51
|
Singh SP, Anirvan P, Khandelwal R, Satapathy SK. Nonalcoholic Fatty Liver Disease (NAFLD) Name Change: Requiem or Reveille? J Clin Transl Hepatol 2021; 9:931-938. [PMID: 34966656 PMCID: PMC8666378 DOI: 10.14218/jcth.2021.00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 07/18/2021] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects about a quarter of the world's population and poses a major health and economic burden globally. Recently, there have been hasty attempts to rename NAFLD to metabolic-associated fatty liver disease (MAFLD) despite the fact that there is no scientific rationale for this. Quest for a "positive criterion" to diagnose the disease and destigmatizing the disease have been the main reasons put forth for the name change. A close scrutiny of the pathogenesis of NAFLD would make it clear that NAFLD is a heterogeneous disorder, involving different pathogenic mechanisms of which metabolic dysfunction-driven hepatic steatosis is only one. Replacing NAFLD with MAFLD would neither enhance the legitimacy of clinical practice and clinical trials, nor improve clinical care or move NAFLD research forward. Rather than changing the nomenclature without a strong scientific backing to support such a change, efforts should be directed at understanding NAFLD pathogenesis across diverse populations and ethnicities which could potentially help develop newer therapeutic options.
Collapse
Affiliation(s)
- Shivaram P. Singh
- Department of Gastroenterology, Sriram Chandra Bhanj Medical College, Cuttack, Odisha, India
- Correspondence to: Shivaram P Singh, Department of Gastroenterology, Sriram Chandra Bhanj Medical College, Cuttack, Odisha 753007, India. ORCID: https://orcid.org/0000-0002-8197-2674. Tel: +91-9437578857, Fax: +91-671-2433865, E-mail:
| | - Prajna Anirvan
- Department of Gastroenterology, Sriram Chandra Bhanj Medical College, Cuttack, Odisha, India
| | - Reshu Khandelwal
- Department of Gastroenterology, Sriram Chandra Bhanj Medical College, Cuttack, Odisha, India
| | - Sanjaya K. Satapathy
- Division of Hepatology, Sandra Atlas Bass Center for Liver Diseases and Transplantation, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Manhasset, NY, USA
| |
Collapse
|
52
|
Multi-Modal Regulation of Circadian Physiology by Interactive Features of Biological Clocks. BIOLOGY 2021; 11:biology11010021. [PMID: 35053019 PMCID: PMC8772734 DOI: 10.3390/biology11010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
The circadian clock is a fundamental biological timing mechanism that generates nearly 24 h rhythms of physiology and behaviors, including sleep/wake cycles, hormone secretion, and metabolism. Evolutionarily, the endogenous clock is thought to confer living organisms, including humans, with survival benefits by adapting internal rhythms to the day and night cycles of the local environment. Mirroring the evolutionary fitness bestowed by the circadian clock, daily mismatches between the internal body clock and environmental cycles, such as irregular work (e.g., night shift work) and life schedules (e.g., jet lag, mistimed eating), have been recognized to increase the risk of cardiac, metabolic, and neurological diseases. Moreover, increasing numbers of studies with cellular and animal models have detected the presence of functional circadian oscillators at multiple levels, ranging from individual neurons and fibroblasts to brain and peripheral organs. These oscillators are tightly coupled to timely modulate cellular and bodily responses to physiological and metabolic cues. In this review, we will discuss the roles of central and peripheral clocks in physiology and diseases, highlighting the dynamic regulatory interactions between circadian timing systems and multiple metabolic factors.
Collapse
|
53
|
Abstract
Circadian clocks are biological timing mechanisms that generate 24-h rhythms of physiology and behavior, exemplified by cycles of sleep/wake, hormone release, and metabolism. The adaptive value of clocks is evident when internal body clocks and daily environmental cycles are mismatched, such as in the case of shift work and jet lag or even mistimed eating, all of which are associated with physiological disruption and disease. Studies with animal and human models have also unraveled an important role of functional circadian clocks in modulating cellular and organismal responses to physiological cues (ex., food intake, exercise), pathological insults (e.g. virus and parasite infections), and medical interventions (e.g. medication). With growing knowledge of the molecular and cellular mechanisms underlying circadian physiology and pathophysiology, it is becoming possible to target circadian rhythms for disease prevention and treatment. In this review, we discuss recent advances in circadian research and the potential for therapeutic applications that take patient circadian rhythms into account in treating disease.
Collapse
Affiliation(s)
- Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington
| | - Jeffrey M. Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
54
|
Recent Advances in Chronotherapy Targeting Respiratory Diseases. Pharmaceutics 2021; 13:pharmaceutics13122008. [PMID: 34959290 PMCID: PMC8704788 DOI: 10.3390/pharmaceutics13122008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Respiratory diseases contribute to a significant percentage of mortality and morbidity worldwide. The circadian rhythm is a natural biological process where our bodily functions align with the 24 h oscillation (sleep-wake cycle) process and are controlled by the circadian clock protein/gene. Disruption of the circadian rhythm could alter normal lung function. Chronotherapy is a type of therapy provided at specific time intervals based on an individual's circadian rhythm. This would allow the drug to show optimum action, and thereby modulate its pharmacokinetics to lessen unwanted or unintended effects. In this review, we deliberated on the recent advances employed in chrono-targeted therapeutics for chronic respiratory diseases.
Collapse
|
55
|
Wei S, Zheng Q, Pan Y, Xu Y, Tang J, Cai X. Interplay between liver circadian rhythm and regeneration after PHx. Genomics 2021; 114:1-8. [PMID: 34822968 DOI: 10.1016/j.ygeno.2021.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 11/04/2022]
Abstract
Diurnal oscillations in gene expression are a hallmark of the liver internal clock and can be regulated by a variety of environmental stimuli. The circadian rhythm and liver regeneration (LR) are intimately linked. However, how they affect each other at the transcriptomic level is mainly unknown. Here, we revealed that partial hepatectomy (PHx)-induced LR led to reprogramming of rhythmic gene expression profiles as a consequence of disrupted BMAL1 occupation on the chromatin, while the rhythm of core clock genes remained robust. Furthermore, we demonstrated retarded LR when PHx was carried out in the evening, possibly due to the accumulation of DEC1. In summary, our data offer a broad perspective of the relationship between circadian rhythm and LR and suggest that the timing of PHx should be considered in the clinic application.
Collapse
Affiliation(s)
- Saisai Wei
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China; Zhejiang University Cancer Center, 310058 Hangzhou, China
| | - Qiang Zheng
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China; Zhejiang University Cancer Center, 310058 Hangzhou, China
| | - Yu Pan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China; Zhejiang University Cancer Center, 310058 Hangzhou, China
| | - Yunwan Xu
- Shenzhen NeoCura Biotechnology corporation, Shenzhen 518055, China
| | - Jiacheng Tang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China; Zhejiang University Cancer Center, 310058 Hangzhou, China
| | - Xiujun Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China; Zhejiang University Cancer Center, 310058 Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, 311121 Hangzhou,China.
| |
Collapse
|
56
|
Qu M, Qu H, Jia Z, Kay SA. HNF4A defines tissue-specific circadian rhythms by beaconing BMAL1::CLOCK chromatin binding and shaping the rhythmic chromatin landscape. Nat Commun 2021; 12:6350. [PMID: 34732735 PMCID: PMC8566521 DOI: 10.1038/s41467-021-26567-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Transcription modulated by the circadian clock is diverse across cell types, underlying circadian control of peripheral metabolism and its observed perturbation in human diseases. We report that knockout of the lineage-specifying Hnf4a gene in mouse liver causes associated reductions in the genome-wide distribution of core clock component BMAL1 and accessible chromatin marks (H3K4me1 and H3K27ac). Ectopically expressing HNF4A remodels chromatin landscape and nucleates distinct tissue-specific BMAL1 chromatin binding events, predominantly in enhancer regions. Circadian rhythms are disturbed in Hnf4a knockout liver and HNF4A-MODY diabetic model cells. Additionally, the epigenetic state and accessibility of the liver genome dynamically change throughout the day, synchronized with chromatin occupancy of HNF4A and clustered expression of circadian outputs. Lastly, Bmal1 knockout attenuates HNF4A genome-wide binding in the liver, likely due to downregulated Hnf4a transcription. Our results may provide a general mechanism for establishing circadian rhythm heterogeneity during development and disease progression, governed by chromatin structure.
