51
|
Xi Y, Cai J, Li G, Huang H, Peng X, Zhu G. High CO 2 facilitates fatty acid biosynthesis and mitigates cellular oxidative stress caused by CAC2 dysfunction in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1316-1330. [PMID: 37235700 DOI: 10.1111/tpj.16321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Increasing concentration of CO2 has significant impacts on many biological processes in plants, and its impact is closely associated with changes in the ratio of photosynthesis to photorespiration. Studies have reported that high CO2 can promote carbon fixing and alleviate plant oxidative damage in response to environmental stresses. However, the effect of high CO2 on fatty acid (FA) metabolism and cellular redox balance in FA-deficient plants is rarely reported. In this study, we identified a high-CO2 -requiring mutant cac2 through forward genetic screening. CAC2 encodes biotin carboxylase, which is one of the subunits of plastid acetyl-CoA carboxylase and participates in de novo FA biosynthesis. Null mutation of CAC2 is embryonic lethal. A point mutation of CAC2 in cac2 mutants produces severe defects in chloroplast development, plant growth and photosynthetic performance. These morphological and physiological defects were largely absent under high CO2 conditions. Metabolite analyses showed that FA contents in cac2-1 leaves were decreased, while photorespiratory metabolites, such as glycine and glycolate, did not significantly change. Meanwhile, cac2 exhibited higher reactive oxygen species (ROS) levels and mRNA expression of stress-responsive genes than the wild-type, indicating that cac2 plants may suffer oxidative stress under ambient CO2 conditions. Elevated CO2 significantly increased FA contents, especially C18:3-FA, and reduced ROS accumulation in cac2-1 leaves. We propose that stress mitigation by high CO2 in cac2 could be due to increased FA levels by promoting carbon assimilation, and the prevention of over-reduction due to decreased photorespiration.
Collapse
Affiliation(s)
- Yue Xi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jiajia Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ganting Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Haijian Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xinxiang Peng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guohui Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, China
| |
Collapse
|
52
|
Bhattacharya O, Ortiz I, Hendricks N, Walling LL. The tomato chloroplast stromal proteome compendium elucidated by leveraging a plastid protein-localization prediction Atlas. FRONTIERS IN PLANT SCIENCE 2023; 14:1020275. [PMID: 37701797 PMCID: PMC10493611 DOI: 10.3389/fpls.2023.1020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
Tomato (Solanum lycopersicum) is a model species for studying fruit development, wounding, herbivory, and pathogen attack. Despite tomato's world-wide economic importance and the role of chloroplasts as metabolic hubs and integrators of environmental cues, little is known about the stromal proteome of tomato. Using a high-yielding protocol for chloroplast and stromal protein isolation, MudPIT nano-LC-MS/MS analyses, a robust in-house protein database (the Atlas) for predicting the plastid localization of tomato proteins, and rigorous selection criteria for inclusion/exclusion in the stromal proteome, we identified 1,278 proteins of the tomato stromal proteome. We provide one of the most robust stromal proteomes available to date with empirical evidence for 545 and 92 proteins not previously described for tomato plastids and the Arabidopsis stroma, respectively. The relative abundance of tomato stromal proteins was determined using the exponentially modified protein abundance index (emPAI). Comparison of the abundance of tomato and Arabidopsis stromal proteomes provided evidence for the species-specific nature of stromal protein homeostasis. The manual curation of the tomato stromal proteome classified proteins into ten functional categories resulting in an accessible compendium of tomato chloroplast proteins. After curation, only 91 proteins remained as unknown, uncharacterized or as enzymes with unknown functions. The curation of the tomato stromal proteins also indicated that tomato has a number of paralogous proteins, not present in Arabidopsis, which accumulated to different levels in chloroplasts. As some of these proteins function in key metabolic pathways or in perceiving or transmitting signals critical for plant adaptation to biotic and abiotic stress, these data suggest that tomato may modulate the bidirectional communication between chloroplasts and nuclei in a novel manner. The stromal proteome provides a fertile ground for future mechanistic studies in the field of tomato chloroplast-nuclear signaling and are foundational for our goal of elucidating the dynamics of the stromal proteome controlled by the solanaceous-specific, stromal, and wound-inducible leucine aminopeptidase A of tomato.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Irma Ortiz
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Nathan Hendricks
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
53
|
Bu X, Zhao W, Li W, Zou H, Li M, Wang G. Comparative Transcriptomics of Chilodonella hexasticha and C. uncinata Provide New Insights into Adaptations to a Parasitic Lifestyle and Mdivi-1 as a Potential Agent for Chilodonellosis Control. Int J Mol Sci 2023; 24:13058. [PMID: 37685862 PMCID: PMC10488290 DOI: 10.3390/ijms241713058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Chilodonella hexasticha is a harmful parasitic ciliate that can cause severe damage to fish and high mortalities worldwide. Its congeneric species, C. uncinata, is a facultative parasite that not only can be free-living but also can parasitize on fish gills and fins. In this study, single-cell transcriptomes of these two species were assembled and characterized. Numerous enzymes related to energy metabolism and parasitic adaption were identified through annotation in the Non-Redundant (NR), Clusters of Orthologous Genes (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The expression of isocitrate dehydrogenase (IDH), cytochrome c oxidase subunit 1 (Cox1) and ATP synthase F1, delta subunit (ATP5D) was up-regulated in C. hexasticha compared with C. uncinata. The oxidative phosphorylation process was also enriched in C. hexasticha. The main mitochondrial metabolic pathways in C. hexasticha were depicted and enzymes related to energy metabolism pathways were compared between these two species. More importantly, mitochondrial division inhibitor 1 (mdivi-1) proved to be very effective in killing both C. hexasticha and C. uncinata, which could be a novel drug for Chilodonellosis control. This study can help us better understand the energy metabolisms of C. hexasticha and C. uncinata and provide new insight into novel targets for chilodonellosis control. Meanwhile, the transcriptome data can also facilitate genomic studies of these two species in the future.
Collapse
Affiliation(s)
- Xialian Bu
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Weishan Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wenxiang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
| | - Hong Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
| | - Ming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guitang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
| |
Collapse
|
54
|
Huang H, Ahmar S, Samad RA, Qin P, Yan T, Zhao Q, Xie K, Zhang C, Fan C, Zhou Y. A novel type of Brassica napus with higher stearic acid in seeds developed through genome editing of BnaSAD2 family. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:187. [PMID: 37572171 DOI: 10.1007/s00122-023-04414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/23/2023] [Indexed: 08/14/2023]
Abstract
KEY MESSAGE Modifications of multiple copies of the BnaSAD2 gene family with genomic editing technology result in higher stearic acid content in the seed of polyploidy rapeseed. Solid fats from vegetable oils are widely used in food processing industry. Accumulating data showed that stearic acid is more favorite as the major composite among the saturate fatty acids in solid fats in considerations of its effects on human health. Rapeseed is the third largest oil crop worldwide, and has potential to be manipulated to produce higher saturated fatty acids as raw materials of solid fats. Toward that end, we identified four SAD2 gene family members in B. napus genome and established spatiotemporal expression pattern of the BnaSAD2 members. Genomic editing technology was applied to mutate all the copies of BnaSAD2 in this allopolyploid species and mutants at multiple alleles were generated and characterized to understand the effect of each BnaSAD2 member on blocking desaturation of stearic acid. Mutations occurred at BnaSAD2.A3 resulted in more dramatic changes of fatty acid profile than ones on BnaSAD2.C3, BnaSAD2.A5 and BnaSAD2.C4. The content of stearic acid in mutant seeds with single locus increased dramatically with a range of 3.1-8.2%. Furthermore, combination of different mutated alleles of BnaSAD2 resulted in more dramatic changes in fatty acid profiles and the double mutant at BnaSAD2.A3 and BnaSAD2.C3 showed the most dramatic phenotypic changes compared with its single mutants and other double mutants, leading to 11.1% of stearic acid in the seeds. Our results demonstrated that the members of BnaSAD2 have differentiated in their efficacy as a Δ9-Stearoyl-ACP-Desaturase and provided valuable rapeseed germplasm for breeding high stearic rapeseed oil.
Collapse
Affiliation(s)
- Huibin Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rana Abdul Samad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pin Qin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tong Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
55
|
Zhang R, Zhu B, Sun C, Li Y, Yang G, Zhao Y, Pan K. UDP-glucose pyrophosphorylase as a target for regulating carbon flux distribution and antioxidant capacity in Phaeodactylum tricornutum. Commun Biol 2023; 6:750. [PMID: 37468748 PMCID: PMC10356853 DOI: 10.1038/s42003-023-05096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
UDP-glucose pyrophosphorylase (UGPase) is a key enzyme for polysaccharide synthesis, and its role in plants and bacteria is well established; however, its functions in unicellular microalgae remain ill-defined. Here, we perform bioinformatics, subcellular localization as well as in vitro and in vivo analyses to elucidate the functions of two UGPs (UGP1 and UGP2) in the model microalga Phaeodactylum tricornutum. Despite differences in amino acid sequence, substrate specificity, and subcellular localization between UGP1 and UGP2, both enzymes can efficiently increase the production of chrysolaminarin (Chrl) or lipids by regulating carbon flux distribution without impairing growth and photosynthesis in transgenic strains. Productivity evaluation indicate that UGP1 play a bigger role in regulating Chrl and lipid production than UGP2. In addition, UGP1 enhance antioxidant capacity, whereas UGP2 is involved in sulfoquinovosyldiacylglycerol (SQDG) synthesis in P. tricornutum. Taken together, the present results suggest that ideal microalgal strains can be developed for the industrial production of Chrl or lipids and lay the foundation for the development of methods to improve oxidative stress tolerance in diatoms.
Collapse
Affiliation(s)
- Ruihao Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Baohua Zhu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China.
| | - Changze Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yan Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Kehou Pan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China.
| |
Collapse
|
56
|
Chen J, Watson-Lazowski A, Kamble NU, Vickers M, Seung D. Gene expression profile of the developing endosperm in durum wheat provides insight into starch biosynthesis. BMC PLANT BIOLOGY 2023; 23:363. [PMID: 37460981 DOI: 10.1186/s12870-023-04369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Durum wheat (Triticum turgidum subsp. durum) is widely grown for pasta production, and more recently, is gaining additional interest due to its resilience to warm, dry climates and its use as an experimental model for wheat research. Like in bread wheat, the starch and protein accumulated in the endosperm during grain development are the primary contributors to the calorific value of durum grains. RESULTS To enable further research into endosperm development and storage reserve synthesis, we generated a high-quality transcriptomics dataset from developing endosperms of variety Kronos, to complement the extensive mutant resources available for this variety. Endosperms were dissected from grains harvested at eight timepoints during grain development (6 to 30 days post anthesis (dpa)), then RNA sequencing was used to profile the transcriptome at each stage. The largest changes in gene expression profile were observed between the earlier timepoints, prior to 15 dpa. We detected a total of 29,925 genes that were significantly differentially expressed between at least two timepoints, and clustering analysis revealed nine distinct expression patterns. We demonstrate the potential of our dataset to provide new insights into key processes that occur during endosperm development, using starch metabolism as an example. CONCLUSION We provide a valuable resource for studying endosperm development in this increasingly important crop species.
