51
|
Rosenkranz AA, Slastnikova TA. Prospects of Using Protein Engineering for Selective Drug Delivery into a Specific Compartment of Target Cells. Pharmaceutics 2023; 15:pharmaceutics15030987. [PMID: 36986848 PMCID: PMC10055131 DOI: 10.3390/pharmaceutics15030987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A large number of proteins are successfully used to treat various diseases. These include natural polypeptide hormones, their synthetic analogues, antibodies, antibody mimetics, enzymes, and other drugs based on them. Many of them are demanded in clinical settings and commercially successful, mainly for cancer treatment. The targets for most of the aforementioned drugs are located at the cell surface. Meanwhile, the vast majority of therapeutic targets, which are usually regulatory macromolecules, are located inside the cell. Traditional low molecular weight drugs freely penetrate all cells, causing side effects in non-target cells. In addition, it is often difficult to elaborate a small molecule that can specifically affect protein interactions. Modern technologies make it possible to obtain proteins capable of interacting with almost any target. However, proteins, like other macromolecules, cannot, as a rule, freely penetrate into the desired cellular compartment. Recent studies allow us to design multifunctional proteins that solve these problems. This review considers the scope of application of such artificial constructs for the targeted delivery of both protein-based and traditional low molecular weight drugs, the obstacles met on the way of their transport to the specified intracellular compartment of the target cells after their systemic bloodstream administration, and the means to overcome those difficulties.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
52
|
Pusch L, Brox R, Cunningham S, Fischer D, Hackstein H. Medium supplementation with human, but not fetal calf serum facilitates endocytosis of PLGA nanoparticles by human primary B-lymphocytes via complement opsonization. Biochem Biophys Res Commun 2023; 656:10-15. [PMID: 36940638 DOI: 10.1016/j.bbrc.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
The "biological identity" of nanoparticles (NPs) is governed by a shell consisting of various biomolecules that is formed upon exposure to biological media, the so-called biomolecule corona. Consequently, supplementation of cell culture media with e.g. different sera is likely to affect interactions between cells and NPs ex-vivo, especially endocytosis. We aimed to investigate the differential impact of human and fetal-bovine serum on the endocytosis of poly (lactic-co-glycolic acid) NPs by human peripheral blood mononuclear cells via flow cytometry. Furthermore, we employed different methods to inhibit endocytosis, providing mechanistic insights. The resulting biomolecule corona was characterized via denaturing gel electrophoresis. We found profound differences between human and fetal bovine serum regarding the endocytosis of fluorescently labeled PLGA nanoparticles by different classes of human leukocytes. Uptake by B-lymphocytes was particularly sensitive. We further present evidence, that these effects are mediated by a biomolecule corona. We demonstrate to our knowledge for the first time that the complement is an important contributor to the endocytosis of non-surface-engineered PLGA-nanoparticles prepared via emulsion solvent evaporation by human immune cells. Our data demonstrates that results obtained with xenogeneic culture supplements such as fetal bovine serum may have to be interpreted with caution.
Collapse
Affiliation(s)
- Lennart Pusch
- Department of Transfusion Medicine and Haemostaseology, Friedrich-Alexander University of Erlangen-Nuremberg, University Hospital of Erlangen, Erlangen, Germany.
| | - Regine Brox
- Department of Transfusion Medicine and Haemostaseology, Friedrich-Alexander University of Erlangen-Nuremberg, University Hospital of Erlangen, Erlangen, Germany.
| | - Sarah Cunningham
- Department of Transfusion Medicine and Haemostaseology, Friedrich-Alexander University of Erlangen-Nuremberg, University Hospital of Erlangen, Erlangen, Germany.
| | - Dagmar Fischer
- Department of Chemistry and Pharmacy, Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany.
| | - Holger Hackstein
- Department of Transfusion Medicine and Haemostaseology, Friedrich-Alexander University of Erlangen-Nuremberg, University Hospital of Erlangen, Erlangen, Germany.
| |
Collapse
|
53
|
Bashiri G, Padilla MS, Swingle KL, Shepherd SJ, Mitchell MJ, Wang K. Nanoparticle protein corona: from structure and function to therapeutic targeting. LAB ON A CHIP 2023; 23:1432-1466. [PMID: 36655824 PMCID: PMC10013352 DOI: 10.1039/d2lc00799a] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Nanoparticle (NP)-based therapeutics have ushered in a new era in translational medicine. However, despite the clinical success of NP technology, it is not well-understood how NPs fundamentally change in biological environments. When introduced into physiological fluids, NPs are coated by proteins, forming a protein corona (PC). The PC has the potential to endow NPs with a new identity and alter their bioactivity, stability, and destination. Additionally, the conformation of proteins is sensitive to their physical and chemical surroundings. Therefore, biological factors and protein-NP-interactions can induce changes in the conformation and orientation of proteins in vivo. Since the function of a protein is closely connected to its folded structure, slight differences in the surrounding environment as well as the surface characteristics of the NP materials may cause proteins to lose or gain a function. As a result, this can alter the downstream functionality of the NPs. This review introduces the main biological factors affecting the conformation of proteins associated with the PC. Then, four types of NPs with extensive utility in biomedical applications are described in greater detail, focusing on the conformation and orientation of adsorbed proteins. This is followed by a discussion on the instances in which the conformation of adsorbed proteins can be leveraged for therapeutic purposes, such as controlling protein conformation in assembled matrices in tissue, as well as controlling the PC conformation for modulating immune responses. The review concludes with a perspective on the remaining challenges and unexplored areas at the interface of PC and NP research.
Collapse
Affiliation(s)
- Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA.
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
54
|
Zhang P, Xiao Y, Sun X, Lin X, Koo S, Yaremenko AV, Qin D, Kong N, Farokhzad OC, Tao W. Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. MED 2023; 4:147-167. [PMID: 36549297 DOI: 10.1016/j.medj.2022.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
With the integration of nanotechnology into the medical field at large, great strides have been made in the development of nanomedicines for tackling different diseases, including cancers. To date, various cancer nanomedicines have demonstrated success in preclinical studies, improving therapeutic outcomes, prolonging survival, and/or decreasing side effects. However, the translation from bench to bedside remains challenging. While a number of nanomedicines have entered clinical trials, only a few have been approved for clinical applications. In this review, we highlight the most recent progress in cancer nanomedicine, discuss current clinical advances and challenges for the translation of cancer nanomedicines, and provide our viewpoints on accelerating clinical translation. We expect this review to benefit the future development of cancer nanotherapeutics specifically from the clinical perspective.
Collapse
Affiliation(s)
- Pengfei Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510080, China
| | - Yufen Xiao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xue Sun
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xiaoning Lin
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Seyoung Koo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexey V Yaremenko
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Duotian Qin
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Omid C Farokhzad
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Seer, Inc., Redwood City, CA 94065, USA
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
55
|
Wang G, Jiang Y, Xu J, Shen J, Lin T, Chen J, Fei W, Qin Y, Zhou Z, Shen Y, Huang P. Unraveling the Plasma Protein Corona by Ultrasonic Cavitation Augments Active-Transporting of Liposome in Solid Tumor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207271. [PMID: 36479742 DOI: 10.1002/adma.202207271] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Ligand/receptor-mediated targeted drug delivery has been widely recognized as a promising strategy for improving the clinical efficacy of nanomedicines but is attenuated by the binding of plasma protein on the surface of nanoparticles to form a protein corona. Here, it is shown that ultrasonic cavitation can be used to unravel surface plasma coronas on liposomal nanoparticles through ultrasound (US)-induced liposomal reassembly. To demonstrate the feasibility and effectiveness of the method, transcytosis-targeting-peptide-decorated reconfigurable liposomes (LPGLs) loaded with gemcitabine (GEM) and perfluoropentane (PFP) are developed for cancer-targeted therapy. In the blood circulation, the targeting peptides are deactivated by the plasma corona and lose their targeting capability. Once they reach tumor blood vessels, US irradiation induces transformation of the LPGLs from nanodrops into microbubbles via liquid-gas phase transition and decorticate the surface corona by reassembly of the lipid membrane. The activated liposomes regain the capability to recognize the receptors on tumor neovascularization, initiate ligand/receptor-mediated transcytosis, achieve efficient tumor accumulation and penetration, and lead to potent antitumor activity in multiple tumor models of patient-derived tumor xenografts. This study presents an effective strategy to tackle the fluid biological barriers of the protein corona and develop transcytosis-targeting liposomes for active tumor transport and efficient cancer therapy.