Collapse
Affiliation(s)
- Meng Qu
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Han Qu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA, 92521, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
57
|
Chen R, Weitzner AS, McKennon LA, Fonken LK. Chronic circadian phase advance in male mice induces depressive-like responses and suppresses neuroimmune activation. Brain Behav Immun Health 2021; 17:100337. [PMID: 34589820 PMCID: PMC8474595 DOI: 10.1016/j.bbih.2021.100337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/26/2022] Open
Abstract
Altered working and sleeping schedules during the COVID-19 pandemic likely impact our circadian systems. At the molecular level, clock genes form feedback inhibition loops that control 24-hr oscillations throughout the body. Importantly, core clock genes also regulate microglia, the brain resident immune cell, suggesting circadian regulation of neuroimmune function. To assess whether circadian disruption induces neuroimmune and associated behavioral changes, we mimicked chronic jetlag with a chronic phase advance (CPA) model. 32 adult male C57BL/6J mice underwent 6-hr light phase advance shifts every 3 light/dark cycles (CPA) 14 times or were maintained in standard light/dark cycles (control). CPA mice showed higher behavioral despair but not anhedonia in forced swim and sucrose preferences tests, respectively. Changes in behavior were accompanied by altered hippocampal circadian genes in CPA mice. Further, CPA suppressed expression of brain-derived neurotrophic factor (BDNF) and pro-inflammatory cytokine interleukin-1 beta in the hippocampus. Plasma corticosterone concentrations were elevated by CPA, suggesting that CPA may suppress neuroimmune pathways via glucocorticoids. These results demonstrate that chronic circadian disruption alters mood and neuroimmune function, which may have implications for shift working populations such as frontline health workers.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aidan S. Weitzner
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Lara A. McKennon
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Laura K. Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
58
|
Guo X, Zheng J, Zhang S, Jiang X, Chen T, Yu J, Wang S, Ma X, Wu C. Advances in Unhealthy Nutrition and Circadian Dysregulation in Pathophysiology of NAFLD. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2021; 2:691828. [PMID: 36994336 PMCID: PMC10012147 DOI: 10.3389/fcdhc.2021.691828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022]
Abstract
Unhealthy diets and lifestyle result in various metabolic conditions including metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). Much evidence indicates that disruption of circadian rhythms contributes to the development and progression of excessive hepatic fat deposition and inflammation, as well as liver fibrosis, a key characteristic of non-steatohepatitis (NASH) or the advanced form of NAFLD. In this review, we emphasize the importance of nutrition as a critical factor in the regulation of circadian clock in the liver. We also focus on the roles of the rhythms of nutrient intake and the composition of diets in the regulation of circadian clocks in the context of controlling hepatic glucose and fat metabolism. We then summarize the effects of unhealthy nutrition and circadian dysregulation on the development of hepatic steatosis and inflammation. A better understanding of how the interplay among nutrition, circadian rhythms, and dysregulated metabolism result in hepatic steatosis and inflammation can help develop improved preventive and/or therapeutic strategies for managing NAFLD.
Collapse
Affiliation(s)
- Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xin Guo, ; Chaodong Wu,
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shixiu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaofan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiayu Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shu'e Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaomin Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- *Correspondence: Xin Guo, ; Chaodong Wu,
| |
Collapse
|
59
|
Hu R, Zhang W, Li R, Qin L, Chen R, Zhang L, Gu W, Sun Q, Liu C. Ambient fine particulate matter exposure disrupts circadian rhythm and oscillation of the HPA axis in a mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112524. [PMID: 34274836 DOI: 10.1016/j.ecoenv.2021.112524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Emerging evidence supports that exposure to ambient fine particulate matter (PM2.5) is associated with the metabolic syndrome. As the main neuroendocrine axis in mammals, the hypothalamic-pituitary-adrenal (HPA) axis's circadian rhythm (CR) plays an essential role in regulating metabolic homeostasis. Our previous studies found that ambient PM2.5 exposure caused CR disorder of the critical enzymes involved in lipid metabolism in mouse liver and adipose tissues. However, the impact of ambient PM2.5 exposure on the HPA axis is not fully illustrated yet. Male C57BL/6 mice were randomly exposed to ambient PM2.5 or filtered air for ten weeks via a whole-body exposure system. Rhythmic oscillations of clock genes in the hypothalamus and adrenal gland were characterized. The effects of ambient PM2.5 exposure on clock gene expression and rhythmic expression of molecules related to glucocorticoid synthesis were also examined. Firstly, a more robust CR of clock genes was demonstrated in the adrenal gland than that in the hypothalamus. Secondly, PM2.5 exposure significantly inhibited the expression of Clock at ZT8 in the hypothalamus. However, both circadian oscillation and expression levels of Bmal1, Cry1, Cry2, and Rorα were increased significantly by ambient PM2.5 exposure in the adrenal gland. Moreover, abnormal rhythmic oscillation patterns of corticotropin-releasing hormone and adrenocorticotropic hormone were observed after ambient PM2.5 exposure, with no change at the expression levels. Finally, the expression of Cyp11b1 was markedly decreased at ZT0 in the adrenal gland of PM2.5 exposed mice. Our findings provide new insights into the ambient PM2.5 exposure-induced metabolic syndrome from the perspective of CR disturbances.
Collapse
Affiliation(s)
- Renjie Hu
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Wenhui Zhang
- Department of Environmental and Occupational health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| | - Ran Li
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Li Qin
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Rucheng Chen
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Lu Zhang
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Weijia Gu
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qinghua Sun
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Cuiqing Liu
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
60
|
Healy KL, Morris AR, Liu AC. Circadian Synchrony: Sleep, Nutrition, and Physical Activity. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:732243. [PMID: 35156088 PMCID: PMC8830366 DOI: 10.3389/fnetp.2021.732243] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 08/01/2023]
Abstract
The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-h periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that cause further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention.
Collapse
|
61
|
Grant LK, Hilaire MAS, Brainard GC, Czeisler CA, Lockley SW, Rahman SA. Endogenous circadian regulation and phase resetting of clinical metabolic biomarkers. J Pineal Res 2021; 71:e12752. [PMID: 34118084 PMCID: PMC11316500 DOI: 10.1111/jpi.12752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022]
Abstract
Shiftwork and circadian disruption are associated with adverse metabolic effects. Therefore, we examined whether clinical biomarkers of metabolic health are under endogenous circadian regulation using a 40 hours constant routine protocol (CR; constant environmental and behavioral conditions) and evaluated the impact of typical daily conditions with periodic sleep and meals (baseline; 8 hours sleep at night, four meals during a 16 hour wake episode) on the phase and amplitude of these rhythms. Additionally, we tested whether these circadian rhythms are reset during simulated shiftwork. Under CR (n = 16 males, mean age ± SD = 23.4 ± 2.3 years), we found endogenous circadian rhythms in cholesterol, HDL and LDL, albumin and total protein, and VLDL and triglyceride. The rhythms were masked under baseline conditions except for cholesterol, which had near-identical phases under both conditions. Resetting of the cholesterol rhythm and Dim Light Melatonin Onset (DLMO) was then tested in a study of simulated shiftwork (n = 25, 14 females, 36.3 ± 8.9 years) across four protocols; two with abrupt 8 hour delay shifts and exposure to either blue-enriched or standard white light; and either an abrupt or gradual 8 hour advance (1.6 hours/day over 5 days) both with exposure to blue-enriched white light. In the delay protocols, the cholesterol rhythm shifted later by -3.7 hours and -4.2 hours, respectively, compared to -6.6 hours and -4.7 hours, for DLMO. There was a significant advance in cholesterol in the abrupt (+5.1 hours) but not the gradual (+2.1 hours) protocol, compared to +3.1 hours and +2.8 hours in DLMO, respectively. Exploratory group analysis comparing the phases of all metabolic biomarkers under both studies showed evidence of phase shifts due to simulated shiftwork. These results show that clinical biomarkers of metabolic health are under endogenous circadian regulation but that the expression of these rhythms is substantially influenced by environmental factors. These rhythms can also be reset, which has implications for understanding how both behavioral changes and circadian shifts due to shiftwork may disrupt metabolic function.
Collapse
Affiliation(s)
- Leilah K. Grant
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115
| | - Melissa A. St Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115
| | - George C. Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115
| | - Shadab A. Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
62
|
Haraguchi A, Sato S, Kusano S, Ito K, Yamazaki T, Ryan C, Sekiguchi M, Shibata S. 4’-demethylnobiletin-rich fermented Citrus reticulata (ponkan) attenuated the disturbance in clock gene expression and locomotor activity rhythms caused by high-fat diet feeding. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1968609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shuhei Sato
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shuichi Kusano
- Fuji Sangyo Co., Ltd. Research and Development Center, Marugame, Japan
| | - Kaede Ito
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Tomohiro Yamazaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Conn Ryan
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Masataka Sekiguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
63
|
Association between Irregular Meal Timing and the Mental Health of Japanese Workers. Nutrients 2021; 13:nu13082775. [PMID: 34444937 PMCID: PMC8400428 DOI: 10.3390/nu13082775] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Breakfast skipping and nighttime snacking have been identified as risk factors for obesity, diabetes, and cardiovascular diseases. However, the effects of irregularity of meal timing on health and daily quality of life are still unclear. In this study, a web-based self-administered questionnaire survey was conducted involving 4490 workers (73.3% males; average age = 47.4 ± 0.1 years) in Japan to investigate the association between meal habits, health, and social relationships. This study identified that irregular meal timing was correlated with higher neuroticism (one of the Big Five personality traits), lower physical activity levels, and higher productivity loss. Irregular meal timing was also associated with a higher incidence of sleep problems and lower subjective health conditions. Among health outcomes, a high correlation of irregular meal timing with mental health factors was observed. This study showed that irregularity of meal timing can be explained by unbalanced diets, frequent breakfast skipping, increased snacking frequency, and insufficient latency from the last meal to sleep onset. Finally, logistic regression analysis was conducted, and a significant contribution of meal timing irregularity to subjective mental health was found under adjustment for other confounding factors. These results suggest that irregular meal timing is a good marker of subjective mental health issues.
