51
|
Li X, Wu Y, Su Y, Rey-Suarez I, Matthaeus C, Updegrove TB, Wei Z, Zhang L, Sasaki H, Li Y, Guo M, Giannini JP, Vishwasrao HD, Chen J, Lee SJJ, Shao L, Liu H, Ramamurthi KS, Taraska JW, Upadhyaya A, La Riviere P, Shroff H. Three-dimensional structured illumination microscopy with enhanced axial resolution. Nat Biotechnol 2023; 41:1307-1319. [PMID: 36702897 PMCID: PMC10497409 DOI: 10.1038/s41587-022-01651-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
The axial resolution of three-dimensional structured illumination microscopy (3D SIM) is limited to ∼300 nm. Here we present two distinct, complementary methods to improve axial resolution in 3D SIM with minimal or no modification to the optical system. We show that placing a mirror directly opposite the sample enables four-beam interference with higher spatial frequency content than 3D SIM illumination, offering near-isotropic imaging with ∼120-nm lateral and 160-nm axial resolution. We also developed a deep learning method achieving ∼120-nm isotropic resolution. This method can be combined with denoising to facilitate volumetric imaging spanning dozens of timepoints. We demonstrate the potential of these advances by imaging a variety of cellular samples, delineating the nanoscale distribution of vimentin and microtubule filaments, observing the relative positions of caveolar coat proteins and lysosomal markers and visualizing cytoskeletal dynamics within T cells in the early stages of immune synapse formation.
Collapse
Affiliation(s)
- Xuesong Li
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA.
| | - Yicong Wu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA.
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- Leica Microsystems, Inc., Deerfield, IL, USA
- SVision, LLC, Bellevue, WA, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhuang Wei
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Hideki Sasaki
- Leica Microsystems, Inc., Deerfield, IL, USA
- SVision, LLC, Bellevue, WA, USA
| | - Yue Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Min Guo
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - John P Giannini
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Shih-Jong J Lee
- Leica Microsystems, Inc., Deerfield, IL, USA
- SVision, LLC, Bellevue, WA, USA
| | - Lin Shao
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
- Department of Physics, University of Maryland, College Park, MD, USA
| | - Patrick La Riviere
- Department of Radiology, University of Chicago, Chicago, IL, USA
- MBL Fellows, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- MBL Fellows, Marine Biological Laboratory, Woods Hole, MA, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| |
Collapse
|
52
|
Mandracchia B, Liu W, Hua X, Forghani P, Lee S, Hou J, Nie S, Xu C, Jia S. Optimal sparsity allows reliable system-aware restoration of fluorescence microscopy images. SCIENCE ADVANCES 2023; 9:eadg9245. [PMID: 37647399 PMCID: PMC10468132 DOI: 10.1126/sciadv.adg9245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Fluorescence microscopy is one of the most indispensable and informative driving forces for biological research, but the extent of observable biological phenomena is essentially determined by the content and quality of the acquired images. To address the different noise sources that can degrade these images, we introduce an algorithm for multiscale image restoration through optimally sparse representation (MIRO). MIRO is a deterministic framework that models the acquisition process and uses pixelwise noise correction to improve image quality. Our study demonstrates that this approach yields a remarkable restoration of the fluorescence signal for a wide range of microscopy systems, regardless of the detector used (e.g., electron-multiplying charge-coupled device, scientific complementary metal-oxide semiconductor, or photomultiplier tube). MIRO improves current imaging capabilities, enabling fast, low-light optical microscopy, accurate image analysis, and robust machine intelligence when integrated with deep neural networks. This expands the range of biological knowledge that can be obtained from fluorescence microscopy.
Collapse
Affiliation(s)
- Biagio Mandracchia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Xuanwen Hua
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Parvin Forghani
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Soojung Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jessica Hou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuyi Nie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
53
|
Fuchs H, Jahn K, Hu X, Meister R, Binter M, Framme C. Breaking a Dogma: High-Throughput Live-Cell Imaging in Real-Time with Hoechst 33342. Adv Healthc Mater 2023; 12:e2300230. [PMID: 36934382 PMCID: PMC11468280 DOI: 10.1002/adhm.202300230] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/14/2023] [Indexed: 03/20/2023]
Abstract
Automated high-throughput live cell imaging (LCI) enables investigation of substance effects on cells in vitro. Usually, cell number is analyzed by phase-contrast imaging, which is reliable only for a few cell types. Therefore, an accurate cell counting method, such as staining the nuclei with Hoechst 33342 before LCI, will be desirable. However, since the mid-1980s, the dogma exists that Hoechst can only be used for endpoint analyses because of its cytotoxic properties and the potentially phototoxic effects of the excitation light. Since microscopic camera sensitivity has significantly improved, this study investigates whether this dogma is still justified. Therefore, exposure parameters are optimized using a 4× objective, and the minimum required Hoechst concentration is evaluated, allowing LCI at 30-min intervals over 5 days. Remarkably, a Hoechst concentration of only 57 × 10-9 m significantly inhibits proliferation and thus impairs cell viability. However, Hoechst concentrations between 7 × 10-9 and 28 × 10-9 m can be determined, which are neither cytotoxic nor impacting cell viability, proliferation, or signaling pathways. The method can be adapted to regular inverted fluorescence microscopes and allows, for example, to determine the cytotoxicity of a substance or the transduction efficiency, with the advantage that the analysis can be repeated at any desired time point.
Collapse
Affiliation(s)
- Heiko Fuchs
- Institute of OphthalmologyUniversity Eye HospitalHannover Medical SchoolCarl‐Neuberg Strasse 130625HannoverGermany
| | - Kirsten Jahn
- Department of PsychiatrySocial Psychiatry and PsychotherapyHannover Medical SchoolCarl‐Neuberg Strasse 130625HannoverGermany
| | - Xiaonan Hu
- Institute of OphthalmologyUniversity Eye HospitalHannover Medical SchoolCarl‐Neuberg Strasse 130625HannoverGermany
| | - Roland Meister
- Institute of OphthalmologyUniversity Eye HospitalHannover Medical SchoolCarl‐Neuberg Strasse 130625HannoverGermany
| | - Maximilian Binter
- Institute of OphthalmologyUniversity Eye HospitalHannover Medical SchoolCarl‐Neuberg Strasse 130625HannoverGermany
| | - Carsten Framme
- Institute of OphthalmologyUniversity Eye HospitalHannover Medical SchoolCarl‐Neuberg Strasse 130625HannoverGermany
| |
Collapse
|
54
|
Ling Z, Han K, Liu W, Hua X, Jia S. Volumetric live-cell autofluorescence imaging using Fourier light-field microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:4237-4245. [PMID: 37799690 PMCID: PMC10549745 DOI: 10.1364/boe.495506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 10/07/2023]
Abstract
This study introduces a rapid, volumetric live-cell imaging technique for visualizing autofluorescent sub-cellular structures and their dynamics by employing high-resolution Fourier light-field microscopy. We demonstrated this method by capturing lysosomal autofluorescence in fibroblasts and HeLa cells. Additionally, we conducted multicolor imaging to simultaneously observe lysosomal autofluorescence and fluorescently-labeled organelles such as lysosomes and mitochondria. We further analyzed the data to quantify the interactions between lysosomes and mitochondria. This research lays the foundation for future exploration of native cellular states and functions in three-dimensional environments, effectively reducing photodamage and eliminating the necessity for exogenous labels.
Collapse
Affiliation(s)
- Zhi Ling
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Keyi Han
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Wenhao Liu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Xuanwen Hua
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Shu Jia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
55
|
Dunn KJ, Berger AJ. Three-dimensional angular scattering simulations inform analysis of scattering from single cells. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:086501. [PMID: 37564163 PMCID: PMC10411915 DOI: 10.1117/1.jbo.28.8.086501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Significance Organelle sizes, which are indicative of cellular status, have implications for drug development and immunology research. At the single cell level, such information could be used to study the heterogeneity of cell response to drugs or pathogens. Aim Angularly resolved elastic light scattering is known to be sensitive to changes in organelle size distribution. We developed a Mie theory-based simulation of angular scattering from single cells to quantify the effects of noise on scattering and size estimates. Approach We simulated randomly sampled organelle sizes (drawn from a log normal distribution), interference between different organelles' scattering, and detector noise. We quantified each noise source's effect upon the estimated mean and standard deviation of organelle size distributions. Results The results demonstrate that signal-to-noise ratio in the angular scattering increased with the number of scatterers, cell area, and exposure time and decreased with the size distribution width. The error in estimating the mean of the size distributions remained below 5% for nearly all experimental parameters tested, but the widest size distribution tested (standard deviation of 600 nm) reached 20%. Conclusions The simulator revealed that sparse sampling of a broad size distribution can dominate the mismatch between actual and predicted size parameters. Alternative estimation strategies could reduce the discrepancy.
