage
- Frederick National Laboratories for Cancer Research, MD, Frederick, United States of America
| | - Candani S A Tutuka
- Olivia Newton John Cancer Centre Research Institute, Austin Hospital, Heidelberg, Australia; La Trobe School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Marzena Walkiewicz
- Olivia Newton John Cancer Centre Research Institute, Austin Hospital, Heidelberg, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Perla M Del Río-Estrada
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Rachel D Pascoe
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Vanessa A Evans
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Gustavo Reyesteran
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Michael Gonzales
- Pathology Department, The Royal Melbourne Hospital, Melbourne, Australia
| | | | - Mauricio González-Navarro
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health Science University, Portland, Oregon, USA
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia
| | - Paul U Cameron
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia; La Trobe School of Cancer Medicine, La Trobe University, Melbourne, Australia; Launceston General Hospital, Tasmania, Launceston, Australia.
| |
Collapse
|
61
|
Pampusch MS, Abdelaal HM, Cartwright EK, Molden JS, Davey BC, Sauve JD, Sevcik EN, Rendahl AK, Rakasz EG, Connick E, Berger EA, Skinner PJ. CAR/CXCR5-T cell immunotherapy is safe and potentially efficacious in promoting sustained remission of SIV infection. PLoS Pathog 2022; 18:e1009831. [PMID: 35130312 PMCID: PMC8853520 DOI: 10.1371/journal.ppat.1009831] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
During chronic human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection prior to AIDS progression, the vast majority of viral replication is concentrated within B cell follicles of secondary lymphoid tissues. We investigated whether infusion of T cells expressing an SIV-specific chimeric antigen receptor (CAR) and the follicular homing receptor, CXCR5, could successfully kill viral-RNA+ cells in targeted lymphoid follicles in SIV-infected rhesus macaques. In this study, CD4 and CD8 T cells from rhesus macaques were genetically modified to express antiviral CAR and CXCR5 moieties (generating CAR/CXCR5-T cells) and autologously infused into a chronically infected animal. At 2 days post-treatment, the CAR/CXCR5-T cells were located primarily in spleen and lymph nodes both inside and outside of lymphoid follicles. Few CAR/CXCR5-T cells were detected in the ileum, rectum, and lung, and no cells were detected in the bone marrow, liver, or brain. Within follicles, CAR/CXCR5-T cells were found in direct contact with SIV-viral RNA+ cells. We next infused CAR/CXCR5-T cells into ART-suppressed SIV-infected rhesus macaques, in which the animals were released from ART at the time of infusion. These CAR/CXCR5-T cells replicated in vivo within both the extrafollicular and follicular regions of lymph nodes and accumulated within lymphoid follicles. CAR/CXR5-T cell concentrations in follicles peaked during the first week post-infusion but declined to undetectable levels after 2 to 4 weeks. Overall, CAR/CXCR5-T cell-treated animals maintained lower viral loads and follicular viral RNA levels than untreated control animals, and no outstanding adverse reactions were noted. These findings indicate that CAR/CXCR5-T cell treatment is safe and holds promise as a future treatment for the durable remission of HIV.
Collapse
Affiliation(s)
- Mary S. Pampusch
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Hadia M. Abdelaal
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Emily K. Cartwright
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jhomary S. Molden
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Brianna C. Davey
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jordan D. Sauve
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Emily N. Sevcik
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Aaron K. Rendahl
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Elizabeth Connick
- Division of Infectious Diseases, University of Arizona, Tucson, Arizona, United States of America
| | - Edward A. Berger
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
62
|
Reduction of CD8 T cell functionality but not inhibitory capacity by integrase inhibitors. J Virol 2022; 96:e0173021. [PMID: 35019724 DOI: 10.1128/jvi.01730-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although HIV-specific CD8 T cells are effective in controlling HIV-infection, they fail to clear infection even in the presence of antiretroviral therapy (ART) and cure strategies such as "shock-and-kill". Little is known how ART is contributing to HIV-specific CD8 T cell function and the ability to clear HIV infection. Therefore, we first assessed the cytokine polyfunctionality and proliferation of CD8 T cells from ART-treated HIV+ individuals directly ex vivo and observed a decline in the multifunctional response as well as proliferation indices of these cells in individuals treated with integrase inhibitor (INSTI) based ART regimens compared to both protease inhibitor (PI) and non-nucleoside reverse-transcriptase inhibitor (NNRTI) based regimens. We next co-cultured CD8 T cells with different drugs individually and were able to observe reduced functional properties with significantly decreased ability of CD8 T cells to express IFNγ, MIP1β and TNFα only after treatment with INSTI-based regimens. Furthermore, previously activated and INSTI-treated CD8 T cells demonstrated reduced capacity to express perforin and granzyme B compared to PI and NNRTI treated cells. Unexpectedly, CD8 T cells treated with dolutegravir showed a similar killing ability 7 dpi compared to emtricitabine or rilpivirine treated cells. We next used a live cell imaging assay to determine the migratory capacity of CD8 T cells. Only INSTI-treated cells showed less migratory activity after SDF-1α stimulation compared to NRTI regimens. Our data show that the choice of ART can have a significant impact on CD8 T cell effector functions, but the importance for potential eradication attempts is unknown. Importance Integrase Strand Transfer Inhibitors (INSTI) are recommended by national and international guidelines as a key component of ART in the treatment of HIV-infected patients. In particular, their efficacy, tolerability and low drug-drug interaction profile have made them to the preferred choice as part of the first-line regimen in treatment-naïve individuals. Here, we demonstrate that the choice of ART can have a significant impact on function and metabolism of CD8 T cells. In summary, our study provides first evidence on a significant, negative impact on CD8 T cell effector functions in the presence of two INSTIs, dolutegravir and elvitegravir, which may contribute to the limited success of eradicating HIV-infected cells through "shock-and-kill" strategies. Although our findings are coherent with recent studies highlighting a possible role of dolutegravir in weight gain, further investigations are necessary to fully understand the impact of INSTI-based regimens on the health of the individual during antiretroviral therapy.
Collapse
|
63
|
Hypermethylation at the CXCR5 gene locus limits trafficking potential of CD8+ T cells into B-cell follicles during HIV-1 infection. Blood Adv 2022; 6:1904-1916. [PMID: 34991160 PMCID: PMC8941472 DOI: 10.1182/bloodadvances.2021006001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
CD8+ T-cells play an important role in HIV control. However, in human lymph nodes (LNs), only a small subset of CD8+ T-cells expresses CXCR5, the chemokine receptor required for cell migration into B cell follicles, which are major sanctuaries for HIV persistence in individuals on therapy. Here, we investigate the impact of HIV infection on follicular CD8+ T-cells (fCD8s) frequencies, trafficking pattern and CXCR5 regulation. We show that, although HIV infection results in a marginal increase of fCD8s in LN, the majority of HIV-specific CD8+ T-cells are CXCR5 negative (non-fCD8s) (p<0.003). Mechanistic investigations using ATAC-seq showed that non-fCD8s have closed chromatin at the CXCR5 transcriptional start site (TSS). DNA bisulfite sequencing identified DNA hypermethylation at the CXCR5 TSS as the most probable cause of closed chromatin. Transcriptional factor footprints analysis revealed enrichment of transforming growth factors (TGFs) at the TSS of fCD8s. In-vitro stimulation of non-fCD8s with recombinant TGF-β resulted in significant increase in CXCR5 expression (fCD8s). Thus, this study identifies TGF-β signaling as a viable strategy for increasing fCD8s frequencies in follicular areas of the LN where they are needed to eliminate HIV infected cells, with implications for HIV cure strategies.
Collapse
|
64
|
Implications of the accumulation of CXCR5 + NK cells in lymph nodes of HIV-1 infected patients. EBioMedicine 2022; 75:103794. [PMID: 34973625 PMCID: PMC8728057 DOI: 10.1016/j.ebiom.2021.103794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background B cell follicles are immune-privileged sites where intensive HIV-1 replication and latency occur, preventing a permanent cure. Recent study showed that CXCR5+ NK cells in B cell follicles can inhibit SIV replication in African green monkeys, but this has not been reported in HIV-1 infected patients. Methods Lymphocytes and tissue sections of lymph node were collected from 11 HIV-1 positive antiretroviral therapy (ART)-naive and 19 HIV-1 negative donors. We performed immunofluorescence and RNA-scope to detect the location of CXCR5+ NK cells and its relationship with HIV-1 RNA, and performed flow cytometry and RNA-seq to analyze the frequency, phenotypic and functional characteristics of CXCR5+ NK cells. The CXCL13 expression were detected by immunohistochemistry. Findings CXCR5+ NK cells, which accumulated in LNs from HIV-1 infected individuals, expressed high levels of activating receptors such as NKG2D and NKp44. CXCR5+ NK cells had upregulated expression of CD107a and β-chemokines, which were partially impaired in HIV-1 infection. Importantly, the frequency of CXCR5+NK cells was inversely related to the HIV-1 viral burden in LNs. In addition, CXCL13—the ligand of CXCR5—was upregulated in HIV-1 infected individuals and positively correlated with the frequency of CXCR5+ NK cells. Interpretation During chronic HIV-1 infection, CXCR5+ NK cells accumulated in lymph node, exhibit altered immune characteristics and underlying anti-HIV-1 effect, which may be an effective target for a functional cure of HIV-1.
Collapse
|
65
|
Busman-Sahay K, Nekorchuk MD, Starke CE, Chan CN, Estes JD. In Situ Multiplexing to Identify, Quantify, and Phenotype the HIV-1/SIV Reservoir Within Lymphoid Tissue. Methods Mol Biol 2022; 2407:277-290. [PMID: 34985671 DOI: 10.1007/978-1-0716-1871-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Modern combination antiretroviral therapy (ART) regimens provide abiding viral suppression for most individuals infected with human immunodeficiency virus (HIV). However, the persistence of viral reservoirs ensures that eradication of HIV-1 (i.e., cure) or sustained ART-free remission (i.e., functional cure) remains elusive, necessitating continual, strict ART adherence and contributing to HIV-1-related comorbidities. Eradication of these viral reservoirs, which persist primarily within lymphoid tissue, will require a deeper understanding of the cellular neighborhoods in which latent and active HIV-1-infected cells reside. By pairing highly sensitive in situ hybridization (ISH) with an exceptionally flexible immunofluorescence (IF) approach, we describe a simple, yet highly adaptable multiplex protocol for investigating the quantity, distribution, and characteristics of HIV-1 viral reservoirs.
