51
|
Fiorello I, Ronzan M, Speck T, Sinibaldi E, Mazzolai B. A Biohybrid Self-Dispersing Miniature Machine Using Wild Oat Fruit Awns for Reforestation and Precision Agriculture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313906. [PMID: 38583068 DOI: 10.1002/adma.202313906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Advances in bioinspired and biohybrid robotics are enabling the creation of multifunctional systems able to explore complex unstructured environments. Inspired by Avena fruits, a biohybrid miniaturized autonomous machine (HybriBot) composed of a biomimetic biodegradable capsule as cargo delivery system and natural humidity-driven sister awns as biological motors is reported. Microcomputed tomography, molding via two-photon polymerization and casting of natural awns into biodegradable materials is employed to fabricate multiple HybriBots capable of exploring various soil and navigating soil irregularities, such as holes and cracks. These machines replicate the dispersal movements and biomechanical performances of natural fruits, achieving comparable capsule drag forces up to ≈0.38 N and awns torque up to ≈100 mN mm-1. They are functionalized with fertilizer and are successfully utilized to germinate selected diaspores. HybriBots function as self-dispersed systems with applications in reforestation and precision agriculture.
Collapse
Affiliation(s)
- Isabella Fiorello
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics Laboratory, Via Morego 30, Genova, 16163, Italy
- University of Freiburg, Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany
- University of Freiburg, Plant Biomechanics Group, Schänzlestraße 1, D-79104, Freiburg, Germany
| | - Marilena Ronzan
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics Laboratory, Via Morego 30, Genova, 16163, Italy
| | - Thomas Speck
- University of Freiburg, Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany
- University of Freiburg, Plant Biomechanics Group, Schänzlestraße 1, D-79104, Freiburg, Germany
| | - Edoardo Sinibaldi
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics Laboratory, Via Morego 30, Genova, 16163, Italy
| | - Barbara Mazzolai
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics Laboratory, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
52
|
Li X, Guan Z, Zhao J, Bae J. 3D Printable Active Hydrogels with Supramolecular Additive-Driven Adaptiveness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311164. [PMID: 38295083 DOI: 10.1002/smll.202311164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Smart hydrogels are a promising candidate for the development of next-generation soft materials due to their stimuli-responsiveness, deformability, and biocompatibility. However, it remains challenging to enable hydrogels to actively adapt to various environmental conditions like living organisms. In this work, supramolecular additives are introduced to the hydrogel matrix to confer environmental adaptiveness. Specifically, their microstructures, swelling behaviors, mechanical properties, and transparency can adapt to external environmental conditions. Moreover, the presence of hydrogen bonding provides the hydrogel with applicable rheological properties for 3D extrusion printing, thus allowing for the facile preparation of thickness-dependent camouflage and multistimuli responsive complex. The environmentally adaptive hydrogel developed in this study offers new approaches for manipulating supramolecular interactions and broadens the capability of smart hydrogels in information security and multifunctional integrated actuation.
Collapse
Affiliation(s)
- Xiao Li
- Materials Science & Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhecun Guan
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiayu Zhao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jinhye Bae
- Materials Science & Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
53
|
Lai J, Liu Y, Lu G, Yung P, Wang X, Tuan RS, Li ZA. 4D bioprinting of programmed dynamic tissues. Bioact Mater 2024; 37:348-377. [PMID: 38694766 PMCID: PMC11061618 DOI: 10.1016/j.bioactmat.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Setting time as the fourth dimension, 4D printing allows us to construct dynamic structures that can change their shape, property, or functionality over time under stimuli, leading to a wave of innovations in various fields. Recently, 4D printing of smart biomaterials, biological components, and living cells into dynamic living 3D constructs with 4D effects has led to an exciting field of 4D bioprinting. 4D bioprinting has gained increasing attention and is being applied to create programmed and dynamic cell-laden constructs such as bone, cartilage, and vasculature. This review presents an overview on 4D bioprinting for engineering dynamic tissues and organs, followed by a discussion on the approaches, bioprinting technologies, smart biomaterials and smart design, bioink requirements, and applications. While much progress has been achieved, 4D bioprinting as a complex process is facing challenges that need to be addressed by transdisciplinary strategies to unleash the full potential of this advanced biofabrication technology. Finally, we present future perspectives on the rapidly evolving field of 4D bioprinting, in view of its potential, increasingly important roles in the development of advanced dynamic tissues for basic research, pharmaceutics, and regenerative medicine.
Collapse
Affiliation(s)
- Jiahui Lai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
54
|
Sun X, Yue L, Yu L, Forte CT, Armstrong CD, Zhou K, Demoly F, Zhao RR, Qi HJ. Machine learning-enabled forward prediction and inverse design of 4D-printed active plates. Nat Commun 2024; 15:5509. [PMID: 38951533 PMCID: PMC11217466 DOI: 10.1038/s41467-024-49775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Shape transformations of active composites (ACs) depend on the spatial distribution of constituent materials. Voxel-level complex material distributions can be encoded by 3D printing, offering enormous freedom for possible shape-change 4D-printed ACs. However, efficiently designing the material distribution to achieve desired 3D shape changes is significantly challenging yet greatly needed. Here, we present an approach that combines machine learning (ML) with both gradient-descent (GD) and evolutionary algorithm (EA) to design AC plates with 3D shape changes. A residual network ML model is developed for the forward shape prediction. A global-subdomain design strategy with ML-GD and ML-EA is then used for the inverse material-distribution design. For a variety of numerically generated target shapes, both ML-GD and ML-EA demonstrate high efficiency. By further combining ML-EA with a normal distance-based loss function, optimized designs are achieved for multiple irregular target shapes. Our approach thus provides a highly efficient tool for the design of 4D-printed active composites.
Collapse
Affiliation(s)
- Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Luxia Yu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Connor T Forte
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Connor D Armstrong
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Frédéric Demoly
- ICB UMR 6303 CNRS, Belfort-Montbeliard University of Technology, UTBM, Belfort, France
- Institut universitaire de France (IUF), Paris, France
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
55
|
Yu J, Zhang Y, Ran R, Kong Z, Zhao D, Zhao W, Yang Y, Gao L, Zhang Z. Research Progress in the Field of Tumor Model Construction Using Bioprinting: A Review. Int J Nanomedicine 2024; 19:6547-6575. [PMID: 38957180 PMCID: PMC11217009 DOI: 10.2147/ijn.s460387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
The development of therapeutic drugs and methods has been greatly facilitated by the emergence of tumor models. However, due to their inherent complexity, establishing a model that can fully replicate the tumor tissue situation remains extremely challenging. With the development of tissue engineering, the advancement of bioprinting technology has facilitated the upgrading of tumor models. This article focuses on the latest advancements in bioprinting, specifically highlighting the construction of 3D tumor models, and underscores the integration of these two technologies. Furthermore, it discusses the challenges and future directions of related techniques, while also emphasizing the effective recreation of the tumor microenvironment through the emergence of 3D tumor models that resemble in vitro organs, thereby accelerating the development of new anticancer therapies.
Collapse
Affiliation(s)
- Jiachen Yu
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Yingchun Zhang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Rong Ran
- Department of Anesthesia, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Zixiao Kong
- China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Duoyi Zhao
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Wei Zhao
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Yingxin Yang
- General Hospital of Northern Theater Command, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Lianbo Gao
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Zhiyu Zhang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| |
Collapse
|
56
|
Nain A, Chakraborty S, Jain N, Choudhury S, Chattopadhyay S, Chatterjee K, Debnath S. 4D hydrogels: fabrication strategies, stimulation mechanisms, and biomedical applications. Biomater Sci 2024; 12:3249-3272. [PMID: 38742277 DOI: 10.1039/d3bm02044d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Shape-morphing hydrogels have emerged as a promising biomaterial due to their ability to mimic the anisotropic tissue composition by creating a gradient in local swelling behavior. In this case, shape deformations occur due to the non-uniform distribution of internal stresses, asymmetrical swelling, and shrinking of different parts of the same hydrogel. Herein, we discuss the four-dimensional (4D) fabrication techniques (extrusion-based printing, dynamic light processing, and solvent casting) employed to prepare shape-shifting hydrogels. The important distinction between mono- and dual-component hydrogel systems, the capabilities of 3D constructs to undergo uni- and bi-directional shape changes, and the advantages of composite hydrogels compared to their pristine counterparts are presented. Subsequently, various types of actuators such as moisture, light, temperature, pH, and magnetic field and their role in achieving the desired and pre-determined shapes are discussed. These 4D gels have shown remarkable potential as programmable scaffolds for tissue regeneration and drug-delivery systems. Finally, we present futuristic insights into integrating piezoelectric biopolymers and sensors to harvest mechanical energy from motions during shape transformations to develop self-powered biodevices.
Collapse
Affiliation(s)
- Amit Nain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Srishti Chakraborty
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Suravi Chattopadhyay
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
57
|
Chi X, Heng Z, Yan L, Chen Y, Cai Y, Zhou C, Zou H, Liang M. Hierarchical Composite with Self-Adaptive Anisotropic Deformation for Thermal Protection System. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31636-31647. [PMID: 38848140 DOI: 10.1021/acsami.4c06355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Rigid thermal protection materials such as ultra-high-temperature ceramics are desirable for applications in aerospace vehicles, but few materials can currently satisfy the emerging high-temperature sealing requirements for dynamic gaps created by the mismatch of the thermal expansion of different protection layers. Here, we design and fabricate a flexible biomimetic anisotropic deformation composite by multilayer cocuring onto fiber fabrics. It displays superior anisotropic deformation, whose longitudinal expansion ratio is 48 times greater than the transverse expansion ratio at specific temperatures. Furthermore, the ordered carbon structure created by transition-metal-catalyzed graphitization and the C/Si synergistic effect resulting from the combination of biomimetic fiber fabrics and SR enable the in situ formation of a high-temperature-resistant SiC crystalline phase within the char layer, ultimately resulting in exceptional thermal protection properties. By constructing hollow structures in situ, the back temperature of the composite, which is only 4.33 mm thick, is stabilized at 140 °C under the condition of continuous butane flame ablation (1300 °C) for 420 s. Multilayer structure and flexible features can facilitate large-scale preparation and arbitrary cutting and bending, adapted to different thermal protection areas.
