51
|
Gopalan SS, Perry BW, Francioli YZ, Schield DR, Guss HD, Bernstein JM, Ballard K, Smith CF, Saviola AJ, Adams RH, Mackessy SP, Castoe TA. Diverse Gene Regulatory Mechanisms Alter Rattlesnake Venom Gene Expression at Fine Evolutionary Scales. Genome Biol Evol 2024; 16:evae110. [PMID: 38753011 PMCID: PMC11243404 DOI: 10.1093/gbe/evae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 07/13/2024] Open
Abstract
Understanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole-genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression. Through comparisons within and between species, we find a remarkably high degree of gene expression and regulatory network variation across even a shallow level of evolutionary divergence. We use these data to test hypotheses about the roles of specific trans-factors and cis-regulatory elements, how these roles may vary across venom genes and gene families, and how variation in regulatory systems drive diversity in venom phenotypes. Our results illustrate that differences in chromatin and genotype at regulatory elements play major roles in modulating expression. However, we also find that enhancer deletions, differences in transcription factor expression, and variation in activity of the insulator protein CTCF also likely impact venom phenotypes. Our findings provide insight into the diversity and gene-specificity of gene regulatory features and highlight the value of comparative studies to link gene regulatory network variation to phenotypic variation.
Collapse
Affiliation(s)
- Siddharth S Gopalan
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yannick Z Francioli
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Drew R Schield
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Hannah D Guss
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Justin M Bernstein
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kaas Ballard
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Cara F Smith
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Richard H Adams
- Department of Entomology and Plant Pathology, University of Arkansas Agricultural Experimental Station, University of Arkansas, Fayetteville, AR 72701, USA
| | - Stephen P Mackessy
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
52
|
Ambrosio L, Schol J, Ruiz-Fernández C, Tamagawa S, Joyce K, Nomura A, de Rinaldis E, Sakai D, Papalia R, Vadalà G, Denaro V. Getting to the Core: Exploring the Embryonic Development from Notochord to Nucleus Pulposus. J Dev Biol 2024; 12:18. [PMID: 39051200 PMCID: PMC11270426 DOI: 10.3390/jdb12030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The intervertebral disc (IVD) is the largest avascular organ of the human body and plays a fundamental role in providing the spine with its unique structural and biomechanical functions. The inner part of the IVD contains the nucleus pulposus (NP), a gel-like tissue characterized by a high content of type II collagen and proteoglycans, which is crucial for the disc's load-bearing and shock-absorbing properties. With aging and IVD degeneration (IDD), the NP gradually loses its physiological characteristics, leading to low back pain and additional sequelae. In contrast to surrounding spinal tissues, the NP presents a distinctive embryonic development since it directly derives from the notochord. This review aims to explore the embryology of the NP, emphasizing the pivotal roles of key transcription factors, which guide the differentiation and maintenance of the NP cellular components from the notochord and surrounding sclerotome. Through an understanding of NP development, we sought to investigate the implications of the critical developmental aspects in IVD-related pathologies, such as IDD and the rare malignant chordomas. Moreover, this review discusses the therapeutic strategies targeting these pathways, including the novel regenerative approaches leveraging insights from NP development and embryology to potentially guide future treatments.
Collapse
Affiliation(s)
- Luca Ambrosio
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Clara Ruiz-Fernández
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Kieran Joyce
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland;
- School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - Akira Nomura
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Elisabetta de Rinaldis
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Gianluca Vadalà
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
| |
Collapse
|
53
|
Jores T, Tonnies J, Mueth NA, Romanowski A, Fields S, Cuperus JT, Queitsch C. Plant enhancers exhibit both cooperative and additive interactions among their functional elements. THE PLANT CELL 2024; 36:2570-2586. [PMID: 38513612 PMCID: PMC11218779 DOI: 10.1093/plcell/koae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Enhancers are cis-regulatory elements that shape gene expression in response to numerous developmental and environmental cues. In animals, several models have been proposed to explain how enhancers integrate the activity of multiple transcription factors. However, it remains largely unclear how plant enhancers integrate transcription factor activity. Here, we use Plant STARR-seq to characterize 3 light-responsive plant enhancers-AB80, Cab-1, and rbcS-E9-derived from genes associated with photosynthesis. Saturation mutagenesis revealed mutations, many of which clustered in short regions, that strongly reduced enhancer activity in the light, in the dark, or in both conditions. When tested in the light, these mutation-sensitive regions did not function on their own; rather, cooperative interactions with other such regions were required for full activity. Epistatic interactions occurred between mutations in adjacent mutation-sensitive regions, and the spacing and order of mutation-sensitive regions in synthetic enhancers affected enhancer activity. In contrast, when tested in the dark, mutation-sensitive regions acted independently and additively in conferring enhancer activity. Taken together, this work demonstrates that plant enhancers show evidence for both cooperative and additive interactions among their functional elements. This knowledge can be harnessed to design strong, condition-specific synthetic enhancers.
Collapse
Affiliation(s)
- Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Institute of Synthetic Biology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Biology, University of Washington, Seattle, WA 98195, USA
| | - Nicholas A Mueth
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Andrés Romanowski
- Molecular Biology Group, Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
54
|
Nocente MC, Mesihovic Karamitsos A, Drouineau E, Soleil M, Albawardi W, Dulary C, Ribierre F, Picaud H, Alibert O, Acker J, Kervella M, Aude JC, Gilbert N, Ochsenbein F, Chantalat S, Gérard M. cBAF generates subnucleosomes that expand OCT4 binding and function beyond DNA motifs at enhancers. Nat Struct Mol Biol 2024:10.1038/s41594-024-01344-0. [PMID: 38956169 DOI: 10.1038/s41594-024-01344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
The canonical BRG/BRM-associated factor (cBAF) complex is essential for chromatin opening at enhancers in mammalian cells. However, the nature of the open chromatin remains unclear. Here, we show that, in addition to producing histone-free DNA, cBAF generates stable hemisome-like subnucleosomal particles containing the four core histones associated with 50-80 bp of DNA. Our genome-wide analysis indicates that cBAF makes these particles by targeting and splitting fragile nucleosomes. In mouse embryonic stem cells, these subnucleosomes become an in vivo binding substrate for the master transcription factor OCT4 independently of the presence of OCT4 DNA motifs. At enhancers, the OCT4-subnucleosome interaction increases OCT4 occupancy and amplifies the genomic interval bound by OCT4 by up to one order of magnitude compared to the region occupied on histone-free DNA. We propose that cBAF-dependent subnucleosomes orchestrate a molecular mechanism that projects OCT4 function in chromatin opening beyond its DNA motifs.
Collapse
Affiliation(s)
- Marina C Nocente
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anida Mesihovic Karamitsos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Emilie Drouineau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Manon Soleil
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Waad Albawardi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Cécile Dulary
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Florence Ribierre
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Hélène Picaud
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Olivier Alibert
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Joël Acker
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marie Kervella
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jean-Christophe Aude
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Françoise Ochsenbein
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sophie Chantalat
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Matthieu Gérard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
55
|
Yang JH, Hansen AS. Enhancer selectivity in space and time: from enhancer-promoter interactions to promoter activation. Nat Rev Mol Cell Biol 2024; 25:574-591. [PMID: 38413840 DOI: 10.1038/s41580-024-00710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
The primary regulators of metazoan gene expression are enhancers, originally functionally defined as DNA sequences that can activate transcription at promoters in an orientation-independent and distance-independent manner. Despite being crucial for gene regulation in animals, what mechanisms underlie enhancer selectivity for promoters, and more fundamentally, how enhancers interact with promoters and activate transcription, remain poorly understood. In this Review, we first discuss current models of enhancer-promoter interactions in space and time and how enhancers affect transcription activation. Next, we discuss different mechanisms that mediate enhancer selectivity, including repression, biochemical compatibility and regulation of 3D genome structure. Through 3D polymer simulations, we illustrate how the ability of 3D genome folding mechanisms to mediate enhancer selectivity strongly varies for different enhancer-promoter interaction mechanisms. Finally, we discuss how recent technical advances may provide new insights into mechanisms of enhancer-promoter interactions and how technical biases in methods such as Hi-C and Micro-C and imaging techniques may affect their interpretation.
Collapse
Affiliation(s)
- Jin H Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
56
|
Loupe JM, Anderson AG, Rizzardi LF, Rodriguez-Nunez I, Moyers B, Trausch-Lowther K, Jain R, Bunney WE, Bunney BG, Cartagena P, Sequeira A, Watson SJ, Akil H, Cooper GM, Myers RM. Multiomic profiling of transcription factor binding and function in human brain. Nat Neurosci 2024; 27:1387-1399. [PMID: 38831039 DOI: 10.1038/s41593-024-01658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/19/2024] [Indexed: 06/05/2024]
Abstract
Transcription factors (TFs) orchestrate gene expression programs crucial for brain function, but we lack detailed information about TF binding in human brain tissue. We generated a multiomic resource (ChIP-seq, ATAC-seq, RNA-seq, DNA methylation) on bulk tissues and sorted nuclei from several postmortem brain regions, including binding maps for more than 100 TFs. We demonstrate improved measurements of TF activity, including motif recognition and gene expression modeling, upon identification and removal of high TF occupancy regions. Further, predictive TF binding models demonstrate a bias for these high-occupancy sites. Neuronal TFs SATB2 and TBR1 bind unique regions depleted for such sites and promote neuronal gene expression. Binding sites for TFs, including TBR1 and PKNOX1, are enriched for risk variants associated with neuropsychiatric disorders, predominantly in neurons. This work, titled BrainTF, is a powerful resource for future studies seeking to understand the roles of specific TFs in regulating gene expression in the human brain.