Collapse
Affiliation(s)
- Kaitlin J. Dunn
- University of Rochester, Institute of Optics, Rochester, New York, United States
| | - Andrew J. Berger
- University of Rochester, Institute of Optics, Rochester, New York, United States
| |
Collapse
|
56
|
Bouchard C, Wiesner T, Deschênes A, Bilodeau A, Turcotte B, Gagné C, Lavoie-Cardinal F. Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition. NAT MACH INTELL 2023; 5:830-844. [PMID: 37615032 PMCID: PMC10442226 DOI: 10.1038/s42256-023-00689-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/12/2023] [Indexed: 08/25/2023]
Abstract
Super-resolution fluorescence microscopy methods enable the characterization of nanostructures in living and fixed biological tissues. However, they require the adjustment of multiple imaging parameters while attempting to satisfy conflicting objectives, such as maximizing spatial and temporal resolution while minimizing light exposure. To overcome the limitations imposed by these trade-offs, post-acquisition algorithmic approaches have been proposed for resolution enhancement and image-quality improvement. Here we introduce the task-assisted generative adversarial network (TA-GAN), which incorporates an auxiliary task (for example, segmentation, localization) closely related to the observed biological nanostructure characterization. We evaluate how the TA-GAN improves generative accuracy over unassisted methods, using images acquired with different modalities such as confocal, bright-field, stimulated emission depletion and structured illumination microscopy. The TA-GAN is incorporated directly into the acquisition pipeline of the microscope to predict the nanometric content of the field of view without requiring the acquisition of a super-resolved image. This information is used to automatically select the imaging modality and regions of interest, optimizing the acquisition sequence by reducing light exposure. Data-driven microscopy methods like the TA-GAN will enable the observation of dynamic molecular processes with spatial and temporal resolutions that surpass the limits currently imposed by the trade-offs constraining super-resolution microscopy.
Collapse
Affiliation(s)
- Catherine Bouchard
- Institute Intelligence and Data (IID), Université Laval, Quebec City, Quebec Canada
- CERVO Brain Research Center, Quebec City, Quebec Canada
| | - Theresa Wiesner
- Institute Intelligence and Data (IID), Université Laval, Quebec City, Quebec Canada
- CERVO Brain Research Center, Quebec City, Quebec Canada
| | | | - Anthony Bilodeau
- Institute Intelligence and Data (IID), Université Laval, Quebec City, Quebec Canada
- CERVO Brain Research Center, Quebec City, Quebec Canada
| | - Benoît Turcotte
- Institute Intelligence and Data (IID), Université Laval, Quebec City, Quebec Canada
- CERVO Brain Research Center, Quebec City, Quebec Canada
| | - Christian Gagné
- Institute Intelligence and Data (IID), Université Laval, Quebec City, Quebec Canada
- Département de génie électrique et de génie informatique, Université Laval, Quebec City, Quebec Canada
| | - Flavie Lavoie-Cardinal
- Institute Intelligence and Data (IID), Université Laval, Quebec City, Quebec Canada
- CERVO Brain Research Center, Quebec City, Quebec Canada
- Département de psychiatrie et de neurosciences, Université Laval, Quebec City, Quebec Canada
| |
Collapse
|
57
|
Sanders S, Jensen Y, Reimer R, Bosse JB. From the beginnings to multidimensional light and electron microscopy of virus morphogenesis. Adv Virus Res 2023; 116:45-88. [PMID: 37524482 DOI: 10.1016/bs.aivir.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Individual functional viral morphogenesis events are often dynamic, short, and infrequent and might be obscured by other pathways and dead-end products. Volumetric live cell imaging has become an essential tool for studying viral morphogenesis events. It allows following entire dynamic processes while providing functional evidence that the imaged process is involved in viral production. Moreover, it allows to capture many individual events and allows quantitative analysis. Finally, the correlation of volumetric live-cell data with volumetric electron microscopy (EM) can provide crucial insights into the ultrastructure and mechanisms of viral morphogenesis events. Here, we provide an overview and discussion of suitable imaging methods for volumetric correlative imaging of viral morphogenesis and frame them in a historical summary of their development.
Collapse
Affiliation(s)
- Saskia Sanders
- Department of Virology, Hannover Medical School, Hannover, Germany; Leibniz Institute of Virology (LIV), Hamburg, Germany; Centre for Structural Systems Biology, Hamburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Yannick Jensen
- Department of Virology, Hannover Medical School, Hannover, Germany; Leibniz Institute of Virology (LIV), Hamburg, Germany; Centre for Structural Systems Biology, Hamburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | | | - Jens B Bosse
- Department of Virology, Hannover Medical School, Hannover, Germany; Leibniz Institute of Virology (LIV), Hamburg, Germany; Centre for Structural Systems Biology, Hamburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
58
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
59
|
Wang R, Butt D, Cross S, Verkade P, Achim A. Bright-field to fluorescence microscopy image translation for cell nuclei health quantification. BIOLOGICAL IMAGING 2023; 3:e12. [PMID: 38510164 PMCID: PMC10951917 DOI: 10.1017/s2633903x23000120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/05/2023] [Accepted: 05/29/2023] [Indexed: 03/22/2024]
Abstract
Microscopy is a widely used method in biological research to observe the morphology and structure of cells. Amongst the plethora of microscopy techniques, fluorescent labeling with dyes or antibodies is the most popular method for revealing specific cellular organelles. However, fluorescent labeling also introduces new challenges to cellular observation, as it increases the workload, and the process may result in nonspecific labeling. Recent advances in deep visual learning have shown that there are systematic relationships between fluorescent and bright-field images, thus facilitating image translation between the two. In this article, we propose the cross-attention conditional generative adversarial network (XAcGAN) model. It employs state-of-the-art GANs (GANs) to solve the image translation task. The model uses supervised learning and combines attention-based networks to explore spatial information during translation. In addition, we demonstrate the successful application of XAcGAN to infer the health state of translated nuclei from bright-field microscopy images. The results show that our approach achieves excellent performance both in terms of image translation and nuclei state inference.
Collapse
Affiliation(s)
- Ruixiong Wang
- Visual Information Laboratory, University of Bristol, Bristol, United Kingdom
| | - Daniel Butt
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Stephen Cross
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Alin Achim
- Visual Information Laboratory, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
60
|
Chen YI, Chang YJ, Sun Y, Liao SC, Santacruz SR, Yeh HC. Spatial resolution enhancement in photon-starved STED imaging using deep learning-based fluorescence lifetime analysis. NANOSCALE 2023; 15:9449-9456. [PMID: 37159237 PMCID: PMC10460507 DOI: 10.1039/d3nr00305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
As a super-resolution imaging method, stimulated emission depletion (STED) microscopy has unraveled fine intracellular structures and provided insights into nanoscale organizations in cells. Although image resolution can be further enhanced by continuously increasing the STED-beam power, the resulting photodamage and phototoxicity are major issues for real-world applications of STED microscopy. Here we demonstrate that, with 50% less STED-beam power, the STED image resolution can be improved up to 1.45-fold using the separation of photons by a lifetime tuning (SPLIT) scheme combined with a deep learning-based phasor analysis algorithm termed flimGANE (fluorescence lifetime imaging based on a generative adversarial network). This work offers a new approach for STED imaging in situations where only a limited photon budget is available.
Collapse
Affiliation(s)
- Yuan-I Chen
- Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| | - Yin-Jui Chang
- Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| | - Yuansheng Sun
- ISS, Inc., 1602 Newton Drive, Champaign, IL, 61822, USA
| | - Shih-Chu Liao
- ISS, Inc., 1602 Newton Drive, Champaign, IL, 61822, USA
| | - Samantha R Santacruz
- Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
- Electrical & Computer Engineering, University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Hsin-Chih Yeh
- Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
61
|
Sung Y. Optical projection tomography of fluorescent microscopic specimens using lateral translation of tube lens. OPTICS LETTERS 2023; 48:2623-2626. [PMID: 37186724 PMCID: PMC10798857 DOI: 10.1364/ol.491499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
Optical projection tomography (OPT) is a three-dimensional (3D) fluorescence imaging technique, in which projection images are acquired for varying orientations of a sample using a large depth of field. OPT is typically applied to a millimeter-sized specimen, because the rotation of a microscopic specimen is challenging and not compatible with live cell imaging. In this Letter, we demonstrate fluorescence optical tomography of a microscopic specimen by laterally translating the tube lens of a wide-field optical microscope, which allows for high-resolution OPT without rotating the sample. The cost is the reduction of the field of view to about halfway along the direction of the tube lens translation. Using bovine pulmonary artery endothelial cells and 0.1 µm beads, we compare the 3D imaging performance of the proposed method with that of the conventional objective-focus scan method.
Collapse
Affiliation(s)
- Yongjin Sung
- College of Engineering & Applied Science, University of Wisconsin, Milwaukee, WI 53211, USA
| |
Collapse
|
62
|
Van Hemelryk A, Erkens-Schulze S, Lim L, de Ridder CMA, Stuurman DC, Jenster GW, van Royen ME, van Weerden WM. Viability Analysis and High-Content Live-Cell Imaging for Drug Testing in Prostate Cancer Xenograft-Derived Organoids. Cells 2023; 12:1377. [PMID: 37408211 DOI: 10.3390/cells12101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Tumor organoids have been pushed forward as advanced model systems for in vitro oncology drug testing, with the eventual goal to direct personalized cancer treatments. However, drug testing efforts suffer from a large variation in experimental conditions for organoid culturing and organoid treatment. Moreover, most drug tests are restricted to whole-well viability as the sole read-out, thereby losing important information about key biological aspects that might be impacted due to the use of administered drugs. These bulk read-outs also discard potential inter-organoid heterogeneity in drug responses. To tackle these issues, we developed a systematic approach for processing organoids from prostate cancer (PCa) patient-derived xenografts (PDXs) for viability-based drug testing and identified essential conditions and quality checks for consistent results. In addition, we generated an imaging-based drug testing procedure using high-content fluorescence microscopy in living PCa organoids to detect various modalities of cell death. Individual organoids and cell nuclei in organoids were segmented and quantified using a dye combination of Hoechst 33342, propidium iodide and Caspase 3/7 Green, allowing the identification of cytostatic and cytotoxic treatment effects. Our procedures provide important insights into the mechanistic actions of tested drugs. Moreover, these methods can be adapted for tumor organoids originating from other cancer types to increase organoid-based drug test validity, and ultimately, accelerate clinical implementation.