Collapse
Affiliation(s)
- Kathleen Busman-Sahay
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Michael D Nekorchuk
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Carly Elizabeth Starke
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Chi Ngai Chan
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Jacob D Estes
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA.
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
66
|
Calvet-Mirabent M, Claiborne DT, Deruaz M, Tanno S, Serra C, Delgado-Arévalo C, Sánchez-Cerrillo I, de Los Santos I, Sanz J, García-Fraile L, Sánchez-Madrid F, Alfranca A, Muñoz-Fernández MÁ, Allen TM, Buzón MJ, Balazs A, Vrbanac V, Martín-Gayo E. Poly I:C and STING agonist-primed DC increase lymphoid tissue polyfunctional HIV-1-specific CD8 + T cells and limit CD4 + T cell loss in BLT mice. Eur J Immunol 2021; 52:447-461. [PMID: 34935145 DOI: 10.1002/eji.202149502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022]
Abstract
Effective function of CD8+ T cells and enhanced innate activation of dendritic cells (DC) in response to HIV-1 is linked to protective antiviral immunity in controllers. Manipulation of DC targeting the master regulator TANK-binding Kinase 1 (TBK1) might be useful to acquire controller-like properties. Here, we evaluated the impact of the combination of 2´3´-c´diAM(PS)2 and Poly I:C as potential adjuvants capable of potentiating DC´s abilities to induce polyfunctional HIV-1 specific CD8+ T cell responses in vitro and in vivo using a humanized BLT mouse model. Adjuvant combination enhanced TBK-1 phosphorylation and IL-12 and IFNβ expression on DC and increased their ability to activate polyfunctional HIV-1-specific CD8+ T cells in vitro. Moreover, higher proportions of hBLT mice vaccinated with ADJ-DC exhibited less severe CD4+ T cell depletion following HIV-1 infection compared to control groups. This was associated with infiltration of CD8+ T cells in the white pulp from the spleen, reduced spread of infected p24+ cells to lymph node and with preserved abilities of CD8+ T cells from the spleen and blood of vaccinated animals to induce specific polyfunctional responses upon antigen stimulation. Therefore, priming of DC with Poly I:C and STING agonists might be useful for future HIV-1 vaccine studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marta Calvet-Mirabent
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | | | - Maud Deruaz
- Human Immune System Mouse Program from Massachusetts General Hospital, Boston.,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Serah Tanno
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Carla Serra
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona
| | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Ignacio de Los Santos
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Jesús Sanz
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Lucio García-Fraile
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Francisco Sánchez-Madrid
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón. Madrid, Spain
| | | | - Maria J Buzón
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona
| | - Alejandro Balazs
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Vladimir Vrbanac
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Enrique Martín-Gayo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| |
Collapse
|
67
|
Pampusch MS, Hajduczki A, Mwakalundwa G, Connick E, Berger EA, Skinner PJ. Production and Characterization of SIV-Specific CAR/CXCR5 T Cells. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2421:171-185. [PMID: 34870819 DOI: 10.1007/978-1-0716-1944-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
HIV-specific chimeric antigen receptor (CAR) T cells that target lymphoid follicles have the potential to functionally cure HIV infection. CD8+ T cells, NK cells, or peripheral blood mononuclear cells (PBMC) may be modified to express HIV-specific CARs as well as follicular homing molecules such as CXCR5 to target the virally infected T follicular helper cells that concentrate within B cell follicles during HIV infection. This chapter outlines methods utilizing a simian immunodeficiency virus (SIV) rhesus macaque model of HIV to produce transduced T cells from primary PBMCs. Methods are presented for production of an SIV-specific CAR/CXCR5-encoding retrovirus used to transduce primary rhesus macaque PBMCs. Procedures to evaluate the functionality of the expanded CAR/CXCR5 T cells in vitro and ex vivo are also presented. An in vitro migration assay determines the ability of the T cells expressing CAR/CXCR5 to migrate to the CXCR5 ligand CXCL13, while an ex vivo migration assay allows measurement of the transduced T cell migration into the B cell follicle. Antiviral activity of the CAR/CXCR5 transduced T cells is determined using a viral suppression assay. These methods can be used to produce T cells for immunotherapy in SIV-infected rhesus macaques and to evaluate the functionality of the cells prior to infusion. Similar procedures can be used to produce HIV-specific CAR/CXCR5 T cells.
Collapse
Affiliation(s)
- Mary S Pampusch
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA.
| | - Agnes Hajduczki
- Laboratory of Viral Diseases, NIAID, The National Institutes of Health, Bethesda, MD, USA
| | - Gwantwa Mwakalundwa
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Elizabeth Connick
- Division of Infectious Diseases, University of Arizona, Tucson, AZ, USA
| | - Edward A Berger
- Laboratory of Viral Diseases, NIAID, The National Institutes of Health, Bethesda, MD, USA
| | - Pamela J Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
68
|
Silveira ELV, Hong JJ, Amancha PK, Rogers KA, Ansari AA, Byrareddy SN, Villinger F. Viremia controls Env-specific antibody-secreting cell responses in simian immunodeficiency virus infected macaques pre and post-antiretroviral therapy. AIDS 2021; 35:2085-2094. [PMID: 34148985 PMCID: PMC8490307 DOI: 10.1097/qad.0000000000002998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the kinetics of Env (gp140)-specific antibody-secreting cells (ASCs) during acute and early chronic simian immunodeficiency virus (SIV) infection, and prior to and postantiretroviral therapy (ART) in rhesus macaques. DESIGN AND METHODS At week 0, rhesus macaques were inoculated intravenously with SIVmac239 and the viral loads were allowed to develop. Daily ART was initiated at week 5 post infection until week 18, though the animals were monitored until week 28 for the following parameters: enumeration of SIV gp140-specific ASCs by ELISPOT; quantification of viremia and SIV gp140-specific IgG titres through qRT-PCR and ELISA, respectively; estimation of monocytes, follicular helper T cells (Tfh) and memory B cell frequencies using polychromatic flow cytometry. RESULTS Direct correlations were consistently found between blood SIV gp140-specific ASC responses and viremia or SIV Env-specific IgG titres. In contrast, SIV gp140-specific ASC responses showed inverse correlations with the percentage of total memory B cells in the blood. In lymph nodes, the magnitude of the SIV gp140-specific ASC responses also followed the viral load kinetics. In contrast, the number of SIV gp140-specific ASCs presented did not correlate with frequencies of circulating activated monocyte (CD14+CD16+) or Tfh cells. CONCLUSION Blood and/or lymph node viral loads may regulate the onset and magnitude of SIV gp140-specific ASCs during SIV infection and following ART in rhesus macaques.
Collapse
Affiliation(s)
- Eduardo L. V. Silveira
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| | - Jung Joo Hong
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| | - Praveen K. Amancha
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| | - Kenneth A Rogers
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322 – USA
| | - Siddappa N. Byrareddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322 – USA
| | - Francois Villinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| |
Collapse
|
69
|
Rascle P, Jacquelin B, Petitdemange C, Contreras V, Planchais C, Lazzerini M, Dereuddre-Bosquet N, Le Grand R, Mouquet H, Huot N, Müller-Trutwin M. NK-B cell cross talk induces CXCR5 expression on natural killer cells. iScience 2021; 24:103109. [PMID: 34622162 PMCID: PMC8479784 DOI: 10.1016/j.isci.2021.103109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/02/2021] [Accepted: 09/08/2021] [Indexed: 01/21/2023] Open
Abstract
B cell follicles (BCFs) in lymph nodes (LNs) are generally exempt of CD8+ T and NK cells. African green monkeys (AGMs), a natural host of simian immunodeficiency virus (SIV), display NK cell-mediated viral control in BCF. NK cell migration into BCF in chronically SIVagm-infected AGM is associated with CXCR5+ NK cells. We aimed to identify the mechanism leading to CXCR5 expression on NK cells. We show that CXCR5+ NK cells in LN were induced following SIVagm infection. CXCR5+ NK cells accumulated preferentially in BCF with proliferating B cells. Autologous NK-B cell co-cultures in transwell chambers induced CXCR5+ NK cells. Transcriptome analysis of CXCR5+ NK cells revealed expression of bcl6 and IL6R. IL-6 induced CXCR5 on AGM and human NK cells. IL6 mRNA was detected in LN at higher levels during SIVagm than SIVmac infection and often produced by plasma cells. Our study reveals a mechanism of B cell-dependent NK cell regulation. IL-6 can induce CXCR5 on NK cells CXCR5+ NK cells expressed high levels of bcl6 and IL6R More IL-6+ plasmablast/plasma cells in lymph nodes in SIVagm than SIVmac infection B cells participate in the regulation of NK cell migration into BCF
Collapse
Affiliation(s)
- Philippe Rascle
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Béatrice Jacquelin
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Caroline Petitdemange
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Vanessa Contreras
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Cyril Planchais
- Institut Pasteur, Laboratory of Humoral Immunology, Paris, France.,INSERM U1222, Paris, France
| | - Marie Lazzerini
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Nathalie Dereuddre-Bosquet
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Roger Le Grand
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, Laboratory of Humoral Immunology, Paris, France.,INSERM U1222, Paris, France
| | - Nicolas Huot
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
70
|
Collins DR, Urbach JM, Racenet ZJ, Arshad U, Power KA, Newman RM, Mylvaganam GH, Ly NL, Lian X, Rull A, Rassadkina Y, Yanez AG, Peluso MJ, Deeks SG, Vidal F, Lichterfeld M, Yu XG, Gaiha GD, Allen TM, Walker BD. Functional impairment of HIV-specific CD8 + T cells precedes aborted spontaneous control of viremia. Immunity 2021; 54:2372-2384.e7. [PMID: 34496223 PMCID: PMC8516715 DOI: 10.1016/j.immuni.2021.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Spontaneous control of HIV infection has been repeatedly linked to antiviral CD8+ T cells but is not always permanent. To address mechanisms of durable and aborted control of viremia, we evaluated immunologic and virologic parameters longitudinally among 34 HIV-infected subjects with differential outcomes. Despite sustained recognition of autologous virus, HIV-specific proliferative and cytolytic T cell effector functions became selectively and intrinsically impaired prior to aborted control. Longitudinal transcriptomic profiling of functionally impaired HIV-specific CD8+ T cells revealed altered expression of genes related to activation, cytokine-mediated signaling, and cell cycle regulation, including increased expression of the antiproliferative transcription factor KLF2 but not of genes associated with canonical exhaustion. Lymphoid HIV-specific CD8+ T cells also exhibited poor functionality during aborted control relative to durable control. Our results identify selective functional impairment of HIV-specific CD8+ T cells as prognostic of impending aborted HIV control, with implications for clinical monitoring and immunotherapeutic strategies.
