51
|
Barker E, Milburn AE, Helassa N, Hammond DE, Sanchez-Soriano N, Morgan A, Barclay JW. Proximity labelling reveals effects of disease-causing mutation on the DNAJC5/cysteine string protein α interactome. Biochem J 2024; 481:BCJ20230319. [PMID: 38193346 PMCID: PMC10903463 DOI: 10.1042/bcj20230319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/10/2024]
Abstract
Cysteine string protein α (CSPα), also known as DNAJC5, is a member of the DnaJ/Hsp40 family of co-chaperones. The name derives from a cysteine-rich domain, palmitoylation of which enables localization to intracellular membranes, notably neuronal synaptic vesicles. Mutations in the DNAJC5 gene that encodes CSPα cause autosomal dominant, adult-onset neuronal ceroid lipofuscinosis (ANCL), a rare neurodegenerative disease. As null mutations in CSP-encoding genes in flies, worms and mice similarly result in neurodegeneration, CSP is evidently an evolutionarily conserved neuroprotective protein. However, the client proteins that CSP chaperones to prevent neurodegeneration remain unclear. Traditional methods for identifying protein-protein interactions such as yeast 2-hybrid and affinity purification approaches are poorly suited to CSP, due to its requirement for membrane anchoring and its tendency to aggregate after cell lysis. Therefore, we employed proximity labelling, which enables identification of interacting proteins in situ in living cells via biotinylation. Neuroendocrine PC12 cell lines stably expressing wild type or L115R ANCL mutant CSP constructs fused to miniTurbo were generated; then the biotinylated proteomes were analysed by liquid chromatographymass spectrometry (LCMS) and validated by western blotting. This confirmed several known CSP-interacting proteins, such as Hsc70 and SNAP-25, but also revealed novel binding proteins, including STXBP1/Munc18-1. Interestingly, some protein interactions (such as Hsc70) were unaffected by the L115R mutation, whereas others (including SNAP-25 and STXBP1/Munc18-1) were inhibited. These results define the CSP interactome in a neuronal model cell line and reveal interactions that are affected by ANCL mutation and hence may contribute to the neurodegeneration seen in patients.
Collapse
Affiliation(s)
- Eleanor Barker
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Amy E. Milburn
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Dean E. Hammond
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Natalia Sanchez-Soriano
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Alan Morgan
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Jeff W. Barclay
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| |
Collapse
|
52
|
Sigmund CD. The 2023 Walter B. Cannon Award Lecture: Mechanisms Regulating Vascular Function and Blood Pressure by the PPARγ-RhoBTB1-CUL3 Pathway. FUNCTION 2024; 5:zqad071. [PMID: 38196837 PMCID: PMC10775765 DOI: 10.1093/function/zqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Human genetic and clinical trial data suggest that peroxisome proliferator activated receptor γ (PPARγ), a nuclear receptor transcription factor plays an important role in the regulation of arterial blood pressure. The examination of a series of novel animal models, coupled with transcriptomic and proteomic analysis, has revealed that PPARγ and its target genes employ diverse pathways to regulate vascular function and blood pressure. In endothelium, PPARγ target genes promote an antioxidant state, stimulating both nitric oxide (NO) synthesis and bioavailability, essential components of endothelial-smooth muscle communication. In vascular smooth muscle, PPARγ induces the expression of a number of genes that promote an antiinflammatory state and tightly control the level of cGMP, thus promoting responsiveness to endothelial-derived NO. One of the PPARγ targets in smooth muscle, Rho related BTB domain containing 1 (RhoBTB1) acts as a substrate adaptor for proteins to be ubiquitinated by the E3 ubiquitin ligase Cullin-3 and targeted for proteasomal degradation. One of these proteins, phosphodiesterase 5 (PDE5) is a target of the Cullin-3/RhoBTB1 pathway. Phosphodiesterase 5 degrades cGMP to GMP and thus regulates the smooth muscle response to NO. Moreover, expression of RhoBTB1 under condition of RhoBTB1 deficiency reverses established arterial stiffness. In conclusion, the coordinated action of PPARγ in endothelium and smooth muscle is needed to maintain NO bioavailability and activity, is an essential regulator of vasodilator/vasoconstrictor balance, and regulates blood vessel structure and stiffness.
Collapse
Affiliation(s)
- Curt D Sigmund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
53
|
Remy O, Santin YG. Identification of Protein Partners by APEX2 Proximity Labeling. Methods Mol Biol 2024; 2715:321-329. [PMID: 37930538 DOI: 10.1007/978-1-0716-3445-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Proximity labeling methods enable the identification of proteins in the vicinity of a protein of interest in living cells. Among them, APEX2 proximity is a powerful method to spatiotemporally define in vivo "proxisomes" in dynamic bacterial protein systems. Here we describe a standardized APEX2 proximity labeling protocol and possible adaptations to capture protein partners in native conditions.
Collapse
|
54
|
Kommer DC, Stamatiou K, Vagnarelli P. Cell Cycle-Specific Protein Phosphatase 1 (PP1) Substrates Identification Using Genetically Modified Cell Lines. Methods Mol Biol 2024; 2740:37-61. [PMID: 38393468 DOI: 10.1007/978-1-0716-3557-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The identification of protein phosphatase 1 (PP1) holoenzyme substrates has proven to be a challenging task. PP1 can form different holoenzyme complexes with a variety of regulatory subunits, and many of those are cell cycle regulated. Although several methods have been used to identify PP1 substrates, their cell cycle specificity is still an unmet need. Here, we present a new strategy to investigate PP1 substrates throughout the cell cycle using clustered regularly interspersed short palindromic repeats (CRISPR)-Cas9 genome editing and generate cell lines with endogenously tagged PP1 regulatory subunit (regulatory interactor of protein phosphatase one, RIPPO). RIPPOs are tagged with the auxin-inducible degron (AID) or ascorbate peroxidase 2 (APEX2) modules, and PP1 substrate identification is conducted by SILAC proteomic-based approaches. Proteins in close proximity to RIPPOs are first identified through mass spectrometry (MS) analyses using the APEX2 system; then a list of differentially phosphorylated proteins upon RIPPOs rapid degradation (achieved via the AID system) is compiled via SILAC phospho-mass spectrometry. The "in silico" overlap between the two proteomes will be enriched for PP1 putative substrates. Several methods including fluorescence resonance energy transfer (FRET), proximity ligation assays (PLA), and in vitro assays can be used as substrate validations approaches.
Collapse
Affiliation(s)
- Dorothee C Kommer
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| | | | - Paola Vagnarelli
- College of Health, Medicine and Life Science, Brunel University London, London, UK.
| |
Collapse
|
55
|
Takashima JA, Woroniecka HA, Charest PG. APEX2-Mediated Proximity Protein Labeling in Dictyostelium. Methods Mol Biol 2024; 2814:119-131. [PMID: 38954202 DOI: 10.1007/978-1-0716-3894-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Largely due to its simplicity, while being more like human cells compared to other experimental models, Dictyostelium continues to be of great use to discover basic molecular mechanisms and signaling pathways underlying evolutionarily conserved biological processes. However, the identification of new protein interactions implicated in signaling pathways can be particularly challenging in Dictyostelium due to its extremely fast signaling kinetics coupled with the dynamic nature of signaling protein interactions. Recently, the proximity labeling method using engineered ascorbic acid peroxidase 2 (APEX2) in mammalian cells was shown to allow the detection of weak and/or transient protein interactions and also to obtain spatial and temporal resolution. Here, we describe a protocol for successfully using the APEX2-proximity labeling method in Dictyostelium. Coupled with the identification of the labeled proteins by mass spectrometry, this method expands Dictyostelium's proteomics toolbox and should be widely useful for identifying interacting partners involved in a variety of biological processes in Dictyostelium.
Collapse
Affiliation(s)
- Jamie A Takashima
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Helena A Woroniecka
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Pascale G Charest
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
56
|
Kovács D, Gay AS, Debayle D, Abélanet S, Patel A, Mesmin B, Luton F, Antonny B. Lipid exchange at ER-trans-Golgi contact sites governs polarized cargo sorting. J Cell Biol 2024; 223:e202307051. [PMID: 37991810 PMCID: PMC10664280 DOI: 10.1083/jcb.202307051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
Oxysterol binding protein (OSBP) extracts cholesterol from the ER to deliver it to the TGN via counter exchange and subsequent hydrolysis of the phosphoinositide PI(4)P. Here, we show that this pathway is essential in polarized epithelial cells where it contributes not only to the proper subcellular distribution of cholesterol but also to the trans-Golgi sorting and trafficking of numerous plasma membrane cargo proteins with apical or basolateral localization. Reducing the expression of OSBP, blocking its activity, or inhibiting a PI4Kinase that fuels OSBP with PI(4)P abolishes the epithelial phenotype. Waves of cargo enrichment in the TGN in phase with OSBP and PI(4)P dynamics suggest that OSBP promotes the formation of lipid gradients along the TGN, which helps cargo sorting. During their transient passage through the trans-Golgi, polarized plasma membrane proteins get close to OSBP but fail to be sorted when OSBP is silenced. Thus, OSBP lipid exchange activity is decisive for polarized cargo sorting and distribution in epithelial cells.
Collapse
Affiliation(s)
- Dávid Kovács
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Anne-Sophie Gay
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Delphine Debayle
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Sophie Abélanet
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Amanda Patel
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Bruno Mesmin
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Frédéric Luton
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Bruno Antonny
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
57
|
Johnson B, Iuliano M, Lam T, Biederer T, De Camilli P. A complex of the lipid transport ER proteins TMEM24 and C2CD2 with band 4.1 at cell-cell contacts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570396. [PMID: 38106008 PMCID: PMC10723409 DOI: 10.1101/2023.12.06.570396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Junctions between the ER and the plasma membrane (ER/PM junctions) are implicated in calcium homeostasis, non-vesicular lipid transfer and other cellular functions. Two ER proteins that function both as membrane tethers to the PM via a polybasic motif in their C-terminus and as phospholipid transporters are brain-enriched TMEM24 (C2CD2L) and its paralog C2CD2. Based on an unbiased proximity ligation analysis, we found that both proteins can also form a complex with band 4.1 family members, which in turn can bind a variety of plasma membrane proteins including cell adhesion molecules such as SynCAM 1. This complex results in the enrichment of TMEM24 and C2CD2 containing ER/PM junctions at sites of cell contacts. Dynamic properties of TMEM24-dependent ER/PM contacts are impacted when in complex as TMEM24 present at cell adjacent junctions is not shed by calcium rise, unlike TMEM24 at non-cell adjacent junctions. These findings suggest that cell-contact interactions control ER/PM junctions via TMEM24 complexes involving band 4.1 proteins.
