51
|
Yu ED, Wang H, da Silva Antunes R, Tian Y, Tippalagama R, Alahakoon SU, Premawansa G, Wijewickrama A, Premawansa S, De Silva AD, Frazier A, Grifoni A, Sette A, Weiskopf D. A Population of CD4 +CD8 + Double-Positive T Cells Associated with Risk of Plasma Leakage in Dengue Viral Infection. Viruses 2022; 14:90. [PMID: 35062294 PMCID: PMC8779337 DOI: 10.3390/v14010090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
According to the WHO 2009 classification, dengue with warning signs is at the risk of developing severe form of dengue disease. One of the most important warning signs is plasma leakage, which can be a serious complication associated with higher morbidity and mortality. We report that the frequency of CD4+CD8+ double-positive (DP) T cells is significantly increased in patients at risk of developing plasma leakage. Transcriptomic analysis demonstrated that CD4+CD8+ DP cells were distinct from CD4+ Single Positive (SP) T cells but co-clustered with CD8+ SP cells, indicating a largely similar transcriptional profile. Twenty significant differentially expressed (DE) genes were identified between CD4+CD8+ DP and CD8+ SP cells. These genes encode OX40 and CCR4 proteins as well as other molecules associated with cell signaling on the cell surface (NT5E, MXRA8, and PTPRK). While comparing the profile of gene expression in CD4+CD8+ DP cells from patients with and without warning signs of plasma leakage, similar expression profile was observed, implying a role of CD4+CD8+ DP cells in plasma leakage through a quantitative increase rather than functional alteration. This study provided novel insight into the host immune response during the acute febrile phase of DENV infection and the role of CD4+CD8+ DP T cells in the pathogenesis of plasma leakage.
Collapse
Affiliation(s)
- Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; (E.D.Y.); (R.d.S.A.); (Y.T.); (R.T.); (A.D.D.S.); (A.F.); (A.G.)
| | - Hao Wang
- School of Medicine, University of California San Diego, La Jolla, CA 92037, USA;
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; (E.D.Y.); (R.d.S.A.); (Y.T.); (R.T.); (A.D.D.S.); (A.F.); (A.G.)
| | - Yuan Tian
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; (E.D.Y.); (R.d.S.A.); (Y.T.); (R.T.); (A.D.D.S.); (A.F.); (A.G.)
| | - Rashmi Tippalagama
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; (E.D.Y.); (R.d.S.A.); (Y.T.); (R.T.); (A.D.D.S.); (A.F.); (A.G.)
| | | | | | | | - Sunil Premawansa
- Department of Zoology and Environment Sciences, University of Colombo, Colombo 00700, Sri Lanka;
| | - Aruna Dharshan De Silva
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; (E.D.Y.); (R.d.S.A.); (Y.T.); (R.T.); (A.D.D.S.); (A.F.); (A.G.)
- Genetech Research Institute, Colombo 00800, Sri Lanka;
- Department of Paraclinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Mount Lavinia 10390, Sri Lanka
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; (E.D.Y.); (R.d.S.A.); (Y.T.); (R.T.); (A.D.D.S.); (A.F.); (A.G.)
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; (E.D.Y.); (R.d.S.A.); (Y.T.); (R.T.); (A.D.D.S.); (A.F.); (A.G.)
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; (E.D.Y.); (R.d.S.A.); (Y.T.); (R.T.); (A.D.D.S.); (A.F.); (A.G.)
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; (E.D.Y.); (R.d.S.A.); (Y.T.); (R.T.); (A.D.D.S.); (A.F.); (A.G.)
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, La Jolla, CA 92037, USA
| |
Collapse
|
52
|
van Leur SW, Heunis T, Munnur D, Sanyal S. Pathogenesis and virulence of flavivirus infections. Virulence 2021; 12:2814-2838. [PMID: 34696709 PMCID: PMC8632085 DOI: 10.1080/21505594.2021.1996059] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 11/01/2022] Open
Abstract
The Flavivirus genus consists of >70 members including several that are considered significant human pathogens. Flaviviruses display a broad spectrum of diseases that can be roughly categorised into two phenotypes - systemic disease involving haemorrhage exemplified by dengue and yellow Fever virus, and neurological complications associated with the likes of West Nile and Zika viruses. Attempts to develop vaccines have been variably successful against some. Besides, mosquito-borne flaviviruses can be vertically transmitted in the arthropods, enabling long term persistence and the possibility of re-emergence. Therefore, developing strategies to combat disease is imperative even if vaccines become available. The cellular interactions of flaviviruses with their human hosts are key to establishing the viral lifecycle on the one hand, and activation of host immunity on the other. The latter should ideally eradicate infection, but often leads to immunopathological and neurological consequences. In this review, we use Dengue and Zika viruses to discuss what we have learned about the cellular and molecular determinants of the viral lifecycle and the accompanying immunopathology, while highlighting current knowledge gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| |
Collapse
|
53
|
Kaur G, Gupta K, Singh A, Kumar N, Banerjee I. Effect of IFN-γ +874 T/A polymorphism on clinical manifestations of dengue: a meta-analysis. J Genet 2021. [DOI: 10.1007/s12041-021-01344-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
54
|
Egwang TG, Owalla TJ, Okurut E, Apungia G, Fox A, De Carlo C, Powell RL. Differential pre-pandemic breast milk IgA reactivity against SARS-CoV-2 and circulating human coronaviruses in Ugandan and American mothers. Int J Infect Dis 2021; 112:165-172. [PMID: 34547496 PMCID: PMC8450224 DOI: 10.1016/j.ijid.2021.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Uganda has registered fewer coronavirus disease 2019 (COVID-19) cases and deaths per capita than Western countries. The lower numbers of cases and deaths might be due to pre-existing cross-immunity induced by circulating common cold human coronaviruses (HCoVs) before the COVID-19 pandemic. To investigate pre-existing mucosal antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, a comparison was performed of IgA reactivity to SARS-CoV-2 and HCoVs in milk from mothers collected in 2018. METHODS Ugandan and United States milk samples were run on an ELISA to measure specific IgA to SARS-CoV-2 and HCoVs NL63, OC43, HKU1, and 229E spike proteins. Pooled plasma from United States SARS-CoV-2-positive and negative cases were positive and negative controls, respectively. RESULTS One Ugandan mother had high milk IgA reactivity against all HCoVs and SARS-CoV-2 spike proteins. Ugandan mothers had significantly higher IgA reactivity against the betacoronavirus HCoV-OC43 than United States mothers (P = 0.018). By contrast, United States mothers had significantly higher IgA reactivity against the alphacoronaviruses HCoV-229E and HCoV-NL63 than Ugandan mothers (P < 0.0001 and P = 0.035, respectively). CONCLUSION Some Ugandan mothers have pre-existing HCoV-induced IgA antibodies against SARS-CoV-2, which may be passed to infants via breastfeeding.
Collapse
Affiliation(s)
- Thomas G Egwang
- Human Milk and Lactation Research Center, Med Biotech Laboratories, Kampala, Uganda.
| | - Tonny Jimmy Owalla
- Human Milk and Lactation Research Center, Med Biotech Laboratories, Kampala, Uganda
| | - Emmanuel Okurut
- Human Milk and Lactation Research Center, Med Biotech Laboratories, Kampala, Uganda
| | - Gonzaga Apungia
- Human Milk and Lactation Research Center, Med Biotech Laboratories, Kampala, Uganda
| | - Alisa Fox
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Claire De Carlo
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Rebecca L Powell
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
55
|
Nanda JD, Jung CJ, Satria RD, Jhan MK, Shen TJ, Tseng PC, Wang YT, Ho TS, Lin CF. Serum IL-18 Is a Potential Biomarker for Predicting Severe Dengue Disease Progression. J Immunol Res 2021; 2021:7652569. [PMID: 34734091 PMCID: PMC8560270 DOI: 10.1155/2021/7652569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023] Open
Abstract
Background. Dengue virus (DENV) infection is the most common arboviral disease that affects tropical and subtropical regions. Based on the clinical hallmarks, the different severities of patients range from mild dengue fever (MDF) to severe dengue diseases (SDDs) and include dengue hemorrhagic fever or dengue shock syndrome. These are commonly associated with cytokine release syndrome (CRS). The types and levels of cytokines/chemokines, which are suppressed or enhanced, are varied, indicating CRS's pathogenic and host defensive effects. Principal Finding. In this study, we created an integrated and precise multiplex panel of cytokine/chemokine assays based on our literature analysis to monitor dengue CRS. A 24-plex panel of cytokines/chemokines was evaluated to measure the plasma levels of targeting factors in dengue patients with an MDF and SDD diagnosis without or with comorbidities. As identified in sixteen kinds of cytokines/chemokines, ten were significantly (P < 0.05) (10/16) increased, one was significantly (P < 0.01) (1/16) decreased, and five were potentially (5/16) altered in all dengue patients (n = 30) in the acute phase of disease onset. Compared to MDF, the levels of IL-8 (CXCL-8) and IL-18 in SDD were markedly (P < 0.05) increased, accompanied by positively increased IL-6 and TNF-α and decreased IFN-γ and RANTES. With comorbidities, SDD significantly (P < 0.01) portrayed elevated IL-18 accompanied by increased IL-6 and decreased IFN-α2 and IL-12. In addition, decreased platelets were significantly (P < 0.05) associated with increased IL-18. Significance. These results demonstrate an efficient panel of dengue cytokine/chemokine assays used to explore the possible level of CRS during the acute phase of disease onset; also, we are the first to report the increase of IL-18 in severe dengue with comorbidity compared to severe dengue without comorbidity and mild dengue.
Collapse
Affiliation(s)
- Josephine Diony Nanda
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chiau-Jing Jung
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Rahmat Dani Satria
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta 55281, Indonesia
| | - Ming-Kai Jhan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ting-Jing Shen
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Ting Wang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan
| | - Chiou-Feng Lin
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
56
|
Nguyen HD, Chaudhury S, Waickman AT, Friberg H, Currier JR, Wallqvist A. Stochastic Model of the Adaptive Immune Response Predicts Disease Severity and Captures Enhanced Cross-Reactivity in Natural Dengue Infections. Front Immunol 2021; 12:696755. [PMID: 34484195 PMCID: PMC8416063 DOI: 10.3389/fimmu.2021.696755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
The dengue virus circulates as four distinct serotypes, where a single serotype infection is typically asymptomatic and leads to acquired immunity against that serotype. However, the developed immunity to one serotype is thought to underlie the severe manifestation of the disease observed in subsequent infections from a different serotype. We developed a stochastic model of the adaptive immune response to dengue infections. We first delineated the mechanisms initiating and sustaining adaptive immune responses during primary infections. We then contrasted these immune responses during secondary infections of either a homotypic or heterotypic serotype to understand the role of pre-existing and reactivated immune pathways on disease severity. Comparison of non-symptomatic and severe cases from heterotypic infections demonstrated that overproduction of specific antibodies during primary infection induces an enhanced population of cross-reactive antibodies during secondary infection, ultimately leading to severe disease manifestations. In addition, the level of disease severity was found to correlate with immune response kinetics, which was dependent on beginning lymphocyte levels. Our results detail the contribution of specific lymphocytes and antibodies to immunity and memory recall that lead to either protective or pathological outcomes, allowing for the understanding and determination of mechanisms of protective immunity.
