51
|
Gong C, Xue B, Jing C, He CH, Wu GC, Lei B, Wang S. Time-sequential graph adversarial learning for brain modularity community detection. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:13276-13293. [PMID: 36654046 DOI: 10.3934/mbe.2022621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Brain community detection is an efficient method to represent the communities of brain networks. However, time-variable functions of the brain and the intricate brain community structure impose a great challenge on it. In this paper, a time-sequential graph adversarial learning (TGAL) framework is proposed to detect brain communities and characterize the structure of communities from brain networks. In the framework, a novel time-sequential graph neural network is designed as an encoder to extract efficient graph representations by spatio-temporal attention mechanism. Since it is difficult to capture the community structure, the measurable modularity loss is used to optimize by maximizing the modularity of the community. In addition, the framework employs an adversarial scheme to guide the learning of representation. The effectiveness of our model is shown through experiments on the real-world brain network datasets, and the great performance of brain community detection demonstrates the advantage of the proposed framework.
Collapse
Affiliation(s)
- Changwei Gong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518060, China
- Department of Computer Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Xue
- Faculty of Computer science, University of Malaya, Malaya
| | - Changhong Jing
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518060, China
- Department of Computer Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Hui He
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Guo-Cheng Wu
- Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, China
| | - Baiying Lei
- School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuqiang Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518060, China
| |
Collapse
|
52
|
Zahnert F, Kräling G, Melms L, Belke M, Kleinholdermann U, Timmermann L, Hirsch M, Jansen A, Mross P, Menzler K, Habermehl L, Knake S. Diffusion magnetic resonance imaging connectome features are predictive of functional lateralization of semantic processing in the anterior temporal lobes. Hum Brain Mapp 2022; 44:496-508. [PMID: 36098483 PMCID: PMC9842893 DOI: 10.1002/hbm.26074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/22/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
Assessment of regional language lateralization is crucial in many scenarios, but not all populations are suited for its evaluation via task-functional magnetic resonance imaging (fMRI). In this study, the utility of structural connectome features for the classification of language lateralization in the anterior temporal lobes (ATLs) was investigated. Laterality indices for semantic processing in the ATL were computed from task-fMRI in 1038 subjects from the Human Connectome Project who were labeled as stronger rightward lateralized (RL) or stronger leftward to bilaterally lateralized (LL) in a data-driven approach. Data of unrelated subjects (n = 432) were used for further analyses. Structural connectomes were generated from diffusion-MRI tractography, and graph theoretical metrics (node degree, betweenness centrality) were computed. A neural network (NN) and a random forest (RF) classifier were trained on these metrics to classify subjects as RL or LL. After classification, comparisons of network measures were conducted via permutation testing. Degree-based classifiers produced significant above-chance predictions both during cross-validation (NN: AUC-ROC[CI] = 0.68[0.64-0.73], accuracy[CI] = 68.34%[63-73.2%]; RF: AUC-ROC[CI] = 0.7[0.66-0.73], accuracy[CI] = 64.81%[60.9-68.5]) and testing (NN: AUC-ROC[CI] = 0.69[0.53-0.84], accuracy[CI] = 68.09[53.2-80.9]; RF: AUC-ROC[CI] = 0.68[0.53-0.84], accuracy[CI] = 68.09[55.3-80.9]). Comparison of network metrics revealed small effects of increased node degree within the right posterior middle temporal gyrus (pMTG) in subjects with RL, while degree was decreased in the right posterior cingulate cortex (PCC). Above-chance predictions of functional language lateralization in the ATL are possible based on diffusion-MRI connectomes alone. Increased degree within the right pMTG as a right-sided homologue of a known semantic hub, and decreased hubness of the right PCC may form a structural basis for rightward-lateralized semantic processing.
Collapse
Affiliation(s)
- Felix Zahnert
- Epilepsy Center Hesse, Department for NeurologyUniversity Hospital Marburg, Philipps University MarburgMarburgGermany
| | - Gunter Kräling
- Department of Medical TechnologyUniversity Hospital MarburgMarburgGermany
| | - Leander Melms
- Institute for Artificial IntelligenceUniversity Hospital Marburg, Philipps University MarburgMarburgGermany
| | - Marcus Belke
- Epilepsy Center Hesse, Department for NeurologyUniversity Hospital Marburg, Philipps University MarburgMarburgGermany,LOEWE Center for Personalized Translational Epilepsy Research (CePTER)Goethe‐University FrankfurtFrankfurt Am MainGermany
| | - Urs Kleinholdermann
- Department for NeurologyUniversity Hospital Marburg, Philipps University MarburgMarburgGermany
| | - Lars Timmermann
- Department for NeurologyUniversity Hospital Marburg, Philipps University MarburgMarburgGermany,Center for Mind, Brain and Behavior (CMBB)Philipps‐University MarburgMarburgGermany,Core Facility Brainimaging, Faculty of MedicineUniversity of MarburgMarburgGermany
| | - Martin Hirsch
- Institute for Artificial IntelligenceUniversity Hospital Marburg, Philipps University MarburgMarburgGermany
| | - Andreas Jansen
- Center for Mind, Brain and Behavior (CMBB)Philipps‐University MarburgMarburgGermany,Core Facility Brainimaging, Faculty of MedicineUniversity of MarburgMarburgGermany,Department for Psychiatry and PsychotherapyUniversity Hospital Marburg, Philipps University MarburgMarburgGermany
| | - Peter Mross
- Epilepsy Center Hesse, Department for NeurologyUniversity Hospital Marburg, Philipps University MarburgMarburgGermany
| | - Katja Menzler
- Epilepsy Center Hesse, Department for NeurologyUniversity Hospital Marburg, Philipps University MarburgMarburgGermany,Center for Mind, Brain and Behavior (CMBB)Philipps‐University MarburgMarburgGermany,Core Facility Brainimaging, Faculty of MedicineUniversity of MarburgMarburgGermany
| | - Lena Habermehl
- Epilepsy Center Hesse, Department for NeurologyUniversity Hospital Marburg, Philipps University MarburgMarburgGermany
| | - Susanne Knake
- Epilepsy Center Hesse, Department for NeurologyUniversity Hospital Marburg, Philipps University MarburgMarburgGermany,LOEWE Center for Personalized Translational Epilepsy Research (CePTER)Goethe‐University FrankfurtFrankfurt Am MainGermany,Center for Mind, Brain and Behavior (CMBB)Philipps‐University MarburgMarburgGermany,Core Facility Brainimaging, Faculty of MedicineUniversity of MarburgMarburgGermany
| |
Collapse
|
53
|
Srivastava P, Fotiadis P, Parkes L, Bassett DS. The expanding horizons of network neuroscience: From description to prediction and control. Neuroimage 2022; 258:119250. [PMID: 35659996 PMCID: PMC11164099 DOI: 10.1016/j.neuroimage.2022.119250] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 01/11/2023] Open
Abstract
The field of network neuroscience has emerged as a natural framework for the study of the brain and has been increasingly applied across divergent problems in neuroscience. From a disciplinary perspective, network neuroscience originally emerged as a formal integration of graph theory (from mathematics) and neuroscience (from biology). This early integration afforded marked utility in describing the interconnected nature of neural units, both structurally and functionally, and underscored the relevance of that interconnection for cognition and behavior. But since its inception, the field has not remained static in its methodological composition. Instead, it has grown to use increasingly advanced graph-theoretic tools and to bring in several other disciplinary perspectives-including machine learning and systems engineering-that have proven complementary. In doing so, the problem space amenable to the discipline has expanded markedly. In this review, we discuss three distinct flavors of investigation in state-of-the-art network neuroscience: (i) descriptive network neuroscience, (ii) predictive network neuroscience, and (iii) a perturbative network neuroscience that draws on recent advances in network control theory. In considering each area, we provide a brief summary of the approaches, discuss the nature of the insights obtained, and highlight future directions.
Collapse
Affiliation(s)
- Pragya Srivastava
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Panagiotis Fotiadis
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Neurology, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA; Santa Fe Institute, Santa Fe NM 87501, USA.
| |
Collapse
|
54
|
Cheng L, Chiu Y, Lin Y, Li W, Hong T, Yang C, Shih C, Yeh T, Tseng WI, Yu H, Hsieh J, Chen L. Long-term musical training induces white matter plasticity in emotion and language networks. Hum Brain Mapp 2022; 44:5-17. [PMID: 36005832 PMCID: PMC9783470 DOI: 10.1002/hbm.26054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Numerous studies have reported that long-term musical training can affect brain functionality and induce structural alterations in the brain. Singing is a form of vocal musical expression with an unparalleled capacity for communicating emotion; however, there has been relatively little research on neuroplasticity at the network level in vocalists (i.e., noninstrumental musicians). Our objective in this study was to elucidate changes in the neural network architecture following long-term training in the musical arts. We employed a framework based on graph theory to depict the connectivity and efficiency of structural networks in the brain, based on diffusion-weighted images obtained from 35 vocalists, 27 pianists, and 33 nonmusicians. Our results revealed that musical training (both voice and piano) could enhance connectivity among emotion-related regions of the brain, such as the amygdala. We also discovered that voice training reshaped the architecture of experience-dependent networks, such as those involved in vocal motor control, sensory feedback, and language processing. It appears that vocal-related changes in areas such as the insula, paracentral lobule, supramarginal gyrus, and putamen are associated with functional segregation, multisensory integration, and enhanced network interconnectivity. These results suggest that long-term musical training can strengthen or prune white matter connectivity networks in an experience-dependent manner.
Collapse
Affiliation(s)
- Li‐Kai Cheng
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Yu‐Hsien Chiu
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Ying‐Chia Lin
- Center for Advanced Imaging Innovation and Research (CAIR)NYU Grossman School of MedicineNew YorkNew YorkUSA,Center for Biomedical Imaging, Department of RadiologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Wei‐Chi Li
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Tzu‐Yi Hong
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Ching‐Ju Yang
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Chung‐Heng Shih
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Tzu‐Chen Yeh
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Department of RadiologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Wen‐Yih Isaac Tseng
- Institute of Medical Device and ImagingNational Taiwan University College of MedicineTaipeiTaiwan
| | - Hsin‐Yen Yu
- Graduate Institute of Arts and Humanities EducationTaipei National University of the ArtsTaipeiTaiwan
| | - Jen‐Chuen Hsieh
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan,Brain Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Department of Biological Science and Technology, College of Biological Science and TechnologyNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Li‐Fen Chen
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan,Brain Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
55
|
Alemán-Gómez Y, Griffa A, Houde JC, Najdenovska E, Magon S, Cuadra MB, Descoteaux M, Hagmann P. A multi-scale probabilistic atlas of the human connectome. Sci Data 2022; 9:516. [PMID: 35999243 PMCID: PMC9399115 DOI: 10.1038/s41597-022-01624-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
The human brain is a complex system that can be efficiently represented as a network of structural connectivity. Many imaging studies would benefit from such network information, which is not always available. In this work, we present a whole-brain multi-scale structural connectome atlas. This tool has been derived from a cohort of 66 healthy subjects imaged with optimal technology in the setting of the Human Connectome Project. From these data we created, using extensively validated diffusion-data processing, tractography and gray-matter parcellation tools, a multi-scale probabilistic atlas of the human connectome. In addition, we provide user-friendly and accessible code to match this atlas to individual brain imaging data to extract connection-specific quantitative information. This can be used to associate individual imaging findings, such as focal white-matter lesions or regional alterations, to specific connections and brain circuits. Accordingly, network-level consequences of regional changes can be analyzed even in absence of diffusion and tractography data. This method is expected to broaden the accessibility and lower the yield for connectome research.