Collapse
Affiliation(s)
- Xiaofeng Chi
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zhengguang Heng
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - LiWei Yan
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yang Chen
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yuanbo Cai
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Chuxiang Zhou
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Huawei Zou
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Mei Liang
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
58
|
Tunstall-García H, Lawson T, Benincasa KA, Prentice AW, Saravanamuttu K, Evans RC. Interplay of Luminophores and Photoinitiators during Synthesis of Bulk and Patterned Luminescent Photopolymer Blends. ACS APPLIED POLYMER MATERIALS 2024; 6:6314-6322. [PMID: 38903400 PMCID: PMC11186006 DOI: 10.1021/acsapm.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/22/2024]
Abstract
Four-dimensional printing with embedded photoluminescence is emerging as an exciting area in additive manufacturing. Slim polymer films patterned with three-dimensional lattices of multimode cylindrical waveguides (waveguide-encoded lattices, WELs) with enhanced fields of view can be fabricated by localizing light as self-trapped beams within a photopolymerizable formulation. Luminescent WELs have potential applications as solar cell coatings and smart planar optical components. However, as luminophore-photoinitiator interactions are expected to change the photopolymerization kinetics, the design of robust luminescent photopolymer sols is nontrivial. Here, we use model photopolymer systems based on methacrylate-siloxane and epoxide homopolymers and their blends to investigate the influence of the luminophore Lumogen Violet (LV) on the photolysis kinetics of the Omnirad 784 photoinitiator through UV-vis absorbance spectroscopy. Initial rate analysis with different bulk polymers reveals differences in the pseudo-first-order rate constants in the absence and presence of LV, with a notable increase (∼40%) in the photolysis rate for the 1:1 blend. Fluorescence quenching studies, coupled with density functional theory calculations, establish that these differences arise due to electron transfer from the photoexcited LV to the ground-state photoinitiator molecules. We also demonstrate an in situ UV-vis absorbance technique that enables real-time monitoring of both waveguide formation and photoinitiator consumption during the fabrication of WELs. The in situ photolysis kinetics confirm that LV-photoinitiator interactions also influence the photopolymerization process during WEL formation. Our findings show that luminophores play a noninnocent role in photopolymerization and highlight the necessity for both careful consideration of the photopolymer formulation and a real-time monitoring approach to enable the fabrication of high-quality micropatterned luminescent polymeric films.
Collapse
Affiliation(s)
- Helen Tunstall-García
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Takashi Lawson
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Kathryn A. Benincasa
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton L8S 4M1, Canada
| | - Andrew W. Prentice
- School
of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | | | - Rachel C. Evans
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| |
Collapse
|
59
|
Choudhury S, Joshi A, Baghel VS, Ananthasuresh GK, Asthana S, Homer-Vanniasinkam S, Chatterjee K. Design-encoded dual shape-morphing and shape-memory in 4D printed polymer parts toward cellularized vascular grafts. J Mater Chem B 2024; 12:5678-5689. [PMID: 38747702 DOI: 10.1039/d4tb00437j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Current additive manufacturing technologies wherein as-printed simple two-dimensional (2D) structures morph into complex tissue mimetic three-dimensional (3D) shapes are limited to multi-material hydrogel systems, which necessitates multiple fabrication steps and specific materials. This work utilizes a single shape memory thermoplastic polymer (SMP), PLMC (polylactide-co-trimethylene carbonate), to achieve programmable shape deformation through anisotropic design and infill angles encoded during 3D printing. The shape changes were first computationally predicted through finite element analysis (FEA) simulations and then experimentally validated through quantitative correlation. Rectangular 2D sheets could self-roll into complete hollow tubes of specific diameters (ranging from ≈6 mm to ≈10 mm) and lengths (as long as 40 mm), as quantitatively predicted from FEA simulations within one minute at relatively lower temperatures (≈80 °C). Furthermore, shape memory properties were demonstrated post-shape change to exhibit dual shape morphing at temperatures close to physiological levels. The tubes (retained as the permanent shape) were deformed into flat sheets (temporary shape), seeded with endothelial cells (at T < Tg), and thereafter triggered at ≈37 °C back into tubes (permanent shape), utilizing the shape memory properties to yield bioresorbable tubes with cellularized lumens for potential use as vascular grafts with improved long-term patency. Additionally, out-of-plane bending and twisting deformation were demonstrated in complex structures by careful control of infill angles that can unprecedently expand the scope of cellularized biomimetic 3D shapes. This work demonstrates the potential of the combination of shape morphing and SMP behaviors at physiological temperatures to yield next-generation smart implants with precise control over dimensions for tissue repair and regeneration.
Collapse
Affiliation(s)
- Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India.
| | - Akshat Joshi
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India.
| | - Vageesh Singh Baghel
- Department of Mechanical Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - G K Ananthasuresh
- Department of Mechanical Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Sonal Asthana
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
- Department of Hepatobiliary and Multi-Organ Transplantation Surgery, Aster CMI Hospital, Bangalore, 560024, India
| | - Shervanthi Homer-Vanniasinkam
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
- Department of Mechanical Engineering and Division of Surgery, University College London, London, UK
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India.
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| |
Collapse
|
60
|
Liu Z, Wang Y, He H, Zhang C, Pan N, Wang L. Interfacial Dehydration Strategy for Chitosan Film Shape Morphing and Its Application. NANO LETTERS 2024; 24:6665-6672. [PMID: 38767991 DOI: 10.1021/acs.nanolett.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Shape morphing of biopolymer materials, such as chitosan (CS) films, has great potential for applications in many fields. Traditionally, their responsive behavior has been induced by the differential water swelling through the preparation of multicomponent composites or cross-linking as deformation is not controllable in the absence of these processes. Here, we report an interfacial dehydration strategy to trigger the shape morphing of the monocomponent CS film without cross-linking. The release of water molecules is achieved by spraying the surface with a NaOH solution or organic solvents, which results in the interfacial shrinkage and deformation of the entire film. On the basis of this strategy, a range of CS actuators were developed, such as soft grippers, joint actuators, and a light switch. Combined with the geometry effect, edited deformation was also achieved from the planar CS film. This shape-morphing strategy is expected to enable the application of more biopolymers in a wide range of fields.
Collapse
Affiliation(s)
- Zhongqi Liu
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yuanyu Wang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Hailong He
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Chenyuan Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Na Pan
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lei Wang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
61
|
Biswas A, Apsite I, Rosenfeldt S, Bite I, Vitola V, Ionov L. Modular photoorigami-based 4D manufacturing of vascular junction elements. J Mater Chem B 2024; 12:5405-5417. [PMID: 38716838 DOI: 10.1039/d4tb00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Four-dimensional (4D) printing, combining three-dimensional (3D) printing with time-dependent stimuli-responsive shape transformation, eliminates the limitations of the conventional 3D printing technique for the fabrication of complex hollow constructs. However, existing 4D printing techniques have limitations in terms of the shapes that can be created using a single shape-changing object. In this paper, we report an advanced 4D fabrication approach for vascular junctions, particularly T-junctions, using the 4D printing technique based on coordinated sequential folding of two or more specially designed shape-changing elements. In our approach, the T-junction is split into two components, and each component is 4D printed using different synthesized shape memory polyurethanes and their nanohybrids, which have been synthesized with varying hard segment contents and by incorporating different weight percentages of photo-responsive copper sulfide-polyvinyl pyrrolidone nanoparticles. The formation of a T-junction is demonstrated by assigning different shape memory behaviors to each component of the T-junction. A cell culture study with human umbilical vein endothelial cells reveals that the cells proliferate over time, and almost 90% of cells remain viable on day 7. Finally, the formation of the T-junction in the presence of near-infrared light has been demonstrated after seeding the endothelial cells on the programmed flat surface of the two components and fluorescence microscopy at day 3 and 7 reveals that the cells adhered well and continue to proliferate over time. Hence, the proposed alternative approach has huge potential and can be used to fabricate vascular junctions in the future.
Collapse
Affiliation(s)
- Arpan Biswas
- Faculty of Engineering, University of Bayreuth, Bayreuth 95447, Germany
| | - Indra Apsite
- Faculty of Engineering, University of Bayreuth, Bayreuth 95447, Germany
| | - Sabine Rosenfeldt
- Faculty of Biology, Chemistry and Earth Sciences and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95447, Germany
| | - Ivita Bite
- Institute of Solid State Physics, University of Latvia, Kengaraga St. 8, Riga, LV-1063, Latvia
| | - Virginija Vitola
- Institute of Solid State Physics, University of Latvia, Kengaraga St. 8, Riga, LV-1063, Latvia
| | - Leonid Ionov
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95447, Germany.
| |
Collapse
|
62
|
Sivaraman D, Nagel Y, Siqueira G, Chansoria P, Avaro J, Neels A, Nyström G, Sun Z, Wang J, Pan Z, Iglesias-Mejuto A, Ardao I, García-González CA, Li M, Wu T, Lattuada M, Malfait WJ, Zhao S. Additive Manufacturing of Nanocellulose Aerogels with Structure-Oriented Thermal, Mechanical, and Biological Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307921. [PMID: 38477181 DOI: 10.1002/advs.202307921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Additive manufacturing (AM) is widely recognized as a versatile tool for achieving complex geometries and customized functionalities in designed materials. However, the challenge lies in selecting an appropriate AM method that simultaneously realizes desired microstructures and macroscopic geometrical designs in a single sample. This study presents a direct ink writing method for 3D printing intricate, high-fidelity macroscopic cellulose aerogel forms. The resulting aerogels exhibit tunable anisotropic mechanical and thermal characteristics by incorporating fibers of different length scales into the hydrogel inks. The alignment of nanofibers significantly enhances mechanical strength and thermal resistance, leading to higher thermal conductivities in the longitudinal direction (65 mW m-1 K-1) compared to the transverse direction (24 mW m-1 K-1). Moreover, the rehydration of printed cellulose aerogels for biomedical applications preserves their high surface area (≈300 m2 g-1) while significantly improving mechanical properties in the transverse direction. These printed cellulose aerogels demonstrate excellent cellular viability (>90% for NIH/3T3 fibroblasts) and exhibit robust antibacterial activity through in situ-grown silver nanoparticles.
