51
|
Li J, Mo C, Guo Y, Zhang B, Feng X, Si Q, Wu X, Zhao Z, Gong L, He D, Shao J. Roles of peptidyl-prolyl isomerase Pin1 in disease pathogenesis. Theranostics 2021; 11:3348-3358. [PMID: 33537091 PMCID: PMC7847688 DOI: 10.7150/thno.45889] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Pin1 belongs to the peptidyl-prolyl cis-trans isomerases (PPIases) superfamily and catalyzes the cis-trans conversion of proline in target substrates to modulate diverse cellular functions including cell cycle progression, cell motility, and apoptosis. Dysregulation of Pin1 has wide-ranging influences on the fate of cells; therefore, it is closely related to the occurrence and development of various diseases. This review summarizes the current knowledge of Pin1 in disease pathogenesis.
Collapse
Affiliation(s)
- Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Chunfen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yifan Guo
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Bowen Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Xiao Feng
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Qiuyue Si
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xiaobo Wu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Zhe Zhao
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Lixin Gong
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dan He
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Jichun Shao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| |
Collapse
|
52
|
Jin M, Li N, Sheng W, Ji X, Liang X, Kong B, Yin P, Li Y, Zhang X, Liu K. Toxicity of different zinc oxide nanomaterials and dose-dependent onset and development of Parkinson's disease-like symptoms induced by zinc oxide nanorods. ENVIRONMENT INTERNATIONAL 2021; 146:106179. [PMID: 33099061 DOI: 10.1016/j.envint.2020.106179] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
With the increasing applications in various fields, the release and accumulation of zinc oxide (ZnO) nanomaterials ultimately lead to unexpected consequences to environment and human health. Therefore, toxicity comparison among ZnO nanomaterials with different shape/size and their adverse effects need better characterization. Here, we utilized zebrafish larvae and human neuroblastoma cells SH-SY5Y to compare the toxic effects of ZnO nanoparticles (ZnO NPs), short ZnO nanorods (s-ZnO NRs), and long ZnO NRs (l-ZnO NRs). We found their developmental- and neuro-toxicity levels were similar, where the smaller sizes showed slightly higher toxicity than the larger sizes. The developmental neurotoxicity of l-ZnO NRs (0.1, 1, 10, 50, and 100 μg/mL) was further investigated since they had the lowest toxicity. Our results indicated that l-ZnO NRs induced developmental neurotoxicity with hallmarks linked to Parkinson's disease (PD)-like symptoms at relatively high doses, including the disruption of locomotor activity as well as neurodevelopmental and PD responsive genes expression, and the induction of dopaminergic neuronal loss and apoptosis in zebrafish brain. l-ZnO NRs activated reactive oxygen species production, whose excessive accumulation triggered mitochondrial damage and mitochondrial apoptosis, eventually leading to PD-like symptoms. Collectively, the developmental- and neuro-toxicity of ZnO nanomaterials was identified, in which l-ZnO NRs harbors a remarkably potential risk for the onset and development of PD at relatively high doses, stressing the discretion of safe range in view of nano-ZnO exposure to ecosystem and human beings.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Xiu Liang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Road, Jinan 250014, PR China.
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Penggang Yin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Yong Li
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Road, Jinan 250014, PR China
| | - Xingshuang Zhang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Road, Jinan 250014, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China.
| |
Collapse
|
53
|
Abstract
Twenty-two years after their discovery, the hypocretins (Hcrts), also known as orexins, are two of the most studied peptidergic systems, involved in myriad physiological systems that range from sleep, arousal, motivation, homeostatic regulation, fear, anxiety and learning. A causal relationship between activity of Hcrt and arousal stability was established shortly after their discovery and have led to the development of a new class of drugs to treat insomnia. In this review we discuss the many faces of the Hcrt system and examine recent findings that implicate decreased Hcrt function in the pathogenesis of a number of neuropsychiatric conditions. We also discuss future therapeutic strategies to replace or enhance Hcrt function as a treatment option for these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Erica Seigneur
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
54
|
Abstract
Parkinson’s Disease (PD) is a complex neurodegenerative disorder that mainly results due to the loss of dopaminergic neurons in the substantia nigra of the midbrain. It is well known that dopamine is synthesized in substantia nigra and is transported to the striatumvianigrostriatal tract. Besides the sporadic forms of PD, there are also familial cases of PD and number of genes (both autosomal dominant as well as recessive) are responsible for PD. There is no permanent cure for PD and to date, L-dopa therapy is considered to be the best option besides having dopamine agonists. In the present review, we have described the genes responsible for PD, the role of dopamine, and treatment strategies adopted for controlling the progression of PD in humans.
Collapse
|
55
|
El Nebrisi E, Javed H, Ojha SK, Oz M, Shehab S. Neuroprotective Effect of Curcumin on the Nigrostriatal Pathway in a 6-Hydroxydopmine-Induced Rat Model of Parkinson's Disease is Mediated by α7-Nicotinic Receptors. Int J Mol Sci 2020; 21:ijms21197329. [PMID: 33023066 PMCID: PMC7583812 DOI: 10.3390/ijms21197329] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder, characterized by selective degeneration of dopaminergic nigrostriatal neurons. Most of the existing pharmacological approaches in PD consider replenishing striatal dopamine. It has been reported that activation of the cholinergic system has neuroprotective effects on dopaminergic neurons, and human α7-nicotinic acetylcholine receptor (α7-nAChR) stimulation may offer a potential therapeutic approach in PD. Our recent in-vitro studies demonstrated that curcumin causes significant potentiation of the function of α7-nAChRs expressed in Xenopus oocytes. In this study, we conducted in vivo experiments to assess the role of the α7-nAChR on the protective effects of curcumin in an animal model of PD. Intra-striatal injection of 6-hydroxydopmine (6-OHDA) was used to induce Parkinsonism in rats. Our results demonstrated that intragastric curcumin treatment (200 mg/kg) significantly improved the abnormal motor behavior and offered neuroprotection against the reduction of dopaminergic neurons, as determined by tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra and caudoputamen. The intraperitoneal administration of the α7-nAChR-selective antagonist methyllycaconitine (1 µg/kg) reversed the neuroprotective effects of curcumin in terms of both animal behavior and TH immunoreactivity. In conclusion, this study demonstrates that curcumin has a neuroprotective effect in a 6-hydroxydopmine (6-OHDA) rat model of PD via an α7-nAChR-mediated mechanism.
Collapse
Affiliation(s)
- Eslam El Nebrisi
- Department of Pharmacology, Dubai Medical College, Dubai Medical University, Dubai 20170, UAE;
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain PO BOX 17666, UAE;
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain PO BOX 17666, UAE;
| | - Shreesh K Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain PO BOX 17666, UAE; (S.K.O.); (M.O.)
| | - Murat Oz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain PO BOX 17666, UAE; (S.K.O.); (M.O.)
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Kuwait 24923, Kuwait
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain PO BOX 17666, UAE;
- Correspondence: ; Tel.: +971-3-7137492
| |
Collapse
|
56
|
Yshii LM, Manfiolli AO, Denadai-Souza A, Kinoshita PF, Gomes MD, Scavone C. Tumor necrosis factor receptor-associated factor 6 interaction with alpha-synuclein enhances cell death through the Nuclear Factor-kB pathway. IBRO Rep 2020; 9:218-223. [PMID: 32984640 PMCID: PMC7498709 DOI: 10.1016/j.ibror.2020.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022] Open
Abstract
TRAF6 binds to both WT and the mutant form A30 P asyn in SH-SY5Y cell model. The activation of NF-κB leads to changes in cytokines levels induced by TRAF6 - WT asyn interaction decreasing cell viability. The interaction between TRAF6 and A30P asyn does not induce NF-κB activation and cytokine regulation in SH-SY5Y cells. The present work demonstrates a novel role of TRAF6 in the pathophysiology of Parkinson's disease.
Background Parkinson's disease (PD) is a neurodegenerative disease characterized by intracellular inclusions named Lewy bodies (LB), and alpha-synuclein (asyn) is the major component of these protein aggregates. The precise physiological and pathological roles of asyn are not fully understood. Nevertheless, asyn present in LB is ubiquitinated but fails to reach the 26S proteasome. The mutation A30 P is related to an aggressive and early-onset form of PD. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an E3 ubiquitin ligase, and it interacts and ubiquitinates the asyn in atypical chains (lysine K6, K27, K29, and K33). Methods: Here, we investigated the role of TRAF6 interaction with asyn and the involvement of nuclear factor κB (NF-κB), a key transcription factor in pro-inflammatory signaling pathway activation. Results and Conclusion We demonstrated that TRAF6 binds to both WT and the mutant form A30 P asyn in an SH-SY5Y cell model. Additionally, the interaction between TRAF6 and WT asyn induced an increase in the activation of NF-κB, leading to changes in TNF, IL-1β and IL-10 levels and culminating in reduced cell viability. Interestingly, the activation of NF-κB and gene regulation were not found in A30 P asyn. These data point to a novel role of TRAF6 in the pathophysiology of PD.