Collapse
Affiliation(s)
- Jiawen Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Alexander Watson-Lazowski
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | | | - Martin Vickers
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
57
|
Macorano L, Binny TM, Spiegl T, Klimenko V, Singer A, Oberleitner L, Applegate V, Seyffert S, Stefanski A, Gremer L, Gertzen CGW, Höppner A, Smits SHJ, Nowack ECM. DNA-binding and protein structure of nuclear factors likely acting in genetic information processing in the Paulinella chromatophore. Proc Natl Acad Sci U S A 2023; 120:e2221595120. [PMID: 37364116 PMCID: PMC10319021 DOI: 10.1073/pnas.2221595120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The chromatophores in Paulinella are evolutionary-early-stage photosynthetic organelles. Biological processes in chromatophores depend on a combination of chromatophore and nucleus-encoded proteins. Interestingly, besides proteins carrying chromatophore-targeting signals, a large arsenal of short chromatophore-targeted proteins (sCTPs; <90 amino acids) without recognizable targeting signals were found in chromatophores. This situation resembles endosymbionts in plants and insects that are manipulated by host-derived antimicrobial peptides. Previously, we identified an expanded family of sCTPs of unknown function, named here "DNA-binding (DB)-sCTPs". DB-sCTPs contain a ~45 amino acid motif that is conserved in some bacterial proteins with predicted functions in DNA processing. Here, we explored antimicrobial activity, DNA-binding capacity, and structures of three purified recombinant DB-sCTPs. All three proteins exhibited antimicrobial activity against bacteria involving membrane permeabilization, and bound to bacterial lipids in vitro. A combination of in vitro assays demonstrated binding of recombinant DB-sCTPs to chromatophore-derived genomic DNA sequences with an affinity in the low nM range. Additionally, we report the 1.2 Å crystal structure of one DB-sCTP. In silico docking studies suggest that helix α2 inserts into the DNA major grove and the exposed residues, that are highly variable between different DB-sCTPs, confer interaction with the DNA bases. Identification of photosystem II subunit CP43 as a potential interaction partner of one DB-sCTP, suggests DB-sCTPs to be involved in more complex regulatory mechanisms. We hypothesize that membrane binding of DB-sCTPs is related to their import into chromatophores. Once inside, they interact with the chromatophore genome potentially providing nuclear control over genetic information processing.
Collapse
Affiliation(s)
- Luis Macorano
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Taniya M. Binny
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Tobias Spiegl
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Victoria Klimenko
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Anna Singer
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Linda Oberleitner
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Violetta Applegate
- Center for Structural Studies, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Sarah Seyffert
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7 Structural Biochemistry) and JuStruct Jülich Center of Structural Biology, Forschungszentrum Jülich, 52428Jülich, Germany
- Institute of Physical Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Christoph G. W. Gertzen
- Center for Structural Studies, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Department of Pharmacy, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Astrid Höppner
- Center for Structural Studies, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Sander H. J. Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
- Institute of Biochemistry, Department of Chemistry, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Eva C. M. Nowack
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| |
Collapse
|
58
|
Miller S, Rønager A, Holm R, Fontanet-Manzaneque JB, Caño-Delgado AI, Bjarnholt N. New methods for sorghum transformation in temperate climates. AOB PLANTS 2023; 15:plad030. [PMID: 37396498 PMCID: PMC10308921 DOI: 10.1093/aobpla/plad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Sorghum (Sorghum bicolor) is an emerging cereal crop in temperate climates due to its high drought tolerance and other valuable traits. Genetic transformation is an important tool for the improvement of cereals. However, sorghum is recalcitrant to genetic transformation which is almost only successful in warmer climates. Here, we test the application of two new techniques for sorghum transformation in temperate climates, namely transient transformation by Agrobacterium tumefaciens-mediated agroinfiltration and stable transformation using gold particle bombardment and leaf whorls as explants. We optimized the transient transformation method, including post-infiltration incubation of plants in the dark and using Agrobacterium grown on plates with a high cell density (OD600 = 2.0). Expression of the green fluorescence protein (GFP)-tagged endogenous sorghum gene SbDHR2 was achieved with low transformation efficiency, and our results point out a potential weakness in using this approach for localization studies. Furthermore, we succeeded in the production of callus and somatic embryos from leaf whorls, although no genetic transformation was accomplished with this method. Both methods show potential, even if they seem to be influenced by climatic conditions and therefore need further optimization to be applied routinely in temperate climates.
Collapse
Affiliation(s)
- Sara Miller
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksbergs, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Asta Rønager
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksbergs, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Rose Holm
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksbergs, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Juan B Fontanet-Manzaneque
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Nanna Bjarnholt
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksbergs, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
59
|
Han J, Jawad Umer M, Yang M, Hou Y, Gereziher Mehari T, Zheng J, Wang H, Liu J, Dong W, Xu Y, Wang Y, Liu F, Zhou Z, Cai X. Genome-wide identification and functional analysis of ICE genes reveal that Gossypium thurberi "GthICE2" is responsible for cold and drought stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107708. [PMID: 37116225 DOI: 10.1016/j.plaphy.2023.107708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/23/2023]
Abstract
Cold stress has been found to have a negative impact on cotton growth and annual production. To address this issue, the utilization of cold-tolerant gene resources from wild species of Gossypium is crucial for genetic improvements in cultivated cotton. ICE (inducer of CBF expression) are the key regulators of cold tolerance in plants, however, there is relatively little information on ICE genes in cotton. Herein, we performed comprehensive bioinformatics analyses of the ICE gene family in eight cotton species. Phylogenetic analysis showed that 52 ICE genes were clustered into four subgroups. Cis-regulatory elements analysis suggests that the expression of ICE genes might be regulated by light, plant hormones, and various environment stresses. Higher expression of GthICE2 was observed in leaves as compared to roots and stems, in response to cold, drought, and exogenous hormone ABA. Furthermore, overexpression of GthICE2 in A. thaliana led to higher germination and survival rates, longer root length, lower ion leakage, and induction under cold and drought stress. Histochemical staining showed that oxidative damage in transgenic lines was much lower compared to wild-type plants. Lower MDA contents and higher SOD and POD activities were observed in overexpressed plants. Y1H and LUC assays revealed that GthICE2 might activate the expression of GthCBF4, a cold-responsive gene, by connecting with the MYC cis-element present in the promoter of GthCBF4. GthICE2 confers cold and drought stress tolerance in cotton. Our findings add significantly to the existing knowledge regarding cold stress tolerance and helps to elucidate cold response mechanisms in cotton.
Collapse
Affiliation(s)
- Jiangping Han
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Mengying Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Teame Gereziher Mehari
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jie Zheng
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, 572025, China
| | - Heng Wang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jiajun Liu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenhao Dong
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, 572025, China.
| | - ZhongLi Zhou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xiaoyan Cai
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China; State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, 572025, China.
| |
Collapse
|
60
|
Zhang Z, Cui M, Chen P, Li J, Mao Z, Mao Y, Li Z, Guo Q, Wang C, Liao X, Liu H. Insight into the phylogeny and metabolic divergence of Monascus species ( M. pilosus, M. ruber, and M. purpureus) at the genome level. Front Microbiol 2023; 14:1199144. [PMID: 37303795 PMCID: PMC10249731 DOI: 10.3389/fmicb.2023.1199144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Background Species of the genus Monascus are economically important and widely used in the production of food colorants and monacolin K. However, they have also been known to produce the mycotoxin citrinin. Currently, taxonomic knowledge of this species at the genome level is insufficient. Methods This study presents genomic similarity analyses through the analysis of the average nucleic acid identity of the genomic sequence and the whole genome alignment. Subsequently, the study constructed a pangenome of Monascus by reannotating all the genomes and identifying a total of 9,539 orthologous gene families. Two phylogenetic trees were constructed based on 4,589 single copy orthologous protein sequences and all the 5,565 orthologous proteins, respectively. In addition, carbohydrate active enzymes, secretome, allergic proteins, as well as secondary metabolite gene clusters were compared among the included 15 Monascus strains. Results The results clearly revealed a high homology between M. pilosus and M. ruber, and their distant relationship with M. purpureus. Accordingly, all the included 15 Monascus strains should be classified into two distinctly evolutionary clades, namely the M. purpureus clade and the M. pilosus-M. ruber clade. Moreover, gene ontology enrichment showed that the M. pilosus-M. ruber clade had more orthologous genes involved with environmental adaptation than the M. purpureus clade. Compared to Aspergillus oryzae, all the Monascus species had a substantial gene loss of carbohydrate active enzymes. Potential allergenic and fungal virulence factor proteins were also found in the secretome of Monascus. Furthermore, this study identified the pigment synthesis gene clusters present in all included genomes, but with multiple nonessential genes inserted in the gene cluster of M. pilosus and M. ruber compared to M. purpureus. The citrinin gene cluster was found to be intact and highly conserved only among M. purpureus genomes. The monacolin K gene cluster was found only in the genomes of M. pilosus and M. ruber, but the sequence was more conserved in M. ruber. Conclusion This study provides a paradigm for phylogenetic analysis of the genus Monascus, and it is believed that this report will lead to a better understanding of these food microorganisms in terms of classification, metabolic differentiation, and safety.
Collapse
Affiliation(s)
- Zhiyu Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Mengfei Cui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Panting Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Juxing Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Zhitao Mao
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yufeng Mao
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Xiaoping Liao
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| |
Collapse
|
61
|
Panji A, Ismaili A, Sohrabi SM. Genome-wide identification and expression profiling of snakin/GASA genes under drought stress in barley ( Hordeum vulgare L.). 3 Biotech 2023; 13:126. [PMID: 37064004 PMCID: PMC10090255 DOI: 10.1007/s13205-023-03545-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
Gibberellic Acid-Stimulated Arabidopsis (GASA) proteins are present in various plants and have a role in plant growth, stress responses, and hormone crosstalk. GASA coding sequences in barley were discovered in this study. We then investigated gene and protein structure, physicochemical characteristics, evolutionary and phylogenetic relationships, promoter region, post-translational modification, and in silico gene expression. Finally, real-time quantitative PCR (RT-qPCR) was used to examine the expression of GASA genes in root and shoot tissues under drought stress. We found 11 GASA genes spread across six of seven chromosomes in the barley genome. A conserved GASA domain and 12-cysteine residues at the C-terminus were included in the proteins. All GASA genes contained secretory signal peptides. The GASA genes in Hordeum vulgare (HvGASA) have been classified into three subfamilies based on evolutionary analysis. According to synteny analyses, segmental duplications are significant in forming the GASA gene family. According to the cis-elements analyses, GASA genes may be induced by a variety of phytohormones and stresses. Tissue-specific expression analysis indicated that GASA genes had varied expression patterns in different tissues. Contrary to common perception, the expression study of GASA genes under biotic and abiotic stresses revealed that GASA genes are more induced by abiotic stresses than biotic stresses. The qPCR confirmed the response of GASA genes to abiotic stresses and showed different expression patterns of these genes under drought stress. Overall, these results can improve our knowledge about the function of GASA genes and provide data for future researches. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03545-8.