Collapse
Affiliation(s)
- Deeptanshu Sivaraman
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, 8600, Switzerland
- Department of Chemistry, University of Fribourg, Fribourg, 1700, Switzerland
| | - Yannick Nagel
- Cellulose and Wood Materials Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, 8600, Switzerland
| | - Gilberto Siqueira
- Cellulose and Wood Materials Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, 8600, Switzerland
| | - Parth Chansoria
- Department of Health Science and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Jonathan Avaro
- Center for X-ray Analytics, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, 8600, Switzerland
| | - Antonia Neels
- Department of Chemistry, University of Fribourg, Fribourg, 1700, Switzerland
- Center for X-ray Analytics, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, 8600, Switzerland
| | - Gustav Nyström
- Cellulose and Wood Materials Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, 8600, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Zhaoxia Sun
- Institute of Environmental Engineering, ETH Zürich, Zürich, 8092, Switzerland
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
- Laboratory for Advanced Analytical Technologies, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, 8600, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich, 8092, Switzerland
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
- Laboratory for Advanced Analytical Technologies, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, 8600, Switzerland
| | - Zhengyuan Pan
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ana Iglesias-Mejuto
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, E-15782, Spain
| | - Inés Ardao
- BioFarma Research group, Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Innopharma Drug Screening and Pharmacogenomics Platform, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), University of Santiago de Compostela, Santiago de Compostela, E-15782, Spain
| | - Carlos A García-González
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, E-15782, Spain
| | - Mengmeng Li
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, 8600, Switzerland
| | - Tingting Wu
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, 8600, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Fribourg, 1700, Switzerland
| | - Wim J Malfait
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, 8600, Switzerland
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, 8600, Switzerland
| |
Collapse
|
63
|
Xu GC, Nie Y, Li HN, Li WL, Lin WT, Xue YR, Li K, Fang Y, Liang HQ, Yang HC, Zhan H, Zhang C, Lü C, Xu ZK. Supergravity-Steered Generic Manufacturing of Nanosheets-Embedded Nanocomposite Hydrogel with Highly Oriented, Heterogeneous Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400075. [PMID: 38597782 DOI: 10.1002/adma.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Designing nanocomposite hydrogels with oriented nanosheets has emerged as a promising toolkit to achieve preferential performances that go beyond their disordered counterparts. Although current fabrication strategies via electric/magnetic force fields have made remarkable achievements, they necessitate special properties of nanosheets and suffer from an inferior orientation degree of nanosheets. Herein, a facile and universal approach is discovered to elaborate MXene-based nanocomposite hydrogels with highly oriented, heterogeneous architecture by virtue of supergravity to replace conventional force fields. The key to such architecture is to leverage bidirectional, force-tunable attributes of supergravity containing coupled orthogonal shear and centrifugal force field for steering high-efficient movement, pre-orientation, and stacking of MXene nanosheets in the bottom. Such a synergetic effect allows for yielding heterogeneous nanocomposite hydrogels with a high-orientation MXene-rich layer (orientation degree, f = 0.83) and a polymer-rich layer. The authors demonstrate that MXene-based nanocomposite hydrogels leverage their high-orientation, heterogeneous architecture to deliver an extraordinary electromagnetic interference shielding effectiveness of 55.2 dB at 12.4 GHz yet using a super-low MXene of 0.3 wt%, surpassing most hydrogels-based electromagnetic shielding materials. This versatile supergravity-steered strategy can be further extended to arbitrary nanosheets including MoS2, GO, and C3N4, offering a paradigm in the development of oriented nanocomposites.
Collapse
Affiliation(s)
- Guang-Chang Xu
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province and MOE Engineering Center of Separation Membranes and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Yihan Nie
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Hao-Nan Li
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province and MOE Engineering Center of Separation Membranes and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Wan-Long Li
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province and MOE Engineering Center of Separation Membranes and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Wan-Ting Lin
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province and MOE Engineering Center of Separation Membranes and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Ren Xue
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province and MOE Engineering Center of Separation Membranes and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Kai Li
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province and MOE Engineering Center of Separation Membranes and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Yu Fang
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province and MOE Engineering Center of Separation Membranes and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Hong-Qing Liang
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province and MOE Engineering Center of Separation Membranes and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Hao-Cheng Yang
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province and MOE Engineering Center of Separation Membranes and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Haifei Zhan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Chao Zhang
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province and MOE Engineering Center of Separation Membranes and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Chaofeng Lü
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
- Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, 315211, China
| | - Zhi-Kang Xu
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province and MOE Engineering Center of Separation Membranes and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
64
|
Mogas-Soldevila L, Duro-Royo J, Lizardo D, Hollyer GG, Settens CM, Cox JM, Overvelde JTB, DiMasi E, Bertoldi K, Weaver JC, Oxman N. Driving macro-scale transformations in three-dimensional-printed biopolymers through controlled induction of molecular anisotropy at the nanoscale. Interface Focus 2024; 14:20230077. [PMID: 39081628 PMCID: PMC11285838 DOI: 10.1098/rsfs.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/05/2024] [Accepted: 05/07/2024] [Indexed: 08/02/2024] Open
Abstract
Motivated by the need to harness the properties of renewable and biodegradable polymers for the design and manufacturing of multi-scale structures with complex geometries, we have employed our additive manufacturing platform that leverages molecular self-assembly for the production of metre-scale structures characterized by complex geometries and heterogeneous material composition. As a precursor material, we used chitosan, a chemically modified form of chitin, an abundant and sustainable structural polysaccharide. We demonstrate the ability to control concentration-dependent crystallization as well as the induction of the preferred orientation of the polymer chains through the combination of extrusion-based robotic fabrication and directional toolpathing. Anisotropy is demonstrated and assessed through high-resolution micro-X-ray diffraction in conjunction with finite element simulations. Using this approach, we can leverage controlled and user-defined small-scale propagation of residual stresses to induce large-scale folding of the resulting structures.
Collapse
Affiliation(s)
- Laia Mogas-Soldevila
- DumoLab Research, University of Pennsylvania, Philadelphia, PA19104, USA
- Mediated Matter Group, Massachusetts Institute of Technology, Cambridge, MA02142, USA
| | - Jorge Duro-Royo
- Mediated Matter Group, Massachusetts Institute of Technology, Cambridge, MA02142, USA
| | - Daniel Lizardo
- Mediated Matter Group, Massachusetts Institute of Technology, Cambridge, MA02142, USA
| | - George G. Hollyer
- DumoLab Research, University of Pennsylvania, Philadelphia, PA19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA19104, USA
| | - Charles M. Settens
- MIT.nano, Massachusetts Institute of Technology, Cambridge, MA02139, USA
| | - Jordan M. Cox
- MIT.nano, Massachusetts Institute of Technology, Cambridge, MA02139, USA
| | | | - Elaine DiMasi
- Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
| | - Katia Bertoldi
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138, USA
| | - James C. Weaver
- MIT.nano, Massachusetts Institute of Technology, Cambridge, MA02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02215, USA
| | - Neri Oxman
- Mediated Matter Group, Massachusetts Institute of Technology, Cambridge, MA02142, USA
- Oxman, New York, NY10019, USA
| |
Collapse
|
65
|
Varadharajan S, Vasanthan KS, Agarwal P. Application of Reversible Four-Dimensional Printing of Shape Memory Alloys and Shape Memory Polymers in Structural Engineering: A State-of-the-Art Review. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:919-953. [PMID: 39359610 PMCID: PMC11442371 DOI: 10.1089/3dp.2022.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The rapid development and advancements in field of shape memory alloys (SMAA) has tremendously increased the progress in four-dimensional (4D) printing. The conventional 4D printing will require skilled manpower but utilization of reversibility aspect achieved using self adjusting external stimuli will eliminate the necessity of sophisticated devices and human intervention in 4D printing. The components created using reversible 4D printing can be reused after each recovery cycle that suits the current industry requirements. This review is divided into three sections: The first section starts with a detailed illustration of different mechanisms associated with SMAA and shape memory polymers SMPP along with an illustration of realistic 3D-printed SMAA and SMPP. The second section of this paper deals with the different methods of manufacture with the advantages and disadvantages of different types of SMAA. The third section deals with the mechanisms associated with SMPP, namely (1) Thermo-responsive mechanism, (2) Chemo-responsive mechanism, and (3) Photo-responsive mechanism along with a detailed insight into the aspect of repeatability and reversibility. The fourth section presents an exhaustive review of the application of SMAA and SMPP in civil engineering. The last section of this work throws light on the challenges faced in 4D reversible printing of SMAA and SMPP along with the potential solutions and presents directions for future research.
Collapse
Affiliation(s)
- S. Varadharajan
- Department of Civil Engineering, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Prachi Agarwal
- Manipal Center of Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
66
|
Liu J, Huang YS, Liu Y, Zhang D, Koynov K, Butt HJ, Wu S. Reconfiguring hydrogel assemblies using a photocontrolled metallopolymer adhesive for multiple customized functions. Nat Chem 2024; 16:1024-1033. [PMID: 38459235 PMCID: PMC11164683 DOI: 10.1038/s41557-024-01476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/14/2024] [Indexed: 03/10/2024]
Abstract
Stimuli-responsive hydrogels with programmable shape changes are promising materials for soft robots, four-dimensional printing, biomedical devices and artificial intelligence systems. However, these applications require the fabrication of hydrogels with complex, heterogeneous and reconfigurable structures and customizable functions. Here we report the fabrication of hydrogel assemblies with these features by reversibly gluing hydrogel units using a photocontrolled metallopolymer adhesive. The metallopolymer adhesive firmly attached individual hydrogel units via metal-ligand coordination and polymer chain entanglement. Hydrogel assemblies containing temperature- and pH-responsive hydrogel units showed controllable shape changes and motions in response to these external stimuli. To reconfigure their structures, the hydrogel assemblies were disassembled by irradiating the metallopolymer adhesive with light; the disassembled hydrogel units were then reassembled using the metallopolymer adhesive with heating. The shape change and structure reconfiguration abilities allow us to reprogramme the functions of hydrogel assemblies. The development of reconfigurable hydrogel assemblies using reversible adhesives provides a strategy for designing intelligent materials and soft robots with user-defined functions.
Collapse
Affiliation(s)
- Jiahui Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Yun-Shuai Huang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yazhi Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Dachuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Si Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
67
|
An S, Cao Y, Jiang H. A mechanically robust and facile shape morphing using tensile-induced buckling. SCIENCE ADVANCES 2024; 10:eado8431. [PMID: 38781341 PMCID: PMC11114219 DOI: 10.1126/sciadv.ado8431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Inspired by the adaptive mechanisms observed in biological organisms, shape-morphing soft structures have emerged as promising platforms for many applications. In this study, we present a shape-morphing strategy to overcome existing limitations of the intricate fabrication process and the lack of mechanical robustness against mechanical perturbations. Our method uses tensile-induced buckling, achieved by attaching restraining strips to a stretchable substrate. When the substrate is stretched, the stiffness mismatch between the restraining strips and the substrate, and the Poisson's effect on the substrate cause the restraining strips to buckle, thereby transforming initially flat shapes into intricate three-dimensional (3D) configurations. Guided by an inverse design method, we demonstrate the capability to achieve complicated and diverse 3D shapes. Leveraging shape morphing, we further develop soft grippers exhibiting outstanding universality, high grasping efficiencies, and exceptional durability. Our proposed shape-morphing strategy is scalable and material-independent, holding notable potential for applications in soft robotics, haptics, and biomedical devices.
Collapse
Affiliation(s)
- Siqi An
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yajun Cao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
68
|
Li H, Zhang B, Ye H, Jian B, He X, Cheng J, Sun Z, Wang R, Chen Z, Lin J, Xiao R, Liu Q, Ge Q. Reconfigurable 4D printing via mechanically robust covalent adaptable network shape memory polymer. SCIENCE ADVANCES 2024; 10:eadl4387. [PMID: 38748786 PMCID: PMC11095468 DOI: 10.1126/sciadv.adl4387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
4D printing enables 3D printed structures to change shape over "time" in response to environmental stimulus. Because of relatively high modulus, shape memory polymers (SMPs) have been widely used for 4D printing. However, most SMPs for 4D printing are thermosets, which only have one permanent shape. Despite the efforts that implement covalent adaptable networks (CANs) into SMPs to achieve shape reconfigurability, weak thermomechanical properties of the current CAN-SMPs exclude them from practical applications. Here, we report reconfigurable 4D printing via mechanically robust CAN-SMPs (MRC-SMPs), which have high deformability at both programming and reconfiguration temperatures (>1400%), high Tg (75°C), and high room temperature modulus (1.06 GPa). The high printability for DLP high-resolution 3D printing allows MRC-SMPs to create highly complex SMP 3D structures that can be reconfigured multiple times under large deformation. The demonstrations show that the reconfigurable 4D printing allows one printed SMP structure to fulfill multiple tasks.