Collapse
Affiliation(s)
- Lidia M Yshii
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Adriana O Manfiolli
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Alexandre Denadai-Souza
- Section of Experimental Endocrinology, Department of Pharmacology, Federal University of Sao Paulo, São Paulo, 04044-020, Brazil
| | - Paula F Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Marcelo D Gomes
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| |
Collapse
|
57
|
Trinh D, Israwi AR, Arathoon LR, Gleave JA, Nash JE. The multi-faceted role of mitochondria in the pathology of Parkinson's disease. J Neurochem 2020; 156:715-752. [PMID: 33616931 DOI: 10.1111/jnc.15154] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria are essential for neuronal function. They produce ATP to meet energy demands, regulate homeostasis of ion levels such as calcium and regulate reactive oxygen species that cause oxidative cellular stress. Mitochondria have also been shown to regulate protein synthesis within themselves, as well as within the nucleus, and also influence synaptic plasticity. These roles are especially important for neurons, which have higher energy demands and greater susceptibility to stress. Dysfunction of mitochondria has been associated with several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Huntington's disease, Glaucoma and Amyotrophic Lateral Sclerosis. The focus of this review is on how and why mitochondrial function is linked to the pathology of Parkinson's disease (PD). Many of the PD-linked genetic mutations which have been identified result in dysfunctional mitochondria, through a wide-spread number of mechanisms. In this review, we describe how susceptible neurons are predisposed to be vulnerable to the toxic events that occur during the neurodegenerative process of PD, and how mitochondria are central to these pathways. We also discuss ways in which proteins linked with familial PD control mitochondrial function, both physiologically and pathologically, along with their implications in genome-wide association studies and risk assessment. Finally, we review potential strategies for disease modification through mitochondrial enhancement. Ultimately, agents capable of both improving and/or restoring mitochondrial function, either alone, or in conjunction with other disease-modifying agents may halt or slow the progression of neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Dennison Trinh
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Ahmad R Israwi
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Lindsay R Arathoon
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Jacqueline A Gleave
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Joanne E Nash
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| |
Collapse
|
58
|
Yan YQ, Fang Y, Zheng R, Pu JL, Zhang BR. NLRP3 Inflammasomes in Parkinson's disease and their Regulation by Parkin. Neuroscience 2020; 446:323-334. [PMID: 32795556 DOI: 10.1016/j.neuroscience.2020.08.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
Chronic inflammation might correlate with the formation of α-synuclein oligomers, subsequently leading to dopaminergic (DA) neuronal death in Parkinson's disease (PD). As major components of chronic inflammation, NOD-like receptor protein 3 (NLRP3) inflammasomes play a crucial role in PD via caspase 1 activation, primarily induced by mitochondrial damage. NLRP3 binds to apoptosis-associated speck-like protein containing a CARD (PYCARD/ASC), and forms inflammasomes in the brain. Inflammasomes act as a platform for caspase 1 to induce interleukin 1 Beta (IL1β) maturation, leading to neuronal pyroptosis. Furthermore, alpha-synuclein, whose abnormal aggregation is the main pathogenesis of PD, also activates NLRP3 inflammasomes. Mutations to PRKN (encoding Parkin) are the most common cause of autosomal recessive familial and sporadic early-onset PD. Evidence has confirmed a relationship between Parkin and NLRP3 inflammasomes. In this review, we summarize the current understanding of NLRP3 inflammasomes and their role in PD progression, and discuss their regulation by Parkin.
Collapse
Affiliation(s)
- Yi-Qun Yan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yi Fang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Ran Zheng
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
59
|
The Role of Alpha-Synuclein and Other Parkinson's Genes in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:ijms21165724. [PMID: 32785033 PMCID: PMC7460874 DOI: 10.3390/ijms21165724] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodevelopmental and late-onset neurodegenerative disorders present as separate entities that are clinically and neuropathologically quite distinct. However, recent evidence has highlighted surprising commonalities and converging features at the clinical, genomic, and molecular level between these two disease spectra. This is particularly striking in the context of autism spectrum disorder (ASD) and Parkinson's disease (PD). Genetic causes and risk factors play a central role in disease pathophysiology and enable the identification of overlapping mechanisms and pathways. Here, we focus on clinico-genetic studies of causal variants and overlapping clinical and cellular features of ASD and PD. Several genes and genomic regions were selected for our review, including SNCA (alpha-synuclein), PARK2 (parkin RBR E3 ubiquitin protein ligase), chromosome 22q11 deletion/DiGeorge region, and FMR1 (fragile X mental retardation 1) repeat expansion, which influence the development of both ASD and PD, with converging features related to synaptic function and neurogenesis. Both PD and ASD display alterations and impairments at the synaptic level, representing early and key disease phenotypes, which support the hypothesis of converging mechanisms between the two types of diseases. Therefore, understanding the underlying molecular mechanisms might inform on common targets and therapeutic approaches. We propose to re-conceptualize how we understand these disorders and provide a new angle into disease targets and mechanisms linking neurodevelopmental disorders and neurodegeneration.
Collapse
|
60
|
Küçükdoğru R, Türkez H, Arslan ME, Tozlu ÖÖ, Sönmez E, Mardinoğlu A, Cacciatore I, Di Stefano A. Neuroprotective effects of boron nitride nanoparticles in the experimental Parkinson's disease model against MPP+ induced apoptosis. Metab Brain Dis 2020; 35:947-957. [PMID: 32215836 DOI: 10.1007/s11011-020-00559-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is one of the most aggressive neurodegenerative diseases and characterized by the loss of dopamine-sensitive neurons in the substantia nigra region of the brain. There is no any definitive treatment to completely cure PD and existing treatments can only ease the symptoms of the disease. Boron nitride nanoparticles have been extensively studied in nano-biological studies and researches showed that it can be a promising candidate for PD treatment with its biologically active unique properties. In the present study, it was aimed to investigate ameliorative effects of hexagonal boron nitride nanoparticles (hBNs) against toxicity of 1-methyl-4-phenylpyridinium (MPP+) in experimental PD model. Experimental PD model was constituted by application of MPP+ to differentiated pluripotent human embryonal carcinoma cell (Ntera-2, NT-2) culture in wide range of concentrations (0.62 to 2 mM). Neuroprotective activity of hBNs against MPP+ toxicity was determined by cell viability assays including MTT and LDH release. Oxidative alterations by hBNs application in PD cell culture model were investigated using total antioxidant capacity (TAC) and total oxidant status (TOS) tests. The impacts of hBNs and MPP+ on nuclear integrity were analyzed by Hoechst 33258 fluorescent staining method. Acetylcholinesterase (AChE) enzyme activities were determined by a colorimetric assay towards to hBNs treatment. Cell death mechanisms caused by hBNs and MPP+ exposure was investigated by flow cytometry analysis. Experimental results showed that application of hBNs increased cell viability in PD model against MPP+ application. TAS and TOS analysis were determined that antioxidant capacity elevated after hBNs applications while oxidant levels were reduced. Furthermore, flow cytometric analysis executed that MPP+ induced apoptosis was prevented significantly (p < 0.05) after application with hBNs. In a conclusion, the obtained results indicated that hBNs have a huge potential against MPP+ toxicity and can be used in PD treatment as novel neuroprotective agent and drug delivery system.
Collapse
Affiliation(s)
- Recep Küçükdoğru
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Türkiye
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Türkiye
| | - Mehmet Enes Arslan
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Türkiye.
| | - Özlem Özdemir Tozlu
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Türkiye
| | - Erdal Sönmez
- Department of Physics, Kazım Karabekir Education Faculty, Atatürk University, Erzurum, Turkey
| | - Adil Mardinoğlu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-17121, Stockholm, Sweden
| | - Ivana Cacciatore
- Department of Pharmacology, G. D'Annunzio University, Chieti, Italy
| | | |
Collapse
|
61
|
Synphilin-1 Interacts with AMPK and Increases AMPK Phosphorylation. Int J Mol Sci 2020; 21:ijms21124352. [PMID: 32570982 PMCID: PMC7352261 DOI: 10.3390/ijms21124352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/16/2023] Open
Abstract
A role for the cytoplasmic protein synphilin-1 in regulating energy balance has been demonstrated recently. Expression of synphilin-1 increases ATP levels in cultured cells. However, the mechanism by which synphilin-1 alters cellular energy status is unknown. Here, we used cell models and biochemical approaches to investigate the cellular functions of synphilin-1 on the AMP-activated protein kinase (AMPK) signaling pathway, which may affect energy balance. Overexpression of synphilin-1 increased AMPK phosphorylation (activation). Moreover, synphilin-1 interacted with AMPK by co-immunoprecipitation and GST (glutathione S-transferase) pull-down assays. Knockdown of synphilin-1 reduced AMPK phosphorylation. Overexpression of synphilin-1 also altered AMPK downstream signaling, i.e., a decrease in acetyl CoA carboxylase (ACC) phosphorylation, and an increase in p70S6K phosphorylation. Treatment of compound C (an AMPK inhibitor) reduced synphilin-1 binding with AMPK. In addition, compound C diminished synphilin-1-induced AMPK phosphorylation, and the increase in cellular ATP (adenosine triphosphate) levels. Our results demonstrated that synphilin-1 couples with AMPK, and they exert mutual effects on each other to regulate cellular energy status. These findings not only identify novel cellular actions of synphilin-1, but also provide new insights into the roles of synphilin-1 in regulating energy currency, ATP.
