51
|
Kathan M, Crespi S, Troncossi A, Stindt CN, Toyoda R, Feringa BL. The Influence of Strain on the Rotation of an Artificial Molecular Motor. Angew Chem Int Ed Engl 2022; 61:e202205801. [PMID: 35718745 PMCID: PMC9544085 DOI: 10.1002/anie.202205801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/13/2022]
Abstract
In artificial small‐molecule machines, molecular motors can be used to perform work on coupled systems by applying a mechanical load—such as strain—that allows for energy transduction. Here, we report how ring strain influences the rotation of a rotary molecular motor. Bridging the two halves of the motor with alkyl tethers of varying sizes yields macrocycles that constrain the motor's movement. Increasing the ring size by two methylene increments increases the mobility of the motor stepwise and allows for fine‐tuning of strain in the system. Small macrocycles (8–14 methylene units) only undergo a photochemical E/Z isomerization. Larger macrocycles (16–22 methylene units) can perform a full rotational cycle, but thermal helix inversion is strongly dependent on the ring size. This study provides systematic and quantitative insight into the behavior of molecular motors under a mechanical load, paving the way for the development of complex coupled nanomachinery.
Collapse
Affiliation(s)
- Michael Kathan
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
- Present address: Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Stefano Crespi
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
- Present address: Department of Chemistry—Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Axel Troncossi
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
| | - Charlotte N. Stindt
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
| | - Ryojun Toyoda
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
- Present address: Department of Chemistry Graduate School of Science Tohoku University 6-3 Aramaki-Aza-Aoba, Aobaku Sendai 980-8578 Japan
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
| |
Collapse
|
52
|
Binks L, Tian C, Fielden SDP, Vitorica-Yrezabal IJ, Leigh DA. Transamidation-Driven Molecular Pumps. J Am Chem Soc 2022; 144:15838-15844. [PMID: 35979923 PMCID: PMC9446885 DOI: 10.1021/jacs.2c06807] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a new class of synthetic molecular pumps that use a stepwise information ratchet mechanism to achieve the kinetic gating required to sequester their macrocyclic substrates from bulk solution. Threading occurs as a result of active template reactions between the pump terminus amine and an acyl electrophile, whereby the bond-forming reaction is accelerated through the cavity of a crown ether. Carboxylation of the resulting amide results in displacement of the ring to the collection region of the thread. Conversion of the carbamate to a phenolic ester provides an intermediate rotaxane suitable for further pumping cycles. In this way rings can be ratcheted onto a thread from one or both ends of appropriately designed molecular pumps. Each pumping cycle results in one additional ring being added to the thread per terminus acyl group. The absence of pseudorotaxane states ensures that no dethreading of intermediates occurs during the pump operation. This facilitates the loading of different macrocycles in any chosen sequence, illustrated by the pump-mediated synthesis of a [4]rotaxane containing three different macrocycles as a single sequence isomer. A [5]rotaxane synthesized using a dual-opening transamidation pump was structurally characterized by single-crystal X-ray diffraction, revealing a series of stabilizing CH···O interactions between the crown ethers and the polyethylene glycol catchment region of the thread.
Collapse
Affiliation(s)
- Lorna Binks
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Chong Tian
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Stephen D P Fielden
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
53
|
Penocchio E, Avanzini F, Esposito M. Information thermodynamics for deterministic chemical reaction networks. J Chem Phys 2022; 157:034110. [DOI: 10.1063/5.0094849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Information thermodynamics relates the rate of change of mutual information between two interacting subsystems to their thermodynamics when the joined system is described by a bipartite stochastic dynamics satisfying local detailed balance. Here, we expand the scope of information thermodynamics to deterministic bipartite chemical reaction networks, namely, composed of two coupled subnetworks sharing species but not reactions. We do so by introducing a meaningful notion of mutual information between different molecular features that we express in terms of deterministic concentrations. This allows us to formulate separate second laws for each subnetwork, which account for their energy and information exchanges, in complete analogy with stochastic systems. We then use our framework to investigate the working mechanisms of a model of chemically driven self-assembly and an experimental light-driven bimolecular motor. We show that both systems are constituted by two coupled subnetworks of chemical reactions. One subnetwork is maintained out of equilibrium by external reservoirs (chemostats or light sources) and powers the other via energy and information flows. In doing so, we clarify that the information flow is precisely the thermodynamic counterpart of an information ratchet mechanism only when no energy flow is involved.
Collapse
Affiliation(s)
- Emanuele Penocchio
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Francesco Avanzini
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
54
|
Corra S, Bakić MT, Groppi J, Baroncini M, Silvi S, Penocchio E, Esposito M, Credi A. Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump. NATURE NANOTECHNOLOGY 2022; 17:746-751. [PMID: 35760895 DOI: 10.1038/s41565-022-01151-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Natural and artificial autonomous molecular machines operate by constantly dissipating energy coming from an external source to maintain a non-equilibrium state. Quantitative thermodynamic characterization of these dissipative states is highly challenging as they exist only as long as energy is provided. Here we report on the detailed physicochemical characterization of the dissipative operation of a supramolecular pump. The pump transduces light energy into chemical energy by bringing self-assembly reactions to non-equilibrium steady states. The composition of the system under light irradiation was followed in real time by 1H NMR for four different irradiation intensities. The experimental composition and photon flow were then fed into a theoretical model describing the non-equilibrium dissipation and the energy storage at the steady state. We quantitatively probed the relationship between the light energy input and the deviation of the dissipative state from thermodynamic equilibrium in this artificial system. Our results provide a testing ground for newly developed theoretical models for photoactivated artificial molecular machines operating away from thermodynamic equilibrium.
Collapse
Affiliation(s)
- Stefano Corra
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna, Italy
- Dipartimento di Chimica Industriale 'Toso Montanari', Università di Bologna, Bologna, Italy
| | - Marina Tranfić Bakić
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna, Italy
- Dipartimento di Chimica Industriale 'Toso Montanari', Università di Bologna, Bologna, Italy
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna, Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna, Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Bologna, Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna, Italy
- Dipartimento di Chimica 'G. Ciamician', Università di Bologna, Bologna, Italy
| | - Emanuele Penocchio
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Massimiliano Esposito
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna, Italy.
- Dipartimento di Chimica Industriale 'Toso Montanari', Università di Bologna, Bologna, Italy.
| |
Collapse
|
55
|
Gingrich TR. Measuring how effectively light drives a molecular pump. NATURE NANOTECHNOLOGY 2022; 17:675-676. [PMID: 35760896 DOI: 10.1038/s41565-022-01152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Todd R Gingrich
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
56
|
Kathan M, Crespi S, Troncossi A, Stindt CN, Toyoda R, Feringa BL. The Influence of Strain on the Rotation of an Artificial Molecular Motor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michael Kathan
- Humboldt-Universitat zu Berlin Department of Chemistry Brook-Taylor-Str. 2 12489 Berlin GERMANY
| | - Stefano Crespi
- Uppsala Universitet Department of Chemistry Ångström LaboratoryBox 523 751 20 Uppsala SWEDEN
| | - Axel Troncossi
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Charlotte N. Stindt
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Ryojun Toyoda
- Tohoku University: Tohoku Daigaku Department of Chemistry JAPAN
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
57
|
Chen XM, Feng WJ, Bisoyi HK, Zhang S, Chen X, Yang H, Li Q. Light-activated photodeformable supramolecular dissipative self-assemblies. Nat Commun 2022; 13:3216. [PMID: 35680948 PMCID: PMC9184535 DOI: 10.1038/s41467-022-30969-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/26/2022] [Indexed: 01/28/2023] Open
Abstract
Dissipative self-assembly, one of fundamentally important out-of-equilibrium self-assembly systems, can serve as a controllable platform to exhibit temporal processes for various non-stimulus responsive properties. However, construction of light-fueled dissipative self-assembly structures with transformable morphology to modulate non-photoresponsive properties remains a great challenge. Here, we report a light-activated photodeformable dissipative self-assembly system in aqueous solution as metastable fluorescent palette. Zwitterionic sulfonato-merocyanine is employed as a light-induced amphiphile to co-assemble with polyethyleneimine after light irradiation. The formed spherical nanoparticles spontaneously transform into cuboid ones in the dark with simultaneous variation of the particle sizes. Then the two kinds of nanoparticles can reversibly interconvert to each other by periodical light irradiation and thermal relaxation. Furthermore, after loading different fluorophores exhibiting red, green, blue emissions and their mixtures, all these fluorescent dissipative deformable nanoparticles display time-dependent fluorescence variation with wide range of colors. Owing to the excellent performance of photodeformable dissipative assembly platform, the light-controlled fluorescence has achieved a 358-fold enhancement. Therefore, exposing the nanoparticles loaded with fluorophores to light in a spatially controlled manner allows us to draw multicolored fluorescent images that spontaneously disappeared after a specific period of time. Dissipative self-assembly can serve as a controllable platform to exhibit temporal processes for various non-stimulus responsive properties but construction of light-fueled dissipative self-assembly structures with transformable morphology to modulate non-photoresponsive properties remains a challenge. Here, the authors report a light-activated photodeformable dissipative self-assembly system in aqueous solution as metastable fluorescent platform.