Collapse
Affiliation(s)
- Honggeng Li
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Advanced Engineering, Great Bay University, Dongguan, China
| | - Biao Zhang
- Xi’an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, China
| | - Haitao Ye
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Bingcong Jian
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xiangnan He
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianxiang Cheng
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zechu Sun
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Rong Wang
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhe Chen
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ji Lin
- Center for Mechanics Plus under Extreme Environments, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, China
- State Key Laboratory of Fluid Power and Mechatronic System, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Rui Xiao
- State Key Laboratory of Fluid Power and Mechatronic System, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Qingjiang Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qi Ge
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
69
|
Barrera JL, Cook C, Lee E, Swartz K, Tortorelli D. Liquid Crystal Orientation and Shape Optimization for the Active Response of Liquid Crystal Elastomers. Polymers (Basel) 2024; 16:1425. [PMID: 38794618 PMCID: PMC11125878 DOI: 10.3390/polym16101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Liquid crystal elastomers (LCEs) are responsive materials that can undergo large reversible deformations upon exposure to external stimuli, such as electrical and thermal fields. Controlling the alignment of their liquid crystals mesogens to achieve desired shape changes unlocks a new design paradigm that is unavailable when using traditional materials. While experimental measurements can provide valuable insights into their behavior, computational analysis is essential to exploit their full potential. Accurate simulation is not, however, the end goal; rather, it is the means to achieve their optimal design. Such design optimization problems are best solved with algorithms that require gradients, i.e., sensitivities, of the cost and constraint functions with respect to the design parameters, to efficiently traverse the design space. In this work, a nonlinear LCE model and adjoint sensitivity analysis are implemented in a scalable and flexible finite element-based open source framework and integrated into a gradient-based design optimization tool. To display the versatility of the computational framework, LCE design problems that optimize both the material, i.e., liquid crystal orientation, and structural shape to reach a target actuated shapes or maximize energy absorption are solved. Multiple parameterizations, customized to address fabrication limitations, are investigated in both 2D and 3D. The case studies are followed by a discussion on the simulation and design optimization hurdles, as well as potential avenues for improving the robustness of similar computational frameworks for applications of interest.
Collapse
Affiliation(s)
- Jorge Luis Barrera
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA; (C.C.); (E.L.); (K.S.); (D.T.)
| | | | | | | | | |
Collapse
|
70
|
Farsheed AC, Zevallos-Delgado C, Yu LT, Saeidifard S, Swain JWR, Makhoul JT, Thomas AJ, Cole CC, Garcia Huitron E, Grande-Allen KJ, Singh M, Larin KV, Hartgerink JD. Tunable Macroscopic Alignment of Self-Assembling Peptide Nanofibers. ACS NANO 2024; 18:12477-12488. [PMID: 38699877 PMCID: PMC11285723 DOI: 10.1021/acsnano.4c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Progress in the design and synthesis of nanostructured self-assembling systems has facilitated the realization of numerous nanoscale geometries, including fibers, ribbons, and sheets. A key challenge has been achieving control across multiple length scales and creating macroscopic structures with nanoscale organization. Here, we present a facile extrusion-based fabrication method to produce anisotropic, nanofibrous hydrogels using self-assembling peptides. The application of shear force coinciding with ion-triggered gelation is used to kinetically trap supramolecular nanofibers into aligned, hierarchical macrostructures. Further, we demonstrate the ability to tune the nanostructure of macroscopic hydrogels through modulating phosphate buffer concentration during peptide self-assembly. In addition, increases in the nanostructural anisotropy of fabricated hydrogels are found to enhance their strength and stiffness under hydrated conditions. To demonstrate their utility as an extracellular matrix-mimetic biomaterial, aligned nanofibrous hydrogels are used to guide directional spreading of multiple cell types, but strikingly, increased matrix alignment is not always correlated with increased cellular alignment. Nanoscale observations reveal differences in cell-matrix interactions between variably aligned scaffolds and implicate the need for mechanical coupling for cells to understand nanofibrous alignment cues. In total, innovations in the supramolecular engineering of self-assembling peptides allow us to decouple nanostructure from macrostructure and generate a gradient of anisotropic nanofibrous hydrogels. We anticipate that control of architecture at multiple length scales will be critical for a variety of applications, including the bottom-up tissue engineering explored here.
Collapse
Affiliation(s)
- Adam C Farsheed
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Le Tracy Yu
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Sajede Saeidifard
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Joseph W R Swain
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Jonathan T Makhoul
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Adam J Thomas
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Carson C Cole
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Eric Garcia Huitron
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
71
|
Dong M, Liu W, Dai CF, Jiao D, Zhu QL, Hong W, Yin J, Zheng Q, Wu ZL. Photo-steered rapid and multimodal locomotion of 3D-printed tough hydrogel robots. MATERIALS HORIZONS 2024; 11:2143-2152. [PMID: 38376773 DOI: 10.1039/d3mh02247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Hydrogels are an ideal material to develop soft robots. However, it remains a grand challenge to develop miniaturized hydrogel robots with mechanical robustness, rapid actuation, and multi-gait motions. Reported here is a facile strategy to fabricate hydrogel-based soft robots by three-dimensional (3D) printing of responsive and nonresponsive tough gels for programmed morphing and locomotion upon stimulations. Highly viscoelastic poly(acrylic acid-co-acrylamide) and poly(acrylic acid-co-N-isopropyl acrylamide) aqueous solutions, as well as their mixtures, are printed with multiple nozzles into 3D constructs followed by incubation in a solution of zirconium ions to form robust carboxyl-Zr4+ coordination complexes, to produce tough metallo-supramolecular hydrogel fibers. Gold nanorods are incorporated into ink to afford printed gels with response to light. Owing to the mechanical excellence and small diameter of gel fibers, the printed hydrogel robots exhibit high robustness, fast response, and agile motions when remotely steered by dynamic light. The design of printed constructs and steering with spatiotemporal light allow for multimodal motions with programmable trajectories of the gel robots. The hydrogel robots can walk, turn, flip, and transport cargos upon light stimulations. Such printed hydrogels with good mechanical performances, fast response, and agile locomotion may open opportunities for soft robots in biomedical and engineering fields.
Collapse
Affiliation(s)
- Min Dong
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Weixuan Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Fei Dai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Wei Hong
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering Zhejiang University, Hangzhou 310058, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
72
|
Zhou K, Sun R, Wojciechowski JP, Wang R, Yeow J, Zuo Y, Song X, Wang C, Shao Y, Stevens MM. 4D Multimaterial Printing of Soft Actuators with Spatial and Temporal Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312135. [PMID: 38290081 DOI: 10.1002/adma.202312135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Soft actuators (SAs) are devices which can interact with delicate objects in a manner not achievable with traditional robotics. While it is possible to design a SA whose actuation is triggered via an external stimulus, the use of a single stimulus creates challenges in the spatial and temporal control of the actuation. Herein, a 4D printed multimaterial soft actuator design (MMSA) whose actuation is only initiated by a combination of triggers (i.e., pH and temperature) is presented. Using 3D printing, a multilayered soft actuator with a hydrophilic pH-sensitive layer, and a hydrophobic magnetic and temperature-responsive shape-memory polymer layer, is designed. The hydrogel responds to environmental pH conditions by swelling or shrinking, while the shape-memory polymer can resist the shape deformation of the hydrogel until triggered by temperature or light. The combination of these stimuli-responsive layers allows for a high level of spatiotemporal control of the actuation. The utility of the 4D MMSA is demonstrated via a series of cargo capture and release experiments, validating its ability to demonstrate active spatiotemporal control. The MMSA concept provides a promising research direction to develop multifunctional soft devices with potential applications in biomedical engineering and environmental engineering.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Rujie Sun
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Richard Wang
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan Yeow
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yuyang Zuo
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Xin Song
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Chunliang Wang
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yue Shao
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
73
|
Donato S, Nocentini S, Martella D, Kolagatla S, Wiersma DS, Parmeggiani C, Delaney C, Florea L. Liquid Crystalline Network Microstructures for Stimuli Responsive Labels with Multi-Level Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306802. [PMID: 38063817 DOI: 10.1002/smll.202306802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Indexed: 05/18/2024]
Abstract
Two-photon direct laser writing enables the fabrication of shape-changing microstructures that can be exploited in stimuli responsive micro-robotics and photonics. The use of Liquid Crystalline Networks (LCN) allows to realize 3D micrometric objects that can contract along a specific direction in response to stimuli, such as temperature or light. In this paper, the fabrication of free-standing LCN microstructures is demonstrated as graphical units of a smart tag for simple physical and optical encryption. Using an array of identical pixels, information can be hidden to the observer and revealed only upon application of a specific stimulus. The reading mechanism is based on the shape-change of each pixel under stimuli and their color that combine together in a two-level encryption label. Once the stimulus is removed, the pixels recover their original shape and the message remains completely hidden. Therefore, an opto-mechanical equivalent of an "invisible ink" is realized. This new concept paves the way for introducing enhanced functionalities in smart micro-systems within a single lithography step, spanning from storage devices with physical encryption to complex motion actuators.
Collapse
Affiliation(s)
- Simone Donato
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, Sesto Fiorentino, 50019, Italy
| | - Sara Nocentini
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Daniele Martella
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Srikanth Kolagatla
- School of Chemistry & AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, Dublin, 2, Ireland
| | - Diederik S Wiersma
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Colm Delaney
- School of Chemistry & AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, Dublin, 2, Ireland
| | - Larisa Florea
- School of Chemistry & AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, Dublin, 2, Ireland
| |
Collapse
|
74
|
Zheng Z, Tang W, Li Y, Ai Y, Tu Z, Yang J, Fan C. Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions. Heart Fail Rev 2024; 29:599-613. [PMID: 37943420 DOI: 10.1007/s10741-023-10367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Cardiovascular diseases (CVDs) represent a paramount global mortality concern, and their prevalence is on a relentless ascent. Despite the effectiveness of contemporary medical interventions in mitigating CVD-related fatality rates and complications, their efficacy remains curtailed by an array of limitations. These include the suboptimal efficiency of direct cell injection and an inherent disequilibrium between the demand and availability of heart transplantations. Consequently, the imperative to formulate innovative strategies for cardiac regeneration therapy becomes unmistakable. Within this context, 3D bioprinting technology emerges as a vanguard contender, occupying a pivotal niche in the realm of tissue engineering and regenerative medicine. This state-of-the-art methodology holds the potential to fabricate intricate heart tissues endowed with multifaceted structures and functionalities, thereby engendering substantial promise. By harnessing the prowess of 3D bioprinting, it becomes plausible to synthesize functional cardiac architectures seamlessly enmeshed with the host tissue, affording a viable avenue for the restitution of infarcted domains and, by extension, mitigating the onerous yoke of CVDs. In this review, we encapsulate the myriad applications of 3D bioprinting technology in the domain of heart tissue regeneration. Furthermore, we usher in the latest advancements in printing methodologies and bioinks, culminating in an exploration of the extant challenges and the vista of possibilities inherent to a diverse array of approaches.