Collapse
Affiliation(s)
- Anahita Panji
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Seyyed Mohsen Sohrabi
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
62
|
Perween N, Pekhale K, Haval G, Khude G, Ghaskadbi S, Ghaskadbi SS. Glutathione synthetase from Hydra vulgaris: Molecular cloning, overexpression, purification and partial characterization. Protein Expr Purif 2023; 208-209:106292. [PMID: 37127055 DOI: 10.1016/j.pep.2023.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Nusrat Perween
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India; Department of Zoology, M.C.E. Society's Abeda Inamdar Senior College, Pune, 411001, India
| | - Komal Pekhale
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India
| | - Gauri Haval
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India; Department of Zoology, Abasaheb Garware College, Pune, 411004, India
| | - Gaurav Khude
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, 411004, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
63
|
van Wijk KJ, Leppert T, Sun Z, Deutsch EW. Does the Ubiquitination Degradation Pathway Really Reach inside of the Chloroplast? A Re-Evaluation of Mass Spectrometry-Based Assignments of Ubiquitination. J Proteome Res 2023. [PMID: 37092802 DOI: 10.1021/acs.jproteome.3c00178] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A recent paper in Science Advances by Sun et al. claims that intra-chloroplast proteins in the model plant Arabidopsis can be polyubiquitinated and then extracted into the cytosol for subsequent degradation by the proteasome. Most of this conclusion hinges on several sets of mass spectrometry (MS) data. If the proposed results and conclusion are true, this would be a major change in the proteolysis/proteostasis field, breaking the long-standing dogma that there are no polyubiquitination mechanisms within chloroplast organelles (nor in mitochondria). Given its importance, we reanalyzed their raw MS data using both open and closed sequence database searches and encountered many issues not only with the results but also discrepancies between stated methods (e.g., use of alkylating agent iodoacetamide (IAA)) and observed mass modifications. Although there is likely enrichment of ubiquitination signatures in a subset of the data (probably from ubiquitination in the cytosol), we show that runaway alkylation with IAA caused extensive artifactual modifications of N termini and lysines to the point that a large fraction of the desired ubiquitination signatures is indistinguishable from artifactual acetamide signatures, and thus, no intra-chloroplast polyubiquitination conclusions can be drawn from these data. We provide recommendations on how to avoid such perils in future work.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| |
Collapse
|
64
|
Jiang Z, Kang X, Song Y, Zhou X, Yue M. Identification and Evaluation of Novel Antigen Candidates against Salmonella Pullorum Infection Using Reverse Vaccinology. Vaccines (Basel) 2023; 11:vaccines11040865. [PMID: 37112777 PMCID: PMC10143441 DOI: 10.3390/vaccines11040865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Pullorum disease, caused by the Salmonella enterica serovar Gallinarum biovar Pullorum, is a highly contagious disease in the poultry industry, leading to significant economic losses in many developing countries. Due to the emergence of multidrug-resistant (MDR) strains, immediate attention is required to prevent their endemics and global spreading. To mitigate the prevalence of MDR Salmonella Pullorum infections in poultry farms, it is urgent to develop effective vaccines. Reverse vaccinology (RV) is a promising approach using expressed genomic sequences to find new vaccine targets. The present study used the RV approach to identify new antigen candidates against Pullorum disease. Initial epidemiological investigation and virulent assays were conducted to select strain R51 for presentative and general importance. An additional complete genome sequence (4.7 Mb) for R51 was resolved using the Pacbio RS II platform. The proteome of Salmonella Pullorum was analyzed to predict outer membrane and extracellular proteins, and was further selected for evaluating transmembrane domains, protein prevalence, antigenicity, and solubility. Twenty-two high-scored proteins were identified among 4713 proteins, with 18 recombinant proteins successfully expressed and purified. The chick embryo model was used to assess protection efficacy, in which vaccine candidates were injected into 18-day-old chick embryos for in vivo immunogenicity and protective effects. The results showed that the PstS, SinH, LpfB, and SthB vaccine candidates were able to elicit a significant immune response. Particularly, PstS confers a significant protective effect, with a 75% survival rate compared to 31.25% for the PBS control group, confirming that identified antigens can be promising targets against Salmonella Pullorum infection. Thus, we offer RV to discover novel effective antigens in an important veterinary infectious agent with high priority.
Collapse
Affiliation(s)
- Zhijie Jiang
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiamei Kang
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Song
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Zhou
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
65
|
Simakin P, Koch C, Herrmann JM. A modular cloning (MoClo) toolkit for reliable intracellular protein targeting in the yeast Saccharomyces cerevisiae. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:78-87. [PMID: 37009624 PMCID: PMC10054711 DOI: 10.15698/mic2023.04.794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 04/04/2023]
Abstract
Modular Cloning (MoClo) allows the combinatorial assembly of plasmids from standardized genetic parts without the need of error-prone PCR reactions. It is a very powerful strategy which enables highly flexible expression patterns without the need of repetitive cloning procedures. In this study, we describe an advanced MoClo toolkit that is designed for the baker's yeast Saccharomyces cerevisiae and optimized for the targeting of proteins of interest to specific cellular compartments. Comparing different targeting sequences, we developed signals to direct proteins with high specificity to the different mitochondrial subcompartments, such as the matrix and the intermembrane space (IMS). Furthermore, we optimized the subcellular targeting by controlling expression levels using a collection of different promoter cassettes; the MoClo strategy allows it to generate arrays of expression plasmids in parallel to optimize gene expression levels and reliable targeting for each given protein and cellular compartment. Thus, the MoClo strategy enables the generation of protein-expressing yeast plasmids that accurately target proteins of interest to various cellular compartments.
Collapse
Affiliation(s)
- Pavel Simakin
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
- # Both authors contributed equally
| | - Christian Koch
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
- # Both authors contributed equally
| | - Johannes M. Herrmann
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
- * Corresponding Author: Johannes M. Herrmann, Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany; Phone: +49 6312052406; E-mail:
| |
Collapse
|
66
|
Castilla-Vallmanya L, Centeno-Pla M, Serrano M, Franco-Valls H, Martínez-Cabrera R, Prat-Planas A, Rojano E, Ranea JAG, Seoane P, Oliva C, Paredes-Fuentes AJ, Marfany G, Artuch R, Grinberg D, Rabionet R, Balcells S, Urreizti R. Advancing in Schaaf-Yang syndrome pathophysiology: from bedside to subcellular analyses of truncated MAGEL2. J Med Genet 2023; 60:406-415. [PMID: 36243518 PMCID: PMC10086475 DOI: 10.1136/jmg-2022-108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Schaaf-Yang syndrome (SYS) is caused by truncating mutations in MAGEL2, mapping to the Prader-Willi region (15q11-q13), with an observed phenotype partially overlapping that of Prader-Willi syndrome. MAGEL2 plays a role in retrograde transport and protein recycling regulation. Our aim is to contribute to the characterisation of SYS pathophysiology at clinical, genetic and molecular levels. METHODS We performed an extensive phenotypic and mutational revision of previously reported patients with SYS. We analysed the secretion levels of amyloid-β 1-40 peptide (Aβ1-40) and performed targeted metabolomic and transcriptomic profiles in fibroblasts of patients with SYS (n=7) compared with controls (n=11). We also transfected cell lines with vectors encoding wild-type (WT) or mutated MAGEL2 to assess stability and subcellular localisation of the truncated protein. RESULTS Functional studies show significantly decreased levels of secreted Aβ1-40 and intracellular glutamine in SYS fibroblasts compared with WT. We also identified 132 differentially expressed genes, including non-coding RNAs (ncRNAs) such as HOTAIR, and many of them related to developmental processes and mitotic mechanisms. The truncated form of MAGEL2 displayed a stability similar to the WT but it was significantly switched to the nucleus, compared with a mainly cytoplasmic distribution of the WT MAGEL2. Based on the updated knowledge, we offer guidelines for the clinical management of patients with SYS. CONCLUSION A truncated MAGEL2 protein is stable and localises mainly in the nucleus, where it might exert a pathogenic neomorphic effect. Aβ1-40 secretion levels and HOTAIR mRNA levels might be promising biomarkers for SYS. Our findings may improve SYS understanding and clinical management.
Collapse
Affiliation(s)
- Laura Castilla-Vallmanya
- Department of Genetics, Microbiology and Statistics, IBUB, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Espluques de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instiuto de Salud Carlos III, Madrid, Spain
| | - Mónica Centeno-Pla
- Department of Genetics, Microbiology and Statistics, IBUB, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Espluques de Llobregat, Barcelona, Spain
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mercedes Serrano
- Institut de Recerca Sant Joan de Déu, Espluques de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instiuto de Salud Carlos III, Madrid, Spain
- Neurology Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Héctor Franco-Valls
- Department of Genetics, Microbiology and Statistics, IBUB, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Raúl Martínez-Cabrera
- Department of Genetics, Microbiology and Statistics, IBUB, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Aina Prat-Planas
- Department of Genetics, Microbiology and Statistics, IBUB, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Espluques de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instiuto de Salud Carlos III, Madrid, Spain
| | - Elena Rojano
- Department of Molecular Biology and Biochemistry; Institute of Biomedical Research in Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Juan A G Ranea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instiuto de Salud Carlos III, Madrid, Spain
- Department of Molecular Biology and Biochemistry; Institute of Biomedical Research in Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Pedro Seoane
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instiuto de Salud Carlos III, Madrid, Spain
- Department of Molecular Biology and Biochemistry; Institute of Biomedical Research in Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Clara Oliva
- Institut de Recerca Sant Joan de Déu, Espluques de Llobregat, Barcelona, Spain
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Abraham J Paredes-Fuentes
- Institut de Recerca Sant Joan de Déu, Espluques de Llobregat, Barcelona, Spain
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, IBUB, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Espluques de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instiuto de Salud Carlos III, Madrid, Spain
| | - Rafael Artuch
- Institut de Recerca Sant Joan de Déu, Espluques de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instiuto de Salud Carlos III, Madrid, Spain
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, IBUB, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Espluques de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instiuto de Salud Carlos III, Madrid, Spain
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics, IBUB, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Espluques de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instiuto de Salud Carlos III, Madrid, Spain
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, IBUB, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Espluques de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instiuto de Salud Carlos III, Madrid, Spain
| | - Roser Urreizti
- Institut de Recerca Sant Joan de Déu, Espluques de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instiuto de Salud Carlos III, Madrid, Spain
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
67
|
Abdala ME, Rivero MB, Luque ME, Di Lullo D, Luna BE, Carranza PG, Volta BJ, Rivero FD. Proteomic analysis of proteins released by Tritrichomonas foetus: Identification of potential targets for the development of new diagnostic methods. Vet Parasitol 2023; 316:109890. [PMID: 36878106 DOI: 10.1016/j.vetpar.2023.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Bovine trichomonosis (BT), a disease of the bovine urogenital tract, is caused by the protozoan Tritrichomonas foetus (Tf). Tf causes endometritis, infertility, and premature death of the embryo, which generates considerable economic losses. The proteins released can mediate fundamental interactions between the pathogen and the host, triggering factors associated with the symptomatology, immune evasion and pathogenesis characteristic of the species. However, little is known about the profile of the proteins released by Tf. In order to contribute to their knowledge, we performed an isolation protocol and a proteomic profiling of the supernatant (SN) content of six Tf isolates. A total of 662 proteins present in the SN of Tf were detected, out of which 121 were shared by the six isolates, while the remaining 541 were found in at least one of the isolates studied. The comparative analyses using the databases of Tf strain genome K revealed 32.9% of uncharacterized proteins. The bioinformatic analyses showed that the main molecular functions predicted were binding (47.9%) and catalytic activity (38.2%). Additionally, we performed immunodetection assays to evidence the antigenic potential of SN proteins. Interestingly, we observed great ability to detect SN proteins from all six isolates using serum from immunized mice and infected bulls. A complementary mass spectrometry assay allowed us to determine that the proteins that showed the strongest signal intensity in the immunoassays were Grp78 (A0A1J4IZS3) and Ap65 (A0A1J4JSR1). This work represents the first proteomic characterization of Tf SN proteins and their antigenic potential, which might be interesting for the future design of new diagnosis and treatment methods for BT.