Collapse
Affiliation(s)
- Xu-Man Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Wei-Jie Feng
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Shu Zhang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Xiao Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China.
| | - Quan Li
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China. .,Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
58
|
Light-fueled dissipative self-assembly at molecular and macro-scale enabled by a visible-light-responsive transient hetero-complementary quadruple hydrogen bond. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
59
|
Catalán AC, Loredo AA, Cervantes R, Tiburcio J. An Operative Electrostatic Slipping Mechanism along Macrocycle Flexibility Accelerates Guest Sliding during pseudo-Rotaxane Formation. ChemistryOpen 2022; 11:e202200112. [PMID: 35723426 PMCID: PMC9208289 DOI: 10.1002/open.202200112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
A pseudo-rotaxane is a host-guest complex composed of a linear molecule encircled by a macrocyclic ring. These complexes can be assembled by sliding the host over the guest terminal groups. If there is a close match between the molecular volume of the flanking groups on the guest and the cavity size of the macrocycle, the slipping might occur slowly or even become completely hindered. We have previously shown that it is possible to overcome the restraints imposed by steric effects on the sliding process by integrating electrostatic attractive interactions during the slipping step. In this work, we extend our electrostatically assisted slipping approach (EASA) to a new host-guest system featuring a flexible macrocyclic ring and a series of asymmetric guests containing a cyclic tertiary ammonium group. Compelling evidence for pseudo-rotaxane formation is presented, along with thermodynamic and kinetic data. Experimental results suggests that the higher conformational flexibility of 24-crown-8 significantly increases the sliding rate, compared with the more rigid dibenzo-24-crown-8, without affecting complex stability. Furthermore, by combining the EASA and macrocycle flexibility, we were capable to slip a large eight-membered cyclic group across the 24-crown-8 annulus, setting a new limit on the ring molecular size that can pass through a 24-membered crown ether.
Collapse
Affiliation(s)
- Aldo C. Catalán
- Department of ChemistryCenter for Research and Advanced Studies (Cinvestav)Avenida IPN 250807360Mexico CityMexico
| | - Axel A. Loredo
- Department of ChemistryCenter for Research and Advanced Studies (Cinvestav)Avenida IPN 250807360Mexico CityMexico
| | - Ruy Cervantes
- Department of ChemistryCenter for Research and Advanced Studies (Cinvestav)Avenida IPN 250807360Mexico CityMexico
| | - Jorge Tiburcio
- Department of ChemistryCenter for Research and Advanced Studies (Cinvestav)Avenida IPN 250807360Mexico CityMexico
| |
Collapse
|
60
|
Nicoli F, Curcio M, Tranfić Bakić M, Paltrinieri E, Silvi S, Baroncini M, Credi A. Photoinduced Autonomous Nonequilibrium Operation of a Molecular Shuttle by Combined Isomerization and Proton Transfer Through a Catalytic Pathway. J Am Chem Soc 2022; 144:10180-10185. [PMID: 35575701 PMCID: PMC9204767 DOI: 10.1021/jacs.1c13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
We describe a [2]rotaxane
whose recognition sites for the ring
are a dibenzylammonium moiety, endowed with acidic and H-bonding donor
properties, and an imidazolium center bearing a photoactive phenylazo
substituent. Light irradiation of this compound triggers a network
of E/Z isomerization and proton
transfer reactions that enable autonomous and reversible ring shuttling
away from equilibrium.
Collapse
Affiliation(s)
- Federico Nicoli
- CLAN-Center for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Massimiliano Curcio
- CLAN-Center for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Marina Tranfić Bakić
- CLAN-Center for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Erica Paltrinieri
- CLAN-Center for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy.,Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy.,Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
61
|
Asnicar D, Penocchio E, Frezzato D. Sample size dependence of tagged molecule dynamics in steady-state networks with bimolecular reactions: Cycle times of a light-driven pump. J Chem Phys 2022; 156:184116. [PMID: 35568563 DOI: 10.1063/5.0089695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Here, steady-state reaction networks are inspected from the viewpoint of individual tagged molecules jumping among their chemical states upon the occurrence of reactive events. Such an agent-based viewpoint is useful for selectively characterizing the behavior of functional molecules, especially in the presence of bimolecular processes. We present the tools for simulating the jump dynamics both in the macroscopic limit and in the small-volume sample where the numbers of reactive molecules are of the order of few units with an inherently stochastic kinetics. The focus is on how an ideal spatial "compartmentalization" may affect the dynamical features of the tagged molecule. Our general approach is applied to a synthetic light-driven supramolecular pump composed of ring-like and axle-like molecules that dynamically assemble and disassemble, originating an average ring-through-axle directed motion under constant irradiation. In such an example, the dynamical feature of interest is the completion time of direct/inverse cycles of tagged rings and axles. We find a surprisingly strong robustness of the average cycle times with respect to the system's size. This is explained in the presence of rate-determining unimolecular processes, which may, therefore, play a crucial role in stabilizing the behavior of small chemical systems against strong fluctuations in the number of molecules.
Collapse
Affiliation(s)
- Daniele Asnicar
- Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova, Italy
| | - Emanuele Penocchio
- Department of Physics and Materials Science, University of Luxembourg, Avenue de la Faïencerie, Luxembourg City L-1511, G.D. Luxembourg
| | - Diego Frezzato
- Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova, Italy
| |
Collapse
|
62
|
Su D, Zhou S, Masai H, Liu Z, Zhou C, Yang C, Li Z, Tsuda S, Liu Z, Terao J, Guo X. Stochastic Binding Dynamics of a Photoswitchable Single Supramolecular Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200022. [PMID: 35233985 PMCID: PMC9069358 DOI: 10.1002/advs.202200022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/30/2022] [Indexed: 06/11/2023]
Abstract
In this work, a real-time precise electrical method to directly monitor the stochastic binding dynamics of a single supramolecule based on the host-guest interaction between a cyclodextrin and an azo compound is reported. Different intermolecular binding states during the binding process are distinguished by conductance signals detected from graphene-molecule-graphene single-molecule junctions. In combination with theoretical calculations, the reciprocating and unidirectional motions in the trans form as well as the restrained reciprocating motion in the cis form due to the steric hindrance is observed, which could be reversibly switched by visible and UV irradiation. The integration of individual supramolecules into nanocircuits not only offers a facile and effective strategy to probe the dynamic process of supramolecular systems, but also paves the way to construct functional molecular devices toward real applications such as switches, sensors, and logic devices.