Collapse
Affiliation(s)
- Jacob M Loupe
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Lindsay F Rizzardi
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Biochemistry and Molecular Biology, The University of Alabama in Birmingham, Birmingham, AL, USA
| | | | - Belle Moyers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Rashmi Jain
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - William E Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Blynn G Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Preston Cartagena
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Stanley J Watson
- The Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Huda Akil
- The Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| |
Collapse
|
57
|
McDonnell AF, Plech M, Livesey BJ, Gerasimavicius L, Owen LJ, Hall HN, FitzPatrick DR, Marsh JA, Kudla G. Deep mutational scanning quantifies DNA binding and predicts clinical outcomes of PAX6 variants. Mol Syst Biol 2024; 20:825-844. [PMID: 38849565 PMCID: PMC11219921 DOI: 10.1038/s44320-024-00043-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Nonsense and missense mutations in the transcription factor PAX6 cause a wide range of eye development defects, including aniridia, microphthalmia and coloboma. To understand how changes of PAX6:DNA binding cause these phenotypes, we combined saturation mutagenesis of the paired domain of PAX6 with a yeast one-hybrid (Y1H) assay in which expression of a PAX6-GAL4 fusion gene drives antibiotic resistance. We quantified binding of more than 2700 single amino-acid variants to two DNA sequence elements. Mutations in DNA-facing residues of the N-terminal subdomain and linker region were most detrimental, as were mutations to prolines and to negatively charged residues. Many variants caused sequence-specific molecular gain-of-function effects, including variants in position 71 that increased binding to the LE9 enhancer but decreased binding to a SELEX-derived binding site. In the absence of antibiotic selection, variants that retained DNA binding slowed yeast growth, likely because such variants perturbed the yeast transcriptome. Benchmarking against known patient variants and applying ACMG/AMP guidelines to variant classification, we obtained supporting-to-moderate evidence that 977 variants are likely pathogenic and 1306 are likely benign. Our analysis shows that most pathogenic mutations in the paired domain of PAX6 can be explained simply by the effects of these mutations on PAX6:DNA association, and establishes Y1H as a generalisable assay for the interpretation of variant effects in transcription factors.
Collapse
Affiliation(s)
- Alexander F McDonnell
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Marcin Plech
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Benjamin J Livesey
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Liusaidh J Owen
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Hildegard Nikki Hall
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
58
|
Gao ZX, He T, Zhang P, Hu X, Ge M, Xu YQ, Wang P, Pan HF. Epigenetic regulation of immune cells in systemic lupus erythematosus: insight from chromatin accessibility. Expert Opin Ther Targets 2024; 28:637-649. [PMID: 38943564 DOI: 10.1080/14728222.2024.2375372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION Systemic Lupus Erythematosus (SLE) is a multi-dimensional autoimmune disease involving numerous tissues throughout the body. The chromatin accessibility landscapes in immune cells play a pivotal role in governing their activation, function, and differentiation. Aberrant modulation of chromatin accessibility in immune cells is intimately associated with the onset and progression of SLE. AREAS COVERED In this review, we described the chromatin accessibility landscapes in immune cells, summarized the recent evidence of chromatin accessibility related to the pathogenesis of SLE, and discussed the potential of chromatin accessibility as a valuable option to identify novel therapeutic targets for this disease. EXPERT OPINION Dynamic changes in chromatin accessibility are intimately related to the pathogenesis of SLE and have emerged as a new direction for exploring its epigenetic mechanisms. The differently accessible chromatin regions in immune cells often contain binding sites for transcription factors (TFs) and cis-regulatory elements such as enhancers and promoters, which may be potential therapeutic targets for SLE. Larger scale cohort studies and integrating epigenomic, transcriptomic, and metabolomic data can provide deeper insights into SLE chromatin biology in the future.
Collapse
Affiliation(s)
- Zhao-Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Peng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiao Hu
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Peng Wang
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
59
|
Freund MM, Harrison MM, Torres-Zelada EF. Exploring the reciprocity between pioneer factors and development. Development 2024; 151:dev201921. [PMID: 38958075 PMCID: PMC11266817 DOI: 10.1242/dev.201921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Development is regulated by coordinated changes in gene expression. Control of these changes in expression is largely governed by the binding of transcription factors to specific regulatory elements. However, the packaging of DNA into chromatin prevents the binding of many transcription factors. Pioneer factors overcome this barrier owing to unique properties that enable them to bind closed chromatin, promote accessibility and, in so doing, mediate binding of additional factors that activate gene expression. Because of these properties, pioneer factors act at the top of gene-regulatory networks and drive developmental transitions. Despite the ability to bind target motifs in closed chromatin, pioneer factors have cell type-specific chromatin occupancy and activity. Thus, developmental context clearly shapes pioneer-factor function. Here, we discuss this reciprocal interplay between pioneer factors and development: how pioneer factors control changes in cell fate and how cellular environment influences pioneer-factor binding and activity.
Collapse
Affiliation(s)
- Meghan M. Freund
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Eliana F. Torres-Zelada
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| |
Collapse
|
60
|
Hu S, Liu Y, Zhang Q, Bai J, Xu C. A continuum of zinc finger transcription factor retention on native chromatin underlies dynamic genome organization. Mol Syst Biol 2024; 20:799-824. [PMID: 38745107 PMCID: PMC11220090 DOI: 10.1038/s44320-024-00038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Transcription factor (TF) residence on chromatin translates into quantitative transcriptional or structural outcomes on genome. Commonly used formaldehyde crosslinking fixes TF-DNA interactions cumulatively and compromises the measured occupancy level. Here we mapped the occupancy level of global or individual zinc finger TFs like CTCF and MAZ, in the form of highly resolved footprints, on native chromatin. By incorporating reinforcing perturbation conditions, we established S-score, a quantitative metric to proxy the continuum of CTCF or MAZ retention across different motifs on native chromatin. The native chromatin-retained CTCF sites harbor sequence features within CTCF motifs better explained by S-score than the metrics obtained from other crosslinking or native assays. CTCF retention on native chromatin correlates with local SUMOylation level, and anti-correlates with transcriptional activity. The S-score successfully delineates the otherwise-masked differential stability of chromatin structures mediated by CTCF, or by MAZ independent of CTCF. Overall, our study established a paradigm continuum of TF retention across binding sites on native chromatin, explaining the dynamic genome organization.
Collapse
Affiliation(s)
- Siling Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yangying Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qifan Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenhuan Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
61
|
Wang J, Pu Z, Zhang W, Qu M, Gao L, Pan W, Sun Y, Fu C, Zhang L, Huang M, Hu Y. Identification of the New GmJAG1 Transcription Factor Binding Motifs Using DAP-Seq. PLANTS (BASEL, SWITZERLAND) 2024; 13:1708. [PMID: 38931140 PMCID: PMC11207949 DOI: 10.3390/plants13121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Interaction between transcription factors (TFs) and motifs is essential for gene regulation and the subsequent phenotype formation. Soybean (Glycine max) JAGGEED 1 (GmJAG1) is a key TF that controls leaf shape, seed number and flower size. To understand the GmJAG1 binding motifs, in this study, we performed the GmJAG1 DNA affinity purification sequencing (DAP-seq) experiment, which is a powerful tool for the de novo motif prediction method. Two new significant GmJAG1 binding motifs were predicted and the EMSA experiments further verified the ability of GmJAG1 bound to these motifs. The potential binding sites in the downstream gene promoter were identified through motif scanning and a potential regulatory network mediated by GmJAG1 was constructed. These results served as important genomic resources for further understanding the regulatory mechanism of GmJAG1.
Collapse
Affiliation(s)
- Jinxing Wang
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (J.W.); (W.Z.); (M.Q.); (L.G.); (W.P.); (Y.S.); (C.F.)
| | - Zigang Pu
- Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 330022, China; (Z.P.); (L.Z.)
- Heilongjiang Longke Seed Industry Group Co., Ltd., Harbin 150000, China
| | - Weiyao Zhang
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (J.W.); (W.Z.); (M.Q.); (L.G.); (W.P.); (Y.S.); (C.F.)
| | - Mengnan Qu
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (J.W.); (W.Z.); (M.Q.); (L.G.); (W.P.); (Y.S.); (C.F.)
| | - Lusi Gao
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (J.W.); (W.Z.); (M.Q.); (L.G.); (W.P.); (Y.S.); (C.F.)
| | - Wenjing Pan
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (J.W.); (W.Z.); (M.Q.); (L.G.); (W.P.); (Y.S.); (C.F.)
| | - Yanan Sun
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (J.W.); (W.Z.); (M.Q.); (L.G.); (W.P.); (Y.S.); (C.F.)
| | - Chunxu Fu
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua 152052, China; (J.W.); (W.Z.); (M.Q.); (L.G.); (W.P.); (Y.S.); (C.F.)
| | - Ling Zhang
- Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 330022, China; (Z.P.); (L.Z.)
| | - Mingkun Huang
- Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 330022, China; (Z.P.); (L.Z.)
| | - Yufang Hu
- Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 330022, China; (Z.P.); (L.Z.)