Collapse
Affiliation(s)
- Guowei Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Yifan Jiang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Junjun Xu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiaxin Shen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Tao Lin
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jifan Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Weidong Fei
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Yating Qin
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
56
|
Zhang Z, Ren J, Dai W, Zhang H, Wang X, He B, Zhang Q. Fast and Dynamic Mapping of the Protein Corona on Nanoparticle Surfaces by Photocatalytic Proximity Labeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206636. [PMID: 36477943 DOI: 10.1002/adma.202206636] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Protein corona broadly affects the delivery of nanomedicines in vivo. Although it has been widely studied by multiple strategies like centrifugal sedimentation, the rapidly forming mechanism and the dynamic structure of the protein corona at the seconds level remains challenging. Here, a photocatalytic proximity labeling technology in nanoparticles (nano-PPL) is developed. By fabricating a "core-shell" nanoparticle co-loaded with chlorin e6 catalyst and biotin-phenol probe, nano-PPL technology is validated for the rapid and precise labeling of corona proteins in situ. Nano-PPL significantly improves the temporal resolution of nano-protein interactions to 5 s duration compared with the classical centrifugation method (>30 s duration). Furthermore, nano-PPL achieves the fast and dynamic mapping of the protein corona on anionic and cationic nanoparticles, respectively. Finally, nano-PPL is deployed to verify the effect of the rapidly formed protein corona on the initial interaction of nanoparticles with cells. These findings highlight a significant methodological advance toward nano-protein interactions in the delivery of nanomedicines in vivo.
Collapse
Affiliation(s)
- Zibin Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Rd, Haidian District, Beijing, 100191, P. R. China
| | - Junji Ren
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Rd, Haidian District, Beijing, 100191, P. R. China
| | - Wenbing Dai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Rd, Haidian District, Beijing, 100191, P. R. China
| | - Hua Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Rd, Haidian District, Beijing, 100191, P. R. China
| | - Xueqing Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Rd, Haidian District, Beijing, 100191, P. R. China
| | - Bing He
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Rd, Haidian District, Beijing, 100191, P. R. China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Rd, Haidian District, Beijing, 100191, P. R. China
| |
Collapse
|
57
|
Immunologically effective poly(D-lactic acid) nanoparticle enhances anticancer immune response. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
58
|
Yang W, Li Y, Boraschi D. Association between Microorganisms and Microplastics: How Does It Change the Host-Pathogen Interaction and Subsequent Immune Response? Int J Mol Sci 2023; 24:ijms24044065. [PMID: 36835476 PMCID: PMC9963316 DOI: 10.3390/ijms24044065] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 02/22/2023] Open
Abstract
Plastic pollution is a significant problem worldwide because of the risks it poses to the equilibrium and health of the environment as well as to human beings. Discarded plastic released into the environment can degrade into microplastics (MPs) due to various factors, such as sunlight, seawater flow, and temperature. MP surfaces can act as solid scaffolds for microorganisms, viruses, and various biomolecules (such as LPS, allergens, and antibiotics), depending on the MP characteristics of size/surface area, chemical composition, and surface charge. The immune system has efficient recognition and elimination mechanisms for pathogens, foreign agents, and anomalous molecules, including pattern recognition receptors and phagocytosis. However, associations with MPs can modify the physical, structural, and functional characteristics of microbes and biomolecules, thereby changing their interactions with the host immune system (in particular with innate immune cells) and, most likely, the features of the subsequent innate/inflammatory response. Thus, exploring differences in the immune response to microbial agents that have been modified by interactions with MPs is meaningful in terms of identifying new possible risks to human health posed by anomalous stimulation of immune reactivities.
Collapse
Affiliation(s)
- Wenjie Yang
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518071, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
| | - Yang Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518071, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
| | - Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518071, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Naples, Italy
- Stazione Zoologica Anton Dohrn, 80132 Naples, Italy
- Correspondence:
| |
Collapse
|
59
|
Griego A, Scarpa E, De Matteis V, Rizzello L. Nanoparticle delivery through the BBB in central nervous system tuberculosis. IBRAIN 2023; 9:43-62. [PMID: 37786519 PMCID: PMC10528790 DOI: 10.1002/ibra.12087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 10/04/2023]
Abstract
Recent advances in Nanotechnology have revolutionized the production of materials for biomedical applications. Nowadays, there is a plethora of nanomaterials with potential for use towards improvement of human health. On the other hand, very little is known about how these materials interact with biological systems, especially at the nanoscale level, mainly because of the lack of specific methods to probe these interactions. In this review, we will analytically describe the journey of nanoparticles (NPs) through the brain, starting from the very first moment upon injection. We will preliminarily provide a brief overlook of the physicochemical properties of NPs. Then, we will discuss how these NPs interact with the body compartments and biological barriers, before reaching the blood-brain barrier (BBB), the last gate guarding the brain. Particular attention will be paid to the interaction with the biomolecular, the bio-mesoscopic, the (blood) cellular, and the tissue barriers, with a focus on the BBB. This will be framed in the context of brain infections, especially considering central nervous system tuberculosis (CNS-TB), which is one of the most devastating forms of human mycobacterial infections. The final aim of this review is not a collection, nor a list, of current literature data, as it provides the readers with the analytical tools and guidelines for the design of effective and rational NPs for delivery in the infected brain.
Collapse
Affiliation(s)
- Anna Griego
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Edoardo Scarpa
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
| | - Loris Rizzello
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| |
Collapse
|
60
|
Sivamaruthi BS, Thangaleela S, Kesika P, Suganthy N, Chaiyasut C. Mesoporous Silica-Based Nanoplatforms Are Theranostic Agents for the Treatment of Inflammatory Disorders. Pharmaceutics 2023; 15:pharmaceutics15020439. [PMID: 36839761 PMCID: PMC9960588 DOI: 10.3390/pharmaceutics15020439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Complete recovery from infection, sepsis, injury, or trauma requires a vigorous response called inflammation. Inflammatory responses are essential in balancing tissue homeostasis to protect the tissue or resolve harmful stimuli and initiate the healing process. Identifying pathologically important inflammatory stimuli is important for a better understanding of the immune pathways, mechanisms of inflammatory diseases and organ dysfunctions, and inflammatory biomarkers and for developing therapeutic targets for inflammatory diseases. Nanoparticles are an efficient medical tool for diagnosing, preventing, and treating various diseases due to their interactions with biological molecules. Nanoparticles are unique in diagnosis and therapy in that they do not affect the surroundings or show toxicity. Modern medicine has undergone further development with nanoscale materials providing advanced experimentation, clinical use, and applications. Nanoparticle use in imaging, drug delivery, and treatment is growing rapidly owing to their spectacular accuracy, bioavailability, and cellular permeability. Mesoporous silica nanoparticles (MSNs) play a significant role in nano therapy with several advantages such as easy synthesis, loading, controllability, bioavailability over various surfaces, functionalization, and biocompatibility. MSNs can be used as theranostics in immune-modulatory nano systems to diagnose and treat inflammatory diseases. The application of MSNs in the preparation of drug-delivery systems has been steadily increasing in recent decades. Several preclinical studies suggest that an MSN-mediated drug-delivery system could aid in treating inflammatory diseases. This review explains the role of nanoparticles in medicine, synthesis, and functional properties of mesoporous silica nanoparticles and their therapeutic role against various inflammatory diseases.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natarajan Suganthy
- Bionanomaterials Research Laboratory, Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, India
- Correspondence: (N.S.); (C.C.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.S.); (C.C.)
| |
Collapse
|
61
|
Li L, Yang Y, Wang L, Xu F, Li Y, He X. The effects of serum albumin pre-adsorption of nanoparticles on protein corona and membrane interaction: A molecular simulation study. J Mol Biol 2023; 435:167771. [PMID: 35931108 DOI: 10.1016/j.jmb.2022.167771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023]
Abstract
As a platform to deliver imaging and therapeutic agents to targeted sites in vivo, nanoparticles (NPs) have widespread applications in diagnosis and treatment of cancer. However, the poor in vivo delivery efficiency of nanoparticles limits its potential for further application. Once enter the physiological environment, nanoparticles immediately interact with proteins and form protein corona, which changes the physicochemical properties of nanoparticle surface and further affects their transport. In this study, we performed molecular dynamics simulations to study the adsorption mechanism of nanoparticles with various surface modifications and different proteins (e.g., human serum albumin, complement protein C3b), and their interactions with cell membrane. The results show that protein human serum albumin prefers to interact with hydrophobic and positively charged nanoparticles, while the protein C3b prefers the hydrophobic and charged nanoparticles. The pre-adsorption of human serum albumin on the nanoparticle surface obviously decreases the interaction of nanoparticle with C3b. Furthermore, the high amount of protein pre-adsorption could decrease the probability of nanoparticle-membrane interaction. These results indicate that appropriate modification of nanoparticles with protein provides nanoparticles with better capability of targeting, which could be used to guide nanoparticle design and improve transport efficiency.