Collapse
Affiliation(s)
- María Eugenia Abdala
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina; Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina; Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - María Belén Rivero
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina; Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina
| | - Melchor Emilio Luque
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina; Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina; Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - David Di Lullo
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
| | - Bruno Elías Luna
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
| | - Pedro Gabriel Carranza
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina; Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina; Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - Bibiana J Volta
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina; Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina; Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - Fernando David Rivero
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina; Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina; Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina.
| |
Collapse
|
68
|
Li S, Shao Z, Lu C, Duan D. Isolation and functional verification of an aspartate aminotransferase gene from Neoporphyra haitanensis. BMC PLANT BIOLOGY 2023; 23:150. [PMID: 36941626 PMCID: PMC10029208 DOI: 10.1186/s12870-023-04158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Neoporphyra haitanensis is a commercial laver species in China. Aspartic acid is an important flavor amino acid, and aspartate aminotransferase (AAT) is a crucial enzyme in its biosynthesis. In this study, we cloned one AAT gene (NhAAT) from the red alga N. haitanensis and investigated its sequence structure, transcriptional expression and enzymatic characteristics. The purpose of our research is to obtain a functional AAT responsible for the biosynthesis of aspartic acid from red seaweeds, which has the potential to influence the flavor of N. haitanensis. RESULTS Sequence analysis showed that NhAAT contains a conserved domain of Aminotran_1_2, which belongs to the transaminase superfamily. The secondary structure of NhAAT is dominated by α-helix. The results of enzymatic characterization illustrated that the NhAAT has highest catalytic activity at 45 °C and pH 7.5 in both forward and reverse reactions. The calculated Km values of NhAAT was 5.67 and 6.16 mM for L-glutamic acid and L-aspartic acid, respectively. Quantitative analysis showed that the NhAAT expression of N. haitanensis collected in late harvest (Dec) was 4.5 times that of N. haitanensis collected in early harvest (Oct), while the aspartic acid content of N. haitanensis collected in late harvest (Dec) was 1.2 times that of N. haitanensis collected in early harvest (Oct). CONCLUSION The results of enzyme kinetics indicated that NhAAT prefers to catalyze the reaction in the direction of aspartic acid production. Moreover, the trend of NhAAT expression level was consistent with that of aspartic acid content in N. haitanensis in different harvest periods. Our research is helpful to understand the accumulation and regulation of amino acids in N. haitanensis in different habitats and the taste difference of N. haitanensis in different harvest periods.
Collapse
Affiliation(s)
- Shuang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanru Shao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Chang Lu
- Department of Biological Engineering, College of Life Science, Yantai University, Yantai, 264005, P. R. China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
69
|
Christian R, Labbancz J, Usadel B, Dhingra A. Understanding protein import in diverse non-green plastids. Front Genet 2023; 14:969931. [PMID: 37007964 PMCID: PMC10063809 DOI: 10.3389/fgene.2023.969931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The spectacular diversity of plastids in non-green organs such as flowers, fruits, roots, tubers, and senescing leaves represents a Universe of metabolic processes in higher plants that remain to be completely characterized. The endosymbiosis of the plastid and the subsequent export of the ancestral cyanobacterial genome to the nuclear genome, and adaptation of the plants to all types of environments has resulted in the emergence of diverse and a highly orchestrated metabolism across the plant kingdom that is entirely reliant on a complex protein import and translocation system. The TOC and TIC translocons, critical for importing nuclear-encoded proteins into the plastid stroma, remain poorly resolved, especially in the case of TIC. From the stroma, three core pathways (cpTat, cpSec, and cpSRP) may localize imported proteins to the thylakoid. Non-canonical routes only utilizing TOC also exist for the insertion of many inner and outer membrane proteins, or in the case of some modified proteins, a vesicular import route. Understanding this complex protein import system is further compounded by the highly heterogeneous nature of transit peptides, and the varying transit peptide specificity of plastids depending on species and the developmental and trophic stage of the plant organs. Computational tools provide an increasingly sophisticated means of predicting protein import into highly diverse non-green plastids across higher plants, which need to be validated using proteomics and metabolic approaches. The myriad plastid functions enable higher plants to interact and respond to all kinds of environments. Unraveling the diversity of non-green plastid functions across the higher plants has the potential to provide knowledge that will help in developing climate resilient crops.
Collapse
Affiliation(s)
- Ryan Christian
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - June Labbancz
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Amit Dhingra,
| |
Collapse
|
70
|
Cheng M, Shao Z, Wang X, Lu C, Li S, Duan D. Novel Chitin Deacetylase from Thalassiosira weissflogii Highlights the Potential for Chitin Derivative Production. Metabolites 2023; 13:metabo13030429. [PMID: 36984869 PMCID: PMC10057020 DOI: 10.3390/metabo13030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
β-Chitin is an important carbon fixation product of diatoms, and is the most abundant nitrogen-containing polysaccharide in the ocean. It has potential for widespread application, but the characterization of chitin-related enzymes from β-chitin producers has rarely been reported. In this study, a chitin deacetylase (TwCDA) was retrieved from the Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) database and was heterologously expressed in vitro for functional analysis. The results showed that both the full-length sequence (TwCDA) and the N-terminal truncated sequence (TwCDA-S) had chitin deacetylase and chitinolytic activities after expression in Escherichia coli. High-performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry (GC-MS) indicated that TwCDA and TwCDA-S could catalyze the deacetylation of oligosaccharide (GlcNAc)5. TwCDA had higher deacetylase activity, and also catalyzed the deacetylation of the β-chitin polymer. A dinitrosalicylic acid (DNS) assay showed that TwCDA-S had high chitinolytic activity for (GlcNAc)5, and the optimal reaction temperature was 35 °C. Liquid chromatography combined with time-of-flight mass spectrometry (LC-coTOF-MS) detected the formation of a N-acetylglucosamine monomer (C8H15NO6) in the reaction mixture. Altogether, we isolated a chitin deacetylase from a marine diatom, which can catalyze the deacetylation and degradation of chitin and chitin oligosaccharides. The relevant results lay a foundation for the internal regulation mechanism of chitin metabolism in diatoms and provide a candidate enzyme for the green industrial preparation of chitosan and chitin oligosaccharides.
Collapse
Affiliation(s)
- Mengzhen Cheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanru Shao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xin Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Lu
- Department of Biological Engineering, College of Life Science, Yantai University, Yantai 264005, China
| | - Shuang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
71
|
Bu XL, Zhao WS, Li WX, Zou H, Wu SG, Li M, Wang GT. Mitochondrial metabolism of the facultative parasite Chilodonella uncinata (Alveolata, Ciliophora). Parasit Vectors 2023; 16:92. [PMID: 36882771 PMCID: PMC9993649 DOI: 10.1186/s13071-023-05695-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Chilodonella uncinata is an aerobic ciliate capable of switching between being free-living and parasitic on fish fins and gills, causing tissue damage and host mortality. It is widely used as a model organism for genetic studies, but its mitochondrial metabolism has never been studied. Therefore, we aimed to describe the morphological features and metabolic characteristics of its mitochondria. METHODS Fluorescence staining and transmission electron microscopy (TEM) were used to observe the morphology of mitochondria. Single-cell transcriptome data of C. uncinata were annotated by the Clusters of Orthologous Genes (COG) database. Meanwhile, the metabolic pathways were constructed based on the transcriptomes. The phylogenetic analysis was also made based on the sequenced cytochrome c oxidase subunit 1 (COX1) gene. RESULTS Mitochondria were stained red using Mito-tracker Red staining and were stained slightly blue by DAPI dye. The cristae and double membrane structures of the mitochondria were observed by TEM. Besides, many lipid droplets were evenly distributed around the macronucleus. A total of 2594 unigenes were assigned to 23 functional classifications of COG. Mitochondrial metabolic pathways were depicted. The mitochondria contained enzymes for the complete tricarboxylic acid (TCA) cycle, fatty acid metabolism, amino acid metabolism, and cytochrome-based electron transport chain (ETC), but only partial enzymes involved in the iron-sulfur clusters (ISCs). CONCLUSIONS Our results showed that C. uncinata possess typical mitochondria. Stored lipid droplets inside mitochondria may be the energy storage of C. uncinata that helps its transmission from a free-living to a parasitic lifestyle. These findings also have improved our knowledge of the mitochondrial metabolism of C. uncinata and increased the volume of molecular data for future studies of this facultative parasite.
Collapse
Affiliation(s)
- Xia-lian Bu
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 The People’s Republic of China
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
| | - Wei-shan Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
| | - Wen-xiang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
| | - Hong Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
| | - Shan-gong Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
| | - Ming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
| | - Gui-tang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
| |
Collapse
|
72
|
Francis A, Ghosh S, Tyagi K, Prakasam V, Rani M, Singh NP, Pradhan A, Sundaram RM, Priyanka C, Laha GS, Kannan C, Prasad MS, Chattopadhyay D, Jha G. Evolution of pathogenicity-associated genes in Rhizoctonia solani AG1-IA by genome duplication and transposon-mediated gene function alterations. BMC Biol 2023; 21:15. [PMID: 36721195 PMCID: PMC9890813 DOI: 10.1186/s12915-023-01526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Rhizoctonia solani is a polyphagous fungal pathogen that causes diseases in crops. The fungal strains are classified into anastomosis groups (AGs); however, genomic complexity, diversification into the AGs and the evolution of pathogenicity-associated genes remain poorly understood. RESULTS We report a recent whole-genome duplication and sequential segmental duplications in AG1-IA strains of R. solani. Transposable element (TE) clusters have caused loss of synteny in the duplicated blocks and introduced differential structural alterations in the functional domains of several pathogenicity-associated paralogous gene pairs. We demonstrate that the TE-mediated structural variations in a glycosyl hydrolase domain and a GMC oxidoreductase domain in two paralogous pairs affect the pathogenicity of R. solani. Furthermore, to investigate the association of TEs with the natural selection and evolution of pathogenicity, we sequenced the genomes of forty-two rice field isolates of R. solani AG1-IA. The genomic regions with high population mutation rates and with the lowest nucleotide diversity are enriched with TEs. Genetic diversity analysis predicted the genes that are most likely under diversifying and purifying selections. We present evidence that a smaller variant of a glucosamine phosphate N-acetyltransferase (GNAT) protein, predicted to be under purifying selection, and an LPMP_AA9 domain-containing protein, predicted to be under diversifying selection, are important for the successful pathogenesis of R. solani in rice as well as tomato. CONCLUSIONS Our study has unravelled whole-genome duplication, TE-mediated neofunctionalization of genes and evolution of pathogenicity traits in R. solani AG1-IA. The pathogenicity-associated genes identified during the study can serve as novel targets for disease control.