Collapse
|
64
|
Aoyama S, Kim HK, Hirooka R, Tanaka M, Shimoda T, Chijiki H, Kojima S, Sasaki K, Takahashi K, Makino S, Takizawa M, Takahashi M, Tahara Y, Shimba S, Shinohara K, Shibata S. Distribution of dietary protein intake in daily meals influences skeletal muscle hypertrophy via the muscle clock. Cell Rep 2021; 36:109336. [PMID: 34233179 DOI: 10.1016/j.celrep.2021.109336] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/20/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023] Open
Abstract
The meal distribution of proteins throughout the day is usually skewed. However, its physiological implications and the effects of better protein distribution on muscle volume are largely unknown. Here, using the two-meals-per-day feeding model, we find that protein intake at the early active phase promotes overloading-induced muscle hypertrophy, in a manner dependent on the local muscle clock. Mice fed branched-chain amino acid (BCAA)-supplemented diets at the early active phase demonstrate skeletal muscle hypertrophy. However, distribution-dependent effects are not observed in ClockΔ19 or muscle-specific Bmal1 knockout mice. Additionally, we examined the relationship between the distribution of proteins in meals and muscle functions, such as skeletal muscle index and grip strength in humans. Higher muscle functions were observed in subjects who ingested dietary proteins mainly at breakfast than at dinner. These data suggest that protein intake at breakfast may be better for the maintenance of skeletal muscle mass.
Collapse
Affiliation(s)
- Shinya Aoyama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; Organization for University Research Initiatives, Waseda University, Tokyo 162-8480, Japan; Department of Neurobiology & Behavior, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hyeon-Ki Kim
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; Organization for University Research Initiatives, Waseda University, Tokyo 162-8480, Japan
| | - Rina Hirooka
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Mizuho Tanaka
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Takeru Shimoda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Hanako Chijiki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Shuichi Kojima
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Keisuke Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Kengo Takahashi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Saneyuki Makino
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Miku Takizawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Masaki Takahashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Shigeki Shimba
- Department of Health Science, School of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Kazuyuki Shinohara
- Department of Neurobiology & Behavior, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan.
| |
Collapse
|
65
|
Yan R, Andrew L, Marlow E, Kunaratnam K, Devine A, Dunican IC, Christophersen CT. Dietary Fibre Intervention for Gut Microbiota, Sleep, and Mental Health in Adults with Irritable Bowel Syndrome: A Scoping Review. Nutrients 2021; 13:2159. [PMID: 34201752 PMCID: PMC8308461 DOI: 10.3390/nu13072159] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder affecting 4-5% of the global population. This disorder is associated with gut microbiota, diet, sleep, and mental health. This scoping review therefore aims to map existing research that has administrated fibre-related dietary intervention to IBS individuals and reported outcomes on at least two of the three following themes: gut microbiota, sleep, and mental health. Five digital databases were searched to identify and select papers as per the inclusion and exclusion criteria. Five articles were included in the assessment, where none reported on all three themes or the combination of gut microbiota and sleep. Two studies identified alterations in gut microbiota and mental health with fibre supplementation. The other three studies reported on mental health and sleep outcomes using subjective questionnaires. IBS-related research lacks system biology-type studies targeting gut microbiota, sleep, and mental health in patients undergoing diet intervention. Further IBS research is required to explore how human gut microbiota functions (such as short-chain fatty acids) in sleep and mental health, following the implementation of dietary pattern alteration or component supplementation. Additionally, the application of objective sleep assessments is required in order to detect sleep change with more accuracy and less bias.
Collapse
Affiliation(s)
- Ran Yan
- School of Medical and Health Sciences, Edith Cowan University, Joondalup Drive, Perth 6027, Australia
- Institute for Nutrition Research, Edith Cowan University, Joondalup Drive, Perth 6027, Australia
| | - Lesley Andrew
- School of Medical and Health Sciences, Edith Cowan University, Joondalup Drive, Perth 6027, Australia
- Institute for Nutrition Research, Edith Cowan University, Joondalup Drive, Perth 6027, Australia
| | - Evania Marlow
- School of Medical and Health Sciences, Edith Cowan University, Joondalup Drive, Perth 6027, Australia
| | - Kanita Kunaratnam
- School of Medical and Health Sciences, Edith Cowan University, Joondalup Drive, Perth 6027, Australia
- Institute for Nutrition Research, Edith Cowan University, Joondalup Drive, Perth 6027, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup Drive, Perth 6027, Australia
- Institute for Nutrition Research, Edith Cowan University, Joondalup Drive, Perth 6027, Australia
| | - Ian C Dunican
- School of Medical and Health Sciences, Edith Cowan University, Joondalup Drive, Perth 6027, Australia
| | - Claus T Christophersen
- School of Medical and Health Sciences, Edith Cowan University, Joondalup Drive, Perth 6027, Australia
- WA Human Microbiome Collaboration Centre, School of Molecular and Life Sciences, Curtin University, Kent Street, Perth 6102, Australia
- Integrative Metabolomics and Computational Biology Centre, Edith Cowan University, Joondalup Drive, Perth 6027, Australia
| |
Collapse
|
66
|
Kurhaluk N, Tkachenko H, Lukash O. Photoperiod-induced alterations in biomarkers of oxidative stress and biochemical pathways in rats of different ages: Focus on individual physiological reactivity. Chronobiol Int 2021; 38:1673-1691. [PMID: 34121553 DOI: 10.1080/07420528.2021.1939364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Effects of photoperiodicity caused by both the age and individual physiological reactivity estimated by resistance to hypobaric hypoxia on the levels of lipid peroxidation, protein oxidation (aldehydic and ketonic derivatives), total antioxidant capacity, activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and biochemical parameters of aerobic and anaerobic pathways in hepatic tissue depending on the blood melatonin level were studied. The study was carried out on 96 6- and 21-month-old male rats divided into hypoxia resistance groups (LR, low resistance, HR, high resistance). The analyses were conducted at four photoperiods: winter (January), spring (March), summer (July), and autumn (October). Our results indicate a significant effect of melatonin, i.e. over 80%, revealed by the complete statistical model of the studied biomarkers of oxidative stress and oxygen-dependent parameters of metabolism. The effects of melatonin vary with age and between photoperiods, which in turn was determined by individual physiological reactivity. In terms of the photoperiods, the melatonin content in the group of the adult animals with low resistance to hypoxia decreased from winter to summer. In a group of old animals in comparison with adults, the melatonin content in all the studied photoperiods was much lower as well, regardless of their hypoxia resistance. In the group of old animals with low resistance to hypoxia, the melatonin content decreased throughout the photoperiods as follows: winter, autumn, summer, and spring. As can be concluded, spring is a critical period for old animals, particularly those with low hypoxia resistance. The important role of melatonin in these processes was also confirmed by our correlation analysis between oxidative stress biomarkers, energy-related metabolites, and antioxidant enzymes in the hepatic tissue of rats of different ages, with different resistance to hypoxia, and in different photoperiods. The melatonin concentration in the blood of highly resistant rats was higher than in those with low resistance to hypoxia. Melatonin determines the individual constitutional level of resistance to hypoxia and is responsible for individual enzymatic antioxidative responses, depending on the four photoperiods. Our studies have shown that melatonin levels are related to the redox characteristics of antioxidant defenses against lipid peroxidation and oxidative modification of proteins in old rats with low resistance to hypoxia, compared to a group of highly resistant adults. Finally, the melatonin-related mechanisms of antioxidative protection depend on metabolic processes in hepatic tissue and exhibit photoperiodical variability in adult and old rats.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Halyna Tkachenko
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Oleksandr Lukash
- Department of Ecology and Nature Protection, T.G. Shevchenko National University "Chernihiv Collegium", Chernihiv, Ukraine
| |
Collapse
|
67
|
Gao C, Sun Y, Zhang F, Zhou F, Dong C, Ke Z, Wang Q, Yang Y, Sun H. Prevalence and correlates of lifestyle behavior, anxiety and depression in Chinese college freshman: A cross-sectional survey. Int J Nurs Sci 2021; 8:347-353. [PMID: 34307785 PMCID: PMC8283720 DOI: 10.1016/j.ijnss.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 10/26/2022] Open
Abstract
Objectives First-year college students had exposure to unhealthy lifestyle behaviors that correlate with a high prevalence of anxiety and depression. Regarding to the modifiable lifestyle behaviors factors, this study investigated the prevalence and correlation of multiple lifestyle behaviors, anxiety and depression in a sample of Chinese first-year college students. Methods Cross-sectional data were extracted from Residents eHealth app of health lifestyle behaviors survey from September to October 2019. Anxiety, depression, eating regular meals, consumption of snacks in-between meals, consumption of fruit, dessert and sugar-sweetened beverages, smoking and secondhand smoke exposure, consuming alcohol, physical activity, sedentary time were assessed by self-report. Socio-demographic including age, gender, education, family income, religion, and health condition were captured. Logistic regression was used to explore the association of multiple lifestyle behaviors, anxiety and depression. Results Totally 1,017 participants were included in the study. The prevalence of anxiety and depression (from mild to severe) were 40.3% and 45.3%, respectively. In multivariable analyses, religion (believe in Buddhism, OR = 2.438, 95%CI: 1.097-5.421; believe in Christian, OR = 5.886, 95%CI: 1.604-21.597), gender (Female, OR = 1.405, 95%CI: 1.001-1.971), secondhand smoke exposure (OR = 1.089, 95%CI: 1.001-1.184), and eating regular meals (OR = 0.513, 95%CI: 0.346-0.759) were associated with anxiety. Family income (OR = 0.732, 95%CI: 0.596-0.898), eating regular meals (OR = 0.641, 95%CI: 0.415-0.990), frequency of breakfast (OR = 0.813, 95%CI: 0.690-0.959), with a chronic disease (OR = 1.902, 95%CI: 1.335-2.712), and consumption of nocturnal snack (OR = 1.337, 95%CI: 1.108-1.612) were associated with depression. Conclusions These results highlighted the need for early lifestyle behavior intervention, especially modifying diet patterns considering the background of religion, health condition, and social-economic status in first-year college students to improve their mental health.