Collapse
Affiliation(s)
- Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yichen Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yinze Ai
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Zhi Tu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
75
|
Theodosaki AM, Tzemi M, Galanis N, Bakopoulou A, Kotsiomiti E, Aggelidou E, Kritis A. Bone Regeneration with Mesenchymal Stem Cells in Scaffolds: Systematic Review of Human Clinical Trials. Stem Cell Rev Rep 2024; 20:938-966. [PMID: 38407793 PMCID: PMC11087324 DOI: 10.1007/s12015-024-10696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
The aim of the study is to determine the effectiveness of stem cells in scaffolds in the treatment of bone deficits, in regard of bone regeneration, safety, rehabilitation and quality of life in humans. The systematic review was conducted in accordance with PRISMA 2020. A systematic search was conducted in three search engines and two registries lastly in 29-9-2022.for studies of the last 15 years. The risk of bias was assessed with RoB-2, ROBINS- I and NIH Quality of Before-After (Pre-Post) Studies with no Control group. The certainty of the results was assessed with the GRADE assessment tool. Due to heterogeneity, the results were reported in tables, graphs and narratively. The study protocol was published in PROSPERO with registration number CRD42022359049. Of the 10,091 studies retrieved, 14 were meeting the inclusion criteria, and were qualitatively analyzed. 138 patients were treated with mesenchymal stem cells in scaffolds, showing bone healing in all cases, and even with better results than the standard care. The adverse events were mild in most cases and in accordance with the surgery received. When assessed, there was a rehabilitation of the deficit and a gain in quality of life was detected. Although the heterogeneity between the studies and the small number of patients, the administration of mesenchymal stem cells in scaffolds seems safe and effective in the regeneration of bone defects. These results pave the way for the conduction of more clinical trials, with greater number of participants, with more standardized procedures.
Collapse
Affiliation(s)
- Astero Maria Theodosaki
- Research Methodology in Medicine and Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece.
- Postgraduate program of Research Methodology in Medicine and Health Sciences, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- , Thessaloniki, Greece.
| | - Maria Tzemi
- Research Methodology in Medicine and Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Postgraduate program of Research Methodology in Medicine and Health Sciences, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikiforos Galanis
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- 1st Orthopaedic Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, Faculty of Dentistry, Aristotle University of Thessaloniki, University Campus, Dentistry Building, 54124, Thessaloniki, Greece
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| | - Eleni Kotsiomiti
- Department of Prosthodontics, Faculty of Dentistry, Aristotle University of Thessaloniki, University Campus, Dentistry Building, 54124, Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus, 54006, Thessaloniki, Greece
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus, 54006, Thessaloniki, Greece
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| |
Collapse
|
76
|
Sahin MA, Shehzad M, Destgeer G. Stopping Microfluidic Flow. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307956. [PMID: 38143295 DOI: 10.1002/smll.202307956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/13/2023] [Indexed: 12/26/2023]
Abstract
A cross-comparison of three stop-flow configurations-such as low-pressure (LSF), high-pressure open-circuit (OC-HSF), and high-pressure short-circuit (SC-HSF) stop-flow-is presented to rapidly bring a high velocity flow O(m s-1) within a microchannel to a standstill O(µm s-1). The performance of three stop-flow configurations is assessed by measuring residual flow velocities within microchannels having three orders of magnitude different flow resistances. The LSF configuration outperforms the OC-HSF and SC-HSF configurations within a high flow resistance microchannel and results in a residual velocity of <10 µm s-1. The OC-HSF configuration results in a residual velocity of <150 µm s-1 within a low flow resistance microchannel. The SC-HSF configuration results in a residual velocity of <200 µm s-1 across the three orders-of-magnitude different flow resistance microchannels, and <100 µm s-1 for the low flow resistance channel. It is hypothesized that residual velocity results from compliance in fluidic circuits, which is further investigated by varying the elasticity of microchannel walls and connecting tubing. A numerical model is developed to estimate the expanded volumes of the compliant microchannel and connecting tubings under a pressure gradient and to calculate the distance traveled by the sample fluid. A comparison of the numerically and experimentally obtained traveling distances confirms the hypothesis that the residual velocities are an outcome of the compliance in the fluidic circuit.
Collapse
Affiliation(s)
- Mehmet Akif Sahin
- Control and Manipulation of Microscale Living Objects, Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| | - Muhammad Shehzad
- Control and Manipulation of Microscale Living Objects, Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| | - Ghulam Destgeer
- Control and Manipulation of Microscale Living Objects, Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| |
Collapse
|
77
|
Yao DR, Kim I, Yin S, Gao W. Multimodal Soft Robotic Actuation and Locomotion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308829. [PMID: 38305065 DOI: 10.1002/adma.202308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Diverse and adaptable modes of complex motion observed at different scales in living creatures are challenging to reproduce in robotic systems. Achieving dexterous movement in conventional robots can be difficult due to the many limitations of applying rigid materials. Robots based on soft materials are inherently deformable, compliant, adaptable, and adjustable, making soft robotics conducive to creating machines with complicated actuation and motion gaits. This review examines the mechanisms and modalities of actuation deformation in materials that respond to various stimuli. Then, strategies based on composite materials are considered to build toward actuators that combine multiple actuation modes for sophisticated movements. Examples across literature illustrate the development of soft actuators as free-moving, entirely soft-bodied robots with multiple locomotion gaits via careful manipulation of external stimuli. The review further highlights how the application of soft functional materials into robots with rigid components further enhances their locomotive abilities. Finally, taking advantage of the shape-morphing properties of soft materials, reconfigurable soft robots have shown the capacity for adaptive gaits that enable transition across environments with different locomotive modes for optimal efficiency. Overall, soft materials enable varied multimodal motion in actuators and robots, positioning soft robotics to make real-world applications for intricate and challenging tasks.
Collapse
Affiliation(s)
- Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Inho Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
78
|
Soliman BG, Longoni A, Major GS, Lindberg GCJ, Choi YS, Zhang YS, Woodfield TBF, Lim KS. Harnessing Macromolecular Chemistry to Design Hydrogel Micro- and Macro-Environments. Macromol Biosci 2024; 24:e2300457. [PMID: 38035637 DOI: 10.1002/mabi.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Cell encapsulation within three-dimensional hydrogels is a promising approach to mimic tissues. However, true biomimicry of the intricate microenvironment, biophysical and biochemical gradients, and the macroscale hierarchical spatial organizations of native tissues is an unmet challenge within tissue engineering. This review provides an overview of the macromolecular chemistries that have been applied toward the design of cell-friendly hydrogels, as well as their application toward controlling biophysical and biochemical bulk and gradient properties of the microenvironment. Furthermore, biofabrication technologies provide the opportunity to simultaneously replicate macroscale features of native tissues. Biofabrication strategies are reviewed in detail with a particular focus on the compatibility of these strategies with the current macromolecular toolkit described for hydrogel design and the challenges associated with their clinical translation. This review identifies that the convergence of the ever-expanding macromolecular toolkit and technological advancements within the field of biofabrication, along with an improved biological understanding, represents a promising strategy toward the successful tissue regeneration.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Alessia Longoni
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | - Gretel S Major
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gabriella C J Lindberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02115, USA
| | - Tim B F Woodfield
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- School of Medical Sciences, University of Sydney, Sydney, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
79
|
Liu Q, Dong X, Qi H, Zhang H, Li T, Zhao Y, Li G, Zhai W. 3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles. Nat Commun 2024; 15:3237. [PMID: 38622154 PMCID: PMC11018840 DOI: 10.1038/s41467-024-47597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Fabrication of composite hydrogels can effectively enhance the mechanical and functional properties of conventional hydrogels. While ceramic reinforcement is common in many hard biological tissues, ceramic-reinforced hydrogels lack a similar natural prototype for bioinspiration. This raises a key question: How can we still attain bioinspired mechanical mechanisms in composite hydrogels without mimicking a specific composition and structure? Abstracting the hierarchical composite design principles of natural materials, this study proposes a hierarchical fabrication strategy for ceramic-reinforced organo-hydrogels, featuring (1) aligned ceramic platelets through direct-ink-write printing, (2) poly(vinyl alcohol) organo-hydrogel matrix reinforced by solution substitution, and (3) silane-treated platelet-matrix interfaces. Unit filaments are further printed into a selection of bioinspired macro-architectures, leading to high stiffness, strength, and toughness (fracture energy up to 31.1 kJ/m2), achieved through synergistic multi-scale energy dissipation. The materials also exhibit wide operation tolerance and electrical conductivity for flexible electronics in mechanically demanding conditions. Hence, this study demonstrates a model strategy that extends the fundamental design principles of natural materials to fabricate composite hydrogels with synergistic mechanical and functional enhancement.
Collapse
Affiliation(s)
- Quyang Liu
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Xinyu Dong
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Haobo Qi
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Haoqi Zhang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Tian Li
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Yijing Zhao
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Guanjin Li
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore.
| |
Collapse
|
80
|
Qu H, Gao C, Liu K, Fu H, Liu Z, Kouwer PHJ, Han Z, Ruan C. Gradient matters via filament diameter-adjustable 3D printing. Nat Commun 2024; 15:2930. [PMID: 38575640 PMCID: PMC10994943 DOI: 10.1038/s41467-024-47360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Gradient matters with hierarchical structures endow the natural world with excellent integrity and diversity. Currently, direct ink writing 3D printing is attracting tremendous interest, and has been used to explore the fabrication of 1D and 2D hierarchical structures by adjusting the diameter, spacing, and angle between filaments. However, it is difficult to generate complex 3D gradient matters owing to the inherent limitations of existing methods in terms of available gradient dimension, gradient resolution, and shape fidelity. Here, we report a filament diameter-adjustable 3D printing strategy that enables conventional extrusion 3D printers to produce 1D, 2D, and 3D gradient matters with tunable heterogeneous structures by continuously varying the volume of deposited ink on the printing trajectory. In detail, we develop diameter-programmable filaments by customizing the printing velocity and height. To achieve high shape fidelity, we specially add supporting layers at needed locations. Finally, we showcase multi-disciplinary applications of our strategy in creating horizontal, radial, and axial gradient structures, letter-embedded structures, metastructures, tissue-mimicking scaffolds, flexible electronics, and time-driven devices. By showing the potential of this strategy, we anticipate that it could be easily extended to a variety of filament-based additive manufacturing technologies and facilitate the development of functionally graded structures.
