51
|
Shah N, Soma SR, Quaye MB, Mahmoud D, Ahmed S, Malkoochi A, Obaid G. A Physiochemical, In Vitro, and In Vivo Comparative Analysis of Verteporfin-Lipid Conjugate Formulations: Solid Lipid Nanoparticles and Liposomes. ACS APPLIED BIO MATERIALS 2024; 7:4427-4441. [PMID: 38934648 PMCID: PMC11253097 DOI: 10.1021/acsabm.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
VisudyneⓇ, a liposomal formulation of verteporfin (benzoporphyrin derivative; BPD), is the only nanomedicine approved to date for photodynamic therapy (PDT). We have previously demonstrated that BPD conjugated to the lysophospholipid 1-arachidoyl-2-hydroxy-sn-glycero-3-phosphocholine (BPD-PC) exhibits the greatest physical stability in liposomes, while maintaining cancer cell phototoxicity, from a panel of BPD lipid conjugates evaluated. In this study, we prepared 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-based solid lipid nanoparticles (LNPs) that stably entrap BPD-PC, which resemble the composition of the SpikevaxⓇ Moderna COVID-19 vaccine, and compared them to a DPPC based liposomal formulation (Lipo BPD-PC). We evaluated the photochemical, optical, and phototherapeutic properties of both formulations. We also investigated the in vivo distribution and tumor microdistribution of both formulations. Our results demonstrated that Lipo BPD-PC is able to generate 17% more singlet oxygen than LNP BPD-PC, while interestingly, LNP BPD-PC is able to produce 76% more hydroxyl radicals and/or peroxynitrite anion. Importantly, only 28% of BPD-PC leaches out of the LNP BPD-PC formulation during 7 days of incubation in serum at 37 °C, while 100% of BPD-PC leaches out of the Lipo BPD-PC formulation under the same conditions. Despite these differences, there was no significant difference in cellular uptake of BPD-PC or phototoxicity in CT1BA5 murine pancreatic cancer cells (derived from a genetically engineered mouse model). Interestingly, PDT using LNP BPD-PC was more efficient at inducing immunogenic cell death (calreticulin membrane translocation) than Lipo BPD-PC when using IC25 and IC50 PDT doses. In vivo studies revealed that CT1BA5 tumor fluorescence signals from BPD-PC were 2.41-fold higher with Lipo BPD-PC than with LNP BPD-PC; however, no significant difference was observed in tumor tissue selectivity or tumor penetration. As such, we present LNP BPD-PC as a unique and more stable nanoplatform to carry BPD lipid conjugates, such as BPD-PC, with a potential for future photodynamic immune priming studies and multiagent drug delivery.
Collapse
Affiliation(s)
- Nimit Shah
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Siddharth Reddy Soma
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Maxwell Bortei Quaye
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Doha Mahmoud
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Sarah Ahmed
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Ashritha Malkoochi
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| | - Girgis Obaid
- Department
of Bioengineering, University of Texas at
Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
52
|
Simões MM, Paiva KLR, de Souza IF, Mello VC, Martins da Silva IG, Souza PEN, Muehlmann LA, Báo SN. The Potential of Photodynamic Therapy Using Solid Lipid Nanoparticles with Aluminum Phthalocyanine Chloride as a Nanocarrier for Modulating Immunogenic Cell Death in Murine Melanoma In Vitro. Pharmaceutics 2024; 16:941. [PMID: 39065638 PMCID: PMC11280393 DOI: 10.3390/pharmaceutics16070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Photodynamic therapy (PDT) uses a photosensitizer to generate reactive oxygen species (ROS) that kill target cells. In cancer treatments, PDT can potentially induce immunogenic cell death (ICD), which is characterized by a well-controlled exposure of damage-associated molecular patterns (DAMPs) that activate dendritic cells (DCs) and consequently modulate the immune response in the tumor microenvironment. However, PDT still has limitations, such as the activity of photosensitizers in aqueous media and poor bioavailability. Therefore, a new photosensitizer system, SLN-AlPc, has been developed to improve the therapeutic efficacy of PDT. In vitro experiments showed that the light-excited nanocarrier increased ROS production in murine melanoma B16-F10 cells and modulated the profile of DCs. PDT induced cell death accompanied by the exposure of DAMPs and the formation of autophagosomes. In addition, the DCs exposed to PDT-treated B16-F10 cells exhibited morphological changes, increased expression of MHCII, CD86, CD80, and production of IL-12 and IFN-γ, suggesting immune activation towards an antitumor profile. These results indicate that the SLNs-AlPc protocol has the potential to improve PDT efficacy by inducing ICD and activating DCs.
Collapse
Affiliation(s)
- Marina M. Simões
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasilia 70910-900, DF, Brazil; (M.M.S.); (K.L.R.P.); (I.F.d.S.); (V.C.M.); (I.G.M.d.S.)
| | - Karen L. R. Paiva
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasilia 70910-900, DF, Brazil; (M.M.S.); (K.L.R.P.); (I.F.d.S.); (V.C.M.); (I.G.M.d.S.)
| | - Isadora Florêncio de Souza
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasilia 70910-900, DF, Brazil; (M.M.S.); (K.L.R.P.); (I.F.d.S.); (V.C.M.); (I.G.M.d.S.)
| | - Victor Carlos Mello
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasilia 70910-900, DF, Brazil; (M.M.S.); (K.L.R.P.); (I.F.d.S.); (V.C.M.); (I.G.M.d.S.)
| | - Ingrid Gracielle Martins da Silva
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasilia 70910-900, DF, Brazil; (M.M.S.); (K.L.R.P.); (I.F.d.S.); (V.C.M.); (I.G.M.d.S.)
| | - Paulo Eduardo Narcizo Souza
- Optical Spectroscopy Laboratory, Institute of Physics, University of Brasilia, Brasilia 70910-900, DF, Brazil;
| | - Luis Alexandre Muehlmann
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia 70910-900, DF, Brazil;
| | - Sônia Nair Báo
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasilia 70910-900, DF, Brazil; (M.M.S.); (K.L.R.P.); (I.F.d.S.); (V.C.M.); (I.G.M.d.S.)
| |
Collapse
|
53
|
Zhang X, Wang J, Hu MH. Promising G-Quadruplex-Targeted Dibenzoquinoxaline Type-1 Photosensitizer Triggers DNA Damage in Triple-Negative Breast Cancer Cells. ACS Pharmacol Transl Sci 2024; 7:2174-2184. [PMID: 39022360 PMCID: PMC11249623 DOI: 10.1021/acsptsci.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
G-quadruplexes (G4s) are potential drug targets in cancer treatment. However, the G4-targeted ligands seem to lack sufficient selectivity between tumors and normal tissues, appealing for a new modified anticancer strategy on the basis of them. Type-1 photodynamic therapy (PDT) is a promising strategy possessing excellent spatiotemporal precision for solid tumors with a hypoxic microenvironment. However, type-1 photosensitizers that target G4s and induce in situ photodamage have never been previously reported. In this study, we reported a promising type-1 photosensitizer based on a G4-targeted, high-contrast fluorescent ligand (TR2). The subsequent studies demonstrated that TR2 could transfer from lysosomes to nuclei and induce elevated G4 formation as well as DNA damage upon irradiation. Notably, it was observed that TR2 may not activate DNA damage repair machinery upon irradiation, suggesting a durable, strong effect on inducing DNA damage. Consequently, light-irradiated TR2 exhibited excellent photocytotoxicity on triple-negative breast cancer cell proliferation (at nanomolar concentration) and showed obvious inhibition on the growth of three-dimensional (3D) tumor spheroids. Finally, RNA-seq analysis demonstrated that TR2-mediated PDT may have a negative impact on enhancing the DNA damage repair machinery and may activate the antitumor immunity pathways. Overall, this study provided a promising chemical tool for image-guided PDT.
Collapse
Affiliation(s)
- Xiao Zhang
- Nation-Regional Engineering
Lab for Synthetic Biology of Medicine, International Cancer Center,
School of Pharmacy, Shenzhen University
Medical School, Shenzhen 518060, China
| | - Jingxin Wang
- Nation-Regional Engineering
Lab for Synthetic Biology of Medicine, International Cancer Center,
School of Pharmacy, Shenzhen University
Medical School, Shenzhen 518060, China
| | - Ming-Hao Hu
- Nation-Regional Engineering
Lab for Synthetic Biology of Medicine, International Cancer Center,
School of Pharmacy, Shenzhen University
Medical School, Shenzhen 518060, China
| |
Collapse
|
54
|
Yang M, Li K, Zhong L, Bu Y, Ni Y, Wang T, Huang J, Zhang J, Zhou H. Molecular engineering to elevate reactive oxygen species generation for synergetic damage on lipid droplets and mitochondria. Anal Chim Acta 2024; 1311:342734. [PMID: 38816163 DOI: 10.1016/j.aca.2024.342734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Photodynamic therapy (PDT), characterized by high treatment efficiency, absence of drug resistance, minimal trauma, and few side effects, has gradually emerged as a novel and alternative clinical approach compared to traditional surgical resection, chemotherapy and radiation. Whereas, considering the limited diffusion distance and short lifespan of reactive oxygen species (ROS), as well as the hypoxic tumor microenvironment, it is crucial to design photosensitizers (PSs) with suborganelle specific targeting ability and low-oxygen dependence for accurate and highly efficient photodynamic therapy. In this study, we have meticulously designed three PSs, namely CIH, CIBr, and CIPh, based on molecular engineering. Theoretical calculation demonstrate that the three compounds possess good molecular planarity with calculated S1-T1 energy gaps (ΔES1-T1) of 1.04 eV for CIH, 0.92 eV for CIBr, and 0.84 eV for CIPh respectively. Notably, CIPh showcases remarkable dual subcellular targeting capability towards lipid droplets (LDs) and mitochondria owing to the synergistic effect of lipophilicity derived from coumarin's inherent properties combined with electropositivity conferred by indole salt cations. Furthermore, CIPh demonstrates exclusive release of singlet oxygen (1O2)and highly efficient superoxide anion free radicals(O2⦁-) upon light irradiation supported by its smallest S1-T1 energy gap (ΔES1-T1 = 0.84 eV). This leads to compromised integrity of LDs along with mitochondrial membrane potential, resulting in profound apoptosis induction in HepG2 cells. This successful example of molecular engineering guided by density functional theory (DFT) provides valuable experience for the development of more effective PSs with superior dual targeting specificity. It also provides a new idea for the development of advanced PSs with efficient and accurate ROS generation ability towards fluorescence imaging-guided hypoxic tumor therapy.
Collapse
Affiliation(s)
- Mingdi Yang
- Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Kaiwen Li
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Liangchen Zhong
- Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Yingcui Bu
- School of Materials and Chemistry, Anhui Agricultural University, 230036, Hefei, PR China.
| | - Yingyong Ni
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Jing Huang
- Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Jingyan Zhang
- Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China.
| |
Collapse
|
55
|
Li R, Yang T, Peng X, Feng Q, Hou Y, Zhu J, Chu D, Duan X, Zhang Y, Zhang M. Enhancing the Photosensitivity of Hypocrellin A by Perylene Diimide Metallacage-Based Host-Guest Complexation for Photodynamic Therapy. NANO-MICRO LETTERS 2024; 16:226. [PMID: 38916749 PMCID: PMC11199435 DOI: 10.1007/s40820-024-01438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024]
Abstract
The development of supramolecular hosts which can efficiently encapsulate photosensitizers to improve the photodynamic efficacy holds great promise for cancer therapy. Here, we report two perylene diimide-based metallacages that can form stable host-guest complexes with planar conjugated molecules including polycyclic aromatic hydrocarbons and photosensitizers (hypocrellin A). Such host-guest complexation not only prevents the aggregation of photosensitizers in aqueous environments, but also offers fluorescence resonance energy transfer (FRET) from the metallacage to the photosensitizers to further improve the singlet oxygen generation (ΦΔ = 0.66). The complexes are further assembled with amphiphilic polymers, forming nanoparticles with improved stability for anticancer study. Both in vitro and in vivo studies indicate that the nanoparticles display excellent anticancer activities upon light irradiation, showing great potential for cancer photodynamic therapy. This study provides a straightforward and effective approach for enhancing the photosensitivity of conventional photosensitizers via host-guest complexation-based FRET, which will open a new avenue for host-guest chemistry-based supramolecular theranostics.