| |
Collapse
|
62
|
Liu L, Yahaya BS, Li J, Wu F. Enigmatic role of auxin response factors in plant growth and stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1398818. [PMID: 38903418 PMCID: PMC11188990 DOI: 10.3389/fpls.2024.1398818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Abiotic and biotic stresses globally constrain plant growth and impede the optimization of crop productivity. The phytohormone auxin is involved in nearly every aspect of plant development. Auxin acts as a chemical messenger that influences gene expression through a short nuclear pathway, mediated by a family of specific DNA-binding transcription factors known as Auxin Response Factors (ARFs). ARFs thus act as effectors of auxin response and translate chemical signals into the regulation of auxin responsive genes. Since the initial discovery of the first ARF in Arabidopsis, advancements in genetics, biochemistry, genomics, and structural biology have facilitated the development of models elucidating ARF action and their contributions to generating specific auxin responses. Yet, significant gaps persist in our understanding of ARF transcription factors despite these endeavors. Unraveling the functional roles of ARFs in regulating stress response, alongside elucidating their genetic and molecular mechanisms, is still in its nascent phase. Here, we review recent research outcomes on ARFs, detailing their involvement in regulating leaf, flower, and root organogenesis and development, as well as stress responses and their corresponding regulatory mechanisms: including gene expression patterns, functional characterization, transcriptional, post-transcriptional and post- translational regulation across diverse stress conditions. Furthermore, we delineate unresolved questions and forthcoming challenges in ARF research.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| |
Collapse
|
63
|
Falo-Sanjuan J, Diaz-Tirado Y, Turner MA, Davis J, Medrano C, Haines J, McKenna J, Eisen MB, Garcia HG. Targeted mutagenesis of specific genomic DNA sequences in animals for the in vivo generation of variant libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598328. [PMID: 38915503 PMCID: PMC11195090 DOI: 10.1101/2024.06.10.598328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Understanding how the number, placement and affinity of transcription factor binding sites dictates gene regulatory programs remains a major unsolved challenge in biology, particularly in the context of multicellular organisms. To uncover these rules, it is first necessary to find the binding sites within a regulatory region with high precision, and then to systematically modulate this binding site arrangement while simultaneously measuring the effect of this modulation on output gene expression. Massively parallel reporter assays (MPRAs), where the gene expression stemming from 10,000s of in vitro-generated regulatory sequences is measured, have made this feat possible in high-throughput in single cells in culture. However, because of lack of technologies to incorporate DNA libraries, MPRAs are limited in whole organisms. To enable MPRAs in multicellular organisms, we generated tools to create a high degree of mutagenesis in specific genomic loci in vivo using base editing. Targeting GFP integrated in genome of Drosophila cell culture and whole animals as a case study, we show that the base editor AIDevoCDA1 stemming from sea lamprey fused to nCas9 is highly mutagenic. Surprisingly, longer gRNAs increase mutation efficiency and expand the mutating window, which can allow the introduction of mutations in previously untargetable sequences. Finally, we demonstrate arrays of >20 gRNAs that can efficiently introduce mutations along a 200bp sequence, making it a promising tool to test enhancer function in vivo in a high throughput manner.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Yuliana Diaz-Tirado
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Meghan A Turner
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Julian Davis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Claudia Medrano
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jenna Haines
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Joey McKenna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael B Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Hernan G Garcia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| |
Collapse
|
64
|
Liu B, He Y, Wu X, Lin Z, Ma J, Qiu Y, Xiang Y, Kong F, Lai F, Pal M, Wang P, Ming J, Zhang B, Wang Q, Wu J, Xia W, Shen W, Na J, Torres-Padilla ME, Li J, Xie W. Mapping putative enhancers in mouse oocytes and early embryos reveals TCF3/12 as key folliculogenesis regulators. Nat Cell Biol 2024; 26:962-974. [PMID: 38839978 DOI: 10.1038/s41556-024-01422-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Dynamic epigenomic reprogramming occurs during mammalian oocyte maturation and early development. However, the underlying transcription circuitry remains poorly characterized. By mapping cis-regulatory elements using H3K27ac, we identified putative enhancers in mouse oocytes and early embryos distinct from those in adult tissues, enabling global transitions of regulatory landscapes around fertilization and implantation. Gene deserts harbour prevalent putative enhancers in fully grown oocytes linked to oocyte-specific genes and repeat activation. Embryo-specific enhancers are primed before zygotic genome activation and are restricted by oocyte-inherited H3K27me3. Putative enhancers in oocytes often manifest H3K4me3, bidirectional transcription, Pol II binding and can drive transcription in STARR-seq and a reporter assay. Finally, motif analysis of these elements identified crucial regulators of oogenesis, TCF3 and TCF12, the deficiency of which impairs activation of key oocyte genes and folliculogenesis. These data reveal distinctive regulatory landscapes and their interacting transcription factors that underpin the development of mammalian oocytes and early embryos.
Collapse
Affiliation(s)
- Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, China
| | - Xiaotong Wu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
| | - Zili Lin
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jing Ma
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yunlong Xiang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Mrinmoy Pal
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany
| | - Peizhe Wang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Jia Ming
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Bingjie Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jingyi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Weikun Xia
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Weimin Shen
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | | | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
65
|
Orsetti A, van Oosten D, Vasarhelyi RG, Dănescu TM, Huertas J, van Ingen H, Cojocaru V. Structural dynamics in chromatin unraveling by pioneer transcription factors. Biophys Rev 2024; 16:365-382. [PMID: 39099839 PMCID: PMC11297019 DOI: 10.1007/s12551-024-01205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Pioneer transcription factors are proteins with a dual function. First, they regulate transcription by binding to nucleosome-free DNA regulatory elements. Second, they bind to DNA while wrapped around histone proteins in the chromatin and mediate chromatin opening. The molecular mechanisms that connect the two functions are yet to be discovered. In recent years, pioneer factors received increased attention mainly because of their crucial role in promoting cell fate transitions that could be used for regenerative therapies. For example, the three factors required to induce pluripotency in somatic cells, Oct4, Sox2, and Klf4 were classified as pioneer factors and studied extensively. With this increased attention, several structures of complexes between pioneer factors and chromatin structural units (nucleosomes) have been resolved experimentally. Furthermore, experimental and computational approaches have been designed to study two unresolved, key scientific questions: First, do pioneer factors induce directly local opening of nucleosomes and chromatin fibers upon binding? And second, how do the unstructured tails of the histones impact the structural dynamics involved in such conformational transitions? Here we review the current knowledge about transcription factor-induced nucleosome dynamics and the role of the histone tails in this process. We discuss what is needed to bridge the gap between the static views obtained from the experimental structures and the key structural dynamic events in chromatin opening. Finally, we propose that integrating nuclear magnetic resonance spectroscopy with molecular dynamics simulations is a powerful approach to studying pioneer factor-mediated dynamics of nucleosomes and perhaps small chromatin fibers using native DNA sequences.
Collapse
Affiliation(s)
- Andrea Orsetti
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Daphne van Oosten
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | | | - Theodor-Marian Dănescu
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Jan Huertas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Vlad Cojocaru
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
66
|
Li L, Lai F, Liu L, Lu X, Hu X, Liu B, Lin Z, Fan Q, Kong F, Xu Q, Xie W. Lineage regulators TFAP2C and NR5A2 function as bipotency activators in totipotent embryos. Nat Struct Mol Biol 2024; 31:950-963. [PMID: 38243114 DOI: 10.1038/s41594-023-01199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/05/2023] [Indexed: 01/21/2024]
Abstract
During the first lineage segregation, a mammalian totipotent embryo differentiates into the inner cell mass (ICM) and trophectoderm (TE). However, how transcription factors (TFs) regulate this earliest cell-fate decision in vivo remains elusive, with their regulomes primarily inferred from cultured cells. Here, we investigated the TF regulomes during the first lineage specification in early mouse embryos, spanning the pre-initiation, initiation, commitment, and maintenance phases. Unexpectedly, we found that TFAP2C, a trophoblast regulator, bound and activated both early TE and inner cell mass (ICM) genes at the totipotent (two- to eight-cell) stages ('bipotency activation'). Tfap2c deficiency caused downregulation of early ICM genes, including Nanog, Nr5a2, and Tdgf1, and early TE genes, including Tfeb and Itgb5, in eight-cell embryos. Transcription defects in both ICM and TE lineages were also found in blastocysts, accompanied by increased apoptosis and reduced cell numbers in ICMs. Upon trophoblast commitment, TFAP2C left early ICM genes but acquired binding to late TE genes in blastocysts, where it co-bound with CDX2, and later to extra-embryonic ectoderm (ExE) genes, where it cooperatively co-occupied with the former ICM regulator SOX2. Finally, 'bipotency activation' in totipotent embryos also applied to a pluripotency regulator NR5A2, which similarly bound and activated both ICM and TE lineage genes at the eight-cell stage. These data reveal a unique transcription circuity of totipotency underpinned by highly adaptable lineage regulators.
Collapse
Affiliation(s)
- Lijia Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaoyu Hu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zili Lin
- College of Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
67
|
Wu S, Huang J, Li Y. Antiviral effect of miR-206 in rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109552. [PMID: 38599364 DOI: 10.1016/j.fsi.2024.109552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Infectious hematopoietic necrosis (IHN), caused by IHN virus, is a highly contagious and lethal disease that seriously hampers the development of rainbow trout (Oncorhynchus mykiss) aquaculture. However, the immune response mechanism of rainbow trout underlying IHNV infection remains largely unknown. MicroRNAs act as post-transcriptional regulators of gene expression and perform a crucial role in fish immune response. Herein, the regulatory mechanism and function of miR-206 in rainbow trout resistance to IHNV were investigated by overexpression and silencing. The expression analysis showed that miR-206 and its potential target receptor-interacting serine/threonine-protein kinase 2 (RIP2) exhibited significant time-dependent changes in headkidney, spleen and rainbow trout primary liver cells infected with IHNV and their expression displayed a negative correlation. In vitro, the interaction between miR-206 and RIP2 was verified by luciferase reporter assay, and miR-206 silencing in rainbow trout primary liver cells markedly increased RIP2 and interferon (IFN) expression but significantly decreased IHNV copies, and opposite results were obtained after miR-206 overexpression or RIP2 knockdown. In vivo, overexpressed miR-206 with agomiR resulted in a decrease in the expression of RIP2 and IFN in liver, headkidney and spleen. This study revealed the key role of miR-206 in anti-IHNV, which provided potential for anti-viral drug screening in rainbow trout.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
68
|
Wu PC, McGowan EC, Lee YQ, Ghosh S, Hansson J, Olsson ML. Epigenetic dissection of human blood group genes reveals regulatory elements and detailed characteristics of KEL and four other loci. Transfusion 2024; 64:1083-1096. [PMID: 38644556 DOI: 10.1111/trf.17840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Blood typing is essential for safe transfusions and is performed serologically or genetically. Genotyping predominantly focuses on coding regions, but non-coding variants may affect gene regulation, as demonstrated in the ABO, FY and XG systems. To uncover regulatory loci, we expanded a recently developed bioinformatics pipeline for discovery of non-coding variants by including additional epigenetic datasets. METHODS Multiple datasets including ChIP-seq with erythroid transcription factors (TFs), histone modifications (H3K27ac, H3K4me1), and chromatin accessibility (ATAC-seq) were analyzed. Candidate regulatory regions were investigated for activity (luciferase assays) and TF binding (electrophoretic mobility shift assay, EMSA, and mass spectrometry, MS). RESULTS In total, 814 potential regulatory sites in 47 blood-group-related genes were identified where one or more erythroid TFs bound. Enhancer candidates in CR1, EMP3, ABCB6, and ABCC4 indicated by ATAC-seq, histone markers, and co-occupancy of 4 TFs (GATA1/KLF1/RUNX1/NFE2) were investigated but only CR1 and ABCC4 showed increased transcription. Co-occupancy of GATA1 and KLF1 was observed in the KEL promoter, previously reported to contain GATA1 and Sp1 sites. TF binding energy scores decreased when three naturally occurring variants were introduced into GATA1 and KLF1 motifs. Two of three GATA1 sites and the KLF1 site were confirmed functionally. EMSA and MS demonstrated increased GATA1 and KLF1 binding to the wild-type compared to variant motifs. DISCUSSION This combined bioinformatics and experimental approach revealed multiple candidate regulatory regions and predicted TF co-occupancy sites. The KEL promoter was characterized in detail, indicating that two adjacent GATA1 and KLF1 motifs are most crucial for transcription.