Collapse
Affiliation(s)
- Yasser Alemán-Gómez
- Connectomics Lab, Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland.
| | - Alessandra Griffa
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Medical Image Processing Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Leenaards Memory Centre, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Elena Najdenovska
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefano Magon
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Meritxell Bach Cuadra
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Sherbrooke University, Sherbrooke, Canada
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
56
|
Frischkorn GT, Hilger K, Kretzschmar A, Schubert AL. Intelligenzdiagnostik der Zukunft. PSYCHOLOGISCHE RUNDSCHAU 2022. [DOI: 10.1026/0033-3042/a000598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Zusammenfassung. Die menschliche Intelligenz ist eines der am besten erforschten und validierten Konstrukte innerhalb der Psychologie. Dennoch wird die Validität von Intelligenztests im gruppen- und insbesondere kulturvergleichenden Kontext regelmäßig und berechtigterweise kritisch hinterfragt. Obwohl verschiedene Alternativen und Weiterentwicklungen der Intelligenzdiagnostik vorgeschlagen wurden (z. B. kulturfaire Tests), sind fundamentale Probleme in der vergleichenden Intelligenzdiagnostik noch immer ungelöst und die Validitäten entsprechender Verfahren unklar. In dem vorliegenden Positionspapier wird diese Thematik aus der Perspektive der Kognitionspsychologie und der kognitiven Neurowissenschaften beleuchtet und eine prozessorientierte und biologisch inspirierte Form der Intelligenzdiagnostik als potentieller Lösungsansatz vorgeschlagen. Wir zeigen die Bedeutung elementarer kognitiver Prozesse auf (insbesondere Arbeitsgedächtniskapazität, Aufmerksamkeit, Verarbeitungsgeschwindigkeit), die individuellen Leistungsunterschieden zu Grunde liegen, und betonen, dass der Unterscheidung zwischen Inhalten und Prozessen eine zentrale, jedoch oft vernachlässigte Rolle in der Diagnostik allgemeiner kognitiver Leistungsunterschiede zukommt. Während aus kognitions- und neuropsychologischer Sicht davon ausgegangen werden kann, dass sich insbesondere Prozesse für interkulturelle Vergleiche eignen, sollten Inhalte als stärker kulturspezifisch verstanden werden. Darauf aufbauend diskutieren wir drei verschiedene Ansätze zur Verbesserung interkultureller Vergleichbarkeit der Intelligenzdiagnostik sowie deren Grenzen. Wir postulieren, dass sich die Intelligenzforschung im Austausch mit verschiedenen Disziplinen stärker auf die Identifikation von generellen kognitiven Prozessen fokussieren sollte und diskutieren das Potenzial zukünftiger Forschung hin zu einer prozessorientierten und biologisch inspirierten Intelligenzdiagnostik. Schließlich zeigen wir derzeitige Möglichkeiten auf, gehen aber auch auf etwaige Herausforderungen ein und beleuchten Implikationen für die zukünftige Intelligenzdiagnostik und -forschung.
Collapse
Affiliation(s)
| | - Kirsten Hilger
- Institut für Psychologie, Universität Würzburg, Deutschland
| | | | - Anna-Lena Schubert
- Psychologisches Institut, Universität Heidelberg, Deutschland
- Psychologisches Institut, Universität Mainz, Deutschland
| |
Collapse
|
57
|
|
58
|
Li Z, Zhao L, Ji J, Ma B, Zhao Z, Wu M, Zheng W, Zhang Z. Temporal Grading Index of Functional Network Topology Predicts Pain Perception of Patients With Chronic Back Pain. Front Neurol 2022; 13:899254. [PMID: 35756935 PMCID: PMC9226296 DOI: 10.3389/fneur.2022.899254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic back pain (CBP) is a maladaptive health problem affecting the brain function and behavior of the patient. Accumulating evidence has shown that CBP may alter the organization of functional brain networks; however, whether the severity of CBP is associated with changes in dynamics of functional network topology remains unclear. Here, we generated dynamic functional networks based on resting-state functional magnetic resonance imaging (rs-fMRI) of 34 patients with CBP and 34 age-matched healthy controls (HC) in the OpenPain database via a sliding window approach, and extracted nodal degree, clustering coefficient (CC), and participation coefficient (PC) of all windows as features to characterize changes of network topology at temporal scale. A novel feature, named temporal grading index (TGI), was proposed to quantify the temporal deviation of each network property of a patient with CBP to the normal oscillation of the HCs. The TGI of the three features achieved outstanding performance in predicting pain intensity on three commonly used regression models (i.e., SVR, Lasso, and elastic net) through a 5-fold cross-validation strategy, with the minimum mean square error of 0.25 ± 0.05; and the TGI was not related to depression symptoms of the patients. Furthermore, compared to the HCs, brain regions that contributed most to prediction showed significantly higher CC and lower PC across time windows in the CBP cohort. These results highlighted spatiotemporal changes in functional network topology in patients with CBP, which might serve as a valuable biomarker for assessing the sensation of pain in the brain and may facilitate the development of CBP management/therapy approaches.
Collapse
Affiliation(s)
- Zhonghua Li
- Department of Rehabilitation Medicine, Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Leilei Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Jing Ji
- Department of Rehabilitation Medicine, Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Ben Ma
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Miao Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Zhe Zhang
- Institute of Brain Science, Hangzhou Normal University, Hangzhou, China.,School of Physics, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
59
|
Yin S, Li Y, Chen A. Functional coupling between frontoparietal control subnetworks bridges the default and dorsal attention networks. Brain Struct Funct 2022; 227:2243-2260. [PMID: 35751677 DOI: 10.1007/s00429-022-02517-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/23/2022] [Indexed: 12/25/2022]
Abstract
The frontoparietal control network (FPCN) plays a central role in tuning connectivity between brain networks to achieve integrated cognitive processes. It has been proposed that two subnetworks within the FPCN separately regulate two antagonistic networks: the FPCNa is connected to the default network (DN) that deals with internally oriented introspective processes, whereas the FPCNb is connected to the dorsal attention network (DAN) that deals with externally oriented perceptual attention. However, cooperation between the DN and DAN induced by distinct task demands has not been well-studied. Here, we characterized the dynamic cooperation among the DN, DAN, and two FPCN subnetworks in a task in which internally oriented self-referential processing could facilitate externally oriented visual working memory. Functional connectivity analysis showed enhanced coupling of a circuit from the DN to the FPCNa, then to the FPCNb, and finally to the DAN when the self-referential processing improved memory recognition in high self-referential conditions. The direct connection between the DN and DAN was not enhanced. This circuit could be reflected by an increased chain-mediating effect of the FPCNa and the FPCNb between the DN and DAN in high self-referential conditions. Graph analysis revealed that high self-referential conditions were accompanied by increased global and local efficiencies, and the increases were mainly driven by the increased efficiency of FPCN nodes. Together, our findings extend prior observations and indicate that the coupling between the two FPCN subnetworks serves as a bridge between the DN and DAN, supporting the interaction between internally oriented and externally oriented processes.
Collapse
Affiliation(s)
- Shouhang Yin
- School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China
| | - Yilu Li
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Antao Chen
- School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
60
|
Nordin K, Gorbach T, Pedersen R, Panes Lundmark V, Johansson J, Andersson M, McNulty C, Riklund K, Wåhlin A, Papenberg G, Kalpouzos G, Bäckman L, Salami A. DyNAMiC: A prospective longitudinal study of dopamine and brain connectomes: A new window into cognitive aging. J Neurosci Res 2022; 100:1296-1320. [PMID: 35293013 PMCID: PMC9313590 DOI: 10.1002/jnr.25039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 11/07/2022]
Abstract
Concomitant exploration of structural, functional, and neurochemical brain mechanisms underlying age-related cognitive decline is crucial in promoting healthy aging. Here, we present the DopamiNe, Age, connectoMe, and Cognition (DyNAMiC) project, a multimodal, prospective 5-year longitudinal study spanning the adult human lifespan. DyNAMiC examines age-related changes in the brain's structural and functional connectome in relation to changes in dopamine D1 receptor availability (D1DR), and their associations to cognitive decline. Critically, due to the complete lack of longitudinal D1DR data, the true trajectory of one of the most age-sensitive dopamine systems remains unknown. The first DyNAMiC wave included 180 healthy participants (20-80 years). Brain imaging included magnetic resonance imaging assessing brain structure (white matter, gray matter, iron), perfusion, and function (during rest and task), and positron emission tomography (PET) with the [11 C]SCH23390 radioligand. A subsample (n = 20, >65 years) was additionally scanned with [11 C]raclopride PET measuring D2DR. Age-related variation was evident for multiple modalities, such as D1DR; D2DR, and performance across the domains of episodic memory, working memory, and perceptual speed. Initial analyses demonstrated an inverted u-shaped association between D1DR and resting-state functional connectivity across cortical network nodes, such that regions with intermediate D1DR levels showed the highest levels of nodal strength. Evident within each age group, this is the first observation of such an association across the adult lifespan, suggesting that emergent functional architecture depends on underlying D1DR systems. Taken together, DyNAMiC is the largest D1DR study worldwide, and will enable a comprehensive examination of brain mechanisms underlying age-related cognitive decline.