Collapse
Affiliation(s)
- Annelies Van Hemelryk
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sigrun Erkens-Schulze
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Lifani Lim
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Corrina M A de Ridder
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Debra C Stuurman
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Guido W Jenster
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
63
|
Daetwyler S, Fiolka RP. Light-sheets and smart microscopy, an exciting future is dawning. Commun Biol 2023; 6:502. [PMID: 37161000 PMCID: PMC10169780 DOI: 10.1038/s42003-023-04857-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Light-sheet fluorescence microscopy has transformed our ability to visualize and quantitatively measure biological processes rapidly and over long time periods. In this review, we discuss current and future developments in light-sheet fluorescence microscopy that we expect to further expand its capabilities. This includes smart and adaptive imaging schemes to overcome traditional imaging trade-offs, i.e., spatiotemporal resolution, field of view and sample health. In smart microscopy, a microscope will autonomously decide where, when, what and how to image. We further assess how image restoration techniques provide avenues to overcome these tradeoffs and how "open top" light-sheet microscopes may enable multi-modal imaging with high throughput. As such, we predict that light-sheet microscopy will fulfill an important role in biomedical and clinical imaging in the future.
Collapse
Affiliation(s)
- Stephan Daetwyler
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Reto Paul Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
64
|
Hawtrey T, New EJ. Molecular probes for fluorescent sensing of metal ions in non-mammalian organisms. Curr Opin Chem Biol 2023; 74:102311. [PMID: 37146433 DOI: 10.1016/j.cbpa.2023.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
While metal ions play an important role in the proper functioning of all life, many questions remain unanswered about exactly how different metals contribute to health and disease. The development of fluorescent probes, which respond to metals, has allowed greater understanding of the cellular location, concentration and speciation of metals in living systems, giving a new appreciation of their function. While the focus of studies using these fluorescent tools has largely been on mammalian organisms, there has been relatively little application of these powerful tools to other organisms. In this review, we highlight recent examples of molecular fluorophores, which have been applied to sensing metals in non-mammalian organisms.
Collapse
Affiliation(s)
- Tom Hawtrey
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia.
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
65
|
Xiao Z, Guan Y, Jin Y, Hou W, Gu Y, Wang S. Deep-Gamma: deep low-excitation fluorescence imaging global enhancement. OPTICS LETTERS 2023; 48:2496-2499. [PMID: 37126308 DOI: 10.1364/ol.491500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lowering the excitation to reduce phototoxicity and photobleaching while numerically enhancing the fluorescence signal is a useful way to support long-term observation in fluorescence microscopy. However, invalid features, such as near-zero gradient dark backgrounds in fluorescence images, negatively affect the neural networks due to the network training locality. This problem makes it difficult for mature deep learning-based image enhancement methods to be directly extended to fluorescence imaging enhancement. To reduce the negative optimization effect, we previously designed Kindred-Nets in conjunction with a mixed fine-tuning scheme, but the mapping learned from the fine-tuning dataset may not fully apply to fluorescence images. In this work, we proposed a new, to the best of our knowledge, deep low-excitation fluorescence imaging global enhancement framework, named Deep-Gamma, that is completely different from our previously designed scheme. It contains GammaAtt, a self-attention module that calculates the attention weights from global features, thus avoiding negative optimization. Besides, in contrast to the classical self-attention module outputting multidimensional attention matrices, our proposed GammaAtt output, as multiple parameters, significantly reduces the optimization difficulty and thus supports easy convergence based on a small-scale fluorescence microscopy dataset. As proven by both simulations and experiments, Deep-Gamma can provide higher-quality fluorescence-enhanced images compared to other state-of-the-art methods. Deep-Gamma is envisioned as a future deep low-excitation fluorescence imaging enhancement modality with significant potential in medical imaging applications. This work is open source and available at https://github.com/ZhiboXiao/Deep-Gamma.
Collapse
|
66
|
Harden TT, Vincent BJ, DePace AH. Transcriptional activators in the early Drosophila embryo perform different kinetic roles. Cell Syst 2023; 14:258-272.e4. [PMID: 37080162 PMCID: PMC10473017 DOI: 10.1016/j.cels.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/26/2022] [Accepted: 03/21/2023] [Indexed: 04/22/2023]
Abstract
Combinatorial regulation of gene expression by transcription factors (TFs) may in part arise from kinetic synergy-wherein TFs regulate different steps in the transcription cycle. Kinetic synergy requires that TFs play distinguishable kinetic roles. Here, we used live imaging to determine the kinetic roles of three TFs that activate transcription in the Drosophila embryo-Zelda, Bicoid, and Stat92E-by introducing their binding sites into the even-skipped stripe 2 enhancer. These TFs influence different sets of kinetic parameters, and their influence can change over time. All three TFs increased the fraction of transcriptionally active nuclei; Zelda also shortened the first-passage time into transcription and regulated the interval between transcription events. Stat92E also increased the lifetimes of active transcription. Different TFs can therefore play distinct kinetic roles in activating the transcription. This has consequences for understanding the composition and flexibility of regulatory DNA sequences and the biochemical function of TFs. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Timothy T Harden
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ben J Vincent
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
67
|
Zhu T, Nie J, Yu T, Zhu D, Huang Y, Chen Z, Gu Z, Tang J, Li D, Fei P. Large-scale high-throughput 3D culture, imaging, and analysis of cell spheroids using microchip-enhanced light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:1659-1669. [PMID: 37078040 PMCID: PMC10110308 DOI: 10.1364/boe.485217] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Light sheet microscopy combined with a microchip is an emerging tool in biomedical research that notably improves efficiency. However, microchip-enhanced light-sheet microscopy is limited by noticeable aberrations induced by the complex refractive indices in the chip. Herein, we report a droplet microchip that is specifically engineered to be capable of large-scale culture of 3D spheroids (over 600 samples per chip) and has a polymer index matched to water (difference <1%). When combined with a lab-built open-top light-sheet microscope, this microchip-enhanced microscopy technique allows 3D time-lapse imaging of the cultivated spheroids with ∼2.5-µm single-cell resolution and a high throughput of ∼120 spheroids per minute. This technique was validated by a comparative study on the proliferation and apoptosis rates of hundreds of spheroids with or without treatment with the apoptosis-inducing drug Staurosporine.
Collapse
Affiliation(s)
- Tingting Zhu
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Nie
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yanyi Huang
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Chemistry, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jiang Tang
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongyu Li
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Fei
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
68
|
Al-Rekabi Z, Dondi C, Faruqui N, Siddiqui NS, Elowsson L, Rissler J, Kåredal M, Mudway I, Larsson-Callerfelt AK, Shaw M. Uncovering the cytotoxic effects of air pollution with multi-modal imaging of in vitro respiratory models. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221426. [PMID: 37063998 PMCID: PMC10090883 DOI: 10.1098/rsos.221426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Annually, an estimated seven million deaths are linked to exposure to airborne pollutants. Despite extensive epidemiological evidence supporting clear associations between poor air quality and a range of short- and long-term health effects, there are considerable gaps in our understanding of the specific mechanisms by which pollutant exposure induces adverse biological responses at the cellular and tissue levels. The development of more complex, predictive, in vitro respiratory models, including two- and three-dimensional cell cultures, spheroids, organoids and tissue cultures, along with more realistic aerosol exposure systems, offers new opportunities to investigate the cytotoxic effects of airborne particulates under controlled laboratory conditions. Parallel advances in high-resolution microscopy have resulted in a range of in vitro imaging tools capable of visualizing and analysing biological systems across unprecedented scales of length, time and complexity. This article considers state-of-the-art in vitro respiratory models and aerosol exposure systems and how they can be interrogated using high-resolution microscopy techniques to investigate cell-pollutant interactions, from the uptake and trafficking of particles to structural and functional modification of subcellular organelles and cells. These data can provide a mechanistic basis from which to advance our understanding of the health effects of airborne particulate pollution and develop improved mitigation measures.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Camilla Dondi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nilofar Faruqui
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nazia S. Siddiqui
- Faculty of Medical Sciences, University College London, London, UK
- Kingston Hospital NHS Foundation Trust, Kingston upon Thames, UK
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny Rissler
- Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Monica Kåredal
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Ian Mudway
- MRC Centre for Environment and Health, Imperial College London, London, UK
- National Institute of Health Protection Research Unit in Environmental Exposures and Health, London, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | - Michael Shaw
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
69
|
Nunley H, Shao B, Grover P, Singh J, Joyce B, Kim-Yip R, Kohrman A, Watters A, Gal Z, Kickuth A, Chalifoux M, Shvartsman S, Posfai E, Brown LM. A novel ground truth dataset enables robust 3D nuclear instance segmentation in early mouse embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532646. [PMID: 36993260 PMCID: PMC10055179 DOI: 10.1101/2023.03.14.532646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
For investigations into fate specification and cell rearrangements in live images of preimplantation embryos, automated and accurate 3D instance segmentation of nuclei is invaluable; however, the performance of segmentation methods is limited by the images' low signal-to-noise ratio and high voxel anisotropy and the nuclei's dense packing and variable shapes. Supervised machine learning approaches have the potential to radically improve segmentation accuracy but are hampered by a lack of fully annotated 3D data. In this work, we first establish a novel mouse line expressing near-infrared nuclear reporter H2B-miRFP720. H2B-miRFP720 is the longest wavelength nuclear reporter in mice and can be imaged simultaneously with other reporters with minimal overlap. We then generate a dataset, which we call BlastoSPIM, of 3D microscopy images of H2B-miRFP720-expressing embryos with ground truth for nuclear instance segmentation. Using BlastoSPIM, we benchmark the performance of five convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method across preimplantation development. Stardist-3D, trained on BlastoSPIM, performs robustly up to the end of preimplantation development (> 100 nuclei) and enables studies of fate patterning in the late blastocyst. We, then, demonstrate BlastoSPIM's usefulness as pre-train data for related problems. BlastoSPIM and its corresponding Stardist-3D models are available at: blastospim.flatironinstitute.org.