Collapse
Affiliation(s)
- Ping Chun Wu
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine and the Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Eunike C McGowan
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine and the Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Yan Quan Lee
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine and the Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sudip Ghosh
- Department of Experimental Medical Science and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jenny Hansson
- Department of Experimental Medical Science and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Martin L Olsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine and the Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Sweden
| |
Collapse
|
69
|
Oka H, Kojima T, Kato R, Ihara K, Nakano H. Construction of transcript regulation mechanism prediction models based on binding motif environment of transcription factor AoXlnR in Aspergillus oryzae. J Bioinform Comput Biol 2024; 22:2450017. [PMID: 39051143 DOI: 10.1142/s0219720024500173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
DNA-binding transcription factors (TFs) play a central role in transcriptional regulation mechanisms, mainly through their specific binding to target sites on the genome and regulation of the expression of downstream genes. Therefore, a comprehensive analysis of the function of these TFs will lead to the understanding of various biological mechanisms. However, the functions of TFs in vivo are diverse and complicated, and the identified binding sites on the genome are not necessarily involved in the regulation of downstream gene expression. In this study, we investigated whether DNA structural information around the binding site of TFs can be used to predict the involvement of the binding site in the regulation of the expression of genes located downstream of the binding site. Specifically, we calculated the structural parameters based on the DNA shape around the DNA binding motif located upstream of the gene whose expression is directly regulated by one TF AoXlnR from Aspergillus oryzae, and showed that the presence or absence of expression regulation can be predicted from the sequence information with high accuracy ([Formula: see text]-1.0) by machine learning incorporating these parameters.
Collapse
Affiliation(s)
- Hiroya Oka
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Takaaki Kojima
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Agrobiological Resources, Faculty of Agriculture, Meijo University, Shiogamaguchi, Tempaku Nagoya 468-8502, Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hideo Nakano
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
70
|
Böttcher J, Fuchs JE, Mayer M, Kahmann J, Zak KM, Wunberg T, Woehrle S, Kessler D. Ligandability assessment of the C-terminal Rel-homology domain of NFAT1. Arch Pharm (Weinheim) 2024; 357:e2300649. [PMID: 38396281 DOI: 10.1002/ardp.202300649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Transcription factors are generally considered challenging, if not "undruggable", targets but they promise new therapeutic options due to their fundamental involvement in many diseases. In this study, we aim to assess the ligandability of the C-terminal Rel-homology domain of nuclear factor of activated T cells 1 (NFAT1), a TF implicated in T-cell regulation. Using a combination of experimental and computational approaches, we demonstrate that small molecule fragments can indeed bind to this protein domain. The newly identified binder is the first small molecule binder to NFAT1 validated with biophysical methods and an elucidated binding mode by X-ray crystallography. The reported eutomer/distomer pair provides a strong basis for potential exploration of higher potency binders on the path toward degrader or glue modalities.
Collapse
Affiliation(s)
- Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | - Simon Woehrle
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| |
Collapse
|
71
|
Ali MZ, Guharajan S, Parisutham V, Brewster RC. Regulatory properties of transcription factors with diverse mechanistic function. PLoS Comput Biol 2024; 20:e1012194. [PMID: 38857275 PMCID: PMC11192337 DOI: 10.1371/journal.pcbi.1012194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/21/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Transcription factors (TFs) regulate the process of transcription through the modulation of different kinetic steps. Although models can often describe the observed transcriptional output of a measured gene, predicting a TFs role on a given promoter requires an understanding of how the TF alters each step of the transcription process. In this work, we use a simple model of transcription to assess the role of promoter identity, and the degree to which TFs alter binding of RNAP (stabilization) and initiation of transcription (acceleration) on three primary characteristics: the range of steady-state regulation, cell-to-cell variability in expression, and the dynamic response time of a regulated gene. We find that steady state regulation and the response time of a gene behave uniquely for TFs that regulate incoherently, i.e that speed up one step but slow the other. We also find that incoherent TFs have dynamic implications, with one type of incoherent mode configuring the promoter to respond more slowly at intermediate TF concentrations. We also demonstrate that the noise of gene expression for these TFs is sensitive to promoter strength, with a distinct non-monotonic profile that is apparent under stronger promoters. Taken together, our work uncovers the coupling between promoters and TF regulatory modes with implications for understanding natural promoters and engineering synthetic gene circuits with desired expression properties.
Collapse
Affiliation(s)
- Md Zulfikar Ali
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Geology, Physics and Environmental Science, University of Southern Indiana, Evansville, Indiana, United States of America
| | - Sunil Guharajan
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Vinuselvi Parisutham
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robert C. Brewster
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
72
|
Park SJ, Nakai K. A computational approach for deciphering the interactions between proximal and distal gene regulators in GC B-cell response. NAR Genom Bioinform 2024; 6:lqae050. [PMID: 38711859 PMCID: PMC11071120 DOI: 10.1093/nargab/lqae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024] Open
Abstract
Delineating the intricate interplay between promoter-proximal and -distal regulators is crucial for understanding the function of transcriptional mediator complexes implicated in the regulation of gene expression. The present study aimed to develop a computational method for accurately modeling the spatial proximal and distal regulatory interactions. Our method combined regression-based models to identify key regulators through gene expression prediction and a graph-embedding approach to detect coregulated genes. This approach enabled a detailed investigation of the gene regulatory mechanisms for germinal center B cells, accompanied by dramatic rearrangements of the genome structure. We found that while the promoter-proximal regulatory elements were the principal regulators of gene expression, the distal regulators fine-tuned transcription. Moreover, our approach unveiled the presence of modular regulators, such as cofactors and proximal/distal transcription factors, which were co-expressed with their target genes. Some of these modules exhibited abnormal expression patterns in lymphoma. These findings suggest that the dysregulation of interactions between transcriptional and architectural factors is associated with chromatin reorganization failure, which may increase the risk of malignancy. Therefore, our computational approach helps decipher the transcriptional cis-regulatory code spatially interacting.
Collapse
Affiliation(s)
- Sung-Joon Park
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
73
|
Hu B, Zhang X, Fan H, Jin X, Qi Y, Liu R, Li X, Duan M, Zhang C, Li S, Yao W, Hao C. FOXF1 reverses lung fibroblasts transdifferentiation via inhibiting TGF-β/SMAD2/3 pathway in silica-induced pulmonary fibrosis. Int Immunopharmacol 2024; 133:112067. [PMID: 38608444 DOI: 10.1016/j.intimp.2024.112067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Silicosis is one of the most common and severe types of pneumoconiosis and is characterized by lung dysfunction, persistent lung inflammation, pulmonary nodule formation, and irreversible pulmonary fibrosis. The transdifferentiation of fibroblasts into myofibroblasts is one of the main reasons for the exacerbation of silicosis. However, the underlying mechanism of transcription factors regulating silicosis fibrosis has not been clarified. The aim of this study was to investigate the potential mechanism of transcription factor FOXF1 in fibroblast transdifferentiation in silica-induced pulmonary fibrosis. Therefore, a silicosis mouse model was established, and we found that FOXF1 expression level was significantly down-regulated in the silicosis group, and after overexpression of FOXF1 by adeno-associated virus (AAV), FOXF1 expression level was up-regulated, and silicosis fibrosis was alleviated. In order to further explore the specific regulatory mechanism of FOXF1 in silicosis, we established a fibroblasts transdifferentiation model induced by TGF-β in vitro. In the model, the expression levels of SMAD2/3 and P-SMAD2/3 were up-regulated, but the expression levels of SMAD2/3 and P-SMAD2/3 were down-regulated, inhibiting transdifferentiation and accumulation of extracellular matrix after the overexpressed FOXF1 plasmid was constructed. However, after silencing FOXF1, the expression levels of SMAD2/3 and P-SMAD2/3 were further up-regulated, aggravating transdifferentiation and accumulation of extracellular matrix. These results indicate that the activation of FOXF1 in fibroblasts can slow down the progression of silicosis fibrosis by inhibiting TGF-β/SMAD2/3 classical pathway, which provides a new idea for further exploration of silicosis treatment.
Collapse
Affiliation(s)
- Botao Hu
- School of Public Health, Zhengzhou University, Henan, China
| | - Xuesong Zhang
- School of Public Health, Zhengzhou University, Henan, China
| | - Hui Fan
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Henan, China
| | - Xiaofei Jin
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Henan, China
| | - Yuanmeng Qi
- School of Public Health, Zhengzhou University, Henan, China
| | - Ruimin Liu
- School of Public Health, Zhengzhou University, Henan, China
| | - Xiaoying Li
- School of Public Health, Zhengzhou University, Henan, China
| | - Meixiu Duan
- School of Public Health, Zhengzhou University, Henan, China
| | | | - Shiyu Li
- School of Public Health, Zhengzhou University, Henan, China
| | - Wu Yao
- School of Public Health, Zhengzhou University, Henan, China
| | - Changfu Hao
- School of Public Health, Zhengzhou University, Henan, China.
| |
Collapse
|
74
|
Gautam P, Sinha SK. The Blueprint of Logical Decisions in a NF-κB Signaling System. ACS OMEGA 2024; 9:22625-22634. [PMID: 38826544 PMCID: PMC11137707 DOI: 10.1021/acsomega.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024]
Abstract
Nearly identical cells can exhibit substantially different responses to the same stimulus that causes phenotype diversity. Such interplay between phenotype diversity and the architecture of regulatory circuits is crucial since it determines the state of a biological cell. Here, we theoretically analyze how the circuit blueprints of NF-κB in cellular environments are formed and their role in determining the cells' metabolic state. The NF-κB is a collective name for a developmental conserved family of five different transcription factors that can form homodimers or heterodimers and often promote DNA looping to reprogram the inflammatory gene response. The NF-κB controls many biological functions, including cellular differentiation, proliferation, migration, and survival. Our model shows that nuclear localization of NF-κB differentially promotes logic operations such as AND, NAND, NOR, and OR in its regulatory network. Through the quantitative thermodynamic model of transcriptional regulation and systematic variation of promoter-enhancer interaction modes, we can account for the origin of various logic gates as formed in the NF-κB system. We further show that the interconversion or switching of logic gates yielded under systematic variations of the stimuli activity and DNA looping parameters. Such computation occurs in regulatory and signaling pathways in individual cells at a molecular scale, which one can exploit to design a biomolecular computer.