Collapse
Affiliation(s)
- Lingxiao Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuanyuan Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Lin Wang
- College of Medicine, Xi'an International University, Xi'an 710077, Shaanxi, PR China; Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi'an 710077, Shaanxi, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Xiaocong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
62
|
Non-viral nucleic acid delivery approach: A boon for state-of-the-art gene delivery. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
63
|
Pershina AG, Demin AM, Perekucha NA, Brikunova OY, Efimova LV, Nevskaya KV, Vakhrushev AV, Zgoda VG, Uimin MA, Minin AS, Malkeyeva D, Kiseleva E, Zima AP, Krasnov VP, Ogorodova LM. Peptide ligands on the PEGylated nanoparticle surface and human serum composition are key factors for the interaction between immune cells and nanoparticles. Colloids Surf B Biointerfaces 2023; 221:112981. [DOI: 10.1016/j.colsurfb.2022.112981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
64
|
Fleming CL, Golzan M, Gunawan C, McGrath KC. Systematic and Bibliometric Analysis of Magnetite Nanoparticles and Their Applications in (Biomedical) Research. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200009. [PMID: 36618105 PMCID: PMC9818080 DOI: 10.1002/gch2.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/09/2022] [Indexed: 06/17/2023]
Abstract
Recent reports show air pollutant magnetite nanoparticles (MNPs) in the brains of people with Alzheimer's disease (AD). Considering various field applications of MNPs because of developments in nanotechnology, the aim of this study is to identify major trends and data gaps in research on magnetite to allow for relevant environmental and health risk assessment. Herein, a bibliometric and systematic analysis of the published magnetite literature (n = 31 567) between 1990 to 2020 is completed. Following appraisal, publications (n = 244) are grouped into four time periods with the main research theme identified for each as 1990-1997 "oxides," 1998-2005 "ferric oxide," 2006-2013 "pathology," and 2014-2020 "animal model." Magnetite formation and catalytic activity dominate the first two time periods, with the last two focusing on the exploitation of nanoparticle engineering. Japan and China have the highest number of citations for articles published. Longitudinal analysis indicates that magnetite research for the past 30 years shifted from environmental and industrial applications, to biomedical and its potential toxic effects. Therefore, whilst this study presents the research profile of different countries, the development in research on MNPs, it also reveals that further studies on the effects of MNPs on human health is much needed.
Collapse
Affiliation(s)
- Charlotte L. Fleming
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSW2008Australia
| | - Mojtaba Golzan
- Vision Science GroupGraduate School of HealthUniversity of Technology SydneySydneyNSW2008Australia
| | - Cindy Gunawan
- Australian Institute for Microbiology and InfectionUniversity of Technology SydneySydneyNSW2008Australia
| | - Kristine C. McGrath
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSW2008Australia
| |
Collapse
|
65
|
Wang L, Fu H, Song L, Wu Z, Yu J, Guo Q, Chen C, Yang X, Zhang J, Wang Q, Duan Y, Yang Y. Overcoming AZD9291 Resistance and Metastasis of NSCLC via Ferroptosis and Multitarget Interference by Nanocatalytic Sensitizer Plus AHP-DRI-12. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204133. [PMID: 36420659 DOI: 10.1002/smll.202204133] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The acquired resistance to Osimertinib (AZD9291) greatly limits the clinical benefit of patients with non-small cell lung cancer (NSCLC), whereas AZD9291-resistant NSCLCs are prone to metastasis. It's challenging to overcome AZD9291 resistance and suppress metastasis of NSCLC simultaneously. Here, a nanocatalytic sensitizer (VF/S/A@CaP) is proposed to deliver Vitamin c (Vc)-Fe(II), si-OTUB2, ASO-MALAT1, resulting in efficient inhibition of tumor growth and metastasis of NSCLC by synergizing with AHP-DRI-12, an anti-hematogenous metastasis inhibitor by blocking the amyloid precursor protein (APP)/death receptor 6 (DR6) interaction designed by our lab. Fe2+ released from Vc-Fe(II) generates cytotoxic hydroxyl radicals (•OH) through Fenton reaction. Subsequently, glutathione peroxidase 4 (GPX4) is consumed to sensitize AZD9291-resistant NSCLCs with high mesenchymal state to ferroptosis due to the glutathione (GSH) depletion caused by Vc/dehydroascorbic acid (DHA) conversion. By screening NSCLC patients' samples, metastasis-related targets (OTUB2, LncRNA MALAT1) are confirmed. Accordingly, the dual-target knockdown plus AHP-DRI-12 significantly suppresses the metastasis of AZD9291-resistant NSCLC. Such modality leads to 91.39% tumor inhibition rate in patient-derived xenograft (PDX) models. Collectively, this study highlights the vulnerability to ferroptosis of AZD9291-resistant tumors and confirms the potential of this nanocatalytic-medicine-based modality to overcome critical AZD9291 resistance and inhibit metastasis of NSCLC simultaneously.
Collapse
Affiliation(s)
- Liting Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Liwei Song
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Chuanrong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Xupeng Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiali Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Quan Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yunhai Yang
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| |
Collapse
|
66
|
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-6892. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.
Collapse
Affiliation(s)
- Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shikang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shuo Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shilin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
67
|
Zhou J, Xiang H, Huang J, Zhong Y, Zhu X, Xu J, Lu Q, Gao B, Zhang H, Yang R, Luo Y, Yan F. Role of Surface Charge of Nanoscale Ultrasound Contrast Agents in Complement Activation and Phagocytosis. Int J Nanomedicine 2022; 17:5933-5946. [PMID: 36506344 PMCID: PMC9733633 DOI: 10.2147/ijn.s364381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose To prepare nanoscale ultrasound contrast agents (Nano-UCAs) and examine the role of their surface charge in complement activation and phagocytosis. Materials and Methods We analyzed serum proteins present in the corona formed on Nano-UCAs and evaluated two important protein markers of complement activation (C3 and SC5b-9). The effect of surface charge on phagocytosis was further assessed using THP-1 macrophages. Results When Nano-UCAs were incubated with human serum, they were opsonized by various blood proteins, especially C3. Highly charged Nano-UCAs, whether positive or negative, were favorably opsonized by complement proteins and phagocytized by macrophages. Conclusion Charged Nano-UCAs show a higher tendency to activated complement system, and are efficiently engulfed by macrophages. The present results provide meaningful insights into the role of the surface charge of nanoparticles in the activation of the innate immune system, which is important not only for the design of targeted Nano-UCAs, but also for the effectiveness and safety of other theranostic agents.
Collapse
Affiliation(s)
- Jie Zhou
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China,Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Hongjin Xiang
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China,Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Jianbo Huang
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China,Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Yi Zhong
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Xiaoxia Zhu
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China,Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Jinshun Xu
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China,Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Qiang Lu
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China,Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Binyang Gao
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China,Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Huan Zhang
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China,Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Rui Yang
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China,Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Yan Luo
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China,Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China,Yan Luo, Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China, Tel/Fax +86 028 8542 3192, Email
| | - Feng Yan
- Ultrasound Department, West China Hospital of Sichuan University, Chengdu, People’s Republic of China,Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China,Correspondence: Feng Yan, Laboratory of Ultrasound Imaging, West China Hospital of Sichuan University, Chengdu, People’s Republic of China, Tel/Fax +86 028 8516 4146, Email
| |
Collapse
|
68
|
El-Baz N, Nunn BM, Bates PJ, O’Toole MG. The Impact of PEGylation on Cellular Uptake and In Vivo Biodistribution of Gold Nanoparticle MRI Contrast Agents. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120766. [PMID: 36550972 PMCID: PMC9774698 DOI: 10.3390/bioengineering9120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Gold nanoparticles (GNPs) have immense potential in biomedicine, but understanding their interactions with serum proteins is crucial as it could change their biological profile due to the formation of a protein corona, which could then affect their ultimate biodistribution in the body. Grafting GNPs with polyethylene glycol (PEG) is a widely used practice in research in order to decrease opsonization of the particles by serum proteins and to decrease particle uptake by the mononuclear phagocyte system. We investigated the impact of PEGylation on the formation of protein coronae and the subsequent uptake by macrophages and MDA-MB-231 cancer cells. Furthermore, we investigated the in vivo biodistribution in xenograft tumor-bearing mice using a library of 4 and 10 nm GNPs conjugated with a gadolinium chelate as MRI contrast agent, cancer-targeting aptamer AS1411 (or CRO control oligonucleotide), and with or without PEG molecules of different molecular weight (Mw: 1, 2, and 5 kDa). In vitro results showed that PEG failed to decrease the adsorption of proteins; moreover, the cellular uptake by macrophage cells was contingent on the different configurations of the aptamers and the length of the PEG chain. In vivo biodistribution studies showed that PEG increased the uptake by tumor cells for some GNPs, albeit it did not decrease the uptake of GNPs by macrophage-rich organs.