Collapse
Affiliation(s)
- Aleena Francis
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srayan Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Present address: Department of Biosciences, Durham University, Durham, UK
| | - Kriti Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - V Prakasam
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - Mamta Rani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nagendra Pratap Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Amrita Pradhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - R M Sundaram
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - C Priyanka
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - G S Laha
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - C Kannan
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - M S Prasad
- ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500 030, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Gopaljee Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
73
|
Wang Q, Sun L, Knut Lundquist P. Large-scale top-down proteomics of the Arabidopsis thaliana leaf and chloroplast proteomes. Proteomics 2023; 23:e2100377. [PMID: 36070201 PMCID: PMC9957804 DOI: 10.1002/pmic.202100377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022]
Abstract
We present a large-scale top-down proteomics (TDP) study of plant leaf and chloroplast proteins, achieving the identification of over 4700 unique proteoforms. Using capillary zone electrophoresis coupled with tandem mass spectrometry analysis of offline size-exclusion chromatography fractions, we identify 3198 proteoforms for total leaf and 1836 proteoforms for chloroplast, with 1024 and 363 proteoforms having post-translational modifications, respectively. The electrophoretic mobility prediction of capillary zone electrophoresis allowed us to validate post-translational modifications that impact the charge state such as acetylation and phosphorylation. Identified modifications included Trp (di)oxidation events on six chloroplast proteins that may represent novel targets of singlet oxygen sensing. Furthermore, our TDP data provides direct experimental evidence of the N- and C-terminal residues of numerous mature proteoforms from chloroplast, mitochondria, endoplasmic reticulum, and other sub-cellular localizations. With this information, we suggest true transit peptide cleavage sites and correct sub-cellular localization signal predictions. This large-scale analysis illustrates the power of top-down proteoform identification of post-translational modifications and intact sequences that can benefit our understanding of both the structure and function of hundreds of plant proteins.
Collapse
Affiliation(s)
- Qianjie Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Peter Knut Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
74
|
Hao Y, Li Y, Ping X, Yang Q, Mao Z, Zhao J, Lu X, Xie B, Yang Y, Ling J. The Genome of Fusarium oxysporum f. sp. phaseoli Provides Insight into the Evolution of Genomes and Effectors of Fusarium oxysporum Species. Int J Mol Sci 2023; 24:ijms24020963. [PMID: 36674475 PMCID: PMC9861946 DOI: 10.3390/ijms24020963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Fusarium oxysporum f. sp. phaseoli, the causal agent of cowpea fusarium wilt, is a serious threat to cowpea production in China. In this study, a sample of cowpea fusarium wilt was identified as Fusarium oxysporum f. sp. phaseoli using the methods of morphological characters and molecular detection. We further reported the first genome assembly for Fusarium oxysporum f. sp. phaseoli, with 53.7 Mb genome sequence comprising 14,694 genes. Comparative genomic analysis among five Fusarium oxysporum genomes showed that four accessory chromosomes in the five Fusarium oxysporum display similar characteristics, with low sequence similarity (55.35%, vs. overall average of 81.76%), low gene density (2.18 genes/10 kb vs. 3.02 genes/Mb) and highly transposable element density (TEs) (15.01/100 kb vs. 4.89/100 kb), indicating that variable accessory chromosomes are the main source of Fusarium oxysporum evolution. We identified a total of 100 Fusarium oxysporum f. sp. phaseoli-specific effectors in the genome and found 13 specific effector genes located in large insertion or deletion regions, suggesting that insertion or deletion events can cause the emergence of species-specific effectors in Fusarium oxysporum. Our genome assembly of Fusarium oxysporum f. sp. phaseoli provides a valuable resource for the study of cowpea fusarium wilt, and the comparative genomic study of Fusarium oxysporum could contribute to the knowledge of genome and effector-associated pathogenicity evolution in Fusarium oxysporum study.
Collapse
Affiliation(s)
- Yali Hao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030810, China
| | - Yan Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingxing Ping
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qihong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofei Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.Y.); (J.L.)
| | - Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.Y.); (J.L.)
| |
Collapse
|
75
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
76
|
He Q, Jin J, Li P, Zhu H, Wang Z, Fan W, Yang JL. Involvement of SlSTOP1 regulated SlFDH expression in aluminum tolerance by reducing NAD + to NADH in the tomato root apex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:387-401. [PMID: 36471650 DOI: 10.1111/tpj.16054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Formate dehydrogenase (FDH; EC 1.2.1.2.) has been implicated in plant responses to a variety of stresses, including aluminum (Al) stress in acidic soils. However, the role of this enzyme in Al tolerance is not yet fully understood, and how FDH gene expression is regulated is unknown. Here, we report the identification and functional characterization of the tomato (Solanum lycopersicum) SlFDH gene. SlFDH encodes a mitochondria-localized FDH with Km values of 2.087 mm formate and 29.1 μm NAD+ . Al induced the expression of SlFDH in tomato root tips, but other metals did not, as determined by quantitative reverse transcriptase-polymerase chain reaction. CRISPR/Cas9-generated SlFDH knockout lines were more sensitive to Al stress and formate than wild-type plants. Formate failed to induce SlFDH expression in the tomato root apex, but NAD+ accumulated in response to Al stress. Co-expression network analysis and interaction analysis between genomic DNA and transcription factors (TFs) using PlantRegMap identified seven TFs that might regulate SlFDH expression. One of these TFs, SlSTOP1, positively regulated SlFDH expression by directly binding to its promoter, as demonstrated by a dual-luciferase reporter assay and electrophoretic mobility shift assay. The Al-induced expression of SlFDH was completely abolished in Slstop1 mutants, indicating that SlSTOP1 is a core regulator of SlFDH expression under Al stress. Taken together, our findings demonstrate that SlFDH plays a role in Al tolerance and reveal the transcriptional regulatory mechanism of SlFDH expression in response to Al stress in tomato.
Collapse
Affiliation(s)
- Qiyu He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianfeng Jin
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Pengfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huihui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Wei Fan
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
77
|
Dal’Sasso TCS, Rody HVS, Oliveira LO. Genome-Wide Analysis and Evolutionary History of the Necrosis- and Ethylene-Inducing Peptide 1-Like Protein (NLP) Superfamily Across the Dothideomycetes Class of Fungi. Curr Microbiol 2023; 80:44. [DOI: 10.1007/s00284-022-03125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
|
78
|
Meinnel T, Boyer JB, Giglione C. The Global Acetylation Profiling Pipeline for Quick Assessment of Protein N-Acetyltransferase Specificity In Cellulo. Methods Mol Biol 2023; 2718:137-150. [PMID: 37665458 DOI: 10.1007/978-1-0716-3457-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Global acetylation profiling (GAP) consists of heterologous expression of a given N-acetyltransferase (NAT) in Escherichia coli to assess its specificity. The remarkable sensitivity and robustness of the GAP pipeline relies on the very low frequency of known N-terminal acetylated proteins in E. coli, including their degree of N-terminal acetylation. Using the SILProNAQ mass spectrometry strategy on bacterial protein extracts, GAP permits easy acquisition of both qualitative and quantitative data to decipher the impact of any putative NAT of interest on the N-termini of newly acetylated proteins. This strategy allows rapid determination of the substrate specificity of any NAT.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| | - Jean-Baptiste Boyer
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
79
|
Sabzi S, Shahbazi S, Noori Goodarzi N, Haririzadeh Jouriani F, Habibi M, Bolourchi N, Mirzaie A, Badmasti F. Genome-Wide Subtraction Analysis and Reverse Vaccinology to Detect Novel Drug Targets and Potential Vaccine Candidates Against Ehrlichia chaffeensis. Appl Biochem Biotechnol 2023; 195:107-124. [PMID: 36053401 PMCID: PMC9437403 DOI: 10.1007/s12010-022-04116-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/17/2023]
Abstract
Human monocytotropic ehrlichiosis is an emerging tick-borne infection caused by the obligate intracellular pathogen, Ehrlichia chaffeensis. The non-specific symptoms can range from a self-limiting fever to a fatal septic-like syndrome and may be misdiagnosed. The limited treatment choices including doxycycline are effective only in the initiation phase of the infection. It seems that novel therapeutic targets and new vaccine strategies could be effective to control this pathogen. This study is comprised of two major phases. First, the common proteins retrieved through subtractive analysis and potential drug targets were evaluated by subcellular localization, homology prediction, metabolic pathways, druggability, essentiality, protein-protein interaction networks, and protein data bank availability. In the second phase, surface-exposed proteins were assessed based on antigenicity, allergenicity, physiochemical properties, B cell and T cell epitopes, conserved domains, and protein-protein interaction networks. A multi-epitope vaccine was designed and characterized using molecular dockings and immune simulation analysis. Six proteins including WP_011452818.1, WP_011452723.1, WP_006010413.1, WP_006010278.1, WP_011452938.1, and WP_006010644.1 were detected. They belong to unique metabolic pathways of E. chaffeensis that are considered as new essential drug targets. Based on the reverse vaccinology, WP_011452702.1, WP_044193405.1, WP_044170604.1, and WP_006010191.1 proteins were potential vaccine candidates. Finally, four B cell epitopes, including SINNQDRNC, FESVSSYNI, SGKKEISVQSN, and QSSAKRKST, were used to generate the multi-epitope vaccine based on LCL platform. The vaccine showed strong interactions with toll-like receptors and acceptable immune-reactivity by immune simulation analysis. The findings of this study may represent a turning point in developing an effective drug and vaccine against E. chaffeensis. However, further experimental analyses have remained.
Collapse
Affiliation(s)
- Samira Sabzi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran ,Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Negin Bolourchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran ,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
80
|
Kaur H, Singh V, Kalia M, Mohan B, Taneja N. Identification and functional annotation of hypothetical proteins of uropathogenic Escherichia coli strain CFT073 towards designing antimicrobial drug targets. J Biomol Struct Dyn 2022; 40:14084-14095. [PMID: 34751095 DOI: 10.1080/07391102.2021.2000499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Urinary tract infections are a serious health concern worldwide, especially in developing countries. Escherichia coli strain CFT073 is a highly virulent pathogenic bacterial strain. CFT073 proteome contains 4897 proteins, out of which 992 have been classified as hypothetical proteins. Identification and characterization of hypothetical proteins can aid in the selection of targets for drug design. In this study, we studied the hypothetical proteins from the UPEC strain CFT073 using various computational tools. By NCBI-CDD, 376 protein sequences showed conserved domains. Based on the functional motifs in their primary sequences, we classified these 376 hypothetical proteins into 7 functional categories. Further KEGG database was used to find the roles of these hypothetical proteins in several pathways. Protein interaction network analysis of hypothetical proteins identified 53 proteins as highly interacting metabolic proteins. Virulence factor analysis of the proteins identified 8 proteins as virulent. We conducted a non-homology search for the identified proteins of UPEC in the available human proteome. We observed that 35 proteins are non-homologous to humans and hence could be selected for drug designing targets. Qualitative characterization of the selected 35 non-homologous hypothetical proteins including essentiality analysis and evaluation of druggability by similarity search against drug bank database was performed. Out of these 35 proteins, three-dimensional structures of six proteins (NP_752562.1, NP_756345.1, NP_754893.1, NP_756600.2, NP_755264.1 and NP_752994.1) could be successfully modelled. These new annotations can help to better understand disease mechanisms at the molecular level, as well as provide new targets for drug development against the UPEC strain CFT073.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vikram Singh
- Center of Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamshala, India
| | - Manmohit Kalia
- Department of Biology, State University of New York, Binghamton, NY, USA
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
81
|
Generation of Multiple Arbovirus-like Particles Using a Rapid Recombinant Vaccinia Virus Expression Platform. Pathogens 2022; 11:pathogens11121505. [PMID: 36558839 PMCID: PMC9785247 DOI: 10.3390/pathogens11121505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
As demonstrated by the 2015 Zika virus outbreak in the Americas, emerging and re-emerging arboviruses are public health threats that warrant research investment for the development of effective prophylactics and therapeutics. Many arboviral diseases are underreported, neglected, or of low prevalence, yet they all have the potential to cause outbreaks of local and international concern. Here, we show the production of virus-like particles (VLPs) using a rapid and efficient recombinant vaccinia virus (VACV) expression system for five tick- and mosquito-borne arboviruses: Powassan virus (POWV), Heartland virus (HRTV), severe fever with thrombocytopenia syndrome virus (SFTSV), Bourbon virus (BRBV) and Mayaro virus (MAYV). We detected the expression of arbovirus genes of interest by Western blot and observed the expression of VLPs that resemble native virions under transmission electron microscopy. We were also able to improve the secretion of POWV VLPs by modifying the signal sequence within the capsid gene. This study describes the use of a rapid VACV platform for the production and purification of arbovirus VLPs that can be used as subunit or vectored vaccines, and provides insights into the selection of arbovirus genes for VLP formation and genetic modifications to improve VLP secretion and yield.