Collapse
Affiliation(s)
- Pankaj Gautam
- Theoretical and Computational
Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sudipta Kumar Sinha
- Theoretical and Computational
Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
75
|
Qi T, Zhou Y, Sheng Y, Li Z, Yang Y, Liu Q, Ge Q. Prediction of Transcription Factor Binding Sites on Cell-Free DNA Based on Deep Learning. J Chem Inf Model 2024; 64:4002-4008. [PMID: 38798191 DOI: 10.1021/acs.jcim.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Transcription factors (TFs) are important regulatory elements for vital cellular activities, and the identification of transcription factor binding sites (TFBS) can help to explore gene regulatory mechanisms. Research studies have proved that cfDNA (cell-free DNA) shows relatively higher coverage at TFBS due to the protection by TF from degradation by nucleases and short fragments of cfDNA are enriched in TFBS. However, there are still great difficulties in the noninvasive identification of TFBSs from experimental techniques. In this study, we propose a deep learning-based approach that can noninvasively predict TFBSs of cfDNA by learning sequence information from known TFBSs through convolutional neural networks. Under the addition of long short-term memory, our model achieved an area under the curve of 84%. Based on this model to predict cfDNA, we found consistent motifs in cfDNA fragments and lower coverage occurred upstream and downstream of these cfDNA fragments, which is consistent with a previous study. We also found that the binding sites of the same TF differ in different cell lines. TF-specific target genes were detected from cfDNA and were enriched in cancer-related pathways. In summary, our method of locating TFBSs from plasma has the potential to reflect the intrinsic regulatory mechanism from a noninvasive perspective and provide technical guidance for dynamic monitoring of disease in clinical practice.
Collapse
Affiliation(s)
- Ting Qi
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Ying Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Yuqi Sheng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Zhihui Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Yuwei Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Quanjun Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Qinyu Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
76
|
Bower G, Hollingsworth EW, Jacinto S, Clock B, Cao K, Liu M, Dziulko A, Alcaina-Caro A, Xu Q, Skowronska-Krawczyk D, Lopez-Rios J, Dickel DE, Bardet AF, Pennacchio LA, Visel A, Kvon EZ. Conserved Cis-Acting Range Extender Element Mediates Extreme Long-Range Enhancer Activity in Mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595809. [PMID: 38826394 PMCID: PMC11142232 DOI: 10.1101/2024.05.26.595809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
While most mammalian enhancers regulate their cognate promoters over moderate distances of tens of kilobases (kb), some enhancers act over distances in the megabase range. The sequence features enabling such extreme-distance enhancer-promoter interactions remain elusive. Here, we used in vivo enhancer replacement experiments in mice to show that short- and medium-range enhancers cannot initiate gene expression at extreme-distance range. We uncover a novel conserved cis-acting element, Range EXtender (REX), that confers extreme-distance regulatory activity and is located next to a long-range enhancer of Sall1. The REX element itself has no endogenous enhancer activity. However, addition of the REX to other short- and mid-range enhancers substantially increases their genomic interaction range. In the most extreme example observed, addition of the REX increased the range of an enhancer by an order of magnitude, from its native 71kb to 840kb. The REX element contains highly conserved [C/T]AATTA homeodomain motifs. These motifs are enriched around long-range limb enhancers genome-wide, including the ZRS, a benchmark long-range limb enhancer of Shh. Mutating the [C/T]AATTA motifs within the ZRS does not affect its limb-specific enhancer activity at short range, but selectively abolishes its long-range activity, resulting in severe limb reduction in knock-in mice. In summary, we identify a sequence signature globally associated with long-range enhancer-promoter interactions and describe a prototypical REX element that is necessary and sufficient to confer extreme-distance gene activation by remote enhancers.
Collapse
Affiliation(s)
- Grace Bower
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Ethan W. Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
- Medical Scientist Training Program, University of California, Irvine, CA 92967, USA
| | - Sandra Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Benjamin Clock
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Kaitlyn Cao
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Mandy Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Adam Dziulko
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ana Alcaina-Caro
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, 41013, Spain
| | - Qianlan Xu
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, 41013, Spain
| | - Diane E. Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anaïs F. Bardet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U1258, 67400 Illkirch, France
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| |
Collapse
|
77
|
Dorans E, Jagadeesh K, Dey K, Price AL. Linking regulatory variants to target genes by integrating single-cell multiome methods and genomic distance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.24.24307813. [PMID: 38826240 PMCID: PMC11142273 DOI: 10.1101/2024.05.24.24307813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Methods that analyze single-cell paired RNA-seq and ATAC-seq multiome data have shown great promise in linking regulatory elements to genes. However, existing methods differ in their modeling assumptions and approaches to account for biological and technical noise-leading to low concordance in their linking scores-and do not capture the effects of genomic distance. We propose pgBoost, an integrative modeling framework that trains a non-linear combination of existing linking strategies (including genomic distance) on fine-mapped eQTL data to assign a probabilistic score to each candidate SNP-gene link. We applied pgBoost to single-cell multiome data from 85k cells representing 6 major immune/blood cell types. pgBoost attained higher enrichment for fine-mapped eSNP-eGene pairs (e.g. 21x at distance >10kb) than existing methods (1.2-10x; p-value for difference = 5e-13 vs. distance-based method and < 4e-35 for each other method), with larger improvements at larger distances (e.g. 35x vs. 0.89-6.6x at distance >100kb; p-value for difference < 0.002 vs. each other method). pgBoost also outperformed existing methods in enrichment for CRISPR-validated links (e.g. 4.8x vs. 1.6-4.1x at distance >10kb; p-value for difference = 0.25 vs. distance-based method and < 2e-5 for each other method), with larger improvements at larger distances (e.g. 15x vs. 1.6-2.5x at distance >100kb; p-value for difference < 0.009 for each other method). Similar improvements in enrichment were observed for links derived from Activity-By-Contact (ABC) scores and GWAS data. We further determined that restricting pgBoost to features from a focal cell type improved the identification of SNP-gene links relevant to that cell type. We highlight several examples where pgBoost linked fine-mapped GWAS variants to experimentally validated or biologically plausible target genes that were not implicated by other methods. In conclusion, a non-linear combination of linking strategies, including genomic distance, improves power to identify target genes underlying GWAS associations.
Collapse
|
78
|
He J, Huo X, Pei G, Jia Z, Yan Y, Yu J, Qu H, Xie Y, Yuan J, Zheng Y, Hu Y, Shi M, You K, Li T, Ma T, Zhang MQ, Ding S, Li P, Li Y. Dual-role transcription factors stabilize intermediate expression levels. Cell 2024; 187:2746-2766.e25. [PMID: 38631355 DOI: 10.1016/j.cell.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.
Collapse
Affiliation(s)
- Jinnan He
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiangru Huo
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Zeran Jia
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yiming Yan
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jiawei Yu
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Haozhi Qu
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yunxin Xie
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Junsong Yuan
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Zheng
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yanyan Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Minglei Shi
- Bioinformatics Division, National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kaiqiang You
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Michael Q Zhang
- Bioinformatics Division, National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing 100084, China; Department of Biological Sciences, Center for Systems Biology, The University of Texas, Dallas, TX 75080-3021, USA
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| | - Yinqing Li
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
79
|
Peng Z, Kan Q, Wang K, Deng T, Wang S, Wu R, Yao C. Deciphering smooth muscle cell heterogeneity in atherosclerotic plaques and constructing model: a multi-omics approach with focus on KLF15/IGFBP4 axis. BMC Genomics 2024; 25:490. [PMID: 38760675 PMCID: PMC11102212 DOI: 10.1186/s12864-024-10379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Ruptured atherosclerotic plaques often precipitate severe ischemic events, such as stroke and myocardial infarction. Unraveling the intricate molecular mechanisms governing vascular smooth muscle cell (VSMC) behavior in plaque stabilization remains a formidable challenge. METHODS In this study, we leveraged single-cell and transcriptomic datasets from atherosclerotic plaques retrieved from the gene expression omnibus (GEO) database. Employing a combination of single-cell population differential analysis, weighted gene co-expression network analysis (WGCNA), and transcriptome differential analysis techniques, we identified specific genes steering the transformation of VSMCs in atherosclerotic plaques. Diagnostic models were developed and validated through gene intersection, utilizing the least absolute shrinkage and selection operator (LASSO) and random forest (RF) methods. Nomograms for plaque assessment were constructed. Tissue localization and expression validation were performed on specimens from animal models, utilizing immunofluorescence co-localization, western blot, and reverse-transcription quantitative-polymerase chain reaction (RT-qPCR). Various online databases were harnessed to predict transcription factors (TFs) and their interacting compounds, with determination of the cell-specific localization of TF expression using single-cell data. RESULTS Following rigorous quality control procedures, we obtained a total of 40,953 cells, with 6,261 representing VSMCs. The VSMC population was subsequently clustered into 5 distinct subpopulations. Analyzing inter-subpopulation cellular communication, we focused on the SMC2 and SMC5 subpopulations. Single-cell subpopulation and WGCNA analyses revealed significant module enrichments, notably in collagen-containing extracellular matrix and cell-substrate junctions. Insulin-like growth factor binding protein 4 (IGFBP4), apolipoprotein E (APOE), and cathepsin C (CTSC) were identified as potential diagnostic markers for early and advanced plaques. Notably, gene expression pattern analysis suggested that IGFBP4 might serve as a protective gene, a hypothesis validated through tissue localization and expression analysis. Finally, we predicted TFs capable of binding to IGFBP4, with Krüppel-like family 15 (KLF15) emerging as a prominent candidate showing relative specificity within smooth muscle cells. Predictions about compounds associated with affecting KLF15 expression were also made. CONCLUSION Our study established a plaque diagnostic and assessment model and analyzed the molecular interaction mechanisms of smooth muscle cells within plaques. Further analysis revealed that the transcription factor KLF15 may regulate the biological behaviors of smooth muscle cells through the KLF15/IGFBP4 axis, thereby influencing the stability of advanced plaques via modulation of the PI3K-AKT signaling pathway. This could potentially serve as a target for plaque stability assessment and therapy, thus driving advancements in the management and treatment of atherosclerotic plaques.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Gene Expression Profiling
- Gene Regulatory Networks
- Insulin-Like Growth Factor Binding Protein 4/metabolism
- Insulin-Like Growth Factor Binding Protein 4/genetics
- Kruppel-Like Transcription Factors/metabolism
- Kruppel-Like Transcription Factors/genetics
- Multiomics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Single-Cell Analysis
- Transcriptome
- Rats
Collapse
Affiliation(s)
- Zhanli Peng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qinghui Kan
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Kangjie Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Tang Deng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ridong Wu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.
| | - Chen Yao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, P.R. China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.
| |
Collapse
|
80
|
Liu S, Cao Y, Cui K, Ren G, Zhao T, Wang X, Wei D, Chen Z, Gurram RK, Liu C, Wu C, Zhu J, Zhao K. Regulation of T helper cell differentiation by the interplay between histone modification and chromatin interaction. Immunity 2024; 57:987-1004.e5. [PMID: 38614090 PMCID: PMC11096031 DOI: 10.1016/j.immuni.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/30/2023] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The development and function of the immune system are controlled by temporospatial gene expression programs, which are regulated by cis-regulatory elements, chromatin structure, and trans-acting factors. In this study, we cataloged the dynamic histone modifications and chromatin interactions at regulatory regions during T helper (Th) cell differentiation. Our data revealed that the H3K4me1 landscape established by MLL4 in naive CD4+ T cells is critical for restructuring the regulatory interaction network and orchestrating gene expression during the early phase of Th differentiation. GATA3 plays a crucial role in further configuring H3K4me1 modification and the chromatin interaction network during Th2 differentiation. Furthermore, we demonstrated that HSS3-anchored chromatin loops function to restrict the activity of the Th2 locus control region (LCR), thus coordinating the expression of Th2 cytokines. Our results provide insights into the mechanisms of how the interplay between histone modifications, chromatin looping, and trans-acting factors contributes to the differentiation of Th cells.