Collapse
Affiliation(s)
- Chenchen Gao
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Yumei Sun
- Division of Humanity & Social Sciences, School of Nursing, Peking University, Beijing, China
| | - Feifei Zhang
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Fang Zhou
- School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Chaoqun Dong
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Ziwei Ke
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Qingyan Wang
- School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Yeqin Yang
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Sun
- Division of Humanity & Social Sciences, School of Nursing, Peking University, Beijing, China
| |
Collapse
|
68
|
de Assis LVM, Oster H. The circadian clock and metabolic homeostasis: entangled networks. Cell Mol Life Sci 2021; 78:4563-4587. [PMID: 33683376 PMCID: PMC8195959 DOI: 10.1007/s00018-021-03800-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock exerts an important role in systemic homeostasis as it acts a keeper of time for the organism. The synchrony between the daily challenges imposed by the environment needs to be aligned with biological processes and with the internal circadian clock. In this review, it is provided an in-depth view of the molecular functioning of the circadian molecular clock, how this system is organized, and how central and peripheral clocks communicate with each other. In this sense, we provide an overview of the neuro-hormonal factors controlled by the central clock and how they affect peripheral tissues. We also evaluate signals released by peripheral organs and their effects in the central clock and other brain areas. Additionally, we evaluate a possible communication between peripheral tissues as a novel layer of circadian organization by reviewing recent studies in the literature. In the last section, we analyze how the circadian clock can modulate intracellular and tissue-dependent processes of metabolic organs. Taken altogether, the goal of this review is to provide a systemic and integrative view of the molecular clock function and organization with an emphasis in metabolic tissues.
Collapse
Affiliation(s)
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, University of Lübeck, Institute of Neurobiology, Marie Curie Street, 23562, Lübeck, Germany.
| |
Collapse
|
69
|
Abstract
Mammals undergo regular cycles of fasting and feeding that engage dynamic transcriptional responses in metabolic tissues. Here we review advances in our understanding of the gene regulatory networks that contribute to hepatic responses to fasting and feeding. The advent of sequencing and -omics techniques have begun to facilitate a holistic understanding of the transcriptional landscape and its plasticity. We highlight transcription factors, their cofactors, and the pathways that they impact. We also discuss physiological factors that impinge on these responses, including circadian rhythms and sex differences. Finally, we review how dietary modifications modulate hepatic gene expression programs.
Collapse
Affiliation(s)
- Lara Bideyan
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Rohith Nagari
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
70
|
Bonmati-Carrion MA, Tomas-Loba A. Melatonin and Cancer: A Polyhedral Network Where the Source Matters. Antioxidants (Basel) 2021; 10:antiox10020210. [PMID: 33535472 PMCID: PMC7912767 DOI: 10.3390/antiox10020210] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Melatonin is one of the most phylogenetically conserved signals in biology. Although its original function was probably related to its antioxidant capacity, this indoleamine has been “adopted” by multicellular organisms as the “darkness signal” when secreted in a circadian manner and is acutely suppressed by light at night by the pineal gland. However, melatonin is also produced by other tissues, which constitute its extrapineal sources. Apart from its undisputed chronobiotic function, melatonin exerts antioxidant, immunomodulatory, pro-apoptotic, antiproliferative, and anti-angiogenic effects, with all these properties making it a powerful antitumor agent. Indeed, this activity has been demonstrated to be mediated by interfering with various cancer hallmarks, and different epidemiological studies have also linked light at night (melatonin suppression) with a higher incidence of different types of cancer. In 2007, the World Health Organization classified night shift work as a probable carcinogen due to circadian disruption, where melatonin plays a central role. Our aim is to review, from a global perspective, the role of melatonin both from pineal and extrapineal origin, as well as their possible interplay, as an intrinsic factor in the incidence, development, and progression of cancer. Particular emphasis will be placed not only on those mechanisms related to melatonin’s antioxidant nature but also on the recently described novel roles of melatonin in microbiota and epigenetic regulation.
Collapse
Affiliation(s)
- Maria-Angeles Bonmati-Carrion
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable, 28090 Madrid, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| | - Antonia Tomas-Loba
- Circadian Rhythm and Cancer Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| |
Collapse
|
71
|
Kolben Y, Weksler-Zangen S, Ilan Y. Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: Implementing a personalized signature-based platform for chronotherapy. Obes Rev 2021; 22:e13108. [PMID: 32720402 DOI: 10.1111/obr.13108] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Adropin is a peptide hormone, which plays a role in energy homeostasis and controls glucose and fatty acid metabolism. Its levels correlate with changes in carbohydrate-lipid metabolism, metabolic diseases, central nervous system function, endothelial function and cardiovascular disease. Both metabolic pathways and adropin are regulated by the circadian clocks. Here, we review the roles of the autonomic nervous system and circadian rhythms in regulating metabolic pathways and energy homeostasis. The beneficial effects of chronotherapy in various systems are discussed. We suggest a potential role for adropin as a mediator of the metabolic system-autonomic nervous system axis. We discuss the possibility of establishing an individualized adropin and circadian rhythm-based platform for implementing chronotherapy, and variability signatures for improving the efficacy of adropin-based therapies are discussed.
Collapse
Affiliation(s)
- Yotam Kolben
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Sarah Weksler-Zangen
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
72
|
Plotogea OM, Ilie M, Bungau S, Chiotoroiu AL, Stanescu AMA, Diaconu CC. Comprehensive Overview of Sleep Disorders in Patients with Chronic Liver Disease. Brain Sci 2021; 11:brainsci11020142. [PMID: 33499194 PMCID: PMC7911845 DOI: 10.3390/brainsci11020142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The impact of sleep disorders (SDs) on patients with chronic liver diseases (CLD) is tremendous. SDs are frequently encountered among these patients and interfere with their quality of life. This review aims to present the data available so far about the prevalence, phenotypes, and proposed pathophysiological mechanisms of SDs in CLD. Moreover, we proposed to search the literature regarding the most reliable methods to assess SDs and the possible therapeutic options in patients with CLD. The main results of this review show that when it comes to prevalence, the percentages reported vary widely between studies performed among populations from the USA or Europe and those coming from Asian countries. Furthermore, it has been proven that SDs may also be present in the absence of neurocognitive disorders attributable to hepatic encephalopathy (HE), which contradicts traditional suppositions where SDs were considered part of the clinical scenario of HE. Currently, there are no specific recommendations or protocols to assess SDs in CLD patients and data about the therapeutic management are limited. Taking into consideration their impact, a protocol for diagnosing and managing SDs should be developed and included in the daily practice of hepatologists.
Collapse
Affiliation(s)
- Oana-Mihaela Plotogea
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Correspondence: (O.-M.P.); (C.C.D.)
| | - Madalina Ilie
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | | | | | - Camelia Cristina Diaconu
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Correspondence: (O.-M.P.); (C.C.D.)
| |
Collapse
|
73
|
Period1 mediates rhythmic metabolism of toxins by interacting with CYP2E1. Cell Death Dis 2021; 12:76. [PMID: 33436540 PMCID: PMC7804260 DOI: 10.1038/s41419-020-03343-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 01/14/2023]
Abstract
The biological clock is an endogenous biological timing system, which controls metabolic functions in almost all organs. Nutrient metabolism, substrate processing, and detoxification are circadian controlled in livers. However, how the clock genes respond to toxins and influence toxicity keeps unclear. We identified the clock gene Per1 was specifically elevated in mice exposed to toxins such as carbon tetrachloride (CCl4). Mice lacking Per1 slowed down the metabolic rate of toxins including CCl4, capsaicin, and acetaminophen, exhibiting relatively more residues in the plasma. Liver injury and fibrosis induced by acute and chronic CCl4 exposure were markedly alleviated in Per1-deficient mice. These processes involved the binding of PER1 protein and hepatocyte nuclear factor-1alpha (HNF-1α), which enhances the recruitment of HNF-1α to cytochrome P450 2E1 (Cyp2e1) promoter and increases Cyp2e1 expression, thereby promoting metabolism for toxins in the livers. These results indicate that PER1 mediates the metabolism of toxins and appropriate suppression of Per1 response is a potential therapeutic target for toxin-induced hepatotoxicity.