Collapse
|
82
|
Figueiredo J, Santos RB, Guerra-Guimarães L, Leclercq CC, Renaut J, Malhó R, Figueiredo A. An in-planta comparative study of Plasmopara viticola proteome reveals different infection strategies towards susceptible and Rpv3-mediated resistance hosts. Sci Rep 2022; 12:20794. [PMID: 36456634 PMCID: PMC9715676 DOI: 10.1038/s41598-022-25164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Plasmopara viticola, an obligate biotrophic oomycete, is the causal agent of one of the most harmful grapevine diseases, downy mildew. Within this pathosystem, much information is gathered on the host, as characterization of pathogenicity and infection strategy of a biotrophic pathogen is quite challenging. Molecular insights into P. viticola development and pathogenicity are just beginning to be uncovered, mainly by transcriptomic studies. Plasmopara viticola proteome and secretome were only predicted based on transcriptome data. In this study, we have identified the in-planta proteome of P. viticola during infection of a susceptible ('Trincadeira') and a Rpv3-mediated resistance ('Regent') grapevine cultivar. Four hundred and twenty P. viticola proteins were identified on a label-free mass spectrometry-based approach of the apoplastic fluid of grapevine leaves. Overall, our study suggests that, in the compatible interaction, P. viticola manipulates salicylic-acid pathway and isoprenoid biosynthesis to enhance plant colonization. Furthermore, during the incompatible interaction, development-associated proteins increased while oxidoreductases protect P. viticola from ROS-associated plant defence mechanism. Up to our knowledge this is the first in-planta proteome characterization of this biotrophic pathogen, thus this study will open new insights into our understanding of this pathogen colonization strategy of both susceptible and Rpv3-mediated resistance grapevine genotypes.
Collapse
Affiliation(s)
- Joana Figueiredo
- Grapevine Pathogen Systems Lab, Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal.
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal.
| | - Rita B Santos
- Grapevine Pathogen Systems Lab, Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| | - Leonor Guerra-Guimarães
- CIFC - Centro de Investigação das Ferrugens Do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017, Lisboa, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food & Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017, Lisboa, Portugal
| | - Céline C Leclercq
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4362, Esch-Sur-Alzette, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4362, Esch-Sur-Alzette, Luxembourg
| | - Rui Malhó
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| | - Andreia Figueiredo
- Grapevine Pathogen Systems Lab, Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| |
Collapse
|
83
|
Zhang T, Gu J, Wang Z, Wu C, Liang Y, Shi X. Protein Subcellular Localization Prediction Model Based on Graph Convolutional Network. Interdiscip Sci 2022; 14:937-946. [PMID: 35713780 DOI: 10.1007/s12539-022-00529-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Protein subcellular localization prediction is an important research area in bioinformatics, which plays an essential role in understanding protein function and mechanism. Many machine learning and deep learning algorithms have been employed for this task, but most of them do not use structural information of proteins. With the advances in protein structure research in recent years, protein contact map prediction has been dramatically enhanced. In this paper, we present GraphLoc, a deep learning model that predicts the localization of proteins at the subcellular level. The cores of the model are a graph convolutional neural network module and a multi-head attention module. The protein topology graph is constructed based on a contact map predicted from protein sequences, which is used as the input of the GCN module to take full advantage of the structural information of proteins. Multi-head attention module learns the weighted contribution of different amino acids to subcellular localization in different feature representation subspaces. Experiments on the benchmark dataset show that the performance of our model is better than others. The code can be accessed at https://github.com/GoodGuy398/GraphLoc . The proposed GraphLoc model consists of three parts. The first part is a graph convolutional network (GCN) module, which utilizes the predicted contact maps to construct protein graph, taking benefit of protein information accordingly. The second part is the multi-head attention module, which learns the weighted contribution of different amino acids in different feature representation subspace, and weighted average the feature map across all amino acid nodes. The last part is a fully connected layer that maps the flatten graph representation vector to another vector with a category number dimension, followed by a softmax layer to predict the protein subcellular localization.
Collapse
Affiliation(s)
- Tianhao Zhang
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
| | - Jiawei Gu
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
| | - Zeyu Wang
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
| | - Chunguo Wu
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, 130012, China
| | - Yanchun Liang
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, 130012, China
- School of Computer Science, Zhuhai College of Science and Technology, Zhuhai, 519041, China
| | - Xiaohu Shi
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China.
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, 130012, China.
- School of Computer Science, Zhuhai College of Science and Technology, Zhuhai, 519041, China.
| |
Collapse
|
84
|
Endotoxin-free gram-negative bacterium as a system for production and secretion of recombinant proteins. Appl Microbiol Biotechnol 2022; 107:287-298. [DOI: 10.1007/s00253-022-12295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
|
85
|
Biosynthesis of cannabinoid precursor olivetolic acid in genetically engineered Yarrowia lipolytica. Commun Biol 2022; 5:1239. [PMID: 36371560 PMCID: PMC9653464 DOI: 10.1038/s42003-022-04202-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Engineering microbes to produce plant-derived natural products provides an alternate solution to obtain bioactive products. Here we report a systematic approach to sequentially identify the rate-limiting steps and improve the biosynthesis of the cannabinoid precursor olivetolic acid (OLA) in Yarrowia lipolytica. We find that Pseudomonas sp LvaE encoding a short-chain acyl-CoA synthetase can efficiently convert hexanoic acid to hexanoyl-CoA. The co-expression of the acetyl-CoA carboxylase, the pyruvate dehydrogenase bypass, the NADPH-generating malic enzyme, as well as the activation of peroxisomal β-oxidation pathway and ATP export pathway are effective strategies to redirect carbon flux toward OLA synthesis. Implementation of these strategies led to an 83-fold increase in OLA titer, reaching 9.18 mg/L of OLA in shake flask culture. This work may serve as a baseline for engineering cannabinoids biosynthesis in oleaginous yeast species.
Collapse
|
86
|
Chen Z, Li J, Salas-Leiva DE, Chen M, Chen S, Li S, Wu Y, Yi Z. Group-specific functional patterns of mitochondrion-related organelles shed light on their multiple transitions from mitochondria in ciliated protists. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:609-623. [PMID: 37078085 PMCID: PMC10077286 DOI: 10.1007/s42995-022-00147-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/23/2022] [Indexed: 05/03/2023]
Abstract
Adaptations of ciliates to hypoxic environments have arisen independently several times. Studies on mitochondrion-related organelle (MRO) metabolisms from distinct anaerobic ciliate groups provide evidence for understanding the transitions from mitochondria to MROs within eukaryotes. To deepen our knowledge about the evolutionary patterns of ciliate anaerobiosis, mass-culture and single-cell transcriptomes of two anaerobic species, Metopus laminarius (class Armophorea) and Plagiopyla cf. narasimhamurtii (class Plagiopylea), were sequenced and their MRO metabolic maps were compared. In addition, we carried out comparisons using publicly available predicted MRO proteomes from other ciliate classes (i.e., Armophorea, Litostomatea, Muranotrichea, Oligohymenophorea, Parablepharismea and Plagiopylea). We found that single-cell transcriptomes were similarly comparable to their mass-culture counterparts in predicting MRO metabolic pathways of ciliates. The patterns of the components of the MRO metabolic pathways might be divergent among anaerobic ciliates, even among closely related species. Notably, our findings indicate the existence of group-specific functional relics of electron transport chains (ETCs). Detailed group-specific ETC functional patterns are as follows: full oxidative phosphorylation in Oligohymenophorea and Muranotrichea; only electron-transfer machinery in Armophorea; either of these functional types in Parablepharismea; and ETC functional absence in Litostomatea and Plagiopylea. These findings suggest that adaptation of ciliates to anaerobic conditions is group-specific and has occurred multiple times. Our results also show the potential and the limitations of detecting ciliate MRO proteins using single-cell transcriptomes and improve the understanding of the multiple transitions from mitochondria to MROs within ciliates. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00147-w.
Collapse
Affiliation(s)
- Zhicheng Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Jia Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | | | - Miaoying Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Shilong Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Senru Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Yanyan Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
87
|
A CobB like sirtuin in Oryza sativa indica regulates the mitochondrial machinery under stress conditions. Arch Biochem Biophys 2022; 731:109446. [DOI: 10.1016/j.abb.2022.109446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022]
|
88
|
Gao R, Luo Y, Pan X, Wang C, Liao W. Genome-wide identification of SHMT family genes in cucumber ( Cucumis sativus L.) and functional analyses of CsSHMTs in response to hormones and abiotic stresses. 3 Biotech 2022; 12:305. [PMID: 36276449 PMCID: PMC9526767 DOI: 10.1007/s13205-022-03378-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/22/2022] [Indexed: 11/01/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT) is a pyridoxal phosphate-dependent enzyme that plays crucial roles in the photorespiration and one-carbon metabolism of plants. In the present research, we conducted a systematic analysis of the SHMT gene family in cucumber (Cucumis sativus L). Results show that a total of 6 SHMT members were identified from the cucumber genome database. CsSHMT1 and CsSHMT2 participate in a fragment duplication event, indicating that CsSHMTs may complete the expansion of family members through fragment duplication. Gene structure analysis found that the number of exons of CsSHMTs ranges from 4 to 15. Members with the same number of exons are classified into the same class in the phylogenetic analysis. Each class reflects its subcellular distribution. Expression and function analysis reveals that CsSHMTs express in a variety of plant tissues, indicating that SHMT gene expression pattern is not organ-specific. qRT-PCR analysis found that CsSHMT3 and CsSHMT5 positively respond to abscisic acid (ABA), and CsSHMT2-6 are induced by indole-3-acetic acid (IAA) and methyl jasmonate (MeJA). Abiotic stress analysis shows that CsSHMT3 is significantly induced by drought and salt stress. These results may provide useful information for further function and evolution analysis of cucumber SHMT genes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03378-x.
Collapse
Affiliation(s)
- Rong Gao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070 People’s Republic of China
| | - Yanyan Luo
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070 People’s Republic of China
| | - Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070 People’s Republic of China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070 People’s Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
89
|
Quintanilha-Peixoto G, Marone MP, Raya FT, José J, Oliveira A, Fonseca PLC, Tomé LMR, Bortolini DE, Kato RB, Araújo DS, De-Paula RB, Cuesta-Astroz Y, Duarte EAA, Badotti F, de Carvalho Azevedo VA, Brenig B, Soares ACF, Carazzolle MF, Pereira GAG, Aguiar ERGR, Góes-Neto A. Phylogenomics and gene selection in Aspergillus welwitschiae: Possible implications in the pathogenicity in Agave sisalana. Genomics 2022; 114:110517. [PMID: 36306958 DOI: 10.1016/j.ygeno.2022.110517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
Abstract
Aspergillus welwitschiae causes bole rot disease in sisal (Agave sisalana and related species) which affects the production of natural fibers in Brazil, the main worldwide producer of sisal fibers. This fungus is a saprotroph with a broad host range. Previous research established A. welwitschiae as the only causative agent of bole rot in the field, but little is known about the evolution of this species and its strains. In this work, we performed a comparative genomics analysis of 40 Aspergillus strains. We show the conflicting molecular identity of this species, with one sisal-infecting strain sharing its last common ancestor with Aspergillus niger, having diverged only 833 thousand years ago. Furthermore, our analysis of positive selection reveals sites under selection in genes coding for siderophore transporters, Sodium‑calcium exchangers, and Phosphatidylethanolamine-binding proteins (PEBPs). Herein, we discuss the possible impacts of these gene functions on the pathogenicity in sisal.