Collapse
Affiliation(s)
- Hayden Nunley
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Binglun Shao
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Prateek Grover
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Jaspreet Singh
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rebecca Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Abraham Kohrman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Aaron Watters
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Zsombor Gal
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Alison Kickuth
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Madeleine Chalifoux
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Stanislav Shvartsman
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Lisa M. Brown
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| |
Collapse
|
70
|
Shi Y, Tabet JS, Milkie DE, Daugird TA, Yang CQ, Giovannucci A, Legant WR. Smart Lattice Light Sheet Microscopy for imaging rare and complex cellular events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531517. [PMID: 36945393 PMCID: PMC10028917 DOI: 10.1101/2023.03.07.531517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Light sheet microscopes enable rapid, high-resolution imaging of biological specimens; however, biological processes span a variety of spatiotemporal scales. Moreover, long-term phenotypes are often instigated by rare or fleeting biological events that are difficult to capture with a single imaging modality and constant imaging parameters. To overcome this limitation, we present smartLLSM, a microscope that incorporates AI-based instrument control to autonomously switch between epifluorescent inverted imaging and lattice light sheet microscopy. We apply this technology to two major scenarios. First, we demonstrate that the instrument provides population-level statistics of cell cycle states across thousands of cells on a coverslip. Second, we show that by using real-time image feedback to switch between imaging modes, the instrument autonomously captures multicolor 3D datasets or 4D time-lapse movies of dividing cells at rates that dramatically exceed human capabilities. Quantitative image analysis on high-content + high-throughput datasets reveal kinetochore and chromosome dynamics in dividing cells and determine the effects of drug perturbation on cells in specific mitotic stages. This new methodology enables efficient detection of rare events within a heterogeneous cell population and records these processes with high spatiotemporal 4D imaging over statistically significant replicates.
Collapse
|
71
|
Dziekońska A, Lecewicz M, Partyka A, Niżański W. Fluorescence Microscopy and Flow-Cytometry Assessment of Substructures in European Red Deer Epididymal Spermatozoa after Cryopreservation. Animals (Basel) 2023; 13:ani13060990. [PMID: 36978531 PMCID: PMC10044568 DOI: 10.3390/ani13060990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Thawed spermatozoa, sampled post mortem from the fresh epididymides of European red deer and epididymides stored for up to 12 h at 2–4 °C, were evaluated by fluorescence microscopy (FM) and flow cytometry (FC). The sperm samples were extended and cryopreserved. The sperm motility (CASA), sperm viability (SYBR+/PI-), acrosome integrity, mitochondrial activity, apoptotic changes, and chromatin stability were assessed. Sperm were analyzed by FM before cryopreservation, and by FM and FC after thawing. Epididymal storage time (for 12 h) had no significant effect (p > 0.05) on the examined variables before cryopreservation. After thawing, the storage variants differed (p ˂ 0.05) in the percentage of apoptotic sperm (FM and FC) and DNA integrity (FC). The results of FM and FC differed (p ˂ 0.05) in all the analyzed parameters, excluding SYBR+/PI. Significant correlations (p ˂ 0.01) were observed between the sperm viability, acrosome integrity, and the percentage of non-apoptotic spermatozoa, regardless of the applied technique. In FM, the above parameters were also significantly correlated with mitochondrial activity. The study demonstrated that European red deer spermatozoa stored in the epididymides at 2–4 °C for 12 h can be used for cryopreservation. Both techniques were equally reliable, but FM was better suited for evaluating mitochondrial activity whereas FC was more useful in the evaluation of DNA fragmentation.
Collapse
Affiliation(s)
- Anna Dziekońska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
- Correspondence:
| | - Marek Lecewicz
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Agnieszka Partyka
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland
| |
Collapse
|
72
|
Khatib TO, Amanso AM, Pedro B, Knippler CM, Summerbell ER, Zohbi NM, Konen JM, Mouw JK, Marcus AI. A live-cell platform to isolate phenotypically defined subpopulations for spatial multi-omic profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530493. [PMID: 36909653 PMCID: PMC10002729 DOI: 10.1101/2023.02.28.530493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state, with molecular profiles. This inability to integrate a historical live-cell phenotype, such as invasiveness, cell:cell interactions, and changes in spatial positioning, with multi-omic data, creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomics and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live-cells. We begin with cells stably expressing a photoconvertible fluorescent protein and employ live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulation for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live-cell phenotype and multi-omic heterogeneity within normal and diseased cellular populations.
Collapse
Affiliation(s)
- Tala O Khatib
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, USA
- These authors contributed equally
| | - Angelica M Amanso
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- These authors contributed equally
| | - Brian Pedro
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Christina M Knippler
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Emily R Summerbell
- Office of Intratumoral Training and Education, The National Institutes of Health, Bethesda, Maryland, USA
| | - Najdat M Zohbi
- Graduate Medical Education, Piedmont Macon Medical, Macon, Georgia, USA
| | - Jessica M Konen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Janna K Mouw
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
73
|
Nawara TJ, Mattheyses AL. Imaging nanoscale axial dynamics at the basal plasma membrane. Int J Biochem Cell Biol 2023; 156:106349. [PMID: 36566777 PMCID: PMC10634635 DOI: 10.1016/j.biocel.2022.106349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Understanding of how energetically unfavorable plasma membrane shapes form, especially in the context of dynamic processes in living cells or tissues like clathrin-mediated endocytosis is in its infancy. Even though cutting-edge microscopy techniques that bridge this gap exist, they remain underused in biomedical sciences. Here, we demystify the perceived complexity of these advanced microscopy approaches and demonstrate their power in resolving nanometer axial dynamics in living cells. Total internal reflection fluorescence microscopy based approaches are the main focus of this review. We present clathrin-mediated endocytosis as a model system when describing the principles, data acquisition requirements, data interpretation strategies, and limitations of the described techniques. We hope this standardized description will bring the approaches for measuring nanoscale axial dynamics closer to the potential users and help in choosing the right approach to the right question.
Collapse
Affiliation(s)
- Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
74
|
Li X, Xu X, Wang K, Chen Y, Zhang Y, Si Q, Pan Z, Jia F, Cui X, Wang X, Deng X, Zhao Y, Shu D, Jiang Q, Ding B, Wu Y, Liu R. Fluorescence-Amplified Origami Microneedle Device for Quantitatively Monitoring Blood Glucose. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2208820. [PMID: 36810905 DOI: 10.1002/adma.202208820] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Indexed: 05/23/2023]
Abstract
Exploration of clinically acceptable blood glucose monitors has been engaging in the past decades, yet the ability to quantitatively detect blood glucose in a painless, accurate, and highly sensitive manner remains limited. Herein, a fluorescence-amplified origami microneedle (FAOM) device is described that integrates tubular DNA-origami nanostructures and glucose oxidase molecules into its inner network to quantitatively monitor blood glucose. The skin-attached FAOM device can collect glucose molecules in situ and transfer the input into a proton signal after the oxidase's catalysis. The proton-driven mechanical reconfiguration of DNA-origami tubes separates fluorescent molecules and their quenchers, eventually amplifying the glucose-correlated fluorescence signal. The function equation established on clinical examinees suggests that FAOM can report blood glucose in a highly sensitive and quantitative manner. In clinical blind tests, the FAOM achieves well-matched accuracy (98.70 ± 4.77%) compared with a commercial blood biochemical analyzer, fully meeting the requirements of accurate blood glucose monitoring. The FAOM device can be inserted into skin tissue in a trivially painful manner and with minimal leakage of DNA origami, substantially improving the tolerance and compliance of the blood glucose test.
Collapse
Affiliation(s)
- Xianlei Li
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuehui Xu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kewei Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yuqiu Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Yangyuchen Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qingrui Si
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Zi'an Pan
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fan Jia
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinyue Cui
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xuan Wang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiongwei Deng
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yi Zhao
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, P. R. China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing, 102218, P. R. China
| | - Dan Shu
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, P. R. China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing, 102218, P. R. China
| | - Qiao Jiang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Baoquan Ding
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yan Wu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ran Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
75
|
Zhou Y, Wu Y, Paul R, Qin X, Liu Y. Hierarchical Vessel Network-Supported Tumor Model-on-a-Chip Constructed by Induced Spontaneous Anastomosis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6431-6441. [PMID: 36693007 PMCID: PMC10249001 DOI: 10.1021/acsami.2c19453] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/10/2023] [Indexed: 05/14/2023]
Abstract
The vascular system in living tissues is a highly organized system that consists of vessels with various diameters for nutrient delivery and waste transport. In recent years, many vessel construction methods have been developed for building vascularized on-chip tissue models. These methods usually focused on constructing vessels at a single scale. In this work, a method that can build a hierarchical and perfusable vessel networks was developed. By providing flow stimuli and proper HUVEC concentration, spontaneous anastomosis between endothelialized lumens and the self-assembled capillary network was induced; thus, a perfusable network containing vessels at different scales was achieved. With this simple method, an in vivo-like hierarchical vessel-supported tumor model was prepared and its application in anticancer drug testing was demonstrated. The tumor growth rate was predicted by combining computational fluid dynamics simulation and a tumor growth mathematical model to understand the vessel perfusability effect on tumor growth rate in the hierarchical vessel network. Compared to the tumor model without capillary vessels, the hierarchical vessel-supported tumor shows a significantly higher growth rate and drug delivery efficiency.