Collapse
Affiliation(s)
- Rongrong Li
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xiuhong Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Qian Feng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, People's Republic of China
| | - Jiao Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xianglong Duan
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, People's Republic of China.
| | - Yanming Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
56
|
Khatun MN, Nandy S, Roy H, Ghosh SS, Kumar S, Iyer PK. Sulphur-atom positional engineering in perylenimide: structure-property relationships and H-aggregation directed type-I photodynamic therapy. Chem Sci 2024; 15:9298-9317. [PMID: 38903228 PMCID: PMC11186329 DOI: 10.1039/d4sc01180e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
An innovative design strategy of placing sulfur (S)-atoms within the pendant functional groups and at carbonyl positions in conventional perylenimide (PNI-O) has been demonstrated to investigate the condensed state structure-property relationship and potential photodynamic therapy (PDT) application. Incorporation of simply S-atoms at the peri-functionalized perylenimide (RPNI-O) leads to an aggregation-induced enhanced emission luminogen (AIEEgen), 2-hexyl-8-(thianthren-1-yl)-1H-benzo[5,10]anthra[2,1,9-def]isoquinoline-1,3(2H)-dione (API), which achieves a remarkable photoluminescence quantum yield (Φ PL) of 0.85 in aqueous environments and established novel AIE mechanisms. Additionally, substitution of the S-atom at the carbonyl position in RPNI-O leads to thioperylenimides (RPNI-S): 2-hexyl-8-phenyl-1H-benzo[5,10]anthra[2,1,9-def]isoquinoline-1,3(2H)-dithione (PPIS), 8-([2,2'-bithiophen]-5-yl)-2-hexyl-1H-benzo[5,10]anthra[2,1,9-def]isoquinoline-1,3(2H)-dithione (THPIS), and 2-hexyl-8-(thianthren-1-yl)-1H-benzo[5,10]anthra[2,1,9-def]isoquinoline-1,3(2H)-dithion (APIS), with distinct photophysical properties (enlarged spin-orbit coupling (SOC) and Φ PL ≈ 0.00), and developed diverse potent photosensitizers (PSs). The present work provides a novel SOC enhancement mechanism via pronounced H-aggregation. Surprisingly, the lowest singlet oxygen quantum yield (Φ Δ) and theoretical calculation suggest the specific type-I PDT for RPNI-S. Interestingly, RPNI-S efficiently produces superoxide (O2˙-) due to its remarkably lower Gibbs free energy (ΔG) values (THPIS: -40.83 kcal mol-1). The non-toxic and heavy-atom free very specific thio-based PPIS and THPIS PSs showed selective and efficient PDT under normoxia, as a rare example.
Collapse
Affiliation(s)
- Mst Nasima Khatun
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781039 Assam India +91-3612582349
| | - Satyendu Nandy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati 781039 Assam India
| | - Hirakjyoti Roy
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati 781039 Assam India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati 781039 Assam India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati 781039 Assam India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati 781039 Assam India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781039 Assam India +91-3612582349
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati 781039 Assam India
| |
Collapse
|
57
|
Budhu S, Kim K, Yip W, La Rosa S, Jebiwott S, Cai L, Holland A, Thomas J, Preise D, Somma A, Gordon B, Scherz A, Wolchok JD, Erinjeri J, Merghoub T, Coleman JA. Comparative study of immune response to local tumor destruction modalities in a murine breast cancer model. Front Oncol 2024; 14:1405486. [PMID: 38957315 PMCID: PMC11217310 DOI: 10.3389/fonc.2024.1405486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Introduction Immunotherapy is revolutionizing the management of multiple cancer types. However, only a subset of patients responds to immunotherapy. One mechanism of resistance is the absence of immune infiltrates within the tumor. In situ vaccine with local means of tumor destruction that can induce immunogenic cell death have been shown to enhance tumor T cell infiltration and increase efficacy of immune checkpoint blockade. Methods Here, we compare three different forms of localize tumor destruction therapies: radiation therapy (RT), vascular targeted photodynamic therapy (VTP) and cryoablation (Cryo), which are known to induce immunogenic cell death, with their ability to induce local and systemic immune responses in a mouse 4T1 breast cancer model. The effects of combining RT, VTP, Cryo with anti-PD1 was also assessed. Results We observed that RT, VTP and Cryo significantly delayed tumor growth and extended overall survival. In addition, they also induced regression of non-treated distant tumors in a bilateral model suggesting a systemic immune response. Flow cytometry showed that VTP and Cryo are associated with a reduction in CD11b+ myeloid cells (granulocytes, monocytes, and macrophages) in tumor and periphery. An increase in CD8+ T cell infiltration into tumors was observed only in the RT group. VTP and Cryo were associated with an increase in CD4+ and CD8+ cells in the periphery. Conclusion These data suggest that cell death induced by VTP and Cryo elicit similar immune responses that differ from local RT.
Collapse
Affiliation(s)
- Sadna Budhu
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
| | - Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Wesley Yip
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Stephen La Rosa
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sylvia Jebiwott
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Liqun Cai
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Aliya Holland
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
| | - Jasmine Thomas
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Dina Preise
- Department of Plants and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Alex Somma
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Benjamin Gordon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Avigdor Scherz
- Department of Plants and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Jedd D. Wolchok
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
- Department of Immunology, Weill Cornell Medical Center, New York, NY, United States
- Department of Medicine, Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, United States
| | - Joseph Erinjeri
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
- Department of Medicine, Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, United States
| | - Jonathan A. Coleman
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
58
|
Dilenko H, Bartoň Tománková K, Válková L, Hošíková B, Kolaříková M, Malina L, Bajgar R, Kolářová H. Graphene-Based Photodynamic Therapy and Overcoming Cancer Resistance Mechanisms: A Comprehensive Review. Int J Nanomedicine 2024; 19:5637-5680. [PMID: 38882538 PMCID: PMC11179671 DOI: 10.2147/ijn.s461300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive therapy that has made significant progress in treating different diseases, including cancer, by utilizing new nanotechnology products such as graphene and its derivatives. Graphene-based materials have large surface area and photothermal effects thereby making them suitable candidates for PDT or photo-active drug carriers. The remarkable photophysical properties of graphene derivates facilitate the efficient generation of reactive oxygen species (ROS) upon light irradiation, which destroys cancer cells. Surface functionalization of graphene and its materials can also enhance their biocompatibility and anticancer activity. The paper delves into the distinct roles played by graphene-based materials in PDT such as photosensitizers (PS) and drug carriers while at the same time considers how these materials could be used to circumvent cancer resistance. This will provide readers with an extensive discussion of various pathways contributing to PDT inefficiency. Consequently, this comprehensive review underscores the vital roles that graphene and its derivatives may play in emerging PDT strategies for cancer treatment and other medical purposes. With a better comprehension of the current state of research and the existing challenges, the integration of graphene-based materials in PDT holds great promise for developing targeted, effective, and personalized cancer treatments.
Collapse
Affiliation(s)
- Hanna Dilenko
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kateřina Bartoň Tománková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Válková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbora Hošíková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Markéta Kolaříková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukáš Malina
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Kolářová
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
59
|
Panagiotakis S, Mavroidi B, Athanasopoulos A, Charalambidis G, Coutsolelos AG, Pelecanou M, Yannakopoulou K. Amphiphilic Chlorin-β-cyclodextrin Conjugates in Photo-Triggered Drug Delivery: The Role of Aggregation. Chempluschem 2024; 89:e202300743. [PMID: 38345604 DOI: 10.1002/cplu.202300743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Conjugates of chlorins with β-cyclodextrin connected either directly or via a flexible linker were prepared. In aqueous medium these amphiphilic conjugates were photostable, produced singlet oxygen at a rate similar to clinically used temoporfin and formed irregular nanoparticles via aggregation. Successful loading with the chemotherapeutic drug tamoxifen was evidenced in solution by the UV-Vis spectral changes and dynamic light scattering profiles. Incubation of MCF-7 cells with the conjugates revealed intense spotted intracellular fluorescence suggestive of accumulation in endosome/lysosome compartments, and no dark toxicity. Incubation with the tamoxifen-loaded conjugates revealed also practically no dark toxicity. Irradiation of cells incubated with empty conjugates at 640 nm and 4.18 J/cm2 light fluence caused >50 % cell viability reduction. Irradiation following incubation with tamoxifen-loaded conjugates resulted in even higher toxicity (74 %) indicating that the produced reactive oxygen species had triggered tamoxifen release in a photochemical internalization (PCI) mechanism. The chlorin-β-cyclodextrin conjugates displayed less-lasting effects with time, compared to the corresponding porphyrin-β-cyclodextrin conjugates, possibly due to lower tamoxifen loading of their aggregates and/or their less effective lodging in the cell compartments' membranes. The results suggest that further to favorable photophysical properties, other parameters are important for the in vitro effectiveness of the photodynamic systems.
Collapse
Affiliation(s)
- Stylianos Panagiotakis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece
| | - Alexandros Athanasopoulos
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
- current address: Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635, Athens, Greece
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece
| |
Collapse
|
60
|
Sonokawa T, Fujiwara Y, Pan C, Komohara Y, Usuda J. Enhanced systemic antitumor efficacy of PD-1/PD-L1 blockade with immunological response induced by photodynamic therapy. Thorac Cancer 2024; 15:1429-1436. [PMID: 38739102 PMCID: PMC11194119 DOI: 10.1111/1759-7714.15325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an antitumor therapy and has traditionally been regarded as a localized therapy in itself. However, recent reports have shown that it not only exerts a direct cytotoxic effect on cancer cells but also enhances body's tumor immunity. We hypothesized that the immunological response induced by PDT could potentially enhance the efficacy of programmed death-1 (PD-1) / programmed death-ligand 1 (PD-L1) blockade. METHODS The cytotoxic effects of PDT on colon 26 cells were investigated in vitro using the WST assay. We investigated whether the antitumor effect of anti-PD-1 antibodies could be amplified by the addition of PDT. We performed combination therapy by randomly allocating tumor-bearing mice to four treatment groups: control, anti-PD-1 antibodies, PDT, and a combination of anti-PD-1 antibodies and PDT. To analyze the tumor microenvironment after treatment, the tumors were resected and pathologically evaluated. RESULTS The viability rate of colon 26 cells decreased proportionally with the laser dose. In vivo experiments for combined PDT and anti-PD-1 antibody treatment, combination therapy showed an enhanced antitumor effect compared with the control. Immunohistochemical findings of the tumor microenvironment 10 days after PDT indicated that the number of CD8+ cells, the area of Iba-1+ cells and the area expressing PD-L1 were significantly higher in tumors treated with combination therapy than in tumors treated with anti-PD-1 antibody alone, PDT alone, or the control. CONCLUSIONS PDT increased immune cell infiltration into the tumor microenvironment. The immunological response induced by PDT may enhance the efficacy of PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Takumi Sonokawa
- Department of Thoracic SurgeryNippon Medical School HospitalTokyoJapan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Jitsuo Usuda
- Department of Thoracic SurgeryNippon Medical School HospitalTokyoJapan
| |
Collapse
|
61
|
Wang TY, Zhu XY, Jia HR, Zhu YX, Zhou YX, Li YH, Gao CZ, Pan GY, Wu FG. Devastating the Supply Wagons: Multifaceted Liposomes Capable of Exhausting Tumor to Death via Triple Energy Depletion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308861. [PMID: 38372029 DOI: 10.1002/smll.202308861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/08/2024] [Indexed: 02/20/2024]
Abstract
The anabolism of tumor cells can not only support their proliferation, but also endow them with a steady influx of exogenous nutrients. Therefore, consuming metabolic substrates or limiting access to energy supply can be an effective strategy to impede tumor growth. Herein, a novel treatment paradigm of starving-like therapy-triple energy-depleting therapy-is illustrated by glucose oxidase (GOx)/dc-IR825/sorafenib liposomes (termed GISLs), and such a triple energy-depleting therapy exhibits a more effective tumor-killing effect than conventional starvation therapy that only cuts off one of the energy supplies. Specifically, GOx can continuously consume glucose and generate toxic H2O2 in the tumor microenvironment (including tumor cells). After endocytosis, dc-IR825 (a near-infrared cyanine dye) can precisely target mitochondria and exert photodynamic and photothermal activities upon laser irradiation to destroy mitochondria. The anti-angiogenesis effect of sorafenib can further block energy and nutrition supply from blood. This work exemplifies a facile and safe method to exhaust the energy in a tumor from three aspects and starve the tumor to death and also highlights the importance of energy depletion in tumor treatment. It is hoped that this work will inspire the development of more advanced platforms that can combine multiple energy depletion therapies to realize more effective tumor treatment.