Collapse
Affiliation(s)
- Hung D Nguyen
- Biotechnology High Performance Computing (HPC) Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Sidhartha Chaudhury
- Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Adam T Waickman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Anders Wallqvist
- Biotechnology High Performance Computing (HPC) Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
57
|
Su Y, Lin T, Liu C, Cheng C, Han X, Jiang X. microRNAs, the Link Between Dengue Virus and the Host Genome. Front Microbiol 2021; 12:714409. [PMID: 34456895 PMCID: PMC8385664 DOI: 10.3389/fmicb.2021.714409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Dengue virus (DENV) is a small envelope virus of Flaviviridae that is mainly transmitted by Aedes aegypti and Aedes albopictus. It can cause dengue fever with mild clinical symptoms or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). At present, there are no specific drugs or mature vaccine products to treat DENV. microRNAs (miRNAs) are a class of important non-coding small molecular RNAs that regulate gene expression at the post-transcriptional level. It is involved in and regulates a series of important life processes, such as growth and development, cell differentiation, cell apoptosis, anti-virus, and anti-tumor. miRNAs also play important roles in interactions between host and viral genome transcriptomes. Host miRNAs can directly target the genome of the virus or regulate host factors to promote or inhibit virus replication. Understanding the expression and function of miRNAs during infection with DENV and the related signal molecules of the miRNA-mediated regulatory network will provide new insights for the development of miRNA-based therapies.
Collapse
Affiliation(s)
- Yinghua Su
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Ting Lin
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Chun Liu
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiwen Jiang
- DAAN Gene Co., Ltd. of Sun Yat-sen University, Guangdong, China
| |
Collapse
|
58
|
Lapp SA, Edara VV, Lu A, Lai L, Hussaini L, Chahroudi A, Anderson LJ, Suthar MS, Anderson EJ, Rostad CA. Original antigenic sin responses to Betacoronavirus spike proteins are observed in a mouse model, but are not apparent in children following SARS-CoV-2 infection. PLoS One 2021; 16:e0256482. [PMID: 34449792 PMCID: PMC8396729 DOI: 10.1371/journal.pone.0256482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022] Open
Abstract
Background The effects of pre-existing endemic human coronavirus (HCoV) immunity on SARS-CoV-2 serologic and clinical responses are incompletely understood. Objectives We sought to determine the effects of prior exposure to HCoV Betacoronavirus HKU1 spike protein on serologic responses to SARS-CoV-2 spike protein after intramuscular administration in mice. We also sought to understand the baseline seroprevalence of HKU1 spike antibodies in healthy children and to measure their correlation with SARS-CoV-2 binding and neutralizing antibodies in children hospitalized with acute coronavirus disease 2019 (COVID-19) or multisystem inflammatory syndrome (MIS-C). Methods Groups of 5 mice were injected intramuscularly with two doses of alum-adjuvanted HKU1 spike followed by SARS-CoV-2 spike; or the reciprocal regimen of SARS-Cov-2 spike followed by HKU1 spike. Sera collected 21 days following each injection was analyzed for IgG antibodies to HKU1 spike, SARS-CoV-2 spike, and SARS-CoV-2 neutralization. Sera from children hospitalized with acute COVID-19, MIS-C or healthy controls (n = 14 per group) were analyzed for these same antibodies. Results Mice primed with SARS-CoV-2 spike and boosted with HKU1 spike developed high titers of SARS-CoV-2 binding and neutralizing antibodies; however, mice primed with HKU1 spike and boosted with SARS-CoV-2 spike were unable to mount neutralizing antibodies to SARS-CoV-2. HKU1 spike antibodies were detected in all children with acute COVID-19, MIS-C, and healthy controls. Although children with MIS-C had significantly higher HKU1 spike titers than healthy children (GMT 37239 vs. 7551, P = 0.012), these titers correlated positively with both SARS-CoV-2 binding (r = 0.7577, P<0.001) and neutralizing (r = 0.6201, P = 0.001) antibodies. Conclusions Prior murine exposure to HKU1 spike protein completely impeded the development of neutralizing antibodies to SARS-CoV-2, consistent with original antigenic sin. In contrast, the presence of HKU1 spike IgG antibodies in children with acute COVID-19 or MIS-C was not associated with diminished neutralizing antibody responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Stacey A. Lapp
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, United States of America
| | - Venkata Viswanadh Edara
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, United States of America
- Yerkes Primate Center, Emory University, Atlanta, GA, United States of America
| | - Austin Lu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, United States of America
| | - Lilin Lai
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, United States of America
- Yerkes Primate Center, Emory University, Atlanta, GA, United States of America
| | - Laila Hussaini
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, United States of America
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, United States of America
| | - Larry J. Anderson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, United States of America
| | - Mehul S. Suthar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, United States of America
- Yerkes Primate Center, Emory University, Atlanta, GA, United States of America
| | - Evan J. Anderson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, United States of America
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Christina A. Rostad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
59
|
Sanchez-Vargas LA, Anderson KB, Srikiatkhachorn A, Currier JR, Friberg H, Endy TP, Fernandez S, Mathew A, Rothman AL. Longitudinal Analysis of Dengue Virus-Specific Memory T Cell Responses and Their Association With Clinical Outcome in Subsequent DENV Infection. Front Immunol 2021; 12:710300. [PMID: 34394112 PMCID: PMC8355709 DOI: 10.3389/fimmu.2021.710300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Memory T cells resulting from primary dengue virus (DENV) infection are hypothesized to influence the clinical outcome of subsequent DENV infection. However, the few studies involving prospectively collected blood samples have found weak and inconsistent associations with outcome and variable temporal trends in DENV-specific memory T cell responses between subjects. This study used both ex-vivo and cultured ELISPOT assays to further evaluate the associations between DENV serotype-cross-reactive memory T cells and severity of secondary infection. Using ex-vivo ELISPOT assays, frequencies of memory T cells secreting IFN-γ in response to DENV structural and non-structural peptide pools were low in PBMC from multiple time points prior to symptomatic secondary DENV infection and showed a variable response to infection. There were no differences in responses between subjects who were not hospitalized (NH, n=6) and those who were hospitalized with dengue hemorrhagic fever (hDHF, n=4). In contrast, responses in cultured ELISPOT assays were more reliably detectable prior to secondary infection and showed more consistent increases after infection. Responses in cultured ELISPOT assays were higher in individuals with hDHF (n=8) compared to NH (n=9) individuals before the secondary infection, with no difference between these groups after infection. These data demonstrate an association of pre-existing DENV-specific memory responses with the severity of illness in subsequent DENV infection, and suggest that frequencies of DENV-reactive T cells measured after short-term culture may be of particular importance for assessing the risk for more severe dengue disease.
Collapse
Affiliation(s)
- Luis Alberto Sanchez-Vargas
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Kathryn B Anderson
- Department of Medicine, Department of Microbiology and Immunology, Institute for Global Health and Translational Sciences, State University of New York-Upstate Medical University, Syracuse, NY, United States
| | - Anon Srikiatkhachorn
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States.,Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Timothy P Endy
- Department of Medicine, Department of Microbiology and Immunology, Institute for Global Health and Translational Sciences, State University of New York-Upstate Medical University, Syracuse, NY, United States
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Anuja Mathew
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Alan L Rothman
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| |
Collapse
|
60
|
The Specificity of the Persistent IgM Neutralizing Antibody Response in Zika Virus Infections among Individuals with Prior Dengue Virus Exposure. J Clin Microbiol 2021; 59:e0040021. [PMID: 33980647 DOI: 10.1128/jcm.00400-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dengue viruses (DENV) and Zika virus (ZIKV) are related mosquito-borne flaviviruses with similar disease manifestations, vector ecologies, and geographic ranges. The ability to differentiate these viruses serologically is vital due to the teratogenic nature of ZIKV and the potential confounding of preexisting cross-reactive anti-DENV antibodies. Here, we illustrate the kinetics of the IgM neutralizing antibody (NAb) response using longitudinal samples ranging from acute ZIKV infection to late convalescence from individuals with evidence of prior DENV infection. By serially depleting antibody isotypes prior to the neutralization assay, we determined that IgM contributes predominantly to ZIKV neutralization and is less cross-reactive than the IgG NAb. The IgM NAb peaked around 14 days (95% confidence interval [95% CI], 13 to 15) and had a median duration of 257 days (95% CI, 133 to 427). These results demonstrate the persistence of IgM NAb after ZIKV infection and imply its potential role in diagnosis, vaccine evaluation, serosurveillance, and research on flavivirus-host interactions.
Collapse
|
61
|
Meshram HS, Kute V, Patel H, Banerjee S, Chauhan S, Desai S. Successful management of dengue in renal transplant recipients: A retrospective cohort from a single center. Clin Transplant 2021; 35:e14332. [PMID: 33914386 DOI: 10.1111/ctr.14332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The literature on dengue infection in renal transplant recipients has shown wide diversity in clinical presentation and outcome. The objective of this study was to report the clinical profile, short-term and long-term outcomes of dengue among renal transplant recipients. METHODS A total of 59 post-transplant dengue suspected cases were admitted from July 2019 to April 2020 of which 31 had confirmed dengue infection. The clinical and laboratory profile of the confirmed dengue cases (n = 31) were compared with non-dengue cases (n = 28). RESULTS Among the clinical and laboratory features retro-orbital pain, conjunctival redness, thrombocytopenia on admission, and absence of arthralgia were significantly associated with dengue compared to non-dengue cases. No mortality was observed in the dengue cases. Allograft dysfunction, acute rejection and graft losses were identified in 64.5% (n = 20), 6.4% (n = 2) and 6.4% (n = 2) dengue cases respectively. No rejection or graft losses were observed in 1-year follow-up. CONCLUSIONS We report a differential clinical profile for dengue in transplant settings which will aid in the diagnosis. We also report successful management of dengue infection in renal transplant recipients with the majority having allograft dysfunction. A long-term follow-up of the cohort was uneventful.
Collapse
Affiliation(s)
| | - Vivek Kute
- Department of Nephrology and Transplantation, IKDRC-ITS, Ahmedabad, India
| | - Himanshu Patel
- Department of Nephrology and Transplantation, IKDRC-ITS, Ahmedabad, India
| | - Subho Banerjee
- Department of Nephrology and Transplantation, IKDRC-ITS, Ahmedabad, India
| | - Sanshriti Chauhan
- Department of Nephrology and Transplantation, IKDRC-ITS, Ahmedabad, India
| | - Sudeep Desai
- Department of Nephrology and Transplantation, IKDRC-ITS, Ahmedabad, India
| |
Collapse
|
62
|
Dengue and the Lectin Pathway of the Complement System. Viruses 2021; 13:v13071219. [PMID: 34202570 PMCID: PMC8310334 DOI: 10.3390/v13071219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue is a mosquito-borne viral disease causing significant health and economic burdens globally. The dengue virus (DENV) comprises four serotypes (DENV1-4). Usually, the primary infection is asymptomatic or causes mild dengue fever (DF), while secondary infections with a different serotype increase the risk of severe dengue disease (dengue hemorrhagic fever, DHF). Complement system activation induces inflammation and tissue injury, contributing to disease pathogenesis. However, in asymptomatic or primary infections, protective immunity largely results from the complement system’s lectin pathway (LP), which is activated through foreign glycan recognition. Differences in N-glycans displayed on the DENV envelope membrane influence the lectin pattern recognition receptor (PRR) binding efficiency. The important PRR, mannan binding lectin (MBL), mediates DENV neutralization through (1) a complement activation-independent mechanism via direct MBL glycan recognition, thereby inhibiting DENV attachment to host target cells, or (2) a complement activation-dependent mechanism following the attachment of complement opsonins C3b and C4b to virion surfaces. The serum concentrations of lectin PRRs and their polymorphisms influence these LP activities. Conversely, to escape the LP attack and enhance the infectivity, DENV utilizes the secreted form of nonstructural protein 1 (sNS1) to counteract the MBL effects, thereby increasing viral survival and dissemination.