Collapse
Affiliation(s)
- Kristin Nordin
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Present address:
Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholm11330Sweden
| | - Tetiana Gorbach
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Umeå School of Business, Economics and StatisticsUmeå UniversityUmeåSweden
| | - Robin Pedersen
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Vania Panes Lundmark
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Jarkko Johansson
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Charlotte McNulty
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Goran Papenberg
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Grégoria Kalpouzos
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Lars Bäckman
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| |
Collapse
|
61
|
Squadrani L, Curti N, Giampieri E, Remondini D, Blais B, Castellani G. Effectiveness of Biologically Inspired Neural Network Models in Learning and Patterns Memorization. ENTROPY (BASEL, SWITZERLAND) 2022; 24:682. [PMID: 35626566 PMCID: PMC9141587 DOI: 10.3390/e24050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023]
Abstract
Purpose: In this work, we propose an implementation of the Bienenstock-Cooper-Munro (BCM) model, obtained by a combination of the classical framework and modern deep learning methodologies. The BCM model remains one of the most promising approaches to modeling the synaptic plasticity of neurons, but its application has remained mainly confined to neuroscience simulations and few applications in data science. Methods: To improve the convergence efficiency of the BCM model, we combine the original plasticity rule with the optimization tools of modern deep learning. By numerical simulation on standard benchmark datasets, we prove the efficiency of the BCM model in learning, memorization capacity, and feature extraction. Results: In all the numerical simulations, the visualization of neuronal synaptic weights confirms the memorization of human-interpretable subsets of patterns. We numerically prove that the selectivity obtained by BCM neurons is indicative of an internal feature extraction procedure, useful for patterns clustering and classification. The introduction of competitiveness between neurons in the same BCM network allows the network to modulate the memorization capacity of the model and the consequent model selectivity. Conclusions: The proposed improvements make the BCM model a suitable alternative to standard machine learning techniques for both feature selection and classification tasks.
Collapse
Affiliation(s)
- Lorenzo Squadrani
- Department of Physics and Astronomy, University of Bologna, 40126 Bologna, Italy; (L.S.); (D.R.)
| | - Nico Curti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (N.C.); (G.C.)
| | - Enrico Giampieri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (N.C.); (G.C.)
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, 40126 Bologna, Italy; (L.S.); (D.R.)
- INFN, 40127 Bologna, Italy
| | - Brian Blais
- Department of Science, Bryant University, Smithfield, RI 02917, USA;
| | - Gastone Castellani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (N.C.); (G.C.)
| |
Collapse
|
62
|
Duff MC, Morrow EL, Edwards M, McCurdy R, Clough S, Patel N, Walsh K, Covington NV. The Value of Patient Registries to Advance Basic and Translational Research in the Area of Traumatic Brain Injury. Front Behav Neurosci 2022; 16:846919. [PMID: 35548696 PMCID: PMC9082794 DOI: 10.3389/fnbeh.2022.846919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/29/2022] [Indexed: 01/16/2023] Open
Abstract
The number of individuals affected by traumatic brain injury (TBI) is growing globally. TBIs may cause a range of physical, cognitive, and psychiatric deficits that can negatively impact employment, academic attainment, community independence, and interpersonal relationships. Although there has been a significant decrease in the number of injury related deaths over the past several decades, there has been no corresponding reduction in injury related disability over the same time period. We propose that patient registries with large, representative samples and rich multidimensional and longitudinal data have tremendous value in advancing basic and translational research and in capturing, characterizing, and predicting individual differences in deficit profile and outcomes. Patient registries, together with recent theoretical and methodological advances in analytic approaches and neuroscience, provide powerful tools for brain injury research and for leveraging the heterogeneity that has traditionally been cited as a barrier inhibiting progress in treatment research and clinical practice. We report on our experiences, and challenges, in developing and maintaining our own patient registry. We conclude by pointing to some future opportunities for discovery that are afforded by a registry model.
Collapse
Affiliation(s)
- Melissa C. Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Meharry Medical College, Nashville, TN, United States
| | - Emily L. Morrow
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Malcolm Edwards
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Meharry Medical College, Nashville, TN, United States
| | - Ryan McCurdy
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sharice Clough
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nirav Patel
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kimberly Walsh
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Natalie V. Covington
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
63
|
Wang M, Shao W, Hao X, Huang S, Zhang D. Identify connectome between genotypes and brain network phenotypes via deep self-reconstruction sparse canonical correlation analysis. Bioinformatics 2022; 38:2323-2332. [PMID: 35143604 DOI: 10.1093/bioinformatics/btac074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION As a rising research topic, brain imaging genetics aims to investigate the potential genetic architecture of both brain structure and function. It should be noted that in the brain, not all variations are deservedly caused by genetic effect, and it is generally unknown which imaging phenotypes are promising for genetic analysis. RESULTS In this work, genetic variants (i.e. the single nucleotide polymorphism, SNP) can be correlated with brain networks (i.e. quantitative trait, QT), so that the connectome (including the brain regions and connectivity features) of functional brain networks from the functional magnetic resonance imaging data is identified. Specifically, a connection matrix is firstly constructed, whose upper triangle elements are selected to be connectivity features. Then, the PageRank algorithm is exploited for estimating the importance of different brain regions as the brain region features. Finally, a deep self-reconstruction sparse canonical correlation analysis (DS-SCCA) method is developed for the identification of genetic associations with functional connectivity phenotypic markers. This approach is a regularized, deep extension, scalable multi-SNP-multi-QT method, which is well-suited for applying imaging genetic association analysis to the Alzheimer's Disease Neuroimaging Initiative datasets. It is further optimized by adopting a parametric approach, augmented Lagrange and stochastic gradient descent. Extensive experiments are provided to validate that the DS-SCCA approach realizes strong associations and discovers functional connectivity and brain region phenotypic biomarkers to guide disease interpretation. AVAILABILITY AND IMPLEMENTATION The Matlab code is available at https://github.com/meimeiling/DS-SCCA/tree/main. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Meiling Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.,MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.,MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | - Xiaoke Hao
- School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
| | - Shuo Huang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.,MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.,MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| |
Collapse
|
64
|
The brainstem connectome database. Sci Data 2022; 9:168. [PMID: 35414055 PMCID: PMC9005652 DOI: 10.1038/s41597-022-01219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Connectivity data of the nervous system and subdivisions, such as the brainstem, cerebral cortex and subcortical nuclei, are necessary to understand connectional structures, predict effects of connectional disorders and simulate network dynamics. For that purpose, a database was built and analyzed which comprises all known directed and weighted connections within the rat brainstem. A longterm metastudy of original research publications describing tract tracing results form the foundation of the brainstem connectome (BC) database which can be analyzed directly in the framework neuroVIISAS. The BC database can be accessed directly by connectivity tables, a web-based tool and the framework. Analysis of global and local network properties, a motif analysis, and a community analysis of the brainstem connectome provides insight into its network organization. For example, we found that BC is a scale-free network with a small-world connectivity. The Louvain modularity and weighted stochastic block matching resulted in partially matching of functions and connectivity. BC modeling was performed to demonstrate signal propagation through the somatosensory pathway which is affected in Multiple sclerosis. Measurement(s) | brainstem | Technology Type(s) | tract tracing metastudy | Factor Type(s) | brain region | Sample Characteristic - Organism | Rattus rattus | Sample Characteristic - Environment | Experimental setup | Sample Characteristic - Location | Germany |
Collapse
|
65
|
Ma K, Huang S, Zhang D. Diagnosis of Mild Cognitive Impairment with Ordinal Pattern Kernel. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1030-1040. [PMID: 35404822 DOI: 10.1109/tnsre.2022.3166560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mild cognitive impairment (MCI) belongs to the prodromal stage of Alzheimer's disease (AD). Accurate diagnosis of MCI is very important for possibly deferring AD progression. Graph kernels, which measure the similarity between paired brain connectivity networks, have been widely used to diagnose brain diseases (e.g., MCI) and yielded promising classification performance. However, most of the existing graph kernels are based on unweighted graphs, and neglect the valuable weighted information of the edges in brain connectivity networks where edge weights convey the strengths of fiber connection or temporal correlation between paired brain regions. Accordingly, in this paper, we propose a new graph kernel called ordinal pattern kernel for measuring brain connectivity network similarity and apply it to brain disease classification tasks. Different from the existing graph kernels which measure the topological similarity of the unweighted graphs, our proposed ordinal pattern kernel can not only calculate the similarity of paired brain connectivity networks, but also capture the ordinal pattern relationship of edge weights in brain connectivity networks. To appraise the effectiveness of our proposed method, we perform extensive experiments in functional magnetic resonance imaging data of brain disease from Alzheimer's Disease Neuroimaging Initiative database. The experimental results show that our proposed ordinal pattern kernel outperforms the state-of-the-art graph kernels in the classification tasks of MCI.
Collapse
|
66
|
Whi W, Huh Y, Ha S, Lee H, Kang H, Lee DS. Characteristic functional cores revealed by hyperbolic disc embedding and k-core percolation on resting-state fMRI. Sci Rep 2022; 12:4887. [PMID: 35318429 PMCID: PMC8941113 DOI: 10.1038/s41598-022-08975-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/11/2022] [Indexed: 11/15/2022] Open
Abstract
Hyperbolic disc embedding and k-core percolation reveal the hierarchical structure of functional connectivity on resting-state fMRI (rsfMRI). Using 180 normal adults' rsfMRI data from the human connectome project database, we visualized inter-voxel relations by embedding voxels on the hyperbolic space using the [Formula: see text] model. We also conducted k-core percolation on 30 participants to investigate core voxels for each individual. It recursively peels the layer off, and this procedure leaves voxels embedded in the center of the hyperbolic disc. We used independent components to classify core voxels, and it revealed stereotypes of individuals such as visual network dominant, default mode network dominant, and distributed patterns. Characteristic core structures of resting-state brain connectivity of normal subjects disclosed the distributed or asymmetric contribution of voxels to the kmax-core, which suggests the hierarchical dominance of certain IC subnetworks characteristic of subgroups of individuals at rest.
Collapse
Affiliation(s)
- Wonseok Whi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
- Department of Nuclear Medicine, Seoul National University and Seoul National University Hospital, Seoul, South Korea
- Medical Research Center, Seoul National University, Seoul, South Korea
| | - Youngmin Huh
- Medical Research Center, Seoul National University, Seoul, South Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyekyoung Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Hyejin Kang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea.
- Department of Nuclear Medicine, Seoul National University and Seoul National University Hospital, Seoul, South Korea.
- Medical Research Center, Seoul National University, Seoul, South Korea.
| |
Collapse
|
67
|
Using a Novel Functional Brain Network Approach to Locate Important Nodes for Working Memory Tasks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063564. [PMID: 35329248 PMCID: PMC8955367 DOI: 10.3390/ijerph19063564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023]
Abstract
Working Memory (WM) is a short-term memory for processing and storing information. When investigating WM mechanisms using Electroencephalogram (EEG), its rhythmic synchronization properties inevitably become one of the focal features. To further leverage these features for better improve WM task performance, this paper uses a novel algorithm: Weight K-order propagation number (WKPN) to locate important brain nodes and their coupling characteristic in different frequency bands while subjects are proceeding French word retaining tasks, which is an intriguing but original experiment paradigm. Based on this approach, we investigated the node importance of PLV brain networks under different memory loads and found that the connectivity between frontal and parieto-occipital lobes in theta and beta frequency bands enhanced with increasing memory load. We used the node importance of the brain network as a feature vector of the SVM to classify different memory load states, and the highest classification accuracy of 95% is obtained in the beta band. Compared to the Weight degree centrality (WDC) and Weight Page Rank (WPR) algorithm, the SVM with the node importance of the brain network as the feature vector calculated by the WKPN algorithm has higher classification accuracy and shorter running time. It is concluded that the algorithm can effectively spot active central hubs so that researchers can later put more energy to study these areas where active hubs lie in such as placing Transcranial alternating current stimulation (tACS).