Collapse
Affiliation(s)
- Nagwa El-Baz
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Betty M. Nunn
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| | - Paula J. Bates
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Martin G. O’Toole
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
69
|
Surti PV, Kim MW, Phan LMT, Kailasa SK, Mungray AK, Park JP, Park TJ. Progress on dot-blot assay as a promising analytical tool: Detection from molecules to cells. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
70
|
Panico S, Capolla S, Bozzer S, Toffoli G, Dal Bo M, Macor P. Biological Features of Nanoparticles: Protein Corona Formation and Interaction with the Immune System. Pharmaceutics 2022; 14:pharmaceutics14122605. [PMID: 36559099 PMCID: PMC9781747 DOI: 10.3390/pharmaceutics14122605] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoparticles (NPs) are versatile candidates for nanomedical applications due to their unique physicochemical properties. However, their clinical applicability is hindered by their undesirable recognition by the immune system and the consequent immunotoxicity, as well as their rapid clearance in vivo. After injection, NPs are usually covered with layers of proteins, called protein coronas (PCs), which alter their identity, biodistribution, half-life, and efficacy. Therefore, the characterization of the PC is for in predicting the fate of NPs in vivo. The aim of this review was to summarize the state of the art regarding the intrinsic factors closely related to the NP structure, and extrinsic factors that govern PC formation in vitro. In addition, well-known opsonins, including complement, immunoglobulins, fibrinogen, and dysopsonins, such as histidine-rich glycoprotein, apolipoproteins, and albumin, are described in relation to their role in NP detection by immune cells. Particular emphasis is placed on their role in mediating the interaction of NPs with innate and adaptive immune cells. Finally, strategies to reduce PC formation are discussed in detail.
Collapse
Affiliation(s)
- Sonia Panico
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Sara Bozzer
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: ; Tel.: +39-0405588683
| |
Collapse
|
71
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
72
|
Moghimi SM, Haroon HB, Yaghmur A, Simberg D, Trohopoulos PN. Nanometer- and angstrom-scale characteristics that modulate complement responses to nanoparticles. J Control Release 2022; 351:432-443. [PMID: 36152807 PMCID: PMC10200249 DOI: 10.1016/j.jconrel.2022.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022]
Abstract
The contribution of the complement system to non-specific host defence and maintenance of homeostasis is well appreciated. Many particulate systems trigger complement activation but the underlying mechanisms are still poorly understood. Activation of the complement cascade could lead to particle opsonisation by the cleavage products of the third complement protein and might promote inflammatory reactions. Antibody binding in a controlled manner and/or sensing of particles by the complement pattern-recognition molecules such as C1q and mannose-binding lectin can trigger complement activation. Particle curvature and spacing arrangement/periodicity of surface functional groups/ligands are two important parameters that modulate complement responses through multivalent engagement with and conformational regulation of surface-bound antibodies and complement pattern-recognition molecules. Thus, a better fundamental understanding of nanometer- and angstrom-scale parameters that modulate particle interaction with antibodies and complement proteins could portend new possibilities for engineering of particulate drug carriers and biomedical platforms with tuneable complement responses and is discussed here.
Collapse
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| | - Hajira B Haroon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA; Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | |
Collapse
|
73
|
Elkhatib WF, Abdelkareem SS, Khalaf WS, Shahin MI, Elfadil D, Alhazmi A, El-Batal AI, El-Sayyad GS. Narrative review on century of respiratory pandemics from Spanish flu to COVID-19 and impact of nanotechnology on COVID-19 diagnosis and immune system boosting. Virol J 2022; 19:167. [PMID: 36280866 PMCID: PMC9589879 DOI: 10.1186/s12985-022-01902-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
The rise of the highly lethal severe acute respiratory syndrome-2 (SARS-2) as corona virus 2019 (COVID-19) reminded us of the history of other pandemics that happened in the last century (Spanish flu) and stayed in the current century, which include Severe-Acute-Respiratory-Syndrome (SARS), Middle-East-Respiratory-Syndrome (MERS), Corona Virus 2019 (COVID-19). We review in this report the newest findings and data on the origin of pandemic respiratory viral diseases, reservoirs, and transmission modes. We analyzed viral adaption needed for host switch and determinants of pathogenicity, causative factors of pandemic viruses, and symptoms and clinical manifestations. After that, we concluded the host factors associated with pandemics morbidity and mortality (immune responses and immunopathology, ages, and effect of pandemics on pregnancy). Additionally, we focused on the burdens of COVID-19, non-pharmaceutical interventions (quarantine, mass gatherings, facemasks, and hygiene), and medical interventions (antiviral therapies and vaccines). Finally, we investigated the nanotechnology between COVID-19 analysis and immune system boosting (Nanoparticles (NPs), antimicrobial NPs as antivirals and immune cytokines). This review presents insights about using nanomaterials to treat COVID-19, improve the bioavailability of the abused drugs, diminish their toxicity, and improve their performance.
Collapse
Affiliation(s)
- Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
| | - Shereen S Abdelkareem
- Department of Alumni, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, Egypt
| | - Wafaa S Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Mona I Shahin
- Zoology Department, Faculty of Tymaa, Tabuk University, Tymaa, 71491, Kingdom of Saudi Arabia
| | - Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca, Casablanca, Morocco
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Ahmed I El-Batal
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
74
|
Quantitative comparison of the protein corona of nanoparticles with different matrices. Int J Pharm X 2022; 4:100136. [PMID: 36304137 PMCID: PMC9594119 DOI: 10.1016/j.ijpx.2022.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Nanoparticles (NPs) are paving the way for improved treatments for difficult to treat diseases diseases; however, much is unknown about their fate in the body. One important factor is the interaction between NPs and blood proteins leading to the formation known as the “protein corona” (PC). The PC, consisting of the Hard (HC) and Soft Corona (SC), varies greatly based on the NP composition, size, and surface properties. This highlights the need for specific studies to differentiate the PC formation for each individual NP system. This work focused on comparing the HC and SC of three NPs with different matrix compositions: a) polymeric NPs based on poly(lactic-co-glycolic) acid (PLGA), b) hybrid NPs consisting of PLGA and Cholesterol, and c) lipidic NPs made only of Cholesterol. NPs were formulated and characterized for their physico-chemical characteristics and composition, and then were incubated in human plasma. In-depth purification, identification, and statistical analysis were then performed to identify the HC and SC components. Finally, similar investigations demonstrated whether the presence of a targeting ligand on the NP surface would affect the PC makeup. These results highlighted the different PC fingerprints of these NPs, which will be critical to better understand the biological influences of the PC and improve future NP designs. NPs with different matrices were formulated: PLGA, Cholesterol, or mixed PLGA-Chol hybrids. The hard and soft corona of each formulation was quantified and compared. The PC seems to be more strongly affected by the polymer rather than the lipid in mixed NPs. The soft corona depends more on the hard corona composition than on the matrix. Surface modification with a targeting ligand did not influence PC composition.
Collapse
|
75
|
Mercatali L, Vanni S, Miserocchi G, Liverani C, Spadazzi C, Cocchi C, Calabrese C, Gurrieri L, Fausti V, Riva N, Genovese D, Lucarelli E, Focarete ML, Ibrahim T, Calabrò L, De Vita A. The emerging role of cancer nanotechnology in the panorama of sarcoma. Front Bioeng Biotechnol 2022; 10:953555. [PMID: 36324885 PMCID: PMC9618700 DOI: 10.3389/fbioe.2022.953555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
In the field of nanomedicine a multitude of nanovectors have been developed for cancer application. In this regard, a less exploited target is represented by connective tissue. Sarcoma lesions encompass a wide range of rare entities of mesenchymal origin affecting connective tissues. The extraordinary diversity and rarity of these mesenchymal tumors is reflected in their classification, grading and management which are still challenging. Although they include more than 70 histologic subtypes, the first line-treatment for advanced and metastatic sarcoma has remained unchanged in the last fifty years, excluding specific histotypes in which targeted therapy has emerged. The role of chemotherapy has not been completely elucidated and the outcomes are still very limited. At the beginning of the century, nano-sized particles clinically approved for other solid lesions were tested in these neoplasms but the results were anecdotal and the clinical benefit was not substantial. Recently, a new nanosystem formulation NBTXR3 for the treatment of sarcoma has landed in a phase 2-3 trial. The preliminary results are encouraging and could open new avenues for research in nanotechnology. This review provides an update on the recent advancements in the field of nanomedicine for sarcoma. In this regard, preclinical evidence especially focusing on the development of smart materials and drug delivery systems will be summarized. Moreover, the sarcoma patient management exploiting nanotechnology products will be summed up. Finally, an overlook on future perspectives will be provided.
Collapse
Affiliation(s)
- Laura Mercatali
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Silvia Vanni
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Liverani
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Spadazzi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Claudia Cocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Calabrese
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lorena Gurrieri
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Valentina Fausti
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Nada Riva
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Damiano Genovese
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Enrico Lucarelli
- Osteoncologia, Sarcomi dell’osso e dei tessuti molli, e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Toni Ibrahim
- Osteoncologia, Sarcomi dell’osso e dei tessuti molli, e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luana Calabrò
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Alessandro De Vita
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Alessandro De Vita,
| |
Collapse
|
76
|
Yoo J, Kim K, Kim S, Park HH, Shin H, Joo J. Tailored polyethylene glycol grafting on porous nanoparticles for enhanced targeting and intracellular siRNA delivery. NANOSCALE 2022; 14:14482-14490. [PMID: 36134732 DOI: 10.1039/d2nr02995b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Surface functionalization of nanoparticles with polyethylene glycol (PEG) has been widely demonstrated as an anti-opsonization strategy to reduce protein corona formation which is one of the major concerns affecting target receptor recognition. However, excessive surface passivation with PEG can lead to the strong inhibition of cellular uptake and less efficient binding to target receptors, resulting in reduced potential of targeted delivery. To improve specific cell targeting while reducing the nonspecific protein adsorption, a secondary packaging of the nanoparticles with shorter PEG chains, making the targeting ligands densely stretched out for enhanced molecular recognition is demonstrated. Particularly, we report the tailored surface functionalization of the porous nanoparticles that require the stealth shielding onto the open-pore region. This study shows that, in addition to the surface chemistry, the conformation of the PEG layers controls the cellular interaction of nanoparticles. Since the distance between neighboring PEG chains determines the structural conformation of the grafted PEG molecules, tailored PEG combinations can efficiently resist the adsorption of serum proteins onto the pores by transitioning the conformation of the PEG chains, thus significantly enhance the targeting efficiency (>5-fold). The stretched brush PEG conformation with secondary packaging of shorter PEG chains could be a promising anti-opsonization and active targeting strategy for efficient intracellular delivery of nanoparticles.