Collapse
Affiliation(s)
- Yuyuan Zhou
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Yue Wu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Ratul Paul
- Department
of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Xiaochen Qin
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Yaling Liu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania18015, United States
- Department
of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania18015, United States
| |
Collapse
|
76
|
Zhai R, Fang B, Lai Y, Peng B, Bai H, Liu X, Li L, Huang W. Small-molecule fluorogenic probes for mitochondrial nanoscale imaging. Chem Soc Rev 2023; 52:942-972. [PMID: 36514947 DOI: 10.1039/d2cs00562j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria are inextricably linked to the development of diseases and cell metabolism disorders. Super-resolution imaging (SRI) is crucial in enhancing our understanding of mitochondrial ultrafine structures and functions. In addition to high-precision instruments, super-resolution microscopy relies heavily on fluorescent materials with unique photophysical properties. Small-molecule fluorogenic probes (SMFPs) have excellent properties that make them ideal for mitochondrial SRI. This paper summarizes recent advances in the field of SMFPs, with a focus on the chemical and spectroscopic properties required for mitochondrial SRI. Finally, we discuss future challenges in this field, including the design principles of SMFPs and nanoscopic techniques.
Collapse
Affiliation(s)
- Rongxiu Zhai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,School of Materials Science and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yaqi Lai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
77
|
Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit. Nat Biotechnol 2023; 41:282-292. [PMID: 36163547 PMCID: PMC9931589 DOI: 10.1038/s41587-022-01450-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/29/2022] [Indexed: 11/09/2022]
Abstract
A fundamental challenge in fluorescence microscopy is the photon shot noise arising from the inevitable stochasticity of photon detection. Noise increases measurement uncertainty and limits imaging resolution, speed and sensitivity. To achieve high-sensitivity fluorescence imaging beyond the shot-noise limit, we present DeepCAD-RT, a self-supervised deep learning method for real-time noise suppression. Based on our previous framework DeepCAD, we reduced the number of network parameters by 94%, memory consumption by 27-fold and processing time by a factor of 20, allowing real-time processing on a two-photon microscope. A high imaging signal-to-noise ratio can be acquired with tenfold fewer photons than in standard imaging approaches. We demonstrate the utility of DeepCAD-RT in a series of photon-limited experiments, including in vivo calcium imaging of mice, zebrafish larva and fruit flies, recording of three-dimensional (3D) migration of neutrophils after acute brain injury and imaging of 3D dynamics of cortical ATP release. DeepCAD-RT will facilitate the morphological and functional interrogation of biological dynamics with a minimal photon budget.
Collapse
|
78
|
Bollu A, Klöcker N, Špaček P, P Weissenboeck F, Hüwel S, Rentmeister A. Light-Activated Translation of Different mRNAs in Cells via Wavelength-Dependent Photouncaging. Angew Chem Int Ed Engl 2023; 62:e202209975. [PMID: 36417319 PMCID: PMC10107135 DOI: 10.1002/anie.202209975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/24/2022]
Abstract
The 5' cap is a hallmark of eukaryotic mRNA involved in the initiation of translation. Its modification with a single photo-cleavable group can bring translation of mRNA under the control of light. However, UV irradiation causes cell stress and downregulation of translation. Furthermore, complex processes often involve timed expression of more than one gene. The approach would thus greatly benefit from the ability to photo-cleave by blue light and to control more than one mRNA at a time. We report the synthesis of a 5' cap modified with a 7-(diethylamino)coumarin (CouCap) and adapted conditions for in vitro transcription. Translation of the resulting CouCap-mRNA is muted in vitro and in mammalian cells, and can be initiated by irradiation with 450 nm. The native cap is restored and no non-natural residues nor sequence alterations remain in the mRNA. Multiplexing for two different mRNAs was achieved by combining cap analogs with coumarin- and ortho-nitrobenzyl-based photo-cleavable groups.
Collapse
Affiliation(s)
- Amarnath Bollu
- Department of Chemistry, Institute of Biochemistry, Westfälische Wilhelms Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Nils Klöcker
- Department of Chemistry, Institute of Biochemistry, Westfälische Wilhelms Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Petr Špaček
- Department of Chemistry, Institute of Biochemistry, Westfälische Wilhelms Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Florian P Weissenboeck
- Department of Chemistry, Institute of Biochemistry, Westfälische Wilhelms Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Sabine Hüwel
- Department of Chemistry, Institute of Biochemistry, Westfälische Wilhelms Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Andrea Rentmeister
- Department of Chemistry, Institute of Biochemistry, Westfälische Wilhelms Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
79
|
Cheng X, Wang J, Li Q, Duan Y, Chen Y, Teng J, Chu S, Yang H, Wang S, Gong Q. Enhancing Weak-Signal Extraction for Single-Molecule Localization Microscopy. J Phys Chem A 2023; 127:329-338. [PMID: 36541035 DOI: 10.1021/acs.jpca.2c05164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Single-molecule localization microscopy (SMLM) has been widely used in biological imaging due to its ultrahigh spatial resolution. However, due to the strategy of reducing photodamage to living cells, the fluorescence signals of emitters are usually weak and the detector noises become non-negligible, which leads to localization misalignments and signal losses, thus deteriorating the imaging capability of SMLM. Here, we propose an active modulation method to control the fluorescence of the probe emitters. It actually marks the emitters with artificial blinking character, which directly distinguishes weak signals from multiple detector noises. We demonstrated from simulations and experiments that this method improves the signal-to-noise ratio by about 10 dB over the non-modulated method and boosts the sensitivity of single-molecule localization down to -4 dB, which significantly reduces localization misalignments and signal losses in SMLM. This signal-noise decoupling strategy is generally applicable to the super-resolution system with versatile labeled probes to improve their imaging capability. We also showed its application to the densely labeled sample, showing its flexibility in super-resolution nanoscopy.
Collapse
Affiliation(s)
- Xue Cheng
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China
| | - Ju Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China
| | - Qi Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing100871, China
| | - Yiqun Duan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China
| | - Yan Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing100871, China
| | - Saisai Chu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China.,Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing100871, China.,Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, China
| | - Hong Yang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China.,Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing100871, China.,Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, China
| | - Shufeng Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China.,Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing100871, China.,Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, China
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing100871, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China.,Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing100871, China.,Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, China
| |
Collapse
|
80
|
Morales-Curiel LF, Gonzalez AC, Castro-Olvera G, Lin LCL, El-Quessny M, Porta-de-la-Riva M, Severino J, Morera LB, Venturini V, Ruprecht V, Ramallo D, Loza-Alvarez P, Krieg M. Volumetric imaging of fast cellular dynamics with deep learning enhanced bioluminescence microscopy. Commun Biol 2022; 5:1330. [PMID: 36463346 PMCID: PMC9719505 DOI: 10.1038/s42003-022-04292-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Bioluminescence microscopy is an appealing alternative to fluorescence microscopy, because it does not depend on external illumination, and consequently does neither produce spurious background autofluorescence, nor perturb intrinsically photosensitive processes in living cells and animals. The low photon emission of known luciferases, however, demands long exposure times that are prohibitive for imaging fast biological dynamics. To increase the versatility of bioluminescence microscopy, we present an improved low-light microscope in combination with deep learning methods to image extremely photon-starved samples enabling subsecond exposures for timelapse and volumetric imaging. We apply our method to image subcellular dynamics in mouse embryonic stem cells, epithelial morphology during zebrafish development, and DAF-16 FoxO transcription factor shuttling from the cytoplasm to the nucleus under external stress. Finally, we concatenate neural networks for denoising and light-field deconvolution to resolve intracellular calcium dynamics in three dimensions of freely moving Caenorhabditis elegans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jacqueline Severino
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Laura Battle Morera
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Valeria Venturini
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Verena Ruprecht
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Diego Ramallo
- ICFO, Institut de Ciencies Fotòniques, Castelldefels, Spain
| | | | - Michael Krieg
- ICFO, Institut de Ciencies Fotòniques, Castelldefels, Spain.
| |
Collapse
|
81
|
Chu CMJ, Modi H, Ellis C, Krentz NAJ, Skovsø S, Zhao YB, Cen H, Noursadeghi N, Panzhinskiy E, Hu X, Dionne DA, Xia YH, Xuan S, Huising MO, Kieffer TJ, Lynn FC, Johnson JD. Dynamic Ins2 Gene Activity Defines β-Cell Maturity States. Diabetes 2022; 71:2612-2631. [PMID: 36170671 DOI: 10.2337/db21-1065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
Transcriptional and functional cellular specialization has been described for insulin-secreting β-cells of the endocrine pancreas. However, it is not clear whether β-cell heterogeneity is stable or reflects dynamic cellular states. We investigated the temporal kinetics of endogenous insulin gene activity using live cell imaging, with complementary experiments using FACS and single-cell RNA sequencing, in β-cells from Ins2GFP knockin mice. In vivo staining and FACS analysis of islets from Ins2GFP mice confirmed that at a given moment, ∼25% of β-cells exhibited significantly higher activity at the evolutionarily conserved insulin gene, Ins2. Live cell imaging over days captured Ins2 gene activity dynamics in single β-cells. Autocorrelation analysis revealed a subset of oscillating cells, with mean oscillation periods of 17 h. Increased glucose concentrations stimulated more cells to oscillate and resulted in higher average Ins2 gene activity per cell. Single-cell RNA sequencing showed that Ins2(GFP)HIGH β-cells were enriched for markers of β-cell maturity. Ins2(GFP)HIGH β-cells were also significantly less viable at all glucose concentrations and in the context of endoplasmic reticulum stress. Collectively, our results demonstrate that the heterogeneity of insulin production, observed in mouse and human β-cells, can be accounted for by dynamic states of insulin gene activity.