Collapse
Affiliation(s)
- Tian-Yu Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Xiao-Yu Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Yong-Xi Zhou
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Yan-Hong Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Cheng-Zhe Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Guang-Yu Pan
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541100, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| |
Collapse
|
62
|
Sonokawa T, Ino M, Kera S, Tanaka M, Suzuki K, Tomioka Y, Machida Y, Kawasaki N, Usuda J. Long-term outcomes of PDT for centrally-located early lung cancers with tumor diameters > 2.0 cm. Photodiagnosis Photodyn Ther 2024; 47:104200. [PMID: 38723757 DOI: 10.1016/j.pdpdt.2024.104200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Photodynamic therapy (PDT) is used for the treatment of centrally-located early lung cancers (CLELCs) and is recommended for tumors ≤ 1.0 cm in diameter. We previously reported that PDT using talaporfin sodium, second-generation photosensitizer, for tumors > 1.0 cm but ≤ 2.0 cm in diameter was able to achieve a therapeutic outcome comparable to that of tumors with a diameter of ≤ 1.0 cm. However, the effectiveness of PDT using talaporfin sodium for tumors > 2.0 cm in diameter remains unclear. We conducted a retrospective analysis of cases in which PDT was performed for flat-type CLELCs with tumor diameters of > 2.0 cm. METHODS We retrospectively analyzed seven cases (eight lesions) with tumor diameters > 2.0 cm and no evidence of extracartilaginous invasion or lymph node metastasis. RESULTS All the patients underwent multiple PDT sessions. The PDT treatment results over the study period were partial response in one case (14.3 %), stable disease (SD) in three cases (42.9 %), and progressive disease (PD) in three cases (42.9 %). At the time of writing this report, five of seven cases (71.4 %) are still undergoing treatment. The duration of SD-the time from the start of treatment until the criteria for PD were met (SD or better maintained)-ranged from 7 to 52 months (mean, 25.3 months). CONCLUSIONS "Maintenance PDT" for CLELCs > 2.0 cm in diameter has the potential to inhibit tumor progression in the long term while maintaining quality of life, rather than simply aiming only for a quick radical cure.
Collapse
Affiliation(s)
- Takumi Sonokawa
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Mitsunobu Ino
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Satoshi Kera
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Mariko Tanaka
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Kento Suzuki
- Department of Thoracic Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba 270-1694, Japan
| | - Yuuya Tomioka
- Department of Thoracic Surgery, Nippon Medical School Musashikosugi Hospital, 1-383 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-8533, Japan
| | - Yuichiro Machida
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Norihito Kawasaki
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Jitsuo Usuda
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan.
| |
Collapse
|
63
|
Wang Y, Wang Y, Zhong H, Xiong L, Song J, Zhang X, He T, Zhou X, Li L, Zhen D. Recent progress of UCNPs-MoS 2 nanocomposites as a platform for biological applications. J Mater Chem B 2024; 12:5024-5038. [PMID: 38712810 DOI: 10.1039/d3tb02958a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Composite materials can take advantages of the functional benefits of multiple pure nanomaterials to a greater degree than single nanomaterials alone. The UCNPs-MoS2 composite is a nano-application platform that combines upconversion luminescence and photothermal properties. Upconversion nanoparticles (UCNPs) are inorganic nanomaterials with long-wavelength excitation and short-wavelength tunable emission capabilities, and are able to effectively convert near-infrared (NIR) light into visible light for increased photostability. However, UCNPs have a low capacity for absorbing visible light, whereas MoS2 shows better absorption in the ultraviolet and visible regions. By integrating the benefits of UCNPs and MoS2, UCNPs-MoS2 nanocomposites can convert NIR light with a higher depth of detection into visible light for application with MoS2 through fluorescence resonance energy transfer (FRET), which compensates for the issues of MoS2's low tissue penetration light-absorbing wavelengths and expands its potential biological applications. Therefore, starting from the construction of UCNPs-MoS2 nanoplatforms, herein, we review the research progress in biological applications, including biosensing, phototherapy, bioimaging, and targeted drug delivery. Additionally, the current challenges and future development trends of UCNPs-MoS2 nanocomposites for biological applications are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yiru Wang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Huimei Zhong
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Lihao Xiong
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Jiayi Song
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xinyu Zhang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Ting He
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xiayu Zhou
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Le Li
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Deshuai Zhen
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
64
|
Liu Y, Zou B, Yang K, Jiao L, Zhao H, Bai P, Tian Y, Zhang R. Tumor targeted porphyrin-based metal-organic framework for photodynamic and checkpoint blockade immunotherapy. Colloids Surf B Biointerfaces 2024; 239:113965. [PMID: 38772084 DOI: 10.1016/j.colsurfb.2024.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/04/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
Photodynamic therapy (PDT) has become a promising approach and non-invasive modality for cancer treatment, however the therapeutic effect of PDT is limited in tumor metastasis and local recurrence. Herein, a tumor targeted nanomedicine (designated as PCN@HA) is constructed for enhanced PDT against tumors. By modified with hyaluronic acid (HA), which could target the CD44 receptor that expressed on the cancer cells, the targeting ability of PCN@HA has been enhanced. Under light irradiation, PCN@HA can produce cytotoxic singlet oxygen (1O2) and kill cancer cells, then eliminate tumors. Furthermore, PCN@HA exhibits fluorescence (FL)/ photoacoustic (PA) effects for multimodal imaging-guided cancer treatment. And PCN@HA-mediated PDT also can induce immunogenic cell death (ICD) and stimulate adaptive immune responses by releasing of tumor antigens. By combining with anti-PD-L1 checkpoint blockade therapy, it can not only effectively suppress the growth of primary tumor, but also inhibit the metastatic tumor growth.
Collapse
Affiliation(s)
- Yulong Liu
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bocheng Zou
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Kang Yang
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Liqin Jiao
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Huifang Zhao
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Peirong Bai
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Yanzhang Tian
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People' Hospital, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
65
|
Wu D, Wang J, Du X, Cao Y, Ping K, Liu D. Cucurbit[8]uril-based supramolecular theranostics. J Nanobiotechnology 2024; 22:235. [PMID: 38725031 PMCID: PMC11084038 DOI: 10.1186/s12951-024-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 05/12/2024] Open
Abstract
Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, People's Republic of China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
66
|
Li X, Liang X, Fu W, Luo R, Zhang M, Kou X, Zhang Y, Li Y, Huang D, You Y, Wu Q, Gong C. Reversing cancer immunoediting phases with a tumor-activated and optically reinforced immunoscaffold. Bioact Mater 2024; 35:228-241. [PMID: 38333614 PMCID: PMC10850754 DOI: 10.1016/j.bioactmat.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
In situ vaccine (ISV) is a promising immunotherapeutic tactic due to its complete tumoral antigenic repertoire. However, its efficiency is limited by extrinsic inevitable immunosuppression and intrinsic immunogenicity scarcity. To break this plight, a tumor-activated and optically reinforced immunoscaffold (TURN) is exploited to trigger cancer immunoediting phases regression, thus levering potent systemic antitumor immune responses. Upon response to tumoral reactive oxygen species, TURN will first release RGX-104 to attenuate excessive immunosuppressive cells and cytokines, and thus immunosuppression falls and immunogenicity rises. Subsequently, intermittent laser irradiation-activated photothermal agents (PL) trigger abundant tumor antigens exposure, which causes immunogenicity springs and preliminary infiltration of T cells. Finally, CD137 agonists from TURN further promotes the proliferation, function, and survival of T cells for durable antitumor effects. Therefore, cancer immunoediting phases reverse and systemic antitumor immune responses occur. TURN achieves over 90 % tumor growth inhibition in both primary and secondary tumor lesions, induces potent systemic immune responses, and triggers superior long-term immune memory in vivo. Taken together, TURN provides a prospective sight for ISV from the perspective of immunoediting phases.
Collapse
Affiliation(s)
- Xinchao Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuqi Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wangxian Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Miaomiao Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaorong Kou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yingjie Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dongxue Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanjie You
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
67
|
Li M, Bosman EDC, Smith OM, Lintern N, de Klerk DJ, Sun H, Cheng S, Pan W, Storm G, Khaled YS, Heger M. Comparative analysis of whole cell-derived vesicular delivery systems for photodynamic therapy of extrahepatic cholangiocarcinoma. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 254:112903. [PMID: 38608335 DOI: 10.1016/j.jphotobiol.2024.112903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
This first-in-its-class proof-of-concept study explored the use of bionanovesicles for the delivery of photosensitizer into cultured cholangiocarcinoma cells and subsequent treatment by photodynamic therapy (PDT). Two types of bionanovesicles were prepared: cellular vesicles (CVs) were fabricated by sonication-mediated nanosizing of cholangiocarcinoma (TFK-1) cells, whereas cell membrane vesicles (CMVs) were produced by TFK-1 cell and organelle membrane isolation and subsequent nanovesicularization by sonication. The bionanovesicles were loaded with zinc phthalocyanine (ZnPC). The CVs and CMVs were characterized (size, polydispersity index, zeta potential, stability, ZnPC encapsulation efficiency, spectral properties) and assayed for tumor (TFK-1) cell association and uptake (flow cytometry, confocal microscopy), intracellular ZnPC distribution (confocal microscopy), dark toxicity (MTS assay), and PDT efficacy (MTS assay). The mean ± SD diameter, polydispersity index, and zeta potential were 134 ± 1 nm, -16.1 ± 0.9, and 0.220 ± 0.013, respectively, for CVs and 172 ± 3 nm, -16.4 ± 1.1, and 0.167 ± 0.022, respectively, for CMVs. Cold storage for 1 wk and incorporation of ZnPC increased bionanovesicular diameter slightly but size remained within the recommended range for in vivo application (136-220 nm). ZnPC was incorporated into CVs and CMVs at an optimal photosensitizer:lipid molar ratio of 0.006 and 0.01, respectively. Both bionanovesicles were avidly taken up by TFK-1 cells, resulting in homogenous intracellular ZnPC dispersion. Photosensitization of TFK-1 cells did not cause dark toxicity, while illumination at 671 nm (35.3 J/cm2) produced LC50 values of 1.11 μM (CVs) and 0.51 μM (CMVs) at 24 h post-PDT, which is superior to most LC50 values generated in tumor cells photosensitized with liposomal ZnPC. In conclusion, CVs and CMVs constitute a potent photosensitizer platform with no inherent cytotoxicity and high PDT efficacy in vitro.