Collapse
Affiliation(s)
| | - Marina Püpke Marone
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Fábio Trigo Raya
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Juliana José
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Adriele Oliveira
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Dener Eduardo Bortolini
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Bentes Kato
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel S Araújo
- Program in Bioinformatics, Loyola University Chicago, Chicago, United States
| | - Ruth B De-Paula
- Department of Neurology, Baylor College of Medicine, Houston, United States
| | - Yesid Cuesta-Astroz
- Instituto Colombiano de Medicina Tropical, Universidad CES, Medellín, Colombia
| | - Elizabeth A A Duarte
- Centro Universitário Maria Milza, Cruz das Almas, Brazil; Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Brazil
| | - Fernanda Badotti
- Department of Chemistry, Federal Center of Technological Education of Minas Gerais, Belo Horizonte, Brazil
| | | | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Ana Cristina Fermino Soares
- Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Brazil
| | - Marcelo Falsarella Carazzolle
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Eric Roberto Guimarães Rocha Aguiar
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Center of Biotechnology and Genetics, Department of Biological Science, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Aristóteles Góes-Neto
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
90
|
Genome-Based Multi-Antigenic Epitopes Vaccine Construct Designing against Staphylococcus hominis Using Reverse Vaccinology and Biophysical Approaches. Vaccines (Basel) 2022; 10:vaccines10101729. [PMID: 36298594 PMCID: PMC9611379 DOI: 10.3390/vaccines10101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Staphylococcus hominis is a Gram-positive bacterium from the staphylococcus genus; it is also a member of coagulase-negative staphylococci because of its opportunistic nature and ability to cause life-threatening bloodstream infections in immunocompromised patients. Gram-positive and opportunistic bacteria have become a major concern for the medical community. It has also drawn the attention of scientists due to the evaluation of immune evasion tactics and the development of multidrug-resistant strains. This prompted the need to explore novel therapeutic approaches as an alternative to antibiotics. The current study aimed to develop a broad-spectrum, multi-epitope vaccine to control bacterial infections and reduce the burden on healthcare systems. A computational framework was designed to filter the immunogenic potent vaccine candidate. This framework consists of pan-genomics, subtractive proteomics, and immunoinformatics approaches to prioritize vaccine candidates. A total of 12,285 core proteins were obtained using a pan-genome analysis of all strains. The screening of the core proteins resulted in the selection of only two proteins for the next epitope prediction phase. Eleven B-cell derived T-cell epitopes were selected that met the criteria of different immunoinformatics approaches such as allergenicity, antigenicity, immunogenicity, and toxicity. A vaccine construct was formulated using EAAAK and GPGPG linkers and a cholera toxin B subunit. This formulated vaccine construct was further used for downward analysis. The vaccine was loop refined and improved for structure stability through disulfide engineering. For an efficient expression, the codons were optimized as per the usage pattern of the E coli (K12) expression system. The top three refined docked complexes of the vaccine that docked with the MHC-I, MHC-II, and TLR-4 receptors were selected, which proved the best binding potential of the vaccine with immune receptors; this was followed by molecular dynamic simulations. The results indicate the best intermolecular bonding between immune receptors and vaccine epitopes and that they are exposed to the host’s immune system. Finally, the binding energies were calculated to confirm the binding stability of the docked complexes. This work aimed to provide a manageable list of immunogenic and antigenic epitopes that could be used as potent vaccine candidates for experimental in vivo and in vitro studies.
Collapse
|
91
|
Shen Y, Chen M, Hong J, Xiong W, Xiong H, Wu X, Hu L, Xiao Y. Identification and characterization of tsyl1, a thermosensitive chlorophyll-deficient mutant in rice (Oryza sativa). JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153782. [PMID: 35963041 DOI: 10.1016/j.jplph.2022.153782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast development and chlorophyll biosynthesis are affected by temperature. However, the underlying molecular mechanism of this phenomenon remains elusive. Here, we isolated and characterized a thermosensitive yellow-green leaf mutant named tsyl1 (thermosensitive yellow leaf 1) from an ethylmethylsulfone (EMS)-mutagenized pool of rice. The mutant exhibits a yellow-green leaf phenotype and decreased leaf chlorophyll contents throughout development. At the mature stage of the tsyl1 mutant, the plant height, tiller number, number of spikelets per panicle and 1000 seed weight were decreased significantly compared to those of wild-type plants, but the seed setting rate and panicle length were not. The mutant phenotype was controlled by a single recessive nuclear gene on the short arm of rice chromosome 11. Map-based cloning of TSYL1, followed by a complementation experiment, showed a G base deletion at the coding region of LOC_Os11g05552, leading to the yellow-green phenotype. The TSYL1 gene encodes a signal recognition particle 54 kDa (SRP54) protein that is conserved in all organisms. The expression of tsyl1 was induced by high temperature. Furthermore, the expression of chlorophyll biosynthesis- and chloroplast development-related genes was influenced in tsyl1 at different temperatures. These results indicated that the TSYL1 gene plays a key role in chlorophyll biosynthesis and is affected by temperature at the transcriptional level.
Collapse
Affiliation(s)
- Yumin Shen
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China; Nanchang Branch of Chinese National Center for Rice Improvement, Nanchang, Jiangxi, 330200, China; National Engineering Research Center of Rice, Nanchang, Jiangxi, 330200, China.
| | - Mingliang Chen
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Jun Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wentao Xiong
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Huanjin Xiong
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Xiaoyan Wu
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Lanxiang Hu
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Yeqing Xiao
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| |
Collapse
|
92
|
Grover CE, Forsythe ES, Sharbrough J, Miller ER, Conover JL, DeTar RA, Chavarro C, Arick MA, Peterson DG, Leal-Bertioli SCM, Sloan DB, Wendel JF. Variation in cytonuclear expression accommodation among allopolyploid plants. Genetics 2022; 222:iyac118. [PMID: 35951749 PMCID: PMC9526054 DOI: 10.1093/genetics/iyac118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cytonuclear coevolution is a common feature among plants, which coordinates gene expression and protein products between the nucleus and organelles. Consequently, lineage-specific differences may result in incompatibilities between the nucleus and cytoplasm in hybrid taxa. Allopolyploidy is also a common phenomenon in plant evolution. The hybrid nature of allopolyploids may result in cytonuclear incompatibilities, but the massive nuclear redundancy created during polyploidy affords additional avenues for resolving cytonuclear conflict (i.e. cytonuclear accommodation). Here we evaluate expression changes in organelle-targeted nuclear genes for 6 allopolyploid lineages that represent 4 genera (i.e. Arabidopsis, Arachis, Chenopodium, and Gossypium) and encompass a range in polyploid ages. Because incompatibilities between the nucleus and cytoplasm could potentially result in biases toward the maternal homoeolog and/or maternal expression level, we evaluate patterns of homoeolog usage, expression bias, and expression-level dominance in cytonuclear genes relative to the background of noncytonuclear expression changes and to the diploid parents. Although we find subsets of cytonuclear genes in most lineages that match our expectations of maternal preference, these observations are not consistent among either allopolyploids or categories of organelle-targeted genes. Our results indicate that cytonuclear expression evolution may be subtle and variable among genera and genes, likely reflecting a diversity of mechanisms to resolve nuclear-cytoplasmic incompatibilities in allopolyploid species.
Collapse
Affiliation(s)
- Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Emma R Miller
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Justin L Conover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Rachael A DeTar
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Carolina Chavarro
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Soraya C M Leal-Bertioli
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
93
|
Zhan Z, Liu H, Yang Y, Liu S, Li X, Piao Z. Identification and characterization of putative effectors from Plasmodiophora brassicae that suppress or induce cell death in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:881992. [PMID: 36204052 PMCID: PMC9530463 DOI: 10.3389/fpls.2022.881992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a major disease of crucifers. Effector proteins are important virulence factors in host recognition of pathogens and the interactions between pathogens and hosts. Secretory proteins, as effector candidates, have been studied in the interaction between Plasmodiophora brassicae and its hosts. In this study, 518 secretary proteins were screened from the Plasmodiophora brassicae genome. A total of 63 candidate effectors that induce or suppress cell death were identified using agroinfiltration-mediated transient expression in Nicothiana benthamiana. The candidate effectors, Pb4_102097 and Pb4_108104 showed high expressing level in the stage of rest spore maturity, could induce cell death and were associated with H2O2 accumulation in N. benthamiana leaves. In addition, 55 candidate effectors that could suppress BAX (Bcl-2-associated X protein) induced cell death, and 21 out of which could suppress the immunity caused by bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 in Arabidopsis. Based on the expression pattern in different stages, 28 candidate effectors showed high expression levels during the primary and secondary infection stage. Five candidate effectors containing the RXLR motif functioned in the cytoplasm and cell membrane.
Collapse
|
94
|
Dal'Sasso TCDS, Rocha VDD, Rody HVS, Costa MDBL, Oliveira LOD. The necrosis- and ethylene-inducing peptide 1-like protein (NLP) gene family of the plant pathogen Corynespora cassiicola. Curr Genet 2022; 68:645-659. [PMID: 36098767 DOI: 10.1007/s00294-022-01252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022]
Abstract
Effectors are secreted by plant-associated microorganisms to modify the host cell physiology. As effectors, the Necrosis- and Ethylene-inducing peptide 1-like proteins (NLPs) are involded in the early phases of plant infection and may trigger host immune responses. Corynespora cassiicola is a polyphagous plant pathogen that causes target spot on many agriculturally important crops. Using genome assembly, gene prediction, and proteome annotation tools, we retrieved 135 NLP-encoding genes from proteomes of 44 isolates. We explored the evolutionary history of NLPs using Bayesian phylogeny, gene genealogies, and selection analyses. We accessed the expression profiles of the NLP genes during the early phase of C. cassiicola-soybean interaction. Three NLP putative-effector genes (Cc_NLP1.1, Cc_NLP1.2A, and Cc_NLP1.2B) were maintained in the genomes of all isolates tested. An NLP putative-non-effector gene (Cc_NLP1.3) was found in three isolates that had been originally obtained from soybean. Putative-effector NLPs were under different selective constraints: Cc_NLP1.1 was under stronger selective pressure, while Cc_NLP1.2A was under a more relaxed constraint. Meanwhile, Cc_NLP1.2B likely evolved under either positive or balancing selection. Despite highly divergent, the putative-effector NLPs maintain conserved the residues necessary to trigger plant immune responses, suggesting they are potentially functional. Only the Cc_NLP1.1 putative-effector gene was significantly expressed at the early hours of soybean colonization, while Cc_NLP1.2A and Cc_NLP1.2B showed much lower levels of gene expression.