Collapse
Affiliation(s)
- Ben Johnson
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Maria Iuliano
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| | - TuKiet Lam
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Keck MS and Proteomics Resource, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Thomas Biederer
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
58
|
Yang Q, Loureiro ZY, Desai A, DeSouza T, Li K, Wang H, Nicoloro SM, Solivan-Rivera J, Corvera S. Regulation of lipolysis by 14-3-3 proteins on human adipocyte lipid droplets. PNAS NEXUS 2023; 2:pgad420. [PMID: 38130664 PMCID: PMC10733194 DOI: 10.1093/pnasnexus/pgad420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Adipocyte lipid droplets (LDs) play a crucial role in systemic lipid metabolism by storing and releasing lipids to meet the organism's energy needs. Hormonal signals such as catecholamines and insulin act on adipocyte LDs, and impaired responsiveness to these signals can lead to uncontrolled lipolysis, lipotoxicity, and metabolic disease. To investigate the mechanisms that control LD function in human adipocytes, we applied proximity labeling mediated by enhanced ascorbate peroxidase (APEX2) to identify the interactome of PLIN1 in adipocytes differentiated from human mesenchymal progenitor cells. We identified 70 proteins that interact specifically with PLIN1, including PNPLA2 and LIPE, which are the primary effectors of regulated triglyceride hydrolysis, and 4 members of the 14-3-3 protein family (YWHAB, YWHAE, YWHAZ, and YWHAG), which are known to regulate diverse signaling pathways. Functional studies showed that YWHAB is required for maximum cyclic adenosine monophosphate (cAMP)-stimulated lipolysis, as its CRISPR-Cas9-mediated knockout mitigates lipolysis through a mechanism independent of insulin signaling. These findings reveal a new regulatory mechanism operating in human adipocytes that can impact lipolysis and potentially systemic metabolism.
Collapse
Affiliation(s)
- Qin Yang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester MA 01605, USA
| | - Zinger Yang Loureiro
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester MA 01605, USA
| | - Anand Desai
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kaida Li
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sarah M Nicoloro
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Javier Solivan-Rivera
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
59
|
Ray A, Wen J, Yammine L, Culver J, Parida IS, Garren J, Xue L, Hales K, Xiang Q, Birnbaum MJ, Zhang BB, Monetti M, McGraw TE. Regulated dynamic subcellular GLUT4 localization revealed by proximal proteome mapping in human muscle cells. J Cell Sci 2023; 136:jcs261454. [PMID: 38126809 PMCID: PMC10753500 DOI: 10.1242/jcs.261454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Regulation of glucose transport, which is central for control of whole-body metabolism, is determined by the amount of GLUT4 glucose transporter (also known as SLC2A4) in the plasma membrane (PM) of fat and muscle cells. Physiologic signals [such as activated insulin receptor or AMP-activated protein kinase (AMPK)] increase PM GLUT4. Here, we show that the distribution of GLUT4 between the PM and interior of human muscle cells is dynamically maintained, and that AMPK promotes PM redistribution of GLUT4 by regulating exocytosis and endocytosis. Stimulation of exocytosis by AMPK is mediated by Rab10 and the Rab GTPase-activating protein TBC1D4. APEX2 proximity mapping reveals that GLUT4 traverses both PM-proximal and PM-distal compartments in unstimulated muscle cells, further supporting retention of GLUT4 by a constitutive retrieval mechanism. AMPK-stimulated translocation involves GLUT4 redistribution among the same compartments traversed in unstimulated cells, with a significant recruitment of GLUT4 from the Golgi and trans-Golgi network compartments. Our comprehensive proximal protein mapping provides an integrated, high-density, whole-cell accounting of the localization of GLUT4 at a resolution of ∼20 nm that serves as a structural framework for understanding the molecular mechanisms regulating GLUT4 trafficking downstream of different signaling inputs in a physiologically relevant cell type.
Collapse
Affiliation(s)
- Anuttoma Ray
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jennifer Wen
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lucie Yammine
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jeff Culver
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | | | - Jeonifer Garren
- Global Biometrics and Data Management, Global Product Development, Pfizer Inc., Cambridge, MA 02139, USA
| | - Liang Xue
- Early Clinical Development Biomedicine AI, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Katherine Hales
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Qing Xiang
- Target Sciences, Pfizer Inc., New York, NY 10016, USA
| | - Morris J. Birnbaum
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Bei B. Zhang
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Mara Monetti
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Timothy E. McGraw
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
60
|
Lin Y, Yang M, Huang L, Yang F, Fan J, Qiang Y, Chang Y, Zhou W, Yan L, Xiong J, Ping J, Chen S, Men D, Li F. A bacteria-derived tetramerized protein ameliorates nonalcoholic steatohepatitis in mice via binding and relocating acetyl-coA carboxylase. Cell Rep 2023; 42:113453. [PMID: 37976162 DOI: 10.1016/j.celrep.2023.113453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/30/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Increased de novo lipogenesis (DNL) is a major feature of nonalcoholic steatohepatitis (NASH). None of the drugs targeting the catalytic activity of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in the DNL process, have been approved by the FDA. Whether cytosolic ACC1 can be regulated spatially remains to be explored. Herein, we find that streptavidin (SA), which is a bacterium-derived tetrameric protein, forms cytosolic condensates and efficiently induces a spatial re-localization of ACC1 in liver cells, concomitant with inhibited lipid accumulation. Both SA tetrameric structure and multivalent protein interaction are required for condensate formation. Interestingly, the condensates are further characterized as gel-like membraneless organelle (SAGMO) and significantly restrict the cytosolic dispersion of ACC1 and fatty acid synthase. Notably, AAV-mediated delivery of SA partially blocks mouse liver DNL and ameliorates NASH without eliciting hypertriglyceridemia. In summary, our study shows that insulating lipogenesis-related proteins by SAGMO might be effective for NASH treatment.
Collapse
Affiliation(s)
- Yan Lin
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Huang
- Research Center for Medicine and Structural Biology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Fan Yang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Jiachen Fan
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yulong Qiang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yuting Chang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Wenjie Zhou
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Leilei Yan
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Jie Xiong
- Department of Immunology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Dong Men
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China.
| | - Feng Li
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan 430071, China.
| |
Collapse
|
61
|
Feng X, Sun D, Li Y, Zhang J, Liu S, Zhang D, Zheng J, Xi Q, Liang H, Zhao W, Li Y, Xu M, He J, Liu T, Hasim A, Ma M, Xu P, Mi N. Local membrane source gathering by p62 body drives autophagosome formation. Nat Commun 2023; 14:7338. [PMID: 37957156 PMCID: PMC10643672 DOI: 10.1038/s41467-023-42829-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Autophagosomes are double-membrane vesicles generated intracellularly to encapsulate substrates for lysosomal degradation during autophagy. Phase separated p62 body plays pivotal roles during autophagosome formation, however, the underlying mechanisms are still not fully understood. Here we describe a spatial membrane gathering mode by which p62 body functions in autophagosome formation. Mass spectrometry-based proteomics reveals significant enrichment of vesicle trafficking components within p62 body. Combining cellular experiments and biochemical reconstitution assays, we confirm the gathering of ATG9 and ATG16L1-positive vesicles around p62 body, especially in Atg2ab DKO cells with blocked lipid transfer and vesicle fusion. Interestingly, p62 body also regulates ATG9 and ATG16L vesicle trafficking flux intracellularly. We further determine the lipid contents associated with p62 body via lipidomic profiling. Moreover, with in vitro kinase assay, we uncover the functions of p62 body as a platform to assemble ULK1 complex and invigorate PI3KC3-C1 kinase cascade for PI3P generation. Collectively, our study raises a membrane-based working model for multifaceted p62 body in controlling autophagosome biogenesis, and highlights the interplay between membraneless condensates and membrane vesicles in regulating cellular functions.
Collapse
Affiliation(s)
- Xuezhao Feng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Daxiao Sun
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.
| | - Yanchang Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, 102206, Beijing, China
| | - Jinpei Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Shiyu Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Dachuan Zhang
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Jingxiang Zheng
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qing Xi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Haisha Liang
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Wenkang Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Ying Li
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Mengbo Xu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Jiayu He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Tong Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Ayshamgul Hasim
- Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
- Department of Pathology, School of Basic Medicine, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Meisheng Ma
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, 102206, Beijing, China.
| | - Na Mi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
- Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
- Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
62
|
Park S, Wang X, Li X, Huang X, Fong KC, Yu C, Tran AA, Scipioni L, Dai Z, Huang L, Shi X. Proximity Labeling Expansion Microscopy (PL-ExM) resolves structure of the interactome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566477. [PMID: 38014020 PMCID: PMC10680661 DOI: 10.1101/2023.11.09.566477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Elucidating the spatial relationships within the protein interactome is pivotal to understanding the organization and regulation of protein-protein interactions. However, capturing the 3D architecture of the interactome presents a dual challenge: precise interactome labeling and super-resolution imaging. To bridge this gap, we present the Proximity Labeling Expansion Microscopy (PL-ExM). This innovation combines proximity labeling (PL) to spatially biotinylate interacting proteins with expansion microscopy (ExM) to increase imaging resolution by physically enlarging cells. PL-ExM unveils intricate details of the 3D interactome's spatial layout in cells using standard microscopes, including confocal and Airyscan. Multiplexing PL-ExM imaging was achieved by pairing the PL with immunofluorescence staining. These multicolor images directly visualize how interactome structures position specific proteins in the protein-protein interaction network. Furthermore, PL-ExM stands out as an assessment method to gauge the labeling radius and efficiency of different PL techniques. The accuracy of PL-ExM is validated by our proteomic results from PL mass spectrometry. Thus, PL-ExM is an accessible solution for 3D mapping of the interactome structure and an accurate tool to access PL quality.
Collapse
Affiliation(s)
- Sohyeon Park
- Center for Complex Biological Systems, University of California, Irvine; Irvine, 92697, United States
| | - Xiaorong Wang
- Physiology and Biophysics, University of California, Irvine; Irvine, 92697, United States
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, 94143, United States
| | - Xiao Huang
- School of Biomedical Engineering, Science and Health Systems, Drexel University; Philadelphia, PA19104
| | - Katie C. Fong
- Department of Developmental and Cell Biology, University of California, Irvine; Irvine, 92697, United States
- Current Address: School of Criminal Justice and Criminalistics, California State University, Los Angeles; Los Angeles, 90042, United States
| | - Clinton Yu
- Physiology and Biophysics, University of California, Irvine; Irvine, 92697, United States
| | - Arthur A. Tran
- Cardiovascular Research Institute, School of Medicine, University of California, San Francisco; San Francisco, 94143, United States
| | - Lorenzo Scipioni
- Laboratory for Fluorescence Dynamics, University of California, Irvine; Irvine, 92697, United States
- Department of Biomedical Engineering, University of California, Irvine; Irvine, 92697, United States
| | - Zhipeng Dai
- Department of Developmental and Cell Biology, University of California, Irvine; Irvine, 92697, United States
| | - Lan Huang
- Physiology and Biophysics, University of California, Irvine; Irvine, 92697, United States
| | - Xiaoyu Shi
- Center for Complex Biological Systems, University of California, Irvine; Irvine, 92697, United States
- Department of Developmental and Cell Biology, University of California, Irvine; Irvine, 92697, United States
- Department of Biomedical Engineering, University of California, Irvine; Irvine, 92697, United States
- Department of Chemistry, University of California, Irvine; Irvine, 92697, United States
| |
Collapse
|
63
|
Ahmadian Elmi M, Motamed N, Picard D. Proteomic Analyses of the G Protein-Coupled Estrogen Receptor GPER1 Reveal Constitutive Links to Endoplasmic Reticulum, Glycosylation, Trafficking, and Calcium Signaling. Cells 2023; 12:2571. [PMID: 37947649 PMCID: PMC10650109 DOI: 10.3390/cells12212571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The G protein-coupled estrogen receptor 1 (GPER1) has been proposed to mediate rapid responses to the steroid hormone estrogen. However, despite a strong interest in its potential role in cancer, whether it is indeed activated by estrogen and how this works remain controversial. To provide new tools to address these questions, we set out to determine the interactome of exogenously expressed GPER1. The combination of two orthogonal methods, namely APEX2-mediated proximity labeling and immunoprecipitation followed by mass spectrometry, gave us high-confidence results for 73 novel potential GPER1 interactors. We found that this GPER1 interactome is not affected by estrogen, a result that mirrors the constitutive activity of GPER1 in a functional assay with a Rac1 sensor. We specifically validated several hits highlighted by a gene ontology analysis. We demonstrate that CLPTM1 interacts with GPER1 and that PRKCSH and GANAB, the regulatory and catalytic subunits of α-glucosidase II, respectively, associate with CLPTM1 and potentially indirectly with GPER1. An imbalance in CLPTM1 levels induces nuclear association of GPER1, as does the overexpression of PRKCSH. Moreover, we show that the Ca2+ sensor STIM1 interacts with GPER1 and that upon STIM1 overexpression and depletion of Ca2+ stores, GPER1 becomes more nuclear. Thus, these new GPER1 interactors establish interesting connections with membrane protein maturation, trafficking, and calcium signaling.