Collapse
|
62
|
Soh YQ, Kocaba V, Weiss JS, Jurkunas UV, Kinoshita S, Aldave AJ, Mehta JS. Corneal dystrophies. Nat Rev Dis Primers 2020; 6:46. [PMID: 32528047 DOI: 10.1038/s41572-020-0178-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
Corneal dystrophies are broadly defined as inherited disorders that affect any layer of the cornea and are usually progressive, bilateral conditions that do not have systemic effects. The 2015 International Classification of Corneal Dystrophies classifies corneal dystrophies into four classes: epithelial and subepithelial dystrophies, epithelial-stromal TGFBI dystrophies, stromal dystrophies and endothelial dystrophies. Whereas some corneal dystrophies may result in few or mild symptoms and morbidity throughout a patient's lifetime, others may progress and eventually result in substantial visual and ocular disturbances that require medical or surgical intervention. Corneal transplantation, either with full-thickness or partial-thickness donor tissue, may be indicated for patients with advanced corneal dystrophies. Although corneal transplantation techniques have improved considerably over the past two decades, these surgeries are still associated with postoperative risks of disease recurrence, graft failure and other complications that may result in blindness. In addition, a global shortage of cadaveric corneal graft tissue critically limits accessibility to corneal transplantation in some parts of the world. Ongoing advances in gene therapy, regenerative therapy and cell augmentation therapy may eventually result in the development of alternative, novel treatments for corneal dystrophies, which may substantially improve the quality of life of patients with these disorders.
Collapse
Affiliation(s)
- Yu Qiang Soh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Viridiana Kocaba
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Netherlands Institute for Innovative Ocular Surgery, Rotterdam, Netherlands
| | - Jayne S Weiss
- Department of Ophthalmology, Pathology and Pharmacology, Louisiana State University, School of Medicine, New Orleans, USA
| | - Ula V Jurkunas
- Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Schepens Eye Research Institute, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anthony J Aldave
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore. .,Singapore National Eye Centre, Singapore, Singapore. .,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore. .,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
63
|
Abstract
Discovery of Park2 is our finding of a family of young onset parkinsonism, in which this family was thought to be associated with a polymorphism of the manganese superoxide gene. The gene locus of the manganese superoxide dismutase has been known. We were able to pick up a gene for this family and related families in the close approximate position at the long arm of chromosome 6. The gene for this disease has a ubiquitin-like motif in the N-terminus and two RING finger structures. It was shown that this gene had a ubiquitin-protein ligase activity. But it is not elucidated the substrate of this enzyme. Meanwhile, it has become clear that PINK1 and Parkin work together to remove the mitochondria of the lowered membrane potential in the autophagosomes (mitophagy). Now that the molecular mechanisms of mitophagy is under investigation. In addition, many hot topics are going on such as Lewy body in Park2, single heterozygotes, rare clinical manifestations, and so on.
Collapse
Affiliation(s)
- Yoshikuni Mizuno
- Department of Neurology, Juntendo University Japan; Department of Neurology, Tokyo Clinic Japan.
| |
Collapse
|
64
|
Hoffmann-Conaway S, Brockmann MM, Schneider K, Annamneedi A, Rahman KA, Bruns C, Textoris-Taube K, Trimbuch T, Smalla KH, Rosenmund C, Gundelfinger ED, Garner CC, Montenegro-Venegas C. Parkin contributes to synaptic vesicle autophagy in Bassoon-deficient mice. eLife 2020; 9:56590. [PMID: 32364493 PMCID: PMC7224700 DOI: 10.7554/elife.56590] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/02/2020] [Indexed: 12/18/2022] Open
Abstract
Mechanisms regulating the turnover of synaptic vesicle (SV) proteins are not well understood. They are thought to require poly-ubiquitination and degradation through proteasome, endo-lysosomal or autophagy-related pathways. Bassoon was shown to negatively regulate presynaptic autophagy in part by scaffolding Atg5. Here, we show that increased autophagy in Bassoon knockout neurons depends on poly-ubiquitination and that the loss of Bassoon leads to elevated levels of ubiquitinated synaptic proteins per se. Our data show that Bassoon knockout neurons have a smaller SV pool size and a higher turnover rate as indicated by a younger pool of SV2. The E3 ligase Parkin is required for increased autophagy in Bassoon-deficient neurons as the knockdown of Parkin normalized autophagy and SV protein levels and rescued impaired SV recycling. These data indicate that Bassoon is a key regulator of SV proteostasis and that Parkin is a key E3 ligase in the autophagy-mediated clearance of SV proteins.
Collapse
Affiliation(s)
| | - Marisa M Brockmann
- Charité - Universitätsmedizin Berlin, Institute of Neurobiology, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Anil Annamneedi
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Institute of Biology (IBIO), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Kazi Atikur Rahman
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Christine Bruns
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Kathrin Textoris-Taube
- Charité - Universitätsmedizin Berlin, Institute of Biochemistry, Core Facility High Throughput Mass Spectrometry, Berlin, Germany
| | - Thorsten Trimbuch
- Charité - Universitätsmedizin Berlin, Institute of Neurobiology, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karl-Heinz Smalla
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Christian Rosenmund
- Charité - Universitätsmedizin Berlin, Institute of Neurobiology, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Molecular Neurobiology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Craig Curtis Garner
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institute of Neurobiology, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carolina Montenegro-Venegas
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Institute for Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
65
|
Chung E, Choi Y, Park J, Nah W, Park J, Jung Y, Lee J, Lee H, Park S, Hwang S, Kim S, Lee J, Min D, Jo J, Kang S, Jung M, Lee PH, Ruley HE, Jo D. Intracellular delivery of Parkin rescues neurons from accumulation of damaged mitochondria and pathological α-synuclein. SCIENCE ADVANCES 2020; 6:eaba1193. [PMID: 32494688 PMCID: PMC7190327 DOI: 10.1126/sciadv.aba1193] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by mitochondrial dysfunction, Lewy body formation, and loss of dopaminergic neurons. Parkin, an E3 ubiquitin ligase, is thought to inhibit PD progression by removing damaged mitochondria and suppressing the accumulation of α-synuclein and other protein aggregates. The present study describes a protein-based therapy for PD enabled by the development of a cell-permeable Parkin protein (iCP-Parkin) with enhanced solubility and optimized intracellular delivery. iCP-Parkin recovered damaged mitochondria by promoting mitophagy and mitochondrial biogenesis and suppressed toxic accumulations of α-synuclein in cells and animals. Last, iCP-Parkin prevented and reversed declines in tyrosine hydroxylase and dopamine expression concomitant with improved motor function induced by mitochondrial poisons or enforced α-synuclein expression. These results point to common, therapeutically tractable features in PD pathophysiology, and suggest that motor deficits in PD may be reversed, thus providing opportunities for therapeutic intervention after the onset of motor symptoms.
Collapse
Affiliation(s)
- Eunna Chung
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Youngsil Choi
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Jiae Park
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Wonheum Nah
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Jaehyung Park
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Yukdong Jung
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Joonno Lee
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Hyunji Lee
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Soyoung Park
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Sunyoung Hwang
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Seongcheol Kim
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Jongseok Lee
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Dongjae Min
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Junghwan Jo
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Shinyoung Kang
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Minyong Jung
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - H. Earl Ruley
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Daewoong Jo
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| |
Collapse
|
66
|
Ge P, Dawson VL, Dawson TM. PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson's disease. Mol Neurodegener 2020; 15:20. [PMID: 32169097 PMCID: PMC7071653 DOI: 10.1186/s13024-020-00367-7] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
That certain cell types in the central nervous system are more likely to undergo neurodegeneration in Parkinson's disease is a widely appreciated but poorly understood phenomenon. Many vulnerable subpopulations, including dopamine neurons in the substantia nigra pars compacta, have a shared phenotype of large, widely distributed axonal networks, dense synaptic connections, and high basal levels of neural activity. These features come at substantial bioenergetic cost, suggesting that these neurons experience a high degree of mitochondrial stress. In such a context, mechanisms of mitochondrial quality control play an especially important role in maintaining neuronal survival. In this review, we focus on understanding the unique challenges faced by the mitochondria in neurons vulnerable to neurodegeneration in Parkinson's and summarize evidence that mitochondrial dysfunction contributes to disease pathogenesis and to cell death in these subpopulations. We then review mechanisms of mitochondrial quality control mediated by activation of PINK1 and Parkin, two genes that carry mutations associated with autosomal recessive Parkinson's disease. We conclude by pinpointing critical gaps in our knowledge of PINK1 and Parkin function, and propose that understanding the connection between the mechanisms of sporadic Parkinson's and defects in mitochondrial quality control will lead us to greater insights into the question of selective vulnerability.