Collapse
|
68
|
Albers KJ, Liptrot MG, Ambrosen KS, Røge R, Herlau T, Andersen KW, Siebner HR, Hansen LK, Dyrby TB, Madsen KH, Schmidt MN, Mørup M. Uncovering Cortical Units of Processing From Multi-Layered Connectomes. Front Neurosci 2022; 16:836259. [PMID: 35360166 PMCID: PMC8960198 DOI: 10.3389/fnins.2022.836259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Modern diffusion and functional magnetic resonance imaging (dMRI/fMRI) provide non-invasive high-resolution images from which multi-layered networks of whole-brain structural and functional connectivity can be derived. Unfortunately, the lack of observed correspondence between the connectivity profiles of the two modalities challenges the understanding of the relationship between the functional and structural connectome. Rather than focusing on correspondence at the level of connections we presently investigate correspondence in terms of modular organization according to shared canonical processing units. We use a stochastic block-model (SBM) as a data-driven approach for clustering high-resolution multi-layer whole-brain connectivity networks and use prediction to quantify the extent to which a given clustering accounts for the connectome within a modality. The employed SBM assumes a single underlying parcellation exists across modalities whilst permitting each modality to possess an independent connectivity structure between parcels thereby imposing concurrent functional and structural units but different structural and functional connectivity profiles. We contrast the joint processing units to their modality specific counterparts and find that even though data-driven structural and functional parcellations exhibit substantial differences, attributed to modality specific biases, the joint model is able to achieve a consensus representation that well accounts for both the functional and structural connectome providing improved representations of functional connectivity compared to using functional data alone. This implies that a representation persists in the consensus model that is shared by the individual modalities. We find additional support for this viewpoint when the anatomical correspondence between modalities is removed from the joint modeling. The resultant drop in predictive performance is in general substantial, confirming that the anatomical correspondence of processing units is indeed present between the two modalities. Our findings illustrate how multi-modal integration admits consensus representations well-characterizing each individual modality despite their biases and points to the importance of multi-layered connectomes as providing supplementary information regarding the brain's canonical processing units.
Collapse
Affiliation(s)
- Kristoffer Jon Albers
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Matthew G. Liptrot
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Karen Sandø Ambrosen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Rasmus Røge
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Tue Herlau
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Kasper Winther Andersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Hartwig R. Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Kai Hansen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Tim B. Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Kristoffer H. Madsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Mikkel N. Schmidt
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Morten Mørup
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
69
|
Giannopulu I, Brotto G, Lee T, Frangos A, To D. Synchronised neural signature of creative mental imagery in reality and augmented reality. Heliyon 2022; 8:e09017. [PMID: 35309391 PMCID: PMC8928117 DOI: 10.1016/j.heliyon.2022.e09017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/05/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Creativity, transforming imaginative thinking into reality, is a mental imagery simulation in essence. It can be incorporeal, concerns sophisticated and/or substantial thinking, and involves objects. In the present study, a mental imagery task consisting of creating a scene using familiar (FA) or abstract (AB) physical or virtual objects in real (RMI) and augmented reality (VMI) environments, and an execution task involving effectively creating a scene in augmented reality (VE), were utilised. The beta and gamma neural oscillations of healthy participants were recorded via a 32 channel wireless 10/20 international EGG system. In real and augmented environments and for both the mental imagery and execution tasks, the participants displayed a similar cortico-cortical neural signature essentially based on synchronous vs asynchronous beta and gamma oscillatory activities between anterior (i.e. frontal) and posterior (i.e. parietal, occipito-parietal and occipito-temporal) areas bilaterally. The findings revealed a transient synchronised neural architecture that appears to be consistent with the hypothesis according to which, creativity, because of its inherent complexity, cannot be confined to a single brain area but engages various interconnected networks.
Collapse
Affiliation(s)
- I. Giannopulu
- Creative Robotics Lab, UNSW, 2021, Sydney, Australia
- Clinical Research and Technological Innovation, 75016, Paris, France
| | - G. Brotto
- Interdisciplinary Centre for the Artificial Mind (iCAM), Bond University, 4229, Robina, Australia
| | - T.J. Lee
- Interdisciplinary Centre for the Artificial Mind (iCAM), Bond University, 4229, Robina, Australia
| | - A. Frangos
- Interdisciplinary Centre for the Artificial Mind (iCAM), Bond University, 4229, Robina, Australia
| | - D. To
- Interdisciplinary Centre for the Artificial Mind (iCAM), Bond University, 4229, Robina, Australia
| |
Collapse
|
70
|
Barranca VJ, Bhuiyan A, Sundgren M, Xing F. Functional Implications of Dale's Law in Balanced Neuronal Network Dynamics and Decision Making. Front Neurosci 2022; 16:801847. [PMID: 35295091 PMCID: PMC8919085 DOI: 10.3389/fnins.2022.801847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/02/2022] [Indexed: 11/28/2022] Open
Abstract
The notion that a neuron transmits the same set of neurotransmitters at all of its post-synaptic connections, typically known as Dale's law, is well supported throughout the majority of the brain and is assumed in almost all theoretical studies investigating the mechanisms for computation in neuronal networks. Dale's law has numerous functional implications in fundamental sensory processing and decision-making tasks, and it plays a key role in the current understanding of the structure-function relationship in the brain. However, since exceptions to Dale's law have been discovered for certain neurons and because other biological systems with complex network structure incorporate individual units that send both positive and negative feedback signals, we investigate the functional implications of network model dynamics that violate Dale's law by allowing each neuron to send out both excitatory and inhibitory signals to its neighbors. We show how balanced network dynamics, in which large excitatory and inhibitory inputs are dynamically adjusted such that input fluctuations produce irregular firing events, are theoretically preserved for a single population of neurons violating Dale's law. We further leverage this single-population network model in the context of two competing pools of neurons to demonstrate that effective decision-making dynamics are also produced, agreeing with experimental observations from honeybee dynamics in selecting a food source and artificial neural networks trained in optimal selection. Through direct comparison with the classical two-population balanced neuronal network, we argue that the one-population network demonstrates more robust balanced activity for systems with less computational units, such as honeybee colonies, whereas the two-population network exhibits a more rapid response to temporal variations in network inputs, as required by the brain. We expect this study will shed light on the role of neurons violating Dale's law found in experiment as well as shared design principles across biological systems that perform complex computations.
Collapse
|
71
|
Zhuang W, Wang J, Chu C, Wei X, Yi G, Dong Y, Cai L. Disrupted Control Architecture of Brain Network in Disorder of Consciousness. IEEE Trans Neural Syst Rehabil Eng 2022; 30:400-409. [PMID: 35143400 DOI: 10.1109/tnsre.2022.3150834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human brain controls various cognitive functions via the functional coordination of multiple brain regions in an efficient and robust way. However, the relationship between consciousness state and the control mode of brain networks is poorly explored. Using multi-channel EEG, the present study aimed to characterize the abnormal control architecture of functional brain networks in the patients with disorders of consciousness (DOC). Resting state EEG data were collected from 40 DOC patients with different consciousness levels and 24 healthy subjects. Functional brain networks were constructed in five different EEG frequency bands and the broadband in the source level. Subsequently, a control architecture framework based on the minimum dominating set was applied to investigate the of control mode of functional brain networks for the subjects with different conscious states. Results showed that regardless of the consciousness levels, the functional networks of human brain operate in a distributed and overlapping control architecture different from that of random networks. Compared to the healthy controls, the patients have a higher control cost manifested by more minimum dominating nodes and increased degree of distributed control, especially in the alpha band. The ability to withstand network attack for the control architecture is positive correlated with the consciousness levels. The distributed of control increased correlation levels with Coma Recovery Scale-Revised score and improved separation between unresponsive wakefulness syndrome and minimal consciousness state. These findings may benefit our understanding of consciousness and provide potential biomarkers for the assessment of consciousness levels.
Collapse
|
72
|
Pascucci D, Tourbier S, Rué-Queralt J, Carboni M, Hagmann P, Plomp G. Source imaging of high-density visual evoked potentials with multi-scale brain parcellations and connectomes. Sci Data 2022; 9:9. [PMID: 35046430 PMCID: PMC8770500 DOI: 10.1038/s41597-021-01116-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
We describe the multimodal neuroimaging dataset VEPCON (OpenNeuro Dataset ds003505). It includes raw data and derivatives of high-density EEG, structural MRI, diffusion weighted images (DWI) and single-trial behavior (accuracy, reaction time). Visual evoked potentials (VEPs) were recorded while participants (n = 20) discriminated briefly presented faces from scrambled faces, or coherently moving stimuli from incoherent ones. EEG and MRI were recorded separately from the same participants. The dataset contains raw EEG and behavioral data, pre-processed EEG of single trials in each condition, structural MRIs, individual brain parcellations at 5 spatial resolutions (83 to 1015 regions), and the corresponding structural connectomes computed from fiber count, fiber density, average fractional anisotropy and mean diffusivity maps. For source imaging, VEPCON provides EEG inverse solutions based on individual anatomy, with Python and Matlab scripts to derive activity time-series in each brain region, for each parcellation level. The BIDS-compatible dataset can contribute to multimodal methods development, studying structure-function relations, and to unimodal optimization of source imaging and graph analyses, among many other possibilities.
Collapse
Affiliation(s)
- David Pascucci
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland.