Collapse
Affiliation(s)
- Dingkai Su
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Shuyao Zhou
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Hiroshi Masai
- Department of Basic ScienceGraduate School of Arts and SciencesThe University of TokyoTokyo153‐8902Japan
| | - Zihao Liu
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Ce Zhou
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Chen Yang
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Zhizhou Li
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Susumu Tsuda
- Department of ChemistryOsaka Dental UniversityOsaka573‐1121Japan
| | - Zhirong Liu
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Jun Terao
- Department of Basic ScienceGraduate School of Arts and SciencesThe University of TokyoTokyo153‐8902Japan
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterCollege of Electronic Information and Optical EngineeringNankai University38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| |
Collapse
|
63
|
Hnid I, Guan L, Chatir E, Cobo S, Lafolet F, Maurel F, Lacroix JC, Sun X. Visualization and Comprehension of Electronic and Topographic Contrasts on Cooperatively Switched Diarylethene-Bridged Ditopic Ligand. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1318. [PMID: 35458026 PMCID: PMC9029802 DOI: 10.3390/nano12081318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022]
Abstract
Diarylethene is a prototypical molecular switch that can be reversibly photoisomerized between its open and closed forms. Ligands bpy-DAE-bpy, consisting of a phenyl-diarylethene-phenyl (DAE) central core and bipyridine (bpy) terminal substituents, are able to self-organize. They are investigated by scanning tunneling microscopy at the solid-liquid interface. Upon light irradiation, cooperative photochromic switching of the ligands is recognized down to the submolecular level. The closed isomers show different electron density of states (DOS) contrasts, attributed to the HOMO or LUMO molecular orbitals observed. More importantly, the LUMO images show remarkable differences between the open and closed isomers, attributed to combined topographic and electronic contrasts mainly on the DAE moieties. The electronic contrasts from multiple HOMO or LUMO distributions, combined with topographic distortion of the open or closed DAE, are interpreted by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Imen Hnid
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Lihao Guan
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Elarbi Chatir
- Department of Chemistry, Université Grenoble Alpes, DCM-UMR 5250, F-38000 Grenoble, France; (E.C.); (S.C.)
| | - Saioa Cobo
- Department of Chemistry, Université Grenoble Alpes, DCM-UMR 5250, F-38000 Grenoble, France; (E.C.); (S.C.)
| | - Frédéric Lafolet
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - François Maurel
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Jean-Christophe Lacroix
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Xiaonan Sun
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| |
Collapse
|
64
|
Koehler V, Roy A, Huc I, Ferrand Y. Foldaxanes: Rotaxane-like Architectures from Foldamers. Acc Chem Res 2022; 55:1074-1085. [PMID: 35293719 DOI: 10.1021/acs.accounts.2c00050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mechanically interlocked molecules such as rotaxanes and catenanes contain free-moving components that cannot dissociate and have enabled the investigation and control of various translational and rotational molecular motions. The architecture of pseudo-rotaxanes and of some kinetically labile rotaxanes is comparable to that of rotaxanes but their components are reversibly associated and not irreversibly interlocked. In other words, pseudo-rotaxanes may fall apart. This Account focuses on a peculiar family of rotaxane-like architectures termed foldaxanes.Foldaxanes consist of a helically folded oligomer wound around a rod-like dumbbell-shaped guest. Winding of the helix around the rod thus entails an unwinding-rewinding process that creates a kinetic barrier. It follows that foldaxanes, albeit reversibly assembled, have significant lifetimes and may not fall apart while defined molecular motions are triggered. Foldaxanes based on helically folded aromatic oligoamide hosts and oligo(alkyl carbamate) guests can be designed rationally through the inclusion of complementary binding motifs on the rod and at the inner rim of the helix so that helix length and rod length match. Single helical foldaxanes (bimolecular species) and double helical foldaxanes (trimolecular species) have thus been produced as well as poly[n]foldaxanes, in which several helices bind to long rods with multiple binding stations. When the binding stations differ and are organized in a certain sequence, a complementary sequence of different stacked helices, each matching with their binding station, can be assembled, thus reproducing in an artificial system a sort of translation process.Foldaxane helix handedness may be controlled by stereogenic centers on the rod-like guest. Handedness can also be transmitted from helix to helix in polyfoldaxanes. Foldaxane formation has drastic consequences for the rod properties, including its stiffening and the restriction of the mobility of a macrocycle already interlocked on the rod. Fast translation (without dissociation) of helices along rod-like guests has been demonstrated. Because of the helical nature of the hosts, translation may be accompanied by rotation in various sorts of screw-like motions. The possibility, on longer time scales, for the helix to dissociate from and reassociate to the rod has allowed for the design of complex, kinetically controlled supramolecular pathways of a helix on a rod. Furthermore, the design of helices with a directionality, that is, with two distinct termini, that bind to nonsymmetrical rod-like guests in a defined orientation makes it possible to also control the orientation of molecular motion. Altogether, foldaxanes constitute a distinct and full-of-potential family of rotaxane-like architectures that possess designer structures and allow orchestration of the time scales of various supramolecular events.
Collapse
Affiliation(s)
- Victor Koehler
- CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Université de Bordeaux, Institut Européen de Chimie et Biologie, 2 Rue Escarpit, 33600 Pessac, France
| | - Arundhati Roy
- Department Pharmazie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 München, Germany
| | - Ivan Huc
- Department Pharmazie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 München, Germany
| | - Yann Ferrand
- CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Université de Bordeaux, Institut Européen de Chimie et Biologie, 2 Rue Escarpit, 33600 Pessac, France
| |
Collapse
|
65
|
Amano S, Esposito M, Kreidt E, Leigh DA, Penocchio E, Roberts BMW. Insights from an information thermodynamics analysis of a synthetic molecular motor. Nat Chem 2022; 14:530-537. [PMID: 35301472 DOI: 10.1038/s41557-022-00899-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Information is physical, a realization that has transformed the physics of measurement and communication. However, the flow between information, energy and mechanics in chemical systems remains largely unexplored. Here we analyse a minimalist autonomous chemically driven molecular motor in terms of information thermodynamics, a framework that quantitatively relates information to other thermodynamic parameters. The treatment reveals how directional motion is generated by free energy transfer from chemical to mechanical (conformational and/or co-conformational) processes by 'energy flow' and 'information flow'. It provides a thermodynamic level of understanding of molecular motors that is general, complements previous analyses based on kinetics and has practical implications for machine design. In line with kinetic analysis, we find that power strokes do not affect the directionality of chemically driven machines. However, we find that power strokes can modulate motor velocity, the efficiency of free energy transfer and the number of fuel molecules consumed per cycle. This may help explain the role of such (co-)conformational changes in biomachines and illustrates the interplay between energy and information in chemical systems.
Collapse
Affiliation(s)
- Shuntaro Amano
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Massimiliano Esposito
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Elisabeth Kreidt
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - Emanuele Penocchio
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg.
| | | |
Collapse
|
66
|
Kennedy ADW, DiNardi RG, Fillbrook LL, Donald WA, Beves JE. Visible-Light Switching of Metallosupramolecular Assemblies. Chemistry 2022; 28:e202104461. [PMID: 35102616 PMCID: PMC9302685 DOI: 10.1002/chem.202104461] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/11/2022]
Abstract
A photoswitchable ligand and palladium(II) ions form a dynamic mixture of self-assembled metallosupramolecular structures. The photoswitching ligand is an ortho-fluoroazobenzene with appended pyridyl groups. Combining the E-isomer with palladium(II) salts affords a double-walled triangle with composition [Pd3 L6 ]6+ and a distorted tetrahedron [Pd4 L8 ]8+ (1 : 2 ratio at 298 K). Irradiation with 410 nm light generates a photostationary state with approximately 80 % of the E-isomer of the ligand and results in the selective disassembly of the tetrahedron, the more thermodynamically stable structure, and the formation of the triangle, the more kinetically inert product. The triangle is then slowly transformed back into the tetrahedron over 2 days at 333 K. The Z-isomer of the ligand does not form any well-defined structures and has a thermal half-life of 25 days at 298 K. This approach shows how a thermodynamically preferred self-assembled structure can be reversibly pumped to a kinetic trap by small perturbations of the isomer distribution using non-destructive visible light.