Collapse
Affiliation(s)
- Mingjuan Li
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, 314001 Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, the Netherlands.
| | - Esmeralda D C Bosman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, the Netherlands.
| | - Olivia M Smith
- Leeds Institute of Medical Research, St. James's University Hospital, Leeds LS9 7TF, United Kingdom; The University of Leeds, School of Medicine, Leeds LS2 9JT, United Kingdom
| | - Nicole Lintern
- Leeds Institute of Medical Research, St. James's University Hospital, Leeds LS9 7TF, United Kingdom; The University of Leeds, School of Medicine, Leeds LS2 9JT, United Kingdom.
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, 314001 Jiaxing, Zhejiang, PR China
| | - Hong Sun
- Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, 314001 Jiaxing, Zhejiang, PR China; Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Province, Jiaxing University, 314001 Jiaxing, Zhejiang, PR China.
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 200433 Shanghai, PR China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, 314001 Jiaxing, Zhejiang, PR China
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, the Netherlands.
| | - Yazan S Khaled
- Leeds Institute of Medical Research, St. James's University Hospital, Leeds LS9 7TF, United Kingdom; The University of Leeds, School of Medicine, Leeds LS2 9JT, United Kingdom.
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, 314001 Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
68
|
Gao T, Yuan S, Liang S, Huang X, Liu J, Gu P, Fu S, Zhang N, Liu Y. In Situ Hydrogel Modulates cDC1-Based Antigen Presentation and Cancer Stemness to Enhance Cancer Vaccine Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305832. [PMID: 38564766 PMCID: PMC11132059 DOI: 10.1002/advs.202305832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/16/2023] [Indexed: 04/04/2024]
Abstract
Effective presentation of antigens by dendritic cells (DC) is essential for achieving a robust cytotoxic T lymphocytes (CTLs) response, in which cDC1 is the key DC subtype for high-performance activation of CTLs. However, low cDC1 proportion, complex process, and high cost severely hindered cDC1 generation and application. Herein, the study proposes an in situ cDC1 recruitment and activation strategy with simultaneous inhibiting cancer stemness for inducing robust CTL responses and enhancing the anti-tumor effect. Fms-like tyrosine kinase 3 ligand (FLT3L), Poly I:C, and Nap-CUM (NCUM), playing the role of cDC1 recruitment, cDC1 activation, inducing antigen release and decreasing tumor cell stemness, respectively, are co-encapsulated in an in situ hydrogel vaccine (FP/NCUM-Gel). FP/NCUM-Gel is gelated in situ after intra-tumoral injection. With the near-infrared irradiation, tumor cell immunogenic cell death occurred, tumor antigens and immunogenic signals are released in situ. cDC1 is recruited to tumor tissue and activated for antigen cross-presentation, followed by migrating to lymph nodes and activating CTLs. Furthermore, tumor cell stemness are inhibited by napabucasin, which can help CTLs to achieve comprehensive tumor killing. Collectively, the proposed strategy of cDC1 in situ recruitment and activation combined with stemness inhibition provides great immune response and anti-tumor potential, providing new ideas for clinical tumor vaccine design.
Collapse
Affiliation(s)
- Tong Gao
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Shijun Yuan
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Shuang Liang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Xinyan Huang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Jinhu Liu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Panpan Gu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Shunli Fu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Na Zhang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Yongjun Liu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| |
Collapse
|
69
|
Acquah C, Pabis Z, Seth SK, Levi L, Crespo-Hernández CE. Low-cost, 3D printed irradiation system for in vitro photodynamic therapy experiments. Photochem Photobiol 2024; 100:530-540. [PMID: 37929322 DOI: 10.1111/php.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
The development of a suitable irradiation setup is essential for in vitro experiments in photodynamic therapy (PDT). While various irradiation systems have been developed for PDT, only a few offer practical and high-quality setups for precise and reproducible results in cell culture experiments. This report introduces a cost-effective illumination setup designed for in vitro photodynamic treatments. The setup consists of a commercially available light-emitting diode (LED) lamp, a cooling unit, and a specially designed 3D-printed enclosure to accommodate a multiwell plate insert. The LED lamp is versatile, supporting various irradiation wavelengths and adjustable illumination fields, ensuring consistent and reliable performance. The study evaluates the setup through various parameters, including photon flux density, illumination uniformity, photon distribution across the multiwell plate, and temperature changes during irradiation. In addition, the effectiveness of the LED-based illumination system is tested by treating mouse mammary breast carcinoma cells (4T1) with Rose Bengal and LED irradiation at around 525 nm. The resulting IC50 of 5.2 ± 0.9 μM and a minimum media temperature change of ca. 1.2°C indicate a highly promising LED-based setup that offers a cost-effective and technically feasible solution for achieving consistent, reproducible, and uniform irradiation, enhancing research capabilities and potential applications.
Collapse
Affiliation(s)
- Chris Acquah
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zachary Pabis
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sourav Kanti Seth
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Liraz Levi
- Celloram Inc., Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | |
Collapse
|
70
|
Wang Z, Yang L. Natural-product-based, carrier-free, noncovalent nanoparticles for tumor chemo-photodynamic combination therapy. Pharmacol Res 2024; 203:107150. [PMID: 38521285 DOI: 10.1016/j.phrs.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cancer, with its diversity, heterogeneity, and complexity, is a significant contributor to global morbidity, disability, and mortality, highlighting the necessity for transformative treatment approaches. Photodynamic therapy (PDT) has aroused continuous interest as a viable alternative to conventional cancer treatments that encounter drug resistance. Nanotechnology has brought new advances in medicine and has shown great potential in drug delivery and cancer treatment. For precise and efficient therapeutic utilization of such a tumor therapeutic approach with high spatiotemporal selectivity and minimal invasiveness, the carrier-free noncovalent nanoparticles (NPs) based on chemo-photodynamic combination therapy is essential. Utilizing natural products as the foundation for nanodrug development offers unparalleled advantages, including exceptional pharmacological activity, easy functionalization/modification, and well biocompatibility. The natural-product-based, carrier-free, noncovalent NPs revealed excellent synergistic anticancer activity in comparison with free photosensitizers and free bioactive natural products, representing an alternative and favorable combination therapeutic avenue to improve therapeutic efficacy. Herein, a comprehensive summary of current strategies and representative application examples of carrier-free noncovalent NPs in the past decade based on natural products (such as paclitaxel, 10-hydroxycamptothecin, doxorubicin, etoposide, combretastatin A4, epigallocatechin gallate, and curcumin) for tumor chemo-photodynamic combination therapy. We highlight the insightful design and synthesis of the smart carrier-free NPs that aim to enhance PDT efficacy. Meanwhile, we discuss the future challenges and potential opportunities associated with these NPs to provide new enlightenment, spur innovative ideas, and facilitate PDT-mediated clinical transformation.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
71
|
Pal AK, Datta A. First-principles design of heavy-atom-free singlet oxygen photosensitizers for photodynamic therapy. J Chem Phys 2024; 160:164720. [PMID: 38682739 DOI: 10.1063/5.0196557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
In photodynamic therapy (PDT) treatment, heavy-atom-free photosensitizers (PSs) are a great source of singlet oxygen photosensitizer. Reactive oxygen species (ROS) are produced by an energy transfer from the lowest energy triplet excited state to the molecular oxygen of cancer cells. To clarify the photophysical characteristics in the excited states of a few experimentally identified thionated (>C=S) molecules and their oxygenated congeners (>C=O), a quantum chemical study is conducted. This study illustrates the properties of the excited states in oxygen congeners that render them unsuitable for PDT treatment. Concurrently, a hierarchy is presented based on the utility of the lowest-energy triplet excitons of thionated compounds. Their non-radiative decay rates are calculated for reverse-ISC and inter-system crossover (ISC) processes. In addition, the vibronic importance of C=O and C=S bonds is clarified by the computation of the Huang-Rhys factor, effective vibrational mode, and reorganization energy inside the Marcus-Levich-Jörtner system. ROS generation in thionated PSs exceeds their oxygen congeners as kf ≪ kISC, where radiative decay rate is designated as kf. As a result, the current work offers a calculated strategy for analyzing the effectiveness of thionated photosensitizers in PDT.
Collapse
Affiliation(s)
- Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| |
Collapse
|
72
|
Huang R, Qiu H, Pang C, Li L, Wang A, Ji S, Liang H, Shen XC, Jiang BP. Size-Switchable Ru Nanoaggregates for Enhancing Phototherapy: Hyaluronidase-Triggered Disassembly to Alleviate Deep Tumor Hypoxia. Chemistry 2024; 30:e202400115. [PMID: 38369622 DOI: 10.1002/chem.202400115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Hypoxia is a critical factor for restricting photodynamic therapy (PDT) of tumor, and it becomes increasingly severe with increasing tissue depth. Thus, the relief of deep tumor hypoxia is extremely important to improve the PDT efficacy. Herein, tumor microenvironment (TME)-responsive size-switchable hyaluronic acid-hybridized Ru nanoaggregates (HA@Ru NAs) were developed via screening reaction temperature to alleviate deep tumor hypoxia for improving the tumor-specific PDT by the artful integration multiple bioactivated chemical reactions in situ and receptor-mediated targeting (RMT). In this nanosystem, Ru NPs not only enabled HA@Ru NAs to have near infrared (NIR)-mediated photothermal/photodynamic functions, but also could catalyze endogenous H2O2 to produce O2 in situ. More importantly, hyaluronidase (HAase) overexpressed in the TME could trigger disassembly of HA@Ru NAs via the hydrolysis of HA, offering the smart size switch capability from 60 to 15 nm for enhancing tumor penetration. Moreover, the RMT characteristics of HA ensured that HA@Ru NAs could specially enter CD44-overexpressed tumor cells, enhancing tumor-specific precision of phototherapy. Taken together these distinguishing characteristics, smart HA@Ru NAs successfully realized the relief of deep tumor hypoxia to improve the tumor-specific PDT.
Collapse
Affiliation(s)
- Rimei Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Huimin Qiu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Congcong Pang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Liqun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Aihui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Shichen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| |
Collapse
|
73
|
Nagai K, Akimoto J, Fukami S, Saito Y, Ogawa E, Takanashi M, Kuroda M, Kohno M. Efficacy of interstitial photodynamic therapy using talaporfin sodium and a semiconductor laser for a mouse allograft glioma model. Sci Rep 2024; 14:9137. [PMID: 38644422 PMCID: PMC11033255 DOI: 10.1038/s41598-024-59955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
To investigate the therapeutic potential of photodynamic therapy (PDT) for malignant gliomas arising in unresectable sites, we investigated the effect of tumor tissue damage by interstitial PDT (i-PDT) using talaporfin sodium (TPS) in a mouse glioma model in which C6 glioma cells were implanted subcutaneously. A kinetic study of TPS demonstrated that a dose of 10 mg/kg and 90 min after administration was appropriate dose and timing for i-PDT. Performing i-PDT using a small-diameter plastic optical fiber demonstrated that an irradiation energy density of 100 J/cm2 or higher was required to achieve therapeutic effects over the entire tumor tissue. The tissue damage induced apoptosis in the area close to the light source, whereas vascular effects, such as fibrin thrombus formation occurred in the area slightly distant from the light source. Furthermore, when irradiating at the same energy density, irradiation at a lower power density for a longer period of time was more effective than irradiation at a higher power density for a shorter time. When performing i-PDT, it is important to consider the rate of delivery of the irradiation light into the tumor tissue and to set irradiation conditions that achieve an optimal balance between cytotoxic and vascular effects.