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Sebastien Tourbier
- Connectomics Lab, Dept. of Radiology, University Hospital of Lausanne and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| | - Joan Rué-Queralt
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland
- Connectomics Lab, Dept. of Radiology, University Hospital of Lausanne and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Margherita Carboni
- EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Patric Hagmann
- Connectomics Lab, Dept. of Radiology, University Hospital of Lausanne and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Gijs Plomp
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
73
|
Klein B, Swain A, Byrum T, Scarpino SV, Fagan WF. Exploring noise, degeneracy, and determinism in biological networks with the einet package. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brennan Klein
- Network Science Institute Northeastern University Boston MA USA
- Laboratory for the Modeling of Biological and Socio‐Technical Systems Northeastern University Boston MA USA
| | | | - Travis Byrum
- Department of Biology University of Maryland MD USA
| | - Samuel V. Scarpino
- Network Science Institute Northeastern University Boston MA USA
- Santa Fe Institute Santa Fe NM USA
- Vermont Complex Systems Center University of Vermont Burlington VT USA
- Pandemic Prevention Institute Rockefeller Foundation Washington USA
| | | |
Collapse
|
74
|
Frässle S, Stephan KE. Test-retest reliability of regression dynamic causal modeling. Netw Neurosci 2022; 6:135-160. [PMID: 35356192 PMCID: PMC8959103 DOI: 10.1162/netn_a_00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/08/2021] [Indexed: 11/04/2022] Open
Abstract
Abstract
Regression dynamic causal modeling (rDCM) is a novel and computationally highly efficient method for inferring effective connectivity at the whole-brain level. While face and construct validity of rDCM have already been demonstrated, here we assessed its test-retest reliability—a test-theoretical property of particular importance for clinical applications—together with group-level consistency of connection-specific estimates and consistency of whole-brain connectivity patterns over sessions. Using the Human Connectome Project dataset for eight different paradigms (tasks and rest) and two different parcellation schemes, we found that rDCM provided highly consistent connectivity estimates at the group level across sessions. Second, while test-retest reliability was limited when averaging over all connections (range of mean intraclass correlation coefficient 0.24–0.42 over tasks), reliability increased with connection strength, with stronger connections showing good to excellent test-retest reliability. Third, whole-brain connectivity patterns by rDCM allowed for identifying individual participants with high (and in some cases perfect) accuracy. Comparing the test-retest reliability of rDCM connectivity estimates with measures of functional connectivity, rDCM performed favorably—particularly when focusing on strong connections. Generally, for all methods and metrics, task-based connectivity estimates showed greater reliability than those from the resting state. Our results underscore the potential of rDCM for human connectomics and clinical applications.
Collapse
Affiliation(s)
- Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Klaas E. Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Max Planck Institute for Metabolism Research, Cologne, Germany
| |
Collapse
|
75
|
Ahmed SF, Chaku N, Waters NE, Ellis A, Davis-Kean PE. Developmental cascades and educational attainment. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2022; 64:289-326. [PMID: 37080672 DOI: 10.1016/bs.acdb.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Developmental cascades describe how systems of development interact and influence one another to shape human development across the lifespan. Despite its popularity, developmental cascades are commonly used to understand the developmental course of psychopathology, typically in the context of risk and resilience. Whether this framework can be useful for studying children's educational outcomes remains underexplored. Therefore, in this chapter, we provide an overview of how developmental cascades can be used to study children's academic development, with a particular focus on the biological, cognitive, and contextual pathways to educational attainment. We also provide a summary of contemporary statistical methods and highlight existing data sets that can be used to test developmental cascade models of educational attainment from birth through adulthood. We conclude the chapter by discussing the challenges of this research and explore important future directions of using developmental cascades to understand educational attainment.
Collapse
|
76
|
Sripada C, Angstadt M, Taxali A, Kessler D, Greathouse T, Rutherford S, Clark DA, Hyde LW, Weigard A, Brislin SJ, Hicks B, Heitzeg M. Widespread attenuating changes in brain connectivity associated with the general factor of psychopathology in 9- and 10-year olds. Transl Psychiatry 2021; 11:575. [PMID: 34753911 PMCID: PMC8578613 DOI: 10.1038/s41398-021-01708-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
Convergent research identifies a general factor ("P factor") that confers transdiagnostic risk for psychopathology. Large-scale networks are key organizational units of the human brain. However, studies of altered network connectivity patterns associated with the P factor are limited, especially in early adolescence when most mental disorders are first emerging. We studied 11,875 9- and 10-year olds from the Adolescent Brain and Cognitive Development (ABCD) study, of whom 6593 had high-quality resting-state scans. Network contingency analysis was used to identify altered interconnections associated with the P factor among 16 large-scale networks. These connectivity changes were then further characterized with quadrant analysis that quantified the directionality of P factor effects in relation to neurotypical patterns of positive versus negative connectivity across connections. The results showed that the P factor was associated with altered connectivity across 28 network cells (i.e., sets of connections linking pairs of networks); pPERMUTATION values < 0.05 FDR-corrected for multiple comparisons. Higher P factor scores were associated with hypoconnectivity within default network and hyperconnectivity between default network and multiple control networks. Among connections within these 28 significant cells, the P factor was predominantly associated with "attenuating" effects (67%; pPERMUTATION < 0.0002), i.e., reduced connectivity at neurotypically positive connections and increased connectivity at neurotypically negative connections. These results demonstrate that the general factor of psychopathology produces attenuating changes across multiple networks including default network, involved in spontaneous responses, and control networks involved in cognitive control. Moreover, they clarify mechanisms of transdiagnostic risk for psychopathology and invite further research into developmental causes of distributed attenuated connectivity.
Collapse
Affiliation(s)
- Chandra Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Aman Taxali
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Kessler
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Saige Rutherford
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - D Angus Clark
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Luke W Hyde
- Department of Psychology and Survey Research Center at the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Alex Weigard
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Sarah J Brislin
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Brian Hicks
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mary Heitzeg
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
77
|
Sripada C, Angstadt M, Taxali A, Clark DA, Greathouse T, Rutherford S, Dickens JR, Shedden K, Gard AM, Hyde LW, Weigard A, Heitzeg M. Brain-wide functional connectivity patterns support general cognitive ability and mediate effects of socioeconomic status in youth. Transl Psychiatry 2021; 11:571. [PMID: 34750359 PMCID: PMC8575890 DOI: 10.1038/s41398-021-01704-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
General cognitive ability (GCA) is an individual difference dimension linked to important academic, occupational, and health-related outcomes and its development is strongly linked to differences in socioeconomic status (SES). Complex abilities of the human brain are realized through interconnections among distributed brain regions, but brain-wide connectivity patterns associated with GCA in youth, and the influence of SES on these connectivity patterns, are poorly understood. The present study examined functional connectomes from 5937 9- and 10-year-olds in the Adolescent Brain Cognitive Development (ABCD) multi-site study. Using multivariate predictive modeling methods, we identified whole-brain functional connectivity patterns linked to GCA. In leave-one-site-out cross-validation, we found these connectivity patterns exhibited strong and statistically reliable generalization at 19 out of 19 held-out sites accounting for 18.0% of the variance in GCA scores (cross-validated partial η2). GCA-related connections were remarkably dispersed across brain networks: across 120 sets of connections linking pairs of large-scale networks, significantly elevated GCA-related connectivity was found in 110 of them, and differences in levels of GCA-related connectivity across brain networks were notably modest. Consistent with prior work, socioeconomic status was a strong predictor of GCA in this sample, and we found that distributed GCA-related brain connectivity patterns significantly statistically mediated this relationship (mean proportion mediated: 15.6%, p < 2 × 10-16). These results demonstrate that socioeconomic status and GCA are related to broad and diffuse differences in functional connectivity architecture during early adolescence, potentially suggesting a mechanism through which socioeconomic status influences cognitive development.
Collapse
Affiliation(s)
- Chandra Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Mike Angstadt
- grid.214458.e0000000086837370Department of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Aman Taxali
- grid.214458.e0000000086837370Department of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - D. Angus Clark
- grid.214458.e0000000086837370Department of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Tristan Greathouse
- grid.214458.e0000000086837370Department of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Saige Rutherford
- grid.214458.e0000000086837370Department of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Joseph R. Dickens
- grid.214458.e0000000086837370Department of Statistics, University of Michigan, Ann Arbor, MI USA
| | - Kerby Shedden
- grid.214458.e0000000086837370Department of Statistics, University of Michigan, Ann Arbor, MI USA
| | - Arianna M. Gard
- grid.164295.d0000 0001 0941 7177Department of Psychology and Neuroscience and Cognitive Neuroscience Program, University of Maryland, College Park, MD USA
| | - Luke W. Hyde
- grid.214458.e0000000086837370Department of Psychology and Survey Research Center at the Institute for Social Research, University of Michigan, Ann Arbor, MI USA
| | - Alexander Weigard
- grid.214458.e0000000086837370Department of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Mary Heitzeg
- grid.214458.e0000000086837370Department of Psychiatry, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
78
|
Li Z, Liu C, Wang Q, Liang K, Han C, Qiao H, Zhang J, Meng F. Abnormal Functional Brain Network in Parkinson's Disease and the Effect of Acute Deep Brain Stimulation. Front Neurol 2021; 12:715455. [PMID: 34721258 PMCID: PMC8551554 DOI: 10.3389/fneur.2021.715455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/26/2021] [Indexed: 01/21/2023] Open
Abstract
Objective: The objective of this study was to use functional connectivity and graphic indicators to investigate the abnormal brain network topological characteristics caused by Parkinson's disease (PD) and the effect of acute deep brain stimulation (DBS) on those characteristics in patients with PD. Methods: We recorded high-density EEG (256 channels) data from 21 healthy controls (HC) and 20 patients with PD who were in the DBS-OFF state and DBS-ON state during the resting state with eyes closed. A high-density EEG source connectivity method was used to identify functional brain networks. Power spectral density (PSD) analysis was compared between the groups. Functional connectivity was calculated for 68 brain regions in the theta (4-8 Hz), alpha (8-13 Hz), beta1 (13-20 Hz), and beta2 (20-30 Hz) frequency bands. Network estimates were measured at both the global (network topology) and local (inter-regional connection) levels. Results: Compared with HC, PSD was significantly increased in the theta (p = 0.003) frequency band and was decreased in the beta1 (p = 0.009) and beta2 (p = 0.04) frequency bands in patients with PD. However, there were no differences in any frequency bands between patients with PD with DBS-OFF and DBS-ON. The clustering coefficient and local efficiency of patients with PD showed a significant decrease in the alpha, beta1, and beta2 frequency bands (p < 0.001). In addition, edgewise statistics showed a significant difference between the HC and patients with PD in all analyzed frequency bands (p < 0.005). However, there were no significant differences between the DBS-OFF state and DBS-ON state in the brain network, except for the functional connectivity in the beta2 frequency band (p < 0.05). Conclusion: Compared with HC, patients with PD showed the following characteristics: slowed EEG background activity, decreased clustering coefficient and local efficiency of the brain network, as well as both increased and decreased functional connectivity between different brain areas. Acute DBS induces a local response of the brain network in patients with PD, mainly showing decreased functional connectivity in a few brain regions in the beta2 frequency band.