Collapse
Affiliation(s)
- Jounghyun Yoo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Kyunghwan Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
77
|
Li X, Wu M, Li J, Guo Q, Zhao Y, Zhang X. Advanced targeted nanomedicines for vulnerable atherosclerosis plaque imaging and their potential clinical implications. Front Pharmacol 2022; 13:906512. [PMID: 36313319 PMCID: PMC9606597 DOI: 10.3389/fphar.2022.906512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis plaques caused by cerebrovascular and coronary artery disease have been the leading cause of death and morbidity worldwide. Precise assessment of the degree of atherosclerotic plaque is critical for predicting the risk of atherosclerosis plaques and monitoring postinterventional outcomes. However, traditional imaging techniques to predict cardiocerebrovascular events mainly depend on quantifying the percentage reduction in luminal diameter, which would immensely underestimate non-stenotic high-risk plaque. Identifying the degree of atherosclerosis plaques still remains highly limited. vNanomedicine-based imaging techniques present unique advantages over conventional techniques due to the superior properties intrinsic to nanoscope, which possess enormous potential for characterization and detection of the features of atherosclerosis plaque vulnerability. Here, we review recent advancements in the development of targeted nanomedicine-based approaches and their applications to atherosclerosis plaque imaging and risk stratification. Finally, the challenges and opportunities regarding the future development and clinical translation of the targeted nanomedicine in related fields are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuening Zhang
- Department of Radiology, Tianjin Medical University Second Hospital, Tianjin, China
| |
Collapse
|
78
|
Wang F, Qiu T, Ling Y, Yang Y, Zhou Y. Physical and Chemical Cues at the Nano–Bio Interface for Immunomodulation. Angew Chem Int Ed Engl 2022; 61:e202209499. [DOI: 10.1002/anie.202209499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Feng‐Yuan Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University Shanghai 200433 China
| | - Tianze Qiu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University Shanghai 200433 China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University Shanghai 200433 China
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Brisbane 4072 Australia
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
79
|
Qu S, Qiao Z, Zhong W, Liang K, Jiang X, Shang L. Chirality-Dependent Dynamic Evolution of the Protein Corona on the Surface of Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44147-44157. [PMID: 36153958 DOI: 10.1021/acsami.2c11874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Elucidating the biological behavior of engineered nanoparticles, for example, the protein corona, is important for the development of safe and efficient nanomedicine, but our current understanding is still limited due to its highly dynamic nature and lack of adequate analytical tools. In the present work, we demonstrate the establishment of a fluorescence resonance energy transfer (FRET)-based platform for monitoring the dynamic evolution behavior of the protein corona in complex biological media. With human serum albumin and lysozyme as the model serum proteins, the protein exchange process of the preformed corona on the surface of chiral quantum dots (QDs) upon feeding either individual protein or human serum was monitored in situ by FRET. Important parameters characterizing the evolution process of protein corona could be obtained upon quantitative analysis of FRET data. Further combining real-time FRET monitoring with gel electrophoresis experiments revealed that the nature of the protein initially adsorbed on the surface of QDs significantly affects the subsequent dynamic exchange behavior of the protein corona. Furthermore, our results also revealed that only a limited proportion of proteins are involved in the protein exchange, and the exchange process exhibits a significant dependence on the surface chirality of QDs. This work demonstrates the feasibility of FRET as a powerful tool to exploit the dynamic evolution process of the protein corona, which can provide theoretical guidance for further design of advanced nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Shaohua Qu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Zihan Qiao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Kangqiang Liang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Xiue Jiang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| |
Collapse
|
80
|
Zhou Q, Li J, Xiang J, Shao S, Zhou Z, Tang J, Shen Y. Transcytosis-enabled active extravasation of tumor nanomedicine. Adv Drug Deliv Rev 2022; 189:114480. [PMID: 35952830 DOI: 10.1016/j.addr.2022.114480] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
Extravasation is the first step for nanomedicines in circulation to reach targeted solid tumors. Traditional nanomedicines have been designed to extravasate into tumor interstitium through the interendothelial gaps previously assumed rich in tumor blood vessels, i.e., the enhanced permeability and retention (EPR) effect. While the EPR effect has been validated in animal xenograft tumor models, accumulating evidence implies that the EPR effect is very limited and highly heterogeneous in human tumors, leading to highly unpredictable and inefficient extravasation and thus limited therapeutic efficacy of nanomedicines, including those approved in clinics. Enabling EPR-independent extravasation is the key to develop new generation of nanomedicine with enhanced efficacy. Transcytosis of tumor endothelial cells can confer nanomedicines to actively extravasate into solid tumors without relying on the EPR effect. Here, we review and prospectthe development of transcytosis-inducing nanomedicines, in hope of providing instructive insights for design of nanomedicines that can undergo selective transcellular transport across tumor endothelial cells, and thus inspiring the development of next-generation nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Quan Zhou
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junjun Li
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Shiqun Shao
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Zhuxian Zhou
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianbin Tang
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.
| | - Youqing Shen
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
81
|
Zhang J, Zhang T, Gao J. Biocompatible Iron Oxide Nanoparticles for Targeted Cancer Gene Therapy: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193323. [PMID: 36234452 PMCID: PMC9565336 DOI: 10.3390/nano12193323] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 05/14/2023]
Abstract
In recent years, gene therapy has made remarkable achievements in tumor treatment. In a successfully cancer gene therapy, a smart gene delivery system is necessary for both protecting the therapeutic genes in circulation and enabling high gene expression in tumor sites. Magnetic iron oxide nanoparticles (IONPs) have demonstrated their bright promise for highly efficient gene delivery target to tumor tissues, partly due to their good biocompatibility, magnetic responsiveness, and extensive functional surface modification. In this review, the latest progress in targeting cancer gene therapy is introduced, and the unique properties of IONPs contributing to the efficient delivery of therapeutic genes are summarized with detailed examples. Furthermore, the diagnosis potentials and synergistic tumor treatment capacity of IONPs are highlighted. In addition, aiming at potential risks during the gene delivery process, several strategies to improve the efficiency or reduce the potential risks of using IONPs for cancer gene therapy are introduced and addressed. The strategies and applications summarized in this review provide a general understanding for the potential applications of IONPs in cancer gene therapy.
Collapse
Affiliation(s)
- Jinsong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (T.Z.); (J.G.)
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Correspondence: (T.Z.); (J.G.)
| |
Collapse
|
82
|
Stem cell membrane-coated abiotic nanomaterials for biomedical applications. J Control Release 2022; 351:174-197. [PMID: 36103910 DOI: 10.1016/j.jconrel.2022.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
Nanoscale materials have been extensively employed for diagnostic and therapeutic purposes. However, the developed nanosystems still suffer from some limitations, namely the rapid elimination by the immune system, lack of targeting to specific cells, and insufficient biocompatibility. Therefore, novel strategies based upon a biomimetic approach have received attention to improving the pharmacokinetics and safety profile of nanosystems. One promising strategy is the application of a biomimetic coating consisting of cell membranes derived from different cell types onto nanoparticle cores. Stem cells have been investigated to develop targeted nanodevices owing to their excellent intrinsic tissue-specific homing features, protecting them from the immune system to reach the sites of inflammation. This targeting ability is conferred by a surface repertoire of stem cell-associated biomolecules. Such nanoscopical materials offer sustained circulation and boosted drug accumulation at target sites, augmenting therapeutic efficacy and safety. Additionally, the coating of nanoparticles with cell membranes acts as a camouflage mechanism to increase their circulation time. The current review explores the particular features of stem cell membrane coating as multifunctional biomimetic surface functionalization agents to camouflage nanoparticle cores. Biomedical applications of engineered stem cell membrane-coated nanoparticles, challenges in clinical translation, and their future prospects are addressed.