Collapse
Affiliation(s)
- Kenta Nagai
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Jiro Akimoto
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.
| | - Shinjiro Fukami
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Yuki Saito
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Emiyu Ogawa
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | | | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Michihiro Kohno
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| |
Collapse
|
74
|
Liang X, Zhang J, Zhang C, Zhai H, Yang P, Chen M. Mesoporous silica coated spicules for photodynamic therapy of metastatic melanoma. J Nanobiotechnology 2024; 22:179. [PMID: 38616270 PMCID: PMC11017598 DOI: 10.1186/s12951-024-02471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024] Open
Abstract
We report on the fabrication of mesoporous silicon dioxide coated Haliclona sp. spicules (mSHS) to enhance the delivery of the insoluble photosensitizer protoporphyrin IX (PpIX) into deep skin layers and mediate photodynamic therapy for metastatic melanoma in mice. The mSHS are dispersed sharp edged and rod-like micro-particles with a length of approximate 143.6 ± 6.4 μm and a specific surface area of 14.9 ± 3.4 m2/g. The mSHS can be topically applied to the skin, adapting to any desired skin area and lesion site. The insoluble PpIX were incorporated into the mesoporous silica coating layers of mSHS (mSHS@PpIX) with the maximum PpIX loading capacity of 120.3 ± 3.8 μg/mg. The mSHS@PpIX significantly enhanced the deposition of PpIX in the viable epidermis (5.1 ± 0.4 μg/cm2) and in the dermis (0.5 ± 0.2 μg/cm2), which was 154 ± 11-fold and 22 ± tenfold higher than those achieved by SHS, respectively. Topical delivery of PpIX using mSHS (mSHS@PpIX) completely eradicated the primary melanoma in mice in 10 days without recurrence or metastasis over 60 days. These results demonstrate that mSHS can be a promising topical drug delivery platform for the treatment of diverse cutaneous diseases, such as metastatic melanoma.
Collapse
Affiliation(s)
- Xuejiao Liang
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Jialiang Zhang
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, People's Republic of China
| | - Chi Zhang
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, China
| | - Haojie Zhai
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, China
| | - Ping Yang
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, China
| | - Ming Chen
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China.
- Pingtan Research Institute of Xiamen University, Pingtan, 350400, China.
| |
Collapse
|
75
|
Thiruppathi J, Vijayan V, Park IK, Lee SE, Rhee JH. Enhancing cancer immunotherapy with photodynamic therapy and nanoparticle: making tumor microenvironment hotter to make immunotherapeutic work better. Front Immunol 2024; 15:1375767. [PMID: 38646546 PMCID: PMC11026591 DOI: 10.3389/fimmu.2024.1375767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Cancer immunotherapy has made tremendous advancements in treating various malignancies. The biggest hurdle to successful immunotherapy would be the immunosuppressive tumor microenvironment (TME) and low immunogenicity of cancer cells. To make immunotherapy successful, the 'cold' TME must be converted to 'hot' immunostimulatory status to activate residual host immune responses. To this end, the immunosuppressive equilibrium in TME should be broken, and immunogenic cancer cell death ought to be induced to stimulate tumor-killing immune cells appropriately. Photodynamic therapy (PDT) is an efficient way of inducing immunogenic cell death (ICD) of cancer cells and disrupting immune-restrictive tumor tissues. PDT would trigger a chain reaction that would make the TME 'hot' and have ICD-induced tumor antigens presented to immune cells. In principle, the strategic combination of PDT and immunotherapy would synergize to enhance therapeutic outcomes in many intractable tumors. Novel technologies employing nanocarriers were developed to deliver photosensitizers and immunotherapeutic to TME efficiently. New-generation nanomedicines have been developed for PDT immunotherapy in recent years, which will accelerate clinical applications.
Collapse
Affiliation(s)
- Jayalakshmi Thiruppathi
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy Medical Research Center (MRC), Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - In-Kyu Park
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Radiology, Biomolecular Theranostics (BiT) Laboratory, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy Medical Research Center (MRC), Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| |
Collapse
|
76
|
Stummer W, Müther M, Spille D. Beyond fluorescence-guided resection: 5-ALA-based glioblastoma therapies. Acta Neurochir (Wien) 2024; 166:163. [PMID: 38563988 PMCID: PMC10987337 DOI: 10.1007/s00701-024-06049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Glioblastoma is the most common primary malignant brain tumor. Despite advances in multimodal concepts over the last decades, prognosis remains poor. Treatment of patients with glioblastoma remains a considerable challenge due to the infiltrative nature of the tumor, rapid growth rates, and tumor heterogeneity. Standard therapy consists of maximally safe microsurgical resection followed by adjuvant radio- and chemotherapy with temozolomide. In recent years, local therapies have been extensively investigated in experimental as well as translational levels. External stimuli-responsive therapies such as Photodynamic Therapy (PDT), Sonodynamic Therapy (SDT) and Radiodynamic Therapy (RDT) can induce cell death mechanisms via generation of reactive oxygen species (ROS) after administration of five-aminolevulinic acid (5-ALA), which induces the formation of sensitizing porphyrins within tumor tissue. Preliminary data from clinical trials are available. The aim of this review is to summarize the status of such therapeutic approaches as an adjunct to current standard therapy in glioblastoma.
Collapse
Affiliation(s)
- Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| | - Michael Müther
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Dorothee Spille
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| |
Collapse
|
77
|
Yang S, Wu J, Wang Z, Cheng Y, Zhang R, Yao C, Yang D. A Smart DNA Hydrogel Enables Synergistic Immunotherapy and Photodynamic Therapy of Melanoma. Angew Chem Int Ed Engl 2024; 63:e202319073. [PMID: 38353346 DOI: 10.1002/anie.202319073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 03/01/2024]
Abstract
Immunotherapy faces insufficient immune activation and limited immune effectiveness. Herein, we report a smart DNA hydrogel that enables the release of multivalent functional units at the tumor site to enhance the efficacy of immunotherapy. The smart DNA hydrogel was assembled from two types of ultra-long DNA chains synthesized via rolling circle amplification. One DNA chain contained immune adjuvant CpG oligonucleotides and polyaptamers for loading natural killer cell-derived exosomes; the other chain contained multivalent G-quadruplex for loading photodynamic agents. DNA chains formed DNA hydrogel through base-pairing. HhaI restriction endonuclease sites were designed between functional units. Upon stimuli in the tumor sites, the hydrogel was effectively cleaved by the released HhaI and disassembled into functional units. Natural killer cell-derived exosomes played an anti-tumor role, and the CpG oligonucleotide activated antigen-presenting cells to enhance the immunotherapy. Besides the tumor-killing effect of photodynamic therapy, the generated cellular debris acted as an immune antigen to further enhance the immunotherapeutic effect. In a mouse melanoma orthotopic model, the smart DNA hydrogel as a localized therapeutic agent, achieved a remarkable tumor suppression rate of 91.2 %. The smart DNA hydrogel exhibited enhanced efficacy of synergistic immunotherapy and photodynamic therapy, expanding the application of DNA materials in biomedicine.
Collapse
Affiliation(s)
- Sen Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P.R. China
| | - Junlin Wu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
| | - Zhongyu Wang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
| | - Yu Cheng
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
| | - Rui Zhang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P.R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P.R. China
| |
Collapse
|
78
|
Wei F, Chen F, Wu S, Zha M, Liu J, Wong KL, Li K, Wong KMC. Ligand Regulation Strategy to Modulate ROS Nature in a Rhodamine-Iridium(III) Hybrid System for Phototherapy. Inorg Chem 2024; 63:5872-5884. [PMID: 38498970 DOI: 10.1021/acs.inorgchem.3c04350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The efficacy of photodynamic therapy (PDT) is highly dependent on the photosensitizer features. The reactive oxygen species (ROS) generated by photosensitizers is proven to be associated with immunotherapy by triggering immunogenic cell death (ICD) as well. In this work, we establish a rhodamine-iridium(III) hybrid model functioning as a photosensitizer to comprehensively understand its performance and potential applications in photodynamic immunotherapy. Especially, the correlation between the ROS generation efficiency and the energy level of the Ir(III)-based excited state (T1'), modulated by the cyclometalating (C∧N) ligand, is systematically investigated and correlated. We prove that in addition to the direct population of the rhodamine triplet state (T1) formed through the intersystem crossing process with the assistance of a heavy Ir(III) metal center, the fine-tuned T1' state could act as a relay to provide an additional pathway for promoting the cascade energy transfer process that leads to enhanced ROS generation ability. Moreover, type I ROS can be effectively produced by introducing sulfur-containing thiophene units in C∧N ligands, providing a stronger M1 macrophage-activation efficiency under hypoxia to evoke in vivo antitumor immunity. Overall, our work provides a fundamental guideline for the molecular design and exploration of advanced transition-metal-based photosensitizers for biomedical applications.
Collapse
Affiliation(s)
- Fangfang Wei
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R., China
| | - Feng Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siye Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Menglei Zha
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiqiang Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R., China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
79
|
Wang Q, Gan Z, Shi Q, Li Y, Qi L, Wu W, Hu F. A biodegradable semiconducting polymer phototherapeutic agent for safe cancer phototherapy. J Control Release 2024; 368:265-274. [PMID: 38423474 DOI: 10.1016/j.jconrel.2024.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/28/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Combined photodynamic therapy (PDT) and photothermal therapy (PTT) not only effectively reduce the hypoxic resistance to PDT, but also overcome the heat shock effect to PTT. However, the residual phototherapeutic agents still produce reactive oxygen species (ROS) to damage normal tissue under sunlight after treatment, which induces undesirable side effects to limit their biomedical application. Herein, a facile strategy is proposed to construct a biodegradable semiconducting polymer p-DTT, which is constructed by thieno[3,2-b]thiophene modified diketopyrrolopyrrole and (E)-1,2-bis(5-(trimethylstannyl)thiophen-2-yl)ethene moieties, to avoid the post-treatment side effects of phototherapy. Additionally, p-DTT exhibits strong photoacoustic (PA) for imaging, as well as good ROS production capacity and high photothermal conversion efficiency for synergistic PDT and PTT, which has been confirmed by both in vitro and in vivo results. After phototherapy, p-DTT could be gradually oxidized and degraded by endogenous ClO-, and subsequently lose ROS production and photothermal conversion capacities, which can guarantee the post-treatment safety, and address above key limitation of traditional phototherapy.
Collapse
Affiliation(s)
- Qiang Wang
- School of Medical and Information Engineering, Gannan Medical University, Ganzhou 341000, China; School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Zhuoheng Gan
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qiankun Shi
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yonggang Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Li Qi
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Wenbo Wu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Fang Hu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
80
|
Kuzmina NS, Fedotova EA, Jankovic P, Gribova GP, Nyuchev AV, Fedorov AY, Otvagin VF. Enhancing Precision in Photodynamic Therapy: Innovations in Light-Driven and Bioorthogonal Activation. Pharmaceutics 2024; 16:479. [PMID: 38675140 PMCID: PMC11053670 DOI: 10.3390/pharmaceutics16040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Over the past few decades, photodynamic therapy (PDT) has evolved as a minimally invasive treatment modality offering precise control over cancer and various other diseases. To address inherent challenges associated with PDT, researchers have been exploring two promising avenues: the development of intelligent photosensitizers activated through light-induced energy transfers, charges, or electron transfers, and the disruption of photosensitive bonds. Moreover, there is a growing emphasis on the bioorthogonal delivery or activation of photosensitizers within tumors, enabling targeted deployment and activation of these intelligent photosensitive systems in specific tissues, thus achieving highly precise PDT. This concise review highlights advancements made over the last decade in the realm of light-activated or bioorthogonal photosensitizers, comparing their efficacy and shaping future directions in the advancement of photodynamic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexey Yu. Fedorov
- Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia; (N.S.K.); (E.A.F.); (P.J.); (G.P.G.); (A.V.N.)
| | - Vasilii F. Otvagin
- Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia; (N.S.K.); (E.A.F.); (P.J.); (G.P.G.); (A.V.N.)