Collapse
Affiliation(s)
- Chieh Min Jamie Chu
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Honey Modi
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Cara Ellis
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Nicole A J Krentz
- BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Søs Skovsø
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Yiwei Bernie Zhao
- Biomedical Research Centre, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Haoning Cen
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Nilou Noursadeghi
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Evgeniy Panzhinskiy
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Xiaoke Hu
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Derek A Dionne
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Yi Han Xia
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Shouhong Xuan
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Timothy J Kieffer
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| | - Francis C Lynn
- BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, Canada
| | - James D Johnson
- Diabetes Focus Team, Life Sciences Institute, Departments of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, Canada
| |
Collapse
|
82
|
Zhang Q, Zhou C, Yu W, Sun Y, Guo G, Wang X. Isotropic imaging-based contactless manipulation for single-cell spatial heterogeneity analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
83
|
Han K, Hua X, Vasani V, Kim GAR, Liu W, Takayama S, Jia S. 3D super-resolution live-cell imaging with radial symmetry and Fourier light-field microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:5574-5584. [PMID: 36733732 PMCID: PMC9872894 DOI: 10.1364/boe.471967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/18/2023]
Abstract
Live-cell imaging reveals the phenotypes and mechanisms of cellular function and their dysfunction that underscore cell physiology, development, and pathology. Here, we report a 3D super-resolution live-cell microscopy method by integrating radiality analysis and Fourier light-field microscopy (rad-FLFM). We demonstrated the method using various live-cell specimens, including actins in Hela cells, microtubules in mammary organoid cells, and peroxisomes in COS-7 cells. Compared with conventional wide-field microscopy, rad-FLFM realizes scanning-free, volumetric 3D live-cell imaging with sub-diffraction-limited resolution of ∼150 nm (x-y) and 300 nm (z), milliseconds volume acquisition time, six-fold extended depth of focus of ∼6 µm, and low photodamage. The method provides a promising avenue to explore spatiotemporal-challenging subcellular processes in a wide range of cell biological research.
Collapse
Affiliation(s)
- Keyi Han
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Xuanwen Hua
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Vishwa Vasani
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ge-Ah R. Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
84
|
Abstract
Fluorescence microscopy is a highly effective tool for interrogating biological structure and function, particularly when imaging across multiple spatiotemporal scales. Here we survey recent innovations and applications in the relatively understudied area of multiscale fluorescence imaging of living samples. We discuss fundamental challenges in live multiscale imaging and describe successful examples that highlight the power of this approach. We attempt to synthesize general strategies from these test cases, aiming to help accelerate progress in this exciting area.
Collapse
Affiliation(s)
- Yicong Wu
- Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Hari Shroff
- Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| |
Collapse
|
85
|
Event-driven acquisition for content-enriched microscopy. Nat Methods 2022; 19:1262-1267. [PMID: 36076039 PMCID: PMC7613693 DOI: 10.1038/s41592-022-01589-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/14/2022] [Indexed: 01/15/2023]
Abstract
A common goal of fluorescence microscopy is to collect data on specific biological events. Yet, the event-specific content that can be collected from a sample is limited, especially for rare or stochastic processes. This is due in part to photobleaching and phototoxicity, which constrain imaging speed and duration. We developed an event-driven acquisition framework, in which neural-network-based recognition of specific biological events triggers real-time control in an instant structured illumination microscope. Our setup adapts acquisitions on-the-fly by switching between a slow imaging rate while detecting the onset of events, and a fast imaging rate during their progression. Thus, we capture mitochondrial and bacterial divisions at imaging rates that match their dynamic timescales, while extending overall imaging durations. Because event-driven acquisition allows the microscope to respond specifically to complex biological events, it acquires data enriched in relevant content.
Collapse
|
86
|
Willig KI. In vivo super-resolution of the brain - How to visualize the hidden nanoplasticity? iScience 2022; 25:104961. [PMID: 36093060 PMCID: PMC9449647 DOI: 10.1016/j.isci.2022.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Super-resolution fluorescence microscopy has entered most biological laboratories worldwide and its benefit is undisputable. Its application to brain imaging, for example in living mice, enables the study of sub-cellular structural plasticity and brain function directly in a living mammal. The demands of brain imaging on the different super-resolution microscopy techniques (STED, RESOLFT, SIM, ISM) and labeling strategies are discussed here as well as the challenges of the required cranial window preparation. Applications of super-resolution in the anesthetized mouse brain enlighten the stability and plasticity of synaptic nanostructures. These studies show the potential of in vivo super-resolution imaging and justify its application more widely in vivo to investigate the role of nanostructures in memory and learning.
Collapse
Affiliation(s)
- Katrin I Willig
- Group of Optical Nanoscopy in Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| |
Collapse
|
87
|
Petukhova E, Ponomareva D, Rustler K, Koenig B, Bregestovski P. Action of the Photochrome Glyght on GABAergic Synaptic Transmission in Mouse Brain Slices. Int J Mol Sci 2022; 23:ijms231810553. [PMID: 36142469 PMCID: PMC9503965 DOI: 10.3390/ijms231810553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Glyght is a new photochromic compound described as an effective modulator of glycine receptors at heterologous expression, in brain slices and in zebrafish larvae. Glyght also caused weak inhibition of GABAA-mediated currents in a cell line expressing α1/β2/γ2 GABAA receptors. However, the effects of Glyght on GABAergic transmission in the brain have not been analysed, which does not allow a sufficiently comprehensive assessment of the effects of the compound on the nervous system. Therefore, in this study using whole-cell patch-clamp recording, we analysed the Glyght (100 µM) action on evoked GABAergic inhibitory postsynaptic currents (eIPSCs) in mice hippocampal slices. Two populations of cells were found: the first responded by reducing the GABAergic eIPSCs’ amplitude, whereas the second showed no sensitivity to the compound. Glyght did not affect the ionic currents’ amplitude induced by GABA application, suggesting the absence of action on postsynaptic GABA receptors. Additionally, Glyght had no impact on the paired-pulse modulation of GABAergic eIPSCs, indicating that Glyght does not modulate the neurotransmitter release mechanisms. In the presence of strychnine, an antagonist of glycine receptors, the Glyght effect on GABAergic synaptic transmission was absent. Our results suggest that Glyght can modulate GABAergic synaptic transmission via action on extrasynaptic glycine receptors.
Collapse
Affiliation(s)
- Elena Petukhova
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Daria Ponomareva
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, INS, 13005 Marseille, France
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| | - Karin Rustler
- Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Burkhard Koenig
- Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Piotr Bregestovski
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, INS, 13005 Marseille, France
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
- Correspondence:
| |
Collapse
|
88
|
Wang X, Wang T, Chen X, Law J, Shan G, Tang W, Gong Z, Pan P, Liu X, Yu J, Ru C, Huang X, Sun Y. Microrobotic Swarms for Intracellular Measurement with Enhanced Signal-to-Noise Ratio. ACS NANO 2022; 16:10824-10839. [PMID: 35786860 DOI: 10.1021/acsnano.2c02938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In cell biology, fluorescent dyes are routinely used for biochemical measurements. The traditional global dye treatment method suffers from low signal-to-noise ratios (SNR), especially when used for detecting a low concentration of ions, and increasing the concentration of fluorescent dyes causes more severe cytotoxicity. Here, we report a robotic technique that controls how a low amount of fluorescent-dye-coated magnetic nanoparticles accurately forms a swarm and increases the fluorescent dye concentration in a local region inside a cell for intracellular measurement. Different from existing magnetic micromanipulation systems that generate large swarms (several microns and above) or that cannot move the generated swarm to an arbitrary position, our system is capable of generating a small swarm (e.g., 1 μm) and accurately positioning the swarm inside a single cell (position control accuracy: 0.76 μm). In experiments, the generated swarm inside the cell showed an SNR 10 times higher than the traditional global dye treatment method. The high-SNR robotic swarm enabled intracellular measurements that had not been possible to achieve with traditional global dye treatment. The robotic swarm technique revealed an apparent pH gradient in a migrating cell and was used to measure the intracellular apparent pH in a single oocyte of living C. elegans. With the position control capability, the swarm was also applied to measure calcium changes at the perinuclear region of a cell before and after mechanical stimulation. The results showed a significant calcium increase after mechanical stimulation, and the calcium increase was regulated by the mechanically sensitive ion channel, PIEZO1.