Collapse
Affiliation(s)
- David R Collins
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | | - Umar Arshad
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Karen A Power
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ruchi M Newman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Geetha H Mylvaganam
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ngoc L Ly
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Anna Rull
- Joan XXIII University Hospital, Pere Virgili Institute (IISPV), Rovira i Virgili University, Tarragona, Spain
| | - Yelizaveta Rassadkina
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Adrienne G Yanez
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Francesc Vidal
- Joan XXIII University Hospital, Pere Virgili Institute (IISPV), Rovira i Virgili University, Tarragona, Spain
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Gaurav D Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Institute for Medical Engineering and Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
71
|
Zaongo SD, Wang Y, Ma P, Song FZ, Chen YK. Selective elimination of host cells harboring replication-competent human immunodeficiency virus reservoirs: a promising therapeutic strategy for HIV cure. Chin Med J (Engl) 2021; 134:2776-2787. [PMID: 34620750 PMCID: PMC8667983 DOI: 10.1097/cm9.0000000000001797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 10/27/2022] Open
Abstract
ABSTRACT Many seminal advances have been made in human immunodeficiency virus (HIV)/AIDS research over the past four decades. Treatment strategies, such as gene therapy and immunotherapy, are yielding promising results to effectively control HIV infection. Despite this, a cure for HIV/AIDS is not envisioned in the near future. A recently published academic study has raised awareness regarding a promising alternative therapeutic option for HIV/AIDS, referred to as "selective elimination of host cells capable of producing HIV" (SECH). Similar to the "shock and kill strategy," the SECH approach requires the simultaneous administration of drugs targeting key mechanisms in specific cells to efficiently eliminate HIV replication-competent cellular reservoirs. Herein, we comprehensively review the specific mechanisms targeted by the SECH strategy. Briefly, the suggested cocktail of drugs should contain (i) latency reversal agents to promote the latency reversal process in replication-competent reservoir cells, (ii) pro-apoptotic and anti-autophagy drugs to induce death of infected cells through various pathways, and finally (iii) drugs that eliminate new cycles of infection by prevention of HIV attachment to host cells, and by HIV integrase inhibitor drugs. Finally, we discuss three major challenges that are likely to restrict the application of the SECH strategy in HIV/AIDS patients.
Collapse
Affiliation(s)
- Silvere D. Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yue Wang
- Institute for Medical Device Standardization Administration; National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ping Ma
- Department of Infectious Diseases, Tianjin Second People Hospital, Tianjin 300192, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Fang-Zhou Song
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yao-Kai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
| |
Collapse
|
72
|
de Armas LR, Gavegnano C, Pallikkuth S, Rinaldi S, Pan L, Battivelli E, Verdin E, Younis RT, Pahwa R, Williams SL, Schinazi RF, Pahwa S. The Effect of JAK1/2 Inhibitors on HIV Reservoir Using Primary Lymphoid Cell Model of HIV Latency. Front Immunol 2021; 12:720697. [PMID: 34531866 PMCID: PMC8438319 DOI: 10.3389/fimmu.2021.720697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023] Open
Abstract
HIV eradication is hindered by the existence of latent HIV reservoirs in CD4+ T cells. Therapeutic strategies targeting latent cells are required to achieve a functional cure, however the study of latently infected cells from HIV infected persons is extremely challenging due to the lack of biomarkers that uniquely characterize them. In this study, the dual reporter virus HIVGKO was used to investigate latency establishment and maintenance in lymphoid-derived CD4+ T cells. Single cell technologies to evaluate protein expression, host gene expression, and HIV transcript expression were integrated to identify and analyze latently infected cells. FDA-approved, JAK1/2 inhibitors were tested in this system as a potential therapeutic strategy to target the latent reservoir. Latent and productively infected tonsillar CD4+ T cells displayed similar activation profiles as measured by expression of CD69, CD25, and HLADR, however latent cells showed higher CXCR5 expression 3 days post-infection. Single cell analysis revealed a small set of genes, including HIST1-related genes and the inflammatory cytokine, IL32, that were upregulated in latent compared to uninfected and productively infected cells suggesting a role for these molecular pathways in persistent HIV infection. In vitro treatment of HIV-infected CD4+ T cells with physiological concentrations of JAK1/2 inhibitors, ruxolitinib and baricitinib, used in clinical settings to target inflammation, reduced latent and productive infection events when added 24 hr after infection and blocked HIV reactivation from latent cells. Our methods using an established model of HIV latency and lymphoid-derived cells shed light on the biology of latency in a crucial anatomical site for HIV persistence and provides key insights about repurposing baricitinib or ruxolitinib to target the HIV reservoir.
Collapse
Affiliation(s)
- Lesley R de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Christina Gavegnano
- Department of Pathology and Experimental Medicine, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, United States.,Department of Pharmacology and Chemical Biology, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, United States.,Center for AIDS Research, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stefano Rinaldi
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Li Pan
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Emilie Battivelli
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, United States.,Department of Medicine, University of California San Francisco, San Francisco, CA, United States.,Buck Institute for Research on Aging, Novato, CA, United States
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, United States.,Department of Medicine, University of California San Francisco, San Francisco, CA, United States.,Buck Institute for Research on Aging, Novato, CA, United States
| | - Ramzi T Younis
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rajendra Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Siôn L Williams
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Raymond F Schinazi
- Center for AIDS Research, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
73
|
Yeh YHJ, Yang K, Razmi A, Ho YC. The Clonal Expansion Dynamics of the HIV-1 Reservoir: Mechanisms of Integration Site-Dependent Proliferation and HIV-1 Persistence. Viruses 2021; 13:1858. [PMID: 34578439 PMCID: PMC8473165 DOI: 10.3390/v13091858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
More than 50% of the HIV-1 latent reservoir is maintained by clonal expansion. The clonally expanded HIV-1-infected cells can contribute to persistent nonsuppressible low-level viremia and viral rebound. HIV-1 integration site and proviral genome landscape profiling reveals the clonal expansion dynamics of HIV-1-infected cells. In individuals under long-term suppressive antiretroviral therapy (ART), HIV-1 integration sites are enriched in specific locations in certain cancer-related genes in the same orientation as the host transcription unit. Single-cell transcriptome analysis revealed that HIV-1 drives aberrant cancer-related gene expression through HIV-1-to-host RNA splicing. Furthermore, the HIV-1 promoter dominates over the host gene promoter and drives high levels of cancer-related gene expression. When HIV-1 integrates into cancer-related genes and causes gain of function of oncogenes or loss of function of tumor suppressor genes, HIV-1 insertional mutagenesis drives the proliferation of HIV-1-infected cells and may cause cancer in rare cases. HIV-1-driven aberrant cancer-related gene expression at the integration site can be suppressed by CRISPR-mediated inhibition of the HIV-1 promoter or by HIV-1 suppressing agents. Given that ART does not suppress HIV-1 promoter activity, therapeutic agents that suppress HIV-1 transcription and halt the clonal expansion of HIV-1-infected cells should be explored to block the clonal expansion of the HIV-1 latent reservoir.
Collapse
Affiliation(s)
| | | | | | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA; (Y.-H.J.Y.); (K.Y.); (A.R.)
| |
Collapse
|
74
|
Rahman SA, Yagnik B, Bally AP, Morrow KN, Wang S, Vanderford TH, Freeman GJ, Ahmed R, Amara RR. PD-1 blockade and vaccination provide therapeutic benefit against SIV by inducing broad and functional CD8 + T cells in lymphoid tissue. Sci Immunol 2021; 6:eabh3034. [PMID: 34516743 DOI: 10.1126/sciimmunol.abh3034] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sheikh Abdul Rahman
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Bhrugu Yagnik
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Alexander P Bally
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Kristen N Morrow
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Shelly Wang
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Thomas H Vanderford
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gordon J Freeman
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Rafi Ahmed
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
75
|
Haeseleer F, Fukazawa Y, Park H, Varco-Merth B, Rust BJ, Smedley JV, Eichholz K, Peterson CW, Mason R, Kiem HP, Roederer M, Picker LJ, Okoye AA, Corey L. Immune inactivation of anti-simian immunodeficiency virus chimeric antigen receptor T cells in rhesus macaques. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:304-319. [PMID: 34485613 PMCID: PMC8403686 DOI: 10.1016/j.omtm.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 12/04/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapies are being investigated as potential HIV cures and designed to target HIV reservoirs. Monoclonal antibodies (mAbs) targeting the simian immunodeficiency virus (SIV) envelope allowed us to investigate the potency of single-chain variable fragment (scFv)-based anti-SIV CAR T cells. In vitro, CAR T cells expressing the scFv to both the variable loop 1 (V1) or V3 of the SIV envelope were highly potent at eliminating SIV-infected T cells. However, in preclinical studies, in vivo infusion of these CAR T cells in rhesus macaques (RMs) resulted in lack of expansion and no detectable in vivo antiviral activity. Injection of envelope-expressing antigen-presenting cells (APCs) 1 week post-CAR T cell infusion also failed to stimulate CAR T cell expansion in vivo. To investigate this in vitro versus in vivo discrepancy, we examined host immune responses directed at CAR T cells. A humoral immune response against the CAR scFv was detected post-infusion of the anti-SIV CAR T cells; anti-SIV IgG antibodies present in plasma of SIV-infected animals were associated with inhibited CAR T cell effector functions. These data indicate that lack of in vivo expansion and efficacy of CAR T cells might be due to antibodies blocking the interaction between the CAR scFv and its epitope.