Collapse
|
63
|
Quintino-de-Carvalho IL, Gonçalves-Pereira MH, Ramos MF, de Aguiar Milhim BHG, Da Costa ÚL, Santos ÉG, Nogueira ML, Da Costa Santiago H. ILC1 and NK cells are sources of IFN-γ and other inflammatory cytokines associated to distinct clinical presentation in early dengue infection. J Infect Dis 2021; 225:84-93. [PMID: 34125227 DOI: 10.1093/infdis/jiab312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Increased levels of inflammatory cytokines are associated to severe dengue evolution, but the source of such hypercytokinemia is elusive. We investigated the contribution of innate lymphocytes, innate lymphoid cells (ILC) and NK cells in cytokine production in early dengue infection. METHODS PBMCs of individuals with DWS- (dengue without warning signs) and DWS+ (dengue with warning signs and severe dengue presentation combined) were obtained between 2 and 7 days since fever onset and submitted to flow cytometry without specific antigen stimulation to evaluate cytokines in ILC and NK cells subpopulations. RESULTS ILCs and NK cells were found to be important sources of cytokines during dengue. ILCs of DWS+/SD group displayed higher production of IFN-γand IL-4/IL-13 when compared to DWS- individuals. On the other hand, NK EOMES+ cells of DWS- patients displayed higher IFN-γ production levels, when compared to DWS+/SD group. Interestingly, when NK cells were identified by CD56 expression, DWS+/SD displayed higher frequency of IL-17 production when compared to DWS- group. CONCLUSION These results indicate that ILCs and NK cells are important sources of inflammatory cytokines during acute dengue infection and display distinct profiles associated with different clinical forms.
Collapse
Affiliation(s)
| | | | - Michele Faria Ramos
- Departamento de Imunologia e Bioquímica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | | | | - Helton Da Costa Santiago
- Departamento de Imunologia e Bioquímica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
64
|
Pre-existing T Cell Memory against Zika Virus. J Virol 2021; 95:JVI.00132-21. [PMID: 33789994 PMCID: PMC8316092 DOI: 10.1128/jvi.00132-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
The mosquito-borne Zika virus (ZIKV) has spread rapidly into regions where dengue virus (DENV) is endemic, and flavivirus cross-reactive T cell responses have been observed repeatedly in animal models and in humans. Preexisting cellular immunity to DENV is thought to contribute to protection in subsequent ZIKV infection, but the epitope targets of cross-reactive T cell responses have not been comprehensively identified. Using human blood samples from the regions of Nicaragua and Sri Lanka where DENV is endemic that were collected before the global spread of ZIKV in 2016, we employed an in vitro expansion strategy to map ZIKV T cell epitopes in ZIKV-unexposed, DENV-seropositive donors. We identified 93 epitopes across the ZIKV proteome, and we observed patterns of immunodominance that were dependent on antigen size and sequence identity to DENV. We confirmed the immunogenicity of these epitopes through a computational HLA binding analysis, and we showed that cross-reactive T cells specifically recognize ZIKV peptides homologous to DENV sequences. We also found that these CD4 responses were derived from the memory T cell compartment. These data have implications for understanding the dynamics of flavivirus-specific T cell immunity in areas of endemicity. IMPORTANCE Multiple flaviviruses, including Zika virus (ZIKV) and the four serotypes of dengue virus (DENV), are prevalent in the same large tropical and equatorial areas, which are inhabited by hundreds of millions of people. The interplay of DENV and ZIKV infection is especially relevant, as these two viruses are endemic in largely overlapping regions, have significant sequence similarity, and share the same arthropod vector. Here, we define the targets of preexisting immunity to ZIKV in unexposed subjects in areas where dengue is endemic. We demonstrate that preexisting immunity to DENV could shape ZIKV-specific responses, and DENV-ZIKV cross-reactive T cell populations can be expanded by stimulation with ZIKV peptides. The issue of potential ZIKV and DENV cross-reactivity is of relevance for understanding patterns of natural immunity, as well as for the development of diagnostic tests and vaccines.
Collapse
|
65
|
Identification of Novel Candidate CD8 + T Cell Epitopes of the SARS-CoV2 with Homology to Other Seasonal Coronaviruses. Viruses 2021; 13:v13060972. [PMID: 34073934 PMCID: PMC8225204 DOI: 10.3390/v13060972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Cross-reactive T cell immunity to seasonal coronaviruses (HCoVs) may lead to immunopathology or protection during SARS-CoV2 infection. To understand the influence of cross-reactive T cell responses, we used IEDB (Immune epitope database) and NetMHCpan (ver. 4.1) to identify candidate CD8+ T cell epitopes, restricted through HLA-A and B alleles. Conservation analysis was carried out for these epitopes with HCoVs, OC43, HKU1, and NL63. 12/18 the candidate CD8+ T cell epitopes (binding score of ≥0.90), which had a high degree of homology (>75%) with the other three HCoVs were within the NSP12 and NSP13 proteins. They were predicted to be restricted through HLA-A*2402, HLA-A*201, HLA-A*206, and HLA-B alleles B*3501. Thirty-one candidate CD8+ T cell epitopes that were specific to SARS-CoV2 virus (<25% homology with other HCoVs) were predominantly identified within the structural proteins (spike, envelop, membrane, and nucleocapsid) and the NSP1, NSP2, and NSP3. They were predominantly restricted through HLA-B*3501 (6/31), HLA-B*4001 (6/31), HLA-B*4403 (7/31), and HLA-A*2402 (8/31). It would be crucial to understand T cell responses that associate with protection, and the differences in the functionality and phenotype of epitope specific T cell responses, presented through different HLA alleles common in different geographical groups, to understand disease pathogenesis.
Collapse
|
66
|
Rouers A, Chng MHY, Lee B, Rajapakse MP, Kaur K, Toh YX, Sathiakumar D, Loy T, Thein TL, Lim VW, Singhal A, Yeo TW, Leo YS, Vora KA, Casimiro D, Lim B, Tucker-Kellogg L, Rivino L, Newell EW, Fink K. Immune cell phenotypes associated with disease severity and long-term neutralizing antibody titers after natural dengue virus infection. CELL REPORTS MEDICINE 2021; 2:100278. [PMID: 34095880 PMCID: PMC8149372 DOI: 10.1016/j.xcrm.2021.100278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/08/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
Prior immunological exposure to dengue virus can be both protective and disease-enhancing during subsequent infections with different dengue virus serotypes. We provide here a systematic, longitudinal analysis of B cell, T cell, and antibody responses in the same patients. Antibody responses as well as T and B cell activation differentiate primary from secondary responses. Hospitalization is associated with lower frequencies of activated, terminally differentiated T cells and higher percentages of effector memory CD4 T cells. Patients with more severe disease tend to have higher percentages of plasmablasts. This does not translate into long-term antibody titers, since neutralizing titers after 6 months correlate with percentages of specific memory B cells, but not with acute plasmablast activation. Overall, our unbiased analysis reveals associations between cellular profiles and disease severity, opening opportunities to study immunopathology in dengue disease and the potential predictive value of these parameters.
Collapse
Affiliation(s)
- Angeline Rouers
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- A∗STAR ID Labs, Agency for Science, Technology and Research, Singapore 138468, Singapore
| | - Melissa Hui Yen Chng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Menaka P. Rajapakse
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Kaval Kaur
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Ying Xiu Toh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Durgalakshmi Sathiakumar
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Thomas Loy
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- A∗STAR ID Labs, Agency for Science, Technology and Research, Singapore 138468, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tun-Linn Thein
- National Centre for Infectious Diseases, Singapore 308442, Singapore
| | - Vanessa W.X. Lim
- National Centre for Infectious Diseases, Singapore 308442, Singapore
| | - Amit Singhal
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- A∗STAR ID Labs, Agency for Science, Technology and Research, Singapore 138468, Singapore
- Lee Kong Chian School of Medicine, Singapore 308232, Singapore
| | - Tsin Wen Yeo
- Lee Kong Chian School of Medicine, Singapore 308232, Singapore
- Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore 308442, Singapore
- Lee Kong Chian School of Medicine, Singapore 308232, Singapore
- Tan Tock Seng Hospital, Singapore 308433, Singapore
- Yong Loo Lin School of Medicine, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, Singapore 117549, Singapore
| | - Kalpit A. Vora
- Department of Infectious Diseases and Vaccines Research, Merck, Kenilworth, NJ, USA
| | - Danilo Casimiro
- Department of Infectious Diseases and Vaccines Research, Merck, Kenilworth, NJ, USA
| | - Bing Lim
- Merck Sharp & Dohme Translational Medicine Research Centre, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Lisa Tucker-Kellogg
- Cancer and Stem Cell Biology, and Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Laura Rivino
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Evan W. Newell
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Corresponding author
| |
Collapse
|
67
|
Poonpanichakul T, Chan-In W, Opasawatchai A, Loison F, Matangkasombut O, Charoensawan V, Matangkasombut P. Innate Lymphoid Cells Activation and Transcriptomic Changes in Response to Human Dengue Infection. Front Immunol 2021; 12:599805. [PMID: 34079535 PMCID: PMC8165392 DOI: 10.3389/fimmu.2021.599805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background Dengue virus (DENV) infection has a global impact on public health. The clinical outcomes (of DENV) can vary from a flu-like illness called dengue fever (DF), to a more severe form, known as dengue hemorrhagic fever (DHF). The underlying innate immune mechanisms leading to protective or detrimental outcomes have not been fully elucidated. Helper innate lymphoid cells (hILCs), an innate lymphocyte recently discovered, functionally resemble T-helper cells and are important in inflammation and homeostasis. However, the role of hILCs in DENV infection had been unexplored. Methods We performed flow cytometry to investigate the frequency and phenotype of hILCs in peripheral blood mononuclear cells from DENV-infected patients of different disease severities (DF and DHF), and at different phases (febrile and convalescence) of infection. Intracellular cytokine staining of hILCs from DF and DHF were also evaluated by flow cytometry after ex vivo stimulation. Further, the hILCs were sorted and subjected to transcriptome analysis using RNA sequencing. Differential gene expression analysis was performed to compare the febrile and convalescent phase samples in DF and DHF. Selected differentially expressed genes were then validated by quantitative PCR. Results Phenotypic analysis showed marked activation of all three hILC subsets during the febrile phase as shown by higher CD69 expression when compared to paired convalescent samples, although the frequency of hILCs remained unchanged. Upon ex vivo stimulation, hILCs from febrile phase DHF produced significantly higher IFN-γ and IL-4 when compared to those of DF. Transcriptomic analysis showed unique hILCs gene expression in DF and DHF, suggesting that divergent functions of hILCs may be associated with different disease severities. Differential gene expression analysis indicated that hILCs function both in cytokine secretion and cytotoxicity during the febrile phase of DENV infection. Conclusions Helper ILCs are activated in the febrile phase of DENV infection and display unique transcriptomic changes as well as cytokine production that correlate with severity. Targeting hILCs during early innate response to DENV might help shape subsequent immune responses and potentially lessen the disease severity in the future.
Collapse
Affiliation(s)
- Tiraput Poonpanichakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand.,Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Wilawan Chan-In
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Anunya Opasawatchai
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Fabien Loison
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Oranart Matangkasombut
- Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Varodom Charoensawan
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.,Integrative Computational BioScience Center (ICBS), Mahidol University, Nakhon Pathom, Thailand
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
68
|
Alves AMB, Costa SM, Pinto PBA. Dengue Virus and Vaccines: How Can DNA Immunization Contribute to This Challenge? FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:640964. [PMID: 35047911 PMCID: PMC8757892 DOI: 10.3389/fmedt.2021.640964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
Dengue infections still have a tremendous impact on public health systems in most countries in tropical and subtropical regions. The disease is systemic and dynamic with broad range of manifestations, varying from mild symptoms to severe dengue (Dengue Hemorrhagic Fever and Dengue Shock Syndrome). The only licensed tetravalent dengue vaccine, Dengvaxia, is a chimeric yellow fever virus with prM and E genes from the different dengue serotypes. However, recent results indicated that seronegative individuals became more susceptible to develop severe dengue when infected after vaccination, and now WHO recommends vaccination only to dengue seropositive people. One possibility to explain these data is the lack of robust T-cell responses and antibody-dependent enhancement of virus replication in vaccinated people. On the other hand, DNA vaccines are excellent inducers of T-cell responses in experimental animals and it can also elicit antibody production. Clinical trials with DNA vaccines have improved and shown promising results regarding the use of this approach for human vaccination. Therefore, in this paper we review preclinical and clinical tests with DNA vaccines against the dengue virus. Most of the studies are based on the E protein since this antigen is the main target for neutralizing antibody production. Yet, there are other reports with DNA vaccines based on non-structural dengue proteins with protective results, as well. Combining structural and non-structural genes may be a solution for inducing immune responses aging in different infection moments. Furthermore, DNA immunizations are also a very good approach in combining strategies for vaccines against dengue, in heterologous prime/boost regimen or even administering different vaccines at the same time, in order to induce efficient humoral and cellular immune responses.