Collapse
|
74
|
Transcriptomics analysis of hepatotoxicity induced by the pesticides imazalil, thiacloprid and clothianidin alone or in binary mixtures in a 28-day study in female Wistar rats. Arch Toxicol 2021; 95:1039-1053. [PMID: 33426623 PMCID: PMC7904562 DOI: 10.1007/s00204-020-02969-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/23/2020] [Indexed: 01/01/2023]
Abstract
Co-occurrence of pesticide residues in food commodities raises a potential safety issue as their mixture effects on human health are largely unknown. In a previous study, we reported the toxicological effects (pathology and histopathology) of imazalil (IMZ), thiacloprid (THI), and clothianidin (CTD) alone and in binary mixtures in a 28-day oral gavage study in female Wistar rats. Five dose levels (up to 350 mg/kg body weight/day) ranging from a typical toxicological reference value to a clear effect dose were applied. In the present study, we undertook a transcriptomics analysis of rat livers by means of total RNA sequencing (RNA-Seq). Bioinformatic data analysis involving Ingenuity Pathway Analysis (IPA) was used to gain mechanistic information on hepatotoxicity-related pathways affected after treatment with the pesticides, alone and in mixtures. Our data show that 2986 genes were differentially regulated by CTD while IMZ and THI had effects on 194 and 225 genes, respectively. All three individual compounds shared a common subset of genes whose network is associated with xenobiotic metabolism and nuclear receptor activation. Similar networks were retrieved for the mixtures. Alterations in the expression of individual genes were in line with the assumption of dose addition. Our results bring new insight into the hepatotoxicity mechanisms of IMZ, THI, and CTD and their mixtures.
Collapse
|
75
|
The Combined Effects of Magnesium Oxide and Inulin on Intestinal Microbiota and Cecal Short-Chain Fatty Acids. Nutrients 2021; 13:nu13010152. [PMID: 33466274 PMCID: PMC7824761 DOI: 10.3390/nu13010152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Constipation is a common condition that occurs in many people worldwide. While magnesium oxide (MgO) is often used as the first-line drug for chronic constipation in Japan, dietary fiber intake is also recommended. Dietary fiber is fermented by microbiota to produce short-chain fatty acids (SCFAs). SCFAs are involved in regulating systemic physiological functions and circadian rhythm. We examined the effect of combining MgO and the water-soluble dietary fiber, inulin, on cecal SCFA concentration and microbiota in mice. We also examined the MgO administration timing effect on cecal SCFAs. The cecal SCFA concentrations were measured by gas chromatography, and the microbiota was determined using next-generation sequencing. Inulin intake decreased cecal pH and increased cecal SCFA concentrations while combining MgO increased the cecal pH lowered by inulin and decreased the cecal SCFA concentrations elevated by inulin. When inulin and MgO were combined, significant changes in the microbiota composition were observed compared with inulin alone. The MgO effect on the cecal acetic acid concentration was less when administered at ZT12 than at ZT0. In conclusion, this study suggests that MgO affects cecal SCFA and microbiota during inulin feeding, and the effect on acetic acid concentration is time-dependent.
Collapse
|
76
|
Ni Y, Zhao Y, Ma L, Wang Z, Ni L, Hu L, Fu Z. Pharmacological activation of REV-ERBα improves nonalcoholic steatohepatitis by regulating intestinal permeability. Metabolism 2021; 114:154409. [PMID: 33096076 DOI: 10.1016/j.metabol.2020.154409] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES The gut-liver axis plays an important role in the pathogenesis of nonalcoholic steatohepatitis (NASH), and increased intestinal permeability causes transfer of endotoxin to the liver, which activates the immune response, ultimately leading to hepatic inflammation. Nuclear receptor Rev-erbα is a critical regulator of circadian rhythm, cellular metabolism, and inflammatory responses. However, the role and mechanism of Rev-erbα in gut barrier function and NASH remain unclear. In the present study, we investigated the involvement of Rev-erbα in the regulation of intestinal permeability and the treatment of NASH. METHODS AND RESULTS The expression of tight junction-related genes and Rev-erbs decreased in the jejunum, ileum and colon of mice with high cholesterol, high fat diet (CL)-induced NASH. Chromatin immunoprecipitation analysis indicated that REV-ERBα directly bound to the promoters of tight junction genes to regulate intestinal permeability. Pharmacological activation of REV-ERBα by SR9009 protected against lipopolysaccharide-induced increased intestinal permeability both in vitro and in vivo, and these effects were associated with the activation of autophagy and decreased apoptotic signaling of epithelial cells. In addition, the chronopharmacological effects of SR9009 were more potent at Zeitgeber time 0 (ZT0) than at ZT12, which was contrary to the rhythm of Rev-erbs in the gastrointestinal tract. The administration of SR9009 attenuated hepatic lipid accumulation, insulin resistance, inflammation, and fibrosis in mice with CL diet-induced NASH, which might be partly attributed to the enhancement of intestinal barrier function. CONCLUSION Chronopharmacological activation of REV-ERBα might be a potential strategy to treat intestinal barrier dysfunction-related disorders and NASH.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yufeng Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lingyan Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhe Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liyang Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Luting Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
77
|
Changes in sleep phase and body weight of mobile health App users during COVID-19 mild lockdown in Japan. Int J Obes (Lond) 2021; 45:2277-2280. [PMID: 34218262 PMCID: PMC8254445 DOI: 10.1038/s41366-021-00890-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/01/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE AND METHOD The stay-at-home order during the COVID-19 pandemic has restricted individuals' social behaviors, and therefore, effected their lifestyle including sleep, diet, and physical activity. Using the cross-sectional study design with a large sample size (N = 30,275) from the mobile health App users in Japan, we show age-dependent lifestyle changes during a nonpunitive "mild lockdown" (from April to May 2020). RESULTS Sleep onset and offset were delayed on work-days but not on free-days with increased sleep duration and decreased social jetlag, and the changes were more evident in the younger population. Although average weight change was close to none because of the users' characteristic (95% of App users try to lose weight), we investigated an association between lifestyle change and body-weight change. Participants who reported advanced sleep phase during mild lockdown described a weight decrease. In contrast, the delayed sleep phase reported a weight gain. The results were significant after adjustment of confounding factors including physical activity and meal changes. CONCLUSIONS Although there is cumulative evidence showing a relationship between late chronotype and obesity, it is still unclear about the potential benefit of the chronotype management to control body weight. Thus, to the best of our knowledge, this is the first study investigating the association between chronotype and weight changes by leveraging a large cohort.
Collapse
|
78
|
Haraguchi A, Nishimura Y, Fukuzawa M, Kikuchi Y, Tahara Y, Shibata S. Use of a social jetlag-mimicking mouse model to determine the effects of a two-day delayed light- and/or feeding-shift on central and peripheral clock rhythms plus cognitive functioning. Chronobiol Int 2020; 38:426-442. [PMID: 33345638 DOI: 10.1080/07420528.2020.1858850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Social jetlag (SJL) is defined as the discrepancy between social and biological rhythms and calculated by the difference between the midpoint of sleep time on working-days and free-days. Previous human and mouse studies showed SJL is positively related to evening chronotype and significantly related to smoking habit, cardiovascular risk, cognitive ability, and that SJL-mimicking conditions, simulating the real lifestyle situation of SJL in many humans, disrupt the regularity of estrous cycles of female animals. The effects of SJL-mimicking conditions on circadian rhythms and cognitive function and the reasons why the discrepancy between social and biological rhythms is involved in SJL have not yet been investigated. Therefore, in this study, we utilized a mouse model of SJL-mimicking conditions - 6-hour delayed-light/dark (LD) conditions for 2 days and normal-LD conditions for the following 5 days - applied for several weeks during which biological rhythms were monitored. Circadian rhythms of central and peripheral clocks and metabolism of the mice under the SJL-mimicking condition were always delayed for 2-3 hours compared with those under the normal-LD condition. Moreover, SJL-mimicking conditions impaired their cognitive function using a novel object recognition test. Only the delayed timing of either the light phase of the LD or of feeding for 2 days, comparable to the free-days situation of humans, delayed the circadian staging of rhythms the following 5 days. Furthermore, sleep deprivation during the early mornings for 5 days, which is comparable to early rise times experienced by humans on working-days and does affect the staging of circadian rhythms (circadian misalignment schedule), delayed the locomotor activity rhythms the next 2 days, comparable to free-days in humans, which is similar to the lifestyle rhythm of the evening chronotype. Our results demonstrated that the circadian misalignment schedule for 5 days changed the locomotor activity rhythms the following 2 days to the evening chronotype, that light- and/or feeding-shift conditions for 2 days exacerbate SJL, and that SJL-mimicking conditions delay the metabolic rhythm and cause cognitive impairment.