Collapse
Affiliation(s)
- Françoise Haeseleer
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Benjamin Varco-Merth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Blake J Rust
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jeremy V Smedley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Karsten Eichholz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christopher W Peterson
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hans-Peter Kiem
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Afam A Okoye
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Lawrence Corey
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
76
|
Rossignol E, Alter G, Julg B. Antibodies for Human Immunodeficiency Virus-1 Cure Strategies. J Infect Dis 2021; 223:22-31. [PMID: 33586772 DOI: 10.1093/infdis/jiaa165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection leads to the establishment of a long-lived latent cellular reservoir. One strategy to eliminate quiescent reservoir cells is to reactivate virus replication to induce HIV envelope glycoprotein (Env) expression on the cell surface exposing them to subsequent antibody targeting. Via the interactions between the antibody Fc domain and Fc-γ receptors (FcγRs) that are expressed on innate effector cells, such as natural killer cells, monocytes, and neutrophils, antibodies can mediate the elimination of infected cells. Over the last decade, a multitude of human monoclonal antibodies that are broadly neutralizing across many HIV-1 subtypes have been identified and are currently being explored for HIV eradication strategies. Antibody development also includes novel Fc engineering approaches to increase engagement of effector cells and optimize antireservoir efficacy. In this review, we discuss the usefulness of antibodies for HIV eradication approaches specifically focusing on antibody-mediated strategies to target latently infected cells and options to increase antibody efficacy.
Collapse
Affiliation(s)
- Evan Rossignol
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA.,Massachusetts General Hospital, Infectious Disease Unit, Boston, Massachusetts, USA
| |
Collapse
|
77
|
Harwood O, O’Connor S. Therapeutic Potential of IL-15 and N-803 in HIV/SIV Infection. Viruses 2021; 13:1750. [PMID: 34578331 PMCID: PMC8473246 DOI: 10.3390/v13091750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
IL-15, a proinflammatory cytokine critical for the generation, maintenance, and homeostasis of T cell responses, is produced naturally in response to HIV/SIV infection, but has also demonstrated therapeutic potential. IL-15 can boost CD4+ and CD8+ T cell and NK cell proliferation, activation, and function. However, IL-15 treatment may cause aberrant immune activation and accelerated disease progression in certain circumstances. Moreover, the relationship between the timing of IL-15 administration and disease progression remains unclear. The IL-15 superagonist N-803 was developed to expand the therapeutic potential of IL-15 by maximizing its tissue distribution and half-life. N-803 has garnered enthusiasm recently as a way to enhance the innate and cellular immune responses to HIV/SIV by improving CD8+ T cell recognition and killing of virus-infected cells and directing immune cells to mucosal sites and lymph nodes, the primary sites of virus replication. N-803 has also been evaluated in "shock and kill" strategies due to its potential to reverse latency (shock) and enhance antiviral immunity (kill). This review examines the current literature about the effects of IL-15 and N-803 on innate and cellular immunity, viral burden, and latency reversal in the context of HIV/SIV, and their therapeutic potential both alone and combined with additional interventions such as antiretroviral therapy (ART) and vaccination.
Collapse
Affiliation(s)
| | - Shelby O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA;
| |
Collapse
|
78
|
Dias J, Fabozzi G, March K, Asokan M, Almasri CG, Fintzi J, Promsote W, Nishimura Y, Todd JP, Lifson JD, Martin MA, Gama L, Petrovas C, Pegu A, Mascola JR, Koup RA. Concordance of immunological events between intrarectal and intravenous SHIVAD8-EO infection when assessed by Fiebig-equivalent staging. J Clin Invest 2021; 131:e151632. [PMID: 34623326 PMCID: PMC8409578 DOI: 10.1172/jci151632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Primary HIV-1 infection can be classified into six Fiebig stages based on virological and serological laboratory testing, whereas simian-HIV (SHIV) infection in nonhuman primates (NHPs) is defined in time post-infection, making it difficult to extrapolate NHP experiments to the clinics. We identified and extensively characterized the Fiebig-equivalent stages in NHPs challenged intrarectally or intravenously with SHIVAD8-EO. During the first month post-challenge, intrarectally challenged monkeys were up to 1 week delayed in progression through stages. However, regardless of the challenge route, stages I-II predominated before, and stages V-VI predominated after, peak viremia. Decrease in lymph node (LN) CD4+ T cell frequency and rise in CD8+ T cells occurred at stage V. LN virus-specific CD8+ T cell responses, dominated by degranulation and TNF, were first detected at stage V and increased at stage VI. A similar late elevation in follicular CXCR5+ CD8+ T cells occurred, consistent with higher plasma CXCL13 levels at these stages. LN SHIVAD8-EO RNA+ cells were present at stage II, but appeared to decline at stage VI when virions accumulated in follicles. Fiebig-equivalent staging of SHIVAD8-EO infection revealed concordance of immunological events between intrarectal and intravenous infection despite different infection progressions, and can inform comparisons of NHP studies with clinical data.
Collapse
Affiliation(s)
- Joana Dias
- Immunology Laboratory, Vaccine Research Center
| | | | - Kylie March
- Tissue Analysis Core, Vaccine Research Center
| | | | | | | | | | | | - John-Paul Todd
- Translational Research Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Lucio Gama
- Immunology Laboratory, Vaccine Research Center
| | | | | | | | | |
Collapse
|
79
|
Interests of the Non-Human Primate Models for HIV Cure Research. Vaccines (Basel) 2021; 9:vaccines9090958. [PMID: 34579195 PMCID: PMC8472852 DOI: 10.3390/vaccines9090958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Non-human primate (NHP) models are important for vaccine development and also contribute to HIV cure research. Although none of the animal models are perfect, NHPs enable the exploration of important questions about tissue viral reservoirs and the development of intervention strategies. In this review, we describe recent advances in the use of these models for HIV cure research and highlight the progress that has been made as well as limitations using these models. The main NHP models used are (i) the macaque, in which simian immunodeficiency virus (SIVmac) infection displays similar replication profiles as to HIV in humans, and (ii) the macaque infected by a recombinant virus (SHIV) consisting of SIVmac expressing the HIV envelope gene serving for studies analyzing the impact of anti-HIV Env broadly neutralizing antibodies. Lessons for HIV cure that can be learned from studying the natural host of SIV are also presented here. An overview of the most promising and less well explored HIV cure strategies tested in NHP models will be given.
Collapse
|
80
|
Abstract
PURPOSE OF REVIEW The persistence of HIV-1-infected cells, despite the introduction of the combinatorial antiretroviral therapy, is a major obstacle to HIV-1 eradication. Understanding the nature of HIV reservoir will lead to novel therapeutic approaches for the functional cure or eradication of the virus. In this review, we will update the recent development in imaging applications toward HIV-1/simian immunodeficiency virus (SIV) viral reservoirs research and highlight some of their limitations. RECENT FINDINGS CD4 T cells are the primary target of HIV-1/SIV and the predominant site for productive and latent reservoirs. This viral reservoir preferentially resides in lymphoid compartments that are difficult to access, which renders sampling and measurements problematical and a hurdle for understanding HIV-1 pathogenicity. Novel noninvasive technologies are needed to circumvent this and urgently help to find a cure for HIV-1. Recent technological advancements have had a significant impact on the development of imaging methodologies allowing the visualization of relevant biomarkers with high resolution and analytical capacity. Such methodologies have provided insights into our understanding of cellular and molecular interactions in health and disease. SUMMARY Imaging of the HIV-1 reservoir can provide significant insights for the nature (cell types), spatial distribution, and the role of the tissue microenvironment for its in vivo dynamics and potentially lead to novel targets for the virus elimination.
Collapse
|
81
|
Abstract
PURPOSE OF REVIEW HIV persists in distinct cellular and anatomical compartments in the body including blood, Central nervous system, and lymphoid tissues (spleen, lymph nodes [LNs], gut-associated lymphoid tissue) by diverse mechanisms despite antiretroviral therapy. Within LNs, human and animal studies have highlighted that a specific CD4 T cell subset - called T follicular helper cells locating in B cell follicles is enriched in cells containing replication-competent HIV as compared to extra-follicular CD4 T cells. Therefore, the objective of the present review is to focus on the potential mechanisms allowing HIV to persist within LN microenvironment. RECENT FINDINGS The combination of factors that might be involved in the regulation of HIV persistence within LNs remain to be fully identified but may include - the level of activation, antiretroviral drug concentrations, presence of cytolytic mechanisms and/or regulatory cells, in addition to cell survival and proliferation propensity which would ultimately determine the fate of HIV-infected cells within LN tissue areas. SUMMARY HIV persistence in blood and distinct body compartments despite long-standing and potent therapy is one of the major barriers to a cure. Given that the HIV reservoir is established early and is highly complex based on composition, viral diversity, distribution, replication competence, migration dynamics across the human body and possible compartmentalization in specific tissues, combinatorial therapeutic approaches are needed that may synergize to target multiple viral reservoirs to achieve a cure for HIV infection.