Collapse
Affiliation(s)
- Zhibao Li
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chong Liu
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qiao Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kun Liang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chunlei Han
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Hui Qiao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Chinese Institute for Brain Research, Beijing (CIBR), Beijing, China
| |
Collapse
|
79
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
80
|
Roger E, Torlay L, Banjac S, Mosca C, Minotti L, Kahane P, Baciu M. Prediction of the clinical and naming status after anterior temporal lobe resection in patients with epilepsy. Epilepsy Behav 2021; 124:108357. [PMID: 34717247 DOI: 10.1016/j.yebeh.2021.108357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 01/20/2023]
Abstract
By assessing the cognitive capital, neuropsychological evaluation (NPE) plays a vital role in the perioperative workup of patients with refractory focal epilepsy. In this retrospective study, we used cutting-edge statistical approaches to examine a group of 47 patients with refractory temporal lobe epilepsy (TLE), who underwent standard anterior temporal lobectomy (ATL). Our objective was to determine whether NPE may represent a robust predictor of the postoperative status, two years after surgery. Specifically, based on pre- and postsurgical neuropsychological data, we estimated the sensitivity of cognitive indicators to predict and to disentangle phenotypes associated with more or less favorable outcomes. Engel (ENG) scores were used to assess clinical outcome, and picture naming (NAM) performance to estimate naming status. Two methods were applied: (a) machine learning (ML) to explore cognitive sensitivity to postoperative outcomes; and (b) graph theory (GT) to assess network properties reflecting favorable vs. less favorable phenotypes after surgery. Specific neuropsychological indices assessing language, memory, and executive functions can globally predict outcomes. Interestingly, preoperative cognitive networks associated with poor postsurgical outcome already exhibit an atypical, highly modular and less densely interconnected configuration. We provide statistical and clinical tools to anticipate the condition after surgery and achieve a more personalized clinical management. Our results also shed light on possible mechanisms put in place for cognitive adaptation after acute injury of central nervous system in relation with surgery.
Collapse
Affiliation(s)
- Elise Roger
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France.
| | - Laurent Torlay
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - Sonja Banjac
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - Chrystèle Mosca
- Univ. Grenoble Alpes, Grenoble Institute of Neuroscience, Synchronisation et modulation des réseaux neuronaux dans l'épilepsie' & Neurology Department, 38000 Grenoble, France
| | - Lorella Minotti
- Univ. Grenoble Alpes, Grenoble Institute of Neuroscience, Synchronisation et modulation des réseaux neuronaux dans l'épilepsie' & Neurology Department, 38000 Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, Grenoble Institute of Neuroscience, Synchronisation et modulation des réseaux neuronaux dans l'épilepsie' & Neurology Department, 38000 Grenoble, France
| | - Monica Baciu
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| |
Collapse
|
81
|
Miraglia F, Vecchio F, Pellicciari MC, Cespon J, Rossini PM. Brain Networks Modulation in Young and Old Subjects During Transcranial Direct Current Stimulation Applied on Prefrontal and Parietal Cortex. Int J Neural Syst 2021; 32:2150056. [PMID: 34651550 DOI: 10.1142/s0129065721500568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Evidence indicates that the transcranial direct current stimulation (tDCS) has the potential to transiently modulate cognitive function, including age-related changes in brain performance. Only a small number of studies have explored the interaction between the stimulation sites on the scalp, task performance, and brain network connectivity within the frame of physiological aging. We aimed to evaluate the spread of brain activation in both young and older adults in response to anodal tDCS applied to two different scalp stimulation sites: Prefrontal cortex (PFC) and posterior parietal cortex (PPC). EEG data were recorded during tDCS stimulation and evaluated using the Small World (SW) index as a graph theory metric. Before and after tDCS, participants performed a behavioral task; a performance accuracy index was computed and correlated with the SW index. Results showed that the SW index increased during tDCS of the PPC compared to the PFC at higher EEG frequencies only in young participants. tDCS at the PPC site did not exert significant effects on the performance, while tDCS at the PFC site appeared to influence task reaction times in the same direction in both young and older participants. In conclusion, studies using tDCS to modulate functional connectivity and influence behavior can help identify suitable protocols for the aging brain.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma Rome, Italy.,eCampus University, Novedrate (Como), Italy
| | | | - Jesus Cespon
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma Rome, Italy
| |
Collapse
|
82
|
Lim JS, Lee JJ, Woo CW. Post-Stroke Cognitive Impairment: Pathophysiological Insights into Brain Disconnectome from Advanced Neuroimaging Analysis Techniques. J Stroke 2021; 23:297-311. [PMID: 34649376 PMCID: PMC8521255 DOI: 10.5853/jos.2021.02376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
The neurological symptoms of stroke have traditionally provided the foundation for functional mapping of the brain. However, there are many unresolved aspects in our understanding of cerebral activity, especially regarding high-level cognitive functions. This review provides a comprehensive look at the pathophysiology of post-stroke cognitive impairment in light of recent findings from advanced imaging techniques. Combining network neuroscience and clinical neurology, our research focuses on how changes in brain networks correlate with post-stroke cognitive prognosis. More specifically, we first discuss the general consequences of stroke lesions due to damage of canonical resting-state large-scale networks or changes in the composition of the entire brain. We also review emerging methods, such as lesion-network mapping and gradient analysis, used to study the aforementioned events caused by stroke lesions. Lastly, we examine other patient vulnerabilities, such as superimposed amyloid pathology and blood-brain barrier leakage, which potentially lead to different outcomes for the brain network compositions even in the presence of similar stroke lesions. This knowledge will allow a better understanding of the pathophysiology of post-stroke cognitive impairment and provide a theoretical basis for the development of new treatments, such as neuromodulation.
Collapse
Affiliation(s)
- Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Joong Lee
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Choong-Wan Woo
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
83
|
Comparative anatomy of the encephalon of new world primates with emphasis for the Sapajus sp. PLoS One 2021; 16:e0256309. [PMID: 34469439 PMCID: PMC8409804 DOI: 10.1371/journal.pone.0256309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022] Open
Abstract
Studies about the anatomy of the New World Primates are scarce, mainly
comparative neuroanatomy, then a morphological comparative analysis about the
tropical Primates were performed and a effort was made for an Old World Primates
and modern humans relationship for the obtained data; plus, comments about
behavior e and allometry were performed to try link the high cognition and
abilities of the Sapajus with the neuroanatomical results,
however, despite the deep neuroanatomic data obtained, we do not found an
intrinsic relation to explain that.
Collapse
|
84
|
Ogawa A. Time-varying measures of cerebral network centrality correlate with visual saliency during movie watching. Brain Behav 2021; 11:e2334. [PMID: 34435748 PMCID: PMC8442596 DOI: 10.1002/brb3.2334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/05/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
The extensive development of graph-theoretic analysis for functional connectivity has revealed the multifaceted characteristics of brain networks. Network centralities identify the principal functional regions, individual differences, and hub structure in brain networks. Neuroimaging studies using movie-watching have investigated brain function under naturalistic stimuli. Visual saliency is one of the promising measures for revealing cognition and emotions driven by naturalistic stimuli. This study investigated whether the visual saliency in movies was associated with network centrality. The study examined eigenvector centrality (EC), which is a measure of a region's influence in the brain network, and the participation coefficient (PC), which reflects the hub structure in the brain, was used for comparison. Static and time-varying EC and PC were analyzed by a parcel-based technique. While EC was correlated with brain activity in parcels in the visual and auditory areas during movie-watching, it was only correlated with parcels in the visual areas in the retinotopy task. In addition, high PC was consistently observed in parcels in the putative hub both during the tasks and the resting-state condition. Time-varying EC in the parietal parcels and time-varying PC in the primary sensory parcels significantly correlated with visual saliency in the movies. These results suggest that time-varying centralities in brain networks are distinctively associated with perceptual processing and subsequent higher processing of visual saliency.
Collapse
Affiliation(s)
- Akitoshi Ogawa
- Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan.,Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|
85
|
Do TTN, Wang YK, Lin CT. Increase in Brain Effective Connectivity in Multitasking but not in a High-Fatigue State. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2020.2990898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
86
|
Yu M, Sporns O, Saykin AJ. The human connectome in Alzheimer disease - relationship to biomarkers and genetics. Nat Rev Neurol 2021; 17:545-563. [PMID: 34285392 PMCID: PMC8403643 DOI: 10.1038/s41582-021-00529-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The pathology of Alzheimer disease (AD) damages structural and functional brain networks, resulting in cognitive impairment. The results of recent connectomics studies have now linked changes in structural and functional network organization in AD to the patterns of amyloid-β and tau accumulation and spread, providing insights into the neurobiological mechanisms of the disease. In addition, the detection of gene-related connectome changes might aid in the early diagnosis of AD and facilitate the development of personalized therapeutic strategies that are effective at earlier stages of the disease spectrum. In this article, we review studies of the associations between connectome changes and amyloid-β and tau pathologies as well as molecular genetics in different subtypes and stages of AD. We also highlight the utility of connectome-derived computational models for replicating empirical findings and for tracking and predicting the progression of biomarker-indicated AD pathophysiology.
Collapse
Affiliation(s)
- Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
| | - Olaf Sporns
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
87
|
‘Braining’ psychiatry: an investigation into how complexity is managed in the practice of neuropsychiatric research. BIOSOCIETIES 2021. [DOI: 10.1057/s41292-021-00242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AbstractNeuropsychiatry searches to understand mental disorders in terms of underlying brain activity by using brain imaging technologies. The field promises to offer a more objective foundation for diagnostic processes and to help developing forms of treatment that target the symptoms of a specific mental disorder. However, brain imaging technologies also reveal the brain as a complex network, suggesting that mental disorders cannot be easily linked to specific brain areas. In this paper, we analyze a case study conducted at a neuropsychiatry laboratory to explore how the complexity of the human brain is managed in light of the project of explaining mental disorders in terms of their neurological substrates. We use a combination of ethnomethodology and conversation analysis to show how previously assigned diagnostic labels are constitutive of interpretations of experimental data and, therefore, remain unchallenged. Furthermore, we show how diagnostic labels become materialized in experimental design, in that the linking of symptoms of mental disorders to specific brain areas is treated as indicative of successfully designed experimental stimuli. In conclusion, we argue that while researchers acknowledge the complexity of the brain on a generic level, they do not grant this complexity to the brains of individuals diagnosed with a mental disorder.