Collapse
Affiliation(s)
- Preston Ge
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Department of Physiology, Solomon H. Snyder Department of Neuroscience, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130 USA
- Present address: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Present address: Picower Institute for Learning and Memory, Cambridge, MA 02139 USA
- Present address: Harvard-MIT MD/PhD Program, Harvard Medical School, Boston, MA 02115 USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Department of Physiology, Solomon H. Snyder Department of Neuroscience, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130 USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Department of Physiology, Solomon H. Snyder Department of Neuroscience, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130 USA
| |
Collapse
|
67
|
Tamtaji OR, Reiter RJ, Alipoor R, Dadgostar E, Kouchaki E, Asemi Z. Melatonin and Parkinson Disease: Current Status and Future Perspectives for Molecular Mechanisms. Cell Mol Neurobiol 2020; 40:15-23. [PMID: 31388798 PMCID: PMC11448849 DOI: 10.1007/s10571-019-00720-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022]
Abstract
Parkinson disease (PD) is a chronic and neurodegenerative disease with motor and nonmotor symptoms. Multiple pathways are involved in the pathophysiology of PD, including apoptosis, autophagy, oxidative stress, inflammation, α-synuclein aggregation, and changes in the neurotransmitters. Preclinical and clinical studies have shown that melatonin supplementation is an appropriate therapy for PD. Administration of melatonin leads to inhibition of some pathways related to apoptosis, autophagy, oxidative stress, inflammation, α-synuclein aggregation, and dopamine loss in PD. In addition, melatonin improves some nonmotor symptom in patients with PD. Limited studies, however, have evaluated the role of melatonin on molecular mechanisms and clinical symptoms in PD. This review summarizes what is known regarding the impact of melatonin on PD in preclinical and clinical studies.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Reza Alipoor
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Islamic Republic of Iran
| | | | - Ebrahim Kouchaki
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
68
|
Noda S, Sato S, Fukuda T, Tada N, Uchiyama Y, Tanaka K, Hattori N. Loss of Parkin contributes to mitochondrial turnover and dopaminergic neuronal loss in aged mice. Neurobiol Dis 2019; 136:104717. [PMID: 31846738 DOI: 10.1016/j.nbd.2019.104717] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by the loss of nigrostriatal dopamine neurons. PARK2 mutations cause early-onset Parkinson's disease (EO-PD). PARK2 encodes an E3 ubiquitin ligase, Parkin. Extensive in vitro studies and cell line characterization have shown that Parkin is required for mitophagy, but the physiological pathology and context of the pathway remain unknown. In general, monogenic Parkin knockout mice do not accurately reflect human PD symptoms and exhibit no signs of dopaminergic (DA) neurodegeneration. To assess the critical role of Parkin-mediated mitophagy in DA neurons, we characterized Parkin knockout mice over a long period of time. At the age of 110 weeks, Parkin knockout mice exhibited locomotor impairments, including hindlimb defects and neuronal loss. In their DA neurons, fragmented mitochondria with abnormal internal structures accumulated. The age-related motor dysfunction and damaged mitochondria pathology in Parkin-deficient mice suggest that impairment of mitochondrial clearance may underlie the pathology of PD.
Collapse
Affiliation(s)
- Sachiko Noda
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takahiro Fukuda
- Division of Neuropathology, Department of Neuropathology, The Jikei University, School of Medicine, Tokyo 105-8461, Japan
| | - Norihiro Tada
- Atopy Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
69
|
Li C, Cui L, Yang Y, Miao J, Zhao X, Zhang J, Cui G, Zhang Y. Gut Microbiota Differs Between Parkinson's Disease Patients and Healthy Controls in Northeast China. Front Mol Neurosci 2019; 12:171. [PMID: 31354427 PMCID: PMC6637281 DOI: 10.3389/fnmol.2019.00171] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023] Open
Abstract
Background: There is accumulating evidence suggesting a connection between the gut and Parkinson's disease (PD). Gut microbiota may play an important role in the intestinal lesions in PD patients. Objective: This study aims to determine whether gut microbiota differs between PD patients and healthy controls in Northeast of China, and to identify the factors that influence the changes in the gut microbiota. Methods: We enrolled 51 PD patients and 48 healthy controls in this study. Microbial species in stool samples were determined through 16S-rRNA gene sequencing. Dietary intakes were collected from a subset of 42 patients and 23 controls using a food frequency questionnaire (FFQ). Gut microbiota species richness, diversity, differential abundance of individual taxa between PD patients and controls, and the relationship between the gut microbiota abundance and the dietary and clinical factors were analyzed. Results: PD patients showed decreased species richness, phylogenetic diversity, β- diversity, and altered relative abundance in several taxa compared to the controls. PD- associated clinical scores appeared to be the most influential factors that correlated with the abundance of a variety of taxa. The most consistent findings suggested by multiple analyses used in this study were the increase of Akkermansia and the decrease of Lactobacillus in PD patients in Northeast China. Conclusion: Gut microbiota significantly differed between a group of PD patients and healthy controls in Northeast China, with decreased species richness, phylogenetic diversity, β-diversity, and altered relative abundance in several taxa compared to the controls.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yimin Yang
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, China
| | - Jing Miao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xiuzhen Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jingdian Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Ying Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
70
|
Acosta G, Race N, Herr S, Fernandez J, Tang J, Rogers E, Shi R. Acrolein-mediated alpha-synuclein pathology involvement in the early post-injury pathogenesis of mild blast-induced Parkinsonian neurodegeneration. Mol Cell Neurosci 2019; 98:140-154. [PMID: 31201929 PMCID: PMC6690849 DOI: 10.1016/j.mcn.2019.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 01/17/2023] Open
Abstract
Survivors of blast-induced traumatic brain injury (bTBI) have increased susceptibility to Parkinson's disease (PD), characterized by α-synuclein aggregation and the progressive degeneration of nigrostriatal dopaminergic neurons. Using an established bTBI rat model, we evaluated the changes of α-synuclein and tyrosine hydroxylase (TH), known hallmarks of PD, and acrolein, a reactive aldehyde and marker of oxidative stress, with the aim of revealing key pathways leading to PD post-bTBI. Indicated in both animal models of PD and TBI, acrolein is likely a point of pathogenic convergence. Here we show that after a single mild bTBI, acrolein is elevated up to a week, systemically in urine, and in whole brain tissue, specifically the substantia nigra and striatum. Acrolein elevation is accompanied by heightened α-synuclein oligomerization, dopaminergic dysregulation, and acrolein/α-synuclein interaction in the same brain regions. We further show that acrolein can directly modify and oligomerize α-synuclein in vitro. Taken together, our data suggests acrolein likely plays an important role in inducing PD pathology following bTBI by encouraging α-synuclein aggregation. These results are expected to advance our understanding of the long-term post-bTBI pathological changes leading to the development of PD, and suggest intervention targets to curtail such pathology.
Collapse
Affiliation(s)
- Glen Acosta
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Nicholas Race
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Seth Herr
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Purdue University Interdisciplinary Life Sciences Program (PULSe), Purdue University, West Lafayette, IN, USA
| | - Joseph Fernandez
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jonathan Tang
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Edmond Rogers
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Indiana University, School of Medicine, Indianapolis, IN, USA; Purdue University Interdisciplinary Life Sciences Program (PULSe), Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
71
|
Narayanan A, Meriin A, Andrews JO, Spille JH, Sherman MY, Cisse II. A first order phase transition mechanism underlies protein aggregation in mammalian cells. eLife 2019; 8:39695. [PMID: 30716021 PMCID: PMC6361590 DOI: 10.7554/elife.39695] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022] Open
Abstract
The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Arjun Narayanan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| | - Anatoli Meriin
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - J Owen Andrews
- Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| | - Jan-Hendrik Spille
- Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| | | | - Ibrahim I Cisse
- Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
72
|
Yuan NN, Cai CZ, Wu MY, Zhu Q, Su H, Li M, Ren J, Tan JQ, Lu JH. Canthin-6-One Accelerates Alpha-Synuclein Degradation by Enhancing UPS Activity: Drug Target Identification by CRISPR-Cas9 Whole Genome-Wide Screening Technology. Front Pharmacol 2019; 10:16. [PMID: 30745870 PMCID: PMC6360163 DOI: 10.3389/fphar.2019.00016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/07/2019] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the accumulation of protein aggregates (namely Lewy bodies) in dopaminergic neurons in the substantia nigra region of the brain. Alpha-synuclein (α-syn) is the major component of Lewy bodies in PD patients, and impairment of the ubiquitin-proteasome system has been linked to its accumulation. In this work, we developed a tetracycline-inducible expression system, with simultaneous induced expression of α-syn-EGFP and a bright red fluorescent protein marker (mCherry) to screen for potential compounds for degrading α-syn. We identified canthin-6-one as an α-syn lowering compound which promoted both wild type and mutants α-syn degradation in an ubiquitin-proteasome-system (UPS) dependent manner. By CRISPR/Cas9 genome-wide screening technology, we identified RPN2/PSMD1, the 26S proteasome non-ATPase regulatory subunit 1, as the targeting gene for pharmacological activity of canthin-6-one. Finally, we showed that canthin-6-one up-regulates PSMD1 and enhances UPS function by activating PKA.