Collapse
Affiliation(s)
- Maryam Ahmadian Elmi
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Genève, Switzerland
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Genève, Switzerland
| |
Collapse
|
64
|
Hickey KL, Swarup S, Smith IR, Paoli JC, Miguel Whelan E, Paulo JA, Harper JW. Proteome census upon nutrient stress reveals Golgiphagy membrane receptors. Nature 2023; 623:167-174. [PMID: 37757899 PMCID: PMC10620096 DOI: 10.1038/s41586-023-06657-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
During nutrient stress, macroautophagy degrades cellular macromolecules, thereby providing biosynthetic building blocks while simultaneously remodelling the proteome1,2. Although the machinery responsible for initiation of macroautophagy has been well characterized3,4, our understanding of the extent to which individual proteins, protein complexes and organelles are selected for autophagic degradation, and the underlying targeting mechanisms, is limited. Here we use orthogonal proteomic strategies to provide a spatial proteome census of autophagic cargo during nutrient stress in mammalian cells. We find that macroautophagy has selectivity for recycling membrane-bound organelles (principally Golgi and endoplasmic reticulum). Through autophagic cargo prioritization, we identify a complex of membrane-embedded proteins, YIPF3 and YIPF4, as receptors for Golgiphagy. During nutrient stress, YIPF3 and YIPF4 interact with ATG8 proteins through LIR motifs and are mobilized into autophagosomes that traffic to lysosomes in a process that requires the canonical autophagic machinery. Cells lacking YIPF3 or YIPF4 are selectively defective in elimination of a specific cohort of Golgi membrane proteins during nutrient stress. Moreover, YIPF3 and YIPF4 play an analogous role in Golgi remodelling during programmed conversion of stem cells to the neuronal lineage in vitro. Collectively, the findings of this study reveal prioritization of membrane protein cargo during nutrient-stress-dependent proteome remodelling and identify a Golgi remodelling pathway that requires membrane-embedded receptors.
Collapse
Affiliation(s)
- Kelsey L Hickey
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sharan Swarup
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Casma Therapeutics, Cambridge, MA, USA
| | - Ian R Smith
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Velia Therapeutics, San Diego, CA, USA
| | - Julia C Paoli
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
65
|
Ali A, Garde R, Schaffer OC, Bard JAM, Husain K, Kik SK, Davis KA, Luengo-Woods S, Igarashi MG, Drummond DA, Squires AH, Pincus D. Adaptive preservation of orphan ribosomal proteins in chaperone-dispersed condensates. Nat Cell Biol 2023; 25:1691-1703. [PMID: 37845327 PMCID: PMC10868727 DOI: 10.1038/s41556-023-01253-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Ribosome biogenesis is among the most resource-intensive cellular processes, with ribosomal proteins accounting for up to half of all newly synthesized proteins in eukaryotic cells. During stress, cells shut down ribosome biogenesis in part by halting rRNA synthesis, potentially leading to massive accumulation of aggregation-prone 'orphan' ribosomal proteins (oRPs). Here we show that, during heat shock in yeast and human cells, oRPs accumulate as reversible peri-nucleolar condensates recognized by the Hsp70 co-chaperone Sis1/DnaJB6. oRP condensates are liquid-like in cell-free lysate but solidify upon depletion of Sis1 or inhibition of Hsp70. When cells recover from heat shock, oRP condensates disperse in a Sis1- and Hsp70-dependent manner, and the oRP constituents are incorporated into functional ribosomes in the cytosol, enabling cells to efficiently resume growth. Preserving biomolecules in reversible condensates-like mRNAs in cytosolic stress granules and oRPs at the nucleolar periphery-may be a primary function of the Hsp70 chaperone system.
Collapse
Affiliation(s)
- Asif Ali
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA.
| | - Rania Garde
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Olivia C Schaffer
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jared A M Bard
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Kabir Husain
- Department of Physics, University of Chicago, Chicago, IL, USA
| | - Samantha Keyport Kik
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Kathleen A Davis
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Sofia Luengo-Woods
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Maya G Igarashi
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - D Allan Drummond
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA
| | - Allison H Squires
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
- Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
66
|
Li J, Dang P, Li Z, Zhao T, Cheng D, Pan D, Yuan Y, Song W. Peroxisomal ERK mediates Akh/glucagon action and glycemic control. Cell Rep 2023; 42:113200. [PMID: 37796662 DOI: 10.1016/j.celrep.2023.113200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/18/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
The enhanced response of glucagon and its Drosophila homolog, adipokinetic hormone (Akh), leads to high-caloric-diet-induced hyperglycemia across species. While previous studies have characterized regulatory components transducing linear Akh signaling promoting carbohydrate production, the spatial elucidation of Akh action at the organelle level still remains largely unclear. In this study, we find that Akh phosphorylates extracellular signal-regulated kinase (ERK) and translocates it to peroxisome via calcium/calmodulin-dependent protein kinase II (CaMKII) cascade to increase carbohydrate production in the fat body, leading to hyperglycemia. The mechanisms include that ERK mediates fat body peroxisomal conversion of amino acids into carbohydrates for gluconeogenesis in response to Akh. Importantly, Akh receptor (AkhR) or ERK deficiency, importin-associated ERK retention from peroxisome, or peroxisome inactivation in the fat body sufficiently alleviates high-sugar-diet-induced hyperglycemia. We also observe mammalian glucagon-induced hepatic ERK peroxisomal translocation in diabetic subjects. Therefore, our results conclude that the Akh/glucagon-peroxisomal-ERK axis is a key spatial regulator of glycemic control.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Peixuan Dang
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Zhen Li
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Tujing Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Dingyu Pan
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China.
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
| | - Wei Song
- Department of Hepatobiliary and Pancreatic Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
67
|
Feng Q, Krick K, Chu J, Burge CB. Splicing quality control mediated by DHX15 and its G-patch activator SUGP1. Cell Rep 2023; 42:113223. [PMID: 37805921 PMCID: PMC10842378 DOI: 10.1016/j.celrep.2023.113223] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Pre-mRNA splicing is surveilled at different stages by quality control (QC) mechanisms. The leukemia-associated DExH-box family helicase hDHX15/scPrp43 is known to disassemble spliceosomes after splicing. Here, using rapid protein depletion and analysis of nascent and mature RNA to enrich for direct effects, we identify a widespread splicing QC function for DHX15 in human cells, consistent with recent in vitro studies. We find that suboptimal introns with weak splice sites, multiple branch points, and cryptic introns are repressed by DHX15, suggesting a general role in promoting splicing fidelity. We identify SUGP1 as a G-patch factor that activates DHX15's splicing QC function. This interaction is dependent on both DHX15's ATPase activity and on SUGP1's U2AF ligand motif (ULM) domain. Together, our results support a model in which DHX15 plays a major role in splicing QC when recruited and activated by SUGP1.
Collapse
Affiliation(s)
- Qing Feng
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.
| | - Keegan Krick
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Jennifer Chu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.
| |
Collapse
|
68
|
Lyons AC, Mehta S, Zhang J. Fluorescent biosensors illuminate the spatial regulation of cell signaling across scales. Biochem J 2023; 480:1693-1717. [PMID: 37903110 PMCID: PMC10657186 DOI: 10.1042/bcj20220223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023]
Abstract
As cell signaling research has advanced, it has become clearer that signal transduction has complex spatiotemporal regulation that goes beyond foundational linear transduction models. Several technologies have enabled these discoveries, including fluorescent biosensors designed to report live biochemical signaling events. As genetically encoded and live-cell compatible tools, fluorescent biosensors are well suited to address diverse cell signaling questions across different spatial scales of regulation. In this review, methods of examining spatial signaling regulation and the design of fluorescent biosensors are introduced. Then, recent biosensor developments that illuminate the importance of spatial regulation in cell signaling are highlighted at several scales, including membranes and organelles, molecular assemblies, and cell/tissue heterogeneity. In closing, perspectives on how fluorescent biosensors will continue enhancing cell signaling research are discussed.
Collapse
Affiliation(s)
- Anne C. Lyons
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
69
|
Yi S, Singh SS, Rozen-Gagnon K, Luna JM. Mapping RNA-Protein Interactions with Subcellular Resolution Using Colocalization CLIP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563984. [PMID: 37961159 PMCID: PMC10634835 DOI: 10.1101/2023.10.26.563984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
RNA binding proteins (RBPs) are essential for RNA metabolism and profoundly impact health and disease. The subcellular organization of RBP interaction networks with target RNAs remains largely unexplored. Here, we develop colocalization CLIP, a method that combines CrossLinking and ImmunoPrecipitation (CLIP) with proximity labeling, to explore in-depth the subcellular RNA interactions of the well-studied RNA-binding protein HuR. Using this method, we uncover HuR's dynamic and location-specific interactions with RNA, revealing alterations in sequence preferences and interactions in the nucleus, cytosol, or stress granule compartments. We uncover HuR's unique binding preferences within stress granules during arsenite stress, illuminating intricate interactions that conventional methodologies cannot capture. Overall, coCLIP provides a powerful method for revealing RBP:RNA interactions based on localization and lays the foundation for an advanced understanding of RBP models that incorporate subcellular location as a critical determinant of their functions.
Collapse
|
70
|
Fu Y, Sacco O, DeBitetto E, Kanshin E, Ueberheide B, Sfeir A. Mitochondrial DNA breaks activate an integrated stress response to reestablish homeostasis. Mol Cell 2023; 83:3740-3753.e9. [PMID: 37832546 PMCID: PMC11229056 DOI: 10.1016/j.molcel.2023.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Mitochondrial DNA double-strand breaks (mtDSBs) lead to the degradation of circular genomes and a reduction in copy number; yet, the cellular response in human cells remains elusive. Here, using mitochondrial-targeted restriction enzymes, we show that a subset of cells with mtDSBs exhibited defective mitochondrial protein import, reduced respiratory complexes, and loss of membrane potential. Electron microscopy confirmed the altered mitochondrial membrane and cristae ultrastructure. Intriguingly, mtDSBs triggered the integrated stress response (ISR) via the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by DELE1 and heme-regulated eIF2α kinase (HRI). When ISR was inhibited, the cells experienced intensified mitochondrial defects and slower mtDNA recovery post-breakage. Lastly, through proteomics, we identified ATAD3A-a membrane-bound protein interacting with nucleoids-as potentially pivotal in relaying signals from impaired genomes to the inner mitochondrial membrane. In summary, our study delineates the cascade connecting damaged mitochondrial genomes to the cytoplasm and highlights the significance of the ISR in maintaining mitochondrial homeostasis amid genome instability.