Collapse
Affiliation(s)
- Riddhima Banga
- Divisions of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
82
|
Cai Y, Poli ANR, Vadrevu S, Gyampoh K, Hart C, Ross B, Fair M, Xue F, Salvino JM, Montaner LJ. BCL6 BTB-specific inhibitor reversely represses T Cell activation, Tfh cells differentiation and germinal center reaction in vivo. Eur J Immunol 2021; 51:2441-2451. [PMID: 34287839 DOI: 10.1002/eji.202049150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/22/2021] [Accepted: 07/20/2021] [Indexed: 11/07/2022]
Abstract
Inhibition of the BCL6 BTB domain results in killing Diffuse Large B-cell Lymphoma (DLBL) cells, reducing the T-cell dependent germinal center (GC) reaction in mice, and reversing GC hyperplasia in nonhuman primates. The available BCL6 BTB-specific inhibitors are poorly water soluble thus limiting their absorption in vivo and our understanding of therapeutic strategy targeting GC. We synthesized a prodrug (AP-4-287) from a potent BCL6 BTB inhibitor (FX1) with improved aqueous solubility and pharmacokinetics (PK) in mice. We also evaluated its in vivo biological activity on humoral immune responses using the sheep red blood cells (SRBC)-vaccination mouse model. AP-4-287 had a significant higher aqueous solubility and was readily converted to FX1 in vivo after intraperitoneally (i.p.) administration, but a shorter half-life in vivo. Importantly, AP-4-287 treatment led to a reversible effect on (1) the reduction in the frequency of splenic Ki67+ CD4+ T cells, Tfh cells, and GC B cells; (2) lower GC formation following vaccination; and (3) a decrease in the titers of antigen-specific IgG and IgM antibodies. Our study advances the pre-clinical development of drug targeting BCL6 BTB domain for the treatment of diseases that are associated with abnormal BCL6 elevation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yanhui Cai
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | | | - Surya Vadrevu
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Kwasi Gyampoh
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Colin Hart
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Brian Ross
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Matt Fair
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Joseph M Salvino
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Luis J Montaner
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
83
|
Martin AR, Bender AM, Hackman J, Kwon KJ, Lynch BA, Bruno D, Martens C, Beg S, Florman SS, Desai N, Segev D, Laird GM, Siliciano JD, Quinn TC, Tobian AAR, Durand CM, Siliciano RF, Redd AD. Similar Frequency and Inducibility of Intact Human Immunodeficiency Virus-1 Proviruses in Blood and Lymph Nodes. J Infect Dis 2021; 224:258-268. [PMID: 33269401 PMCID: PMC8280486 DOI: 10.1093/infdis/jiaa736] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/25/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The human immunodeficiency virus (HIV)-1 latent reservoir (LR) in resting CD4+ T cells is a barrier to cure. LR measurements are commonly performed on blood samples and therefore may miss latently infected cells residing in tissues, including lymph nodes. METHODS We determined the frequency of intact HIV-1 proviruses and proviral inducibility in matched peripheral blood (PB) and lymph node (LN) samples from 10 HIV-1-infected patients on antiretroviral therapy (ART) using the intact proviral DNA assay and a novel quantitative viral induction assay. Prominent viral sequences from induced viral RNA were characterized using a next-generation sequencing assay. RESULTS The frequencies of CD4+ T cells with intact proviruses were not significantly different in PB versus LN (61/106 vs 104/106 CD4+ cells), and they were substantially lower than frequencies of CD4+ T cells with defective proviruses. The frequencies of CD4+ T cells induced to produce high levels of viral RNA were not significantly different in PB versus LN (4.3/106 vs 7.9/106), but they were 14-fold lower than the frequencies of cells with intact proviruses. Sequencing of HIV-1 RNA from induced proviruses revealed comparable sequences in paired PB and LN samples. CONCLUSIONS These results further support the use of PB as an appropriate proxy for the HIV-1 LR in secondary lymphoid organs.
Collapse
Affiliation(s)
- Alyssa R Martin
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexandra M Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jada Hackman
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Briana A Lynch
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Bruno
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Craig Martens
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Subul Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Niraj Desai
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dorry Segev
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas C Quinn
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine M Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Andrew D Redd
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
84
|
Graalmann T, Borst K, Manchanda H, Vaas L, Bruhn M, Graalmann L, Koster M, Verboom M, Hallensleben M, Guzmán CA, Sutter G, Schmidt RE, Witte T, Kalinke U. B cell depletion impairs vaccination-induced CD8 + T cell responses in a type I interferon-dependent manner. Ann Rheum Dis 2021; 80:1537-1544. [PMID: 34226189 PMCID: PMC8600602 DOI: 10.1136/annrheumdis-2021-220435] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The monoclonal anti-CD20 antibody rituximab is frequently applied in the treatment of lymphoma as well as autoimmune diseases and confers efficient depletion of recirculating B cells. Correspondingly, B cell-depleted patients barely mount de novo antibody responses during infections or vaccinations. Therefore, efficient immune responses of B cell-depleted patients largely depend on protective T cell responses. METHODS CD8+ T cell expansion was studied in rituximab-treated rheumatoid arthritis (RA) patients and B cell-deficient mice on vaccination/infection with different vaccines/pathogens. RESULTS Rituximab-treated RA patients vaccinated with Influvac showed reduced expansion of influenza-specific CD8+ T cells when compared with healthy controls. Moreover, B cell-deficient JHT mice infected with mouse-adapted Influenza or modified vaccinia virus Ankara showed less vigorous expansion of virus-specific CD8+ T cells than wild type mice. Of note, JHT mice do not have an intrinsic impairment of CD8+ T cell expansion, since infection with vaccinia virus induced similar T cell expansion in JHT and wild type mice. Direct type I interferon receptor signalling of B cells was necessary to induce several chemokines in B cells and to support T cell help by enhancing the expression of MHC-I. CONCLUSIONS Depending on the stimulus, B cells can modulate CD8+ T cell responses. Thus, B cell depletion causes a deficiency of de novo antibody responses and affects the efficacy of cellular response including cytotoxic T cells. The choice of the appropriate vaccine to vaccinate B cell-depleted patients has to be re-evaluated in order to efficiently induce protective CD8+ T cell responses.
Collapse
Affiliation(s)
- Theresa Graalmann
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany.,Department for Rheumatology and Immunology, Hanover Medical School, Hanover, Germany
| | - Katharina Borst
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Himanshu Manchanda
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Lea Vaas
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Matthias Bruhn
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Lukas Graalmann
- Department for Respiratory Medicine, Hanover Medical School, Hanover, Germany
| | - Mario Koster
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Murielle Verboom
- Institute for Transfusion Medicine and Transplant Engineering, Hanover Medical School, Hanover, Germany
| | - Michael Hallensleben
- Institute for Transfusion Medicine and Transplant Engineering, Hanover Medical School, Hanover, Germany
| | - Carlos Alberto Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Reinhold E Schmidt
- Department for Rheumatology and Immunology, Hanover Medical School, Hanover, Germany.,Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover, Germany
| | - Torsten Witte
- Department for Rheumatology and Immunology, Hanover Medical School, Hanover, Germany.,Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany .,Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover, Germany
| |
Collapse
|
85
|
Busman-Sahay K, Starke CE, Nekorchuk MD, Estes JD. Eliminating HIV reservoirs for a cure: the issue is in the tissue. Curr Opin HIV AIDS 2021; 16:200-208. [PMID: 34039843 PMCID: PMC8171814 DOI: 10.1097/coh.0000000000000688] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Advances in antiretroviral therapy have saved numerous lives, converting a diagnosis with human immunodeficiency virus 1 (HIV-1) from a death sentence into the possibility for a (nearly) normal life in many instances. However, the obligation for lifelong adherence, increased risk of accumulated co-morbidities, and continued lack of uniform availability around the globe underscores the need for an HIV cure. Safe and scalable HIV cure strategies remain elusive, in large part due to the presence of viral reservoirs in which caches of infected cells remain hidden from immune elimination, primarily within tissues. Herein, we summarize some of the most exciting recent advances focused on understanding, quantifying, and ultimately targeting HIV tissue viral reservoirs. RECENT FINDINGS Current studies have underscored the differences between viral reservoirs in tissue compartments as compared to peripheral blood, in particular, the gastrointestinal (GI) tract. Additionally, several novel or modified techniques are showing promise in targeting the latent viral reservoir, including modifications in drug delivery platforms and techniques such as CRISPR. SUMMARY Elimination of tissue viral reservoirs is likely the key to generation of an effective HIV cure. Exciting studies have come out recently that reveal crucial insights into topics ranging from the basic biology of reservoir seeding to effective drug targeting. However, there are still many outstanding questions in the field about the relative importance of specific reservoirs, such as the GI tract, that may alter the final strategy pursued.
Collapse
Affiliation(s)
- Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Carly E. Starke
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Michael D. Nekorchuk
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
86
|
Rausch JW, Le Grice SFJ. Characterizing the Latent HIV-1 Reservoir in Patients with Viremia Suppressed on cART: Progress, Challenges, and Opportunities. Curr HIV Res 2021; 18:99-113. [PMID: 31889490 PMCID: PMC7475929 DOI: 10.2174/1570162x18666191231105438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Modern combination antiretroviral therapy (cART) can bring HIV-1 in blood plasma to level undetectable by standard tests, prevent the onset of acquired immune deficiency syndrome (AIDS), and allow a near-normal life expectancy for HIV-infected individuals. Unfortunately, cART is not curative, as within a few weeks of treatment cessation, HIV viremia in most patients rebounds to pre-cART levels. The primary source of this rebound, and the principal barrier to a cure, is the highly stable reservoir of latent yet replication-competent HIV-1 proviruses integrated into the genomic DNA of resting memory CD4+ T cells. In this review, prevailing models for how the latent reservoir is established and maintained, residual viremia and viremic rebound upon withdrawal of cART, and the types and characteristics of cells harboring latent HIV-1 will be discussed. Selected technologies currently being used to advance our understanding of HIV latency will also be presented, as will a perspective on which areas of advancement are most essential for producing the next generation of HIV-1 therapeutics.