Collapse
Affiliation(s)
- Ada Maria Barcelos Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | |
Collapse
|
69
|
Malone RW, Tisdall P, Fremont-Smith P, Liu Y, Huang XP, White KM, Miorin L, Moreno E, Alon A, Delaforge E, Hennecker CD, Wang G, Pottel J, Blair RV, Roy CJ, Smith N, Hall JM, Tomera KM, Shapiro G, Mittermaier A, Kruse AC, García-Sastre A, Roth BL, Glasspool-Malone J, Ricke DO. COVID-19: Famotidine, Histamine, Mast Cells, and Mechanisms. Front Pharmacol 2021; 12:633680. [PMID: 33833683 PMCID: PMC8021898 DOI: 10.3389/fphar.2021.633680] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection is required for COVID-19, but many signs and symptoms of COVID-19 differ from common acute viral diseases. SARS-CoV-2 infection is necessary but not sufficient for development of clinical COVID-19 disease. Currently, there are no approved pre- or post-exposure prophylactic COVID-19 medical countermeasures. Clinical data suggest that famotidine may mitigate COVID-19 disease, but both mechanism of action and rationale for dose selection remain obscure. We have investigated several plausible hypotheses for famotidine activity including antiviral and host-mediated mechanisms of action. We propose that the principal mechanism of action of famotidine for relieving COVID-19 symptoms involves on-target histamine receptor H2 activity, and that development of clinical COVID-19 involves dysfunctional mast cell activation and histamine release. Based on these findings and associated hypothesis, new COVID-19 multi-drug treatment strategies based on repurposing well-characterized drugs are being developed and clinically tested, and many of these drugs are available worldwide in inexpensive generic oral forms suitable for both outpatient and inpatient treatment of COVID-19 disease.
Collapse
Affiliation(s)
- Robert W Malone
- RW Malone MD LLC, Madison, VA, United States.,Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, United States
| | - Philip Tisdall
- Medical School Companion LLC, Marco Island, FL, United States
| | | | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Elise Delaforge
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | | | - Guanyu Wang
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | | | - Robert V Blair
- Tulane National Primate Research Center, Covington, LA, United Sates.,Department of Pathology and Laboratory Animal Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Chad J Roy
- Tulane National Primate Research Center, Covington, LA, United Sates.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nora Smith
- MIT Lincoln Laboratory, Lexington, MA, United States
| | - Julie M Hall
- Frank H. Netter MD School of Medicine - Quinnipiac University, Hamden, CT, United States
| | - Kevin M Tomera
- Department of Urology, Beloit Memorial Hospital, Beloit, WI, United States
| | | | | | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, United States
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States
| | | | | |
Collapse
|
70
|
Archuleta S, Chia PY, Wei Y, Syed-Omar SF, Low JG, Oh HM, Fisher D, Ponnampalavanar SSL, Wijaya L, Kamarulzaman A, Lum LCS, Tambyah PA, Leo YS, Lye DC. Predictors and Clinical Outcomes of Poor Platelet Recovery in Adult Dengue With Thrombocytopenia: A Multicenter, Prospective Study. Clin Infect Dis 2021; 71:383-389. [PMID: 31626692 DOI: 10.1093/cid/ciz850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/15/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Platelet transfusion is common in dengue patients with thrombocytopenia. We previously showed in a randomized clinical trial that prophylactic platelet transfusion did not reduce clinical bleeding. In this study, we aimed to characterize the predictors and clinical outcomes of poor platelet recovery in transfused and nontransfused participants. METHODS We analyzed patients from the Adult Dengue Platelet Study with laboratory-confirmed dengue with ≤20 000 platelets/μL and without persistent mild bleeding or any severe bleeding in a post hoc analysis. Poor platelet recovery was defined as a platelet count of ≤20 000/μL on Day 2. We recruited 372 participants from 5 acute care hospitals located in Singapore and Malaysia between 29 April 2010 and 9 December 2014. Of these, 188 were randomly assigned to the transfusion group and 184 to the control group. RESULTS Of 360 patients, 158 had poor platelet recovery. Age, white cell count, and day of illness at study enrollment were significant predictors of poor platelet recovery after adjustment for baseline characteristics and platelet transfusion. Patients with poor platelet recovery had longer hospitalizations but no significant difference in other clinical outcomes, regardless of transfusion. We found a significant interaction between platelet recovery and transfusion; patients with poor platelet recovery were more likely to bleed if given a prophylactic platelet transfusion (odds ratio 2.34, 95% confidence interval 1.18-4.63). CONCLUSIONS Dengue patients with thrombocytopenia who were older or presented earlier and with lower white cell counts were more likely to have poor platelet recovery. In patients with poor platelet recovery, platelet transfusion does not improve outcomes and may actually increase the risk of bleeding. The mechanisms of poor platelet recovery need to be determined. CLINICAL TRIALS REGISTRATION NCT01030211.
Collapse
Affiliation(s)
- Sophia Archuleta
- Division of Infectious Diseases, National University Hospital, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Po Ying Chia
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore.,National Centre for Infectious Diseases, Singapore.,Lee Kong Chian School of Medicine, Singapore
| | - Yuan Wei
- Singapore Clinical Research Institute, Singapore
| | | | - Jenny G Low
- Singapore General Hospital, Singapore.,Duke-NUS Graduate Medical School, Singapore
| | - Helen M Oh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Changi General Hospital, Singapore; and
| | - Dale Fisher
- Division of Infectious Diseases, National University Hospital, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | - Lucy C S Lum
- University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Paul A Tambyah
- Division of Infectious Diseases, National University Hospital, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yee-Sin Leo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore.,National Centre for Infectious Diseases, Singapore.,Lee Kong Chian School of Medicine, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - David C Lye
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore.,National Centre for Infectious Diseases, Singapore.,Lee Kong Chian School of Medicine, Singapore
| |
Collapse
|
71
|
Prommool T, Sethanant P, Phaenthaisong N, Tangthawornchaikul N, Songjaeng A, Avirutnan P, Mairiang D, Luangaram P, Srisawat C, Kasinrerk W, Vasanawathana S, Sriruksa K, Limpitikul W, Malasit P, Puttikhunt C. High performance dengue virus antigen-based serotyping-NS1-ELISA (plus): A simple alternative approach to identify dengue virus serotypes in acute dengue specimens. PLoS Negl Trop Dis 2021; 15:e0009065. [PMID: 33635874 PMCID: PMC7946175 DOI: 10.1371/journal.pntd.0009065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 03/10/2021] [Accepted: 12/11/2020] [Indexed: 11/30/2022] Open
Abstract
Dengue hemorrhagic fever (DHF) is caused by infection with dengue virus (DENV). Four different serotypes (DENV1-4) co-circulate in dengue endemic areas. The viral RNA genome-based reverse-transcription PCR (RT-PCR) is the most widely used method to identify DENV serotypes in patient specimens. However, the non-structural protein 1 (NS1) antigen as a biomarker for DENV serotyping is an emerging alternative method. We modified the serotyping-NS1-enzyme linked immunosorbent assay (stNS1-ELISA) from the originally established assay which had limited sensitivity overall and poor specificity for the DENV2 serotype. Here, four biotinylated serotype-specific antibodies were applied, including an entirely new design for detection of DENV2. Prediction of the infecting serotype of retrospective acute-phase plasma from dengue patients revealed 100% concordance with the standard RT-PCR method for all four serotypes and 78% overall sensitivity (156/200). The sensitivity of DENV1 NS1 detection was greatly improved (from 62% to 90%) by the addition of a DENV1/DENV3 sub-complex antibody pair. Inclusive of five antibody pairs, the stNS1-ELISA (plus) method showed an overall increased sensitivity to 85.5% (171/200). With the same clinical specimens, a commercial NS1 rapid diagnostic test (NS1-RDT) showed 72% sensitivity (147/200), significantly lower than the stNS1-ELISA (plus) performance. In conclusion, the stNS1-ELISA (plus) is an improved method for prediction of DENV serotype and for overall sensitivity. It could be an alternative assay not only for early dengue diagnosis, but also for serotype identification especially in remote resource-limited dengue endemic areas. Four serotypes of DENV co-circulate in dengue endemic areas. Secondary infection with a different DENV serotype is beleived to involve with severe dengue disease. Standard laboratory diagnosis to identify DENV serotypes in dengue patient specimens is performed by sophisticated genome-based RT-PCR method with serotype-specific oligoprimers. We have previously established an alternative protein-based NS1 assay for DENV serotyping namely, a serotyping-NS1-ELISA (stNS1-ELISA), with the use of serotype-specific monoclonal antibodies (Mabs) to NS1 protein. Due to its unsatisfactory performance, the stNS1-ELISA was modified in this study. The biotinylated serotype-specific detection Mabs were introduced to enhance the overall sensitivity. A new DENV2-specific antibody was applied to improve DENV serotype identification. Prediction of infecting serotype from NS1-positive samples by our modified assay was 100% concordant with the standard RT-PCR method for all four serotypes. The overall sensitivity was greatly improved by an additional DENV1/DENV3 sub-complex antibody. This modified assay is efficient not only for early dengue diagnosis, but also for serotype identification in epidemiological studies and disease surveillance.
Collapse
Affiliation(s)
- Tanapan Prommool
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Pongpawan Sethanant
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Narodom Phaenthaisong
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Nattaya Tangthawornchaikul
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Adisak Songjaeng
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panisadee Avirutnan
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dumrong Mairiang
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasit Luangaram
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Watchara Kasinrerk
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency, Chiang Mai, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | - Prida Malasit
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
72
|
Tavasolian F, Rashidi M, Hatam GR, Jeddi M, Hosseini AZ, Mosawi SH, Abdollahi E, Inman RD. HLA, Immune Response, and Susceptibility to COVID-19. Front Immunol 2021; 11:601886. [PMID: 33488597 PMCID: PMC7820778 DOI: 10.3389/fimmu.2020.601886] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
The severe acute respiratory syndrome caused by Coronavirus 2 (SARS-CoV-2) that appeared in December 2019 has precipitated the global pandemic Coronavirus Disease 2019 (COVID-19). However, in many parts of Africa fewer than expected cases of COVID-19, with lower rates of mortality, have been reported. Individual human leukocyte antigen (HLA) alleles can affect both the susceptibility and the severity of viral infections. In the case of COVID-19 such an analysis may contribute to identifying individuals at higher risk of the disease and the epidemiological level to understanding the differences between countries in the epidemic patterns. It is also recognized that first antigen exposure influences the consequence of subsequent exposure. We thus propose a theory incorporating HLA antigens, the "original antigenic sin (OAS)" effect, and presentation of viral peptides which could explain with differential susceptibility or resistance to SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Gholam Reza Hatam
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Jeddi
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sayed Hussain Mosawi
- Medical Sciences Research Center, Ghalib University, Kabul, Afghanistan
- COVID-19 Directorate, Ministry of Public Health, Kabul, Afghanistan
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Robert D. Inman
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine and Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
73
|
Imrie A, McCarthy S. HLA and immunodominance in viral infection: T-cell responses in protection and immunopathogenesis. MICROBIOLOGY AUSTRALIA 2021. [DOI: 10.1071/ma21020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The protective role of T cells in viral infection is well described. T cells generally mediate anti-viral immune responses via direct cytotoxicity and production of pro-inflammatory cytokines, by providing help to B cells and by promotion of memory responses. A fundamental step in T cell responses involves presentation of viral peptide antigens in the context of human leucocyte antigens (HLA), to the T-cell receptor. HLA are highly polymorphic cell surface molecules that present a vast array of peptides to T cells and induce their activation, differentiation and proliferation into effector cells which can eliminate microbial infection.