Collapse
Affiliation(s)
- Yi Fu
- Skirball Institute of Biomolecular Medicine, Cell Biology Department, NYU School of Medicine, New York, NY 10016, USA; Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olivia Sacco
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily DeBitetto
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, NYU School of Medicine, New York, NY 10016, USA; Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, NYU School of Medicine, New York, NY 10016, USA; Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Department of Neurology, NYU School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
71
|
Kas SM, Mundra PA, Smith DL, Marais R. Functional classification of DDOST variants of uncertain clinical significance in congenital disorders of glycosylation. Sci Rep 2023; 13:17648. [PMID: 37848450 PMCID: PMC10582084 DOI: 10.1038/s41598-023-42178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are rare genetic disorders with a spectrum of clinical manifestations caused by abnormal N-glycosylation of secreted and cell surface proteins. Over 130 genes are implicated and next generation sequencing further identifies potential disease drivers in affected individuals. However, functional testing of these variants is challenging, making it difficult to distinguish pathogenic from non-pathogenic events. Using proximity labelling, we identified OST48 as a protein that transiently interacts with lysyl oxidase (LOX), a secreted enzyme that cross-links the fibrous extracellular matrix. OST48 is a non-catalytic component of the oligosaccharyltransferase (OST) complex, which transfers glycans to substrate proteins. OST48 is encoded by DDOST, and 43 variants of DDOST are described in CDG patients, of which 34 are classified as variants of uncertain clinical significance (VUS). We developed an assay based on LOX N-glycosylation that confirmed two previously characterised DDOST variants as pathogenic. Notably, 39 of the 41 remaining variants did not have impaired activity, but we demonstrated that p.S243F and p.E286del were functionally impaired, consistent with a role in driving CDG in those patients. Thus, we describe a rapid assay for functional testing of clinically relevant CDG variants to complement genome sequencing and support clinical diagnosis of affected individuals.
Collapse
Affiliation(s)
- Sjors M Kas
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| | - Piyushkumar A Mundra
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Duncan L Smith
- Biological Mass Spectrometry Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
- Oncodrug Ltd, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| |
Collapse
|
72
|
Wei S, Yang Y, Wang Y. Proximity Proteomics Revealed Aberrant mRNA Splicing Elicited by ALS-Linked Profilin-1 Mutants. Anal Chem 2023; 95:15141-15145. [PMID: 37787459 PMCID: PMC10689300 DOI: 10.1021/acs.analchem.3c03734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Profilin 1 (PFN1) is a cytoskeleton protein that modulates actin dynamics through binding to monomeric actin and polyproline-containing proteins. Mutations in PFN1 have been linked to the pathogenesis of familial amyotrophic lateral sclerosis (ALS). Here, we employed an unbiased proximity labeling strategy in combination with proteomic analysis for proteome-wide profiling of proteins that differentially interact with mutant and wild-type (WT) PFN1 proteins in human cells. We uncovered 11 mRNA splicing proteins that are preferentially enriched in the proximity proteomes of the two ALS-linked PFN1 variants, C71G and M114T, over that of wild-type PFN1. We validated the preferential interactions of the ALS-linked PFN1 variants with two mRNA splicing factors, hnRNPC and U2AF2, by immunoprecipitation, followed with immunoblotting. We also found that the two ALS-linked PFN1 variants promoted the exonization of Alu elements in the mRNAs of MTO1, TCFL5, WRN and POLE genes in human cells. Together, we showed that the two ALS-linked PFN1 variants interacted preferentially with mRNA splicing proteins, which elicited aberrant exonization of the Alu elements in mRNAs. Thus, our work provided pivotal insights into the perturbations of ALS-linked PFN1 variants in RNA biology and their potential contributions to ALS pathology.
Collapse
Affiliation(s)
- Songbo Wei
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - YenYu Yang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
73
|
Smid AI, Garforth SJ, Obaid MS, Bollons HR, James JR. Pre-T cell receptor localization and trafficking are independent of its signaling. J Cell Biol 2023; 222:e202212106. [PMID: 37516909 PMCID: PMC10373305 DOI: 10.1083/jcb.202212106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023] Open
Abstract
Expression of the pre-T cell receptor (preTCR) is an important checkpoint during the development of T cells, an essential cell type of our adaptive immune system. The preTCR complex is only transiently expressed and rapidly internalized in developing T cells and is thought to signal in a ligand-independent manner. However, identifying a mechanistic basis for these unique features of the preTCR compared with the final TCR complex has been confounded by the concomitant signaling that is normally present. Thus, we have reconstituted preTCR expression in non-immune cells to uncouple receptor trafficking dynamics from its associated signaling. We find that all the defining features of the preTCR are intrinsic properties of the receptor itself, driven by exposure of an extracellular hydrophobic region, and are not the consequence of receptor activation. Finally, we show that transitory preTCR cell surface expression can sustain tonic signaling in the absence of ligand binding, suggesting how the preTCR can nonetheless drive αβTCR lineage commitment.
Collapse
Affiliation(s)
- Andrei I. Smid
- Molecular Immunity Unit, Department of Medicine, Medical Research Council–Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Sam J. Garforth
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Maryam S. Obaid
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Hannah R. Bollons
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - John R. James
- Molecular Immunity Unit, Department of Medicine, Medical Research Council–Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
74
|
Lin YH, Zeng Q, Jia Y, Wang Z, Li L, Hsieh MH, Cheng Q, Pagani CA, Livingston N, Lee J, Zhang Y, Sharma T, Siegwart DJ, Yimlamai D, Levi B, Zhu H. In vivo screening identifies SPP2, a secreted factor that negatively regulates liver regeneration. Hepatology 2023; 78:1133-1148. [PMID: 37039560 PMCID: PMC10524179 DOI: 10.1097/hep.0000000000000402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND AND AIMS The liver is remarkably regenerative and can completely recover even when 80% of its mass is surgically removed. Identification of secreted factors that regulate liver growth would help us understand how organ size and regeneration are controlled but also provide candidate targets to promote regeneration or impair cancer growth. APPROACH AND RESULTS To enrich for secreted factors that regulate growth control, we induced massive liver overgrowth with either YAP or MYC . Differentially expressed secreted factors were identified in these livers using transcriptomic analysis. To rank candidates by functionality, we performed in vivo CRISPR screening using the Fah knockout model of tyrosinemia. We identified secreted phosphoprotein-2 (SPP2) as a secreted factor that negatively regulates regeneration. Spp2 -deficient mice showed increased survival after acetaminophen poisoning and reduced fibrosis after repeated carbon tetrachloride injections. We examined the impact of SPP2 on bone morphogenetic protein signaling in liver cells and found that SPP2 antagonized bone morphogenetic protein signaling in vitro and in vivo. We also identified cell-surface receptors that interact with SPP2 using a proximity biotinylation assay coupled with mass spectrometry. We showed that SPP2's interactions with integrin family members are in part responsible for some of the regeneration phenotypes. CONCLUSIONS Using an in vivo CRISPR screening system, we identified SPP2 as a secreted factor that negatively regulates liver regeneration. This study provides ways to identify, validate, and characterize secreted factors in vivo.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiyu Zeng
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuemeng Jia
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zixi Wang
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Li
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meng-Hsiung Hsieh
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiang Cheng
- Department of Biochemistry, Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chase A. Pagani
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas Livingston
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yu Zhang
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tripti Sharma
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J. Siegwart
- Department of Biochemistry, Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dean Yimlamai
- Section of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06519
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
75
|
Guo J, Guo S, Lu S, Gong J, Wang L, Ding L, Chen Q, Liu W. The development of proximity labeling technology and its applications in mammals, plants, and microorganisms. Cell Commun Signal 2023; 21:269. [PMID: 37777761 PMCID: PMC10544124 DOI: 10.1186/s12964-023-01310-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023] Open
Abstract
Protein‒protein, protein‒RNA, and protein‒DNA interaction networks form the basis of cellular regulation and signal transduction, making it crucial to explore these interaction networks to understand complex biological processes. Traditional methods such as affinity purification and yeast two-hybrid assays have been shown to have limitations, as they can only isolate high-affinity molecular interactions under nonphysiological conditions or in vitro. Moreover, these methods have shortcomings for organelle isolation and protein subcellular localization. To address these issues, proximity labeling techniques have been developed. This technology not only overcomes the limitations of traditional methods but also offers unique advantages in studying protein spatial characteristics and molecular interactions within living cells. Currently, this technique not only is indispensable in research on mammalian nucleoprotein interactions but also provides a reliable approach for studying nonmammalian cells, such as plants, parasites and viruses. Given these advantages, this article provides a detailed introduction to the principles of proximity labeling techniques and the development of labeling enzymes. The focus is on summarizing the recent applications of TurboID and miniTurbo in mammals, plants, and microorganisms. Video Abstract.
Collapse
Affiliation(s)
- Jieyu Guo
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Shuang Guo
- Medicine Research Institute, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Siao Lu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Jun Gong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Long Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Liqiong Ding
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Qingjie Chen
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China.
| | - Wu Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China.
| |
Collapse
|
76
|
Khan A, Metts JM, Collins LC, Mills CA, Li K, Brademeyer AL, Bowman BM, Major MB, Aubé J, Herring LE, Davis IJ, Strahl BD. SETD2 maintains nuclear lamina stability to safeguard the genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560032. [PMID: 37808753 PMCID: PMC10557632 DOI: 10.1101/2023.09.28.560032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Histone methyltransferases play essential roles in the organization and function of chromatin. They are also frequently mutated in human diseases including cancer1. One such often mutated methyltransferase, SETD2, associates co-transcriptionally with RNA polymerase II and catalyzes histone H3 lysine 36 trimethylation (H3K36me3) - a modification that contributes to gene transcription, splicing, and DNA repair2. While studies on SETD2 have largely focused on the consequences of its catalytic activity, the non-catalytic functions of SETD2 are largely unknown. Here we report a catalysis-independent function of SETD2 in maintaining nuclear lamina stability and genome integrity. We found that SETD2, via its intrinsically disordered N-terminus, associates with nuclear lamina proteins including lamin A/C, lamin B1, and emerin. Depletion of SETD2, or deletion of its N-terminus, resulted in widespread nuclear morphology abnormalities and genome stability defects that were reminiscent of a defective nuclear lamina. Mechanistically, the N-terminus of SETD2 facilitates the association of the mitotic kinase CDK1 with lamins, thereby promoting lamin phosphorylation and depolymerization required for nuclear envelope disassembly during mitosis. Taken together, our findings reveal an unanticipated link between the N-terminus of SETD2 and nuclear lamina organization that may underlie how SETD2 acts as a tumor suppressor.