Collapse
Affiliation(s)
- Ning-Ning Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cui-Zan Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ming-Yue Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qi Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - HuanXing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Min Li
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - JiaoYan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jie-Qiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
73
|
Why would Parkinson's disease lead to sudden changes in creativity, motivation, or style with visual art?: A review of case evidence and new neurobiological, contextual, and genetic hypotheses. Neurosci Biobehav Rev 2019; 100:129-165. [PMID: 30629980 DOI: 10.1016/j.neubiorev.2018.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/15/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a devastating diagnosis with, however, potential for an extremely intriguing aesthetic component. Despite motor and cognitive deficits, an emerging collection of studies report a burst of visual artistic output and alterations in produced art in a subgroup of patients. This provides a unique window into the neurophysiological bases for why and how we might create and enjoy visual art, as well as into general brain function and the nature of PD or other neurodegenerative diseases. However, there has not been a comprehensive organization of literature on this topic. Nor has there been an attempt to connect case evidence and knowledge on PD with present understanding of visual art making in psychology and neuroaesthetics in order to propose hypotheses for documented artistic changes. Here, we collect the current research on this topic, tie this to PD symptoms and neurobiology, and provide new theories focusing on dopaminergic neuron damage, over-stimulation from dopamine agonist therapy, and context or genetic factors revealing the neurobiological basis of the visual artistic brain.
Collapse
|
74
|
Jęśko H, Lenkiewicz AM, Wilkaniec A, Adamczyk A. The interplay between parkin and alpha-synuclein; possible implications for the pathogenesis of Parkinson’s disease. Acta Neurobiol Exp (Wars) 2019. [DOI: 10.21307/ane-2019-026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
75
|
Khan AU, Akram M, Daniyal M, Zainab R. Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. Int J Neurosci 2018; 129:55-93. [DOI: 10.1080/00207454.2018.1486837] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Asmat Ullah Khan
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Department of Eastern Medicine and Surgery, School of Medical and Health Sciences, The University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation and Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Hunan University, Changsha, China
| | - Rida Zainab
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| |
Collapse
|
76
|
Matteucci A, Patron M, Vecellio Reane D, Gastaldello S, Amoroso S, Rizzuto R, Brini M, Raffaello A, Calì T. Parkin-dependent regulation of the MCU complex component MICU1. Sci Rep 2018; 8:14199. [PMID: 30242232 PMCID: PMC6155109 DOI: 10.1038/s41598-018-32551-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial Ca2+ uniporter machinery is a multiprotein complex composed by the Ca2+ selective pore-forming subunit, the mitochondrial uniporter (MCU), and accessory proteins, including MICU1, MICU2 and EMRE. Their concerted action is required to fine-tune the uptake of Ca2+ into the mitochondrial matrix which both sustains cell bioenergetics and regulates the apoptotic response. To adequately fulfil such requirements and avoid impairment in mitochondrial Ca2+ handling, the intracellular turnover of all the MCU components must be tightly regulated. Here we show that the MCU complex regulator MICU1, but not MCU and MICU2, is rapidly and selectively degraded by the Ubiquitin Proteasome System (UPS). Moreover, we show that the multifunctional E3 ubiquitin ligase Parkin (PARK2), whose mutations cause autosomal recessive early-onset Parkinson's disease (PD), is a potential candidate involved in this process since its upregulation strongly decreases the basal level of MICU1. Parkin was found to interact with MICU1 and, interestingly, Parkin Ubl-domain, but not its E3-ubquitin ligase activity, is required for the degradation of MICU1, suggesting that in addition to the well documented role in the control of Parkin basal auto-inhibition, the Ubl-domain might exert important regulatory functions by acting as scaffold for the proteasome-mediated degradation of selected substrates under basal conditions, i.e. to guarantee their turnover. We have found that also MICU2 stability was affected upon Parkin overexpression, probably as a consequence of increased MICU1 degradation. Our findings support a model in which the PD-related E3 ubiquitin ligase Parkin directly participates in the selective regulation of the MCU complex regulator MICU1 and, indirectly, also of the MICU2 gatekeeper, thus indicating that Parkin loss of function could contribute to the impairment of the ability of mitochondria to handle Ca2+ and consequently to the pathogenesis of PD.
Collapse
Affiliation(s)
- Alessandra Matteucci
- Department of Biomedical Sciences and Public Health, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Maria Patron
- Department of Biomedical Sciences, University of Padova, via U. Basi 58/b, 35131, Padova, Italy
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Denis Vecellio Reane
- Department of Biomedical Sciences, University of Padova, via U. Basi 58/b, 35131, Padova, Italy
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, Quarter B5, Stockholm, SE-17165, Sweden
- Precision Medicine Research Center, Binzhou Medical University, Laishan District, Guanhai Road 346, Yantai, Shandong Province, 264003, China
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, via U. Basi 58/b, 35131, Padova, Italy
- CNR Neuroscience Institute, via U. Basi 58/b, 35131, Padova, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, via U. Bassi 58/b, 35131, Padova, Italy
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padova, via U. Basi 58/b, 35131, Padova, Italy.
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, via U. Basi 58/b, 35131, Padova, Italy.
- Padua Neuroscience Center (PNC), University of Padua, 35122, Padova, Italy.
| |
Collapse
|
77
|
Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci 2018; 8:E177. [PMID: 30223579 PMCID: PMC6162719 DOI: 10.3390/brainsci8090177] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Regeneration refers to regrowth of tissue in the central nervous system. It includes generation of new neurons, glia, myelin, and synapses, as well as the regaining of essential functions: sensory, motor, emotional and cognitive abilities. Unfortunately, regeneration within the nervous system is very slow compared to other body systems. This relative slowness is attributed to increased vulnerability to irreversible cellular insults and the loss of function due to the very long lifespan of neurons, the stretch of cells and cytoplasm over several dozens of inches throughout the body, insufficiency of the tissue-level waste removal system, and minimal neural cell proliferation/self-renewal capacity. In this context, the current review summarized the most common features of major neurodegenerative disorders; their causes and consequences and proposed novel therapeutic approaches.
Collapse
Affiliation(s)
- Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Hira Zubair
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Sarah Pursell
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Muhammad Shahab
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
78
|
Zhu M, Cortese GP, Waites CL. Parkinson's disease-linked Parkin mutations impair glutamatergic signaling in hippocampal neurons. BMC Biol 2018; 16:100. [PMID: 30200940 PMCID: PMC6130078 DOI: 10.1186/s12915-018-0567-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD)-associated E3 ubiquitin ligase Parkin is enriched at glutamatergic synapses, where it ubiquitinates multiple substrates, suggesting that its mutation/loss-of-function could contribute to the etiology of PD by disrupting excitatory neurotransmission. Here, we evaluate the impact of four common PD-associated Parkin point mutations (T240M, R275W, R334C, G430D) on glutamatergic synaptic function in hippocampal neurons. RESULTS We find that expression of these point mutants in cultured hippocampal neurons from Parkin-deficient and Parkin-null backgrounds alters NMDA and AMPA receptor-mediated currents and cell-surface levels and prevents the induction of long-term depression. Mechanistically, we demonstrate that Parkin regulates NMDA receptor trafficking through its ubiquitination of GluN1, and that all four mutants are impaired in this ubiquitinating activity. Furthermore, Parkin regulates synaptic AMPA receptor trafficking via its binding and retention of the postsynaptic scaffold Homer1, and all mutants are similarly impaired in this capacity. CONCLUSION Our findings demonstrate that pathogenic Parkin mutations disrupt glutamatergic synaptic transmission in hippocampal neurons by impeding NMDA and AMPA receptor trafficking. Such effects may contribute to the pathophysiology of PD in PARK2 patients.
Collapse
Affiliation(s)
- Mei Zhu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Giuseppe P. Cortese
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY USA
| | - Clarissa L. Waites
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Department of Neuroscience, Columbia University, New York, NY USA
- Waites Lab, 650 W. 168th St. Black Building 1210B, New York, NY 10032 USA
| |
Collapse
|
79
|
Soukup SF, Vanhauwaert R, Verstreken P. Parkinson's disease: convergence on synaptic homeostasis. EMBO J 2018; 37:embj.201898960. [PMID: 30065071 DOI: 10.15252/embj.201898960] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/07/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder, affects millions of people globally. There is no cure, and its prevalence will double by 2030. In recent years, numerous causative genes and risk factors for Parkinson's disease have been identified and more than half appear to function at the synapse. Subtle synaptic defects are thought to precede blunt neuronal death, but the mechanisms that are dysfunctional at synapses are only now being unraveled. Here, we review recent work and propose a model where different Parkinson proteins interact in a cell compartment-specific manner at the synapse where these proteins regulate endocytosis and autophagy. While this field is only recently emerging, the work suggests that the loss of synaptic homeostasis may contribute to neurodegeneration and is a key player in Parkinson's disease.
Collapse
Affiliation(s)
- Sandra-Fausia Soukup
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Roeland Vanhauwaert
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
80
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
81
|
Liu J, Zhang C, Hu W, Feng Z. Parkinson's disease-associated protein Parkin: an unusual player in cancer. Cancer Commun (Lond) 2018; 38:40. [PMID: 29941042 PMCID: PMC6020249 DOI: 10.1186/s40880-018-0314-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
The mutation of the Parkin gene is a cause of familial Parkinson’s disease. A growing body of evidence suggests that Parkin also functions as a tumor suppressor. Parkin is an ubiquitin E3 ligase, and plays important roles in a variety of cellular processes implicated in tumorigenesis, including cell cycle, cell proliferation, apoptosis, metastasis, mitophagy and metabolic reprogramming. Here we review the role and mechanism of Parkin in cancer.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA. .,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA.