| |
Collapse
|
81
|
Liu H, Shi Y, Ji G, Wang J, Gai B. Ultrasound-triggered with ROS-responsive SN38 nanoparticle for enhanced combination cancer immunotherapy. Front Immunol 2024; 15:1339380. [PMID: 38571953 PMCID: PMC10987707 DOI: 10.3389/fimmu.2024.1339380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Controlled generation of cytotoxic reactive oxygen species (ROS) is essential in cancer therapy. Ultrasound (US)-triggered sonodynamic therapy (SDT) has shown considerable ability to trigger in situ ROS generation. Unfortunately, US therapy alone is insufficient to trigger an efficient anticancer response, owing to the induction of multiple immunosuppressive factors. It was identified that 7-ethyl-10-hydroxycamptothecin (SN38) could notably inhibit DNA topoisomerase I, induce DNA damage and boost robust anticancer immunity. However, limited by the low metabolic stability, poor bioavailability, and dose-limiting toxicity, the direct usage of SN38 is inadequate in immune motivation, which limits its clinical application. Hence, new strategies are needed to improve drug delivery efficiency to enhance DNA topoisomerase I inhibition and DNA damage and elicit a vigorous anticancer cancer immunity response. Considering US irradiation can efficiently generate large amounts of ROS under low-intensity irradiation, in this study, we aimed to design a polymeric, ROS-responsive SN38 nanoformulation for in vivo drug delivery. Upon the in-situ generation of ROS by US therapy, controlled on-demand release of SN38 occurred in tumor sites, which enhanced DNA damage, induced DC cell maturation, and boosted anticancer immunity. Our results demonstrated that a new strategy of involving the combination of a SN38 nanoformulation and US therapy could be used for cancer immunotherapy.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yunpeng Shi
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guofeng Ji
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jukun Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Baodong Gai
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union of Jilin University, Changchun, China
| |
Collapse
|
82
|
XIAO JIJIE, XIAO HONG, CAI YUJUN, LIAO JIANWEI, LIU JUE, YAO LIN, LI SHAOLIN. Codelivery of anti-CD47 antibody and chlorin e6 using a dual pH-sensitive nanodrug for photodynamic immunotherapy of osteosarcoma. Oncol Res 2024; 32:691-702. [PMID: 38560565 PMCID: PMC10972781 DOI: 10.32604/or.2023.030767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/31/2023] [Indexed: 04/04/2024] Open
Abstract
Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis. Immunotherapy has shown great potential in the treatment of osteosarcoma. However, the immunosuppressive microenvironment severely limits the efficacy of osteosarcoma treatment. The dual pH-sensitive nanocarrier has emerged as an effective antitumor drug delivery system that can selectively release drugs into the acidic tumor microenvironment. Here, we prepared a dual pH-sensitive nanocarrier, loaded with the photosensitizer Chlorin e6 (Ce6) and CD47 monoclonal antibodies (aCD47), to deliver synergistic photodynamic and immunotherapy of osteosarcoma. On laser irradiation, Ce6 can generate reactive oxygen species (ROS) to kill cancer cells directly and induces immunogenic tumor cell death (ICD), which further facilitates the dendritic cell maturation induced by blockade of CD47 by aCD47. Moreover, both calreticulin released during ICD and CD47 blockade can accelerate phagocytosis of tumor cells by macrophages, promote antigen presentation, and eventually induce T lymphocyte-mediated antitumor immunity. Overall, the dual pH-sensitive nanodrug loaded with Ce6 and aCD47 showed excellent immune-activating and anti-tumor effects in osteosarcoma, which may lay the theoretical foundation for a novel combination model of osteosarcoma treatment.
Collapse
Affiliation(s)
- JIJIE XIAO
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 510900, China
| | - HONG XIAO
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 528405, China
| | - YUJUN CAI
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Guangzhou, 510275, China
| | - JIANWEI LIAO
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 510900, China
| | - JUE LIU
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 510900, China
| | - LIN YAO
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 510900, China
| | - SHAOLIN LI
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 510900, China
| |
Collapse
|
83
|
Yang JK, Kwon H, Kim S. Recent advances in light-triggered cancer immunotherapy. J Mater Chem B 2024; 12:2650-2669. [PMID: 38353138 DOI: 10.1039/d3tb02842a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Light-triggered phototherapies, such as photodynamic therapy (PDT) and photothermal therapy (PTT), have shown strong therapeutic efficacy with minimal invasiveness and systemic toxicity, offering opportunities for tumor-specific therapies. Phototherapies not only induce direct tumor cell killing, but also trigger anti-tumor immune responses by releasing various immune-stimulating factors. In recent years, conventional phototherapies have been combined with cancer immunotherapy as synergistic therapeutic modalities to eradicate cancer by exploiting the innate and adaptive immunity. These combined photoimmunotherapies have demonstrated excellent therapeutic efficacy in preventing tumor recurrence and metastasis compared to phototherapy alone. This review covers recent advancements in combined photoimmunotherapy, including photoimmunotherapy (PIT), PDT-combined immunotherapy, and PTT-combined immunotherapy, along with their underlying anti-tumor immune response mechanisms. In addition, the challenges and future research directions for light-triggered cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Jin-Kyoung Yang
- Department of Chemical Engineering, Dong-eui University, Busan, 47340, Republic of Korea.
| | - Hayoon Kwon
- Chemical & Biological integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sehoon Kim
- Chemical & Biological integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
84
|
Egbulefu C, Black K, Su X, Karmakar P, Habimana-Griffin L, Sudlow G, Prior J, Chukwu E, Zheleznyak A, Xu B, Xu Y, Esser A, Mixdorf M, Moss E, Manion B, Reed N, Gubin M, Lin CY, Schreiber R, Weilbaecher K, Achilefu S. Induction of complementary immunogenic necroptosis and apoptosis cell death pathways inhibits cancer metastasis and relapse. RESEARCH SQUARE 2024:rs.3.rs-3992212. [PMID: 38558990 PMCID: PMC10980095 DOI: 10.21203/rs.3.rs-3992212/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Interactions of light-sensitive drugs and materials with Cerenkov radiation-emitting radiopharmaceuticals generate cytotoxic reactive oxygen species (ROS) to inhibit localized and disseminated cancer progression, but the cell death mechanisms underlying this radionuclide stimulated dynamic therapy (RaST) remain elusive. Using ROS-regenerative nanophotosensitizers coated with a tumor-targeting transferrin-titanocene complex (TiO2-TC-Tf) and radiolabeled 2-fluorodeoxyglucose (18FDG), we found that adherent dying cells maintained metabolic activity with increased membrane permeabilization. Mechanistic assessment of these cells revealed that RaST activated the expression of RIPK-1 and RIPK-3, which mediate necroptosis cell death. Subsequent recruitment of the nuclear factors kappa B and the executioner mixed lineage kinase domain-like pseudo kinase (MLKL) triggered plasma membrane permeabilization and pore formation, respectively, followed by the release of cytokines and immunogenic damage-associated molecular patterns (DAMPs). In immune-deficient breast cancer models with adequate stroma and growth factors that recapitulate the human tumor microenvironment, RaST failed to inhibit tumor progression and the ensuing lung metastasis. A similar aggressive tumor model in immunocompetent mice responded to RaST, achieving a remarkable partial response (PR) and complete response (CR) with no evidence of lung metastasis, suggesting active immune system engagement. RaST recruited antitumor CD11b+, CD11c+, and CD8b+ effector immune cells after initiating dual immunogenic apoptosis and necroptosis cell death pathways in responding tumors in vivo. Over time, cancer cells upregulated the expression of negative immune regulating cytokine (TGF-β) and soluble immune checkpoints (sICP) to challenge RaST effect in the CR mice. Using a signal-amplifying cancer-imaging agent, LS301, we identified latent minimal residual disseminated tumors in the lymph nodes (LNs) of the CR group. Despite increased protumor immunogens in the CR mice, RaST prevented cancer relapse and metastasis through dynamic redistribution of ROS-regenerative TiO2 from bones at the early treatment stage to the spleen and LNs, maintaining active immunity against cancer progression and migration. This study reveals the immune-mechanistic underpinnings of RaST-mediated antitumor immune response and highlights immunogenic reprogramming of tumors in response to RaST. Overcoming apoptosis resistance through complementary necroptosis activation paves the way for strategic drug combinations to improve cancer treatment.
Collapse
Affiliation(s)
- Christopher Egbulefu
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75235-9397, USA
| | - Kvar Black
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Xinming Su
- Department of Medicine, Washington University in St. Louis, MO 63110, USA
| | - Partha Karmakar
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | | | - Gail Sudlow
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Julie Prior
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Ezeugo Chukwu
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Alex Zheleznyak
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Baogang Xu
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Yalin Xu
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Alison Esser
- Department of Medicine, Washington University in St. Louis, MO 63110, USA
| | - Matthew Mixdorf
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Evan Moss
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Brad Manion
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Nathan Reed
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Matthew Gubin
- Department of Pathology and Immunology, Washington University in St. Louis, MO 63110, USA
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University in St. Louis, MO 63110, USA
| | - Robert Schreiber
- Department of Pathology and Immunology, Washington University in St. Louis, MO 63110, USA
| | | | - Samuel Achilefu
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
- Department of Medicine, Washington University in St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63110, USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75235-9397, USA
| |
Collapse
|
85
|
Su Z, Guo B, Xu H, Yuan Z, Liu H, Guo T, Deng Z, Zhang Y, Yin D, Liu C, Chen JH, Rao Y. Synthetic Biology-based Construction of Unnatural Perylenequinones with Improved Photodynamic Anticancer Activities. Angew Chem Int Ed Engl 2024; 63:e202317726. [PMID: 38258338 DOI: 10.1002/anie.202317726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
The construction of structural complexity and diversity of natural products is crucial for drug discovery and development. To overcome high dark toxicity and poor photostability of natural photosensitizer perylenequinones (PQs) for photodynamic therapy, herein, we aim to introduce the structural complexity and diversity to biosynthesize the desired unnatural PQs in fungus Cercospora through synthetic biology-based strategy. Thus, we first elucidate the intricate biosynthetic pathways of class B PQs and reveal how the branching enzymes create their structural complexity and diversity from a common ancestor. This enables the rational reprogramming of cercosporin biosynthetic pathway in Cercospora to generate diverse unnatural PQs without chemical modification. Among them, unnatural cercosporin A displays remarkably low dark toxicity and high photostability with retention of great photodynamic anticancer and antimicrobial activities. Moreover, it is found that, unlike cercosporin, unnatural cercosporin A could be selectively accumulated in cancer cells, providing potential targets for drug development. Therefore, this work provides a comprehensive foundation for preparing unnatural products with customized functions through synthetic biology-based strategies, thus facilitating drug discovery pipelines from nature.
Collapse
Affiliation(s)
- Zengping Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Baodang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Huiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Tao Guo
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dejing Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jian-Huan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
86
|
Deng W, Shang H, Tong Y, Liu X, Huang Q, He Y, Wu J, Ba X, Chen Z, Chen Y, Tang K. The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy. J Nanobiotechnology 2024; 22:97. [PMID: 38454419 PMCID: PMC10921615 DOI: 10.1186/s12951-024-02297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Immune checkpoint blockers (ICBs) have been applied for cancer therapy and achieved great success in the field of cancer immunotherapy. Nevertheless, the broad application of ICBs is limited by the low response rate. To address this issue, increasing studies have found that the induction of immunogenic cell death (ICD) in tumor cells is becoming an emerging therapeutic strategy in cancer treatment, not only straightly killing tumor cells but also enhancing dying cells immunogenicity and activating antitumor immunity. ICD is a generic term representing different cell death modes containing ferroptosis, pyroptosis, autophagy and apoptosis. Traditional chemotherapeutic agents usually inhibit tumor growth based on the apoptotic ICD, but most tumor cells are resistant to the apoptosis. Thus, the induction of non-apoptotic ICD is considered to be a more efficient approach for cancer therapy. In addition, due to the ineffective localization of ICD inducers, various types of nanomaterials have been being developed to achieve targeted delivery of therapeutic agents and improved immunotherapeutic efficiency. In this review, we briefly outline molecular mechanisms of ferroptosis, pyroptosis and autophagy, as well as their reciprocal interactions with antitumor immunity, and then summarize the current progress of ICD-induced nanoparticles based on different strategies and illustrate their applications in the cancer therapy.