Collapse
Affiliation(s)
- Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yutaro Nishimura
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Miyabi Fukuzawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yosuke Kikuchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
79
|
Crespo M, Gonzalez-Teran B, Nikolic I, Mora A, Folgueira C, Rodríguez E, Leiva-Vega L, Pintor-Chocano A, Fernández-Chacón M, Ruiz-Garrido I, Cicuéndez B, Tomás-Loba A, A-Gonzalez N, Caballero-Molano A, Beiroa D, Hernández-Cosido L, Torres JL, Kennedy NJ, Davis RJ, Benedito R, Marcos M, Nogueiras R, Hidalgo A, Matesanz N, Leiva M, Sabio G. Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism. eLife 2020; 9:59258. [PMID: 33287957 PMCID: PMC7723411 DOI: 10.7554/elife.59258] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
Liver metabolism follows diurnal fluctuations through the modulation of molecular clock genes. Disruption of this molecular clock can result in metabolic disease but its potential regulation by immune cells remains unexplored. Here, we demonstrated that in steady state, neutrophils infiltrated the mouse liver following a circadian pattern and regulated hepatocyte clock-genes by neutrophil elastase (NE) secretion. NE signals through c-Jun NH2-terminal kinase (JNK) inhibiting fibroblast growth factor 21 (FGF21) and activating Bmal1 expression in the hepatocyte. Interestingly, mice with neutropenia, defective neutrophil infiltration or lacking elastase were protected against steatosis correlating with lower JNK activation, reduced Bmal1 and increased FGF21 expression, together with decreased lipogenesis in the liver. Lastly, using a cohort of human samples we found a direct correlation between JNK activation, NE levels and Bmal1 expression in the liver. This study demonstrates that neutrophils contribute to the maintenance of daily hepatic homeostasis through the regulation of the NE/JNK/Bmal1 axis. Every day, the body's biological processes work to an internal clock known as the circadian rhythm. This rhythm is controlled by ‘clock genes’ that are switched on or off by daily physical and environmental cues, such as changes in light levels. These daily rhythms are very finely tuned, and disturbances can lead to serious health problems, such as diabetes or high blood pressure. The ability of the body to cycle through the circadian rhythm each day is heavily influenced by the clock of one key organ: the liver. This organ plays a critical role in converting food and drink into energy. There is evidence that neutrophils – white blood cells that protect the body by being the first response to inflammation – can influence how the liver performs its role in obese people, by for example, releasing a protein called elastase. Additionally, the levels of neutrophils circulating in the blood change following a daily pattern. Crespo, González-Terán et al. wondered whether neutrophils enter the liver at specific times of the day to control liver’s daily rhythm. Crespo, González-Terán et al. revealed that neutrophils visit the liver in a pattern that peaks when it gets light and dips when it gets dark by counting the number of neutrophils in the livers of mice at different times of the day. During these visits, neutrophils secreted elastase, which activated a protein called JNK in the cells of the mice’s liver. This subsequently blocked the activity of another protein, FGF21, which led to the activation of the genes that allow cells to make fat molecules for storage. JNK activation also switched on the clock gene, Bmal1, ultimately causing fat to build up in the mice’s liver. Crespo, González-Terán et al. also found that, in samples from human livers, the levels of elastase, the activity of JNK, and whether the Bmal1 gene was switched on were tightly linked. This suggests that neutrophils may be controlling the liver’s rhythm in humans the same way they do in mice. Overall, this research shows that neutrophils can control and reset the liver's daily rhythm using a precisely co-ordinated series of molecular changes. These insights into the liver's molecular clock suggest that elastase, JNK and BmaI1 may represent new therapeutic targets for drugs or smart medicines to treat metabolic diseases such as diabetes or high blood pressure.
Collapse
Affiliation(s)
- María Crespo
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | | | - Ivana Nikolic
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | | | | | - Irene Ruiz-Garrido
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Beatriz Cicuéndez
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Antonia Tomás-Loba
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Noelia A-Gonzalez
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | | | - Daniel Beiroa
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.,CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Lourdes Hernández-Cosido
- Department of General Surgery, University Hospital of Salamanca-IBSAL, Department of Surgery, University of Salamanca, Salamanca, Spain
| | - Jorge L Torres
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Norman J Kennedy
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Roger J Davis
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Rui Benedito
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Ruben Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.,CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Nuria Matesanz
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| |
Collapse
|
80
|
Yue F, Xia K, Wei L, Xing L, Wu S, Shi Y, Lam SM, Shui G, Xiang X, Russell R, Zhang D. Effects of constant light exposure on sphingolipidomics and progression of NASH in high-fat-fed rats. J Gastroenterol Hepatol 2020; 35:1978-1989. [PMID: 32027419 DOI: 10.1111/jgh.15005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/25/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) is a growing public health concern worldwide. With the progression of urbanization, light pollution is becoming an inevitable risk factor for NAFLD. However, the role of light pollution on NAFLD is insufficiently understood, and the underlying mechanism remains unclear. The present study explored effects of constant light exposure on NAFLD and elucidated its related mechanisms. METHODS Thirty-two male Sprague Dawley rats were divided into four groups (n = 8 each): (i) rats on a normal diet exposed to standard light-dark cycle (ND-LD); (ii) rats on a normal diet exposed to constant light (ND-LL); (iii) rats on a high-fat diet exposed to standard light-dark cycle (HFD-LD); and (iv) and rats on a high-fat diet exposed to constant light (HFD-LL). After 12 weeks of treatment, rats were sacrificed and pathophysiological assessments were performed. Targeted lipidomics was used to measure sphingolipids, including ceramides, glucosylceramides, and lactosylceramides, sphingomyelins, and sphingosine-1-phosphates in plasma and liver tissues. RESULTS In normal chow rats, constant light exposure led to glucose abnormalities and dyslipidemia. In high-fat-fed rats, constant light exposure exacerbated glucose abnormalities, dyslipidemia, insulin resistance, and inflammation and aggravated steatohepatitis. Compared with HFD-LD rats, HFD-LL had decreased plasma sphingosine-1-phosphate and elevated liver concentrations of total ceramide and specific ceramide species (ceramide d18:0/24:0, ceramide d18:1/22:0, ceramide d18:1/24:0, and ceramide d18:1/24:1), which were associated with increased hepatocyte apoptosis. CONCLUSIONS Constant light exposure causes dysregulation of sphingolipids and promotes steatohepatitis in high-fat-fed rats.
Collapse
Affiliation(s)
- Fangzhi Yue
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Xia
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Wei
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Xing
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanyu Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xingwei Xiang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ryan Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
81
|
Kurhaluk N, Tkachenko H, Lukash O. Melatonin modulates oxidative phosphorylation, hepatic and kidney autophagy-caused subclinical endotoxemia and acute ethanol-induced oxidative stress. Chronobiol Int 2020; 37:1709-1724. [DOI: 10.1080/07420528.2020.1830792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Natalia Kurhaluk
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Halyna Tkachenko
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Oleksandr Lukash
- Department of Ecology and Nature Protection, T.G. Shevchenko National University “Chernihiv Collegium”, Chernihiv, Ukraine
| |
Collapse
|
82
|
Shaashua L, Mayer S, Lior C, Lavon H, Novoselsky A, Scherz-Shouval R. Stromal Expression of the Core Clock Gene Period 2 Is Essential for Tumor Initiation and Metastatic Colonization. Front Cell Dev Biol 2020; 8:587697. [PMID: 33123539 PMCID: PMC7573548 DOI: 10.3389/fcell.2020.587697] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
The circadian clock regulates diverse physiological processes by maintaining a 24-h gene expression pattern. Genetic and environmental cues that disrupt normal clock rhythms can lead to cancer, yet the extent to which this effect is controlled by the cancer cells versus non-malignant cells in the tumor microenvironment (TME) is not clear. Here we set out to address this question, by selective manipulation of circadian clock genes in the TME. In two different mouse models of cancer we find that expression of the core clock gene Per2 in the TME is crucial for tumor initiation and metastatic colonization, whereas another core gene, Per1, is dispensable. We further show that loss of Per2 in the TME leads to significant transcriptional changes in response to cancer cell introduction. These changes may contribute to a tumor-suppressive microenvironment. Thus, our work unravels an unexpected protumorigenic role for the core clock gene Per2 in the TME, with potential implications for therapeutic dosing strategies and treatment regimens.