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA. .,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
82
|
Jiang TX, Zhao M, Qiu XB. Substrate receptors of proteasomes. Biol Rev Camb Philos Soc 2018; 93:1765-1777. [DOI: 10.1111/brv.12419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Tian-Xia Jiang
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| | - Mei Zhao
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| | - Xiao-Bo Qiu
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| |
Collapse
|
83
|
Hell F, Plate A, Mehrkens JH, Bötzel K. Subthalamic oscillatory activity and connectivity during gait in Parkinson's disease. Neuroimage Clin 2018; 19:396-405. [PMID: 30035024 PMCID: PMC6051498 DOI: 10.1016/j.nicl.2018.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 11/29/2022]
Abstract
Local field potentials (LFP) of the subthalamic nucleus (STN) recorded during walking may provide clues for determining the function of the STN during gait and also, may be used as biomarker to steer adaptive brain stimulation devices. Here, we present LFP recordings from an implanted sensing neurostimulator (Medtronic Activa PC + S) during walking and rest with and without stimulation in 10 patients with Parkinson's disease and electrodes placed bilaterally in the STN. We also present recordings from two of these patients recorded with externalized leads. We analyzed changes in overall frequency power, bilateral connectivity, high beta frequency oscillatory characteristics and gait-cycle related oscillatory activity. We report that deep brain stimulation improves gait parameters. High beta frequency power (20-30 Hz) and bilateral oscillatory connectivity are reduced during gait, while the attenuation of high beta power is absent during stimulation. Oscillatory characteristics are affected in a similar way. We describe a reduction in overall high beta burst amplitude and burst lifetimes during gait as compared to rest off stimulation. Investigating gait cycle related oscillatory dynamics, we found that alpha, beta and gamma frequency power is modulated in time during gait, locked to the gait cycle. We argue that these changes are related to movement induced artifacts and that these issues have important implications for similar research.
Collapse
Affiliation(s)
- Franz Hell
- Department of Neurology, Ludwig-Maximilians-Universität München, Marchioninistr. 15, D-81377 Munich, Germany; Graduate School of Systemic Neurosciences, GSN, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2, D-82152 Martinsried, Germany.
| | - Annika Plate
- Department of Neurology, Ludwig-Maximilians-Universität München, Marchioninistr. 15, D-81377 Munich, Germany; Graduate School of Systemic Neurosciences, GSN, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2, D-82152 Martinsried, Germany
| | - Jan H Mehrkens
- Department of Neurosurgery, Ludwig-Maximilians-Universität München, Marchioninistr. 15, D-81377 Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig-Maximilians-Universität München, Marchioninistr. 15, D-81377 Munich, Germany; Graduate School of Systemic Neurosciences, GSN, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2, D-82152 Martinsried, Germany
| |
Collapse
|
84
|
A role for viral infections in Parkinson's etiology? Neuronal Signal 2018; 2:NS20170166. [PMID: 32714585 PMCID: PMC7373231 DOI: 10.1042/ns20170166] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
Despite over 200 years since its first description by James Parkinson, the cause(s) of most cases of Parkinson's disease (PD) are yet to be elucidated. The disparity between the current understanding of PD symptomology and pathology has led to numerous symptomatic therapies, but no strategy for prevention or disease cure. An association between certain viral infections and neurodegenerative diseases has been recognized, but largely ignored or dismissed as controversial, for decades. Recent epidemiological studies have renewed scientific interest in investigating microbial interactions with the central nervous system (CNS). This review examines past and current clinical findings and overviews the potential molecular implications of viruses in PD pathology.
Collapse
|
85
|
Abstract
Synapse is the basic structural and functional component for neural communication in the brain. The presynaptic terminal is the structural and functionally essential area that initiates communication and maintains the continuous functional neural information flow. It contains synaptic vesicles (SV) filled with neurotransmitters, an active zone for release, and numerous proteins for SV fusion and retrieval. The structural and functional synaptic plasticity is a representative characteristic; however, it is highly vulnerable to various pathological conditions. In fact, synaptic alteration is thought to be central to neural disease processes. In particular, the alteration of the structural and functional phenotype of the presynaptic terminal is a highly significant evidence for neural diseases. In this review, we specifically describe structural and functional alteration of nerve terminals in several neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD).
Collapse
Affiliation(s)
- Jae Ryul Bae
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sung Hyun Kim
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
86
|
Li YX, Yu ZW, Jiang T, Shao LW, Liu Y, Li N, Wu YF, Zheng C, Wu XY, Zhang M, Zheng DF, Qi XL, Ding M, Zhang J, Chang Q. SNCA, a novel biomarker for Group 4 medulloblastomas, can inhibit tumor invasion and induce apoptosis. Cancer Sci 2018; 109:1263-1275. [PMID: 29369502 PMCID: PMC5891175 DOI: 10.1111/cas.13515] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/24/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in childhood. It contains at least four distinct molecular subgroups. The aim of this study is to explore novel diagnostic and potential therapeutic markers within each subgroup of MB, in particular within Group 4, the largest subgroup, to facilitate diagnosis together with gene therapy. One hundred and six MB samples were examined. Tumor subtype was evaluated with the NanoString assay. Several novel tumor related genes were shown to have high subgroup sensitivity and specificity, including PDGFRA,FGFR1, and ALK in the WNT group, CCND1 in the SHH group, and α‐synuclein (SNCA) in Group 4. Knockdown and overexpression assays of SNCA revealed the ability of this gene to inhibit tumor invasion and induce apoptosis. Methylation‐specific PCR and pyrosequencing analysis showed that epigenetic mechanisms, rather than DNA hypermethylation, might play the key role in the regulation of SNCA expression in MB tumors. In conclusion, we identify SNCA as a novel diagnostic biomarker for Group 4 MB. Some other subgroup signature genes have also been found as candidate therapeutic targets for this tumor.
Collapse
Affiliation(s)
- Yong-Xiao Li
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Beijing, China
| | - Zhen-Wei Yu
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Li-Wei Shao
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Beijing, China
| | - Yan Liu
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Beijing, China
| | - Na Li
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Beijing, China
| | - Yu-Feng Wu
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Beijing, China
| | - Chen Zheng
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Beijing, China
| | - Xiao-Yu Wu
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Beijing, China
| | - Ming Zhang
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Beijing, China
| | - Dan-Feng Zheng
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Beijing, China
| | - Xue-Ling Qi
- Department of Pathology, Beijing Sanbo Brain Hospital, Beijing, China
| | - Min Ding
- Department of Pathology, Anhui Provincial Hospital, Hefei, China
| | - Jing Zhang
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Beijing, China.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Qing Chang
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Beijing, China
| |
Collapse
|
87
|
Zimmermann M, Reichert AS. How to get rid of mitochondria: crosstalk and regulation of multiple mitophagy pathways. Biol Chem 2017; 399:29-45. [PMID: 28976890 DOI: 10.1515/hsz-2017-0206] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
Mitochondria are indispensable cellular organelles providing ATP and numerous other essential metabolites to ensure cell survival. Reactive oxygen species (ROS), which are formed as side reactions during oxidative phosphorylation or by external agents, induce molecular damage in mitochondrial proteins, lipids/membranes and DNA. To cope with this and other sorts of organellar stress, a multi-level quality control system exists to maintain cellular homeostasis. One critical level of mitochondrial quality control is the removal of damaged mitochondria by mitophagy. This process utilizes parts of the general autophagy machinery, e.g. for the formation of autophagosomes but also employs mitophagy-specific factors. Depending on the proteins utilized mitophagy is divided into receptor-mediated and ubiquitin-mediated mitophagy. So far, at least seven receptor proteins are known to be required for mitophagy under different experimental conditions. In contrast to receptor-mediated pathways, the Pink-Parkin-dependent pathway is currently the best characterized ubiquitin-mediated pathway. Recently two additional ubiquitin-mediated pathways with distinctive similarities and differences were unraveled. We will summarize the current state of knowledge about these multiple pathways, explain their mechanism, and describe the regulation and crosstalk between these pathways. Finally, we will review recent evidence for the evolutionary conservation of ubiquitin-mediated mitophagy pathways.
Collapse
Affiliation(s)
- Marcel Zimmermann
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
88
|
Do YJ, Yun SY, Park MY, Kim E. The M458L missense mutation disrupts the catalytic properties of Parkin. FEBS Lett 2017; 592:78-88. [PMID: 29223129 DOI: 10.1002/1873-3468.12934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 11/09/2022]
Abstract
Parkin encodes an E3 ubiquitin ligase, and mutations affecting its catalytic potential are implicated in autosomal recessive Parkinson's disease (PD). The M458L mutation of parkin and its enzymatic effects require characterization. Therefore, we examined the enzymatic activity of Parkin with M458L mutation. We show that the M458L mutant retains its autoubiquitination potential in vitro but not in cells. Fas-associated factor 1 and p38 (substrates of Parkin) are able to bind to the M458L mutant in cells; however, these Parkin substrates are not ubiquitinated and degraded in M458L mutant-transfected cells. Moreover, M458L mutant fails to protect the mitochondria against hydrogen peroxide, leading to cell death. Considering the role of mitochondrial dysfunction in PD pathogenesis, our results imply a causative role for the M458L mutation in neurodegeneration.