Collapse
Affiliation(s)
- Huawei Qu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Chongjian Gao
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kaizheng Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongya Fu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Zhiyuan Liu
- Research Center for Neural Engineering, Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Zhenyu Han
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China.
| | - Changshun Ruan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
81
|
Tan MWM, Wang H, Gao D, Huang P, Lee PS. Towards high performance and durable soft tactile actuators. Chem Soc Rev 2024; 53:3485-3535. [PMID: 38411597 DOI: 10.1039/d3cs01017a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Soft actuators are gaining significant attention due to their ability to provide realistic tactile sensations in various applications. However, their soft nature makes them vulnerable to damage from external factors, limiting actuation stability and device lifespan. The susceptibility to damage becomes higher with these actuators often in direct contact with their surroundings to generate tactile feedback. Upon onset of damage, the stability or repeatability of the device will be undermined. Eventually, when complete failure occurs, these actuators are disposed of, accumulating waste and driving the consumption of natural resources. This emphasizes the need to enhance the durability of soft tactile actuators for continued operation. This review presents the principles of tactile feedback of actuators, followed by a discussion of the mechanisms, advancements, and challenges faced by soft tactile actuators to realize high actuation performance, categorized by their driving stimuli. Diverse approaches to achieve durability are evaluated, including self-healing, damage resistance, self-cleaning, and temperature stability for soft actuators. In these sections, current challenges and potential material designs are identified, paving the way for developing durable soft tactile actuators.
Collapse
Affiliation(s)
- Matthew Wei Ming Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Hui Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Peiwen Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| |
Collapse
|
82
|
Liang Z, Jin B, Zhao H, He Z, Jiang Z, Jiang S. Rotini-like MXene@LCE Actuator with Diverse and Programmable Actuation Based on Dual-mode Synergy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305371. [PMID: 38018306 DOI: 10.1002/smll.202305371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/22/2023] [Indexed: 11/30/2023]
Abstract
Liquid crystalline elastomer (LCE) exhibits muscle-like actuation upon order-disturbed stimulus, offering ample room for designing soft robotic systems. Multimodal LCE is demonstrated to unleash the potential to perform multitasks. However, each actuation mode is typically isolated. In contrast, coordination between different actuation modes based on an MXene-doped LCE is realized, whose actuation can be triggered either by directly heating/cooling or using near-infrared light due to the photo-thermal effect of MXene. As such, the two activation modes (heat and light) not only can work individually to offer stable actuation under different conditions but also can collaborate synergistically to generate more intelligent motions, such as achieving the brake and turn of an autonomous rolling. The principle therefore can diversify the design principles for multifunctional soft actuators and robotics.
Collapse
Affiliation(s)
- Ziwei Liang
- Institute of Safety Science and Engineering, School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, 510641, China
| | - Binjie Jin
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Haotian Zhao
- Institute of Safety Science and Engineering, School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, 510641, China
| | - Zhenhua He
- Institute of Safety Science and Engineering, School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, 510641, China
| | - Zhanghe Jiang
- Guangzhou Academy of Special Mechanical and Electrical Equipment Inspection & Testing, Guangzhou, 510180, China
| | - Saihua Jiang
- Institute of Safety Science and Engineering, School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
83
|
Li H, Chng CB, Zheng H, Wu MS, Bartolo PJDS, Qi HJ, Tan YJ, Zhou K. Self-Healable and 4D Printable Hydrogel for Stretchable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305702. [PMID: 38263891 PMCID: PMC10987146 DOI: 10.1002/advs.202305702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/21/2023] [Indexed: 01/25/2024]
Abstract
Materials with high stretchability and conductivity are used to fabricate stretchable electronics. Self-healing capability and four-dimensional (4D) printability are becoming increasingly important for these materials to facilitate their recovery from damage and endow them with stimuli-response properties. However, it remains challenging to design a single material that combines these four strengths. Here, a dually crosslinked hydrogel is developed by combining a covalently crosslinked acrylic acid (AAC) network and Fe3+ ions through dynamic and reversible ionically crosslinked coordination. The remarkable electrical sensitivity (a gauge factor of 3.93 under a strain of 1500%), superior stretchability (a fracture strain up to 1700%), self-healing ability (a healing efficiency of 88% and 97% for the mechanical and electrical properties, respectively), and 4D printability of the hydrogel are demonstrated by constructing a strain sensor, a two-dimensional touch panel, and shape-morphing structures with water-responsive behavior. The hydrogel demonstrates vast potential for applications in stretchable electronics.
Collapse
Affiliation(s)
- Huijun Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Chin Boon Chng
- Department of Mechanical Engineering, College of Design and EngineeringNational University of Singapore9 Engineering DriveSingapore117575Singapore
| | - Han Zheng
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Mao See Wu
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Paulo Jorge Da Silva Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - H. Jerry Qi
- School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Yu Jun Tan
- Department of Mechanical Engineering, College of Design and EngineeringNational University of Singapore9 Engineering DriveSingapore117575Singapore
- Centre for Additive ManufacturingNational University of SingaporeSingapore117602Singapore
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
84
|
Yao X, Chen H, Qin H, Cong HP. Nanocomposite Hydrogel Actuators with Ordered Structures: From Nanoscale Control to Macroscale Deformations. SMALL METHODS 2024; 8:e2300414. [PMID: 37365950 DOI: 10.1002/smtd.202300414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Flexible intelligent actuators with the characteristics of flexibility, safety and scalability, are highly promising in industrial production, biomedical fields, environmental monitoring, and soft robots. Nanocomposite hydrogels are attractive candidates for soft actuators due to their high pliability, intelligent responsiveness, and capability to execute large-scale rapid reversible deformations under external stimuli. Here, the recent advances of nanocomposite hydrogels as soft actuators are reviewed and focus is on the construction of elaborate and programmable structures by the assembly of nano-objects in the hydrogel matrix. With the help of inducing the gradient or oriented distributions of the nanounits during the gelation process by the external forces or molecular interactions, nanocomposite hydrogels with ordered structures are achieved, which can perform bending, spiraling, patterned deformations, and biomimetic complex shape changes. Given great advantages of these intricate yet programmable shape-morphing, nanocomposite hydrogel actuators have presented high potentials in the fields of moving robots, energy collectors, and biomedicines. In the end, the challenges and future perspectives of this emerging field of nanocomposite hydrogel actuators are proposed.
Collapse
Affiliation(s)
- Xin Yao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hong Chen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haili Qin
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Huai-Ping Cong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
85
|
Han Y, Lu Q, Xie J, Song KY, Luo D. Three-Dimensional Printable Magnetic Microfibers: Development and Characterization for Four-Dimensional Printing. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e638-e654. [PMID: 38689922 PMCID: PMC11057696 DOI: 10.1089/3dp.2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This study proposes a novel and simple fabrication method of magnetic microfibers, employing filament stretching three-dimensional (3D) printing, and demonstrates the capacity of four-dimensional (4D) printing of the proposed magnetic microfibers. A ferromagnetic 3D printing filament is prepared by the mixture of neodymium-iron-boron (NdFeB) and polylactic acid (PLA), and we investigate the characteristics of the ferromagnetic filament by mixing ratio, magnetic properties, mechanical properties, and rheological properties through experiments. By thermal extrusion of the ferromagnetic filament through a 3D printer nozzle, various thicknesses (80-500 μm) and lengths (less than ∼5 cm) of ferromagnetic microfibers are achieved with different printing setups, such as filament extrusion amount and printing speed. The printed ferromagnetic microfibers are magnetized to maintain a permanent magnetic dipole moment, and 4D printing can be achieved by the deformations of the permanently magnetized microfibers under magnetic fields. We observe that the mixing ratio, the thickness, and the length of the magnetized microfibers provide distinct deformation of the microfiber for customization of 4D printings. This study exhibits that the permanently magnetized microfibers have a great potential for smart sensors and actuators. Furthermore, we briefly present an application of our proposed magnetic microfibers for bionic motion actuators with various unique undulating and oscillating motions.
Collapse
Affiliation(s)
- Yanwen Han
- Department of Mechanical and Electrical Systems Engineering, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Qing Lu
- Department of Mechanical and Electrical Systems Engineering, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jing Xie
- Department of Engineering Mechanics, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ki-Young Song
- Department of Mechanical and Electrical Systems Engineering, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Dun Luo
- Deqing Jingge Magnetic Technology Co., Ltd., Huzhou City, China
| |
Collapse
|
86
|
Du J, Lee S, Sinha S, Solberg FS, Ho DLL, Sampson JP, Wang Q, Tam T, Skylar-Scott MA. A Visual, In-Expensive, and Wireless Capillary Rheometer for Characterizing Wholly-Cellular Bioinks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304778. [PMID: 38085139 PMCID: PMC11545891 DOI: 10.1002/smll.202304778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/14/2023] [Indexed: 08/15/2024]
Abstract
Rheological measurements with in situ visualization can elucidate the microstructural origin of complex flow behaviors of an ink. However, existing commercial rheometers suffer from high costs, the need for dedicated facilities for microfabrication, a lack of design flexibility, and cabling that complicates operation in sterile or enclosed environments. To address these limitations, a low-cost ($300) visual, in-expensive and wireless rheometer (VIEWR) using 3D-printed and off-the-shelf components is presented. VIEWR measurements are validated by steady-state and transient flow responses for different complex fluids, and microstructural flow profiles and evolution of yield-planes are revealed via particle image velocimetry. Using the VIEWR, a wholly-cellular bioink system comprised of compacted cell aggregates is characterized, and complex yield-stress and viscoelastic responses are captured via concomitantly visualizing the spatiotemporal evolution of aggregate morphology. A symmetric hyperbolic extensional-flow geometry is further constructed inside a capillary tube using digital light processing. Such geometries allow for measuring the extensional viscosity at varying deformation rates and further visualizing the alignment and stretching of aggregates under external flow. Synchronized but asymmetric evolution of aggregate orientation and strain through the neck is visualized. Using varying geometries, the jamming and viscoelastic deformation of aggregates are shown to contribute to the extensional viscosity of the wholly-cellular bioinks.
Collapse
Affiliation(s)
- Jianyi Du
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Stacey Lee
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Soham Sinha
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Fredrik S Solberg
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Debbie L L Ho
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Joshua P Sampson
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Qiuling Wang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Tony Tam
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Mark A Skylar-Scott
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Basic Science and Engineering Initiative, Children's Heart Center, Stanford University, Stanford, CA, 94304, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| |
Collapse
|
87
|
Reinken H, Menzel AM. Vortex Pattern Stabilization in Thin Films Resulting from Shear Thickening of Active Suspensions. PHYSICAL REVIEW LETTERS 2024; 132:138301. [PMID: 38613265 DOI: 10.1103/physrevlett.132.138301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 04/14/2024]
Abstract
The need for structuring on micrometer scales is abundant, for example, in view of phononic applications. We here outline a novel approach based on the phenomenon of active turbulence on the mesoscale. As we demonstrate, a shear-thickening carrier fluid of active microswimmers intrinsically stabilizes regular vortex patterns of otherwise turbulent active suspensions. The fluid self-organizes into a periodically structured nonequilibrium state. Introducing additional passive particles of intermediate size leads to regular spatial organization of these objects. Our approach opens a new path toward functionalization through patterning of thin films and membranes.