Collapse
Affiliation(s)
- Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Program in Developmental and Stem Cell Biology and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Tiancong Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Xin Chen
- Program in Developmental and Stem Cell Biology and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Zheyuan Gong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Peng Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518172, China
| | - Changhai Ru
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xi Huang
- Program in Developmental and Stem Cell Biology and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
- Department of Computer Science, University of Toronto, Toronto M5S 3G4, Canada
| |
Collapse
|
89
|
Liu W, Kim GAR, Takayama S, Jia S. Fourier light-field imaging of human organoids with a hybrid point-spread function. Biosens Bioelectron 2022; 208:114201. [PMID: 35381458 PMCID: PMC9050951 DOI: 10.1016/j.bios.2022.114201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
Volumetric interrogation of the cellular morphology and dynamic processes of organoid systems with a high spatiotemporal resolution provides critical insights for understanding organogenesis, tissue homeostasis, and organ function. Fluorescence microscopy has emerged as one of the most vital and informative driving forces for probing the cellular complexity in organoid research. However, the underlying scanning mechanism of conventional imaging methods inevitably compromises the time resolution of volumetric acquisition, leading to increased photodamage and inability to capture fast cellular and tissue dynamic processes. Here, we report Fourier light-field microscopy using a hybrid point-spread function (hPSF-FLFM) for fast, volumetric, and high-resolution imaging of entire organoids. hPSF-FLFM transforms conventional 3D microscopy and enables exploration of less accessible spatiotemporally-challenging regimes for organoid research. To validate hPSF-FLFM, we demonstrate 3D imaging of rapid responses to extracellular physical cues such as osmotic and mechanical stresses on human induced pluripotent stem cells-derived colon organoids (hCOs). The system offers cellular (2-3 μm and 5-6 μm in x-y and z, respectively) and millisecond-scale spatiotemporal characterization of whole-organoid dynamic changes that span large imaging volumes (>900 μm × 900 μm × 200 μm in x, y, z, respectively). The hPSF-FLFM method provides a promising avenue to explore spatiotemporal-challenging cellular responses in a wide variety of organoid research.
Collapse
Affiliation(s)
- Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Ge-Ah R Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
90
|
Tian X, Zhang Y, Li X, Xiong Y, Wu T, Ai HW. A luciferase prosubstrate and a red bioluminescent calcium indicator for imaging neuronal activity in mice. Nat Commun 2022; 13:3967. [PMID: 35803917 PMCID: PMC9270435 DOI: 10.1038/s41467-022-31673-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023] Open
Abstract
Although fluorescent indicators have been broadly utilized for monitoring bioactivities, fluorescence imaging, when applied to mammals, is limited to superficial targets or requires invasive surgical procedures. Thus, there is emerging interest in developing bioluminescent indicators for noninvasive mammalian imaging. Bioluminescence imaging (BLI) of neuronal activity is highly desired but hindered by insufficient photons needed to digitalize fast brain activities. In this work, we develop a luciferase prosubstrate deliverable at an increased dose and activated in vivo by nonspecific esterase. We further engineer a bright, bioluminescent indicator with robust responsiveness to calcium ions (Ca2+) and appreciable emission above 600 nm. Integration of these advantageous components enables the imaging of the activity of neuronal ensembles in awake mice minimally invasively with excellent signal-to-background and subsecond temporal resolution. This study thus establishes a paradigm for studying brain function in health and disease.
Collapse
Affiliation(s)
- Xiaodong Tian
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yiyu Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Xinyu Li
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ying Xiong
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Tianchen Wu
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Hui-Wang Ai
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA.
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA.
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
91
|
Kähärä I, Durandin N, Ilina P, Efimov A, Laaksonen T, Vuorimaa-Laukkanen E, Lisitsyna E. Phototoxicity of BODIPY in long-term imaging can be reduced by intramolecular motion. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:1677-1687. [PMID: 35796875 DOI: 10.1007/s43630-022-00250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
Abstract
For long-term live-cell fluorescence imaging and biosensing, it is crucial to work with a dye that has high fluorescence quantum yield and photostability without being detrimental to the cells. In this paper, we demonstrate that neutral boron-dipyrromethene (BODIPY)-based molecular rotors have great properties for high-light-dosage demanding live-cell fluorescence imaging applications that require repetitive illuminations. In molecular rotors, an intramolecular rotation (IMR) allows an alternative route for the decay of the singlet excited state (S1) via the formation of an intramolecular charge transfer state (CT). The occurrence of IMR reduces the probability of the formation of a triplet state (T1) which could further react with molecular oxygen (3O2) to form cytotoxic reactive oxygen species, e.g., singlet oxygen (1O2). We demonstrate that the oxygen-related nature of the phototoxicity for BODIPY derivatives can be significantly reduced if a neutral molecular rotor is used as a probe. The studied neutral molecular rotor probe shows remarkably lower phototoxicity when compared with both the non-rotating BODIPY derivative and the cationic BODIPY-based molecular rotor in different light dosages and dye concentrations. It is also evident that the charge and localization of the fluorescent probe are as significant as the IMR in terms of the phototoxicity in a long-term live-cell imaging.
Collapse
Affiliation(s)
- Iida Kähärä
- Chemistry and Advanced Materials, Unit of Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere, Finland.
| | - Nikita Durandin
- Chemistry and Advanced Materials, Unit of Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere, Finland
| | - Polina Ilina
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Alexander Efimov
- Chemistry and Advanced Materials, Unit of Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere, Finland
| | - Timo Laaksonen
- Chemistry and Advanced Materials, Unit of Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Elina Vuorimaa-Laukkanen
- Chemistry and Advanced Materials, Unit of Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere, Finland
| | - Ekaterina Lisitsyna
- Chemistry and Advanced Materials, Unit of Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere, Finland.
| |
Collapse
|
92
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
93
|
Seung Lee J, Kim J, Ye YS, Kim TI. Materials and device design for advanced phototherapy systems. Adv Drug Deliv Rev 2022; 186:114339. [PMID: 35568104 DOI: 10.1016/j.addr.2022.114339] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022]
Abstract
Phototherapy has recently emerged as a promising solution for cancer treatment due to its multifunctionality and minimal invasiveness. Notwithstanding the limited penetration depth of light through skin, the ability of photopharmaceutical device systems to deliver light to desired lesions is important. The device system deploys advanced biocompatible materials and fabrication technologies for electronics, and eventually enables more efficient phototherapy. In this review, we focus on diverse optical electronics to illuminate the lesion site with light. Then, moving on to the phototherapy, we highlight photo-thermal therapy with light absorbing materials, photo-activated chemotherapy with light sensitive materials, and photo-dynamic therapy using photosensitizers. Furthermore, we introduce a drug delivery system that can deliver these photopharmaceutical agents spatiotemporally to the tumor site. To this end, we provide a general overview of materials and devices for phototherapy and discuss critical issues and pending limitations of such phototherapy.
Collapse
|
94
|
A proposed unified interphase nucleus chromosome structure: Preliminary preponderance of evidence. Proc Natl Acad Sci U S A 2022; 119:e2119101119. [PMID: 35749363 PMCID: PMC9245672 DOI: 10.1073/pnas.2119101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryopreservation of the nuclear interior allows a large-scale interphase chromosome structure—present throughout the nucleus—to be seen in its native state by electron tomography. This structure appears as a coiled chain of nucleosomes, wrapped like a Slinky toy. This coiled structure can be further used to explain the enigmatic architectures of polytene and lampbrush chromosomes. In addition, this new structure can further be organized as chromosome territories: for example, all 46 human interphase chromosomes easily fit into a 10-μm-diameter nucleus. Thus, interphase chromosomes can be unified into a flexibly defined structure. Cryoelectron tomography of the cell nucleus using scanning transmission electron microscopy and deconvolution processing technology has highlighted a large-scale, 100- to 300-nm interphase chromosome structure, which is present throughout the nucleus. This study further documents and analyzes these chromosome structures. The paper is divided into four parts: 1) evidence (preliminary) for a unified interphase chromosome structure; 2) a proposed unified interphase chromosome architecture; 3) organization as chromosome territories (e.g., fitting the 46 human chromosomes into a 10-μm-diameter nucleus); and 4) structure unification into a polytene chromosome architecture and lampbrush chromosomes. Finally, the paper concludes with a living light microscopy cell study showing that the G1 nucleus contains very similar structures throughout. The main finding is that this chromosome structure appears to coil the 11-nm nucleosome fiber into a defined hollow structure, analogous to a Slinky helical spring [https://en.wikipedia.org/wiki/Slinky; motif used in Bowerman et al., eLife 10, e65587 (2021)]. This Slinky architecture can be used to build chromosome territories, extended to the polytene chromosome structure, as well as to the structure of lampbrush chromosomes.
Collapse
|
95
|
Wang Y, Wang J. Intravital Imaging of Inflammatory Response in Liver Disease. Front Cell Dev Biol 2022; 10:922041. [PMID: 35837329 PMCID: PMC9274191 DOI: 10.3389/fcell.2022.922041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The healthy liver requires a strictly controlled crosstalk between immune and nonimmune cells to maintain its function and homeostasis. A well-conditioned immune system can effectively recognize and clear noxious stimuli by a self-limited, small-scale inflammatory response. This regulated inflammatory process enables the liver to cope with daily microbial exposure and metabolic stress, which is beneficial for hepatic self-renewal and tissue remodeling. However, the failure to clear noxious stimuli or dysregulation of immune response can lead to uncontrolled liver inflammation, liver dysfunction, and severe liver disease. Numerous highly dynamic circulating immune cells and sessile resident immune and parenchymal cells interact and communicate with each other in an incredibly complex way to regulate the inflammatory response in both healthy and diseased liver. Intravital imaging is a powerful tool to visualize individual cells in vivo and has been widely used for dissecting the behavior and interactions between various cell types in the complex architecture of the liver. Here, we summarize some new findings obtained with the use of intravital imaging, which enhances our understanding of the complexity of immune cell behavior, cell–cell interaction, and spatial organization during the physiological and pathological liver inflammatory response.