Collapse
Affiliation(s)
- Yun-Ju Do
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Seo Young Yun
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Min-Young Park
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Eunhee Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| |
Collapse
|
89
|
Parkin targets HIF-1α for ubiquitination and degradation to inhibit breast tumor progression. Nat Commun 2017; 8:1823. [PMID: 29180628 PMCID: PMC5703960 DOI: 10.1038/s41467-017-01947-w] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/27/2017] [Indexed: 02/08/2023] Open
Abstract
Mutations in E3 ubiquitin ligase Parkin have been linked to familial Parkinson’s disease. Accumulating evidence suggests that Parkin is a tumor suppressor, but the underlying mechanism is poorly understood. Here we show that Parkin is an E3 ubiquitin ligase for hypoxia-inducible factor 1α (HIF-1α). Parkin interacts with HIF-1α and promotes HIF-1α degradation through ubiquitination, which in turn inhibits metastasis of breast cancer cells. Parkin downregulation in breast cancer cells promotes metastasis, which can be inhibited by targeting HIF-1α with RNA interference or the small-molecule inhibitor YC-1. We further identify lysine 477 (K477) of HIF-1α as a major ubiquitination site for Parkin. K477R HIF-1α mutation and specific cancer-associated Parkin mutations largely abolish the functions of Parkin to ubiquitinate HIF-1α and inhibit cancer metastasis. Importantly, Parkin expression is inversely correlated with HIF-1α expression and metastasis in breast cancer. Our results reveal an important mechanism for Parkin in tumor suppression and HIF-1α regulation. Parkin is an E3 ubiquitin ligase involved in Parkinson’s disease. Parkin has also been linked to cancer suppression but the mechanisms are unclear. Here the authors show that Parkin regulates HIF-1α through ubiquitin-dependent degradation, thus inhibiting metastasis of breast cancer cells.
Collapse
|
90
|
Pryde KR, Taanman JW, Schapira AH. A LON-ClpP Proteolytic Axis Degrades Complex I to Extinguish ROS Production in Depolarized Mitochondria. Cell Rep 2017; 17:2522-2531. [PMID: 27926857 PMCID: PMC5177631 DOI: 10.1016/j.celrep.2016.11.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/28/2016] [Accepted: 11/03/2016] [Indexed: 10/27/2022] Open
Abstract
Mitochondrial dysfunction is implicated in numerous neurodegenerative disorders and in Parkinson's disease (PD) in particular. PINK1 and Parkin gene mutations are causes of autosomal recessive PD, and these respective proteins function cooperatively to degrade depolarized mitochondria (mitophagy). It is widely assumed that impaired mitophagy causes PD, as toxic reactive oxygen species (ROS)-producing mitochondria accumulate and progressively drive neurodegeneration. Instead, we report that a LON-ClpP proteolytic quality control axis extinguishes ROS in depolarized mitochondria by degrading the complex I ROS-generating domain. Complex I deficiency has also been identified in PD brain, and our study provides a compelling non-genetic mechanistic rationale to explain this observation: intact complex I depletes if mitochondrial bioenergetic capacity is robustly attenuated.
Collapse
Affiliation(s)
- Kenneth Robert Pryde
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London WC1E 6BT, UK.
| | - Jan Willem Taanman
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London WC1E 6BT, UK
| | - Anthony Henry Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London WC1E 6BT, UK
| |
Collapse
|
91
|
Sassone J, Serratto G, Valtorta F, Silani V, Passafaro M, Ciammola A. The synaptic function of parkin. Brain 2017; 140:2265-2272. [PMID: 28335015 DOI: 10.1093/brain/awx006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Loss of function mutations in the gene PARK2, which encodes the protein parkin, cause autosomal recessive juvenile parkinsonism, a neurodegenerative disease characterized by degeneration of the dopaminergic neurons localized in the substantia nigra pars compacta. No therapy is effective in slowing disease progression mostly because the pathogenesis of the disease is yet to be understood. From accruing evidence suggesting that the protein parkin directly regulates synapses it can be hypothesized that PARK2 gene mutations lead to early synaptic damage that results in dopaminergic neuron loss over time. We review evidence that supports the role of parkin in modulating excitatory and dopaminergic synapse functions. We also discuss how these findings underpin the concept that autosomal recessive juvenile parkinsonism can be primarily a synaptopathy. Investigation into the molecular interactions between parkin and synaptic proteins may yield novel targets for pharmacologic interventions.
Collapse
Affiliation(s)
- Jenny Sassone
- San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - GiuliaMaia Serratto
- CNR Institute of Neuroscience, Department BIOMETRA, Università degli Studi di Milano, Milan, Italy.,IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, Milan, Italy
| | - Flavia Valtorta
- San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Vincenzo Silani
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, Milan, Italy.,Department of Pathophysiology and Transplantation, 'Dino Ferrari' Centre, Università degli Studi di Milano, Milan, Italy
| | - Maria Passafaro
- CNR Institute of Neuroscience, Department BIOMETRA, Università degli Studi di Milano, Milan, Italy
| | - Andrea Ciammola
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, Milan, Italy
| |
Collapse
|
92
|
Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover. Pharmacol Ther 2017; 178:157-174. [DOI: 10.1016/j.pharmthera.2017.04.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
93
|
Activation mechanisms of the E3 ubiquitin ligase parkin. Biochem J 2017; 474:3075-3086. [PMID: 28860335 DOI: 10.1042/bcj20170476] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
Monogenetic, familial forms of Parkinson's disease (PD) only account for 5-10% of the total number of PD cases, but analysis of the genes involved therein is invaluable to understanding PD-associated neurodegenerative signaling. One such gene, parkin, encodes a 465 amino acid E3 ubiquitin ligase. Of late, there has been considerable interest in the role of parkin signaling in PD and in identifying its putative substrates, as well as the elucidation of the mechanisms through which parkin itself is activated. Its dysfunction underlies both inherited and idiopathic PD-associated neurodegeneration. Here, we review recent literature that provides a model of activation of parkin in the setting of mitochondrial damage that involves PINK1 (PTEN-induced kinase-1) and phosphoubiquitin. We note that neuronal parkin is primarily a cytosolic protein (with various non-mitochondrial functions), and discuss potential cytosolic parkin activation mechanisms.
Collapse
|
94
|
Kumar P, Schilderink N, Subramaniam V, Huber M. Membrane Binding of Parkinson's Protein α-Synuclein: Effect of Phosphorylation at Positions 87 and 129 by the S to D Mutation Approach. Isr J Chem 2017; 57:762-770. [PMID: 28919642 PMCID: PMC5573911 DOI: 10.1002/ijch.201600083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Indexed: 11/10/2022]
Abstract
Human α-synuclein, a protein relevant in the brain with so-far unknown function, plays an important role in Parkinson's disease. The phosphorylation state of αS was related to the disease, prompting interest in this process. The presumed physiological function and the disease action of αS involves membrane interaction. Here, we study the effect of phosphorylation at positions 87 and 129, mimicked by the mutations S87A, S129A (nonphosphorylated) and S87D, S129D (phosphorylated) on membrane binding. Local binding is detected by spin-label continuous-wave electron paramagnetic resonance. For S87A/D, six positions (27, 56, 63, 69, 76, and 90) are probed; and for S129A/D, three (27, 56, and 69). Binding to large unilamellar vesicles of 100 nm diameter of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine in a 1 : 1 composition is not affected by the phosphorylation state of S129. For phosphorylation at S87, local unbinding of αS from the membrane is observed. We speculate that modulating the local membrane affinity by phosphorylation could tune the way αS interacts with different membranes; for example, tuning its membrane fusion activity.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Physics, Huygens-Kamerlingh-Onnes LaboratoryLeiden UniversityLeidenThe Netherlands
| | - Nathalie Schilderink
- Nanobiophysics, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Vinod Subramaniam
- Nanobiophysics, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
- FOM Institute AMOLFAmsterdamThe Netherlands
- Vrije Universiteit of AmsterdamAmsterdamThe Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh-Onnes LaboratoryLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
95
|
Abstract
Nearly 20 years have passed since we identified the causative gene for a familial Parkinson's disease, parkin (now known as PARK2), in 1998. PARK2 is the most common gene responsible for young-onset Parkinson's disease. It codes for the protein Parkin RBR E3 ubiquitin-protein ligase (PARK2), which directly links to the ubiquitin-proteasome as a ubiquitin ligase. PARK2 is involved in mitophagy, which is a type of autophagy, in collaboration with PTEN-induced putative kinase 1 (PINK1). The PINK1 gene (previously known as PARK6) is also a causative gene for young-onset Parkinson's disease. Both gene products may be involved in regulating quality control within the mitochondria. The discovery of PARK2 as a cause of young-onset Parkinson's disease has had a major impact on other neurodegenerative diseases. The involvement of protein degradation systems has been implicated as a common mechanism for neurodegenerative diseases in which inclusion body formation is observed. The discovery of the involvement of PARK2 in Parkinson's disease focused attention on the involvement of protein degradation systems in neurodegenerative diseases. In this review, we focus on the history of the discovery of PARK2, the clinical phenotypes of patients with PARK2 mutations, and its functional roles.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
| | - Yoshikuni Mizuno
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
96
|
Verma MK, Goel R, Nandakumar K, Nemmani KV. Effect of D-Ala 2 GIP, a stable GIP receptor agonist on MPTP-induced neuronal impairments in mice. Eur J Pharmacol 2017; 804:38-45. [DOI: 10.1016/j.ejphar.2017.03.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 01/30/2023]
|
97
|
Kim T, Vemuganti R. Mechanisms of Parkinson's disease-related proteins in mediating secondary brain damage after cerebral ischemia. J Cereb Blood Flow Metab 2017; 37:1910-1926. [PMID: 28273718 PMCID: PMC5444552 DOI: 10.1177/0271678x17694186] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Both Parkinson's disease (PD) and stroke are debilitating conditions that result in neuronal death and loss of neurological functions. These two conditions predominantly affect aging populations with the deterioration of the quality of life for the patients themselves and a tremendous burden to families. While the neurodegeneration and symptomology of PD develop chronically over the years, post-stroke neuronal death and dysfunction develop rapidly in days. Despite the discrepancy in the pathophysiological time frame and severity, both conditions share common molecular mechanisms that include oxidative stress, mitochondrial dysfunction, inflammation, endoplasmic reticulum stress, and activation of various cell death pathways (apoptosis/necrosis/autophagy) that synergistically modulate the neuronal death. Emerging evidence indicates that several proteins associated with early-onset familial PD play critical roles in mediating the neuronal death. Importantly, mutations in the genes encoding Parkin, PTEN-induced putative kinase 1 and DJ-1 mediate autosomal recessive forms of PD, whereas mutations in the genes encoding leucine-rich repeat kinase 2 and α-synuclein are responsible for autosomal dominant PD. This review discusses the significance of these proteins with the emphasis on the role of α-synuclein in mediating post-ischemic brain damage.