Collapse
Affiliation(s)
- Jason W Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, United States
| |
Collapse
|
87
|
Leyre L, Kroon E, Vandergeeten C, Sacdalan C, Colby DJ, Buranapraditkun S, Schuetz A, Chomchey N, de Souza M, Bakeman W, Fromentin R, Pinyakorn S, Akapirat S, Trichavaroj R, Chottanapund S, Manasnayakorn S, Rerknimitr R, Wattanaboonyoungcharoen P, Kim JH, Tovanabutra S, Schacker TW, O'Connell R, Valcour VG, Phanuphak P, Robb ML, Michael N, Trautmann L, Phanuphak N, Ananworanich J, Chomont N. Abundant HIV-infected cells in blood and tissues are rapidly cleared upon ART initiation during acute HIV infection. Sci Transl Med 2021; 12:12/533/eaav3491. [PMID: 32132218 DOI: 10.1126/scitranslmed.aav3491] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/19/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
The timing and location of the establishment of the viral reservoir during acute HIV infection remain unclear. Using longitudinal blood and tissue samples obtained from HIV-infected individuals at the earliest stage of infection, we demonstrate that frequencies of infected cells reach maximal values in gut-associated lymphoid tissue and lymph nodes as early as Fiebig stage II, before seroconversion. Both tissues displayed higher frequencies of infected cells than blood until Fiebig stage III, after which infected cells were equally distributed in all compartments examined. Initiation of antiretroviral therapy (ART) at Fiebig stages I to III led to a profound decrease in the frequency of infected cells to nearly undetectable level in all compartments. The rare infected cells that persisted were preferentially found in the lymphoid tissues. Initiation of ART at later stages (Fiebig stages IV/V and chronic infection) induced only a modest reduction in the frequency of infected cells. Quantification of HIV DNA in memory CD4+ T cell subsets confirmed the unstable nature of most of the infected cells at Fiebig stages I to III and the emergence of persistently infected cells during the transition to Fiebig stage IV. Our results indicate that although a large pool of cells is infected during acute HIV infection, most of these early targets are rapidly cleared upon ART initiation. Therefore, infected cells present after peak viremia have a greater ability to persist.
Collapse
Affiliation(s)
- Louise Leyre
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Eugène Kroon
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | | | - Carlo Sacdalan
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Donn J Colby
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | | | - Alexandra Schuetz
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA
| | - Nitiya Chomchey
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Mark de Souza
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Wendy Bakeman
- Vaccine and Gene Therapy Institute of Florida, FL 34987, USA
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Suteeraporn Pinyakorn
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA
| | - Siriwat Akapirat
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Rapee Trichavaroj
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | | | | | | | | | - Jerome H Kim
- International Vaccine Institute, Seoul 08826, Korea
| | - Sodsai Tovanabutra
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA
| | - Timothy W Schacker
- Department of Medicine, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert O'Connell
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA
| | - Victor G Valcour
- University of California San Francisco, San Francisco, CA 94117, USA
| | - Praphan Phanuphak
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand.,Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA
| | - Nelson Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA
| | - Lydie Trautmann
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA
| | - Nittaya Phanuphak
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Jintanat Ananworanich
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research Silver Spring, MD 20910, USA.,Department of Global Health, University of Amsterdam, Amsterdam, Netherlands
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H2X 0A9, Canada.
| | | |
Collapse
|
88
|
Weber MG, Walters-Laird CJ, Kol A, Santos Rocha C, Hirao LA, Mende A, Balan B, Arredondo J, Elizaldi SR, Iyer SS, Tarantal AF, Dandekar S. Gut germinal center regeneration and enhanced antiviral immunity by mesenchymal stem/stromal cells in SIV infection. JCI Insight 2021; 6:149033. [PMID: 34014838 PMCID: PMC8262475 DOI: 10.1172/jci.insight.149033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Although antiretroviral therapy suppresses HIV replication, it does not eliminate viral reservoirs or restore damaged lymphoid tissue, posing obstacles to HIV eradication. Using the SIV model of AIDS, we investigated the effect of mesenchymal stem/stromal cell (MSC) infusions on gut mucosal recovery, antiviral immunity, and viral suppression and determined associated molecular/metabolic signatures. MSC administration to SIV-infected macaques resulted in viral reduction and heightened virus-specific responses. Marked clearance of SIV-positive cells from gut mucosal effector sites was correlated with robust regeneration of germinal centers, restoration of follicular B cells and T follicular helper (Tfh) cells, and enhanced antigen presentation by viral trapping within the follicular DC network. Gut transcriptomic analyses showed increased antiviral response mediated by pathways of type I/II IFN signaling, viral restriction factors, innate immunity, and B cell proliferation and provided the molecular signature underlying enhanced host immunity. Metabolic analysis revealed strong correlations between B and Tfh cell activation, anti-SIV antibodies, and IL-7 expression with enriched retinol metabolism, which facilitates gut homing of antigen-activated lymphocytes. We identified potentially new MSC functions in modulating antiviral immunity for enhanced viral clearance predominantly through type I/II IFN signaling and B cell signature, providing a road map for multipronged HIV eradication strategies.
Collapse
Affiliation(s)
| | | | - Amir Kol
- Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, California, USA
| | | | | | - Abigail Mende
- Department of Medical Microbiology and Immunology and
| | - Bipin Balan
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università di Palermo, Viale delle Scienze, Palermo, Italy
| | | | | | - Smita S Iyer
- Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, California, USA.,Center for Immunology and Infectious Diseases.,California National Primate Research Center, and
| | - Alice F Tarantal
- California National Primate Research Center, and.,Departments of Pediatrics and Cell Biology and Human Anatomy, University of California Davis, Davis, California, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology and.,California National Primate Research Center, and
| |
Collapse
|
89
|
Huot N, Rascle P, Planchais C, Contreras V, Passaes C, Le Grand R, Beignon AS, Kornobis E, Legendre R, Varet H, Saez-Cirion A, Mouquet H, Jacquelin B, Müller-Trutwin M. CD32 +CD4 + T Cells Sharing B Cell Properties Increase With Simian Immunodeficiency Virus Replication in Lymphoid Tissues. Front Immunol 2021; 12:695148. [PMID: 34220857 PMCID: PMC8242952 DOI: 10.3389/fimmu.2021.695148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
CD4 T cell responses constitute an important component of adaptive immunity and are critical regulators of anti-microbial protection. CD4+ T cells expressing CD32a have been identified as a target for HIV. CD32a is an Fcγ receptor known to be expressed on myeloid cells, granulocytes, B cells and NK cells. Little is known about the biology of CD32+CD4+ T cells. Our goal was to understand the dynamics of CD32+CD4+ T cells in tissues. We analyzed these cells in the blood, lymph nodes, spleen, ileum, jejunum and liver of two nonhuman primate models frequently used in biomedical research: African green monkeys (AGM) and macaques. We studied them in healthy animals and during viral (SIV) infection. We performed phenotypic and transcriptomic analysis at different stages of infection. In addition, we compared CD32+CD4+ T cells in tissues with well-controlled (spleen) and not efficiently controlled (jejunum) SIV replication in AGM. The CD32+CD4+ T cells more frequently expressed markers associated with T cell activation and HIV infection (CCR5, PD-1, CXCR5, CXCR3) and had higher levels of actively transcribed SIV RNA than CD32-CD4+T cells. Furthermore, CD32+CD4+ T cells from lymphoid tissues strongly expressed B-cell-related transcriptomic signatures, and displayed B cell markers at the cell surface, including immunoglobulins CD32+CD4+ T cells were rare in healthy animals and blood but increased strongly in tissues with ongoing viral replication. CD32+CD4+ T cell levels in tissues correlated with viremia. Our results suggest that the tissue environment induced by SIV replication drives the accumulation of these unusual cells with enhanced susceptibility to viral infection.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Planchais
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Etienne Kornobis
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | | | | |
Collapse
|
90
|
Onabajo OO, Lewis MG, Mattapallil JJ. GALT CD4 +PD-1 hi T follicular helper (Tfh) cells repopulate after anti-retroviral therapy. Cell Immunol 2021; 366:104396. [PMID: 34157462 DOI: 10.1016/j.cellimm.2021.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections are characterized by dramatic alterations in the mucosal CD4 T cell compartment. Though viremia is effectively suppressed, and peripheral CD4 T cell numbers recover to near healthy levels after highly active anti-retroviral therapy (HAART), some of the dysfunctional consequences of HIV infection continue to persist during therapy. We hypothesized that CD4 T follicular helper (Tfh) cell deficiencies may play a role in this process. Using the macaque model we show that SIV infection was associated with a significant loss of Tfh cells in the GALT that drain the mesentery lining the gastrointestinal tract (GIT). Loss of Tfh cells significantly correlated with the depletion of the overall memory CD4 T cell compartment; most Tfh cells in the GALT expressed a CD95+CD28+ memory phenotype suggesting that infection of the memory compartment likely drives the loss of GALT Tfh cells during infection. Continuous anti-retroviral therapy (cART) was accompanied by a significant repopulation of Tfh cells in the GALT to levels similar to those of uninfected animals. Repopulating Tfh cells displayed significantly higher capacity to produce IL-21 as compared to SIV infected animals suggesting that cART fully restores Tfh cells that are functionally capable of supporting GC reactions in the GALT.
Collapse
Affiliation(s)
- Olusegun O Onabajo
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | | | - Joseph J Mattapallil
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
91
|
Harper J, Huot N, Micci L, Tharp G, King C, Rascle P, Shenvi N, Wang H, Galardi C, Upadhyay AA, Villinger F, Lifson J, Silvestri G, Easley K, Jacquelin B, Bosinger S, Müller-Trutwin M, Paiardini M. IL-21 and IFNα therapy rescues terminally differentiated NK cells and limits SIV reservoir in ART-treated macaques. Nat Commun 2021; 12:2866. [PMID: 34001890 PMCID: PMC8129202 DOI: 10.1038/s41467-021-23189-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Unlike HIV infection, which progresses to AIDS absent suppressive anti-retroviral therapy, nonpathogenic infections in natural hosts, such African green monkeys, are characterized by a lack of gut microbial translocation and robust secondary lymphoid natural killer cell responses resulting in an absence of chronic inflammation and limited SIV dissemination in lymph node B-cell follicles. Here we report, using the pathogenic model of antiretroviral therapy-treated, SIV-infected rhesus macaques that sequential interleukin-21 and interferon alpha therapy generate terminally differentiated blood natural killer cells (NKG2a/clowCD16+) with potent human leukocyte antigen-E-restricted activity in response to SIV envelope peptides. This is in contrast to control macaques, where less differentiated, interferon gamma-producing natural killer cells predominate. The frequency and activity of terminally differentiated NKG2a/clowCD16+ natural killer cells correlates with a reduction of replication-competent SIV in lymph node during antiretroviral therapy and time to viral rebound following analytical treatment interruption. These data demonstrate that African green monkey-like natural killer cell differentiation profiles can be rescued in rhesus macaques to promote viral clearance in tissues.