Collapse
|
83
|
Sun L, Yeo T, Middha E, Gao Y, Lim CT, Watanabe S, Liu B. In Situ Visualization of Dynamic Cellular Effects of Phospholipid Nanoparticles via High-Speed Scanning Ion Conductance Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203285. [PMID: 35946985 DOI: 10.1002/smll.202203285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Phospholipid nanoparticles have been actively employed for numerous biomedical applications. A key factor in ensuring effective and safe applications of these nanomaterials is the regulation of their interactions with target cells, which is significantly dependent on an in-depth understanding of the nanoparticle-cell interactions. To date, most studies investigating these nano-bio interactions have been performed under static conditions and may lack crucial real-time information. It is, however, noteworthy that the nanoparticle-cell interactions are highly dynamic. Consequently, to gain a deeper insight into the cellular effects of phospholipid nanoparticles, real-time observation of cellular dynamics after nanoparticle introduction is necessary. Herein, a proof-of-concept in situ visualization of the dynamic cellular effects of sub-100 nm phospholipid nanoparticles using high-speed scanning ion conductance microscopy (HS-SICM) is reported. It is revealed that upon introduction into the cellular environment, within a short timescale of hundreds of seconds, phospholipid nanoparticles can selectively modulate the edge motility and surface roughness of healthy fibroblast and cancerous epithelial cells. Furthermore, the dynamic deformation profiles of these cells can be selectively altered in the presence of phospholipid nanoparticles. This work is anticipated to further shed light on the real-time nanoparticle-cell interactions for improved formulation of phospholipid nanoparticles for numerous bioapplications.
Collapse
Affiliation(s)
- Linhao Sun
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Trifanny Yeo
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore, 117599, Singapore
| | - Eshu Middha
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yuji Gao
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore, 117599, Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Shinji Watanabe
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
84
|
Wang FY, Qiu T, Ling Y, Yang Y, Zhou Y. Physical and Chemical Cues at Nano‐bio Interface for Immunomodulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Tianze Qiu
- Fudan University Department of Chemistry CHINA
| | - Yun Ling
- Fudan University Department of Chemistry CHINA
| | - Yannan Yang
- The Univeristy of Queensland AIBN The Univeristy of Queensland 4072 St lucia AUSTRALIA
| | - Yaming Zhou
- Fudan University Department of Chemistry AUSTRALIA
| |
Collapse
|
85
|
Shin K, Suh HW, Grundler J, Lynn AY, Pothupitiya JU, Moscato ZM, Reschke M, Bracaglia LG, Piotrowski-Daspit AS, Saltzman WM. Polyglycerol and Poly(ethylene glycol) exhibit different effects on pharmacokinetics and antibody generation when grafted to nanoparticle surfaces. Biomaterials 2022; 287:121676. [PMID: 35849999 DOI: 10.1016/j.biomaterials.2022.121676] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/11/2022] [Accepted: 07/08/2022] [Indexed: 11/02/2022]
Abstract
Poly(ethylene glycol) (PEG) is widely employed for passivating nanoparticle (NP) surfaces to prolong blood circulation and enhance localization of NPs to target tissue. However, the immune response of PEGylated NPs-including anti-PEG antibody generation, accelerated blood clearance (ABC), and loss of delivery efficacy-is of some concern, especially for treatments that require repeat administrations. Although polyglycerol (PG), which has the same ethylene oxide backbone as PEG, has received attention as an alternative to PEG for NP coatings, the pharmacokinetic and immunogenic impact of PG has not been studied systematically. Here, linear PG, hyperbranched PG (hPG), and PEG-coated polylactide (PLA) NPs with varying surface densities were studied in parallel to determine the pharmacokinetics and immunogenicity of PG and hPG grafting, in comparison with PEG. We found that linear PG imparted the NPs a stealth property comparable to PEG, while hPG-grafted NPs needed a higher surface density to achieve the same pharmacokinetic impact. While linear PG-grafted NPs induced anti-PEG antibody production in mice, they exhibited minimal accelerated blood clearance (ABC) effects due to the poor interaction with anti-PEG immunoglobulin M (IgM). Further, we observed no anti-polymer IgM responses or ABC effects for hPG-grafted NPs.
Collapse
Affiliation(s)
- Kwangsoo Shin
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Julian Grundler
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Anna Y Lynn
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Jinal U Pothupitiya
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Zoe M Moscato
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Melanie Reschke
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Laura G Bracaglia
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA; Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06511, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
86
|
Giulimondi F, Digiacomo L, Vulpis E, Loconte L, Ferri G, Cardarelli F, Pozzi D, Zingoni A, Caracciolo G. In vitro and ex vivo nano-enabled immunomodulation by the protein corona. NANOSCALE 2022; 14:10531-10539. [PMID: 35833584 DOI: 10.1039/d2nr01878k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
New technologies with the capacity to tune immune system activity are highly desired in clinical practice and disease management. Here we demonstrate that nanoparticles with a protein corona enriched with gelsolin (GSN), an abundant plasma protein that acts as a modulator of immune responses, are avidly captured by human monocytic THP-1 cells in vitro and by leukocyte subpopulations derived from healthy donors ex vivo. In human monocytes, GSN modulates the production of tumor necrosis factor alpha (TNF-α) in an inverse dose-dependent manner. Overall, our results suggest that artificial coronas can be exploited to finely tune the immune response, opening new approaches for the prevention and treatment of diseases.
Collapse
Affiliation(s)
- Francesca Giulimondi
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Luca Digiacomo
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Elisabetta Vulpis
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Luisa Loconte
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Gianmarco Ferri
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Francesco Cardarelli
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Daniela Pozzi
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Alessandra Zingoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Giulio Caracciolo
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
87
|
Xiao Q, Zoulikha M, Qiu M, Teng C, Lin C, Li X, Sallam MA, Xu Q, He W. The effects of protein corona on in vivo fate of nanocarriers. Adv Drug Deliv Rev 2022; 186:114356. [PMID: 35595022 DOI: 10.1016/j.addr.2022.114356] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
With the emerging advances in utilizing nanocarriers for biomedical applications, a molecular-level understanding of the in vivo fate of nanocarriers is necessary. After administration into human fluids, nanocarriers can attract proteins onto their surfaces, forming an assembled adsorption layer called protein corona (PC). The formed PC can influence the physicochemical properties and subsequently determine nanocarriers' biological behaviors. Therefore, an in-depth understanding of the features and effects of the PC on the nanocarriers' surface is the first and most important step towards controlling their in vivo fate. This review introduces fundamental knowledge such as the definition, formation, composition, conformation, and characterization of the PC, emphasizing the in vivo environmental factors that control the PC formation. The effect of PC on the physicochemical properties and thus biological behaviors of nanocarriers was then presented and thoroughly discussed. Finally, we proposed the design strategies available for engineering PC onto nanocarriers to manipulate them with the desired surface properties and achieve the best biomedical outcomes.
Collapse
|
88
|
Wu C, Guo X, Duan Y, Lyu W, Hu H, Hu D, Chen K, Sun Z, Gao T, Yang X, Dai Q. Ultrasensitive Mid-Infrared Biosensing in Aqueous Solutions with Graphene Plasmons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110525. [PMID: 35460109 DOI: 10.1002/adma.202110525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Identifying nanoscale biomolecules in aqueous solutions by Fourier transform infrared spectroscopy (FTIR) provides an in situ and noninvasive method for exploring the structure, reactions, and transport of biologically active molecules. However, this remains a challenge due to the strong and broad IR absorption of water which overwhelms the respective vibrational fingerprints of the biomolecules. In this work, a tunable IR transparent microfluidic system with graphene plasmons is exploited to identify ≈2 nm-thick proteins in physiological conditions. The acquired in situ tunability makes it possible to eliminate the IR absorption of water outside the graphene plasmonic hotspots by background subtraction. Most importantly, the ultrahigh confinement of graphene plasmons (confined to ≈15 nm) permits the implementation of nanoscale sensitivity. Then, the deuterium effects on monolayer proteins are characterized within an aqueous solution. The tunable graphene-plasmon-enhanced FTIR technology provides a novel platform for studying biological processes in an aqueous solution at the nanoscale.
Collapse
Affiliation(s)
- Chenchen Wu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Duan
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wei Lyu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hai Hu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Debo Hu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering and QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| | - Teng Gao
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaoxia Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
89
|
Jiang Z, Chu Y, Zhan C. Protein corona: challenges and opportunities for targeted delivery of nanomedicines. Expert Opin Drug Deliv 2022; 19:833-846. [PMID: 35738018 DOI: 10.1080/17425247.2022.2093854] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Targeted drug delivery has been widely explored as a promising way to improve the performance of nanomedicines. However, protein corona formed on the nano-surface represents a major issue that has great impacts on the in vivo fate of targeting nanomedicines, which has been overlooked in the past. With the increasing understanding of protein corona in the recent decade, many efforts have been made to improve targeting efficacy. AREAS COVERED In this review, we briefly summarize insights of targeted delivery systems inspired by protein corona, and discuss the promising strategies to regulate protein corona for better targeting. EXPERT OPINION The interaction between nanomedicines and endogenous proteins brings great uncertainty and challenges, but it also provides great opportunities for the development of targeting nanomedicines at the same time. With increasing understanding of protein corona, the strategies to regulate protein corona pave new avenues for the development of targeting nanomedicines.