Collapse
|
88
|
Alpha-band cortico-cortical phase synchronization is associated with effective connectivity in the motor network. Clin Neurophysiol 2021; 132:2473-2480. [PMID: 34454275 DOI: 10.1016/j.clinph.2021.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Communication-through-coherence proposes that the phase synchronization (PS) of neural oscillations between cortical areas supports neural communication. In this study, we exploited transcranial magnetic stimulation (TMS)-evoked potentials (TEPs) to test this hypothesis at the macroscale level, i.e., whether PS between cortical areas supports interarea communication. TEPs are electroencephalographic (EEG) responses time-locked to TMS pulses reflecting interarea communication, as they are generated by the transmission of neural activity from the stimulated area to connected regions. If interarea PS is important for communication, it should be associated with the TEP amplitude in the connected areas. METHODS TMS was delivered over the left primary motor cortex (M1) of fourteen healthy volunteers, and 70-channel EEG was recorded. Early TEP components were source-localized to identify their generators, i.e., distant brain regions activated by M1 through effective connections. Next, linear regressions were used to test the relationship between the TEP amplitude and the pre-stimulus PS between the M1 and the connected regions in four frequency bands (range 4-45 Hz). RESULTS Pre-stimulus interarea PS in the alpha-band was positively associated with the amplitude of early TEP components, namely, the N15 (ipsilateral supplementary motor area), P25 (contralateral M1) and P60 (ipsilateral parietal cortex). CONCLUSIONS Alpha-band PS predicts the response amplitude of the distant brain regions effectively connected to M1. SIGNIFICANCE Our study supports the role of EEG-PS in interarea communication, as theorized by communication-through-coherence.
Collapse
|
89
|
Wang Z, Jie B, Feng C, Wang T, Bian W, Ding X, Zhou W, Liu M. Distribution-guided Network Thresholding for Functional Connectivity Analysis in fMRI-based Brain Disorder Identification. IEEE J Biomed Health Inform 2021; 26:1602-1613. [PMID: 34428167 DOI: 10.1109/jbhi.2021.3107305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Brain functional connectivity (FC) networks derived from resting-state functional magnetic resonance imaging (rs-fMRI) have been widely applied to automated identification of brain disorders, such as Alzheimer's disease (AD) and attention deficit hyperactivity disorder (ADHD). To generate compact representations of FC networks, various thresholding strategies have been developed to analyze brain FC networks. However, existing studies usually employ predefined thresholds or percentages of connections to threshold FC networks, thus ignoring the diversity of temporal correlation (particularly strong associations) among brain regions in same/different subject groups. Also, it is usually challenging to decide the optimal threshold or connection percentage in practice. To this end, in this paper, we propose a distribution-guided network thresholding (DNT) method for functional connectivity analysis in brain disorder identification with rs-fMRI. Specifically, for each functional connectivity of a pair of brain regions, we proposed to compute its specific threshold based on the distribution of connection strength (i.e., temporal correlation) between subject groups (e.g., patients and normal controls). The proposed DNT can adaptively yield FC-specific threshold for each connection in brain networks, thus preserving the diversity of temporal correlation among brain regions. Experiment results on both ADNI and ADHD-200 datasets demonstrate the effectiveness of our proposed DNT method in fMRI-based identification of AD and ADHD.
Collapse
|
90
|
Three types of individual variation in brain networks revealed by single-subject functional connectivity analyses. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
91
|
Nobukawa S, Nishimura H, Wagatsuma N, Ando S, Yamanishi T. Long-Tailed Characteristic of Spiking Pattern Alternation Induced by Log-Normal Excitatory Synaptic Distribution. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3525-3537. [PMID: 32822305 DOI: 10.1109/tnnls.2020.3015208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Studies of structural connectivity at the synaptic level show that in synaptic connections of the cerebral cortex, the excitatory postsynaptic potential (EPSP) in most synapses exhibits sub-mV values, while a small number of synapses exhibit large EPSPs ( >~1.0 [mV]). This means that the distribution of EPSP fits a log-normal distribution. While not restricting structural connectivity, skewed and long-tailed distributions have been widely observed in neural activities, such as the occurrences of spiking rates and the size of a synchronously spiking population. Many studies have been modeled this long-tailed EPSP neural activity distribution; however, its causal factors remain controversial. This study focused on the long-tailed EPSP distributions and interlateral synaptic connections primarily observed in the cortical network structures, thereby having constructed a spiking neural network consistent with these features. Especially, we constructed two coupled modules of spiking neural networks with excitatory and inhibitory neural populations with a log-normal EPSP distribution. We evaluated the spiking activities for different input frequencies and with/without strong synaptic connections. These coupled modules exhibited intermittent intermodule-alternative behavior, given moderate input frequency and the existence of strong synaptic and intermodule connections. Moreover, the power analysis, multiscale entropy analysis, and surrogate data analysis revealed that the long-tailed EPSP distribution and intermodule connections enhanced the complexity of spiking activity at large temporal scales and induced nonlinear dynamics and neural activity that followed the long-tailed distribution.
Collapse
|
92
|
Königs M, Verhoog EM, Oosterlaan J. Exploring the neurocognome: Neurocognitive network organization in healthy young adults. Cortex 2021; 143:12-28. [PMID: 34365200 DOI: 10.1016/j.cortex.2021.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/21/2021] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
Conventional neurocognitive assessment does not account for the complex interplay between neurocognitive functions that gives rise to (goal-directed) behavior. This study aims to explore the value of the application of network analysis to individual neurocognitive data, in order to investigate neurocognitive network organization (i.e., the neurocognome). Participants were healthy young adults (N = 51, average age: 26 years [range: 18-34], 49% female) that underwent a single comprehensive neurocognitive assessment. To allow implementation of network analysis, we developed a new measure of connectivity between neurocognitive functions that can be calculated on a single neurocognitive assessment. Connectivity values between all possible pairs of neurocognitive functions were used to reconstruct individual neurocognitive networks. Graph theory was applied to extract measures of global and local network organization from neurocognitive networks at the individual level. The results confirmed the expectation that neurocognitive connectivity values should be higher for connections between neurocognitive functions that are more closely related (i.e., within neurocognitive domains) than for connections between neurocognitive functions that are less closely related (i.e., across neurocognitive domains). The results further showed that reconstruction of the neurocognitive network at the individual level has considerable agreement with a group-based approach, providing preliminary evidence for the validity of our approach. The reconstructed neurocognitive network also showed considerable consistency among (randomly selected) independent subgroups, supporting the stability of our approach. Lastly, neurocognitive network parameters were related to intelligence and behavior problems, reflecting relevance of neurocognitive network organization for other important domains of functioning. Moreover, local network parameters (i.e., the relative importance of neurocognitive functions in the network) may have stronger relevance for behavioral functioning than conventional measures of neurocognitive functioning (i.e., z-scores reflecting performance on individual neurocognitive tests). Taken together, this study indicates that analysis of individual neurocognitive network organization has potential value for neurocognitive assessment in research and clinical practice.
Collapse
Affiliation(s)
- Marsh Königs
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Emma Neuroscience Group, Department of Pediatrics, Amsterdam Reproduction & Development, Amsterdam, the Netherlands.
| | - Elise M Verhoog
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Emma Neuroscience Group, Department of Pediatrics, Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Jaap Oosterlaan
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Emma Neuroscience Group, Department of Pediatrics, Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| |
Collapse
|
93
|
Li G, Liu Y, Zheng Y, Wu Y, Li D, Liang X, Chen Y, Cui Y, Yap PT, Qiu S, Zhang H, Shen D. Multiscale neural modeling of resting-state fMRI reveals executive-limbic malfunction as a core mechanism in major depressive disorder. Neuroimage Clin 2021; 31:102758. [PMID: 34284335 PMCID: PMC8313604 DOI: 10.1016/j.nicl.2021.102758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/15/2022]
Abstract
Major depressive disorder (MDD) represents a grand challenge to human health and society, but the underlying pathophysiological mechanisms remain elusive. Previous neuroimaging studies have suggested that MDD is associated with abnormal interactions and dynamics in two major neural systems including the default mode - salience (DMN-SAL) network and the executive - limbic (EXE-LIM) network, but it is not clear which network plays a central role and which network plays a subordinate role in MDD pathophysiology. To address this question, we refined a newly developed Multiscale Neural Model Inversion (MNMI) framework and applied it to test whether MDD is more affected by impaired circuit interactions in the DMN-SAL network or the EXE-LIM network. The model estimates the directed connection strengths between different neural populations both within and between brain regions based on resting-state fMRI data collected from normal healthy subjects and patients with MDD. Results show that MDD is primarily characterized by abnormal circuit interactions in the EXE-LIM network rather than the DMN-SAL network. Specifically, we observe reduced frontoparietal effective connectivity that potentially contributes to hypoactivity in the dorsolateral prefrontal cortex (dlPFC), and decreased intrinsic inhibition combined with increased excitation from the superior parietal cortex (SPC) that potentially lead to amygdala hyperactivity, together resulting in activation imbalance in the PFC-amygdala circuit that pervades in MDD. Moreover, the model reveals reduced PFC-to-hippocampus excitation but decreased SPC-to-thalamus inhibition in MDD population that potentially lead to hypoactivity in the hippocampus and hyperactivity in the thalamus, consistent with previous experimental data. Overall, our findings provide strong support for the long-standing limbic-cortical dysregulation model in major depression but also offer novel insights into the multiscale pathophysiology of this debilitating disease.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Yujie Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC USA; The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanting Zheng
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC USA; The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ye Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Danian Li
- Cerebropathy Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinyu Liang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yaoping Chen
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Cui
- Cerebropathy Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Han Zhang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.
| |
Collapse
|
94
|
Fear extinction learning modulates large-scale brain connectivity. Neuroimage 2021; 238:118261. [PMID: 34126211 PMCID: PMC8436785 DOI: 10.1016/j.neuroimage.2021.118261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
Abstract
Exploring the neural circuits of the extinction of conditioned fear is critical to advance our understanding of fear- and anxiety-related disorders. The field has focused on examining the role of various regions of the medial prefrontal cortex, insular cortex, hippocampus, and amygdala in conditioned fear and its extinction. The contribution of this 'fear network' to the conscious awareness of fear has recently been questioned. And as such, there is a need to examine higher/multiple cortical systems that might contribute to the conscious feeling of fear and anxiety. Herein, we studied functional connectivity patterns across the entire brain to examine the contribution of multiple networks to the acquisition of fear extinction learning and its retrieval. We conducted trial-by-trial analyses on data from 137 healthy participants who underwent a two-day fear conditioning and extinction paradigm in a functional magnetic resonance imaging (fMRI) scanner. We found that functional connectivity across a broad range of brain regions, many of which are part of the default mode, frontoparietal, and ventral attention networks, increased from early to late extinction learning only to a conditioned cue. The increased connectivity during extinction learning predicted the magnitude of extinction memory tested 24 h later. Together, these findings provide evidence supporting recent studies implicating distributed brain regions in learning, consolidation and expression of fear extinction memory in the human brain.