Collapse
Affiliation(s)
- Abid Khan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - James M. Metts
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Lucas C. Collins
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - C. Allie Mills
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Amanda L. Brademeyer
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Brittany M. Bowman
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology & Physiology, Washington University in St. Louis
| | - M. Ben Major
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology & Physiology, Washington University in St. Louis
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
| | - Ian J. Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
77
|
Martin de Fourchambault E, Callens N, Saliou JM, Fourcot M, Delos O, Barois N, Thorel Q, Ramirez S, Bukh J, Cocquerel L, Bertrand-Michel J, Marot G, Sebti Y, Dubuisson J, Rouillé Y. Hepatitis C virus alters the morphology and function of peroxisomes. Front Microbiol 2023; 14:1254728. [PMID: 37808318 PMCID: PMC10551450 DOI: 10.3389/fmicb.2023.1254728] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Despite the introduction of effective treatments for hepatitis C in clinics, issues remain regarding the liver disease induced by chronic hepatitis C virus (HCV) infection. HCV is known to disturb the metabolism of infected cells, especially lipid metabolism and redox balance, but the mechanisms leading to HCV-induced pathogenesis are still poorly understood. In an APEX2-based proximity biotinylation screen, we identified ACBD5, a peroxisome membrane protein, as located in the vicinity of HCV replication complexes. Confocal microscopy confirmed the relocation of peroxisomes near HCV replication complexes and indicated that their morphology and number are altered in approximately 30% of infected Huh-7 cells. Peroxisomes are small versatile organelles involved among other functions in lipid metabolism and ROS regulation. To determine their importance in the HCV life cycle, we generated Huh-7 cells devoid of peroxisomes by inactivating the PEX5 and PEX3 genes using CRISPR/Cas9 and found that the absence of peroxisomes had no impact on replication kinetics or infectious titers of HCV strains JFH1 and DBN3a. The impact of HCV on peroxisomal functions was assessed using sub-genomic replicons. An increase of ROS was measured in peroxisomes of replicon-containing cells, correlated with a significant decrease of catalase activity with the DBN3a strain. In contrast, HCV replication had little to no impact on cytoplasmic and mitochondrial ROS, suggesting that the redox balance of peroxisomes is specifically impaired in cells replicating HCV. Our study provides evidence that peroxisome function and morphology are altered in HCV-infected cells.
Collapse
Affiliation(s)
- Esther Martin de Fourchambault
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U 1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Nathalie Callens
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U 1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Michel Saliou
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014 - US Inserm 41 - PLBS, Lille, France
| | - Marie Fourcot
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014 - US Inserm 41 - PLBS, Lille, France
| | - Oceane Delos
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- I2MC, Université de Toulouse, Inserm, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Nicolas Barois
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U 1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014 - US Inserm 41 - PLBS, Lille, France
| | - Quentin Thorel
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Lille, France
| | - Santseharay Ramirez
- Faculty of Health and Medical Sciences, Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Faculty of Health and Medical Sciences, Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Laurence Cocquerel
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U 1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Justine Bertrand-Michel
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- I2MC, Université de Toulouse, Inserm, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Guillemette Marot
- Université de Lille, Inria, CHU Lille, ULR 2694 - METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
| | - Yasmine Sebti
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Lille, France
| | - Jean Dubuisson
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U 1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Yves Rouillé
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U 1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
78
|
Piletic K, Alsaleh G, Simon AK. Autophagy orchestrates the crosstalk between cells and organs. EMBO Rep 2023; 24:e57289. [PMID: 37465980 PMCID: PMC10481659 DOI: 10.15252/embr.202357289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Over the recent years, it has become apparent that a deeper understanding of cell-to-cell and organ-to-organ communication is necessary to fully comprehend both homeostatic and pathological states. Autophagy is indispensable for cellular development, function, and homeostasis. A crucial aspect is that autophagy can also mediate these processes through its secretory role. The autophagy-derived secretome relays its extracellular signals in the form of nutrients, proteins, mitochondria, and extracellular vesicles. These crosstalk mediators functionally shape cell fate decisions, tissue microenvironment and systemic physiology. The diversity of the secreted cargo elicits an equally diverse type of responses, which span over metabolic, inflammatory, and structural adaptations in disease and homeostasis. We review here the emerging role of the autophagy-derived secretome in the communication between different cell types and organs and discuss the mechanisms involved.
Collapse
Affiliation(s)
- Klara Piletic
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Ghada Alsaleh
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
- Botnar Institute for Musculoskeletal Sciences, NDORMSUniversity of OxfordOxfordUK
| | - Anna Katharina Simon
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
- Max Delbrück CenterBerlinGermany
| |
Collapse
|
79
|
Shinoda N, Horikoshi M, Taira Y, Muramoto M, Hirayama S, Murata S, Miura M. Caspase cleaves Drosophila BubR1 to modulate spindle assembly checkpoint function and lifespan of the organism. FEBS J 2023; 290:4200-4223. [PMID: 37151120 DOI: 10.1111/febs.16811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Caspases cleave over 1500 substrates in the human proteome in both lethal and non-lethal scenarios. However, reports of the physiological consequences of substrate cleavage are limited. Additionally, the manner in which caspase cleaves only a subset of substrates in the non-lethal scenario remains to be elucidated. BubR1, a spindle assembly checkpoint component, is a caspase substrate in humans, the physiological function of which remains unclear. Here, we found that caspases, especially Drice, cleave Drosophila BubR1 between the N-terminal KEN box motif and C-terminal kinase domain. By using proximity labelling, we found that Drice, but not Dcp-1, is in proximity to BubR1, suggesting that protein proximity facilitates substrate preference. The cleaved fragments displayed altered subcellular localization and protein-protein interactions. Flies that harboured cleavage-resistant BubR1 showed longer duration of BubR1 localization to the kinetochore upon colchicine treatment. Furthermore, these flies showed extended lifespan. Thus, we propose that the caspase-mediated cleavage of BubR1 limits spindle assembly checkpoint and organismal lifespan. Our results highlight the importance of the individual analysis of substrates in vivo to determine the biological significance of caspase-dependent non-lethal cellular processes.
Collapse
Affiliation(s)
- Natsuki Shinoda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Misuzu Horikoshi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Yusuke Taira
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masaya Muramoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
80
|
Batra S, Vaquer-Alicea J, Manon VA, Kashmer OM, Lemoff A, Cairns NJ, White CL, Diamond MI. VCP increases or decreases tau seeding using specific cofactors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555637. [PMID: 37693404 PMCID: PMC10491269 DOI: 10.1101/2023.08.30.555637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. In vitro seeding reactions typically take days, yet seeding into the complex cytoplasmic milieu can happen within hours. A cellular machinery might regulate this process, but potential players are unknown. Methods We used proximity labeling to identify factors that control seed amplification. We fused split-APEX2 to the C-terminus of tau repeat domain (RD) to reconstitute peroxidase activity upon seeded intracellular tau aggregation. We identified valosin containing protein (VCP/p97) 5h after seeding. Mutations in VCP underlie two neurodegenerative diseases, multisystem proteinopathy and vacuolar tauopathy, but its mechanistic role is unclear. We utilized tau biosensors, a cellular model for tau aggregation, to study the effects of VCP on tau seeding. Results VCP knockdown reduced tau seeding. However, distinct chemical inhibitors of VCP and the proteasome had opposing effects on aggregation, but only when given <8h of seed exposure. ML-240 increased seeding efficiency ~40x, whereas NMS-873 decreased seeding efficiency by 50%, and MG132 increased seeding ~10x. We screened VCP co-factors in HEK293 biosensor cells by genetic knockout or knockdown. Reduction of ATXN3, NSFL1C, UBE4B, NGLY1, and OTUB1 decreased tau seeding, as did NPLOC4, which also uniquely increased soluble tau levels. Reduction of FAF2 and UBXN6 increased tau seeding. Conclusions VCP uses distinct cofactors to determine seed replication efficiency, consistent with a dedicated cytoplasmic processing complex that directs seeds towards dissolution vs. amplification.
Collapse
Affiliation(s)
- Sushobhna Batra
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Victor A Manon
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Omar M Kashmer
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nigel J Cairns
- Department of Clinical and Biological Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Charles L White
- Department of Pathology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Neurology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
81
|
Vo LH, Hong S, Stepler KE, Liyanaarachchi SM, Yang J, Nemes P, Poulin MB. Mapping protein-exopolysaccharide binding interaction in Staphylococcus epidermidis biofilms by live cell proximity labeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555326. [PMID: 37693546 PMCID: PMC10491226 DOI: 10.1101/2023.08.29.555326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bacterial biofilms consist of cells encased in an extracellular polymeric substance (EPS) composed of exopolysaccharides, extracellular DNA, and proteins that are critical for cell-cell adhesion and protect the cells from environmental stress, antibiotic treatments, and the host immune response. Degrading EPS components or blocking their production have emerged as promising strategies for prevention or dispersal of bacterial biofilms, but we still have little information about the specific biomolecular interactions that occur between cells and EPS components and how those interactions contribute to biofilm production. Staphylococcus epidermidis is a leading cause of nosocomial infections as a result of producing biofilms that use the exopolysaccharide poly-(1→6)-β-N-acetylglucosamine (PNAG) as a major structural component. In this study, we have developed a live cell proximity labeling approach combined with quantitative mass spectrometry-based proteomics to map the PNAG interactome of live S. epidermidis biofilms. Through these measurements we discovered elastin-binding protein (EbpS) as a major PNAG-interacting protein. Using live cell binding measurements, we found that the lysin motif (LysM) domain of EbpS specifically binds to PNAG present in S. epidermidis biofilms. Our work provides a novel method for the rapid identification of exopolysaccharide-binding proteins in live biofilms that will help to extend our understanding of the biomolecular interactions that are required for bacterial biofilm formation.
Collapse
Affiliation(s)
- Luan H. Vo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Steven Hong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kaitlyn E. Stepler
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sureshee M. Liyanaarachchi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jack Yang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Myles B. Poulin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
82
|
Shimogawa MM, Wijono AS, Wang H, Zhang J, Sha J, Szombathy N, Vadakkan S, Pelayo P, Jonnalagadda K, Wohlschlegel J, Zhou ZH, Hill KL. FAP106 is an interaction hub for assembling microtubule inner proteins at the cilium inner junction. Nat Commun 2023; 14:5225. [PMID: 37633952 PMCID: PMC10460401 DOI: 10.1038/s41467-023-40230-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/14/2023] [Indexed: 08/28/2023] Open
Abstract
Motility of pathogenic protozoa depends on flagella (synonymous with cilia) with axonemes containing nine doublet microtubules (DMTs) and two singlet microtubules. Microtubule inner proteins (MIPs) within DMTs influence axoneme stability and motility and provide lineage-specific adaptations, but individual MIP functions and assembly mechanisms are mostly unknown. Here, we show in the sleeping sickness parasite Trypanosoma brucei, that FAP106, a conserved MIP at the DMT inner junction, is required for trypanosome motility and functions as a critical interaction hub, directing assembly of several conserved and lineage-specific MIPs. We use comparative cryogenic electron tomography (cryoET) and quantitative proteomics to identify MIP candidates. Using RNAi knockdown together with fitting of AlphaFold models into cryoET maps, we demonstrate that one of these candidates, MC8, is a trypanosome-specific MIP required for parasite motility. Our work advances understanding of MIP assembly mechanisms and identifies lineage-specific motility proteins that are attractive targets to consider for therapeutic intervention.