Collapse
Affiliation(s)
- Zhuxuan Jiang
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China
| | - Yuxiu Chu
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China
| | - Changyou Zhan
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China.,Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, P.R. China.,Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, P.R. China
| |
Collapse
|
90
|
Padín-González E, Lancaster P, Bottini M, Gasco P, Tran L, Fadeel B, Wilkins T, Monopoli MP. Understanding the Role and Impact of Poly (Ethylene Glycol) (PEG) on Nanoparticle Formulation: Implications for COVID-19 Vaccines. Front Bioeng Biotechnol 2022; 10:882363. [PMID: 35747492 PMCID: PMC9209764 DOI: 10.3389/fbioe.2022.882363] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 12/27/2022] Open
Abstract
Poly (ethylene glycol) (PEG) is a widely used polymer in a variety of consumer products and in medicine. PEGylation refers to the conjugation of PEG to drugs or nanoparticles to increase circulation time and reduce unwanted host responses. PEG is viewed as being well-tolerated, but previous studies have identified anti-PEG antibodies and so-called pseudoallergic reactions in certain individuals. The increased use of nanoparticles as contrast agents or in drug delivery, along with the introduction of mRNA vaccines encapsulated in PEGylated lipid nanoparticles has brought this issue to the fore. Thus, while these vaccines have proven to be remarkably effective, rare cases of anaphylaxis have been reported, and this has been tentatively ascribed to the PEGylated carriers, which may trigger complement activation in susceptible individuals. Here, we provide a general overview of the use of PEGylated nanoparticles for pharmaceutical applications, and we discuss the activation of the complement cascade that might be caused by PEGylated nanomedicines for a better understanding of these immunological adverse reactions.
Collapse
Affiliation(s)
| | - Pearl Lancaster
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, United Kingdom
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Terence Wilkins
- School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
- Correspondence: Terence Wilkins, ; Marco P. Monopoli,
| | - Marco P. Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Correspondence: Terence Wilkins, ; Marco P. Monopoli,
| |
Collapse
|
91
|
Khan S, Sharifi M, Gleghorn JP, Babadaei MMN, Bloukh SH, Edis Z, Amin M, Bai Q, Ten Hagen TLM, Falahati M, Cho WC. Artificial engineering of the protein corona at bio-nano interfaces for improved cancer-targeted nanotherapy. J Control Release 2022; 348:127-147. [PMID: 35660636 DOI: 10.1016/j.jconrel.2022.05.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have been demonstrated in numerous applications as anticancer, antibacterial and antioxidant agents. Artificial engineering of protein interactions with NPs in biological systems is crucial to develop potential NPs for drug delivery and cancer nanotherapy. The protein corona (PC) on the NP surface, displays an interface between biomacromolecules and NPs, governing their pharmacokinetics and pharmacodynamics. Upon interaction of proteins with the NP surface, their surface features are modified and they can easily be removed from the circulation by the mononuclear phagocytic system (MPS). PC properties heavily depend on the biological microenvironment and NP surface physicochemical parameters. Based on this context, we have surveyed different approaches that have been used for artificial engineering of the PC composition on NP surfaces. We discuss the effects of NP size, shape, surface modifications (PEGylation, self-peptide, other polymers), and protein pre-coating on the PC properties. Additionally, other factors including protein source and structure, intravenous injection and the subsequent shear flow, plasma protein gradients, temperature and local heat transfer, and washing media are considered in the context of their effects on the PC properties and overall target cellular effects. Moreover, the effects of NP-PC complexes on cancer cells based on cellular interactions, organization of intracellular PC (IPC), targeted drug delivery (TDD) and regulation of burst drug release profile of nanoplatforms, enhanced biocompatibility, and clinical applications were discussed followed by challenges and future perspective of the field. In conclusion, this paper can provide useful information to manipulate PC properties on the NP surface, thus trying to provide a literature survey to shorten their shipping from preclinical to clinical trials and to lay the basis for a personalized PC.
Collapse
Affiliation(s)
- Suliman Khan
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, USA; Department of Biological Sciences, University of Delaware, Newark, USA
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Mohammadreza Amin
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Qian Bai
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong.
| |
Collapse
|
92
|
Lv R, Raab M, Wang Y, Tian J, Lin J, Prasad PN. Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
93
|
Pavlin M, Lojk J, Strojan K, Hafner-Bratkovič I, Jerala R, Leonardi A, Križaj I, Drnovšek N, Novak S, Veranič P, Bregar VB. The Relevance of Physico-Chemical Properties and Protein Corona for Evaluation of Nanoparticles Immunotoxicity-In Vitro Correlation Analysis on THP-1 Macrophages. Int J Mol Sci 2022; 23:6197. [PMID: 35682872 PMCID: PMC9181693 DOI: 10.3390/ijms23116197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Alongside physiochemical properties (PCP), it has been suggested that the protein corona of nanoparticles (NPs) plays a crucial role in the response of immune cells to NPs. However, due to the great variety of NPs, target cells, and exposure protocols, there is still no clear relationship between PCP, protein corona composition, and the immunotoxicity of NPs. In this study, we correlated PCP and the protein corona composition of NPs to the THP-1 macrophage response, focusing on selected toxicological endpoints: cell viability, reactive oxygen species (ROS), and cytokine secretion. We analyzed seven commonly used engineered NPs (SiO2, silver, and TiO2) and magnetic NPs. We show that with the exception of silver NPs, all of the tested TiO2 types and SiO2 exhibited moderate toxicities and a transient inflammatory response that was observed as an increase in ROS, IL-8, and/or IL-1β cytokine secretion. We observed a strong correlation between the size of the NPs in media and IL-1β secretion. The induction of IL-1β secretion was completely blunted in NLR family pyrin domain containing 3 (NLRP3) knockout THP-1 cells, indicating activation of the inflammasome. The correlations analysis also implicated the association of specific NP corona proteins with the induction of cytokine secretion. This study provides new insights toward a better understanding of the relationships between PCP, protein corona, and the inflammatory response of macrophages for different engineered NPs, to which we are exposed on a daily basis.
Collapse
Grants
- J7-7424, J2-6758, J3-1746, J3-6794, J3-7494, Z4-8229, P1-0055, P3-0108, P1-0207, P4-0220, P2-0087, P4-0176, young researchers program and MRIC UL IP-0510 Infrastructure program Slovenian Research Agency
- ISO-FOOD (FP7-REGPOT) European Commission
Collapse
Affiliation(s)
- Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| | - Jasna Lojk
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| | - Klemen Strojan
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (I.H.-B.); (R.J.)
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (I.H.-B.); (R.J.)
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (A.L.); (I.K.)
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (A.L.); (I.K.)
| | - Nataša Drnovšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (N.D.); (S.N.)
| | - Saša Novak
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (N.D.); (S.N.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia;
| | - Vladimir Boštjan Bregar
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| |
Collapse
|
94
|
Ghosh C, Priegue P, Leelayuwapan H, Fuchsberger FF, Rademacher C, Seeberger PH. Synthetic Glyconanoparticles Modulate Innate Immunity but Not the Complement System. ACS APPLIED BIO MATERIALS 2022; 5:2185-2192. [PMID: 35435657 PMCID: PMC9115801 DOI: 10.1021/acsabm.2c00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/30/2022] [Indexed: 01/12/2023]
Abstract
Nanoparticles that modulate innate immunity can act as vaccine adjuvants and antigen carriers and are promising alternatives to conventional anticancer therapy. Nanoparticles might, upon contact with serum, activate the complement system that might in turn result in clearance and allergic reactions. Herein, we report that ultrasmall glyconanoparticles decorated with nonimmunogenic α-(1-6)-oligomannans trigger an innate immune response without drastically affecting the complement system. These negatively charged glyconanoparticles (10-15 nm) are stable in water and secrete proinflammatory cytokines from macrophages via the NF-κB signaling pathway. The glyconanoparticles can be used as immunomodulators for monotherapy or in combination with drugs and vaccines.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Patricia Priegue
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Harin Leelayuwapan
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Felix F. Fuchsberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Christoph Rademacher
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
95
|
Kou L, Huang H, Tang Y, Sun M, Li Y, Wu J, Zheng S, Zhao X, Chen D, Luo Z, Zhang X, Yao Q, Chen R. Opsonized nanoparticles target and regulate macrophage polarization for osteoarthritis therapy: A trapping strategy. J Control Release 2022; 347:237-255. [PMID: 35489544 DOI: 10.1016/j.jconrel.2022.04.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a chronic disease caused by joint inflammation. Its occurrence and development depend on a continuous inflammation environment. The activated M1 macrophages play a critical role in the inflammatory response of OA. Regulating the pro-inflammatory M1 to anti-inflammatory M2 macrophages in the OA articular cavity could be a rational strategy for OA treatment. It has been acknowledged that activated macrophages could proactively capture opsonized nanoparticles in the bloodstream and then accumulate into the reticuloendothelial system (RES) organs. Based on this fact, a trapping strategy is proposed, which transforms a normal nanoparticle into an opsonized attractant to target and regulate macrophage polarization. In this study, the opsonized nanoparticle (IgG/Bb@BRPL) had several key features, including an immunoglobulin IgG (the opsonized layer), an anti-inflammatory agent berberine (Bb), and an oxidative stress-responsive bilirubin grafted polylysine biomaterial (BR-PLL) for drug loading (the inner nanocore). In vitro studies confirmed that IgG/Bb@BRPL prefer to be phagocytosed by M1 macrophage, not M0. And the internalized IgG/Bb@BRPL effectively promoted macrophage polarization toward the M2 phenotype and protected nearby chondrocytes. In vivo studies suggested that IgG/Bb@BRPL significantly enhanced therapeutic outcomes by suppressing inflammation and promoting cartilage repair while not prolonging the retention period compared to non-opsonized counterparts. This proof-of-concept study provided a novel opsonization trapping strategy for OA drug delivery and treatment.