Collapse
Affiliation(s)
- Henning Reinken
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
88
|
Zheng Z, Han J, Shi Q, Demir SO, Jiang W, Sitti M. Single-step precision programming of decoupled multiresponsive soft millirobots. Proc Natl Acad Sci U S A 2024; 121:e2320386121. [PMID: 38513101 PMCID: PMC10990116 DOI: 10.1073/pnas.2320386121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Stimuli-responsive soft robots offer new capabilities for the fields of medical and rehabilitation robotics, artificial intelligence, and soft electronics. Precisely programming the shape morphing and decoupling the multiresponsiveness of such robots is crucial to enable them with ample degrees of freedom and multifunctionality, while ensuring high fabrication accuracy. However, current designs featuring coupled multiresponsiveness or intricate assembly processes face limitations in executing complex transformations and suffer from a lack of precision. Therefore, we propose a one-stepped strategy to program multistep shape-morphing soft millirobots (MSSMs) in response to decoupled environmental stimuli. Our approach involves employing a multilayered elastomer and laser scanning technology to selectively process the structure of MSSMs, achieving a minimum machining precision of 30 μm. The resulting MSSMs are capable of imitating the shape morphing of plants and hand gestures and resemble kirigami, pop-up, and bistable structures. The decoupled multistimuli responsiveness of the MSSMs allows them to conduct shape morphing during locomotion, perform logic circuit control, and remotely repair circuits in response to humidity, temperature, and magnetic field. This strategy presents a paradigm for the effective design and fabrication of untethered soft miniature robots with physical intelligence, advancing the decoupled multiresponsive materials through modular tailoring of robotic body structures and properties to suit specific applications.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Jie Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an710054, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an710054, China
| | - Qing Shi
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing100081, China
| | - Sinan Ozgun Demir
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Weitao Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an710054, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an710054, China
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Turkey
| |
Collapse
|
89
|
Joharji L, Alam F, El-Atab N. Direct Ink Writing of Strained Carbon Nanotube-Based Sensors: Toward 4D Printable Soft Robotics. ACS OMEGA 2024; 9:14638-14647. [PMID: 38559947 PMCID: PMC10976367 DOI: 10.1021/acsomega.4c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Four-dimensional (4D) printing has attracted significant attention, because it enables structures to be reconfigured based on an external stimulus, realizing complex architectures that are useful for different applications. Nevertheless, most previously reported 4D-printed components have focused on actuators, which are just one part of a full soft robotic system. In this study, toward achieving fully 4D-printed systems, the design and direct ink writing of sensors with a straining mechanism that mimics the 4D effect are explored. Solution-processable carbon nanotubes (CNTs) were used as the sensing medium, and the effect of a heat-shrinkable shape-memory polymer-based substrate (i.e., potential 4D effect) on the electronic and structural properties of CNTs was assessed, followed by their application in various sensing devices. Herein, we reveal that substrate shrinking affords a more porous yet more conductive film owing to the compressive strain experienced by CNTs, leading to an increase in the carrier concentration. Furthermore, it improves the sensitivity of the devices without the need for chemical functionalization. Interestingly, the results show that, by engineering the potential 4D effect, the selectivity of the sensor can be tuned. Finally, the sensors were integrated into a fully 4D-printed flower structure, exhibiting their potential for different soft robotic applications.
Collapse
Affiliation(s)
- Lana Joharji
- SAMA
Laboratories, Electrical and Computer Engineering, Computer Electrical
Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Electrical
Engineering, King Fahd University of Petroleum
and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Fahad Alam
- SAMA
Laboratories, Electrical and Computer Engineering, Computer Electrical
Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nazek El-Atab
- SAMA
Laboratories, Electrical and Computer Engineering, Computer Electrical
Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
90
|
Mandal A, Chatterjee K. 4D printing for biomedical applications. J Mater Chem B 2024; 12:2985-3005. [PMID: 38436200 DOI: 10.1039/d4tb00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
While three-dimensional (3D) printing excels at fabricating static constructs, it fails to emulate the dynamic behavior of native tissues or the temporal programmability desired for medical devices. Four-dimensional (4D) printing is an advanced additive manufacturing technology capable of fabricating constructs that can undergo pre-programmed changes in shape, property, or functionality when exposed to specific stimuli. In this Perspective, we summarize the advances in materials chemistry, 3D printing strategies, and post-printing methodologies that collectively facilitate the realization of temporal dynamics within 4D-printed soft materials (hydrogels, shape-memory polymers, liquid crystalline elastomers), ceramics, and metals. We also discuss and present insights about the diverse biomedical applications of 4D printing, including tissue engineering and regenerative medicine, drug delivery, in vitro models, and medical devices. Finally, we discuss the current challenges and emphasize the importance of an application-driven design approach to enable the clinical translation and widespread adoption of 4D printing.
Collapse
Affiliation(s)
- Arkodip Mandal
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| |
Collapse
|
91
|
Han Z, Li Y, Wu X, Zhang J. Tetherless and Batteryless Soft Navigators and Grippers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14345-14356. [PMID: 38443330 DOI: 10.1021/acsami.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Remotely controllable soft actuators have promising potential applications in many fields including soft robotics, exploration, and invasion medical treatment. Shape memory polymers could store and release energy, resulting in shape deformation, and have been regarded as promising candidates to fabricate untethered soft robots. Herein, an untethered and battery-free soft navigator and gripper based on a shape memory hydrogel is presented. The shape memory hydrogel is obtained through hydrogen bonding between gelatin and tannic acid, and the hydrogel displays excellent shape memory properties on the basis of hydrogen bonding and the coil-triple helix transition of gelatin. Moreover, Fe3O4 nanoparticles are introduced to endow the hydrogel magnetic responsiveness and photothermal conversion capacity. Finally, the shape memory hydrogel in a stretched state is assembled with an inert hydrogel to achieve a bilayer hydrogel actuator, which could produce complex shape transformation due to the shape recovery of the shape memory layer induced by heat or light. Taking advantage of the magnetically control and light-responsive shape deformation, remotely controllable soft grippers that could navigate through tortuous paths and grasp objects from a hard-to-reach place have been accomplished. This approach will inspire the design and fabrication of novel shape memory hydrogels as remotely controllable soft robots.
Collapse
Affiliation(s)
- Zhen Han
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yang Li
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xinjun Wu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jiawei Zhang
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
92
|
Kumar Shetty S, Sundar Santhanakrishnan S, Padurao S, Mirazkar Dasharatharao P. Prioritizing Biomaterial Driven Clinical Bioactivity Over Designing Intricacy during Bioprinting of Trabecular Microarchitecture: A Clinician's Perspective. ACS OMEGA 2024; 9:12426-12435. [PMID: 38524444 PMCID: PMC10956407 DOI: 10.1021/acsomega.3c08112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Bone tissue engineering has witnessed a historical shift from three perspectives. From a biomaterial perspective, materials have now become smarter and dynamic; from a bioengineering perspective the bioprinting techniques have now advanced to 4D bioprinting; and from a clinical perspective scaffold bioactivity has progressed toward enhanced osteoinductive scaffolds driven by intricate biomechanical, biophysical, biochemical, and biological cues. Though all of these advancements are indicative of improvised scaffold engineering, a pivotal question regarding the critical role and need of designing and replicating the intricacies of trabecular microarchitecture for enhanced, clinically appreciable osteoangiogenicity needs to be answered. This review hence critically evaluates the rationale and the need of investing substantial effort into designing complex microarchitectures amidst the era of "smart biomaterials" and dynamic 4D bioprinting aimed toward enhancing clinically appreciable bioactivity. The article explores the concept of integrating intricate designs into a scaffold microarchitecture to bolster bioactivity and the practical challenges encountered in 3D bioprinting of complex designs and meticulously examines the pivotal role of biomaterials in scaffold bioactivity, proposing a comprehensive approach to bioprinting geared toward achieving clinical bioactivity and striking a judicious balance between design intricacy and functional outcomes in bone bioprinting.
Collapse
Affiliation(s)
- Sahith Kumar Shetty
- Department
of Oral and Maxillofacial Surgery, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Shyam Sundar Santhanakrishnan
- Department
of Oral and Maxillofacial Surgery, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Shubha Padurao
- Department
of Material Science, Mangalagangothri Mangalore
University, Konaja 571449, India
| | | |
Collapse
|
93
|
Xing R, Huang R, Qi W, Kong J, Dickey MD. Protocol for 3D and 4D printing of highly conductive metallic composite using liquid metal gels. STAR Protoc 2024; 5:102813. [PMID: 38180834 PMCID: PMC10801333 DOI: 10.1016/j.xpro.2023.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
3D or 4D printing of metal structures requires extreme conditions or a multistage process. Here, we present a protocol for the preparation of highly conductive metallic composites using liquid metal gels at ambient conditions. We describe the steps to prepare ternary gels composed of copper particles, liquid metal, and water. We then detail procedures for 3D or 4D printing gels into highly conductive structures after adding a small amount of rheological modifier (methyl cellulose) using direct ink writing techniques. For complete details on the use and execution of this protocol, please refer to Xing et al. (2023).1.
Collapse
Affiliation(s)
- Ruizhe Xing
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Jie Kong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
94
|
Zhou J, Liao C, Zou M, Villalba MI, Xiong C, Zhao C, Venturelli L, Liu D, Kohler AC, Sekatskii SK, Dietler G, Wang Y, Kasas S. An Optical Fiber-Based Nanomotion Sensor for Rapid Antibiotic and Antifungal Susceptibility Tests. NANO LETTERS 2024; 24:2980-2988. [PMID: 38311846 PMCID: PMC10941246 DOI: 10.1021/acs.nanolett.3c03781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
The emergence of antibiotic and antifungal resistant microorganisms represents nowadays a major public health issue that might push humanity into a post-antibiotic/antifungal era. One of the approaches to avoid such a catastrophe is to advance rapid antibiotic and antifungal susceptibility tests. In this study, we present a compact, optical fiber-based nanomotion sensor to achieve this goal by monitoring the dynamic nanoscale oscillation of a cantilever related to microorganism viability. High detection sensitivity was achieved that was attributed to the flexible two-photon polymerized cantilever with a spring constant of 0.3 N/m. This nanomotion device showed an excellent performance in the susceptibility tests of Escherichia coli and Candida albicans with a fast response in a time frame of minutes. As a proof-of-concept, with the simplicity of use and the potential of parallelization, our innovative sensor is anticipated to be an interesting candidate for future rapid antibiotic and antifungal susceptibility tests and other biomedical applications.