Collapse
|
74
|
McBride A, Chanh HQ, Fraser JF, Yacoub S, Obonyo NG. Microvascular dysfunction in septic and dengue shock: Pathophysiology and implications for clinical management. Glob Cardiol Sci Pract 2020; 2020:e202029. [PMID: 33447608 PMCID: PMC7773436 DOI: 10.21542/gcsp.2020.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The microcirculation comprising of arterioles, capillaries and post-capillary venules is the terminal vascular network of the systemic circulation. Microvascular homeostasis, comprising of a balance between vasoconstriction, vasodilation and endothelial permeability in healthy states, regulates tissue perfusion. In severe infections, systemic inflammation occurs irrespective of the infecting microorganism(s), resulting in microcirculatory dysregulation and dysfunction, which impairs tissue perfusion and often precedes end-organ failure. The common hallmarks of microvascular dysfunction in both septic shock and dengue shock, are endothelial cell activation, glycocalyx degradation and plasma leak through a disrupted endothelial barrier. Microvascular tone is also impaired by a reduced bioavailability of nitric oxide. In vitro and in vivo studies have however demonstrated that the nature and extent of microvascular dysfunction as well as responses to volume expansion resuscitation differ in these two clinical syndromes. This review compares and contrasts the pathophysiology of microcirculatory dysfunction in septic versus dengue shock and the attendant effects of fluid administration during resuscitation.
Collapse
Affiliation(s)
- Angela McBride
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam.,Brighton and Sussex Medical School, United Kingdom
| | - Ho Q Chanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - John F Fraser
- Critical Care Research Group, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Nchafatso G Obonyo
- Critical Care Research Group, Brisbane, Australia.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Initiative to Develop African Research Leaders, Kilifi, Kenya
| |
Collapse
|
75
|
Halstead SB, Russell PK, Brandt WE. NS1, Dengue's Dagger. J Infect Dis 2020; 221:857-860. [PMID: 30783665 DOI: 10.1093/infdis/jiz083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Scott B Halstead
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Philip K Russell
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Walter E Brandt
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
76
|
King CA, Wegman AD, Endy TP. Mobilization and Activation of the Innate Immune Response to Dengue Virus. Front Cell Infect Microbiol 2020; 10:574417. [PMID: 33224897 PMCID: PMC7670994 DOI: 10.3389/fcimb.2020.574417] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Dengue virus is an important human pathogen, infecting an estimated 400 million individuals per year and causing symptomatic disease in a subset of approximately 100 million. Much of the effort to date describing the host response to dengue has focused on the adaptive immune response, in part because of the well-established roles of antibody-dependent enhancement and T cell original sin as drivers of severe dengue upon heterotypic secondary infection. However, the innate immune system is a crucial factor in the host response to dengue, as it both governs the fate and vigor of the adaptive immune response, and mediates the acute inflammatory response in tissues. In this review, we discuss the innate inflammatory response to dengue infection, focusing on the role of evolutionarily conserved innate immune cells, their effector functions, and clinical course.
Collapse
Affiliation(s)
- Christine A. King
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | | | | |
Collapse
|
77
|
Malavige GN, Jeewandara C, Ogg GS. Dysfunctional Innate Immune Responses and Severe Dengue. Front Cell Infect Microbiol 2020; 10:590004. [PMID: 33194836 PMCID: PMC7644808 DOI: 10.3389/fcimb.2020.590004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Although infection with the dengue virus (DENV) causes severe dengue, it causes a mild self-limiting illness in the majority of individuals. There is emerging evidence that an aberrant immune response in the initial stages of infection lead to severe disease. Many inflammatory cytokines, chemokines, and lipid mediators are significantly higher in patients with severe dengue compared to those who develop mild infection, during febrile phase of illness. Monocytes, mast cells, and many other cells of the immune system, when infected with the DENV, especially in the presence of poorly neutralizing antibodies, leads to production of pro-inflammatory cytokines and inhibition of interferon signaling pathways. In addition, production of immunosuppressive cytokines such as IL-10 further leads to inhibition of cellular antiviral responses. This dysregulated and aberrant immune response leads to reduced clearance of the virus, and severe dengue by inducing a vascular leak and excessive inflammation due to high levels of inflammatory cytokines. Individuals with comorbid illnesses could be prone to more severe dengue due to low grade endotoxemia, gut microbial dysbiosis and an altered phenotype of innate immune cells. The immunosuppressive and inflammatory lipid mediators and altered phenotype of monocytes are likely to further act on T cells and B cells leading to an impaired adaptive immune response to the virus. Therefore, in order to identify therapeutic targets for treatment of dengue, it would be important to further characterize these mechanisms in order for early intervention. In this review, we discuss the differences in the innate immune responses in those who progress to develop severe dengue, compared to those with milder disease in order to understand the mechanisms that lead to severe dengue.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Chandima Jeewandara
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Graham S Ogg
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
78
|
Manh DH, Weiss LN, Thuong NV, Mizukami S, Dumre SP, Luong QC, Thanh LC, Thang CM, Huu PT, Phuc LH, Nhung CTH, Mai NT, Truong NQ, Ngu VTT, Quoc DK, Ha TTN, Ton T, An TV, Halhouli O, Quynh LN, Kamel MG, Karbwang J, Huong VTQ, Huy NT, Hirayama K. Kinetics of CD4 + T Helper and CD8 + Effector T Cell Responses in Acute Dengue Patients. Front Immunol 2020; 11:1980. [PMID: 33072068 PMCID: PMC7542683 DOI: 10.3389/fimmu.2020.01980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The protective or pathogenic role of T lymphocytes during the acute phase of dengue virus (DENV) infection has not been fully understood despite its importance in immunity and vaccine development. Objectives: This study aimed to clarify the kinetics of T lymphocyte subsets during the clinical course of acute dengue patients. Study design: In this hospital-based cohort study, 59 eligible Vietnamese dengue patients were recruited and admitted. They were investigated and monitored for T cell subsets and a panel of clinical and laboratory parameters every day until discharged and at post-discharge from the hospital. Results: We described for the first time the kinetics of T cell response during the clinical course of DENV infection. Severe cases showed significantly lower levels of effector CD8+ T cells compared to mild cases at day −1 (p = 0.017) and day 0 (p = 0.033) of defervescence. After defervescence, these cell counts in severe cases increased rapidly to equalize with the levels of mild cases. Our results also showed a decline in total CD4+ T, Th1, Th1/17 cells during febrile phase of dengue patients compared to normal controls or convalescent phase. On the other hand, Th2 cells increased during DENV infection until convalescent phase. Cytokines such as interferon-γ, IL-12p70, IL-5, IL-23, IL-17A showed tendency to decrease on day 0 and 1 compared with convalescence and only IL-5 showed significance indicating the production during acute phase was not systemic. Conclusion: With a rigorous study design, we uncovered the kinetics of T cells in natural DENV infection. Decreased number of effector CD8+ T cells in the early phase of infection and subsequent increment after defervescence day probably associated with the T cell migration in DENV infection.
Collapse
Affiliation(s)
- Dao Huy Manh
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Lan Nguyen Weiss
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Nguyen Van Thuong
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Shusaku Mizukami
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Shyam Prakash Dumre
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Quang Chan Luong
- National Program for Dengue Control, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Le Chi Thanh
- HIV Laboratory, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Cao Minh Thang
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | | | | | - Cao Thi Hong Nhung
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Mai
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Nguyen Quang Truong
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Vu Thien Thu Ngu
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Do Kien Quoc
- National Program for Dengue Control, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Tran Thi Ngoc Ha
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Tran Ton
- HIV Laboratory, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Tran Van An
- Nguyen Dinh Chieu Hospital, Ben Tre, Vietnam
| | - Oday Halhouli
- Faculty of Medicine, The University of Jordan, Amman, Jordan.,Online Research Club (www.onlineresearchclub.org/), Nagasaki, Japan
| | - Le Nhat Quynh
- Online Research Club (www.onlineresearchclub.org/), Nagasaki, Japan.,Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Mohamed Gomaa Kamel
- Online Research Club (www.onlineresearchclub.org/), Nagasaki, Japan.,Faculty of Medicine, Minia University, Minya, Egypt
| | - Juntra Karbwang
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Vu Thi Que Huong
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Nguyen Tien Huy
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Online Research Club (www.onlineresearchclub.org/), Nagasaki, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
79
|
Umakanth M, Suganthan N. Unusual Manifestations of Dengue Fever: A Review on Expanded Dengue Syndrome. Cureus 2020; 12:e10678. [PMID: 33133844 PMCID: PMC7593129 DOI: 10.7759/cureus.10678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dengue infection may manifest as dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). The World Health Organization (WHO) came up with the term "expanded dengue syndrome" (EDS) to designate cases which do not fall into either DHF or DSS, with unusual manifestations in other organs such as the cardiovascular system, the nervous system, the kidneys, the gut, and the hematological system, which have been increasingly reported and called EDS. Furthermore, EDS is becoming widespread globally with unusual features and increased severity. There are increasing reports of under-recognized and infrequent manifestations with severe organ involvement. This review gives knowledge of expanded dengue syndrome which helps to catch the diagnosis of dengue early, particularly during the ongoing epidemics and escaping from further series of unnecessary investigations.
Collapse
|
80
|
Roncati L, Palmieri B. What about the original antigenic sin of the humans versus SARS-CoV-2? Med Hypotheses 2020; 142:109824. [PMID: 32408068 PMCID: PMC7204740 DOI: 10.1016/j.mehy.2020.109824] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Luca Roncati
- Department of Pathology and Surgery, University Hospital of Modena, Modena, Italy.
| | - Beniamino Palmieri
- Department of Pathology and Surgery, University Hospital of Modena, Modena, Italy
| |
Collapse
|
81
|
Malone RW, Tisdall P, Fremont-Smith P, Liu Y, Huang XP, White KM, Miorin L, Del Olmo EM, Alon A, Delaforge E, Hennecker CD, Wang G, Pottel J, Smith N, Hall JM, Shapiro G, Mittermaier A, Kruse AC, García-Sastre A, Roth BL, Glasspool-Malone J, Ricke DO. COVID-19: Famotidine, Histamine, Mast Cells, and Mechanisms. RESEARCH SQUARE 2020:rs.3.rs-30934. [PMID: 32702719 PMCID: PMC7336703 DOI: 10.21203/rs.3.rs-30934/v2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SARS-CoV-2 infection is required for COVID-19, but many signs and symptoms of COVID-19 differ from common acute viral diseases. Currently, there are no pre- or post-exposure prophylactic COVID-19 medical countermeasures. Clinical data suggest that famotidine may mitigate COVID-19 disease, but both mechanism of action and rationale for dose selection remain obscure. We explore several plausible avenues of activity including antiviral and host-mediated actions. We propose that the principal famotidine mechanism of action for COVID-19 involves on-target histamine receptor H2 activity, and that development of clinical COVID-19 involves dysfunctional mast cell activation and histamine release.