Collapse
Affiliation(s)
- Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tingting Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuezheng Wang
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rama Krishna Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
81
|
Ellenbroek BD, Kahler JP, Evers SR, Pomplun SJ. Synthetic Peptides: Promising Modalities for the Targeting of Disease-Related Nucleic Acids. Angew Chem Int Ed Engl 2024; 63:e202401704. [PMID: 38456368 DOI: 10.1002/anie.202401704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
DNA and RNA play pivotal roles in life processes by storing and transferring genetic information, modulating gene expression, and contributing to essential cellular machinery such as ribosomes. Dysregulation and mutations in nucleic acid-related processes are implicated in numerous diseases. Despite the critical impact on health of nucleic acid mutations or dysregulation, therapeutic compounds addressing these biomolecules remain limited. Peptides have emerged as a promising class of molecules for biomedical research, offering potential solutions for challenging drug targets. This review focuses on the use of synthetic peptides to target disease-related nucleic acids. We discuss examples of peptides targeting double-stranded DNA, including the clinical candidate Omomyc, and compounds designed for regulatory G-quadruplexes. Further, we provide insights into both library-based screenings and the rational design of peptides to target regulatory human RNA scaffolds and viral RNAs, emphasizing the potential of peptides in addressing nucleic acid-related diseases.
Collapse
Affiliation(s)
| | | | - Sophie R Evers
- Leiden University, 2333 CC, Leiden, The Netherlands
- Present address, Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | | |
Collapse
|
82
|
Asiaee A, Abrams ZB, Pua HH, Coombes KR. Transcriptome Complexity Disentangled: A Regulatory Molecules Approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.17.537241. [PMID: 37131792 PMCID: PMC10153180 DOI: 10.1101/2023.04.17.537241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transcription factors (TFs) and microRNAs (miRNAs) are fundamental regulators of gene expression, cell state, and biological processes. This study investigated whether a small subset of TFs and miRNAs could accurately predict genome-wide gene expression. We analyzed 8895 samples across 31 cancer types from The Cancer Genome Atlas and identified 28 miRNA and 28 TF clusters using unsupervised learning. Medoids of these clusters could differentiate tissues of origin with 92.8% accuracy, demonstrating their biological relevance. We developed Tissue-Agnostic and Tissue-Aware models to predict 20,000 gene expressions using the 56 selected medoid miRNAs and TFs. The Tissue-Aware model attained an R 2 of 0.70 by incorporating tissue-specific information. Despite measuring only 1/400th of the transcriptome, the prediction accuracy was comparable to that achieved by the 1000 landmark genes. This suggests the transcriptome has an intrinsically low-dimensional structure that can be captured by a few regulatory molecules. Our approach could enable cheaper transcriptome assays and analysis of low-quality samples. It also provides insights into genes that are heavily regulated by miRNAs/TFs versus alternative mechanisms. However, model transportability was impacted by dataset discrepancies, especially in miRNA distribution. Overall, this study demonstrates the potential of a biology-guided approach for robust transcriptome representation.
Collapse
Affiliation(s)
- Amir Asiaee
- Department of Biostatistics, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, USA
| | - Zachary B. Abrams
- Institute for Informatics, Washington University, 4444 Forest Park Ave, St. Louis, MO 63108, USA
| | - Heather H. Pua
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 Medical Center Dr, Nashville, TN 37240, USA
| | - Kevin R. Coombes
- Department of Population Health Science, Medical College of Georgia, 1120 15th St, Augusta, GA 30912, USA
| |
Collapse
|
83
|
Chen N, Yu J, Liu Z, Meng L, Li X, Wong KC. Discovering DNA shape motifs with multiple DNA shape features: generalization, methods, and validation. Nucleic Acids Res 2024; 52:4137-4150. [PMID: 38572749 PMCID: PMC11077088 DOI: 10.1093/nar/gkae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
DNA motifs are crucial patterns in gene regulation. DNA-binding proteins (DBPs), including transcription factors, can bind to specific DNA motifs to regulate gene expression and other cellular activities. Past studies suggest that DNA shape features could be subtly involved in DNA-DBP interactions. Therefore, the shape motif annotations based on intrinsic DNA topology can deepen the understanding of DNA-DBP binding. Nevertheless, high-throughput tools for DNA shape motif discovery that incorporate multiple features altogether remain insufficient. To address it, we propose a series of methods to discover non-redundant DNA shape motifs with the generalization to multiple motifs in multiple shape features. Specifically, an existing Gibbs sampling method is generalized to multiple DNA motif discovery with multiple shape features. Meanwhile, an expectation-maximization (EM) method and a hybrid method coupling EM with Gibbs sampling are proposed and developed with promising performance, convergence capability, and efficiency. The discovered DNA shape motif instances reveal insights into low-signal ChIP-seq peak summits, complementing the existing sequence motif discovery works. Additionally, our modelling captures the potential interplays across multiple DNA shape features. We provide a valuable platform of tools for DNA shape motif discovery. An R package is built for open accessibility and long-lasting impact: https://zenodo.org/doi/10.5281/zenodo.10558980.
Collapse
Affiliation(s)
- Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Jixiang Yu
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Zhe Liu
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Lingkuan Meng
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Changchun City, Jilin Province, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
- Hong Kong Institute of Data Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
84
|
Khullar S, Huang X, Ramesh R, Svaren J, Wang D. NetREm: Network Regression Embeddings reveal cell-type transcription factor coordination for gene regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.25.563769. [PMID: 37961577 PMCID: PMC10634989 DOI: 10.1101/2023.10.25.563769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Transcription factor (TF) coordination plays a key role in target gene (TG) regulation via protein-protein interactions (PPIs) and DNA co-binding to regulatory elements. Single-cell technologies facilitate gene expression measurement for individual cells and cell-type identification, yet the connection between TF coordination and TG regulation of various cell types remains unclear. To address this, we have developed a novel computational approach, Network Regression Embeddings (NetREm), to reveal cell-type TF-TF coordination activities for TG regulation. NetREm leverages network-constrained regularization using prior knowledge of direct and/or indirect PPIs among TFs to analyze single-cell gene expression data. We test NetREm by simulation data and benchmark its performance in 4 real-world applications that have gold standard TF-TG networks available: mouse (mESCs) and simulated human (hESCs) embryonic stem (ESCs), human hematopoietic stem (HSCs), and mouse dendritic (mDCs) cells. Further, we use NetREm to prioritize valid novel TF-TF coordination links in human Peripheral Blood Mononuclear cell (PBMC) sub-types. We apply NetREm to analyze various cell types in both central (CNS) and peripheral (PNS) nerve system (NS) (e.g. neuronal, glial, Schwann cells (SCs)) as well as in Alzheimers disease (AD). Our findings uncover cell-type coordinating TFs and identify new TF-TG candidate links. We validate our top predictions using Cut&Run and knockout loss-of-function expression data in rat/mouse models and compare results with additional functional genomic data, including expression quantitative trait loci (eQTL) and Genome-Wide Association Studies (GWAS) to link genetic variants (single nucleotide polymorphisms (SNPs)) to TF coordination.
Collapse
|
85
|
Abebe BK, Wang H, Li A, Zan L. A review of the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle. J Anim Breed Genet 2024; 141:235-256. [PMID: 38146089 DOI: 10.1111/jbg.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Abstract
In the past few decades, genomic selection and other refined strategies have been used to increase the growth rate and lean meat production of beef cattle. Nevertheless, the fast growth rates of cattle breeds are often accompanied by a reduction in intramuscular fat (IMF) deposition, impairing meat quality. Transcription factors play vital roles in regulating adipogenesis and lipogenesis in beef cattle. Meanwhile, understanding the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle has gained significant attention to increase IMF deposition and meat quality. Therefore, the aim of this paper was to provide a comprehensive summary and valuable insight into the complex role of transcription factors in adipogenesis and lipogenesis in beef cattle. This review summarizes the contemporary studies in transcription factors in adipogenesis and lipogenesis, genome-wide analysis of transcription factors, epigenetic regulation of transcription factors, nutritional regulation of transcription factors, metabolic signalling pathways, functional genomics methods, transcriptomic profiling of adipose tissues, transcription factors and meat quality and comparative genomics with other livestock species. In conclusion, transcription factors play a crucial role in promoting adipocyte development and fatty acid biosynthesis in beef cattle. They control adipose tissue formation and metabolism, thereby improving meat quality and maintaining metabolic balance. Understanding the processes by which these transcription factors regulate adipose tissue deposition and lipid metabolism will simplify the development of marbling or IMF composition in beef cattle.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
86
|
Bi Z, Zhou J, Ma Y, Guo Q, Ju B, Zou H, Zhan Z, Yang F, Du H, Gan X, Song E. Integrative analysis and risk model construction for super‑enhancer‑related immune genes in clear cell renal cell carcinoma. Oncol Lett 2024; 27:190. [PMID: 38495834 PMCID: PMC10941079 DOI: 10.3892/ol.2024.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer associated with poor prognosis, and accounts for the majority of RCC-related deaths. The lack of comprehensive diagnostic and prognostic biomarkers has limited further understanding of the pathophysiology of ccRCC. Super-enhancers (SEs) are congregated enhancer clusters that have a key role in tumor processes such as epithelial-mesenchymal transition, metabolic reprogramming, immune escape and resistance to apoptosis. RCC may also be immunogenic and sensitive to immunotherapy. In the present study, an Arraystar human SE-long non-coding RNA (lncRNA) microarray was first employed to profile the differentially expressed SE-lncRNAs and mRNAs in 5 paired ccRCC and peritumoral tissues and to identify SE-related genes. The overlap of these genes with immune genes was then determined to identify SE-related immune genes. A model for predicting clinical prognosis and response to immunotherapy was built following the comprehensive analysis of a ccRCC gene expression dataset from The Cancer Genome Atlas (TCGA) database. The patients from TCGA were divided into high- and low-risk groups based on the median score derived from the risk model, and the Kaplan-Meier survival analysis showed that the low-risk group had a higher survival probability. In addition, according to the receiver operating characteristic curve analysis, the risk model had more advantages than other clinical factors in predicting the overall survival (OS) rate of patients with ccRCC. Using this model, it was demonstrated that the high-risk group had a more robust immune response. Furthermore, 61 potential drugs with half-maximal inhibitory concentration values that differed significantly between the two patient groups were screened to investigate potential drug treatment of ccRCC. In summary, the present study provided a novel index for predicting the survival probability of patients with ccRCC and may provide some insights into the mechanisms through which SE-related immune genes influence the diagnosis, prognosis and potential treatment drugs of ccRCC.