Collapse
Affiliation(s)
- TaeHee Kim
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,2 Neuroscience Training Program, Madison, WI, USA
| | - Raghu Vemuganti
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,2 Neuroscience Training Program, Madison, WI, USA.,3 Cellular & Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.,4 William S. Middleton Memorial Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
98
|
Wang Y, Wu JJ, Liu FT, Chen K, Chen C, Luo SS, Wang YX, Li DK, Guan RY, Yang YJ, An Y, Wang J, Sun YM. Olfaction in Parkin carriers in Chinese patients with Parkinson disease. Brain Behav 2017; 7:e00680. [PMID: 28523222 PMCID: PMC5434185 DOI: 10.1002/brb3.680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Olfactory identification was reported to be better among PD (Parkinson disease) patients with Parkin mutations, but previous studies didn't eliminate the interference of other PD related genes on olfaction, and whether olfaction of Parkin mutations patients was better in Chinese population was still unknown. OBJECTIVE To assess olfaction function among PD patients with Parkin mutations in Chinese population. MATERIALS AND METHODS A total of 226 PD patients with a positive family history or an early-onset age (<50 years) were enrolled for genetic testing of PD related genes by target sequencing and multiple ligation-dependent probe amplification. The clinical data including olfactory function test were investigated. Linear regression was performed to adjust for the covariates between all groups. RESULTS There were 68 patients found having a negative result in PD genetic testing and 43 patients carrying homozygous or compound heterozygous Parkin mutations. Among them, 49 PD panel negative patients and 33 PD-Parkin patients had results of olfactory assessment. PD -Parkin patients performed significantly better on the Sniffin' Sticks tests than panel negative patients (8.0 ± 1.7 vs. 5.7 ± 1.9, p < .001), but still worse compared to healthy controls (9.4 ± 1.5, p = .003). These differences persisted after adjusting for confounders. CONCLUSIONS Among Chinese population, PD -Parkin patients had relatively preserved olfaction compared to PD panel negative patients after eliminating the interference of other PD related genes, but were still worse than healthy controls.
Collapse
Affiliation(s)
- Ying Wang
- Department and Institute of Neurology Huashan Hospital Fudan University Shanghai China
| | - Jian-Jun Wu
- Department and Institute of Neurology Huashan Hospital Fudan University Shanghai China.,Department of Neurology Jing'an District Center Hospital of Shanghai Shanghai China
| | - Feng-Tao Liu
- Department and Institute of Neurology Huashan Hospital Fudan University Shanghai China
| | - Kui Chen
- Department and Institute of Neurology Huashan Hospital Fudan University Shanghai China
| | - Chen Chen
- Department and Institute of Neurology Huashan Hospital Fudan University Shanghai China
| | - Su-Shan Luo
- Department and Institute of Neurology Huashan Hospital Fudan University Shanghai China
| | - Yi-Xuan Wang
- Department and Institute of Neurology Huashan Hospital Fudan University Shanghai China
| | - Da-Ke Li
- Department and Institute of Neurology Huashan Hospital Fudan University Shanghai China
| | - Rong-Yuan Guan
- Department and Institute of Neurology Huashan Hospital Fudan University Shanghai China
| | - Yu-Jie Yang
- Department and Institute of Neurology Huashan Hospital Fudan University Shanghai China
| | - Yu An
- Institute of Biomedical Sciences Medical School Fudan University Shanghai China
| | - Jian Wang
- Department and Institute of Neurology Huashan Hospital Fudan University Shanghai China
| | - Yi-Min Sun
- Department and Institute of Neurology Huashan Hospital Fudan University Shanghai China
| |
Collapse
|
99
|
Giannoccaro MP, La Morgia C, Rizzo G, Carelli V. Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson's disease. Mov Disord 2017; 32:346-363. [PMID: 28251677 DOI: 10.1002/mds.26966] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/15/2022] Open
Abstract
In 1979, it was observed that parkinsonism could be induced by a toxin inhibiting mitochondrial respiratory complex I. This initiated the long-standing hypothesis that mitochondrial dysfunction may play a key role in the pathogenesis of Parkinson's disease (PD). This hypothesis evolved, with accumulating evidence pointing to complex I dysfunction, which could be caused by environmental or genetic factors. Attention was focused on the mitochondrial DNA, considering the occurrence of mutations, polymorphic haplogroup-specific variants, and defective mitochondrial DNA maintenance with the accumulation of multiple deletions and a reduction of copy number. Genetically determined diseases of mitochondrial DNA maintenance frequently manifest with parkinsonism, but the age-related accumulation of somatic mitochondrial DNA errors also represents a major driving mechanism for PD. Recently, the discovery of the genetic cause of rare inherited forms of PD highlighted an extremely complex homeostatic control over mitochondria, involving their dynamic fission/fusion cycle, the balancing of mitobiogenesis and mitophagy, and consequently the quality control surveillance that corrects faulty mitochondrial DNA maintenance. Many genes came into play, including the PINK1/parkin axis, but also OPA1, as pieces of the same puzzle, together with mitochondrial DNA damage, complex I deficiency and increased oxidative stress. The search for answers will drive future research to reach the understanding necessary to provide therapeutic options directed not only at limiting the clinical evolution of symptoms but also finally addressing the pathogenic mechanisms of neurodegeneration in PD. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Rizzo
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
100
|
Kabayama H, Tokushige N, Takeuchi M, Kabayama M, Fukuda M, Mikoshiba K. Parkin promotes proteasomal degradation of synaptotagmin IV by accelerating polyubiquitination. Mol Cell Neurosci 2017; 80:89-99. [PMID: 28254618 DOI: 10.1016/j.mcn.2017.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/02/2017] [Accepted: 02/15/2017] [Indexed: 12/25/2022] Open
Abstract
Parkin is an E3 ubiquitin ligase whose mutations cause autosomal recessive juvenile Parkinson's disease (PD). Unlike the human phenotype, parkin knockout (KO) mice show no apparent dopamine neuron degeneration, although they demonstrate reduced expression and activity of striatal mitochondrial proteins believed to be necessary for neuronal survival. Instead, parkin-KO mice show reduced striatal evoked dopamine release, abnormal synaptic plasticity, and non-motor symptoms, all of which appear to mimic the preclinical features of Parkinson's disease. Extensive studies have screened candidate synaptic proteins responsible for reduced evoked dopamine release, and synaptotagmin XI (Syt XI), an isoform of Syt family regulating membrane trafficking, has been identified as a substrate of parkin in humans. However, its expression level is unaltered in the striatum of parkin-KO mice. Thus, the target(s) of parkin and the molecular mechanisms underlying the impaired dopamine release in parkin-KO mice remain unknown. In this study, we focused on Syt IV because of its highly homology to Syt XI, and because they share an evolutionarily conserved lack of Ca2+-binding capacity; thus, Syt IV plays an inhibitory role in Ca2+-dependent neurotransmitter release in PC12 cells and neurons in various brain regions. We found that a proteasome inhibitor increased Syt IV protein, but not Syt XI protein, in neuron-like, differentiated PC12 cells, and that parkin interacted with and polyubiquitinated Syt IV, thereby accelerating its protein turnover. Parkin overexpression selectively degraded Syt IV protein, but not Syt I protein (indispensable for Ca2+-dependent exocytosis), thus enhancing depolarization-dependent exocytosis. Furthermore, in parkin-KO mice, the level of striatal Syt IV protein was increased. Our data indicate a crucial role for parkin in the proteasomal degradation of Syt IV, and provide a potential mechanism of parkin-regulated, evoked neurotransmitter release.
Collapse
Affiliation(s)
- Hiroyuki Kabayama
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Naoko Tokushige
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Takeuchi
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Miyuki Kabayama
- Division of Functional Morphology, Department of Basic Veterinary Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonantyo, Musashino, Tokyo 180-8602, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|