Collapse
Affiliation(s)
| | | | | | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lisa Miorin
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Elena Moreno Del Olmo
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Elise Delaforge
- McGill University, Department of Chemistry, Montreal, Quebec, Canada
| | | | - Guanyu Wang
- McGill University, Department of Chemistry, Montreal, Quebec, Canada
| | | | | | - Julie M Hall
- Frank H. Netter MD School of Medicine - Quinnipiac University, Hamden, CT
| | | | | | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | | | | |
Collapse
|
82
|
T lymphocyte responses to flaviviruses - diverse cell populations affect tendency toward protection and disease. Curr Opin Virol 2020; 43:28-34. [PMID: 32810785 DOI: 10.1016/j.coviro.2020.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022]
Abstract
Dengue virus (DENV), Yellow Fever virus, West Nile virus, Japanese encephalitis virus and Zika virus are medically important flaviviruses transmitted to humans by mosquitoes and circulate in overlapping geographic areas. Cross-reactive immune responses have been demonstrated among the flaviviruses, particularly the four DENV serotypes. The immunological imprint left by a flavivirus infection can therefore have profound effects on the responses to subsequent infections. In this review we summarize recent research focusing on T cell responses to DENV using clinical samples from prospective cohort studies in Asia. These data suggest that durability of different T cell populations after natural infection or vaccination is an important consideration for the outcome of subsequent flavivirus exposures and we argue for continued investigation in the context of longitudinal cohort studies.
Collapse
|
83
|
Harapan H, Michie A, Sasmono RT, Imrie A. Dengue: A Minireview. Viruses 2020; 12:v12080829. [PMID: 32751561 PMCID: PMC7472303 DOI: 10.3390/v12080829] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dengue, caused by infection of any of four dengue virus serotypes (DENV-1 to DENV-4), is a mosquito-borne disease of major public health concern associated with significant morbidity, mortality, and economic cost, particularly in developing countries. Dengue incidence has increased 30-fold in the last 50 years and over 50% of the world’s population, in more than 100 countries, live in areas at risk of DENV infection. We reviews DENV biology, epidemiology, transmission dynamics including circulating serotypes and genotypes, the immune response, the pathogenesis of the disease as well as updated diagnostic methods, treatments, vector control and vaccine developments.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
- Correspondence: (H.H.); (A.I.); Tel.: +62-(0)-651-7551843 (H.H.)
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
- Correspondence: (H.H.); (A.I.); Tel.: +62-(0)-651-7551843 (H.H.)
| |
Collapse
|
84
|
Chan Y, Jazayeri SD, Ramanathan B, Poh CL. Enhancement of Tetravalent Immune Responses to Highly Conserved Epitopes of a Dengue Peptide Vaccine Conjugated to Polystyrene Nanoparticles. Vaccines (Basel) 2020; 8:vaccines8030417. [PMID: 32722368 PMCID: PMC7563452 DOI: 10.3390/vaccines8030417] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccination remains the major approach to the prevention of dengue. Since the only licensed live attenuated vaccine (LAV) lacked efficacy against all four serotypes, other vaccine platforms, such as synthetic peptide vaccines, should be explored. In this study, four multi-epitope peptides (P1-P4) were designed by linking a universal T-helper epitope (PADRE or TpD) to the highly conserved CD8 T cell epitope and B cell epitope (B1 or B2) against all four DENV serotypes. The multi-epitope peptides were conjugated to polystyrene nanoparticles (PSNPs) and four nanovaccines (NP1-NP4) were constructed. Mice immunized with NP1-NP4 elicited significantly higher titers of IgG and neutralizing antibodies when compared to immunization with naked P1-P4. The immune responses in mice immunized with peptide vaccines were compared with nanovaccines using ELISA, ELISPOT, and a neutralization test based on FRNT50. Among the four conjugated peptide nanovaccines, NP3 comprising the TpD T-helper epitope linked to the highly conserved B1 epitope derived from the E protein was able to elicit significant levels of IFN-γ and neutralizing antibodies to all four dengue serotypes. NP3 is a promising tetravalent synthetic peptide vaccine, but the selection of a more effective CD8+ T cell epitope and adjuvants to further improve the immunogenicity is warranted.
Collapse
Affiliation(s)
- Yanqi Chan
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia; (Y.C.); (S.D.J.)
| | - Seyed Davoud Jazayeri
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia; (Y.C.); (S.D.J.)
| | - Babu Ramanathan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia;
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia; (Y.C.); (S.D.J.)
- Correspondence: ; Tel.: +60-3-74918622
| |
Collapse
|
85
|
Redoni M, Yacoub S, Rivino L, Giacobbe DR, Luzzati R, Di Bella S. Dengue: Status of current and under-development vaccines. Rev Med Virol 2020; 30:e2101. [PMID: 32101634 DOI: 10.1002/rmv.2101] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 01/02/2023]
Abstract
Dengue is an emerging mosquito-borne viral infection with increasing reports of outbreaks. The clinical picture ranges from a benign febrile illness through to severe and potentially fatal manifestations. No specific anti-viral treatment exists, and therapy only consists of supportive care. During the last three decades, several attempts to develop an effective vaccine have been made. The first dengue vaccine to obtain licensure was Dengvaxia, which was authorized in 2015 and is currently available in over 20 countries. Its use has been approved with strict limitations regarding age and serostatus of the recipients, highlighting the necessity for a more safe and efficacious vaccine. At present several vaccine, candidates are undergoing clinical and pre-clinical trials. The most advanced candidates are TDV and TDV 003/005, two live-attenuated vaccines, but another 15 vaccines are under development, introducing novel immunization strategies to the traditional dengue vaccine scenario. This work reviews the current research status on dengue vaccines.
Collapse
Affiliation(s)
- Marianna Redoni
- Infectious Diseases Department, University Hospital of Trieste, Trieste, Italy
| | - Sophie Yacoub
- Department of Medicine, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global health, University of Oxford, Oxford, UK
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Roberto Luzzati
- Infectious Diseases Department, University Hospital of Trieste, Trieste, Italy
| | - Stefano Di Bella
- Infectious Diseases Department, University Hospital of Trieste, Trieste, Italy
| |
Collapse
|
86
|
Lin L, Lyke KE, Koren M, Jarman RG, Eckels KH, Lepine E, McArthur MA, Currier JR, Friberg H, Moris P, Keiser PB, De La Barrera R, Vaughn DW, Paris RM, Thomas SJ, Schmidt AC. Safety and Immunogenicity of an AS03 B-Adjuvanted Inactivated Tetravalent Dengue Virus Vaccine Administered on Varying Schedules to Healthy U.S. Adults: A Phase 1/2 Randomized Study. Am J Trop Med Hyg 2020; 103:132-141. [PMID: 32342848 PMCID: PMC7356407 DOI: 10.4269/ajtmh.19-0738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/25/2020] [Indexed: 01/05/2023] Open
Abstract
Dengue disease and its causative agents, the dengue viruses (DENV-1-4), cause high morbidity in tropical and subtropical regions. We evaluated three dosing regimens of the investigational tetravalent AS03B-adjuvanted dengue-purified inactivated vaccine (DPIV+AS03B). In this phase 1/2, observer-blind, placebo-controlled study (NCT02421367), 140 healthy adults were randomized 1:1:2 to receive DPIV+AS03B according to the following regimens: 0-1 month (M), 0-1-6 M, or 0-3 M. Participants received DPIV+AS03B or placebo at M0, M1, M3, and M6 according to their dosing schedule. Primary objectives were 1) to evaluate the safety of DPIV+AS03B for 28 days (D) after each dose; 2) to demonstrate the added value of a booster dose (0-1-6 M versus 0-1 M) based on neutralizing antibody titers to each DENV type (DENV-1-4) at 28 D after the last dose; and, if this objective was met, 3) to demonstrate the benefit of a longer interval between the first and second doses (0-1 M versus 0-3 M). Adverse events (AEs) within 7 D after vaccination tended to be more frequent after DPIV+AS03B doses than placebo; the number of grade 3 AEs was low (≤ 4.5% after DPIV+AS03B; ≤ 2.9% after placebo), with no obvious differences across groups. Within 28 D following each dose, the frequency of unsolicited AEs after DPIV+AS03B appeared higher for three-dose (0-1-6 M) than two-dose (0-1 M and 0-3 M) regimens. No serious AEs were considered related to vaccination, and no potential immune-mediated diseases were reported during the study. All three schedules were well tolerated. Both primary immunogenicity objectives were demonstrated. The 0-3 M and 0-1-6 M regimens were more immunogenic than the 0-1 M regimen.
Collapse
Affiliation(s)
- Leyi Lin
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health (CVD), University of Maryland, Baltimore, Maryland
| | - Michael Koren
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | | | - Monica A. McArthur
- Center for Vaccine Development and Global Health (CVD), University of Maryland, Baltimore, Maryland
| | | | - Heather Friberg
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Paul B. Keiser
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | | | | | | |
Collapse
|
87
|
Izmirly AM, Alturki SO, Alturki SO, Connors J, Haddad EK. Challenges in Dengue Vaccines Development: Pre-existing Infections and Cross-Reactivity. Front Immunol 2020; 11:1055. [PMID: 32655548 PMCID: PMC7325873 DOI: 10.3389/fimmu.2020.01055] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Dengue is one of the most frequently transmitted mosquito-borne diseases in the world, which creates a significant public health concern globally, especially in tropical and subtropical countries. It is estimated that more than 390 million people are infected with dengue virus each year and around 96 million develop clinical pathologies. Dengue infections are not only a health problem but also a substantial economic burden. To date, there are no effective antiviral therapies and there is only one licensed dengue vaccine that only demonstrated protection in the seropositive (Immune), naturally infected with dengue, but not dengue seronegative (Naïve) vaccines. In this review, we address several immune components and their interplay with the dengue virus. Additionally, we summarize the literature pertaining to current dengue vaccine development and advances. Moreover, we review some of the factors affecting vaccine responses, such as the pre-vaccination environment, and provide an overview of the significant challenges that face the development of an efficient/protective dengue vaccine including the presence of multiple serotypes, antibody-dependent enhancement (ADE), as well as cross-reactivity with other flaviviruses. Finally, we discuss targeting T follicular helper cells (Tfh), a significant cell population that is essential for the production of high-affinity antibodies, which might be one of the elements needed to be specifically targeted to enhance vaccine precision to dengue regardless of dengue serostatus.
Collapse
Affiliation(s)
- Abdullah M Izmirly
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sana O Alturki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sawsan O Alturki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jennifer Connors
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
88
|
Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design? Pathogens 2020; 9:pathogens9060470. [PMID: 32549226 PMCID: PMC7350362 DOI: 10.3390/pathogens9060470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The four serotypes of dengue virus are the most widespread causes of arboviral disease, currently placing half of the human population at risk of infection. Pre-existing immunity to one dengue virus serotype can predispose to severe disease following secondary infection with a different serotype. The phenomenon of immune enhancement has complicated vaccine development and likely explains the poor long-term safety profile of a recently licenced dengue vaccine. Therefore, alternative vaccine strategies should be considered. This review summarises studies dissecting the adaptive immune responses to dengue virus infection and (experimental) vaccination. In particular, we discuss the roles of (i) neutralising antibodies, (ii) antibodies to non-structural protein 1, and (iii) T cells in protection and pathogenesis. We also address how these findings could translate into next-generation vaccine approaches that mitigate the risk of enhanced dengue disease. Finally, we argue that the development of a safe and efficacious dengue vaccine is an attainable goal.