Collapse
Affiliation(s)
- Michelle M Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Angeline S Wijono
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiayan Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Natasha Szombathy
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabeeca Vadakkan
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Paula Pelayo
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Keya Jonnalagadda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Kent L Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
83
|
Enders L, Siklos M, Borggräfe J, Gaussmann S, Koren A, Malik M, Tomek T, Schuster M, Reiniš J, Hahn E, Rukavina A, Reicher A, Casteels T, Bock C, Winter GE, Hannich JT, Sattler M, Kubicek S. Pharmacological perturbation of the phase-separating protein SMNDC1. Nat Commun 2023; 14:4504. [PMID: 37587144 PMCID: PMC10432564 DOI: 10.1038/s41467-023-40124-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
SMNDC1 is a Tudor domain protein that recognizes di-methylated arginines and controls gene expression as an essential splicing factor. Here, we study the specific contributions of the SMNDC1 Tudor domain to protein-protein interactions, subcellular localization, and molecular function. To perturb the protein function in cells, we develop small molecule inhibitors targeting the dimethylarginine binding pocket of the SMNDC1 Tudor domain. We find that SMNDC1 localizes to phase-separated membraneless organelles that partially overlap with nuclear speckles. This condensation behavior is driven by the unstructured C-terminal region of SMNDC1, depends on RNA interaction and can be recapitulated in vitro. Inhibitors of the protein's Tudor domain drastically alter protein-protein interactions and subcellular localization, causing splicing changes for SMNDC1-dependent genes. These compounds will enable further pharmacological studies on the role of SMNDC1 in the regulation of nuclear condensates, gene regulation and cell identity.
Collapse
Affiliation(s)
- Lennart Enders
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Marton Siklos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Jan Borggräfe
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Stefan Gaussmann
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Monika Malik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Tatjana Tomek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Jiří Reiniš
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Elisa Hahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Andrea Rukavina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Andreas Reicher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Tamara Casteels
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
- Sloan Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Währinger Straße 25a, 1090, Vienna, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - J Thomas Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
84
|
Zhang A, Loh KY, Kadur CS, Michalek L, Dou J, Ramakrishnan C, Bao Z, Deisseroth K. Genetically targeted chemical assembly of polymers specifically localized extracellularly to surface membranes of living neurons. SCIENCE ADVANCES 2023; 9:eadi1870. [PMID: 37556541 PMCID: PMC10411876 DOI: 10.1126/sciadv.adi1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
Multicellular biological systems, particularly living neural networks, exhibit highly complex organization properties that pose difficulties for building cell-specific biocompatible interfaces. We previously developed an approach to genetically program cells to assemble structures that modify electrical properties of neurons in situ, opening up the possibility of building minimally invasive cell-specific structures and interfaces. However, the efficiency and biocompatibility of this approach were challenged by limited membrane targeting of the constructed materials. Here, we design a method for highly localized expression of enzymes targeted to the plasma membrane of primary neurons, with minimal intracellular retention. Next, we show that polymers synthesized in situ by this approach form dense extracellular clusters selectively on the targeted cell membrane and that neurons remain viable after polymerization. Last, we show generalizability of this method across a range of design strategies. This platform can be readily extended to incorporate a broad diversity of materials onto specific cell membranes within tissues and may further enable next-generation biological interfaces.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kang Yong Loh
- Department of Chemistry, Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Chandan S. Kadur
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lukas Michalek
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jiayi Dou
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- CNC Program, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- CNC Program, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
85
|
Jiao S, Miranda P, Li Y, Maric D, Holmgren M. Some aspects of the life of SARS-CoV-2 ORF3a protein in mammalian cells. Heliyon 2023; 9:e18754. [PMID: 37609425 PMCID: PMC10440475 DOI: 10.1016/j.heliyon.2023.e18754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023] Open
Abstract
The accessory protein ORF3a, from SARS-CoV-2, plays a critical role in viral infection and pathogenesis. Here, we characterized ORF3a assembly, ion channel activity, subcellular localization, and interactome. At the plasma membrane, ORF3a exists mostly as monomers and dimers, which do not alter the native cell membrane conductance, suggesting that ORF3a does not function as a viroporin at the cell surface. As a membrane protein, ORF3a is synthesized at the ER and sorted via a canonical route. ORF3a overexpression induced an approximately 25% increase in cell death. By developing an APEX2-based proximity labeling assay, we uncovered proteins proximal to ORF3a, suggesting that ORF3a recruits some host proteins to weaken the cell. In addition, it exposed a set of mitochondria related proteins that triggered mitochondrial fission. Overall, this work can be an important instrument in understanding the role of ORF3a in the virus pathogenicity and searching for potential therapeutic treatments for COVID-19.
Collapse
Affiliation(s)
- Song Jiao
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, MD, USA
| | - Pablo Miranda
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, MD, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, MD, USA
| | - Miguel Holmgren
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, MD, USA
| |
Collapse
|
86
|
Chen D, Wirth KM, Kizy S, Muretta JM, Markowski TW, Yong P, Sheka A, Abdelwahab H, Hertzel AV, Ikramuddin S, Yamamoto M, Bernlohr DA. Desmoglein 2 Functions as a Receptor for Fatty Acid Binding Protein 4 in Breast Cancer Epithelial Cells. Mol Cancer Res 2023; 21:836-848. [PMID: 37115197 PMCID: PMC10524127 DOI: 10.1158/1541-7786.mcr-22-0763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023]
Abstract
Fatty acid binding protein 4 (FABP4) is a secreted adipokine linked to obesity and progression of a variety of cancers. Obesity increases extracellular FABP4 (eFABP4) levels in animal models and in obese breast cancer patients compared with lean healthy controls. Using MCF-7 and T47D breast cancer epithelial cells, we show herein that eFABP4 stimulates cellular proliferation in a time and concentration dependent manner while the non-fatty acid-binding mutant, R126Q, failed to potentiate growth. When E0771 murine breast cancer cells were injected into mice, FABP4 null animals exhibited delayed tumor growth and enhanced survival compared with injections into control C57Bl/6J animals. eFABP4 treatment of MCF-7 cells resulted in a significant increase in phosphorylation of extracellular signal-regulated kinase 1/2 (pERK), transcriptional activation of nuclear factor E2-related factor 2 (NRF2) and corresponding gene targets ALDH1A1, CYP1A1, HMOX1, SOD1 and decreased oxidative stress, while R126Q treatment did not show any effects. Proximity-labeling employing an APEX2-FABP4 fusion protein revealed several proteins functioning in desmosomes as eFABP4 receptor candidates including desmoglein (DSG), desmocollin, junction plankoglobin, desomoplankin, and cytokeratins. AlphaFold modeling predicted an interaction between eFABP4, and the extracellular cadherin repeats of DSG2 and pull-down and immunoprecipitation assays confirmed complex formation that was potentiated by oleic acid. Silencing of DSG2 in MCF-7 cells attenuated eFABP4 effects on cellular proliferation, pERK levels, and ALDH1A1 expression compared with controls. IMPLICATIONS These results suggest desmosomal proteins, and in particular desmoglein 2, may function as receptors of eFABP4 and provide new insight into the development and progression of obesity-associated cancers.
Collapse
Affiliation(s)
- Dongmei Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Keith M. Wirth
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Scott Kizy
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Joseph M. Muretta
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Peter Yong
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Adam Sheka
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Hisham Abdelwahab
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Ann V. Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Sayeed Ikramuddin
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Masato Yamamoto
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
- Department of Masonic Cancer Center, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| |
Collapse
|
87
|
Martin AP, Bradshaw GA, Eisert RJ, Egan ED, Tveriakhina L, Rogers JM, Dates AN, Scanavachi G, Aster JC, Kirchhausen T, Kalocsay M, Blacklow SC. A spatiotemporal Notch interaction map from plasma membrane to nucleus. Sci Signal 2023; 16:eadg6474. [PMID: 37527352 PMCID: PMC10560377 DOI: 10.1126/scisignal.adg6474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
Notch signaling relies on ligand-induced proteolysis of the transmembrane receptor Notch to liberate a nuclear effector that drives cell fate decisions. Upon ligand binding, sequential cleavage of Notch by the transmembrane protease ADAM10 and the intracellular protease γ-secretase releases the Notch intracellular domain (NICD), which translocates to the nucleus and forms a complex that induces target gene transcription. To map the location and timing of the individual steps required for the proteolysis and movement of Notch from the plasma membrane to the nucleus, we used proximity labeling with quantitative, multiplexed mass spectrometry to monitor the interaction partners of endogenous NOTCH2 after ligand stimulation in the presence of a γ-secretase inhibitor and as a function of time after inhibitor removal. Our studies showed that γ-secretase-mediated cleavage of NOTCH2 occurred in an intracellular compartment and that formation of nuclear complexes and recruitment of chromatin-modifying enzymes occurred within 45 min of inhibitor washout. These findings provide a detailed spatiotemporal map tracking the path of Notch from the plasma membrane to the nucleus and identify signaling events that are potential targets for modulating Notch activity.
Collapse
Affiliation(s)
- Alexandre P. Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gary A. Bradshaw
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robyn J. Eisert
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emily D. Egan
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lena Tveriakhina
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Julia M. Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew N. Dates
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jon C. Aster
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Marian Kalocsay
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen C. Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Lead contact
| |
Collapse
|
88
|
Awoniyi LO, Cunha DM, Sarapulov AV, Hernández-Pérez S, Runsala M, Tejeda-González B, Šuštar V, Balci MÖ, Petrov P, Mattila PK. B cell receptor-induced protein dynamics and the emerging role of SUMOylation revealed by proximity proteomics. J Cell Sci 2023; 136:jcs261119. [PMID: 37417469 PMCID: PMC10445728 DOI: 10.1242/jcs.261119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023] Open
Abstract
Successful B cell activation, which is critical for high-affinity antibody production, is controlled by the B cell antigen receptor (BCR). However, we still lack a comprehensive protein-level view of the very dynamic multi-branched cellular events triggered by antigen binding. Here, we employed APEX2 proximity biotinylation to study antigen-induced changes, 5-15 min after receptor activation, at the vicinity of the plasma membrane lipid rafts, wherein BCR enriches upon activation. The data reveals dynamics of signaling proteins, as well as various players linked to the subsequent processes, such as actin cytoskeleton remodeling and endocytosis. Interestingly, our differential expression analysis identified dynamic responses in various proteins previously not linked to early B cell activation. We demonstrate active SUMOylation at the sites of BCR activation in various conditions and report its functional role in BCR signaling through the AKT and ERK1/2 axes.
Collapse
Affiliation(s)
- Luqman O. Awoniyi
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Diogo M. Cunha
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Alexey V. Sarapulov
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Sara Hernández-Pérez
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Marika Runsala
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Blanca Tejeda-González
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Vid Šuštar
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
| | - M. Özge Balci
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Petar Petrov
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Pieta K. Mattila
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| |
Collapse
|
89
|
MacKenzie TMG, Cisneros R, Maynard RD, Snyder MP. Reverse-ChIP Techniques for Identifying Locus-Specific Proteomes: A Key Tool in Unlocking the Cancer Regulome. Cells 2023; 12:1860. [PMID: 37508524 PMCID: PMC10377898 DOI: 10.3390/cells12141860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
A phenotypic hallmark of cancer is aberrant transcriptional regulation. Transcriptional regulation is controlled by a complicated array of molecular factors, including the presence of transcription factors, the deposition of histone post-translational modifications, and long-range DNA interactions. Determining the molecular identity and function of these various factors is necessary to understand specific aspects of cancer biology and reveal potential therapeutic targets. Regulation of the genome by specific factors is typically studied using chromatin immunoprecipitation followed by sequencing (ChIP-Seq) that identifies genome-wide binding interactions through the use of factor-specific antibodies. A long-standing goal in many laboratories has been the development of a 'reverse-ChIP' approach to identify unknown binding partners at loci of interest. A variety of strategies have been employed to enable the selective biochemical purification of sequence-defined chromatin regions, including single-copy loci, and the subsequent analytical detection of associated proteins. This review covers mass spectrometry techniques that enable quantitative proteomics before providing a survey of approaches toward the development of strategies for the purification of sequence-specific chromatin as a 'reverse-ChIP' technique. A fully realized reverse-ChIP technique holds great potential for identifying cancer-specific targets and the development of personalized therapeutic regimens.