Collapse
Affiliation(s)
| | - Ray G. DiNardi
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Lucy L. Fillbrook
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - William A. Donald
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Jonathon E. Beves
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
67
|
Leistner AL, Pianowski Z. Smart photochromic materials triggered with visible light. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna-Lena Leistner
- KIT: Karlsruher Institut fur Technologie Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| | - Zbigniew Pianowski
- Karlsruher Institut fur Technologie Fakultat fur Chemie und Biowissenschaften Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| |
Collapse
|
68
|
Li X, David AHG, Zhang L, Song B, Jiao Y, Sluysmans D, Qiu Y, Wu Y, Zhao X, Feng Y, Mosca L, Stoddart JF. Fluorescence Quenching by Redox Molecular Pumping. J Am Chem Soc 2022; 144:3572-3579. [PMID: 35179889 DOI: 10.1021/jacs.1c12480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Artificial molecular pumps (AMPs), inspired by the active cellular transport exhibited in biological systems, enable cargoes to undergo unidirectional motion, courtesy of molecular ratchet mechanisms in the presence of energy sources. Significant progress has been achieved, using alternatively radical interactions and Coulombic repulsive forces to create working AMPs. In an attempt to widen the range of these AMPs, we have explored the effect of molecular pumping on the photophysical properties of a collecting chain on a dumbbell incorporating a centrally located pyrene fluorophore and two terminal pumping cassettes. The AMP discussed here sequesters two tetracationic cyclophanes from the solution, generating a [3]rotaxane in which the fluorescence of the dumbbell is quenched. The research reported in this Article demonstrates that the use of pumping cassettes allows us to generate the [3]rotaxane in which the photophysical properties of fluorophores can be modified in a manner that cannot be achieved with a mixture of the dumbbell and ring components of the rotaxane on account of their weak binding in solution.
Collapse
Affiliation(s)
- Xuesong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Damien Sluysmans
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Research Unit MolSys, NanoChem, University of Liege, Sart-Tilman, B6a, Liege 4000, Belgium
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yong Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lorenzo Mosca
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, Rhode Island 02881, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
69
|
Simeth NA. A Molecular Pump Facilitates Mechanical Adsorption Away from Equilibrium. Angew Chem Int Ed Engl 2022; 61:e202115145. [DOI: 10.1002/anie.202115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Nadja A. Simeth
- Institute for Organic and Biomolecular Chemistry University of Goettingen Tammannstrasse 2 37077 Göttingen Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC) University of Goettingen Germany
| |
Collapse
|
70
|
Kathan M, Crespi S, Thiel NO, Stares DL, Morsa D, de Boer J, Pacella G, van den Enk T, Kobauri P, Portale G, Schalley CA, Feringa BL. A light-fuelled nanoratchet shifts a coupled chemical equilibrium. NATURE NANOTECHNOLOGY 2022; 17:159-165. [PMID: 34916655 PMCID: PMC8956507 DOI: 10.1038/s41565-021-01021-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/29/2021] [Indexed: 05/23/2023]
Abstract
Biological molecular machines enable chemical transformations, assembly, replication and motility, but most distinctively drive chemical systems out of-equilibrium to sustain life1,2. In such processes, nanometre-sized machines produce molecular energy carriers by driving endergonic equilibrium reactions. However, transforming the work performed by artificial nanomachines3-5 into chemical energy remains highly challenging. Here, we report a light-fuelled small-molecule ratchet capable of driving a coupled chemical equilibrium energetically uphill. By bridging two imine6-9 macrocycles with a molecular motor10,11, the machine forms crossings and consequently adopts several distinct topologies by either a thermal (temporary bond-dissociation) or photochemical (unidirectional rotation) pathway. While the former will relax the machine towards the global energetic minimum, the latter increases the number of crossings in the system above the equilibrium value. Our approach provides a blueprint for coupling continuous mechanical motion performed by a molecular machine with a chemical transformation to reach an out-of-equilibrium state.
Collapse
Affiliation(s)
- Michael Kathan
- Stratingh Institute for Chemistry, Center for Systems Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands.
| | - Stefano Crespi
- Stratingh Institute for Chemistry, Center for Systems Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands
| | - Niklas O Thiel
- Stratingh Institute for Chemistry, Center for Systems Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands
| | - Daniel L Stares
- Institut für Chemie und Biochemie der Freien Universität Berlin, Berlin, Germany
| | - Denis Morsa
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - John de Boer
- Stratingh Institute for Chemistry, Center for Systems Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands
| | - Gianni Pacella
- Macromolecular Chemistry and New Polymeric Materials and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands
| | - Tobias van den Enk
- Stratingh Institute for Chemistry, Center for Systems Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands
| | - Piermichele Kobauri
- Stratingh Institute for Chemistry, Center for Systems Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands
| | - Giuseppe Portale
- Macromolecular Chemistry and New Polymeric Materials and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands
| | - Christoph A Schalley
- Institut für Chemie und Biochemie der Freien Universität Berlin, Berlin, Germany.
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Center for Systems Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
71
|
Simeth NA. A Molecular Pump Facilitates Mechanical Adsorption Away from Equilibrium. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nadja A. Simeth
- Institute for Organic and Biomolecular Chemistry University of Goettingen Tammannstrasse 2 37077 Göttingen Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC) University of Goettingen Germany
| |
Collapse
|
72
|
Lee H, Tessarolo J, Langbehn D, Baksi A, Herges R, Clever GH. Light-Powered Dissipative Assembly of Diazocine Coordination Cages. J Am Chem Soc 2022; 144:3099-3105. [PMID: 35081312 PMCID: PMC8874908 DOI: 10.1021/jacs.1c12011] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Stimuli-responsive
coordination cages allow reversible control
over guest binding and release, relevant for adaptive receptors, carriers,
catalysts, and complex systems. Light serves as an advantageous stimulus,
as it can be applied with precise spatial and temporal resolution
without producing chemical waste products. We report the first Pd-mediated
coordination cage based on ligands embedding a diazocine photoswitch.
While the thermodynamically more stable cis-photoisomer
sloppily assembles to a mixture of species with general formula [Pdncis-L2n], the less stable trans-isomer yields a defined [Pd2trans-L4] cage that reversibly converts
back to the cis-system by irradiation at 530 nm or
thermal relaxation. The [Pdncis-L2n]
species do not bind a given guest; however, [Pd2trans-L4] is able to
encapsulate a bis-sulfonate as long as it is kept assembled, requiring
continuous irradiation at 385 nm. In the absence of UV light, thermal
relaxation results in back-switching and guest release. Assembly and
properties of the system were characterized by a combination of NMR,
ion mobility ESI-MS, single-crystal X-ray diffraction, and UV–vis
absorption studies.