Collapse
Affiliation(s)
- Lee Shaashua
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shimrit Mayer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Chen Lior
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hagar Lavon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Novoselsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
83
|
Lin X, Meng T, Yang T, Xu X, Zhao Y, Wu X. Circadian zinc feeding regime in laying hens related to laying performance, oxidation status, and interaction of zinc and calcium. Poult Sci 2020; 99:6783-6796. [PMID: 33248594 PMCID: PMC7704742 DOI: 10.1016/j.psj.2020.06.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/24/2020] [Accepted: 06/16/2020] [Indexed: 12/03/2022] Open
Abstract
This study investigated that circadian zinc (Zn) feeding regime affected laying performance, Zn and calcium (Ca) status, antioxidant capacity and gene expression of circadian clock, and Ca and Zn transporter in laying hens. In total, 162 of 21-wk Hyline Sophie laying hens were assigned randomly into 3 groups including CON group (Control Zn, basal diets supplemented 60 mg/kg Zn), HL group (high-low Zn, basal diets supplemented 120 mg/kg Zn—basal diets), and LH group (low-high Zn, basal diets—basal diets supplemented 120 mg/kg Zn), which were fed at 0,530 h and 1,530 h, respectively. Blood, tibia, duodenum, and eggshell gland samples were collected at 8 h intervals with starting at 0,000 h in 1 d after 10 wk of experiment. Compared with CON group: 1) Feed conversion ratio (FCR) of LH and HL group decreased significantly (P < 0.05); 2) in serum, total antioxidant capacity and CuZn-superoxide dismutase (SOD) at 0,000 h increased significantly, as well as Ca and Zn concentration of tibia at 0,800 h in LH group (P < 0.05); 3) in duodenum, mRNA expression of calbindin-d28k (CaBP) and NCX1 at 1,600 h in HL group upregulated significantly, as well as Per2 and Per3 at 0,000 h, CLOCK, Cry2, Per2, and Per3 at 1,600 h (P < 0.05). But, Zn5 at 0,800 h in HL group downregulated significantly (P < 0.05). 4) In eggshell gland, the mRNA expression of CaBP at 0,000 h and Zn5 at 1,600 h in HL group downregulated significantly (P < 0.05). However, SOD at 1,600 h in HL group upregulated significantly, as well as Cry1 and Per3 at 0,800 h in HL group upregulated significantly (P < 0.05). In conclusion, circadian Zn feeding diet regime was beneficial to improvement of FCR. The regulation of laying hens' circadian rhythms affected Zn and Ca transporter and interrelationship between Ca and Zn metabolism, also altered antioxidant capacity in present study. Therefore, circadian Zn feeding regime can be considered as a new method to improve laying performance in laying hens.
Collapse
Affiliation(s)
- Xue Lin
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Tiantian Meng
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Ting Yang
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiang Xu
- Guangzhou Tanke Bio-tech Co., Ltd., Guangzhou, Guangdong 510528, China
| | - Yurong Zhao
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Xin Wu
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| |
Collapse
|
84
|
Li R, Wang Y, Chen R, Gu W, Zhang L, Gu J, Wang Z, Liu Y, Sun Q, Zhang K, Liu C. Ambient fine particulate matter disrupts hepatic circadian oscillation and lipid metabolism in a mouse model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114179. [PMID: 32145476 DOI: 10.1016/j.envpol.2020.114179] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/02/2020] [Accepted: 02/11/2020] [Indexed: 05/20/2023]
Abstract
Emerging evidence has shown that exposure to ambient fine particulate matter (PM2.5) is associated with hepatic lipid accumulation. However, the underlying mechanism is not fully characterized yet. Autonomous circadian clock in the liver plays a fundamental role in maintaining lipid metabolism homeostasis. In this study, we evaluated the effects of ambient PM2.5 exposure on the expression of hepatic circadian clock genes and expression rhythm of genes associated with lipid metabolism in mice liver. Male C57BL/6 mice were randomly assigned to ambient PM2.5 or filtered air for 10 weeks via a whole body exposure system. We found that the liver mass was reduced significantly at zeitgeber time (ZT) 8 in mice exposed to PM2.5 but not levels or circadian rhythm of hepatic triglycerides or free fatty acid (FFA). In addition, exposure to PM2.5 led to enhanced expression of bmal1 at ZT0/24, cry1 at ZT16 and rev-erbα at ZT4 and ZT8. Furthermore, the expression of pparα was enhanced in mice liver at ZT4 and ZT8 after PM2.5 exposure, with upregulation of pparα-mediated genes responsible for fatty acid transport and oxidation. Finally, the expression of rate-limiting enzymes for lipid synthesis was all significantly increased in the liver of PM2.5 exposed mice at ZT12. Therefore, the present study provides new perspectives for revealing the etiology of hepatic lipid metabolism abnormality from PM2.5-induced circadian rhythm disorder.
Collapse
Affiliation(s)
- Ran Li
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yixuan Wang
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Rucheng Chen
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weijia Gu
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lu Zhang
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jinge Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - Ziyao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qinghua Sun
- College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Cuiqing Liu
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
85
|
Wang Y, Li R, Chen R, Gu W, Zhang L, Gu J, Wang Z, Liu Y, Sun Q, Zhang K, Liu C. Ambient fine particulate matter exposure perturbed circadian rhythm and oscillations of lipid metabolism in adipose tissues. CHEMOSPHERE 2020; 251:126392. [PMID: 32146191 DOI: 10.1016/j.chemosphere.2020.126392] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Emerging evidence indicated that disruption of circadian rhythm (CR) induced metabolic disorders, including dysregulation of energy homeostasis and lipid dysfunction, which was associated with ambient fine particulate matter (PM2.5) as well. However, the role and mechanism of CR in PM2.5-mediated metabolic disorder remain unknown. In the present study, we investigated circadian rhythmic characteristics and explored the effect of PM2.5 on oscillating clock of lipid function and metabolism in white adipose tissue (WAT) and brown adipose tissue (BAT). C57BL/6 mice were exposed to PM2.5 in a whole-body inhalational exposure system. After 10 weeks, the expression of clock-related genes exhibits more robust CR in BAT than WAT, with the acrophase of PER2 in both types of adipose tissue being significantly decreased at ZT12 and Bmal1 increased at ZT0/24 in WAT in response to PM2.5 exposure. In addition, both CR pattern and expression levels of Sirt1 got significantly inhibited by PM2.5 exposure in WAT, accompanied with adipose dysfunction evidenced by inhibited pattern and expression levels of adipokines at the same ZT time points. Finally, a similar phase right shift from ZT4 to ZT12 in both Sirt3 and Ucp1 in BAT was induced by PM2.5 exposure. These findings indicate that disruption of the CR in adipose tissues could be an important way by which PM2.5 exposure induces metabolic disorder and provide potential targets for further investigation.
Collapse
Affiliation(s)
- Yixuan Wang
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ran Li
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Rucheng Chen
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weijia Gu
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lu Zhang
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinge Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ziyao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinghua Sun
- College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Cuiqing Liu
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
86
|
|
87
|
JARID1a Ablation in the Liver Alters Systemic Metabolism and Adaptation to Feeding. Cell Rep 2020; 31:107668. [PMID: 32460011 DOI: 10.1016/j.celrep.2020.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 11/22/2022] Open
Abstract
The liver is a key regulator of systemic energy homeostasis whose proper function is dependent on the circadian clock. Here, we show that livers deficient in the oscillator component JARID1a exhibit a dysregulation of genes involved in energy metabolism. Importantly, we find that mice that lack hepatic JARID1a have decreased lean body mass, decreased respiratory exchange ratios, faster production of ketones, and increased glucose production in response to fasting. Finally, we find that JARID1a loss compromises the response of the hepatic transcriptome to nutrient availability. In all, ablation of hepatic JARID1a disrupts the coordination of hepatic metabolic programs with whole-body consequences.
Collapse
|
88
|
Saran AR, Dave S, Zarrinpar A. Circadian Rhythms in the Pathogenesis and Treatment of Fatty Liver Disease. Gastroenterology 2020; 158:1948-1966.e1. [PMID: 32061597 PMCID: PMC7279714 DOI: 10.1053/j.gastro.2020.01.050] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Circadian clock proteins are endogenous timing mechanisms that control the transcription of hundreds of genes. Their integral role in coordinating metabolism has led to their scrutiny in a number of diseases, including nonalcoholic fatty liver disease (NAFLD). Discoordination between central and peripheral circadian rhythms is a core feature of nearly every genetic, dietary, or environmental model of metabolic syndrome and NAFLD. Restricting feeding to a defined daily interval (time-restricted feeding) can synchronize the central and peripheral circadian rhythms, which in turn can prevent or even treat the metabolic syndrome and hepatic steatosis. Importantly, a number of proteins currently under study as drug targets in NAFLD (sterol regulatory element-binding protein [SREBP], acetyl-CoA carboxylase [ACC], peroxisome proliferator-activator receptors [PPARs], and incretins) are modulated by circadian proteins. Thus, the clock can be used to maximize the benefits and minimize the adverse effects of pharmaceutical agents for NAFLD. The circadian clock itself has the potential for use as a target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Anand R. Saran
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA
| | - Shravan Dave
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, California; Veterans Affairs Health Sciences San Diego, La Jolla, California; Institute of Diabetes and Metabolic Health, University of California, San Diego, La Jolla, California; Center for Microbiome Innovation, University of California, San Diego, La Jolla, California.
| |
Collapse
|
89
|
Aroca-Crevillén A, Adrover JM, Hidalgo A. Circadian Features of Neutrophil Biology. Front Immunol 2020; 11:576. [PMID: 32346378 PMCID: PMC7169427 DOI: 10.3389/fimmu.2020.00576] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Rhythms in immunity manifest in multiple ways, but perhaps most prominently by the recurrent onset of inflammation at specific times of day. These patterns are of importance to understand human disease and are caused, in many instances, by the action of neutrophils, a myeloid leukocyte with striking circadian features. The neutrophil's short life, marked diurnal variations in number, and changes in phenotype while in the circulation, help explain the temporal features of inflammatory disease but also uncover core features of neutrophil physiology. Here, we summarize well-established concepts and introduce recent discoveries in the biology of these cells as they relate to circadian rhythms. We highlight that although the circadian features of neutrophils are better known and relevant to understand disease, they may also influence important aspects of organ function even in the steady-state. Finally, we discuss the possibility of targeting these temporal features of neutrophils for therapeutic benefit.