Collapse
Affiliation(s)
- Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
87
|
Yang Z, Teng Y, Lin M, Peng Y, Du Y, Sun Q, Gao D, Yuan Q, Zhou Y, Yang Y, Li J, Zhou Y, Li X, Qi X. Reinforced Immunogenic Endoplasmic Reticulum Stress and Oxidative Stress via an Orchestrated Nanophotoinducer to Boost Cancer Photoimmunotherapy. ACS NANO 2024; 18:7267-7286. [PMID: 38382065 DOI: 10.1021/acsnano.3c13143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Cancer progression and treatment-associated cellular stress impairs therapeutic outcome by inducing resistance. Endoplasmic reticulum (ER) stress is responsible for core events. Aberrant activation of stress sensors and their downstream components to disrupt homeostasis have emerged as vital regulators of tumor progression as well as response to cancer therapy. Here, an orchestrated nanophotoinducer (ERsNP) results in specific tumor ER-homing, induces hyperthermia and mounting oxidative stress associated reactive oxygen species (ROS), and provokes intense and lethal ER stress upon near-infrared laser irradiation. The strengthened "dying" of ER stress and ROS subsequently induce apoptosis for both primary and abscopal B16F10 and GL261 tumors, and promote damage-associated molecular patterns to evoke stress-dependent immunogenic cell death effects and release "self-antigens". Thus, there is a cascade to activate maturation of dendritic cells, reprogram myeloid-derived suppressor cells to manipulate immunosuppression, and recruit cytotoxic T lymphocytes and effective antitumor response. The long-term protection against tumor recurrence is realized through cascaded combinatorial preoperative and postoperative photoimmunotherapy including the chemokine (C-C motif) receptor 2 antagonist, ERsNP upon laser irradiation, and an immune checkpoint inhibitor. The results highlight great promise of the orchestrated nanophotoinducer to exert potent immunogenic cell stress and death by reinforcing ER stress and oxidative stress to boost cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
- Drug Clinical Trial Center, Institute of Medical Innovation and Research, Peking University Third Hospital, Peking University, Beijing 100191, P.R. China
| | - Yulu Teng
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Meng Lin
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Yiwei Peng
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Yitian Du
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Qi Sun
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Datong Gao
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Quan Yuan
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Yu Zhou
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Yiliang Yang
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Jiajia Li
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Yanxia Zhou
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Xinru Li
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Xianrong Qi
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| |
Collapse
|
88
|
Cui M, Zhu S, Xiong M, Zuo H, Li X, Wang K, Jiang J. Novel naphthalimide bridged zinc porphyrin/BODIPY nanomaterials with D-A structure for photodynamic therapy. J PORPHYR PHTHALOCYA 2024; 28:166-172. [DOI: 10.1142/s1088424624500093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
As a non-invasive cancer therapy method, photodynamic therapy (PDT) shows tremendous promise in clinical cancer treatment. Light-activated singlet oxygen production of photosensitizers (PSs) is the prerequisite for cancer PDT, and the use of organic photosensitizers is always limited by visible light-based activation, hydrophilicity, biocompatibility, selectivity and quantum yield of singlet oxygen. Currently, both zinc porphyrin- and BODIPY-based structures have been widely used in the development of PDT PSs. Here, we developed a novel naphthalimide bridged zinc porphyrin/BODIPY molecule (Por-BDP-1) with two poly(ethylene glycol) (PEG) chains, in which D-A structure was constructed between the naphthalimide group and porphyrin group. After self-assembly into nanoparticles, Por-BDP-1 NPs (Diameter: 122.4 nm) could quench fluorescence in 600–700 nm, bind with calf thymus-DNA, and produce singlet oxygen during light-irradiation (laser: 680 nm, 1.0 W/cm[Formula: see text]. In addition, Por-BDP-1 NPs effectively killed HeLa cells with a IC[Formula: see text] value = 44.8 μg/mL and showed a lower dark toxicity under the same conditions. All our results demonstrated that our naphthalimide bridged zinc porphyrin/BODIPY nano-photosensitizer is a promising nanoagent for PDT in the clinic.
Collapse
Affiliation(s)
- Min Cui
- Wuhan Asia General Hospital, Wuhan, 430050, Hubei, P. R. China
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Sijie Zhu
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Mengmeng Xiong
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Huijie Zuo
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Xiang Li
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
- Hubei Jiangxia Laboratory, Wuhan 430200, Hubei, P. R. China
| | - Kai Wang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
- Hubei Jiangxia Laboratory, Wuhan 430200, Hubei, P. R. China
| | - Jun Jiang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
- Hubei Jiangxia Laboratory, Wuhan 430200, Hubei, P. R. China
| |
Collapse
|
89
|
Xue EY, Yang C, Zhou Y, Ng DKP. A Bioorthogonal Antidote Against the Photosensitivity after Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306207. [PMID: 38161212 PMCID: PMC10953549 DOI: 10.1002/advs.202306207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/26/2023] [Indexed: 01/03/2024]
Abstract
As an effective and non-invasive treatment modality for cancer, photodynamic therapy (PDT) has attracted considerable interest. With the recent advances in the photosensitizing agents, the fiber-optic systems, and other aspects, its application is extended to a wide range of superficial and localized cancers. However, for the few clinically used photosensitizers, most of them suffer from the drawback of causing prolonged photosensitivity after the treatment. As a result, post-PDT management is also a crucial issue. Herein, a facile bioorthogonal approach is reported that can effectively suppress this common side effect of PDT in nude mice. It involves the use of an antidote that contains a black-hole quencher BHQ-3 conjugated with a bicyclo[6.1.0]non-4-yne (BCN) moiety and a tetrazine-substituted boron dipyrromethene-based photosensitizer. By using tumor-bearing nude mice as an animal model, it is demonstrated that after PDT with this photosensitizer, the administration of the antidote can effectively quench the photodynamic activity of the residual photosensitizer by bringing the BHQ-3 quencher close to the photosensitizing unit through a rapid click reaction. It results in substantial reduction in skin damage upon light irradiation. The overall results demonstrate that this simple and facile strategy can provide an effective means for minimizing the photosensitivity after PDT.
Collapse
Affiliation(s)
- Evelyn Y. Xue
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong KongChina
| | - Caixia Yang
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong KongChina
| | - Yimin Zhou
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong KongChina
| | - Dennis K. P. Ng
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong KongChina
| |
Collapse
|
90
|
Zhu XY, Wang TY, Jia HR, Wu SY, Gao CZ, Li YH, Zhang X, Shan BH, Wu FG. A ferroptosis-reinforced nanocatalyst enhances chemodynamic therapy through dual H 2O 2 production and oxidative stress amplification. J Control Release 2024; 367:892-904. [PMID: 38278369 DOI: 10.1016/j.jconrel.2024.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
The existence of a delicate redox balance in tumors usually leads to cancer treatment failure. Breaking redox homeostasis by amplifying oxidative stress and reducing glutathione (GSH) can accelerate cancer cell death. Herein, we construct a ferroptosis-reinforced nanocatalyst (denoted as HBGL) to amplify intracellular oxidative stress via dual H2O2 production-assisted chemodynamic therapy (CDT). Specifically, a long-circulating liposome is employed to deliver hemin (a natural iron-containing substrate for Fenton reaction and ferroptosis), β-lapachone (a DNA topoisomerase inhibitor with H2O2 generation capacity for chemotherapy), and glucose oxidase (which can consume glucose for starvation therapy and generate H2O2). HBGL can achieve rapid, continuous, and massive H2O2 and •OH production and GSH depletion in cancer cells, resulting in increased intracellular oxidative stress. Additionally, hemin can reinforce the ferroptosis-inducing ability of HBGL, which is reflected in the downregulation of glutathione peroxidase-4 and the accumulation of lipid peroxide. Notably, HBGL can disrupt endo/lysosomes and impair mitochondrial function in cancer cells. HBGL exhibits effective tumor-killing ability without eliciting obvious side effects, indicating its clinical translation potential for synergistic starvation therapy, chemotherapy, ferroptosis therapy, and CDT. Overall, this nanocatalytic liposome may be a promising candidate for achieving potentiated cancer treatment.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Tian-Yu Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Hao-Ran Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Shun-Yu Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Cheng-Zhe Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Yan-Hong Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Xinping Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China.
| |
Collapse
|
91
|
Li Y, Li Y, Song Y, Liu S. Advances in research and application of photodynamic therapy in cholangiocarcinoma (Review). Oncol Rep 2024; 51:53. [PMID: 38334150 DOI: 10.3892/or.2024.8712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a disease characterized by insidious clinical manifestations and challenging to diagnose. Patients are usually diagnosed at an advanced stage and miss the opportunity for radical surgery. Therefore, effective palliative therapy is the main treatment approach for unresectable CCA. Current common palliative treatments include biliary drainage, chemotherapy, radiotherapy, targeted therapy and immunotherapy. However, these treatments only offer limited improvement in quality of life and survival. Photodynamic therapy (PDT) is a novel local treatment method that is considered a safe tumor ablation method for numerous cancers. It has shown good efficacy in various studies of CCA and is expected to become an important treatment for CCA. In the present study, the mechanisms of PDT in the treatment of CCA were systematically explored and the progress in the research of photosensitizers was discussed. The current study focused on the various PDT protocols and their therapeutic effects in CCA, with the objective of providing a new horizon for future research and clinical applications of PDT in the treatment of CCA.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yuhang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yinghui Song
- Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
92
|
Aebisher D, Przygórzewska A, Myśliwiec A, Dynarowicz K, Krupka-Olek M, Bożek A, Kawczyk-Krupka A, Bartusik-Aebisher D. Current Photodynamic Therapy for Glioma Treatment: An Update. Biomedicines 2024; 12:375. [PMID: 38397977 PMCID: PMC10886821 DOI: 10.3390/biomedicines12020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Research on the development of photodynamic therapy for the treatment of brain tumors has shown promise in the treatment of this highly aggressive form of brain cancer. Analysis of both in vivo studies and clinical studies shows that photodynamic therapy can provide significant benefits, such as an improved median rate of survival. The use of photodynamic therapy is characterized by relatively few side effects, which is a significant advantage compared to conventional treatment methods such as often-used brain tumor surgery, advanced radiotherapy, and classic chemotherapy. Continued research in this area could bring significant advances, influencing future standards of treatment for this difficult and deadly disease.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Magdalena Krupka-Olek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Andrzej Bożek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| |
Collapse
|
93
|
Li S, Zhao M, Luo M, Wu J, Duan Z, Huang X, Lu S, Zu Q, Xiao Q, Ying J. Evaluation of combination of ALA-PDT and interferon for cervical low-grade squamous intraepithelial lesion (LSIL). Photodiagnosis Photodyn Ther 2024; 45:103967. [PMID: 38224725 DOI: 10.1016/j.pdpdt.2024.103967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND Cervical LSIL is a precancerous disease which requires regular follow-up. High risk patients need active interventions. Interferon and topical PDT have been used in the treatment of cervical LSIL. The aim of this study was to evaluate the combination use of topical PDT and interferon in the treatment of cervical LSIL. MATERIALS AND METHODS A prospective study was carried out involving 159 women with cervical LSIL and high risk human papillomaviruses (hr-HPV) infection. Patients were divided into three groups. Group 1-receiving interferon suppository only, Group 2-receiving 19 mg/cm2 ALA plus post PDT interferon, and Group 3-receiving 38 mg/cm2 ALA plus post PDT interferon. The primary endpoint was pathological regression. The secondary endpoints were the HPV negative conversion rate and the adverse effects of treatment. RESULTS At 6-12 months after PDT, for Group 1, the effective rate, CR rate and HPV negative conversion rate was 48.3 %, 43.3 % and 24.0 %, respectively. For Group 2, the effective rate, CR rate and HPV negative conversion rate were 89.3 %, 71.4 %, and 72.4 %, respectively. For Group 3, the effective rate, CR rate and HPV negative conversion rate were 91.5 %, 66.1 %, and 64.4 %, respectively, significantly higher than those of interferon only group. Two ALA dose group study showed similar efficacy. No patient experienced serious adverse effects. CONCLUSIONS ALA-PDT combined with interferon therapy was feasible and tolerable. Two ALA dose groups showed similar outcomes in treating cervical LSIL.