Collapse
Affiliation(s)
- Haeri Lee
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany.,Department of Chemistry, Hannam University, 1646, Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| | - Daniel Langbehn
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts University, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - Ananya Baksi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| | - Rainer Herges
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts University, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
73
|
Li M, Ma Z, Pan C, Zhang X, Zhang W, Yang B, Li Y. Chemical Fuel Mediated Self-Regulatory Polymer Brushes for Autonomous Fluorescence Modulator and Wettability Switcher. Macromol Rapid Commun 2022; 43:e2100878. [PMID: 35080275 DOI: 10.1002/marc.202100878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Indexed: 11/06/2022]
Abstract
Synthetic systems of non-equilibrium self-assembly have made considerable progress, however, the achievement of innovative materials with self-regulated functions analogous to living systems remains a grand challenge. Herein, we report a versatile non-equilibrium system of polymer brushes with spatiotemporally programmable properties and functions driven by chemical fuels. By combining a responsive polymer with an autonomous pH regulator, the polymer brushes self-regulate their swelling and deswelling process with tunable lifetimes. By using patterned copolymer brushes with pH-responsive fluorescence moiety, we create an autonomous fluorescence modulator that self-regulates its fluorescence in spatiotemporally programmable fashion driven by a chemical or an enzymatic reaction. Furthermore, we implement a self-regulated wettability switcher of polymer brushes both in air and in an aqueous solution. The methodology and results in this work provide a useful avenue into the exploration of non-equilibrium synthetic materials with programmable functions and would accelerate the transformative developments of non-equilibrium materials and systems in practical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Chunyu Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiaoye Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
74
|
Li A, Tan Z, Hu Y, Lu Z, Yuan J, Li X, Xie J, Zhang J, Zhu K. Precise Control of Radial Catenane Synthesis via Clipping and Pumping. J Am Chem Soc 2022; 144:2085-2089. [DOI: 10.1021/jacs.1c12303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anquan Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhengqi Tan
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yiheng Hu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zonghuan Lu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun Yuan
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xia Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jialin Xie
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
75
|
Findlay JA, Ross DAW, Crowley JD. Ferrocene Rotary Switches Featuring 2‐Pyridyl‐1,2,3‐triazole “Click” Chelates. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- James A. Findlay
- Department of Chemistry University of Otago Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington 6140 New Zealand
| | - Daniel A. W. Ross
- Department of Chemistry University of Otago Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington 6140 New Zealand
| | - James D. Crowley
- Department of Chemistry University of Otago Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington 6140 New Zealand
| |
Collapse
|
76
|
David AHG, García–Cerezo P, Campaña AG, Santoyo–González F, Blanco V. Vinyl sulfonyl chemistry-driven unidirectional transport of a macrocycle through a [2]rotaxane. Org Chem Front 2022. [DOI: 10.1039/d1qo01491a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pH- and chemically-driven unidirectional transport of a macrocycle through a [2]rotaxane based on the vinyl sulfonyl groups is reported.
Collapse
Affiliation(s)
- Arthur H. G. David
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| | - Pablo García–Cerezo
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| | - Araceli G. Campaña
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| | - Francisco Santoyo–González
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| | - Victor Blanco
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| |
Collapse
|
77
|
Chen S, Su D, Jia C, Li Y, Li X, Guo X, Leigh DA, Zhang L. Real-time observation of the dynamics of an individual rotaxane molecular shuttle using a single-molecule junction. Chem 2022. [DOI: 10.1016/j.chempr.2021.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
78
|
Seale JSW, Feng Y, Feng L, Astumian RD, Stoddart JF. Polyrotaxanes and the pump paradigm. Chem Soc Rev 2022; 51:8450-8475. [DOI: 10.1039/d2cs00194b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The year 2022 marks the 30th anniversary of the first reports of polyrotaxanes in the scientific literature.
Collapse
Affiliation(s)
- James S. W. Seale
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Liang Feng
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - R. Dean Astumian
- Department of Physics and Astronomy, University of Maine, Orono, Maine 04469, USA
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
79
|
Priyanka, Shandilya E, Brar SK, Mahato RR, Maiti S. Spatiotemporal dynamics of self-assembled structures in enzymatically induced agonistic and antagonistic conditions. Chem Sci 2021; 13:274-282. [PMID: 35059177 PMCID: PMC8694342 DOI: 10.1039/d1sc05353a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/20/2021] [Indexed: 12/20/2022] Open
Abstract
Predicting and designing systems with dynamic self-assembly properties in a spatiotemporal fashion is an important research area across disciplines ranging from understanding the fundamental non-equilibrium features of life to the fabrication of next-generation materials with life-like properties. Herein, we demonstrate a spatiotemporal dynamics pattern in the self-assembly behavior of a surfactant from an unorganized assembly, induced by adenosine triphosphate (ATP) and enzymes responsible for the degradation or conversion of ATP. We report the different behavior of two enzymes, alkaline phosphatase (ALP) and hexokinase (HK), towards adenosine triphosphate (ATP)-driven surfactant assembly, which also results in contrasting spatiotemporal dynamic assembly behavior. Here, ALP acts antagonistically, resulting in transient self-assemblies, whereas HK shows agonistic action with the ability to sustain the assemblies. This dynamic assembly behavior was then used to program the time-dependent emergence of a self-assembled structure in a two-dimensional space by maintaining concentration gradients of the enzymes and surfactant at different locations, demonstrating a new route for obtaining 'spatial' organizational adaptability in a self-organized system of interacting components for the incorporation of programmed functionality.
Collapse
Affiliation(s)
- Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City Manauli 140306 India
| | - Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City Manauli 140306 India
| | - Surinder Kaur Brar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City Manauli 140306 India
| | - Rishi Ram Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City Manauli 140306 India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City Manauli 140306 India
| |
Collapse
|
80
|
Feng L, Qiu Y, Guo QH, Chen Z, Seale JSW, He K, Wu H, Feng Y, Farha OK, Astumian RD, Stoddart JF. Active mechanisorption driven by pumping cassettes. Science 2021; 374:1215-1221. [PMID: 34672694 DOI: 10.1126/science.abk1391] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Liang Feng
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Zhijie Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - James S W Seale
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Kun He
- Northwestern University Atomic and Nanoscale Characterization Experimental Center (NUANCE), Northwestern University, Evanston, IL 60208, USA
| | - Huang Wu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - R Dean Astumian
- Department of Physics and Astronomy, University of Maine, Orono, ME 04469, USA
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
81
|
Andreoni L, Baroncini M, Groppi J, Silvi S, Taticchi C, Credi A. Photochemical Energy Conversion with Artificial Molecular Machines. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2021; 35:18900-18914. [PMID: 34887620 PMCID: PMC8647081 DOI: 10.1021/acs.energyfuels.1c02921] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Indexed: 05/08/2023]
Abstract
The exploitation of sunlight as a clean, renewable, and distributed energy source is key to facing the energetic demand of modern society in a sustainable and affordable fashion. In the past few decades, chemists have learned to make molecular machines, that is, synthetic chemical systems in which energy inputs cause controlled movements of molecular components that could be used to perform a task. A variety of artificial molecular machines operated by light have been constructed by implementing photochemical processes within appropriately designed (supra)molecular assemblies. These studies could open up new routes for the realization of nanostructured devices and materials capable to harness, convert, and store light energy.
Collapse
Affiliation(s)
- Leonardo Andreoni
- CLAN-Center
for Light Activated Nanostructures, Istituto
ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Massimo Baroncini
- CLAN-Center
for Light Activated Nanostructures, Istituto
ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 50, 40127 Bologna, Italy
| | - Jessica Groppi
- CLAN-Center
for Light Activated Nanostructures, Istituto
ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Serena Silvi
- CLAN-Center
for Light Activated Nanostructures, Istituto
ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Chiara Taticchi
- CLAN-Center
for Light Activated Nanostructures, Istituto
ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Alberto Credi
- CLAN-Center
for Light Activated Nanostructures, Istituto
ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
82
|
Chu CW, Stares DL, Schalley CA. Light-controlled interconversion between a [ c2]daisy chain and a lasso-type pseudo[1]rotaxane. Chem Commun (Camb) 2021; 57:12317-12320. [PMID: 34734947 DOI: 10.1039/d1cc04419b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A light-responsive self-complementary crown ether/ammonium conjugate bearing an arylazopyrazole photoswitch as a spacer can be switched between a [c2]daisy chain (E-isomer) and a lasso-type pseudo[1]rotaxane (Z-isomer) by light.