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gregory Tharp
- Nonhuman Primate Genomics Core, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Colin King
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Neeta Shenvi
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Hong Wang
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Cristin Galardi
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- HIV Discovery, ViiV Healthcare, Research Triangle Park, NC, USA
| | - Amit A Upadhyay
- Nonhuman Primate Genomics Core, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Francois Villinger
- Department of Biology, New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirk Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Steven Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Nonhuman Primate Genomics Core, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
92
|
Wood MP, Jones CI, Lippy A, Oliver BG, Walund B, Fancher KA, Fisher BS, Wright PJ, Fuller JT, Murapa P, Habib J, Mavigner M, Chahroudi A, Sather DN, Fuller DH, Sodora DL. Rapid progression is associated with lymphoid follicle dysfunction in SIV-infected infant rhesus macaques. PLoS Pathog 2021; 17:e1009575. [PMID: 33961680 PMCID: PMC8133453 DOI: 10.1371/journal.ppat.1009575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
HIV-infected infants are at an increased risk of progressing rapidly to AIDS in the first weeks of life. Here, we evaluated immunological and virological parameters in 25 SIV-infected infant rhesus macaques to understand the factors influencing a rapid disease outcome. Infant macaques were infected with SIVmac251 and monitored for 10 to 17 weeks post-infection. SIV-infected infants were divided into either typical (TypP) or rapid (RP) progressor groups based on levels of plasma anti-SIV antibody and viral load, with RP infants having low SIV-specific antibodies and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype. Interestingly, TypP had lower levels of total CD4 T cells, similar reductions in CD4/CD8 ratios and elevated activation of CD8 T cells, as measured by the levels of HLA-DR, compared to RP. Differences between the two groups were identified in other immune cell populations, including a failure to expand activated memory (CD21-CD27+) B cells in peripheral blood in RP infant macaques, as well as reduced levels of germinal center (GC) B cells and T follicular helper (Tfh) cells in spleens (4- and 10-weeks post-SIV). Reduced B cell proliferation in splenic germinal GCs was associated with increased SIV+ cell density and follicular type 1 interferon (IFN)-induced immune activation. Further analyses determined that at 2-weeks post SIV infection TypP infants exhibited elevated levels of the GC-inducing chemokine CXCL13 in plasma, as well as significantly lower levels of viral envelope diversity compared to RP infants. Our findings provide evidence that early viral and immunologic events following SIV infection contributes to impairment of B cells, Tfh cells and germinal center formation, ultimately impeding the development of SIV-specific antibody responses in rapidly progressing infant macaques. Despite significant reductions in vertical HIV transmission, nearly 100,000 children succumb to AIDS-related illnesses each year. Indeed, infants face a disproportionately higher risk of progressing to AIDS, with roughly half of HIV+ infants exhibiting a rapid progression to AIDS-associated morbidity and mortality. Here, we evaluated immunological and virological parameters in 25 simian immunodeficiency virus (SIV)-infected infant rhesus macaques to assess the factors that influence a rapid disease outcome. Infant macaques were infected with simian immunodeficiency virus (SIV) and divided into either typical (TypP) or rapid (RP) progressor groups. RP infants exhibited low levels of plasma anti-SIV antibody and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype with some exhibiting AIDS-related symptoms. This study provides evidence that the low levels of anti-SIV antibodies are associated with impairments to both B and T cells in both blood and lymphoid tissues. These changes are associated with the prolonged expression of type 1 interferons which may be impeding development of a healthy humoral immune response in these rapidly progressing SIV-infected infant macaques. These findings have implications regarding potential therapeutic approaches to prevent rapid progression in HIV infected infants.
Collapse
Affiliation(s)
- Matthew P. Wood
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Chloe I. Jones
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Adriana Lippy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brian G. Oliver
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brynn Walund
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Katherine A. Fancher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Bridget S. Fisher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Piper J. Wright
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - James T. Fuller
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
| | - Patience Murapa
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle Washington, United States of America
| | - Jakob Habib
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Maud Mavigner
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia United States of America
| | - Ann Chahroudi
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia United States of America
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Deborah H. Fuller
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle Washington, United States of America
| | - Donald L. Sodora
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
93
|
Kazer SW, Walker BD, Shalek AK. Evolution and Diversity of Immune Responses during Acute HIV Infection. Immunity 2021; 53:908-924. [PMID: 33207216 DOI: 10.1016/j.immuni.2020.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Understanding the earliest immune responses following HIV infection is critical to inform future vaccines and therapeutics. Here, we review recent prospective human studies in at-risk populations that have provided insight into immune responses during acute infection, including additional relevant data from non-human primate (NHP) studies. We discuss the timing, nature, and function of the diverse immune responses induced, the onset of immune dysfunction, and the effects of early anti-retroviral therapy administration. Treatment at onset of viremia mitigates peripheral T and B cell dysfunction, limits seroconversion, and enhances cellular antiviral immunity despite persistence of infection in lymphoid tissues. We highlight pertinent areas for future investigation, and how application of high-throughput technologies, alongside targeted NHP studies, may elucidate immune response features to target in novel preventions and cures.
Collapse
Affiliation(s)
- Samuel W Kazer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
94
|
Verweij MC, Hansen SG, Iyer R, John N, Malouli D, Morrow D, Scholz I, Womack J, Abdulhaqq S, Gilbride RM, Hughes CM, Ventura AB, Ford JC, Selseth AN, Oswald K, Shoemaker R, Berkemeier B, Bosche WJ, Hull M, Shao J, Sacha JB, Axthelm MK, Edlefsen PT, Lifson JD, Picker LJ, Früh K. Modulation of MHC-E transport by viral decoy ligands is required for RhCMV/SIV vaccine efficacy. Science 2021; 372:eabe9233. [PMID: 33766941 PMCID: PMC8354429 DOI: 10.1126/science.abe9233] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Strain 68-1 rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) antigens elicit CD8+ T cells recognizing epitopes presented by major histocompatibility complex II (MHC-II) and MHC-E but not MHC-Ia. These immune responses mediate replication arrest of SIV in 50 to 60% of monkeys. We show that the peptide VMAPRTLLL (VL9) embedded within the RhCMV protein Rh67 promotes intracellular MHC-E transport and recognition of RhCMV-infected fibroblasts by MHC-E-restricted CD8+ T cells. Deletion or mutation of viral VL9 abrogated MHC-E-restricted CD8+ T cell priming, resulting in CD8+ T cell responses exclusively targeting MHC-II-restricted epitopes. These responses were comparable in magnitude and differentiation to responses elicited by 68-1 vectors but did not protect against SIV. Thus, Rh67-enabled direct priming of MHC-E-restricted T cells is crucial for RhCMV/SIV vaccine efficacy.
Collapse
Affiliation(s)
- Marieke C Verweij
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Ravi Iyer
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Nessy John
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - David Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Isabel Scholz
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jennie Womack
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Shaheed Abdulhaqq
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Colette M Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Abigail B Ventura
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Julia C Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Andrea N Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - William J Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Michael Hull
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Jason Shao
- Population Sciences and Computational Biology Programs, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Paul T Edlefsen
- Population Sciences and Computational Biology Programs, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
95
|
Okoye AA, Duell DD, Fukazawa Y, Varco-Merth B, Marenco A, Behrens H, Chaunzwa M, Selseth AN, Gilbride RM, Shao J, Edlefsen PT, Geleziunas R, Pinkevych M, Davenport MP, Busman-Sahay K, Nekorchuk M, Park H, Smedley J, Axthelm MK, Estes JD, Hansen SG, Keele BF, Lifson JD, Picker LJ. CD8+ T cells fail to limit SIV reactivation following ART withdrawal until after viral amplification. J Clin Invest 2021; 131:141677. [PMID: 33630764 PMCID: PMC8262469 DOI: 10.1172/jci141677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
To define the contribution of CD8+ T cell responses to control of SIV reactivation during and following antiretroviral therapy (ART), we determined the effect of long-term CD8+ T cell depletion using a rhesusized anti-CD8β monoclonal antibody on barcoded SIVmac239 dynamics on stable ART and after ART cessation in rhesus macaques (RMs). Among the RMs with full CD8+ T cell depletion in both blood and tissue, there were no significant differences in the frequency of viral blips in plasma, the number of SIV RNA+ cells and the average number of RNA copies/infected cell in tissue, and levels of cell-associated SIV RNA and DNA in blood and tissue relative to control-treated RMs during ART. Upon ART cessation, both CD8+ T cell-depleted and control RMs rebounded in fewer than 12 days, with no difference in the time to viral rebound or in either the number or growth rate of rebounding SIVmac239M barcode clonotypes. However, effectively CD8+ T cell-depleted RMs showed a stable, approximately 2-log increase in post-ART plasma viremia relative to controls. These results indicate that while potent antiviral CD8+ T cell responses can develop during ART-suppressed SIV infection, these responses effectively intercept post-ART SIV rebound only after systemic viral replication, too late to limit reactivation frequency or the early spread of reactivating SIV reservoirs.