Collapse
Affiliation(s)
- Sijing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Min Zhao
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Ming Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Jin Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Zhaoning Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Xiaoling Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Shan Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Qiao Zu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Qun Xiao
- Department of Obstetrics and Gynecology, The People's Hospital of Nanchuan, Nanchuan District, Chongqing 408400, China
| | - Jia Ying
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China.
| |
Collapse
|
94
|
Selbo PK, Korbelik M. Topical collection on photodynamic therapy-enhanced antitumour immunity. Photochem Photobiol Sci 2024; 23:213-214. [PMID: 38381362 DOI: 10.1007/s43630-024-00549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Affiliation(s)
- Pål Kristian Selbo
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Mladen Korbelik
- Integrative Oncology Department, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
95
|
Wu R, Yuen J, Cheung E, Huang Z, Chu E. Review of three-dimensional spheroid culture models of gynecological cancers for photodynamic therapy research. Photodiagnosis Photodyn Ther 2024; 45:103975. [PMID: 38237651 DOI: 10.1016/j.pdpdt.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Photodynamic therapy (PDT) is a specific cancer treatment with minimal side effects. However, it remains challenging to apply PDT clinically, partially due to the difficulty of translating research findings to clinical settings as the conventional 2D cell models used for in vitro research are accepted as less physiologically relevant to a solid tumour. 3D spheroids offer a better model for testing PDT mechanisms and efficacy, particularly on photosensitizer uptake, cellular and subcellular distribution and interaction with cellular oxygen consumption. 3D spheroids are usually generated by scaffold-free and scaffold-based methods and are accepted as physiologically relevant models for PDT anticancer research. Scaffold-free methods offer researchers advantages including high efficiency, reproducible, and controlled microenvironment. While the scaffold-based methods offer an extracellular matrix-like 3D scaffold with the necessary architecture and chemical mediators to support the spheroid formation, the natural scaffold used may limit its usage because of low reproducibility due to patch-to-patch variation. Many studies show that the 3D spheroids do offer advantages to gynceologcial cancer PDT investigation. This article will provide a review of the applications of 3D spheroid culture models for the PDT research of gynaecological cancers.
Collapse
Affiliation(s)
- Rwk Wu
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK.
| | - Jwm Yuen
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Eyw Cheung
- School of Medical and Health Sciences, Tung Wah College, Hong Kong Special Administrative Region of China
| | - Z Huang
- MOE Key Laboratory of Photonics Science and Technology for Medicine, Fujian Normal University, Fuzhou, China
| | - Esm Chu
- School of Medical and Health Sciences, Tung Wah College, Hong Kong Special Administrative Region of China.
| |
Collapse
|
96
|
He Y, Luo L, Liu L. Photodynamic therapy for treatment of burns: A system review and meta-analysis of animal study. Photodiagnosis Photodyn Ther 2024; 45:103905. [PMID: 38013017 DOI: 10.1016/j.pdpdt.2023.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND AIM Burns are common in both everyday life and war. Shock, infection, and organ dysfunction are major complications, among which infection is the most common and has the highest mortality rate. The aim of this study was to evaluate the effect of photodynamic therapy(PDT) on animals suffering from burns. METHODS Through searching Embase, PubMed, Web of Science, and the Cochrane Library, only controlled trials were collected to study the effects of PDT on animals with burns. The included studies were evaluated for methodological quality by the MINORS (Methodological Index for Non-Randomized Studies) assessment tool, and the data analysis software was used to analyze the data accordingly. RESULTS 16 articles were collected between the earliest available date and August 2022. The results of the meta-analysis showed that PDT effectively reduces TNF-α and IL-6 levels in wounds, and increases bFGF and VEGF levels, PDT can also reduce bacterial colonization at the injury site, accelerate the healing of burn wounds, and improve the survival rate. CONCLUSION PDT has been shown to have positive effects as a treatment for animals suffering from burns. It affects the levels of cytokines, reduces bacterial counts in wounds, promotes wound healing, and improves animal survival rates.
Collapse
Affiliation(s)
- Yue He
- Chengdu Second People's Hospital, Chengdu, Sichuan, 610021, China.
| | - Lun Luo
- Chengdu Second People's Hospital, Chengdu, Sichuan, 610021, China.
| | - Luoji Liu
- Chengdu Second People's Hospital, Chengdu, Sichuan, 610021, China
| |
Collapse
|
97
|
Ko MJ, Yoo W, Min S, Zhang YS, Joo J, Kang H, Kim DH. Photonic control of image-guided ferroptosis cancer nanomedicine. Coord Chem Rev 2024; 500:215532. [PMID: 38645709 PMCID: PMC11027759 DOI: 10.1016/j.ccr.2023.215532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Photonic nanomaterials, characterized by their remarkable photonic tunability, empower a diverse range of applications, including cutting-edge advances in cancer nanomedicine. Recently, ferroptosis has emerged as a promising alternative strategy for effectively killing cancer cells with minimizing therapeutic resistance. Novel design of photonic nanomaterials that can integrate photoresponsive-ferroptosis inducers, -diagnostic imaging, and -synergistic components provide significant benefits to effectively trigger local ferroptosis. This review provides a comprehensive overview of recent advancements in photonic nanomaterials for image-guided ferroptosis cancer nanomedicine, offering insights into their strengths, constraints, and their potential as a future paradigm in cancer treatment.
Collapse
Affiliation(s)
- Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Woojung Yoo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Cambridge, MA 02139, USA
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, IL 60607, USA
| |
Collapse
|
98
|
Anand S, Shen A, Cheng CE, Chen J, Powers J, Rayman P, Diaz M, Hasan T, Maytin EV. Combination of vitamin D and photodynamic therapy enhances immune responses in murine models of squamous cell skin cancer. Photodiagnosis Photodyn Ther 2024; 45:103983. [PMID: 38281610 PMCID: PMC11197882 DOI: 10.1016/j.pdpdt.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Improved treatment outcomes for non-melanoma skin cancers can be achieved if Vitamin D (Vit D) is used as a neoadjuvant prior to photodynamic therapy (PDT). However, the mechanisms for this effect are unclear. Vit D elevates protoporphyrin (PpIX) levels within tumor cells, but also exerts immune-modulatory effects. Here, two murine models, UVB-induced actinic keratoses (AK) and human squamous cell carcinoma (A431) xenografts, were used to analyze the time course of local and systemic immune responses after PDT ± Vit D. Fluorescence immunohistochemistry of tissues and flow analysis (FACS) of blood were employed. In tissue, damage-associated molecular patterns (DAMPs) were increased, and infiltration of neutrophils (Ly6G+), macrophages (F4/80+), and dendritic cells (CD11c+) were observed. In most cases, Vit D alone or PDT alone increased cell recruitment, but Vit D + PDT showed even greater recruitment effects. Similarly for T cells, increased infiltration of total (CD3+), cytotoxic (CD8+) and regulatory (FoxP3+) T-cells was observed after Vit D or PDT, but the increase was even greater with the combination. FACS analysis revealed a variety of interesting changes in circulating immune cell levels. In particular, neutrophils decreased in the blood after Vit D, consistent with migration of neutrophils into AK lesions. Levels of cells expressing the PD-1+ checkpoint receptor were reduced in AKs following Vit D, potentially counteracting PD-1+ elevations seen after PDT alone. In summary, Vit D and ALA-PDT, two treatments with individual immunogenic effects, may be advantageous in combination to improve treatment efficacy and management of AK in the dermatology clinic.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Dermatology and Plastic Surgery Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Alan Shen
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Cheng-En Cheng
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jacky Chen
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jennifer Powers
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Pat Rayman
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Marcela Diaz
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Edward V Maytin
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Dermatology and Plastic Surgery Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114.
| |
Collapse
|
99
|
Efendiev K, Alekseeva P, Linkov K, Shiryaev A, Pisareva T, Gilyadova A, Reshetov I, Voitova A, Loschenov V. Tumor fluorescence and oxygenation monitoring during photodynamic therapy with chlorin e6 photosensitizer. Photodiagnosis Photodyn Ther 2024; 45:103969. [PMID: 38211779 DOI: 10.1016/j.pdpdt.2024.103969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND The study is aimed at developing a method for monitoring photodynamic therapy (PDT) of a tumor using chlorin-type photosensitizers (PSs). Lack of monitoring of chlorin e6 (Cе6) photobleaching, hemoglobin oxygenation and blood flow during light exposure can limit the PDT effectiveness. MATERIALS AND METHODS Phototheranostics includes spectral-fluorescence diagnostics of Ce6 distribution in the NIR range and PDT with simultaneous assessment of hemoglobin oxygenation and tumor blood flow. Fluorescence diagnostics and PDT were performed using the single laser λexc=660 ± 5 nm. RESULTS Combined spectroscopic PDT monitoring method allowed simultaneous estimation of Ce6 photobleaching, hemoglobin oxygenation and tumor vascular thrombosis during PDT without interrupting the therapeutic light exposure. CONCLUSION The developed method of tumor phototheranostics using chlorin-type PSs may make it possible to personalize the duration of therapeutic light exposure during PDT.
Collapse
Affiliation(s)
- Kanamat Efendiev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Nuclear University "MEPhI", Moscow, Russia.
| | - Polina Alekseeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Kirill Linkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Artem Shiryaev
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Aida Gilyadova
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Igor Reshetov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Victor Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Nuclear University "MEPhI", Moscow, Russia
| |
Collapse
|
100
|
Horiuchi H, Nishikawa K, Ishii N, Kano K, Shinada S, Osawa N, Horikoshi A, Yoshihara T, Sugawara F, Sakaguchi K, Okustu T, Katsura S, Matsuo I, Oshige M. A silyl porphyrin derivative conjugated with 6-deoxy-6-sulfo-α-d-glucopyranose functions as an efficient photosensitizer for photodynamic therapy. Photodiagnosis Photodyn Ther 2024; 45:103898. [PMID: 38008301 DOI: 10.1016/j.pdpdt.2023.103898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
We synthesized a new silyl porphyrin derivative conjugated with 6-deoxy-6-sulfo-α-d-glucopyranose (SGlc). Conjugation with SGlc improved A549 cellular uptake without significant changes in the photophysical and photochemical properties and subcellular localization. This improved cellular uptake led to enhanced photodynamic activity. Furthermore, conjugation with SGlc suppressed dark toxicity. These advantages were not observed for a conjugate with a glucose molecule. These results indicated that the conjugation with SGlc is a promising strategy for enhancing photodynamic efficacy.
Collapse
Affiliation(s)
- Hiroaki Horiuchi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan.
| | - Kota Nishikawa
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Nozomi Ishii
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Koki Kano
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Shunsuke Shinada
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Nene Osawa
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Aoi Horikoshi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Toshitada Yoshihara
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Fumio Sugawara
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kengo Sakaguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Tetsuo Okustu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Shinji Katsura
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan; Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan
| | - Ichiro Matsuo
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masahiko Oshige
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan; Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan.
| |
Collapse
|