Collapse
Affiliation(s)
- Chih-Wei Chu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, Berlin 14195, Germany.
| | - Daniel L Stares
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, Berlin 14195, Germany.
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, Berlin 14195, Germany.
| |
Collapse
|
83
|
Costil R, Holzheimer M, Crespi S, Simeth NA, Feringa BL. Directing Coupled Motion with Light: A Key Step Toward Machine-Like Function. Chem Rev 2021; 121:13213-13237. [PMID: 34533944 PMCID: PMC8587610 DOI: 10.1021/acs.chemrev.1c00340] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 12/26/2022]
Abstract
Molecular photoactuators can control shape and chemical or physical properties of the responsive system they are embedded in. These effects are usually mediated by supramolecular interactions and can be amplified to perform work at the micro- and macroscopic scale, for instance, in materials and biomimetic systems. While many studies focus on the observable outcome of these events, photoresponsive structures can also translate their conformational change to molecular components and perform work against random Brownian motion. Stereochemical cascades can amplify light-generated motion to a distant moiety of the same molecule or molecular assembly, via conformationally restricted stereogenic elements. Being able to control the conformation or motion of molecular systems remotely provides prospects for the design of the smallest machines imaginable. This Focus Review emphasizes the emergence of directed, coupled motion of remote functionalities triggered by light-powered switches and motors as a tool to control molecular topology and function.
Collapse
Affiliation(s)
| | | | - Stefano Crespi
- Stratingh Institute for Chemistry,
Faculty of Science and Engineering, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Nadja A. Simeth
- Stratingh Institute for Chemistry,
Faculty of Science and Engineering, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry,
Faculty of Science and Engineering, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
84
|
Thumser S, Köttner L, Hoffmann N, Mayer P, Dube H. All-Red-Light Photoswitching of Indirubin Controlled by Supramolecular Interactions. J Am Chem Soc 2021; 143:18251-18260. [PMID: 34665961 PMCID: PMC8867725 DOI: 10.1021/jacs.1c08206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Red-light responsiveness
of photoswitches is a highly desired property
for many important application areas such as biology or material sciences.
The main approach to elicit this property uses strategic substitution
of long-known photoswitch motives such as azobenzenes or diarylethenes.
Only very few photoswitches possess inherent red-light absorption
of their core chromophore structures. Here, we present a strategy
to convert the long-known purple indirubin dye into a prolific red-light-responsive
photoswitch. In a supramolecular approach, its photochromism can be
changed from a negative to a positive one, while at the same time,
significantly higher yields of the metastable E-isomer
are obtained upon irradiation. E- to Z-photoisomerization can then also be induced by red light of longer
wavelengths. Indirubin therefore represents a unique example of reversible
photoswitching using entirely red light for both switching directions.
Collapse
Affiliation(s)
- Stefan Thumser
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Laura Köttner
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Nadine Hoffmann
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Peter Mayer
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Henry Dube
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
85
|
Wonink MBS, Corbet BP, Kulago AA, Boursalian GB, de Bruin B, Otten E, Browne WR, Feringa BL. Three-State Switching of an Anthracene Extended Bis-thiaxanthylidene with a Highly Stable Diradical State. J Am Chem Soc 2021; 143:18020-18028. [PMID: 34695359 PMCID: PMC8569810 DOI: 10.1021/jacs.1c05938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A multistable molecular switching system based on an anthracene-extended bis-thiaxanthylidene with three individually addressable states that can be interconverted by electrochemical, thermal, and photochemical reactions is reported. Besides reversible switching between an open-shell diradical- and a closed-shell electronic configuration, our findings include a third dicationic state and control by multiple actuators. This dicationic state with an orthogonal conformation can be switched electrochemically with the neutral open-shell triplet state with orthogonal conformation, which was characterized by EPR. The remarkably stable diradical shows kinetic stability as a result of a significant activation barrier for isomerization to a more stable neutral closed-shell folded geometry. We ascribe this activation barrier of ΔG⧧(293 K) = 25.7 kcal mol-1 to steric hindrance in the fjord region of the overcrowded alkene structure. The folded closed-shell state can be converted back to the diradical state by irradiation with 385 nm. The folded state can also be oxidized to the dicationic state. These types of molecules with multiple switchable states and in particular stable diradicals show great potential in the design of new functional materials such as memory devices, logic gates, and OFETs.
Collapse
Affiliation(s)
- Marco B S Wonink
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Brian P Corbet
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Artem A Kulago
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gregory B Boursalian
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
86
|
Cherraben S, Scelle J, Hasenknopf B, Vives G, Sollogoub M. Precise Rate Control of Pseudorotaxane Dethreading by pH-Responsive Selectively Functionalized Cyclodextrins. Org Lett 2021; 23:7938-7942. [PMID: 34582212 DOI: 10.1021/acs.orglett.1c02940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A family of cyclodextrins functionalized with zero, one, two, or six amines was shown to control the rate of their threading and dethreading on a molecular axle depending on the pH and their substitution pattern. The originality of this system lies in the rate control of the switch by operating the stimulus directly on the macrocycle.
Collapse
Affiliation(s)
- Sawsen Cherraben
- Sorbonne Université, CNRS UMR8232, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| | - Jérémy Scelle
- Sorbonne Université, CNRS UMR8232, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| | - Bernold Hasenknopf
- Sorbonne Université, CNRS UMR8232, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| | - Guillaume Vives
- Sorbonne Université, CNRS UMR8232, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS UMR8232, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
87
|
Borodin O, Shchukin Y, Robertson CC, Richter S, von Delius M. Self-Assembly of Stimuli-Responsive [2]Rotaxanes by Amidinium Exchange. J Am Chem Soc 2021; 143:16448-16457. [PMID: 34559523 PMCID: PMC8517971 DOI: 10.1021/jacs.1c05230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 01/29/2023]
Abstract
Advances in supramolecular chemistry are often underpinned by the development of fundamental building blocks and methods enabling their interconversion. In this work, we report the use of an underexplored dynamic covalent reaction for the synthesis of stimuli-responsive [2]rotaxanes. The formamidinium moiety lies at the heart of these mechanically interlocked architectures, because it enables both dynamic covalent exchange and the binding of simple crown ethers. We demonstrated that the rotaxane self-assembly follows a unique reaction pathway and that the complex interplay between crown ether and thread can be controlled in a transient fashion by addition of base and fuel acid. Dynamic combinatorial libraries, when exposed to diverse nucleophiles, revealed a profound stabilizing effect of the mechanical bond as well as intriguing reactivity differences between seemingly similar [2]rotaxanes.