Collapse
Affiliation(s)
| | - Rocío Cisneros
- Sarafan ChEM-H/IMA Postbaccalaureate Fellow in Target Discovery, Stanford University, Stanford, CA 94305, USA
| | - Rajan D Maynard
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
90
|
Hope TO, Reyes-Robles T, Ryu KA, Mauries S, Removski N, Maisonneuve J, Oslund RC, Fadeyi OO, Frenette M. Targeted proximity-labelling of protein tyrosines via flavin-dependent photoredox catalysis with mechanistic evidence for a radical-radical recombination pathway. Chem Sci 2023; 14:7327-7333. [PMID: 37416718 PMCID: PMC10321502 DOI: 10.1039/d3sc00638g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
Flavin-based photocatalysts such as riboflavin tetraacetate (RFT) serve as a robust platform for light-mediated protein labelling via phenoxy radical-mediated tyrosine-biotin phenol coupling on live cells. To gain insight into this coupling reaction, we conducted detailed mechanistic analysis for RFT-photomediated activation of phenols for tyrosine labelling. Contrary to previously proposed mechanisms, we find that the initial covalent binding step between the tag and tyrosine is not radical addition, but rather radical-radical recombination. The proposed mechanism may also explain the mecha-nism of other reported tyrosine-tagging approaches. Competitive kinetics experiments show that phenoxyl radicals are generated with several reactive intermediates in the proposed mechanism-primarily with the excited riboflavin-photocatalyst or singlet oxygen-and these multiple pathways for phenoxyl radical generation from phenols increase the likelihood of radical-radical recombination.
Collapse
Affiliation(s)
- Taylor O Hope
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | | | - Keun Ah Ryu
- Exploratory Science Center, Merck & Co., Inc. Cambridge MA USA
| | - Steven Mauries
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | - Nicole Removski
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | - Jacinthe Maisonneuve
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | - Rob C Oslund
- Exploratory Science Center, Merck & Co., Inc. Cambridge MA USA
| | | | - Mathieu Frenette
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| |
Collapse
|
91
|
Kumar G, Fang S, Golosova D, Lu KT, Brozoski DT, Vazirabad I, Sigmund CD. Structure and Function of RhoBTB1 Required for Substrate Specificity and Cullin-3 Ubiquitination. FUNCTION 2023; 4:zqad034. [PMID: 37575477 PMCID: PMC10413933 DOI: 10.1093/function/zqad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
We identified Rho-related BTB domain containing 1 (RhoBTB1) as a key regulator of phosphodiesterase 5 (PDE5) activity, and through PDE5, a regulator of vascular tone. We identified the binding interface for PDE5 on RhoBTB1 by truncating full-length RhoBTB1 into its component domains. Co-immunoprecipitation analyses revealed that the C-terminal half of RhoBTB1 containing its two BTB domains and the C-terminal domain (B1B2C) is the minimal region required for PDE5 recruitment and subsequent proteasomal degradation via Cullin-3 (CUL3). The C-terminal domain was essential in recruiting PDE5 as constructs lacking this region could not participate in PDE5 binding or proteasomal degradation. We also identified Pro353 and Ser363 as key amino acid residues in the B1B2C region involved in CUL3 binding to RhoBTB1. Mutation of either of these residues exhibited impaired CUL3 binding and PDE5 degradation, although the binding to PDE5 was preserved. Finally, we employed ascorbate peroxidase 2 (APEX2) proximity labeling using a B1B2C-APEX2 fusion protein as bait to capture unknown RhoBTB1 binding partners. Among several B1B2C-binding proteins identified and validated, we focused on SET domain containing 2 (SETD2). SETD2 and RhoBTB1 directly interacted, and the level of SETD2 increased in response to pharmacological inhibition of the proteasome or Cullin complex, CUL3 deletion, and RhoBTB1-inhibition with siRNA. This suggests that SETD2 is regulated by the RhoBTB1-CUL3 axis. Future studies will determine whether SETD2 plays a role in cardiovascular function.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shi Fang
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daria Golosova
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ko-Ting Lu
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel T Brozoski
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ibrahim Vazirabad
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
92
|
Chen Y, Cao X, Loh KH, Slavoff SA. Chemical labeling and proteomics for characterization of unannotated small and alternative open reading frame-encoded polypeptides. Biochem Soc Trans 2023; 51:1071-1082. [PMID: 37171061 PMCID: PMC10317152 DOI: 10.1042/bst20221074] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Thousands of unannotated small and alternative open reading frames (smORFs and alt-ORFs, respectively) have recently been revealed in mammalian genomes. While hundreds of mammalian smORF- and alt-ORF-encoded proteins (SEPs and alt-proteins, respectively) affect cell proliferation, the overwhelming majority of smORFs and alt-ORFs remain uncharacterized at the molecular level. Complicating the task of identifying the biological roles of smORFs and alt-ORFs, the SEPs and alt-proteins that they encode exhibit limited sequence homology to protein domains of known function. Experimental techniques for the functionalization of these gene classes are therefore required. Approaches combining chemical labeling and quantitative proteomics have greatly advanced our ability to identify and characterize functional SEPs and alt-proteins in high throughput. In this review, we briefly describe the principles of proteomic discovery of SEPs and alt-proteins, then summarize how these technologies interface with chemical labeling for identification of SEPs and alt-proteins with specific properties, as well as in defining the interactome of SEPs and alt-proteins.
Collapse
Affiliation(s)
- Yanran Chen
- Department of Chemistry, Yale University, New Haven, CT, U.S.A
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, U.S.A
| | - Xiongwen Cao
- Department of Chemistry, Yale University, New Haven, CT, U.S.A
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, U.S.A
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, U.S.A
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ken H. Loh
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, U.S.A
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Sarah A. Slavoff
- Department of Chemistry, Yale University, New Haven, CT, U.S.A
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, U.S.A
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, U.S.A
| |
Collapse
|
93
|
Park A, Kim KE, Park I, Lee SH, Park KY, Jung M, Li X, Sleiman MB, Lee SJ, Kim DS, Kim J, Lim DS, Woo EJ, Lee EW, Han BS, Oh KJ, Lee SC, Auwerx J, Mun JY, Rhee HW, Kim WK, Bae KH, Suh JM. Mitochondrial matrix protein LETMD1 maintains thermogenic capacity of brown adipose tissue in male mice. Nat Commun 2023; 14:3746. [PMID: 37353518 PMCID: PMC10290150 DOI: 10.1038/s41467-023-39106-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/31/2023] [Indexed: 06/25/2023] Open
Abstract
Brown adipose tissue (BAT) has abundant mitochondria with the unique capability of generating heat via uncoupled respiration. Mitochondrial uncoupling protein 1 (UCP1) is activated in BAT during cold stress and dissipates mitochondrial proton motive force generated by the electron transport chain to generate heat. However, other mitochondrial factors required for brown adipocyte respiration and thermogenesis under cold stress are largely unknown. Here, we show LETM1 domain-containing protein 1 (LETMD1) is a BAT-enriched and cold-induced protein required for cold-stimulated respiration and thermogenesis of BAT. Proximity labeling studies reveal that LETMD1 is a mitochondrial matrix protein. Letmd1 knockout male mice display aberrant BAT mitochondria and fail to carry out adaptive thermogenesis under cold stress. Letmd1 knockout BAT is deficient in oxidative phosphorylation (OXPHOS) complex proteins and has impaired mitochondrial respiration. In addition, BAT-specific Letmd1 deficient mice exhibit phenotypes identical to those observed in Letmd1 knockout mice. Collectively, we demonstrate that the BAT-enriched mitochondrial matrix protein LETMD1 plays a tissue-autonomous role that is essential for BAT mitochondrial function and thermogenesis.
Collapse
Affiliation(s)
- Anna Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kwang-Eun Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Isaac Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Heon Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Kun-Young Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Su Jeong Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Dae-Soo Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
- Digital Biotech Innovation Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Dae-Sik Lim
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Eui-Jeon Woo
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
- Disease Target Structure Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Eun Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Baek Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
- Biodefense Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea.
- School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
94
|
Hou X, Zhang X, Zou H, Guan M, Fu C, Wang W, Zhang ZR, Geng Y, Chen Y. Differential and substrate-specific inhibition of γ-secretase by the C-terminal region of ApoE2, ApoE3, and ApoE4. Neuron 2023; 111:1898-1913.e5. [PMID: 37040764 DOI: 10.1016/j.neuron.2023.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/16/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023]
Abstract
Aberrant low γ-secretase activity is associated with most of the presenilin mutations that underlie familial Alzheimer's disease (fAD). However, the role of γ-secretase in the more prevalent sporadic AD (sAD) remains unaddressed. Here, we report that human apolipoprotein E (ApoE), the most important genetic risk factor of sAD, interacts with γ-secretase and inhibits it with substrate specificity in cell-autonomous manners through its conserved C-terminal region (CT). This ApoE CT-mediated inhibitory activity is differentially compromised in different ApoE isoforms, resulting in an ApoE2 > ApoE3 > ApoE4 potency rank order inversely correlating to their associated AD risk. Interestingly, in an AD mouse model, neuronal ApoE CT migrates to amyloid plaques in the subiculum from other regions and alleviates the plaque burden. Together, our data reveal a hidden role of ApoE as a γ-secretase inhibitor with substrate specificity and suggest that this precision γ-inhibition by ApoE may protect against the risk of sAD.
Collapse
Affiliation(s)
- Xianglong Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuexin Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingfeng Guan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoying Fu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China.
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China.
| |
Collapse
|
95
|
Panda M, Kalita E, Singh S, Rao A, Prajapati VK. Application of functional proteomics in understanding RNA virus-mediated infection. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:301-325. [PMID: 38220429 DOI: 10.1016/bs.apcsb.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Together with the expansion of genome sequencing research, the number of protein sequences whose function is yet unknown is increasing dramatically. The primary goals of functional proteomics, a developing area of study in the realm of proteomic science, are the elucidation of the biological function of unidentified proteins and the molecular description of cellular systems at the molecular level. RNA viruses have emerged as the cause of several human infectious diseases with large morbidity and fatality rates. The introduction of high-throughput sequencing tools and genetic-based screening approaches over the last few decades has enabled researchers to find previously unknown and perplexing elements of RNA virus replication and pathogenesis on a scale never feasible before. Viruses, on the other hand, frequently disrupt cellular proteostasis, macromolecular complex architecture or stoichiometry, and post-translational changes to take over essential host activities. Because of these consequences, structural and global protein and proteoform monitoring is highly necessiated. Mass spectrometry (MS) has the potential to elucidate key details of virus-host interactions and speed up the identification of antiviral targets, giving precise data on the stoichiometry of cellular and viral protein complexes as well as mechanistic insights, has lately emerged as a key part of the RNA virus biology toolbox as a functional proteomics approach. Affinity-based techniques are primarily employed to identify interacting proteins in stable complexes in living organisms. A protein's biological role is strongly suggested by its relationship with other members of a certain protein complex that is involved in a particular process. With a particular emphasis on the most recent advancements in defining host responses and their translational implications to uncover novel tractable antiviral targets, this chapter provides insight on several functional proteomics techniques in RNA virus biology.