Collapse
Affiliation(s)
- Zhenyu Bi
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Jinghao Zhou
- Department of Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| | - Yan Ma
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Qingxin Guo
- Department of Urology, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, Heilongjiang 157009, P.R. China
| | - Boyang Ju
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Haoran Zou
- Department of Urology, Zhumadian Central Hospital, Zhumadian, Henan 463000, P.R. China
| | - Zuhao Zhan
- Department of Urology, The First Hospital of Zibo, Zibo, Shandong 255200, P.R. China
| | - Feihong Yang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Han Du
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Xiuguo Gan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Erlin Song
- Department of Urology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| |
Collapse
|
87
|
He Q, Yao W, Luo J, Wu J, Zhang F, Li C, Gao L, Zhang Y. Knockdown of PROX1 promotes milk fatty acid synthesis by targeting PPARGC1A in dairy goat mammary gland. Int J Biol Macromol 2024; 266:131043. [PMID: 38518943 DOI: 10.1016/j.ijbiomac.2024.131043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Goat milk is rich in various fatty acids that are beneficial to human health. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) and RNA-seq analyses of goat mammary glands at different lactation stages revealed a novel lactation regulatory factor, Prospero homeobox 1 (PROX1). However, the mechanism whereby PROX1 regulates lipid metabolism in dairy goats remains unclear. We found that PROX1 exhibits the highest expression level during peak lactation period. PROX1 knockdown enhanced the expression of genes related to de novo fatty acid synthesis (e.g., SREBP1 and FASN) and triacylglycerol (TAG) synthesis (e.g., DGAT1 and GPAM) in goat mammary epithelial cells (GMECs). Consistently, intracellular TAG and lipid droplet contents were significantly increased in PROX1 knockdown cells and reduced in PROX1 overexpression cells, and we observed similar results in PROX1 knockout mice. Following PROX1 overexpression, RNA-seq showed a significant upregulation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PPARGC1A) expression. Further, PPARGC1A knockdown attenuated the inhibitory effects of PROX1 on TAG contents and lipid-droplet formation in GMECs. Moreover, we found that PROX1 promoted PPARGC1A transcription via the PROX1 binding sites (PBSs) located in the PPARGC1A promoter. These results suggest a novel target for manipulating the goat milk-fat composition and improving the quality of goat milk.
Collapse
Affiliation(s)
- Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Yunnan Agricultural University, Faculty of Animal Science and Technology, Kunming 65201, China
| | - Fuhong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chun Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liangjiahui Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
88
|
Panara V, Yu H, Peng D, Staxäng K, Hodik M, Filipek-Gorniok B, Kazenwadel J, Skoczylas R, Mason E, Allalou A, Harvey NL, Haitina T, Hogan BM, Koltowska K. Multiple cis-regulatory elements control prox1a expression in distinct lymphatic vascular beds. Development 2024; 151:dev202525. [PMID: 38722096 PMCID: PMC11128278 DOI: 10.1242/dev.202525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/21/2024] [Indexed: 05/15/2024]
Abstract
During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.
Collapse
Affiliation(s)
- Virginia Panara
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
- Beijer Gene and Neuro Laboratory, Uppsala University, Uppsala 75185, Sweden
| | - Hujun Yu
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Di Peng
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Karin Staxäng
- BioVis Core Facility, Platform EM, Uppsala University, Uppsala 75185, Sweden
| | - Monika Hodik
- BioVis Core Facility, Platform EM, Uppsala University, Uppsala 75185, Sweden
| | - Beata Filipek-Gorniok
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5001, Australia
| | - Renae Skoczylas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Elizabeth Mason
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Amin Allalou
- Uppsala University, Department of Information Technology, Division of Visual Information and Interaction, and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala 75185, Sweden
| | - Natasha L. Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala 75236, Sweden
| | - Benjamin M. Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Katarzyna Koltowska
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
- Beijer Gene and Neuro Laboratory, Uppsala University, Uppsala 75185, Sweden
| |
Collapse
|
89
|
James DW, Quintela M, Lucini L, Al Kafri NAA, Healey GD, Jones N, Younas K, Bunkheila A, Margarit L, Francis LW, Gonzalez D, Conlan RS. Homeobox regulator Wilms Tumour 1 is displaced by androgen receptor at cis-regulatory elements in the endometrium of PCOS patients. Front Endocrinol (Lausanne) 2024; 15:1368494. [PMID: 38745948 PMCID: PMC11091321 DOI: 10.3389/fendo.2024.1368494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Decidualisation, the process whereby endometrial stromal cells undergo morphological and functional transformation in preparation for trophoblast invasion, is often disrupted in women with polycystic ovary syndrome (PCOS) resulting in complications with pregnancy and/or infertility. The transcription factor Wilms tumour suppressor 1 (WT1) is a key regulator of the decidualization process, which is reduced in patients with PCOS, a complex condition characterized by increased expression of androgen receptor in endometrial cells and high presence of circulating androgens. Using genome-wide chromatin immunoprecipitation approaches on primary human endometrial stromal cells, we identify key genes regulated by WT1 during decidualization, including homeobox transcription factors which are important for regulating cell differentiation. Furthermore, we found that AR in PCOS patients binds to the same DNA regions as WT1 in samples from healthy endometrium, suggesting dysregulation of genes important to decidualisation pathways in PCOS endometrium due to competitive binding between WT1 and AR. Integrating RNA-seq and H3K4me3 and H3K27ac ChIP-seq metadata with our WT1/AR data, we identified a number of key genes involved in immune response and angiogenesis pathways that are dysregulated in PCOS patients. This is likely due to epigenetic alterations at distal enhancer regions allowing AR to recruit cofactors such as MAGEA11, and demonstrates the consequences of AR disruption of WT1 in PCOS endometrium.
Collapse
Affiliation(s)
- David W. James
- Swansea University Medical School, Swansea, United Kingdom
| | | | - Lisa Lucini
- Swansea University Medical School, Swansea, United Kingdom
| | | | | | - Nicholas Jones
- Swansea University Medical School, Swansea, United Kingdom
| | - Kinza Younas
- Swansea University Medical School, Swansea, United Kingdom
- Swansea Bay University Health Board, Swansea, United Kingdom
| | - Adnan Bunkheila
- Swansea University Medical School, Swansea, United Kingdom
- Swansea Bay University Health Board, Swansea, United Kingdom
| | - Lavinia Margarit
- Swansea University Medical School, Swansea, United Kingdom
- Cwm Taf Morgannwg University Health Board, Bridgend, United Kingdom
| | | | | | | |
Collapse
|
90
|
Schultheis H, Bentsen M, Heger V, Looso M. Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data. Sci Rep 2024; 14:9275. [PMID: 38654130 DOI: 10.1038/s41598-024-59989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Transcription factors (TFs) are crucial epigenetic regulators, which enable cells to dynamically adjust gene expression in response to environmental signals. Computational procedures like digital genomic footprinting on chromatin accessibility assays such as ATACseq can be used to identify bound TFs in a genome-wide scale. This method utilizes short regions of low accessibility signals due to steric hindrance of DNA bound proteins, called footprints (FPs), which are combined with motif databases for TF identification. However, while over 1600 TFs have been described in the human genome, only ~ 700 of these have a known binding motif. Thus, a substantial number of FPs without overlap to a known DNA motif are normally discarded from FP analysis. In addition, the FP method is restricted to organisms with a substantial number of known TF motifs. Here we present DENIS (DE Novo motIf diScovery), a framework to generate and systematically investigate the potential of de novo TF motif discovery from FPs. DENIS includes functionality (1) to isolate FPs without binding motifs, (2) to perform de novo motif generation and (3) to characterize novel motifs. Here, we show that the framework rediscovers artificially removed TF motifs, quantifies de novo motif usage during an early embryonic development example dataset, and is able to analyze and uncover TF activity in organisms lacking canonical motifs. The latter task is exemplified by an investigation of a scATAC-seq dataset in zebrafish which covers different cell types during hematopoiesis.
Collapse
Affiliation(s)
- Hendrik Schultheis
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vanessa Heger
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
91
|
Yu H, Zhao J, Shen Y, Qiao L, Liu Y, Xie G, Chang S, Ge T, Li N, Chen M, Li H, Zhang J, Wang X. The dynamic landscape of enhancer-derived RNA during mouse early embryo development. Cell Rep 2024; 43:114077. [PMID: 38592974 DOI: 10.1016/j.celrep.2024.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.
Collapse
Affiliation(s)
- Hua Yu
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China; School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Institute of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Jing Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yuxuan Shen
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lu Qiao
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yuheng Liu
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Guanglei Xie
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Shuhui Chang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tingying Ge
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Nan Li
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55904, USA
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xi Wang
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China.
| |
Collapse
|
92
|
Xue G, Zhang X, Li W, Zhang L, Zhang Z, Zhou X, Zhang D, Zhang L, Li Z. A logic-incorporated gene regulatory network deciphers principles in cell fate decisions. eLife 2024; 12:RP88742. [PMID: 38652107 PMCID: PMC11037919 DOI: 10.7554/elife.88742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.