Collapse
Affiliation(s)
- Oleg Borodin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yevhenii Shchukin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Craig C. Robertson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Stefan Richter
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
88
|
Wang J, Wan Q, Liu J. Synthesis of
Donor‐Acceptor π‐Conjugated
Macrocycles by
Post‐Functionalization
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junting Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road, Hong Kong China
| | - Qingyun Wan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road, Hong Kong China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road, Hong Kong China
| |
Collapse
|
89
|
Nicoli F, Baroncini M, Silvi S, Groppi J, Credi A. Direct synthetic routes to functionalised crown ethers. Org Chem Front 2021; 8:5531-5549. [PMID: 34603737 PMCID: PMC8477657 DOI: 10.1039/d1qo00699a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022]
Abstract
Crown ethers are macrocyclic hosts that can complex a wide range of inorganic and organic cations as well as neutral guest species. Their widespread utilization in several areas of fundamental and applied chemistry strongly relies on strategies for their functionalisation, in order to obtain compounds that could carry out multiple functions and could be incorporated in sophisticated systems. Although functionalised crown ethers are normally synthesised by templated macrocyclisation using appropriately substituted starting materials, the direct addition of functional groups onto a pre-formed macrocyclic framework is a valuable yet underexplored alternative. Here we review the methodologies for the direct functionalisation of aliphatic and aromatic crown ethers sporadically reported in the literature over a period of four decades. The general approach for the introduction of moieties on aliphatic crown ethers involves a radical mediated cross dehydrogenative coupling initiated either by photochemical or thermal/chemical activation, while aromatic crown ethers are commonly derivatised via electrophilic aromatic substitution. Direct functionalization routes can reduce synthetic effort, allow the later modification of crown ether-based architectures, and disclose new ways to exploit these versatile macrocycles in contemporary supramolecular science and technology.
Collapse
Affiliation(s)
- Federico Nicoli
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica "G. Ciamician", Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
90
|
Penocchio E, Rao R, Esposito M. Nonequilibrium thermodynamics of light-induced reactions. J Chem Phys 2021; 155:114101. [PMID: 34551539 DOI: 10.1063/5.0060774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Current formulations of nonequilibrium thermodynamics of open chemical reaction networks only consider chemostats as free-energy sources sustaining nonequilibrium behaviors. Here, we extend the theory to include incoherent light as a source of free energy. We do so by relying on a local equilibrium assumption to derive the chemical potential of photons relative to the system they interact with. This allows us to identify the thermodynamic potential and the thermodynamic forces driving light-reacting chemical systems out-of-equilibrium. We use this framework to treat two paradigmatic photochemical mechanisms describing light-induced unimolecular reactions-namely, the adiabatic and diabatic mechanisms-and highlight the different thermodynamics they lead to. Furthermore, using a thermodynamic coarse-graining procedure, we express our findings in terms of commonly measured experimental quantities, such as quantum yields.
Collapse
Affiliation(s)
- Emanuele Penocchio
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, G. D. Luxembourg
| | - Riccardo Rao
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, G. D. Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, G. D. Luxembourg
| |
Collapse
|
91
|
|
92
|
Chen XM, Hou XF, Bisoyi HK, Feng WJ, Cao Q, Huang S, Yang H, Chen D, Li Q. Light-fueled transient supramolecular assemblies in water as fluorescence modulators. Nat Commun 2021; 12:4993. [PMID: 34404798 PMCID: PMC8371092 DOI: 10.1038/s41467-021-25299-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/02/2021] [Indexed: 12/05/2022] Open
Abstract
Dissipative self-assembly, which requires a continuous supply of fuel to maintain the assembled states far from equilibrium, is the foundation of biological systems. Among a variety of fuels, light, the original fuel of natural dissipative self-assembly, is fundamentally important but remains a challenge to introduce into artificial dissipative self-assemblies. Here, we report an artificial dissipative self-assembly system that is constructed from light-induced amphiphiles. Such dissipative supramolecular assembly is easily performed using protonated sulfonato-merocyanine and chitosan based molecular and macromolecular components in water. Light irradiation induces the assembly of supramolecular nanoparticles, which spontaneously disassemble in the dark due to thermal back relaxation of the molecular switch. Owing to the presence of light-induced amphiphiles and the thermal dissociation mechanism, the lifetimes of these transient supramolecular nanoparticles are highly sensitive to temperature and light power and range from several minutes to hours. By incorporating various fluorophores into transient supramolecular nanoparticles, the processes of aggregation-induced emission and aggregation-caused quenching, along with periodic variations in fluorescent color over time, have been demonstrated. Transient supramolecular assemblies, which act as fluorescence modulators, can also function in human hepatocellular cancer cells. Dissipative self-assembly, which requires a continuous supply of fuel to maintain the assembled states far from equilibrium, is the foundation of biological systems but it remains a challenge to introduce light as fuel into artificial dissipative self-assemblies. Here, the authors report an artificial dissipative self-assembly system that is constructed from light-induced amphiphiles.
Collapse
Affiliation(s)
- Xu-Man Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing, China
| | - Xiao-Fang Hou
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, USA
| | - Wei-Jie Feng
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing, China
| | - Qin Cao
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing, China
| | - Shuai Huang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing, China
| | - Hong Yang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing, China.
| | - Dongzhong Chen
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Quan Li
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing, China. .,Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, USA.
| |
Collapse
|
93
|
Corra S, Casimiro L, Baroncini M, Groppi J, La Rosa M, Tranfić Bakić M, Silvi S, Credi A. Artificial Supramolecular Pumps Powered by Light. Chemistry 2021; 27:11076-11083. [PMID: 33951231 PMCID: PMC8453702 DOI: 10.1002/chem.202101163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/13/2022]
Abstract
The development of artificial nanoscale motors that can use energy from a source to perform tasks requires systems capable of performing directionally controlled molecular movements and operating away from chemical equilibrium. Here, the design, synthesis and properties of pseudorotaxanes are described, in which a photon input triggers the unidirectional motion of a macrocyclic ring with respect to a non-symmetric molecular axle. The photoinduced energy ratcheting at the basis of the pumping mechanism is validated by measuring the relevant thermodynamic and kinetic parameters. Owing to the photochemical behavior of the azobenzene moiety embedded in the axle, the pump can repeat its operation cycle autonomously under continuous illumination. NMR spectroscopy was used to observe the dissipative non-equilibrium state generated in situ by light irradiation. We also show that fine changes in the axle structure lead to an improvement in the performance of the motor. Such results highlight the modularity and versatility of this minimalist pump design, which provides facile access to dynamic systems that operate under photoinduced non-equilibrium regimes.
Collapse
Affiliation(s)
- Stefano Corra
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica Industriale “Toso Montanari”Università di BolognaViale del Risorgimento 440136BolognaItaly
| | - Lorenzo Casimiro
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di BolognaVia Selmi 240126BolognaItaly
- Université Paris-Saclay, CNRS, PPSM4 Avenue des Sciences91190Gif-sur-YvetteFrance
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 4440127BolognaItaly
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
| | - Marcello La Rosa
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 4440127BolognaItaly
| | - Marina Tranfić Bakić
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica Industriale “Toso Montanari”Università di BolognaViale del Risorgimento 440136BolognaItaly
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di BolognaVia Selmi 240126BolognaItaly
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica Industriale “Toso Montanari”Università di BolognaViale del Risorgimento 440136BolognaItaly
| |
Collapse
|
94
|
Canton M, Groppi J, Casimiro L, Corra S, Baroncini M, Silvi S, Credi A. Second-Generation Light-Fueled Supramolecular Pump. J Am Chem Soc 2021; 143:10890-10894. [PMID: 34282901 PMCID: PMC8323096 DOI: 10.1021/jacs.1c06027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 12/13/2022]
Abstract
We describe the modular design of a pseudorotaxane-based supramolecular pump and its photochemically driven autonomous nonequilibrium operation in a dissipative regime. These properties derive from careful engineering of the energy maxima and minima along the threading coordinate and their light-triggered modulation. Unlike its precursor, this second-generation system is amenable to functionalization for integration into more complex devices.