Collapse
Affiliation(s)
- Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India; Department of Neurology. Experimental Research in Stroke and Inflammation (ERSI),University Medical Center Hamburg-Eppendorf Martinistraße Hamburg, Germany
| | - Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
96
|
Ray A, Wen J, Yammine L, Culver J, Garren J, Xue L, Hales K, Xiang Q, Birnbaum MJ, Zhang BB, Monetti M, McGraw TE. GLUT4 dynamic subcellular localization is controlled by AMP kinase activation as revealed by proximal proteome mapping in human muscle cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543897. [PMID: 37333333 PMCID: PMC10274730 DOI: 10.1101/2023.06.06.543897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Regulation of glucose transport into muscle and adipocytes, central for control of whole-body metabolism, is determined by the amount of GLUT4 glucose transporter in the plasma membrane ( PM ). Physiologic signals (activated insulin receptor or AMP kinase [ AMPK ]), acutely increase PM GLUT4 to enhance glucose uptake. Here we show in kinetic studies that intracellular GLUT4 is in equilibrium with the PM in unstimulated cultured human skeletal muscle cells, and that AMPK promotes GLUT4 redistribution to the PM by regulating both exocytosis and endocytosis. AMPK-stimulation of exocytosis requires Rab10 and Rab GTPase activating protein TBC1D4, requirements shared with insulin control of GLUT4 in adipocytes. Using APEX2 proximity mapping, we identify, at high-density and high-resolution, the GLUT4 proximal proteome, revealing GLUT4 traverses both PM proximal and distal compartments in unstimulated muscle cells. These data support intracellular retention of GLUT4 in unstimulated muscle cells by a dynamic mechanism dependent on the rates of internalization and recycling. AMPK promoted GLUT4 translocation to the PM involves redistribution of GLUT4 among the same compartments traversed in unstimulated cells, with a significant redistribution of GLUT4 from the PM distal Trans Golgi Network Golgi compartments. The comprehensive proximal protein mapping provides an integrated, whole cell accounting of GLUT4's localization at a resolution of ∼20 nm, a structural framework for understanding the molecular mechanisms regulating GLUT4 trafficking downstream of different signaling inputs in physiologically relevant cell type and as such, sheds new light on novel key pathways and molecular components as potential therapeutic approaches to modulate muscle glucose uptake.
Collapse
|
97
|
Zhao J, Veeranan-Karmegam R, Baker FC, Mysona BA, Bagchi P, Liu Y, Smith SB, Gonsalvez GB, Bollinger KE. Defining the ligand-dependent proximatome of the sigma 1 receptor. Front Cell Dev Biol 2023; 11:1045759. [PMID: 37351276 PMCID: PMC10284605 DOI: 10.3389/fcell.2023.1045759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Sigma 1 Receptor (S1R) is a therapeutic target for a wide spectrum of pathological conditions ranging from neurodegenerative diseases to cancer and COVID-19. S1R is ubiquitously expressed throughout the visceral organs, nervous, immune and cardiovascular systems. It is proposed to function as a ligand-dependent molecular chaperone that modulates multiple intracellular signaling pathways. The purpose of this study was to define the S1R proximatome under native conditions and upon binding to well-characterized ligands. This was accomplished by fusing the biotin ligase, Apex2, to the C terminus of S1R. Cells stably expressing S1R-Apex or a GFP-Apex control were used to map proximal proteins. Biotinylated proteins were labeled under native conditions and in a ligand dependent manner, then purified and identified using quantitative mass spectrometry. Under native conditions, S1R biotinylates over 200 novel proteins, many of which localize within the endomembrane system (endoplasmic reticulum, Golgi, secretory vesicles) and function within the secretory pathway. Under conditions of cellular exposure to either S1R agonist or antagonist, results show enrichment of proteins integral to secretion, extracellular matrix formation, and cholesterol biosynthesis. Notably, Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) displays increased binding to S1R under conditions of treatment with Haloperidol, a well-known S1R antagonist; whereas Low density lipoprotein receptor (LDLR) binds more efficiently to S1R upon treatment with (+)-Pentazocine ((+)-PTZ), a classical S1R agonist. Furthermore, we demonstrate that the ligand bound state of S1R correlates with specific changes to the cellular secretome. Our results are consistent with the postulated role of S1R as an intracellular chaperone and further suggest important and novel functionalities related to secretion and cholesterol metabolism.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
| | - Rajalakshmi Veeranan-Karmegam
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Frederick C. Baker
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Barbara A. Mysona
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, United States
| | - Yutao Liu
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Sylvia B. Smith
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Graydon B. Gonsalvez
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Kathryn E. Bollinger
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
98
|
Yang Z, Zhang X, Zhuo F, Liu T, Luo Q, Zheng Y, Li L, Yang H, Zhang Y, Wang Y, Liu D, Tu P, Zeng K. Allosteric Activation of Transglutaminase 2 via Inducing an "Open" Conformation for Osteoblast Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206533. [PMID: 37088726 PMCID: PMC10288273 DOI: 10.1002/advs.202206533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/04/2023] [Indexed: 05/03/2023]
Abstract
Osteoblasts play an important role in the regulation of bone homeostasis throughout life. Thus, the damage of osteoblasts can lead to serious skeletal diseases, highlighting the urgent need for novel pharmacological targets. This study introduces chemical genetics strategy by using small molecule forskolin (FSK) as a probe to explore the druggable targets for osteoporosis. Here, this work reveals that transglutaminase 2 (TGM2) served as a major cellular target of FSK to obviously induce osteoblast differentiation. Then, this work identifies a previously undisclosed allosteric site in the catalytic core of TGM2. In particular, FSK formed multiple hydrogen bonds in a saddle-like domain to induce an "open" conformation of the β-sandwich domain in TGM2, thereby promoting the substrate protein crosslinks by incorporating polyamine. Furthermore, this work finds that TGM2 interacted with several mitochondrial homeostasis-associated proteins to improve mitochondrial dynamics and ATP production for osteoblast differentiation. Finally, this work observes that FSK effectively ameliorated osteoporosis in the ovariectomy mice model. Taken together, these findings show a previously undescribed pharmacological allosteric site on TGM2 for osteoporosis treatment, and also provide an available chemical tool for interrogating TGM2 biology and developing bone anabolic agent.
Collapse
Affiliation(s)
- Zhuo Yang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Xiao‐Wen Zhang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Fang‐Fang Zhuo
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Ting‐Ting Liu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Qian‐Wei Luo
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Yong‐Zhe Zheng
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Ling Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Heng Yang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Yi‐Chi Zhang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Yan‐Hang Wang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Dan Liu
- Proteomics LaboratoryMedical and Healthy Analytical CenterPeking University Health Science CenterBeijing100191China
| | - Peng‐Fei Tu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Ke‐Wu Zeng
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| |
Collapse
|
99
|
Rim EY, Nusse R. APEX2-Mediated Proximity Labeling of Wnt Receptor Interactors Upon Pathway Activation. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000817. [PMID: 37260921 PMCID: PMC10227642 DOI: 10.17912/micropub.biology.000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
The Wnt signaling pathway regulates metazoan development, tissue homeostasis, and regeneration. Many outstanding questions in Wnt signal transduction revolve around the molecular events immediately following Wnt-receptor interactions. To identify binding partners of the Wnt receptor Frizzled 7 (Fzd7) upon pathway activation, we tagged Fzd7 with APEX2, an enzyme that allows biotinylation of proximal interactors with high temporal and spatial resolution. Upon confirming proper localization and signaling activity of APEX2-tagged Fzd7, we labeled proximal interactors of Fzd7 with or without Wnt3a stimulation. Mass spectrometry analysis of biotinylated interactors identified several known Wnt pathway proteins. Top interactors enriched upon Wnt treatment were involved in actin cytoskeleton regulation, vesicle trafficking, or phospholipid modification. Proteins enriched in the Wnt-activated Fzd7 interactome that are without established roles in Wnt signaling warrant further examination.
Collapse
Affiliation(s)
- Ellen Youngsoo Rim
- Department of Developmental Biology, Stanford University School of Medicine
- Howard Hughes Medical Institute
| | - Roeland Nusse
- Department of Developmental Biology, Stanford University School of Medicine
- Howard Hughes Medical Institute
| |
Collapse
|
100
|
Joosten J, van Sluijs B, Vree Egberts W, Emmaneel M, W T C Jansen P, Vermeulen M, Boelens W, Bonger KM, Spruijt E. Dynamics and composition of small heat shock protein condensates and aggregates. J Mol Biol 2023; 435:168139. [PMID: 37146746 DOI: 10.1016/j.jmb.2023.168139] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Small heat shock proteins (sHSPs) are essential ATP-independent chaperones that protect the cellular proteome. These proteins assemble into polydisperse oligomeric structures, the composition of which dramatically affects their chaperone activity. The biomolecular consequences of variations in sHSP ratios, especially inside living cells, remain elusive. Here, we study the consequences of altering the relative expression levels of HspB2 and HspB3 in HEK293T cells. These chaperones are partners in a hetero-oligomeric complex, and genetic mutations that abolish their mutual interaction are associated with myopathic disorders. HspB2 displays three distinct phenotypes when co-expressed with HspB3 at varying ratios. Expression of HspB2 alone leads to formation of liquid nuclear condensates, while shifting the stoichiometry towards HspB3 resulted in the formation of large solid-like aggregates. Only cells co-expressing HspB2 with a limited amount of HspB3 formed fully soluble complexes that were distributed homogeneously throughout the nucleus. Strikingly, both condensates and aggregates were reversible, as shifting the HspB2:HspB3 balance in situ resulted in dissolution of these structures. To uncover the molecular composition of HspB2 condensates and aggregates, we used APEX-mediated proximity labelling. Most proteins interact transiently with the condensates and were neither enriched nor depleted in these cells. In contrast, we found that HspB2:HspB3 aggregates sequestered several disordered proteins and autophagy factors, suggesting that the cell is actively attempting to clear these aggregates. This study presents a striking example of how changes in the relative expression levels of interacting proteins affects their phase behavior. Our approach could be applied to study the role of protein stoichiometry and the influence of client binding on phase behavior in other biomolecular condensates and aggregates.
Collapse
Affiliation(s)
- Joep Joosten
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands; Physical Organic Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands; Synthetic Organic Chemistry, Radboud University Institute for Molecular and Materials, the Netherlands.
| | - Bob van Sluijs
- Physical Organic Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Wilma Vree Egberts
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Martin Emmaneel
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- Molecular Biology, Radboud University Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Molecular Biology, Radboud University Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Wilbert Boelens
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Kimberly M Bonger
- Synthetic Organic Chemistry, Radboud University Institute for Molecular and Materials, the Netherlands
| | - Evan Spruijt
- Physical Organic Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| |
Collapse
|