Collapse
Affiliation(s)
- Afam A. Okoye
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Derick D. Duell
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Benjamin Varco-Merth
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Alejandra Marenco
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Hannah Behrens
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Morgan Chaunzwa
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Roxanne M. Gilbride
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jason Shao
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paul T. Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Mykola Pinkevych
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales, Australia
| | - Miles P. Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales, Australia
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jeremy Smedley
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Jeffery D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
96
|
Immune Responses and Viral Persistence in Simian/Human Immunodeficiency Virus SHIV.C.CH848-Infected Rhesus Macaques. J Virol 2021; 95:JVI.02198-20. [PMID: 33568508 PMCID: PMC8104099 DOI: 10.1128/jvi.02198-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
SHIVs have been extensively used in a nonhuman primate (NHP) model for HIV research. In this study, we investigated viral reservoirs in tissues and immune responses in an NHP model inoculated with newly generated transmitted/founder HIV-1 clade C-based SHIV.C.CH848. Chimeric simian/human immunodeficiency viruses (SHIVs) are widely used in nonhuman primate models to recapitulate human immunodeficiency virus (HIV) infection in humans, yet most SHIVs fail to establish persistent viral infection. We investigated immunological and virological events in rhesus macaques infected with the newly developed SHIV.C.CH848 (SHIVC) and treated with combined antiretroviral therapy (cART). Similar to HIV/simian immunodeficiency virus (SIV) infection, SHIV.C.CH848 infection established viral reservoirs in CD4+ T cells and myeloid cells, accompanied by productive infection and depletion of CD4+ T cells in systemic and lymphoid tissues throughout SHIV infection. Despite 6 months of cART-suppressed viral replication, integrated proviral DNA levels remained stable, especially in CD4+ T cells, and the viral rebound was also observed after ART interruption. Autologous neutralizing antibodies to the parental HIV-1 strain CH848 were detected, with limited viral evolution at 5 months postinfection. In comparison, heterogenous neutralizing antibodies in SHIV.C.CH848-infected macaques were not detected except for 1 (1 of 10) animal at 2 years postinfection. These findings suggest that SHIV.C.CH848, a novel class of transmitted/founder SHIVs, can establish sustained viremia and viral reservoirs in rhesus macaques with clinical immunodeficiency consequences, providing a valuable SHIV model for HIV research. IMPORTANCE SHIVs have been extensively used in a nonhuman primate (NHP) model for HIV research. In this study, we investigated viral reservoirs in tissues and immune responses in an NHP model inoculated with newly generated transmitted/founder HIV-1 clade C-based SHIV.C.CH848. The data show that transmitted founder (T/F) SHIVC infection of macaques more closely recapitulates the virological and clinical features of HIV infection, including persistent viremia and viral rebound once antiretroviral therapy is discontinued. These results suggest this CCR5-tropic, SHIVC strain is valuable for testing responses to HIV vaccines and therapeutics.
Collapse
|
97
|
Cizmeci D, Lofano G, Rossignol E, Dugast AS, Kim D, Cavet G, Nguyen N, Tan YC, Seaman MS, Alter G, Julg B. Distinct clonal evolution of B-cells in HIV controllers with neutralizing antibody breadth. eLife 2021; 10:62648. [PMID: 33843586 PMCID: PMC8041465 DOI: 10.7554/elife.62648] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/02/2021] [Indexed: 01/16/2023] Open
Abstract
A minor subset of individuals infected with HIV-1 develop antibody neutralization breadth during the natural course of the infection, often linked to chronic, high-level viremia. Despite significant efforts, vaccination strategies have been unable to induce similar neutralization breadth and the mechanisms underlying neutralizing antibody induction remain largely elusive. Broadly neutralizing antibody responses can also be found in individuals who control HIV to low and even undetectable plasma levels in the absence of antiretroviral therapy, suggesting that high antigen exposure is not a strict requirement for neutralization breadth. We therefore performed an analysis of paired heavy and light chain B-cell receptor (BCR) repertoires in 12,591 HIV-1 envelope-specific single memory B-cells to determine alterations in the BCR immunoglobulin gene repertoire and B-cell clonal expansions that associate with neutralizing antibody breadth in 22 HIV controllers. We found that the frequency of genomic mutations in IGHV and IGLV was directly correlated with serum neutralization breadth. The repertoire of the most mutated antibodies was dominated by a small number of large clones with evolutionary signatures suggesting that these clones had reached peak affinity maturation. These data demonstrate that even in the setting of low plasma HIV antigenemia, similar to what a vaccine can potentially achieve, BCR selection for extended somatic hypermutation and clonal evolution can occur in some individuals suggesting that host-specific factors might be involved that could be targeted with future vaccine strategies.
Collapse
Affiliation(s)
- Deniz Cizmeci
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Giuseppe Lofano
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Evan Rossignol
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | | | | | - Guy Cavet
- Atreca Inc, Redwood City, United States
| | | | | | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, United States
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Boris Julg
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| |
Collapse
|
98
|
Onabajo OO, Mattapallil JJ. Gut Microbiome Homeostasis and the CD4 T- Follicular Helper Cell IgA Axis in Human Immunodeficiency Virus Infection. Front Immunol 2021; 12:657679. [PMID: 33815419 PMCID: PMC8017181 DOI: 10.3389/fimmu.2021.657679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) and Simian Immunodeficiency Virus (SIV) are associated with severe perturbations in the gut mucosal environment characterized by massive viral replication and depletion of CD4 T cells leading to dysbiosis, breakdown of the epithelial barrier, microbial translocation, immune activation and disease progression. Multiple mechanisms play a role in maintaining homeostasis in the gut mucosa and protecting the integrity of the epithelial barrier. Among these are the secretory IgA (sIgA) that are produced daily in vast quantities throughout the mucosa and play a pivotal role in preventing commensal microbes from breaching the epithelial barrier. These microbe specific, high affinity IgA are produced by IgA+ plasma cells that are present within the Peyer’s Patches, mesenteric lymph nodes and the isolated lymphoid follicles that are prevalent in the lamina propria of the gastrointestinal tract (GIT). Differentiation, maturation and class switching to IgA producing plasma cells requires help from T follicular helper (Tfh) cells that are present within these lymphoid tissues. HIV replication and CD4 T cell depletion is accompanied by severe dysregulation of Tfh cell responses that compromises the generation of mucosal IgA that in turn alters barrier integrity leading to commensal bacteria readily breaching the epithelial barrier and causing mucosal pathology. Here we review the effect of HIV infection on Tfh cells and mucosal IgA responses in the GIT and the consequences these have for gut dysbiosis and mucosal immunopathogenesis.
Collapse
Affiliation(s)
- Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Joseph J Mattapallil
- F. E. Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
99
|
Swanstrom AE, Immonen TT, Oswald K, Pyle C, Thomas JA, Bosche WJ, Silipino L, Hull M, Newman L, Coalter V, Wiles A, Wiles R, Kiser J, Morcock DR, Shoemaker R, Fast R, Breed MW, Kramer J, Donohue D, Malys T, Fennessey CM, Trubey CM, Deleage C, Estes JD, Lifson JD, Keele BF, Del Prete GQ. Antibody-mediated depletion of viral reservoirs is limited in SIV-infected macaques treated early with antiretroviral therapy. J Clin Invest 2021; 131:142421. [PMID: 33465055 PMCID: PMC7954603 DOI: 10.1172/jci142421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
The effectiveness of virus-specific strategies, including administered HIV-specific mAbs, to target cells that persistently harbor latent, rebound-competent HIV genomes during combination antiretroviral therapy (cART) has been limited by inefficient induction of viral protein expression. To examine antibody-mediated viral reservoir targeting without a need for viral induction, we used an anti-CD4 mAb to deplete both infected and uninfected CD4+ T cells. Ten rhesus macaques infected with barcoded SIVmac239M received cART for 93 weeks starting 4 days after infection. During cART, 5 animals received 5 to 6 anti-CD4 antibody administrations and CD4+ T cell populations were then allowed 1 year on cART to recover. Despite profound CD4+ T cell depletion in blood and lymph nodes, time to viral rebound following cART cessation was not significantly delayed in anti-CD4-treated animals compared with controls. Viral reactivation rates, determined based on rebounding SIVmac239M clonotype proportions, also were not significantly different in CD4-depleted animals. Notably, antibody-mediated depletion was limited in rectal tissue and negligible in lymphoid follicles. These results suggest that, even if robust viral reactivation can be achieved, antibody-mediated viral reservoir depletion may be limited in key tissue sites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Duncan Donohue
- DMS Applied Information and Management Sciences, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Tyler Malys
- DMS Applied Information and Management Sciences, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Huot N, Rascle P, Tchitchek N, Wimmer B, Passaes C, Contreras V, Desjardins D, Stahl-Hennig C, Le Grand R, Saez-Cirion A, Jacquelin B, Müller-Trutwin M. Role of NKG2a/c +CD8 + T cells in pathogenic versus non-pathogenic SIV infections. iScience 2021; 24:102314. [PMID: 33870131 PMCID: PMC8040270 DOI: 10.1016/j.isci.2021.102314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Some viruses have established an equilibrium with their host. African green monkeys (AGM) display persistent high viral replication in the blood and intestine during Simian immunodeficiency virus (SIV) infection but resolve systemic inflammation after acute infection and lack intestinal immune or tissue damage during chronic infection. We show that NKG2a/c+CD8+ T cells increase in the blood and intestine of AGM in response to SIVagm infection in contrast to SIVmac infection in macaques, the latter modeling HIV infection. NKG2a/c+CD8+ T cells were not expanded in lymph nodes, and CXCR5+NKG2a/c+CD8+ T cell frequencies further decreased after SIV infection. Genome-wide transcriptome analysis of NKG2a/c+CD8+ T cells from AGM revealed the expression of NK cell receptors, and of molecules with cytotoxic effector, gut homing, and immunoregulatory and gut barrier function, including CD73. NKG2a/c+CD8+ T cells correlated negatively with IL-23 in the intestine during SIVmac infection. The data suggest a potential regulatory role of NKG2a/c+CD8+ T cells in intestinal inflammation during SIV/HIV infections. Molecular determination of NKG2a/c+CD8+ T cells in two species of nonhuman primates Tissue distribution of NKG2a/c+CD8+ T cell is profoundly sculpted by SIV infections Intestinal NKG2a/c+CD8+ T cells correlated negatively with IL-23 in SIV infection NKG2a/c+CD8+ T cells might play a protective gut barrier function in HIV/SIV infection
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nicolas Tchitchek
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Benedikt Wimmer
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Delphine Desjardins
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Christiane Stahl-Hennig
- Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Unit of Infection Models, Göttingen, Germany
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| |
Collapse
|