Collapse
|
95
|
Functional brain network dysfunctions in subjects at high-risk for psychosis: A meta-analysis of resting-state functional connectivity. Neurosci Biobehav Rev 2021; 128:90-101. [PMID: 34119524 DOI: 10.1016/j.neubiorev.2021.06.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 01/10/2023]
Abstract
Although emerging evidence suggests that altered functional connectivity (FC) of large-scale neural networks is associated with disturbances in individuals at high-risk for psychosis, the findings are still far to be conclusive. We conducted a meta-analysis of seed-based resting-state functional magnetic resonance imaging studies that compared individuals at clinical high-risk for psychosis (CHR), first-degree relatives of patients with schizophrenia, or subjects who reported psychotic-like experiences with healthy controls. Twenty-nine studies met the inclusion criteria. The MetaNSUE method was used to analyze connectivity comparisons and symptom correlations. Our results showed a significant hypo-connectivity within the salience network (p = 0.012, uncorrected) in the sample of CHR individuals (n = 810). Additionally, we found a positive correlation between negative symptom severity and FC between the default mode network and both the salience network (p < 0.001, r = 0.298) and the central executive network (p = 0.003, r = 0.23) in the CHR group. This meta-analysis lends support for the hypothesis that large-scale network dysfunctions represent a core neural deficit underlying psychosis development.
Collapse
|
96
|
Abstract
Strong foundational skills in mathematical problem solving, acquired in early childhood, are critical not only for success in the science, technology, engineering, and mathematical (STEM) fields but also for quantitative reasoning in everyday life. The acquisition of mathematical skills relies on protracted interactive specialization of functional brain networks across development. Using a systems neuroscience approach, this review synthesizes emerging perspectives on neurodevelopmental pathways of mathematical learning, highlighting the functional brain architecture that supports these processes and sources of heterogeneity in mathematical skill acquisition. We identify the core neural building blocks of numerical cognition, anchored in the posterior parietal and ventral temporal-occipital cortices, and describe how memory and cognitive control systems, anchored in the medial temporal lobe and prefrontal cortex, help scaffold mathematical skill development. We highlight how interactive specialization of functional circuits influences mathematical learning across different stages of development. Functional and structural brain integrity and plasticity associated with math learning can be examined using an individual differences approach to better understand sources of heterogeneity in learning, including cognitive, affective, motivational, and sociocultural factors. Our review emphasizes the dynamic role of neurodevelopmental processes in mathematical learning and cognitive development more generally.
Collapse
Affiliation(s)
- Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Stanford Neuroscience Institute, Stanford University School of Medicine, Stanford, California, USA
- Symbolic Systems Program, Stanford University School of Medicine, Stanford, California, USA
| | - Hyesang Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
97
|
Walbrin J, Almeida J. High-Level Representations in Human Occipito-Temporal Cortex Are Indexed by Distal Connectivity. J Neurosci 2021; 41:4678-4685. [PMID: 33849949 PMCID: PMC8260247 DOI: 10.1523/jneurosci.2857-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Human object recognition is dependent on occipito-temporal cortex (OTC), but a complete understanding of the complex functional architecture of this area must account for how it is connected to the wider brain. Converging functional magnetic resonance imaging evidence shows that univariate responses to different categories of information (e.g., faces, bodies, and nonhuman objects) are strongly related to, and potentially shaped by, functional and structural connectivity to the wider brain. However, to date, there have been no systematic attempts to determine how distal connectivity and complex local high-level responses in occipito-temporal cortex (i.e., multivoxel response patterns) are related. Here, we show that distal functional connectivity is related to, and can reliably index, high-level representations for several visual categories (i.e., tools, faces, and places) within occipito-temporal cortex; that is, voxel sets that are strongly connected to distal brain areas show higher pattern discriminability than less well-connected sets do. We further show that in several cases, pattern discriminability is higher in sets of well-connected voxels than sets defined by local activation (e.g., strong amplitude responses to faces in fusiform face area). Together, these findings demonstrate the important relationship between the complex functional organization of occipito-temporal cortex and wider brain connectivity.SIGNIFICANCE STATEMENT Human object recognition relies strongly on OTC, yet responses in this broad area are often considered in relative isolation to the rest of the brain. We employ a novel connectivity-guided voxel selection approach with functional magnetic resonance imaging data to show higher sensitivity to information (i.e., higher multivoxel pattern discriminability) in voxel sets that share strong connectivity to distal brain areas, relative to (1) voxel sets that are less strongly connected, and in several cases, (2) voxel sets that are defined by strong local response amplitude. These findings underscore the importance of distal contributions to local processing in OTC.
Collapse
Affiliation(s)
- Jon Walbrin
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
| |
Collapse
|
98
|
Cognitive impairment after focal brain lesions is better predicted by damage to structural than functional network hubs. Proc Natl Acad Sci U S A 2021; 118:2018784118. [PMID: 33941692 DOI: 10.1073/pnas.2018784118] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hubs are highly connected brain regions important for coordinating processing in brain networks. It is unclear, however, which measures of network "hubness" are most useful in identifying brain regions critical to human cognition. We tested how closely two measures of hubness-edge density and participation coefficient, derived from white and gray matter, respectively-were associated with general cognitive impairment after brain damage in two large cohorts of patients with focal brain lesions (N = 402 and 102, respectively) using cognitive tests spanning multiple cognitive domains. Lesions disrupting white matter regions with high edge density were associated with cognitive impairment, whereas lesions damaging gray matter regions with high participation coefficient had a weaker, less consistent association with cognitive outcomes. Similar results were observed with six other gray matter hubness measures. This suggests that damage to densely connected white matter regions is more cognitively impairing than similar damage to gray matter hubs, helping to explain interindividual differences in cognitive outcomes after brain damage.
Collapse
|
99
|
Finnegan SL, Harrison OK, Harmer CJ, Herigstad M, Rahman NM, Reinecke A, Pattinson KTS. Breathlessness in COPD: linking symptom clusters with brain activity. Eur Respir J 2021; 58:13993003.04099-2020. [PMID: 33875493 PMCID: PMC8607925 DOI: 10.1183/13993003.04099-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/04/2021] [Indexed: 11/11/2022]
Abstract
Background Current models of breathlessness often fail to explain disparities between patients' experiences of breathlessness and objective measures of lung function. While a mechanistic understanding of this discordance has thus far remained elusive, factors such as mood, attention and expectation have all been implicated as important modulators of breathlessness. Therefore, we have developed a model to better understand the relationships between these factors using unsupervised machine learning techniques. Subsequently we examined how expectation-related brain activity differed between these symptom-defined clusters of participants. Methods A cohort of 91 participants with mild-to-moderate chronic obstructive pulmonary disease (COPD) underwent functional brain imaging, self-report questionnaires and clinical measures of respiratory function. Unsupervised machine learning techniques of exploratory factor analysis and hierarchical cluster modelling were used to model brain–behaviour–breathlessness links. Results We successfully stratified participants across four key factors corresponding to mood, symptom burden and two capability measures. Two key groups resulted from this stratification, corresponding to high and low symptom burden. Compared with the high symptom burden group, the low symptom burden group demonstrated significantly greater brain activity within the anterior insula, a key region thought to be involved in monitoring internal bodily sensations (interoception). Conclusions This is the largest functional neuroimaging study of COPD to date, and is the first to provide a clear model linking brain, behaviour and breathlessness expectation. Furthermore, it was possible to stratify participants into groups, which then revealed differences in brain activity patterns. Together, these findings highlight the value of multimodal models of breathlessness in identifying behavioural phenotypes and for advancing understanding of differences in breathlessness burden. Towards individualised treatments for chronic breathlessness with functional neuroimaging: revealing the factors underlying the breathlessness experience in COPDhttps://bit.ly/3a8fXPt
Collapse
Affiliation(s)
- Sarah L Finnegan
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Olivia K Harrison
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Catherine J Harmer
- Department of Psychiatry, Medical Sciences, University of Oxford, Oxford, UK.,Oxford Health NHS foundation Trust, Warneford Hospital, Oxford, UK
| | - Mari Herigstad
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| | - Najib M Rahman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrea Reinecke
- School of Pharmacy, University of Otago, Dunedin, New Zealand.,Department of Psychiatry, Medical Sciences, University of Oxford, Oxford, UK.,Oxford Health NHS foundation Trust, Warneford Hospital, Oxford, UK
| | - Kyle T S Pattinson
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
100
|
Kristinsson S, Zhang W, Rorden C, Newman‐Norlund R, Basilakos A, Bonilha L, Yourganov G, Xiao F, Hillis A, Fridriksson J. Machine learning-based multimodal prediction of language outcomes in chronic aphasia. Hum Brain Mapp 2021; 42:1682-1698. [PMID: 33377592 PMCID: PMC7978124 DOI: 10.1002/hbm.25321] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
Recent studies have combined multiple neuroimaging modalities to gain further understanding of the neurobiological substrates of aphasia. Following this line of work, the current study uses machine learning approaches to predict aphasia severity and specific language measures based on a multimodal neuroimaging dataset. A total of 116 individuals with chronic left-hemisphere stroke were included in the study. Neuroimaging data included task-based functional magnetic resonance imaging (fMRI), diffusion-based fractional anisotropy (FA)-values, cerebral blood flow (CBF), and lesion-load data. The Western Aphasia Battery was used to measure aphasia severity and specific language functions. As a primary analysis, we constructed support vector regression (SVR) models predicting language measures based on (i) each neuroimaging modality separately, (ii) lesion volume alone, and (iii) a combination of all modalities. Prediction accuracy across models was subsequently statistically compared. Prediction accuracy across modalities and language measures varied substantially (predicted vs. empirical correlation range: r = .00-.67). The multimodal prediction model yielded the most accurate prediction in all cases (r = .53-.67). Statistical superiority in favor of the multimodal model was achieved in 28/30 model comparisons (p-value range: <.001-.046). Our results indicate that different neuroimaging modalities carry complementary information that can be integrated to more accurately depict how brain damage and remaining functionality of intact brain tissue translate into language function in aphasia.
Collapse
Affiliation(s)
- Sigfus Kristinsson
- Center for the Study of Aphasia RecoveryUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Wanfang Zhang
- Department of Epidemiology and BiostatisticsUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Chris Rorden
- Department of PsychologyUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | | | - Alexandra Basilakos
- Center for the Study of Aphasia RecoveryUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Leonardo Bonilha
- Department of NeurologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Grigori Yourganov
- Advanced Computing and Data Science, Cyberinfrastructure and Technology IntegrationClemson UniversityClemsonSouth CarolinaUSA
| | - Feifei Xiao
- Department of Epidemiology and BiostatisticsUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Argye Hillis
- Department of Neurology and Physical Medicine and RehabilitationJohns Hopkins School of MedicineBaltimoreMarylandUSA
- Department of Cognitive ScienceJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Julius Fridriksson
- Center for the Study of Aphasia RecoveryUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|