Collapse
Affiliation(s)
- Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Zhejiang 325027, China
| | - Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yingying Tang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Meng Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yingtao Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jianing Wu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shimin Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinyu Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Daosen Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zucheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
96
|
Rezaei M, Davani F, Alishahi M, Masjedi F. Updates in immunocompatibility of biomaterials: applications for regenerative medicine. Expert Rev Med Devices 2022; 19:353-367. [PMID: 35531761 DOI: 10.1080/17434440.2022.2075730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Biomaterials, either metallic, ceramic, or polymeric, can be used in medicine as a part of the implants, dialysis membranes, bone scaffolds, or components of artificial organs. Polymeric biomaterials cover a vast range of biomedical applications. The biocompatibility and immunocompatibility of polymeric materials are of fundamental importance for their possible therapeutic uses, as the immune system can intervene in the materials' performance. Therefore, based on application, different routes can be utilized for immunoregulation. AREAS COVERED As different biomaterials can be modulated by different strategies, this study aims to summarize and evaluate the available methods for the immunocompatibility enhancement of more common polymeric biomaterials based on their nature. Different strategies such as surface modification, physical characterization, and drug incorporation are investigated for the immunomodulation of nanoparticles, hydrogels, sponges, and nanofibers. EXPERT OPINION Recently, strategies for triggering appropriate immune responses by functional biomaterials have been highlighted. As most strategies correspond to the physical and surface properties of biomaterials, specific modulation can be conducted for each biomaterial system. Besides, different applications require different modulations of the immune system. In the future, the selection of novel materials and immune regulators can play a role in tuning the immune system for regenerative medicine.
Collapse
Affiliation(s)
- Mahdi Rezaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farideh Davani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Alishahi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
97
|
Gaikwad H, Li Y, Wang G, Li R, Dai S, Rester C, Kedl R, Saba L, Banda NK, Scheinman RI, Patrick C, Mallela KM, Moein Moghimi S, Simberg D. Antibody-Dependent Complement Responses toward SARS-CoV-2 Receptor-Binding Domain Immobilized on "Pseudovirus-like" Nanoparticles. ACS NANO 2022; 16:acsnano.2c02794. [PMID: 35507641 PMCID: PMC9092195 DOI: 10.1021/acsnano.2c02794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 05/09/2023]
Abstract
Many aspects of innate immune responses to SARS viruses remain unclear. Of particular interest is the role of emerging neutralizing antibodies against the receptor-binding domain (RBD) of SARS-CoV-2 in complement activation and opsonization. To overcome challenges with purified virions, here we introduce "pseudovirus-like" nanoparticles with ∼70 copies of functional recombinant RBD to map complement responses. Nanoparticles fix complement in an RBD-dependent manner in sera of all vaccinated, convalescent, and naı̈ve donors, but vaccinated and convalescent donors with the highest levels of anti-RBD antibodies show significantly higher IgG binding and higher deposition of the third complement protein (C3). The opsonization via anti-RBD antibodies is not an efficient process: on average, each bound antibody promotes binding of less than one C3 molecule. C3 deposition is exclusively through the alternative pathway. C3 molecules bind to protein deposits, but not IgG, on the nanoparticle surface. Lastly, "pseudovirus-like" nanoparticles promote complement-dependent uptake by granulocytes and monocytes in the blood of vaccinated donors with high anti-RBD titers. Using nanoparticles displaying SARS-CoV-2 proteins, we demonstrate subject-dependent differences in complement opsonization and immune recognition.
Collapse
Affiliation(s)
- Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yue Li
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ronghui Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Cody Rester
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ross Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nirmal K. Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO, 80045, USA
| | - Robert I. Scheinman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Casey Patrick
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Krishna M.G. Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - S. Moein Moghimi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- School of Pharmacy, King George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
98
|
Kim HJ, Seo SK, Park HY. Physical and chemical advances of synthetic delivery vehicles to enhance mRNA vaccine efficacy. J Control Release 2022; 345:405-416. [PMID: 35314261 DOI: 10.1016/j.jconrel.2022.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
The successful translation of mRNA vaccines slows down the spread of viral infectious diseases, which may be accomplished by developing novel chemically modified nucleotides (or nucleosides) and highly efficient, safe mRNA delivery vehicles. Delivery vehicles protect vulnerable antigen mRNA and increase the uptake of mRNA into antigen-presenting cells in the peripheral tissue or lymph nodes. This review introduces essential characteristics of mRNA vaccines (e.g., particle sizes, colloidal stability, surface charges/endosomal escape ability, and ligand conjugation) that may be used to generate high immune responses against foreign antigens. The significance and mechanism of each characteristic are described based on the results obtained from in vitro and in vivo studies. We also discuss the development of next generation delivery vehicles for future mRNA vaccines.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Su Kyoung Seo
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ha Yeon Park
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
99
|
Deng D, Fu S, Cai Z, Fu X, Jin R, Ai H. Surface carboxylation of iron oxide nanoparticles brings reduced macrophage inflammatory response through inhibiting macrophage autophagy. Regen Biomater 2022; 9:rbac018. [PMID: 35668925 PMCID: PMC9164630 DOI: 10.1093/rb/rbac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Macrophage autophagy is a common biological response triggered by nanomaterials, which is closely related to the regulation of inflammation. Superparamagnetic iron oxide (SPIO) nanoparticles have been used for study of autophagy response due to their broad biomedical applications. However, few reports have focused on how to regulate the macrophage autophagy response induced by SPIO nanoparticles. In this study, SPIO nanoparticles grafted with carboxyl groups were synthesized and for the comparison of macrophage autophagy with unmodified nanoparticles. The study on the correlation between autophagy and inflammation induced by the two kinds of SPIO nanoparticles was also included, and the one that grafted with carboxyl groups shows a reduction of autophagy and thereby caused a milder inflammatory response. We proposed that the increased amount of albumin adsorption on the surface of carboxylated SPIO nanoparticles, a protein previously proven to attenuate autophagy, can be considered an important reason for reducing autophagy and inflammation. In general, the carboxyl modification of SPIO nanoparticles has been demonstrated to reduce inflammation by inhibiting macrophage autophagy, which may provide some insights for the design of nanomaterials in the future.
Collapse
Affiliation(s)
- Di Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
100
|
Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, Sharf-Pauker N, Xiao Y, Adir O, Liang H, Shi J, Schroeder A, Conde J. Nanodelivery of nucleic acids. NATURE REVIEWS. METHODS PRIMERS 2022; 2:24. [PMID: 35480987 PMCID: PMC9038125 DOI: 10.1038/s43586-022-00104-y] [Citation(s) in RCA: 200] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
There is growing need for a safe, efficient, specific and non-pathogenic means for delivery of gene therapy materials. Nanomaterials for nucleic acid delivery offer an unprecedented opportunity to overcome these drawbacks; owing to their tunability with diverse physico-chemical properties, they can readily be functionalized with any type of biomolecules/moieties for selective targeting. Nucleic acid therapeutics such as antisense DNA, mRNA, small interfering RNA (siRNA) or microRNA (miRNA) have been widely explored to modulate DNA or RNA expression Strikingly, gene therapies combined with nanoscale delivery systems have broadened the therapeutic and biomedical applications of these molecules, such as bioanalysis, gene silencing, protein replacement and vaccines. Here, we overview how to design smart nucleic acid delivery methods, which provide functionality and efficacy in the layout of molecular diagnostics and therapeutic systems. It is crucial to outline some of the general design considerations of nucleic acid delivery nanoparticles, their extraordinary properties and the structure-function relationships of these nanomaterials with biological systems and diseased cells and tissues.
Collapse
Affiliation(s)
- Bárbara B. Mendes
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Aviram Avital
- Department of Chemical Engineering, Technion — Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion — Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Dongbao Yao
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Xingya Jiang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Xiang Zhou
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Noga Sharf-Pauker
- Department of Chemical Engineering, Technion — Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion — Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Yuling Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Omer Adir
- Department of Chemical Engineering, Technion — Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion — Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Haojun Liang
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Avi Schroeder
- Department of Chemical Engineering, Technion — Israel Institute of Technology, Haifa, Israel
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|