Collapse
|
89
|
Serrano-Collazo C, Pérez-Guzmán EX, Pantoja P, Hassert MA, Rodríguez IV, Giavedoni L, Hodara V, Parodi L, Cruz L, Arana T, Martínez MI, White L, Brien JD, de Silva A, Pinto AK, Sariol CA. Effective control of early Zika virus replication by Dengue immunity is associated to the length of time between the 2 infections but not mediated by antibodies. PLoS Negl Trop Dis 2020; 14:e0008285. [PMID: 32463814 PMCID: PMC7255596 DOI: 10.1371/journal.pntd.0008285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/10/2020] [Indexed: 12/18/2022] Open
Abstract
Little is known about the contribution of virus-specific and cross-reacting antibodies (Abs) or the cellular immune response generated by a primary dengue (DENV) infection on the course of a secondary zika (ZIKV) infection in vivo. Here we show that the length of time between DENV/ZIKV infections has a qualitative impact on controlling early ZIKV replication. Depletion of DENV2-specific Abs in sera confirmed that those type-specific Abs do not contribute to ZIKV control. We show that the magnitude and durability of the neutralizing antibodies (nAbs) induced by a secondary ZIKV infection is modest compared to the response induced after a secondary heterologous DENV infection. Our in vivo results are showing a complex interplay between the cellular and innate immune responses characterized by a high frequency of plasmacytoid dendritic cells (pDC) correlating with an increase in the frequency of DENV antigen specific T cells and a significant control of ZIKV replication which is time dependent. Taken together, our results suggest that early after ZIKV infection other mechanisms such as the innate and cellular immune responses may play a predominant role in controlling ZIKV replication. Regardless of the time elapsed between infections there was no evidence of in vivo antibody-dependent enhancement (ADE) of ZIKV by DENV immunity. These findings have pivotal implications while interpreting ZIKV pathogenesis in flavivirus-experimented populations, diagnostic results interpretation and vaccine designs and schedules among others. From our previous work in non-human primates and others using humans, we believe that previous DENV immunity confers some degree of protection against ZIKV infection. However, at least two highly relevant questions remain unanswered. One is precisely if the time between primary DENV and a subsequent ZIKV infections may play a role in the degree of protection conferred by DENV immunity. The second question is related to the mechanisms of cross-protection. In this work we provide evidences that a period of 12 months between DENV and ZIKV infections has a significant impact controlling ZIKV replication compared to a shorter period of 3 months. We also provide evidences that the pre-existing DENV Abs play no role controlling early ZIKV replication. Our results strongly suggest that the mechanisms controlling ZIKV replication are related to the complex interaction between the innate and the cellular immune responses. Our results have significant implications for vaccine design and schedules.
Collapse
Affiliation(s)
- Crisanta Serrano-Collazo
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Erick X. Pérez-Guzmán
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Petraleigh Pantoja
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, United States of America
- Unit of Comparative Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Mariah A. Hassert
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Idia V. Rodríguez
- Unit of Comparative Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Luis Giavedoni
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Vida Hodara
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Laura Parodi
- University of North Carolina Chapel Hill, North Carolina, United States of America
| | - Lorna Cruz
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, United States of America
- Unit of Comparative Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Teresa Arana
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, United States of America
- Unit of Comparative Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Melween I. Martínez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, United States of America
- Unit of Comparative Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Laura White
- University of North Carolina Chapel Hill, North Carolina, United States of America
| | - James D. Brien
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Aravinda de Silva
- University of North Carolina Chapel Hill, North Carolina, United States of America
| | - Amelia K. Pinto
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Carlos A. Sariol
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, United States of America
- Unit of Comparative Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, United States of America
- Department of Internal Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
90
|
Gallagher P, Chan KR, Rivino L, Yacoub S. The association of obesity and severe dengue: possible pathophysiological mechanisms. J Infect 2020; 81:10-16. [PMID: 32413364 DOI: 10.1016/j.jinf.2020.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Dengue virus (DENV) is a medically important flavivirus and the aetiological agent of Dengue, a normally self-resolving febrile illness that, in some individuals, can progress into Severe Dengue (SD), a life-threatening disorder that manifests as organ impairment, bleeding and shock. Many different risk factors have been associated with the development of SD, one of which is obesity. In many countries where DENV is endemic, obesity is becoming more prevalent, therefore SD is becoming an increased public health concern. However, there is a paucity of research on the mechanistic links between obesity and SD. This is a narrative review based on original research and reviews sourced from PubMed and Google Scholar. Four key areas could possibly explain how obesity can promote viral pathogenesis. Firstly, obesity downregulates AMP-Protein Kinase (AMPK), which leads to an accumulation of lipids in the endoplasmic reticulum (ER) that facilitates viral replication. Secondly, the long-term production of pro-inflammatory adipokines found in obese individuals can cause endothelial and platelet dysfunction and can facilitate SD. Thirdly, obesity could also cause endothelial dysfunction in addition to chronic inflammation, through the production of reactive oxygen species (ROS) and possible damage to the glycocalyx found in the endothelium. Finally, obesity has several effects on immunomodulation that reduces NK cell function, B and T cell response and increased pre-disposition to stronger pro-inflammatory cytokine responses after viral infection. Together, these effects can lead to greater viral proliferation and greater tissue damage both of which could contribute to SD. The four mechanisms outlined in this review can be taken as reference starting points for investigating the link between obesity and SD, and to discover potential therapeutic strategies that can potentially reduce disease severity.
Collapse
Affiliation(s)
- Peter Gallagher
- University of Warwick, Coventry, UK; Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | | | - Laura Rivino
- Duke-NUS Medical School, Singapore; School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Sophie Yacoub
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, Oxford University, UK.
| |
Collapse
|
91
|
Grifoni A, Voic H, Dhanda SK, Kidd CK, Brien JD, Buus S, Stryhn A, Durbin AP, Whitehead S, Diehl SA, De Silva AD, Balmaseda A, Harris E, Weiskopf D, Sette A. T Cell Responses Induced by Attenuated Flavivirus Vaccination Are Specific and Show Limited Cross-Reactivity with Other Flavivirus Species. J Virol 2020; 94:e00089-20. [PMID: 32132233 PMCID: PMC7199411 DOI: 10.1128/jvi.00089-20] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Members of the flavivirus genus share a high level of sequence similarity and often circulate in the same geographical regions. However, whether T cells induced by one viral species cross-react with other related flaviviruses has not been globally addressed. In this study, we tested pools of epitopes derived from dengue (DENV), Zika (ZIKV), Japanese encephalitis (JEV), West Nile (WNV), and yellow fever (YFV) viruses by intracellular cytokine staining (ICS) using peripheral blood mononuclear cells (PBMCs) of individuals naturally exposed to DENV or immunized with DENV (TV005) or YF17D vaccine. CD8 T cell responses recognized epitopes from multiple flaviviruses; however, the magnitude of cross-reactive responses was consistently severalfold lower than those to the autologous epitope pools and was associated with lower expression of activation markers such as CD40L, CD69, and CD137. Next, we characterized the antigen sensitivity of short-term T cell lines (TCL) representing 29 different individual epitope/donor combinations. TCL derived from DENV monovalent vaccinees induced CD8 and CD4 T cells that cross-reacted within the DENV serocomplex but were consistently associated with >100-fold-lower antigen sensitivity for most other flaviviruses, with no cross-recognition of YFV-derived peptides. CD8 and CD4 TCL from YF17D vaccinees were associated with very limited cross-reactivity with any other flaviviruses and in five out of eight cases >1,000-fold-lower antigen sensitivity. Overall, our data suggest limited cross-reactivity for both CD4 and CD8 T cell responses between flaviviruses and have implications for understanding immunity elicited by natural infection and strategies to develop live attenuated vaccines against flaviviral species.IMPORTANCE The envelope (E) protein is the dominant target of neutralizing antibodies for dengue virus (DENV) and yellow fever virus (YFV). Accordingly, several DENV vaccine constructs use the E protein in a live attenuated vaccine format, utilizing a backbone derived from a heterologous flavivirus (such as YF) as a delivery vector. This backbone comprises the nonstructural (NS) and capsid (C) antigens, which are dominant targets of T cell responses. Here, we demonstrate that cross-reactivity at the level of T cell responses among different flaviviruses is very limited, despite high levels of sequence homology. Thus, the use of heterologous flavivirus species as a live attenuated vaccine vector is not likely to generate optimal T cell responses and might thus impair vaccine performance.
Collapse
Affiliation(s)
- Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Hannah Voic
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Conner K Kidd
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anette Stryhn
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna P Durbin
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stephen Whitehead
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sean A Diehl
- University of Vermont School of Medicine, Burlington, Vermont, USA
| | - Aruna D De Silva
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Paraclinical Sciences, General Sir John Kotelawala Defense University, Ratmalana, Sri Lanka
| | - Angel Balmaseda
- National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
92
|
Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol 2020; 5:796-812. [PMID: 32367055 DOI: 10.1038/s41564-020-0714-0] [Citation(s) in RCA: 639] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Flaviviruses are vector-borne RNA viruses that can emerge unexpectedly in human populations and cause a spectrum of potentially severe diseases including hepatitis, vascular shock syndrome, encephalitis, acute flaccid paralysis, congenital abnormalities and fetal death. This epidemiological pattern has occurred numerous times during the last 70 years, including epidemics of dengue virus and West Nile virus, and the most recent explosive epidemic of Zika virus in the Americas. Flaviviruses are now globally distributed and infect up to 400 million people annually. Of significant concern, outbreaks of other less well-characterized flaviviruses have been reported in humans and animals in different regions of the world. The potential for these viruses to sustain epidemic transmission among humans is poorly understood. In this Review, we discuss the basic biology of flaviviruses, their infectious cycles, the diseases they cause and underlying host immune responses to infection. We describe flaviviruses that represent an established ongoing threat to global health and those that have recently emerged in new populations to cause significant disease. We also provide examples of lesser-known flaviviruses that circulate in restricted areas of the world but have the potential to emerge more broadly in human populations. Finally, we discuss how an understanding of the epidemiology, biology, structure and immunity of flaviviruses can inform the rapid development of countermeasures to treat or prevent human infections as they emerge.
Collapse
Affiliation(s)
- Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA.
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
93
|
Gore MM. Vaccines Against Dengue and West Nile Viruses in India: The Need of the Hour. Viral Immunol 2020; 33:423-433. [PMID: 32320353 DOI: 10.1089/vim.2019.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The circulation of flaviviruses, dengue (DEN), Japanese encephalitis (JE) and West Nile (WN) viruses, and others, is generating a major concern in many countries. Both JE along with DEN have been endemic in large regions of India. WN virus infection, although circulating in southern regions for many years, in recent years, WN encephalitis patients have been demonstrated. While vaccines against JE have been developed and decrease outbreaks, in case of DEN and WN, vaccines are still in developing level, especially, it has been difficult to achieve the long-term protective immune response. The first licensed DEN vaccine, which is a live attenuated vaccine, was administered in countries where the virus is endemic, and has a potential to cause serious side effects, especially when administered to younger population as observed in the Philippines vaccination drive. In the case of WN, although the purified inactivated virion-based vaccine worked effectively as a veterinary vaccine for horses, no effective vaccine has yet been licensed for humans. The induction of CD4+ and CD8+ T cell responses is essential to complete protection by these viruses, as evidenced by responses to asymptomatic infections. Many studies have shown that neutralizing antibody (NAb) response is against surface structural proteins; CD4+ and CD8+ responses are mainly directed against nonstructural proteins rather than NAb response. New data suggest that encapsulating virus vaccines in nanoparticles (NPs) will direct antigen in cytoplasmic compartment by antigen-presenting cells, which will improve presentation to CD4+ and CD8+ T cells. Since tissue culture-derived, purified inactivated viruses are easier to manufacture and safer than developing live virus vaccines, inclusion of NP provides an attractive alternative for generating robust flaviviral vaccines that are affordable with long-lived protection.