Collapse
|
96
|
Mellor NG, Graham ES, Unsworth CP. Critical Spatial-Temporal Dynamics and Prominent Shape Collapse of Calcium Waves Observed in Human hNT Astrocytes in Vitro. Front Physiol 2022; 13:808730. [PMID: 35784870 PMCID: PMC9247335 DOI: 10.3389/fphys.2022.808730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Networks of neurons are typically studied in the field of Criticality. However, the study of astrocyte networks in the brain has been recently lauded to be of equal importance to that of the neural networks. To date criticality assessments have only been performed on networks astrocytes from healthy rats, and astrocytes from cultured dissociated resections of intractable epilepsy. This work, for the first time, presents studies of the critical dynamics and shape collapse of calcium waves observed in cultures of healthy human astrocyte networks in vitro, derived from the human hNT cell line. In this article, we demonstrate that avalanches of spontaneous calcium waves display strong critical dynamics, including power-laws in both the size and duration distributions. In addition, the temporal profiles of avalanches displayed self-similarity, leading to shape collapse of the temporal profiles. These findings are significant as they suggest that cultured networks of healthy human hNT astrocytes self-organize to a critical point, implying that healthy astrocytic networks operate at a critical point to process and transmit information. Furthermore, this work can serve as a point of reference to which other astrocyte criticality studies can be compared.
Collapse
Affiliation(s)
- Nicholas G. Mellor
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
- *Correspondence: Nicholas G. Mellor,
| | - E. Scott Graham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Charles P. Unsworth
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
97
|
Pócsi I, Szigeti ZM, Emri T, Boczonádi I, Vereb G, Szöllősi J. Use of red, far-red, and near-infrared light in imaging of yeasts and filamentous fungi. Appl Microbiol Biotechnol 2022; 106:3895-3912. [PMID: 35599256 PMCID: PMC9200671 DOI: 10.1007/s00253-022-11967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Abstract While phototoxicity can be a useful therapeutic modality not only for eliminating malignant cells but also in treating fungal infections, mycologists aiming to observe morphological changes or molecular events in fungi, especially when long observation periods or high light fluxes are warranted, encounter problems owed to altered regulatory pathways or even cell death caused by various photosensing mechanisms. Consequently, the ever expanding repertoire of visible fluorescent protein toolboxes and high-resolution microscopy methods designed to investigate fungi in vitro and in vivo need to comply with an additional requirement: to decrease the unwanted side effects of illumination. In addition to optimizing exposure, an obvious solution is red-shifted illumination, which, however, does not come without compromises. This review summarizes the interactions of fungi with light and the various molecular biology and technology approaches developed for exploring their functions on the molecular, cellular, and in vivo microscopic levels, and outlines the progress towards reducing phototoxicity through applying far-red and near-infrared light. Key points • Fungal biological processes alter upon illumination, also under the microscope • Red shifted fluorescent protein toolboxes decrease interference by illumination • Innovations like two-photon, lightsheet, and near IR microscopy reduce phototoxicity
Collapse
Affiliation(s)
- István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| | - Zsuzsa M Szigeti
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Imre Boczonádi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.,Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| |
Collapse
|
98
|
Hajiabadi H, Mamontova I, Prizak R, Pancholi A, Koziolek A, Hilbert L. Deep-learning microscopy image reconstruction with quality control reveals second-scale rearrangements in RNA polymerase II clusters. PNAS NEXUS 2022; 1:pgac065. [PMID: 36741438 PMCID: PMC9896941 DOI: 10.1093/pnasnexus/pgac065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Fluorescence microscopy, a central tool of biological research, is subject to inherent trade-offs in experiment design. For instance, image acquisition speed can only be increased in exchange for a lowered signal quality, or for an increased rate of photo-damage to the specimen. Computational denoising can recover some loss of signal, extending the trade-off margin for high-speed imaging. Recently proposed denoising on the basis of neural networks shows exceptional performance but raises concerns of errors typical of neural networks. Here, we present a work-flow that supports an empirically optimized reduction of exposure times, as well as per-image quality control to exclude images with reconstruction errors. We implement this work-flow on the basis of the denoising tool Noise2Void and assess the molecular state and 3D shape of RNA polymerase II (Pol II) clusters in live zebrafish embryos. Image acquisition speed could be tripled, achieving 2-s time resolution and 350-nm lateral image resolution. The obtained data reveal stereotyped events of approximately 10 s duration: initially, the molecular mark for recruited Pol II increases, then the mark for active Pol II increases, and finally Pol II clusters take on a stretched and unfolded shape. An independent analysis based on fixed sample images reproduces this sequence of events, and suggests that they are related to the transient association of genes with Pol II clusters. Our work-flow consists of procedures that can be implemented on commercial fluorescence microscopes without any hardware or software modification, and should, therefore, be transferable to many other applications.
Collapse
Affiliation(s)
| | | | - Roshan Prizak
- Institute of Biological and Chemical Systems, Department of Biological Information Processing, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Agnieszka Pancholi
- Institute of Biological and Chemical Systems, Department of Biological Information Processing, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | | | | |
Collapse
|
99
|
Wang L, Fu R, Xu C, Xu M. Methods and applications of full-field optical coherence tomography: a review. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220007VR. [PMID: 35596250 PMCID: PMC9122094 DOI: 10.1117/1.jbo.27.5.050901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 05/24/2023]
Abstract
SIGNIFICANCE Full-field optical coherence tomography (FF-OCT) enables en face views of scattering samples at a given depth with subcellular resolution, similar to biopsy without the need of sample slicing or other complex preparation. This noninvasive, high-resolution, three-dimensional (3D) imaging method has the potential to become a powerful tool in biomedical research, clinical applications, and other microscopic detection. AIM Our review provides an overview of the disruptive innovations and key technologies to further improve FF-OCT performance, promoting FF-OCT technology in biomedical and other application scenarios. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. Methods to improve performance of FF-OCT systems are reviewed, including advanced phase-shift approaches for imaging speed improvement, methods of denoising, artifact reduction, and aberration correction for imaging quality optimization, innovations for imaging flux expansion (field-of-view enlargement and imaging-depth-limit extension), new implementations for multimodality systems, and deep learning enhanced FF-OCT for information mining, etc. Finally, we summarize the application status and prospects of FF-OCT in the fields of biomedicine, materials science, security, and identification. RESULTS The most worth-expecting FF-OCT innovations include combining the technique of spatial modulation of optical field and computational optical imaging technology to obtain greater penetration depth, as well as exploiting endogenous contrast for functional imaging, e.g., dynamic FF-OCT, which enables noninvasive visualization of tissue dynamic properties or intracellular motility. Different dynamic imaging algorithms are compared using the same OCT data of the colorectal cancer organoid, which helps to understand the disadvantages and advantages of each. In addition, deep learning enhanced FF-OCT provides more valuable characteristic information, which is of great significance for auxiliary diagnosis and organoid detection. CONCLUSIONS FF-OCT has not been completely exploited and has substantial growth potential. By elaborating the key technologies, performance optimization methods, and application status of FF-OCT, we expect to accelerate the development of FF-OCT in both academic and industry fields. This renewed perspective on FF-OCT may also serve as a road map for future development of invasive 3D super-resolution imaging techniques to solve the problems of microscopic visualization detection.
Collapse
Affiliation(s)
- Ling Wang
- Hangzhou DianZi University, School of Automation, Hangzhou, China
- Key Laboratory of Medical Information and 3D Biological of Zhejiang Province, Hangzhou, China
| | - Rongzhen Fu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
| | - Chen Xu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
| | - Mingen Xu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
- Key Laboratory of Medical Information and 3D Biological of Zhejiang Province, Hangzhou, China
| |
Collapse
|
100
|
Yalamanchili K, Afzal N, Boyman L, Mannella CA, Lederer WJ, Jafri MS. Understanding the Dynamics of the Transient and Permanent Opening Events of the Mitochondrial Permeability Transition Pore with a Novel Stochastic Model. MEMBRANES 2022; 12:494. [PMID: 35629820 PMCID: PMC9146742 DOI: 10.3390/membranes12050494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023]
Abstract
The mitochondrial permeability transition pore (mPTP) is a non-selective pore in the inner mitochondrial membrane (IMM) which causes depolarization when it opens under conditions of oxidative stress and high concentrations of Ca2+. In this study, a stochastic computational model was developed to better understand the dynamics of mPTP opening and closing associated with elevated reactive oxygen species (ROS) in cardiomyocytes. The data modeled are from "photon stress" experiments in which the fluorescent dye TMRM (tetramethylrhodamine methyl ester) is both the source of ROS (induced by laser light) and sensor of the electrical potential difference across the IMM. Monte Carlo methods were applied to describe opening and closing of the pore along with the Hill Equation to account for the effect of ROS levels on the transition probabilities. The amplitude distribution of transient mPTP opening events, the number of transient mPTP opening events per minute in a cell, the time it takes for recovery after transient depolarizations in the mitochondria, and the change in TMRM fluorescence during the transition from transient to permanent mPTP opening events were analyzed. The model suggests that mPTP transient open times have an exponential distribution that are reflected in TMRM fluorescence. A second multiple pore model in which individual channels have no permanent open state suggests that 5-10 mPTP per mitochondria would be needed for sustained mitochondrial depolarization at elevated ROS with at least 1 mPTP in the transient open state.
Collapse
Affiliation(s)
- Keertana Yalamanchili
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (K.Y.); (N.A.)
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| | - Nasrin Afzal
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (K.Y.); (N.A.)
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.B.); (C.A.M.); (W.J.L.)
| | - Carmen A. Mannella
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.B.); (C.A.M.); (W.J.L.)
| | - W. Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.B.); (C.A.M.); (W.J.L.)
| | - M. Saleet Jafri
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| |
Collapse
|