Collapse
Affiliation(s)
- Martina Canton
- CLAN-Center
for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Jessica Groppi
- CLAN-Center
for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Lorenzo Casimiro
- CLAN-Center
for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Stefano Corra
- CLAN-Center
for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Massimo Baroncini
- CLAN-Center
for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Serena Silvi
- CLAN-Center
for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Alberto Credi
- CLAN-Center
for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
95
|
Huber LA, Thumser S, Grill K, Voßiek D, Bach NN, Mayer P, Dube H. Steric Effects on the Thermal Processes of Hemithioindigo Based Molecular Motor Rotation. Chemistry 2021; 27:10758-10765. [PMID: 33945652 PMCID: PMC8361725 DOI: 10.1002/chem.202100950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/21/2022]
Abstract
Tuning the thermal behavior of light driven molecular motors is fundamentally important for their future rational design. In many molecular motors thermal ratcheting steps are comprised of helicity inversions, energetically stabilizing the initial photoproducts. In this work we investigated a series of five hemithioindigo (HTI) based molecular motors to reveal the influence of steric hindrance in close proximity to the rotation axle on this process. Applying a high yielding synthetic procedure, we synthesized constitutional isomeric derivatives to distinguish between substitution effects at the aromatic and aliphatic position on the rotor fragment. The kinetics of thermal helix inversions were elucidated using low temperature 1 H NMR spectroscopy and an in situ irradiation technique. In combination with a detailed theoretical description, a comparative analysis of substituent effects on the thermal helix inversions of the rotation cycle is now possible. Such deeper understanding of the rotational cycle of HTI molecular motors is essential for speed regulation and future applications of visible light triggered nanomachines.
Collapse
Affiliation(s)
- Ludwig A. Huber
- Department für Chemie and Munich Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität München81377MunichGermany
| | - Stefan Thumser
- Department für Chemie and Munich Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität München81377MunichGermany
| | - Kerstin Grill
- Department für Chemie and Munich Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität München81377MunichGermany
| | - David Voßiek
- Department für Chemie and Munich Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität München81377MunichGermany
| | - Nicolai N. Bach
- Department of Chemistry and PharmacyFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Peter Mayer
- Department für Chemie and Munich Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität München81377MunichGermany
| | - Henry Dube
- Department of Chemistry and PharmacyFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
96
|
Liu Y, Zhang Q, Crespi S, Chen S, Zhang X, Xu T, Ma C, Zhou S, Shi Z, Tian H, Feringa BL, Qu D. Motorized Macrocycle: A Photo‐responsive Host with Switchable and Stereoselective Guest Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Stefano Crespi
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Shaoyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Xiu‐Kang Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Tian‐Yi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chang‐Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
97
|
Liu Y, Zhang Q, Crespi S, Chen S, Zhang X, Xu T, Ma C, Zhou S, Shi Z, Tian H, Feringa BL, Qu D. Motorized Macrocycle: A Photo-responsive Host with Switchable and Stereoselective Guest Recognition. Angew Chem Int Ed Engl 2021; 60:16129-16138. [PMID: 33955650 PMCID: PMC8361693 DOI: 10.1002/anie.202104285] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Designing photo-responsive host-guest systems can provide versatile supramolecular tools for constructing smart systems and materials. We designed photo-responsive macrocyclic hosts, modulated by light-driven molecular rotary motors enabling switchable chiral guest recognition. The intramolecular cyclization of the two arms of a first-generation molecular motor with flexible oligoethylene glycol chains of different lengths resulted in crown-ether-like macrocycles with intrinsic motor function. The octaethylene glycol linkage enables the successful unidirectional rotation of molecular motors, simultaneously allowing the 1:1 host-guest interaction with ammonium salt guests. The binding affinity and stereoselectivity of the motorized macrocycle can be reversibly modulated, owing to the multi-state light-driven switching of geometry and helicity of the molecular motors. This approach provides an attractive strategy to construct stimuli-responsive host-guest systems and dynamic materials.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Stefano Crespi
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Shaoyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Xiu‐Kang Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Tian‐Yi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Chang‐Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
98
|
Hung TC, Kiraly B, Strik JH, Khajetoorians AA, Wegner D. Plasmon-Driven Motion of an Individual Molecule. NANO LETTERS 2021; 21:5006-5012. [PMID: 34061553 PMCID: PMC8227484 DOI: 10.1021/acs.nanolett.1c00788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/19/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate that nanocavity plasmons generated a few nanometers away from a molecule can induce molecular motion. For this, we study the well-known rapid shuttling motion of zinc phthalocyanine molecules adsorbed on ultrathin NaCl films by combining scanning tunneling microscopy (STM) and spectroscopy (STS) with STM-induced light emission. Comparing spatially resolved single-molecule luminescence spectra from molecules anchored to a step edge with isolated molecules adsorbed on the free surface, we found that the azimuthal modulation of the Lamb shift is diminished in case of the latter. This is evidence that the rapid shuttling motion is remotely induced by plasmon-molecule coupling. Plasmon-induced molecular motion may open an interesting playground to bridge the nanoscopic and mesoscopic worlds by combining molecular machines with nanoplasmonics to control directed motion of single molecules without the need for local probes.
Collapse
|
99
|
Cai K, Zhang L, Astumian RD, Stoddart JF. Radical-pairing-induced molecular assembly and motion. Nat Rev Chem 2021; 5:447-465. [PMID: 37118435 DOI: 10.1038/s41570-021-00283-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 12/25/2022]
Abstract
Radical-pairing interactions between conjugated organic π-radicals are relative newcomers to the inventory of molecular recognition motifs explored in supramolecular chemistry. The unique electronic, magnetic, optical and redox-responsive properties of the conjugated π-radicals render molecules designed with radical-pairing interactions useful for applications in various areas of chemistry and materials science. In particular, the ability to control formation of radical cationic or anionic species, by redox stimulation, provides a flexible trigger for directed assembly and controlled molecular motions, as well as a convenient means of inputting energy to fuel non-equilibrium processes. In this Review, we provide an overview of different examples of radical-pairing-based recognition processes and of their emerging use in (1) supramolecular assembly, (2) templation of mechanically interlocked molecules, (3) stimuli-controlled molecular switches and, by incorporation of kinetic asymmetry in the design, (4) the creation of unidirectional molecular transporters based on pumping cassettes powered by fuelled switching of radical-pairing interactions. We conclude the discussion with an outlook on future directions for the field.
Collapse
|
100
|
Jiao Y, Đorđević L, Mao H, Young RM, Jaynes T, Chen H, Qiu Y, Cai K, Zhang L, Chen XY, Feng Y, Wasielewski MR, Stupp SI, Stoddart JF. A Donor-Acceptor [2]Catenane for Visible Light Photocatalysis. J Am Chem Soc 2021; 143:8000-8010. [PMID: 34028258 DOI: 10.1021/jacs.1c01493] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colored charge-transfer complexes can be formed by the association between electron-rich donor and electron-deficient acceptor molecules, bringing about the narrowing of HOMO-LUMO energy gaps so that they become capable of harnessing visible light. In an effort to facilitate the use of these widespread, but nonetheless weak, interactions for visible light photocatalysis, it is important to render the interactions strong and robust. Herein, we employ a well-known donor-acceptor [2]catenane-formed by the mechanical interlocking of cyclobis(paraquat-p-phenylene) and 1,5-dinaphtho[38]crown-10-in which the charge-transfer interactions between two 4,4'-bipyridinium and two 1,5-dioxynaphthalene units are enhanced by mechanical bonding, leading to increased absorption of visible light, even at low concentrations in solution. As a result, since this [2]catenane can generate persistent bipyridinium radical cations under continuous visible-light irradiation without the need for additional photosensitizers, it can display good catalytic activity in both photo-reductions and -oxidations, as demonstrated by hydrogen production-in the presence of platinum nanoparticles-and aerobic oxidation of organic sulfides, such as l-methionine, respectively. This research, which highlights the usefulness of nanoconfinement present in mechanically interlocked molecules for the reinforcement of weak interactions, can not only expand the potential of charge-transfer interactions in solar energy conversion and synthetic photocatalysis but also open up new possibilities for the development of active artificial molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haochuan Mao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tyler Jaynes
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, 676 North St. Clair Street, Chicago, Illinois 60611, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|