Collapse
Affiliation(s)
- Milind M Gore
- Emeritus Scientist, ICMR-National Institute of Virology, Pune, India
| |
Collapse
|
94
|
Cutaneous Dengue Virus Inoculation Triggers Strong B Cell Reactions but Contrastingly Poor T Cell Responses. Virol Sin 2020; 35:575-587. [PMID: 32314276 PMCID: PMC7168571 DOI: 10.1007/s12250-020-00213-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/24/2019] [Indexed: 01/19/2023] Open
Abstract
Dengue is a global health problem without current specific treatment nor safe vaccines available. While severe dengue is related to pre-existing non-neutralizing dengue virus (DENV) antibodies, the role of T cells in protection or pathology is unclear. Using cutaneous DENV infection in immunocompetent mice we previously showed the generation of PNA+ germinal centers (GCs), now we assessed the activation and proliferation of B and T cells in draining lymph nodes (DLNs). We found a drastic remodelling of DLN compartments from 7 to 14 days post-infection (dpi) with greatly enlarged B cell follicles, occupying almost half of the DLN area compared to ~24% in naïve conditions. Enormous clusters of proliferating (Ki-67+) cells inside B follicles were found 14 dpi, representing ~33% of B cells in DLNs but only ~2% in non-infected mice. Inside GCs, we noticed an important recruitment of tingle body macrophages removing apoptotic cells. In contrast, the percentage of paracortex area and total T cells decreased by 14–16 dpi, compared to controls. Scattered randomly distributed Ki-67+ T cells were found, similar to non-infected mice. CD69 expression by CD4+ and CD8+ T cells was minor, while it was remarkable in B cells, representing 1764.7% of change from basal levels 3 dpi. The apparent lack of T cell responses cannot be attributed to apoptosis since no significant differences were observed compared to non-infected mice. This study shows massive B cell activation and proliferation in DLNs upon DENV infection. In contrast, we found very poor, almost absent CD4+ and CD8+ T cell responses.
Collapse
|
95
|
Apoptosis characterization in mononuclear blood leukocytes of HIV patients during dengue acute disease. Sci Rep 2020; 10:6351. [PMID: 32286360 PMCID: PMC7156518 DOI: 10.1038/s41598-020-62776-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
Dengue virus (DENV) co-circulation in Brazil represents a challenge for treatment and vaccine development. Despite public health impact, the occurrence of coinfections with other viruses is a common event. Increased T cell activation and altered inflammatory response are found during DENV coinfection with Human Immunodeficiency Virus (HIV) impacting HIV-pathogenesis. Even with Antiretroviral therapy (ART), HIV- treated patients had chronic immune activation and lymphocyte apoptosis. However, apoptotic mechanisms have not been investigated during coinfection with DENV. Our attention was attracted to apoptotic cell markers expressions in PBMCs from DENV and DENV/HIV coinfected patients. We found CD4/CD8 ratio inversion in most coinfected patients. CD4 T and CD8 T-cell subsets from DENV and DENV/HIV groups expressed low levels of anti-apoptotic protein Bcl-2. Furthermore, CD8 CD95 double positive cells frequency expressing low levels of Bcl-2 were significantly higher in these patients. Additionally, the density of Bcl-2 on classical monocytes (CD14++CD16−) was significantly lower during DENV infection. Upregulation of pro-apoptotic proteins and anti-apoptotic proteins were found in DENV and DENV/HIV, while catalase, an antioxidant protein, was upregulated mainly in DENV/HIV coinfection. These findings provide evidence of apoptosis triggering during DENV/HIV coinfection, which may contribute to knowledge of immunological response during DENV acute infection in HIV-patients treated with ART.
Collapse
|
96
|
Subramaniam KS, Lant S, Goodwin L, Grifoni A, Weiskopf D, Turtle L. Two Is Better Than One: Evidence for T-Cell Cross-Protection Between Dengue and Zika and Implications on Vaccine Design. Front Immunol 2020; 11:517. [PMID: 32269575 PMCID: PMC7109261 DOI: 10.3389/fimmu.2020.00517] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV, family Flaviviridae, genus Flavivirus) exists as four distinct serotypes. Generally, immunity after infection with one serotype is protective and lifelong, though exceptions have been described. However, secondary infection with a different serotype can result in more severe disease for a minority of patients. Host responses to the first DENV infection involve the development of both cross-reactive antibody and T cell responses, which, depending upon their precise balance, may mediate protection or enhance disease upon secondary infection with a different serotype. Abundant evidence now exists that responses elicited by DENV infection can cross-react with other members of the genus Flavivirus, particularly Zika virus (ZIKV). Cohort studies have shown that prior DENV immunity is associated with protection against Zika. Cross-reactive antibody responses may enhance infection with flaviviruses, which likely accounts for the cases of severe disease seen during secondary DENV infections. Data for T cell responses are contradictory, and even though cross-reactive T cell responses exist, their clinical significance is uncertain. Recent mouse experiments, however, show that cross-reactive T cells are capable of mediating protection against ZIKV. In this review, we summarize and discuss the evidence that T cell responses may, at least in part, explain the cross-protection seen against ZIKV from DENV infection, and that T cell antigens should therefore be included in putative Zika vaccines.
Collapse
Affiliation(s)
- Krishanthi S. Subramaniam
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Suzannah Lant
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Lynsey Goodwin
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Tropical and Infectious Disease Unit, Liverpool University Hospitals, Liverpool, United Kingdom
| |
Collapse
|
97
|
Leng Q, Tarbe M, Long Q, Wang F. Pre-existing heterologous T-cell immunity and neoantigen immunogenicity. Clin Transl Immunology 2020; 9:e01111. [PMID: 32211191 PMCID: PMC7085466 DOI: 10.1002/cti2.1111] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Neoantigens are tumor‐specific mutated proteins that are exempt from central tolerance and are therefore capable of efficiently eliciting effective T‐cell responses. The identification of immunogenic neoantigens in tumor‐specific mutated proteins has promising clinical implications for cancer immunotherapy. However, the factors that may contribute to neoantigen immunogenicity are not yet fully understood. Through molecular mimicry of antigens arising during cancer progression, the gut microbiota and previously encountered pathogens potentially have profound impacts on T‐cell responses to previously unencountered tumor neoantigens. Here, we review the characteristics of immunogenic neoantigens and how host exposure to microbes may affect T‐cell responses to neoantigens. We address the hypothesis that pre‐existing heterologous memory T‐cell immunity is a major factor that influences neoantigen immunogenicity in individual cancer patients. Accumulating data suggest that differences in individual histories of microbial exposure should be taken into account during the optimisation of algorithms that predict neoantigen immunogenicity.
Collapse
Affiliation(s)
- Qibin Leng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University State Key Laboratory of Respiratory Diseases, Guangzhou Medical University Guangzhou China.,The Joint Center for Infection and Immunity Guangzhou Women and Children's Medical Center Guangzhou Institute of Pediatrics Guangzhou Medical University Guangzhou China.,Institute Pasteur of Shanghai Chinese Academy of Science Shanghai China
| | - Marion Tarbe
- The Joint Center for Infection and Immunity Guangzhou Women and Children's Medical Center Guangzhou Institute of Pediatrics Guangzhou Medical University Guangzhou China.,Institute Pasteur of Shanghai Chinese Academy of Science Shanghai China
| | - Qi Long
- Department of Biostatistics, Epidemiology and Informatics Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Feng Wang
- Department of Immunology and Microbiology Center for Microbiota and Immunological Diseases Shanghai General Hospital Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China.,Research Center of Translational Medicine Shanghai Children's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
98
|
George JA, Park SO, Choi JY, Uyangaa E, Eo SK. Double-faced implication of CD4 + Foxp3 + regulatory T cells expanded by acute dengue infection via TLR2/MyD88 pathway. Eur J Immunol 2020; 50:1000-1018. [PMID: 32125695 DOI: 10.1002/eji.201948420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/29/2020] [Accepted: 02/27/2020] [Indexed: 01/03/2023]
Abstract
Dengue infection causes dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). CD4+ Foxp3+ Tregs are expanded in patients during dengue infection, and appear to be associated with clinical severity. However, molecular pathways involved in Treg proliferation and the reason for their insufficient control of severe diseases are poorly understood. Here, dengue infection induced the proliferation of functional CD4+ Foxp3+ Tregs via TLR2/MyD88 pathway. Surface TLR2 on Tregs was responsible for their proliferation, and dengue-expanded Tregs subverted in vivo differentiation of effector CD8+ T cells. An additional interesting finding was that dengue-infected hosts displayed changed levels of susceptibility to other diseases in TLR2-dependent manner. This change included enhanced susceptibility to tumors and bacterial infection, but highly enhanced resistance to viral infection. Further, the transfer of dengue-proliferated Tregs protected the recipients from dengue-induced DHF/DSS and LPS-induced sepsis. In contrast, dengue-infected hosts were more susceptible to sepsis, an effect attributable to early TLR2-dependent production of proinflammatory cytokines. These facts may explain the reason why in some patients, dengue-proliferated Tregs is insufficient to control DF and DHF/DSS. Also, our observations lead to new insights into Treg responses activated by dengue infection in a TLR2-dependent manner, which could differentially act on subsequent exposure to other disease-producing situations.
Collapse
Affiliation(s)
- Junu A George
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| |
Collapse
|
99
|
Barbachano-Guerrero A, Endy TP, King CA. Dengue virus non-structural protein 1 activates the p38 MAPK pathway to decrease barrier integrity in primary human endothelial cells. J Gen Virol 2020; 101:484-496. [PMID: 32141809 DOI: 10.1099/jgv.0.001401] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) causes an estimated 390 million infections worldwide annually, with severe forms of disease marked by vascular leakage. Endothelial cells (EC) are directly responsible for vascular homeostasis and are highly responsive to circulating mediators but are not commonly infected. DENV encodes seven non-structural (NS) proteins; with only one of those, NS1, secreted from infected cells and accumulating in the blood of patients. NS1 has been implicated in the pathogenesis of vascular permeability, but the mechanism is not completely understood. Here we used primary endothelial cells and an array of in vitro approaches to study the effect of NS1 in disease-relevant human ECs. Confocal microscopy demonstrated rapid NS1 internalization by ECs into endosomes with accumulation over time. Transcriptomic and pathway analysis showed significant changes in functions associated with EC homeostasis and vascular permeability. Functional significance of this activation was assessed by trans-endothelial electrical resistance and showed that NS1 induced rapid and transient loss in EC barrier function within 3 h post-treatment. To understand the molecular mechanism by which NS1 induced EC activation, we evaluated the stress-sensing p38 MAPK pathway known to be directly involved in EC permeability and inflammation. WB analysis of NS1-stimulated ECs showed clear activation of p38 MAPK and downstream effectors MAPKAPK-2 and HSP27 with chemical inhibition of the p38 MAP kinase pathway restoring barrier function. Our results suggest that DENV NS1 may be involved in the pathogenesis of severe dengue by activating the p38 MAPK in ECs, promoting increased permeability that characterizes severe disease.
Collapse
Affiliation(s)
| | - Timothy P Endy
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Christine A King
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| |
Collapse
|
100
|
Rathore APS, St John AL. Cross-Reactive Immunity Among Flaviviruses. Front Immunol 2020; 11:334. [PMID: 32174923 PMCID: PMC7054434 DOI: 10.3389/fimmu.2020.00334] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Flaviviruses consist of significant human pathogens responsible for hundreds of millions of infections each year. Their antigenic relationships generate immune responses that are cross-reactive to multiple flaviviruses and their widespread and overlapping geographical distributions, coupled with increases in vaccination coverage, increase the likelihood of exposure to multiple flaviviruses. Depending on the antigenic properties of the viruses to which a person is exposed, flavivirus cross-reactivity can be beneficial or could promote immune pathologies. In this review we describe our knowledge of the functional immune outcomes that arise from varied flaviviral immune statuses. The cross-reactive antibody and T cell immune responses that are protective versus pathological are also addressed.
Collapse
Affiliation(s)
- Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Ashley L St John
- Department of Pathology, Duke University Medical Center, Durham, NC, United States.,Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,SingHealth Duke-National University of Singapore Global Health Institute, Singapore, Singapore
| |
Collapse
|