Collapse
Affiliation(s)
- Gang Xue
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Xiaoyi Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Wanqi Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Lu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Zongxu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Xiaolin Zhou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Lei Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- Beijing International Center for Mathematical Research, Center for Machine Learning Research, Peking UniversityBeijingChina
| | - Zhiyuan Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| |
Collapse
|
93
|
Azagury M, Buganim Y. Unlocking trophectoderm mysteries: In vivo and in vitro perspectives on human and mouse trophoblast fate induction. Dev Cell 2024; 59:941-960. [PMID: 38653193 DOI: 10.1016/j.devcel.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
In recent years, the pursuit of inducing the trophoblast stem cell (TSC) state has gained prominence as a compelling research objective, illuminating the establishment of the trophoblast lineage and unlocking insights into early embryogenesis. In this review, we examine how advancements in diverse technologies, including in vivo time course transcriptomics, cellular reprogramming to TSC state, chemical induction of totipotent stem-cell-like state, and stem-cell-based embryo-like structures, have enriched our insights into the intricate molecular mechanisms and signaling pathways that define the mouse and human trophectoderm/TSC states. We delve into disparities between mouse and human trophectoderm/TSC fate establishment, with a special emphasis on the intriguing role of pluripotency in this context. Additionally, we re-evaluate recent findings concerning the potential of totipotent-stem-like cells and embryo-like structures to fully manifest the trophectoderm/trophoblast lineage's capabilities. Lastly, we briefly discuss the potential applications of induced TSCs in pregnancy-related disease modeling.
Collapse
Affiliation(s)
- Meir Azagury
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
94
|
Maizels RJ. A dynamical perspective: moving towards mechanism in single-cell transcriptomics. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230049. [PMID: 38432314 PMCID: PMC10909508 DOI: 10.1098/rstb.2023.0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/31/2023] [Indexed: 03/05/2024] Open
Abstract
As the field of single-cell transcriptomics matures, research is shifting focus from phenomenological descriptions of cellular phenotypes to a mechanistic understanding of the gene regulation underneath. This perspective considers the value of capturing dynamical information at single-cell resolution for gaining mechanistic insight; reviews the available technologies for recording and inferring temporal information in single cells; and explores whether better dynamical resolution is sufficient to adequately capture the causal relationships driving complex biological systems. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Rory J. Maizels
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- University College London, London WC1E 6BT, UK
| |
Collapse
|
95
|
Zhang C, Liu D. Transcription Factor Binding Site in Promoter Determines the Pattern of Plasmid-Based Transgene Expression In Vivo. Pharmaceutics 2024; 16:544. [PMID: 38675205 PMCID: PMC11055139 DOI: 10.3390/pharmaceutics16040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Understanding the regulation of transgene expression is critical for the success of plasmid-based gene therapy and vaccine development. In this study, we used two sets of plasmid vectors containing secreted embryonic alkaline phosphatase or the mouse IL-10 gene as a reporter and investigated the role of promoter elements in regulating transgene expression in vivo. We demonstrated in mice that hydrodynamic transfer of plasmids with the CMV promoter resulted in a high level of reporter gene expression that declined rapidly over time. In contrast, when plasmids with albumin promoters were used, a lower but sustained gene expression pattern was observed. We also found that plasmids containing a shorter CMV promoter sequence with fewer transcription factor binding sites showed a decrease in the peak level of gene expression without changing the overall pattern of reporter gene expression. The replacement of regulatory elements in the CMV promoter with a single regulatory element of the albumin promoter changed the pattern of transient gene expression seen in the CMV promoter to a pattern of sustained gene expression identical to that of a full albumin promoter. ChIP analyses demonstrated an elevated binding of acetylated histones and TATA box-binding protein to the promoter carrying regulatory elements of the albumin promoter. These results suggest that the strength of a promoter is determined by the number of appropriate transcription factor binding sites, while gene expression persistence is determined by the presence of regulatory elements capable of recruiting epigenetic modifying complexes that make the promoter accessible for transcription. This study provides important insights into the mechanisms underlying gene expression regulation in vivo, which can be used to improve plasmid-based gene therapy and vaccine development.
Collapse
Affiliation(s)
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, USA;
| |
Collapse
|
96
|
Yao Z, Song P, Jiao W. Pathogenic role of super-enhancers as potential therapeutic targets in lung cancer. Front Pharmacol 2024; 15:1383580. [PMID: 38681203 PMCID: PMC11047458 DOI: 10.3389/fphar.2024.1383580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Lung cancer is still one of the deadliest malignancies today, and most patients with advanced lung cancer pass away from disease progression that is uncontrollable by medications. Super-enhancers (SEs) are large clusters of enhancers in the genome's non-coding sequences that actively trigger transcription. Although SEs have just been identified over the past 10 years, their intricate structure and crucial role in determining cell identity and promoting tumorigenesis and progression are increasingly coming to light. Here, we review the structural composition of SEs, the auto-regulatory circuits, the control mechanisms of downstream genes and pathways, and the characterization of subgroups classified according to SEs in lung cancer. Additionally, we discuss the therapeutic targets, several small-molecule inhibitors, and available treatment options for SEs in lung cancer. Combination therapies have demonstrated considerable advantages in preclinical models, and we anticipate that these drugs will soon enter clinical studies and benefit patients.
Collapse
Affiliation(s)
- Zhiyuan Yao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Song
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
97
|
Xu Q, Zhang Y, Xu W, Liu D, Jin W, Chen X, Hong N. The chromatin accessibility dynamics during cell fate specifications in zebrafish early embryogenesis. Nucleic Acids Res 2024; 52:3106-3120. [PMID: 38364856 PMCID: PMC11014328 DOI: 10.1093/nar/gkae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Chromatin accessibility plays a critical role in the regulation of cell fate decisions. Although gene expression changes have been extensively profiled at the single-cell level during early embryogenesis, the dynamics of chromatin accessibility at cis-regulatory elements remain poorly studied. Here, we used a plate-based single-cell ATAC-seq method to profile the chromatin accessibility dynamics of over 10 000 nuclei from zebrafish embryos. We investigated several important time points immediately after zygotic genome activation (ZGA), covering key developmental stages up to dome. The results revealed key chromatin signatures in the first cell fate specifications when cells start to differentiate into enveloping layer (EVL) and yolk syncytial layer (YSL) cells. Finally, we uncovered many potential cell-type specific enhancers and transcription factor motifs that are important for the cell fate specifications.
Collapse
Affiliation(s)
- Qiushi Xu
- Harbin Institute of Technology, Harbin, China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Yunlong Zhang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Wei Xu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangdong, China
| | - Dong Liu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Wenfei Jin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Xi Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Ni Hong
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| |
Collapse
|
98
|
Inge MM, Miller R, Hook H, Bray D, Keenan JL, Zhao R, Gilmore TD, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588333. [PMID: 38617258 PMCID: PMC11014505 DOI: 10.1101/2024.04.05.588333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced H3K27ac. Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data supports clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- M M Inge
- Department of Biology, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - R Miller
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - H Hook
- Department of Biology, Boston University, Boston, MA, USA
| | - D Bray
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - J L Keenan
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - R Zhao
- Department of Biology, Boston University, Boston, MA, USA
| | - T D Gilmore
- Department of Biology, Boston University, Boston, MA, USA
| | - T Siggers
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
99
|
Vanderperre S, Merabet S. Visualization of the Association of Dimeric Protein Complexes on Specific Enhancers in the Salivary Gland Nuclei of Drosophila Larva. Cells 2024; 13:613. [PMID: 38607052 PMCID: PMC11012150 DOI: 10.3390/cells13070613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by recognizing specific target enhancers in the genome. The DNA-binding and regulatory activity of TFs depend on the presence of additional protein partners, leading to the formation of versatile and dynamic multimeric protein complexes. Visualizing these protein-protein interactions (PPIs) in the nucleus is key for decrypting the molecular cues underlying TF specificity in vivo. Over the last few years, Bimolecular Fluorescence Complementation (BiFC) has been developed in several model systems and applied in the analysis of different types of PPIs. In particular, BiFC has been applied when analyzing PPIs with hundreds of TFs in the nucleus of live Drosophila embryos. However, the visualization of PPIs at the level of specific target enhancers or genomic regions of interest awaits the advent of DNA-labelling methods that can be coupled with BiFC. Here, we present a novel experimental strategy that we have called BiFOR and that is based on the coupling of BiFC with the bacterial ANCHOR DNA-labelling system. We demonstrate that BiFOR enables the precise quantification of the enrichment of specific dimeric protein complexes on target enhancers in Drosophila salivary gland nuclei. Given its versatility and sensitivity, BiFOR could be applied more widely to other tissues during Drosophila development. Our work sets up the experimental basis for future applications of this strategy.
Collapse
Affiliation(s)
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), UMR5242, Ecole Normale Supérieure de Lyon (ENSL), CNRS, Université de Lyon, 69007 Lyon, France;
| |
Collapse
|
100
|
Hu Y, Xu R, Feng J, Zhang Q, Zhang L, Li Y, Sun X, Gao J, Chen X, Du M, Chen Z, Liu X, Fan Y, Zhang Y. Identification of potential pathogenic hepatic super-enhancers regulatory network in high-fat diet induced hyperlipidemia. J Nutr Biochem 2024; 126:109584. [PMID: 38242178 DOI: 10.1016/j.jnutbio.2024.109584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Hyperlipidemia (HLP) is a prevalent metabolic disorder and a significant risk factor for cardiovascular disease. According to recent discoveries, super-enhancers (SEs) play a role in the increased expression of genes that encode important regulators of both cellular identity and the progression of diseases. However, the underlying function of SEs in the development of HLP is still unknown. We performed an integrative analysis of data on H3K27ac ChIP-seq and RNA sequencing obtained from liver tissues of mice under a low-fat diet (LFD) and high-fat diet (HFD) from GEO database. The rank ordering of super enhancers algorithm was employed for the computation and identification of SEs. A total of 1,877 and 1,847 SEs were identified in the LFD and HFD groups, respectively. The SE inhibitor JQ1 was able to potently reverse lipid deposition and the increased intracellular triglyceride and total cholesterol induced by oleic acid, indicating that SEs are involved in regulating lipid accumulation. Two hundred seventy-eight were considered as HFD-specific SEs (HSEs). GO and KEGG pathway enrichment analysis of the upregulated HSEs-associated genes revealed that they were mainly involved in lipid metabolic pathway. Four hub genes, namely Cd36, Pex11a, Ech1, and Cidec, were identified in the HSEs-associated protein-protein interaction network, and validated with two other datasets. Finally, we constructed a HSEs-specific regulatory network with Cidec and Cd36 as the core through the prediction and verification of transcription factors. Our study constructed a HSEs-associated regulatory network in the pathogenesis of HLP, providing new ideas for the underlying mechanisms and therapeutic targets of HLP.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Run Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jing Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qingwei Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lifu Zhang
- Unit 32680, People's Liberation Army of China, Shenyang, China
| | - Yiyang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiuxiu Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jin Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ximing Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Menghan Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhouxiu Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China.
| | - Yuhua Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China.
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China.
| |
Collapse
|