Collapse
Affiliation(s)
| | | | - Hugo Vianna Silva Rody
- Departamento de Genética, Universidade de São Paulo/Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, Brazil
| | | | - Luiz Orlando de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
95
|
Fang X, Yan P, Luo F, Han S, Lin T, Li S, Li S, Zhu T. Functional Identification of Arthrinium phaeospermum Effectors Related to Bambusa pervariabilis × Dendrocalamopsis grandis Shoot Blight. Biomolecules 2022; 12:biom12091264. [PMID: 36139102 PMCID: PMC9496123 DOI: 10.3390/biom12091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
The shoot blight of Bambusa pervariabilis × Dendrocalamopsis grandis caused by Arthrinium phaeospermum made bamboo die in a large area, resulting in serious ecological and economic losses. Dual RNA-seq was used to sequence and analyze the transcriptome data of A. phaeospermum and B. pervariabilis × D. grandis in the four periods after the pathogen infected the host and to screen the candidate effectors of the pathogen related to the infection. After the identification of the effectors by the tobacco transient expression system, the functions of these effectors were verified by gene knockout. Fifty-three differentially expressed candidate effectors were obtained by differential gene expression analysis and effector prediction. Among them, the effectors ApCE12 and ApCE22 can cause programmed cell death in tobacco. The disease index of B. pervariabilis × D. grandis inoculated with mutant ΔApCE12 and mutant ΔApCE22 strains were 52.5% and 47.5%, respectively, which was significantly lower than that of the wild-type strains (80%), the ApCE12 complementary strain (77.5%), and the ApCE22 complementary strain (75%). The tolerance of the mutant ΔApCE12 and mutant ΔApCE22 strains to H2O2 and NaCl stress was significantly lower than that of the wild-type strain and the ApCE12 complementary and ApCE22 complementary strains, but there was no difference in their tolerance to Congo red. Therefore, this study shows that the effectors ApCE12 and ApCE22 play an important role in A. phaeospermum virulence and response to H2O2 and NaCl stress.
Collapse
Affiliation(s)
- Xinmei Fang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
- Faculty of Mathematics and Natural Sciences, University of Cologne, 50674 Köln, Germany
| | - Peng Yan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengying Luo
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China
- Correspondence: (S.L.); (T.Z.); Tel.: +86-17761264491 (T.Z.)
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (S.L.); (T.Z.); Tel.: +86-17761264491 (T.Z.)
| |
Collapse
|
96
|
Karim M, Singh G, Thakur S, Rana A, Rub A, Akhter Y. Evaluating complete surface-associated and secretory proteome of Leishmania donovani for discovering novel vaccines and diagnostic targets. Arch Microbiol 2022; 204:604. [PMID: 36069945 DOI: 10.1007/s00203-022-03219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
The protozoa Leishmania donovani causes visceral leishmaniasis (kala-azar), the third most common vector-borne disease. The visceral organs, particularly the spleen, liver, and bone marrow, are affected by the disease. The lack of effective treatment regimens makes curing and eradicating the disease difficult. The availability of complete L. donovani genome/proteome data allows for the development of specific and efficient vaccine candidates using the reverse vaccinology method, while utilizing the unique sequential and structural features of potential antigenic proteins to induce protective T cell and B cell responses. Such shortlisted candidates may then be tested quickly for their efficacy in the laboratory and later in clinical settings. These antigens will also be useful for designing antigen-based next-generation sero-diagnostic assays. L. donovani's cell surface-associated proteins and secretory proteins are among the first interacting entities to be exposed to the host immune machinery. As a result, potential antigenic epitope peptides derived from these proteins could serve as competent vaccine components. We used a stepwise filtering-based in silico approach to identify the entire surface-associated and secretory proteome of L. donovani, which may provide rationally selected most exposed antigenic proteins. Our study identified 12 glycosylphosphatidylinositol-anchored proteins, 45 transmembrane helix-containing proteins, and 73 secretory proteins as potent antigens unique to L. donovani. In addition, we used immunoinformatics to identify B and T cell epitopes in them. Out of the shortlisted surface-associated and secretory proteome, 66 protein targets were found to have the most potential overlapping B cell and T cell epitopes (linear and conformational; MHC class I and MHC class II).
Collapse
Affiliation(s)
- Munawwar Karim
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Garima Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India.
| |
Collapse
|
97
|
Kuang W, Zhang L, Ye L, Ma J, Shi X, Lin Y, Sun X, Cui R. Genome and Transcriptome Sequencing Analysis of Fusarium commune Provides Insights into the Pathogenic Mechanisms of the Lotus Rhizome Rot. Microbiol Spectr 2022; 10:e0017522. [PMID: 35867414 PMCID: PMC9431280 DOI: 10.1128/spectrum.00175-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/04/2022] [Indexed: 11/20/2022] Open
Abstract
Fusarium wilt, a vascular wilt caused by F. commune, has been a serious problem for the lotus. Although some F. commune isolate genomes have been sequenced, little is known about the genomic information of the strain that causes Fusarium wilt of aquatic plants. In this study, the genome of F. commune FCN23 isolated from lotuses in China was sequenced using Illumina and PacBio sequencing platforms. The FCN23 genome consisted of 53 scaffolds with a combined size of 46,211,149 bp. According to the reference genome, F. oxysporum f. sp. lycopersici 4287 isolated from tomato, it was finally assembled into 14 putative chromosomes, including 10 core and 4 lineage-specific chromosomes. The genome contains about 3.45% repeats and encodes 14,698 putative protein-coding genes. Among these, 1,038 and 296 proteins were potentially secreted proteins and candidate effector proteins, respectively. Comparative genomic analysis showed that the CAZyme-coding genes and secondary metabolite biosynthesis genes of FCN23 were similar to those of other Ascomycetes. Additionally, the transcriptome of FCN23 during infection of lotus was analyzed and 7,013 differentially expressed genes were identified. Eight putative effectors that were upregulated in the infection stage were cloned. Among them, F23a002499 exhibited strong hypersensitive response after transiently expressed in Nicotiana benthamiana leaves. Our results provide a valuable genetic basis for understanding the molecular mechanism of the interaction between F. commune and aquatic plants. IMPORTANCE Fusarium commune is an important soilborne pathogen with a wide range of hosts and can cause Fusarium wilt of land plants. However, there are few studies on Fusarium wilt of aquatic plants. Lotus rhizome rot mainly caused by F. commune is a devastating disease that causes extensive yield and quality losses in China. Here, we obtained high-quality genomic information of the FCN23 using Illumina NovaSeq and the third-generation sequencing technology PacBio Sequel II. Compared to the reference genome F. oxysporum f. sp. lycopersici strain 4287, it contains 11 core and 3 lineage-specific chromosomes. Many differentially expressed genes associated with pathogenicity were identified by RNA sequencing. The genome and transcriptome sequences of FCN23 will provide important genomic information and insights into the infection mechanisms of F. commune on aquatic plants.
Collapse
Affiliation(s)
- Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
98
|
Corredor-Moreno P, Badgami R, Jones S, Saunders DGO. Temporally coordinated expression of nuclear genes encoding chloroplast proteins in wheat promotes Puccinia striiformis f. sp. tritici infection. Commun Biol 2022; 5:853. [PMID: 35996019 PMCID: PMC9395331 DOI: 10.1038/s42003-022-03780-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Targeting host processes that allow pathogens to thrive can be invaluable in resistance breeding. Here, we generated a deep-sequencing transcriptome time course for Puccinia striiformis f. sp. tritici (Pst) infection on wheat and compared datasets from three wheat varieties with different levels of susceptibility to two tested pathogen isolates. We sought genes specifically altered in a susceptible host as candidates that might support colonisation. Host responses differed between Pst-varietal pairs most prominently early during infection. Notably, however, nuclear genes encoding chloroplast-localised proteins (NGCPs) exhibited temporal coordination of expression profiles that differed at later time points in relation to Pst susceptibility. Disrupting one such NGCP, encoding the chloroplast-localised RNA binding protein TaCSP41a, led to lower Pst susceptibility. These analyses thus highlight NGCPs as prime targets for Pst manipulation during infection and point to TaCSP41a disruption as a potential source of Pst resistance for breeding programmes. A transcriptome time course of Puccinia striiformis f. sp. tritici (Pst) infection reveals nuclear genes encoding chloroplast-localized proteins are manipulated during infection and highlights TaCSP41a disruption as a target for resistance breeding.
Collapse
Affiliation(s)
| | | | - Sally Jones
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
99
|
Chen X, Luo M, Wu W, Dong Z, Zou H. Virulence-Associated Genes of Calonectria ilicola, Responsible for Cylindrocladium Black Rot. J Fungi (Basel) 2022; 8:jof8080869. [PMID: 36012857 PMCID: PMC9410443 DOI: 10.3390/jof8080869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The Cylindrocladium black rot caused by Calonectria ilicicola is a destructive disease affecting a broad range of crops. Herein, we study virulence-associated genes of C. ilicicolaCi14017 isolated from diseased peanut roots (Arachis hypogaea L.). Ci14017 was identified via phylogenetic analysis of the internal transcribed spacer region and standard Koch’s postulate testing. Virulence-associated genes were based on genome analyses and comparative analysis of transcriptome and proteome profiles of sensitive and resistant peanut cultivars. Ci14017 identified as C. ilicicola has a 66 Mb chromosome with 18,366 predicted protein-coding genes. Overall, 46 virulence-associated genes with enhanced expression levels in the sensitive cultivars were identified. Sequence analysis indicated that the 46 gene products included two merops proteins, eight carbohydrate-active enzymes, seven cytochrome P450 enzymes, eight lipases, and 20 proteins with multi-conserved enzyme domains. The results indicate a complex infection mechanism employed by Ci14017 for causing Cylindrocladium black rot in peanuts.
Collapse
Affiliation(s)
- Xinyu Chen
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mei Luo
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wei Wu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (Z.D.); (H.Z.); Tel.: +86-020-89-0031-92 (Z.D.); Tel.: +86-591-837-8469 (H.Z.)
| | - Huasong Zou
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Z.D.); (H.Z.); Tel.: +86-020-89-0031-92 (Z.D.); Tel.: +86-591-837-8469 (H.Z.)
| |
Collapse
|
100
|
Transcriptomic Differences between Free-Living and Parasitic Chilodonella uncinata (Alveolata, Ciliophora). Microorganisms 2022; 10:microorganisms10081646. [PMID: 36014062 PMCID: PMC9416717 DOI: 10.3390/microorganisms10081646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Chilodonella uncinata is a facultatively parasitic ciliate, which can opportunistically parasitize on fish gills and fins, and sometimes even cause host mortality. Previous molecular studies of C. uncinata mainly focused on genetic diversity and molecular evolution. There are currently no transcriptome reports studying differences between free-living and parasitic C. uncinata. We addressed this by sequencing transcriptomes of these two C. uncinata lifestyle types using Smart-seq2 and Illumina HiSeq technologies. In total, 1040 differentially expressed genes (DEGs) were identified. Compared with the free-living type, 494 genes of the parasitic type were downregulated and 546 genes were upregulated. These DEGs were identified through BLAST with NCBI-nr, Swiss-Port, and Pfam databases and then annotated by GO enrichment and KEGG pathway analysis. The results showed that parasitism-related genes such as heat shock proteins (HSPs), actin I, and leishmanolysin were significantly upregulated in parasitic C. uncinata. The ciliary-related dynein heavy chain also had a higher expression in parasitic C. uncinata. Furthermore, there were significant differences in the amino acid metabolism, fatty acid metabolism, lipid metabolism, and TCA cycle. This study increases the volume of molecular data available for C. uncinata and contributes to our understanding of the mechanisms underlying the transition from a free-living to a parasitic lifestyle.
Collapse
|