Collapse
Affiliation(s)
- Jiangtao Zhou
- Laboratory
of Physics of Living Matter (LPMV), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Changrui Liao
- Guangdong
and Hong Kong Joint Research Centre for Optical Fiber Sensors and
Key Laboratory of Optoelectronic Devices and Systems of the Ministry
of Education and Guangdong Province, College of Physics and Optoelectronic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mengqiang Zou
- Guangdong
and Hong Kong Joint Research Centre for Optical Fiber Sensors and
Key Laboratory of Optoelectronic Devices and Systems of the Ministry
of Education and Guangdong Province, College of Physics and Optoelectronic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Maria Ines Villalba
- Laboratory
of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL),
and Department of Fundamental Biology, Faculty of Biology and Medicine,
University of Lausanne (UNIL), CH-1015 Lausanne, Switzerland
| | - Cong Xiong
- Guangdong
and Hong Kong Joint Research Centre for Optical Fiber Sensors and
Key Laboratory of Optoelectronic Devices and Systems of the Ministry
of Education and Guangdong Province, College of Physics and Optoelectronic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Cong Zhao
- Guangdong
and Hong Kong Joint Research Centre for Optical Fiber Sensors and
Key Laboratory of Optoelectronic Devices and Systems of the Ministry
of Education and Guangdong Province, College of Physics and Optoelectronic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Leonardo Venturelli
- Laboratory
of Physics of Living Matter (LPMV), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Dan Liu
- Guangdong
and Hong Kong Joint Research Centre for Optical Fiber Sensors and
Key Laboratory of Optoelectronic Devices and Systems of the Ministry
of Education and Guangdong Province, College of Physics and Optoelectronic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Anne-Celine Kohler
- Laboratory
of Physics of Living Matter (LPMV), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sergey K. Sekatskii
- Laboratory
of Physics of Living Matter (LPMV), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Laboratory
of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL),
and Department of Fundamental Biology, Faculty of Biology and Medicine,
University of Lausanne (UNIL), CH-1015 Lausanne, Switzerland
| | - Giovanni Dietler
- Laboratory
of Physics of Living Matter (LPMV), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yiping Wang
- Guangdong
and Hong Kong Joint Research Centre for Optical Fiber Sensors and
Key Laboratory of Optoelectronic Devices and Systems of the Ministry
of Education and Guangdong Province, College of Physics and Optoelectronic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Sandor Kasas
- Laboratory
of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL),
and Department of Fundamental Biology, Faculty of Biology and Medicine,
University of Lausanne (UNIL), CH-1015 Lausanne, Switzerland
- International
Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, 1050 Brussels, Belgium
- Centre
Universitaire Romand de Médecine Légale, UFAM, Université de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
95
|
Zhang L, Liu H, Song B, Gu J, Li L, Shi W, Li G, Zhong S, Liu H, Wang X, Fan J, Zhang Z, Wang P, Yao Y, Shi Y, Lu J. Wood-inspired metamaterial catalyst for robust and high-throughput water purification. Nat Commun 2024; 15:2046. [PMID: 38448407 PMCID: PMC10917756 DOI: 10.1038/s41467-024-46337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Continuous industrialization and other human activities have led to severe water quality deterioration by harmful pollutants. Achieving robust and high-throughput water purification is challenging due to the coupling between mechanical strength, mass transportation and catalytic efficiency. Here, a structure-function integrated system is developed by Douglas fir wood-inspired metamaterial catalysts featuring overlapping microlattices with bimodal pores to decouple the mechanical, transport and catalytic performances. The metamaterial catalyst is prepared by metal 3D printing (316 L stainless steel, mainly Fe) and electrochemically decorated with Co to further boost catalytic functionality. Combining the flexibility of 3D printing and theoretical simulation, the metamaterial catalyst demonstrates a wide range of mechanical-transport-catalysis capabilities while a 70% overlap rate has 3X more strength and surface area per unit volume, and 4X normalized reaction kinetics than those of traditional microlattices. This work demonstrates the rational and harmonious integration of structural and functional design in robust and high throughput water purification, and can inspire the development of various flow catalysts, flow batteries, and functional 3D-printed materials.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hanwen Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bo Song
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jialun Gu
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Lanxi Li
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wenhui Shi
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gan Li
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shiyu Zhong
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hui Liu
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xiaobo Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junxiang Fan
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhi Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pengfei Wang
- Advanced Materials and Energy Center, China Academy of Aerospace Science and Innovation, Beijing, 100176, China
| | - Yonggang Yao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yusheng Shi
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jian Lu
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China.
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China.
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
96
|
Ziv Sharabani S, Livnat E, Abuchalja M, Haphiloni N, Edelstein-Pardo N, Reuveni T, Molco M, Sitt A. Directional actuation and phase transition-like behavior in anisotropic networks of responsive microfibers. SOFT MATTER 2024; 20:2301-2309. [PMID: 38358394 DOI: 10.1039/d3sm01753b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Two-dimensional shape-morphing networks are common in biological systems and have garnered attention due to their nontrivial physical properties that emanate from their cellular nature. Here, we present the fabrication and characterization of anisotropic shape-morphing networks composed of thermoresponsive polymeric microfibers. By strategically positioning fibers with varying responses, we construct networks that exhibit directional actuation. The individual segments within the network display either a linear extension or buckling upon swelling, depending on their radius and length, and the transition between these morphing behaviors resembles Landau's second-order phase transition. The microscale variations in morphing behaviors are translated into observable macroscopic effects, wherein regions undergoing linear expansion retain their shape upon swelling, whereas buckled regions demonstrate negative compressibility and shrink. Manipulating the macroscale morphing by adjusting the properties of the fibrous microsegments offers a means to modulate and program morphing with mesoscale precision and unlocks novel opportunities for developing programmable microscale soft robotics and actuators.
Collapse
Affiliation(s)
- Shiran Ziv Sharabani
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Elad Livnat
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Maia Abuchalja
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Noa Haphiloni
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Nicole Edelstein-Pardo
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tomer Reuveni
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Maya Molco
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Amit Sitt
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
97
|
Dong J, Ding H, Wang Q, Wang L. A 3D-Printed Scaffold for Repairing Bone Defects. Polymers (Basel) 2024; 16:706. [PMID: 38475389 DOI: 10.3390/polym16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/04/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
The treatment of bone defects has always posed challenges in the field of orthopedics. Scaffolds, as a vital component of bone tissue engineering, offer significant advantages in the research and treatment of clinical bone defects. This study aims to provide an overview of how 3D printing technology is applied in the production of bone repair scaffolds. Depending on the materials used, the 3D-printed scaffolds can be classified into two types: single-component scaffolds and composite scaffolds. We have conducted a comprehensive analysis of material composition, the characteristics of 3D printing, performance, advantages, disadvantages, and applications for each scaffold type. Furthermore, based on the current research status and progress, we offer suggestions for future research in this area. In conclusion, this review acts as a valuable reference for advancing the research in the field of bone repair scaffolds.
Collapse
Affiliation(s)
- Jianghui Dong
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Hangxing Ding
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Qin Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Liping Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
98
|
Franco Urquiza EA. Advances in Additive Manufacturing of Polymer-Fused Deposition Modeling on Textiles: From 3D Printing to Innovative 4D Printing-A Review. Polymers (Basel) 2024; 16:700. [PMID: 38475383 DOI: 10.3390/polym16050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Technological advances and the development of new and advanced materials allow the transition from three-dimensional (3D) printing to the innovation of four-dimensional (4D) printing. 3D printing is the process of precisely creating objects with complex shapes by depositing superimposed layers of material. Current 3D printing technology allows two or more filaments of different polymeric materials to be placed, which, together with the development of intelligent materials that change shape over time or under the action of an external stimulus, allow us to innovate and move toward an emerging area of research, innovative 4D printing technology. 4D printing makes it possible to manufacture actuators and sensors for various technological applications. Its most significant development is currently in the manufacture of intelligent textiles. The potential of 4D printing lies in modular manufacturing, where fabric-printed material interaction enables the creation of bio-inspired and biomimetic devices. The central part of this review summarizes the effect of the primary external stimuli on 4D textile materials, followed by the leading applications. Shape memory polymers attract current and potential opportunities in the textile industry to develop smart clothing for protection against extreme environments, auxiliary prostheses, smart splints or orthoses to assist the muscles in their medical recovery, and comfort devices. In the future, intelligent textiles will perform much more demanding roles, thus envisioning the application fields of 4D printing in the next decade.
Collapse
Affiliation(s)
- Edgar Adrian Franco Urquiza
- Advanced Manufacturing Department, Center for Engineering and Industrial Development, CIDESI-Airport, Carretera Estatal 200, km 23, Queretaro 76270, Mexico
| |
Collapse
|
99
|
Deng Z, Zhang H, Priimagi A, Zeng H. Light-Fueled Nonreciprocal Self-Oscillators for Fluidic Transportation and Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209683. [PMID: 36525600 DOI: 10.1002/adma.202209683] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Light-fueled self-oscillators based on soft actuating materials have triggered novel designs for small-scale robotic constructs that self-sustain their motion at non-equilibrium states and possess bioinspired autonomy and adaptive functions. However, the motions of most self-oscillators are reciprocal, which hinders their use in sophisticated biomimetic functions such as fluidic transportation. Here, an optically powered soft material strip that can perform nonreciprocal, cilia-like, self-sustained oscillation under water is reported. The actuator is made of planar-aligned liquid crystal elastomer responding to visible light. Two laser beams from orthogonal directions allow for piecewise control over the strip deformation, enabling two self-shadowing effects coupled in one single material to yield nonreciprocal strokes. The nonreciprocity, stroke pattern and handedness are connected to the fluidic pumping efficiency, which can be controlled by the excitation conditions. Autonomous microfluidic pumping in clockwise and anticlockwise directions, translocation of a micro-object by liquid propulsion, and coupling between two oscillating strips through liquid medium interaction are demonstrated. The results offer new concepts for non-equilibrium soft actuators that can perform bio-like functions under water.
Collapse
Affiliation(s)
- Zixuan Deng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI 33101, Finland
| | - Hang Zhang
- Department of Applied Physics, Aalto University, P.O. Box 15100, Espoo, FI 02150, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI 33101, Finland
| | - Hao Zeng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI 33101, Finland
| |
Collapse
|
100
|
Zhou H, Zhang S, Liu Z, Chi B, Li J, Wang Y. Untethered Microgrippers for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305805. [PMID: 37941516 DOI: 10.1002/smll.202305805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/07/2023] [Indexed: 11/10/2023]
Abstract
Microgrippers, a branch of micro/nanorobots, refer to motile miniaturized machines that are of a size in the range of several to hundreds of micrometers. Compared with tethered grippers or other microscopic diagnostic and surgical equipment, untethered microgrippers play an indispensable role in biomedical applications because of their characteristics such as miniaturized size, dexterous shape tranformation, and controllable motion, which enables the microgrippers to enter hard-to-reach regions to execute specific medical tasks for disease diagnosis and treatment. To date, numerous medical microgrippers are developed, and their potential in cell manipulation, targeted drug delivery, biopsy, and minimally invasive surgery are explored. To achieve controlled locomotion and efficient target-oriented actions, the materials, size, microarchitecture, and morphology of microgrippers shall be deliberately designed. In this review, the authors summarizes the latest progress in untethered micrometer-scale grippers. The working mechanisms of shape-morphing and actuation methods for effective movement are first introduced. Then, the design principle and state-of-the-art fabrication techniques of microgrippers are discussed. Finally, their applications in the precise medicine are highlighted, followed by offering future perspectives for the development of untethered medical microgrippers.
Collapse
Affiliation(s)
- Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Shengchang Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zijian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Bowen Chi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yilong Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|