Collapse
Affiliation(s)
- Alejandra Aroca-Crevillén
- Department of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares, Carlos III, Madrid, Spain
| | - José M Adrover
- Department of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares, Carlos III, Madrid, Spain
| | - Andrés Hidalgo
- Department of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares, Carlos III, Madrid, Spain.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
90
|
Carmona P, Mendez N, Ili CG, Brebi P. The Role of Clock Genes in Fibrinolysis Regulation: Circadian Disturbance and Its Effect on Fibrinolytic Activity. Front Physiol 2020; 11:129. [PMID: 32231582 PMCID: PMC7083126 DOI: 10.3389/fphys.2020.00129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022] Open
Abstract
The fibrinolytic system is critical during the onset of fibrinolysis, a fundamental mechanism for fibrin degradation. Both tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) trigger fibrinolysis, leading to proteolytic activation of plasminogen to plasmin and subsequently fibrin proteolysis. This system is regulated by several inhibitors; plasminogen activator inhibitor-1 (PAI-1), the most studied, binds to and inactivates both tPA and uPA. Through the action of plasmin, this system regulates several physiological processes: embryogenesis, activation of inflammatory cells, cell proliferation and death, synaptic plasticity, wound healing, and others. The deregulated intervention of fibrinolysis in the pathophysiology of various diseases has been widely studied; findings of altered functioning have been reported in different chronic non-communicable diseases (NCD), reinforcing its pleiotropic character and the importance of its physiology and regulation. The evidence indicates that fundamental elements of the fibrinolytic system, such as tPA and PAI-1, show a circadian rhythm in their plasmatic levels and their gene expression are regulated by circadian system elements, known as clock genes – Bmal, Clock, Cry-, and accessory clock genes such as Rev-Erb and Ror. The disturbance in the molecular machinery of the clock by exposure to light during the night alters the natural light/dark cycle and causes disruption of the circadian rhythm. Such exposure affects the synchronization and functioning of peripheral clocks responsible for the expression of the components of the fibrinolytic system. So, this circadian disturbance could be critical in the pathophysiology of chronic diseases where this system has been found to be deregulated.
Collapse
Affiliation(s)
- Pamela Carmona
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile.,Laboratory of Integrative Biology, Center for Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Natalia Mendez
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Carmen G Ili
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile.,Laboratory of Integrative Biology, Center for Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Priscilla Brebi
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile.,Laboratory of Integrative Biology, Center for Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
91
|
Melatonin Orchestrates Lipid Homeostasis through the Hepatointestinal Circadian Clock and Microbiota during Constant Light Exposure. Cells 2020; 9:cells9020489. [PMID: 32093272 PMCID: PMC7072737 DOI: 10.3390/cells9020489] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Misalignment between natural light rhythm and modern life activities induces disruption of the circadian rhythm. It is mainly evident that light at night (LAN) interferes with the human endocrine system and contributes to the increasing rates of obesity and lipid metabolic disease. Maintaining hepatointestinal circadian homeostasis is vital for improving lipid homeostasis. Melatonin is a chronobiotic substance that plays a main role in stabilizing bodily rhythm and has shown beneficial effects in protecting against obesity. Based on the dual effect of circadian rhythm regulation and antiobesity, we tested the effect of melatonin in mice under constant light exposure. Exposure to 24-h constant light (LL) increased weight and insulin resistance compared with those of the control group (12-h light–12-h dark cycle, LD), and simultaneous supplementation in the melatonin group (LLM) ameliorated this phenotype. Constant light exposure disturbed the expression pattern of a series of transcripts, including lipid metabolism, circadian regulation and nuclear receptors in the liver. Melatonin also showed beneficial effects in improving lipid metabolism and circadian rhythm homeostasis. Furthermore, the LL group had increased absorption and digestion of lipids in the intestine as evidenced by the elevated influx of lipids in the duodenum and decrease in the efflux of lipids in the jejunum. More interestingly, melatonin ameliorated the gut microbiota dysbiosis and improved lipid efflux from the intestine. Thus, these findings offer a novel clue regarding the obesity-promoting effect attributed to LAN and suggest a possibility for obesity therapy by melatonin in which melatonin could ameliorate rhythm disorder and intestinal dysbiosis.
Collapse
|
92
|
Yang S, Liu Y, Guo Y, Liu R, Qi F, Li X, Yu H, Cheng S, Wang Z. Circadian gene Clock participates in mitochondrial apoptosis pathways by regulating mitochondrial membrane potential, mitochondria out membrane permeablization and apoptosis factors in AML12 hepatocytes. Mol Cell Biochem 2020; 467:65-75. [PMID: 32067140 DOI: 10.1007/s11010-020-03701-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 02/11/2020] [Indexed: 12/27/2022]
Abstract
Circadian rhythms help organisms adapt to changes of external environment by regulating energy metabolism and remaining the balance of homeostasis. Numerous researches have proved that the physiological function of liver was precisely controlled by circadian rhythms. Clock, one of core circadian genes, has been demonstrated to regulate the oxidative phosphorylation process of mitochondrial, which provides energy for living cells and acts as one of the hub for apoptosis. However, whether Clock gene regulates mitochondrial apoptosis pathways in liver cells remains less explored. In the present study, we used lentiviral vector to establish a stable AML12 cell lines which were capable of expressing specific shRNA to interfere the expression of Clock gene and investigated the effect of Clock on mitochondrial apoptosis pathways. Herein, we found that the interference of Clock gene could significantly suppress mitochondrial apoptosis pathways by stabilizing mitochondrial membrane potential and inhibiting mitochondria out membrane permeablization, which might be a result of lower expression of BAD and BIM proteins. Moreover, the interference of Clock gene could downregulate the expression of mitochondrial apoptosis factors, i.e. AIF, CYCS, APAF-1 and SMAC, which will suppress the formation of apoptosome and the process of DNA degradation to further inhibit apoptosis process. This work provides an insight on the important role of Clock gene participating in mitochondrial apoptosis pathways of hepatocytes and unveils a probable pathogenesis of how circadian rhythm regulates liver diseases.
Collapse
Affiliation(s)
- Shuhong Yang
- Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China. .,Health Ministry Key Laboratory of Chronobiology, School of Preclinic and Forensic Medical, Sichuan University, Chengdu, China.
| | - Yanyou Liu
- Health Ministry Key Laboratory of Chronobiology, School of Preclinic and Forensic Medical, Sichuan University, Chengdu, China
| | - Yimei Guo
- Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Rong Liu
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Fang Qi
- Health Ministry Key Laboratory of Chronobiology, School of Preclinic and Forensic Medical, Sichuan University, Chengdu, China
| | - Xiaoxue Li
- Health Ministry Key Laboratory of Chronobiology, School of Preclinic and Forensic Medical, Sichuan University, Chengdu, China
| | - Hang Yu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuting Cheng
- Health Ministry Key Laboratory of Chronobiology, School of Preclinic and Forensic Medical, Sichuan University, Chengdu, China
| | - Zhengrong Wang
- Health Ministry Key Laboratory of Chronobiology, School of Preclinic and Forensic Medical, Sichuan University, Chengdu, China
| |
Collapse
|
93
|
Effect of Dose and Timing of Burdock ( Arctium lappa) Root Intake on Intestinal Microbiota of Mice. Microorganisms 2020; 8:microorganisms8020220. [PMID: 32041173 PMCID: PMC7074855 DOI: 10.3390/microorganisms8020220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/25/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Water-soluble dietary fiber such as inulin improves the beta diversity of the intestinal microbiota of mice fed with a high-fat diet (HFD). The circadian clock is the system that regulates the internal daily rhythm, and it affects the pattern of beta diversity in mouse intestinal microbiota. Burdock (Arctium lappa) root contains a high concentration of inulin/fructan (approximately 50%) and is a very popular vegetable in Japan. Arctium lappa also contains functional substances that may affect intestinal microbiota, such as polyphenols. We compared the effects of inulin and A. lappa powder on the diversity of the intestinal microbiota of HFD-fed mice. 16S rDNA from the intestinal microbiota obtained from feces was analyzed by 16S Metagenomic Sequencing Library Preparation. It was found to have a stronger effect on microbiota than inulin alone, suggesting that inulin has an additive and/or synergic action with other molecules in A. lappa root. We examined the effects of intake timing (breakfast or dinner) of A. lappa on intestinal microbiota. The intake of A. lappa root in the evening had a stronger effect on microbiota diversity in comparison to morning intake. Therefore, it is suggested that habitual consumption of A. lappa root in the evening may aid the maintenance of healthy intestinal microbiota.
Collapse
|
94
|
Cebola I. Liver gene regulatory networks: Contributing factors to nonalcoholic fatty liver disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1480. [PMID: 32020788 DOI: 10.1002/wsbm.1480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
Metabolic diseases such as nonalcoholic fatty liver disease (NAFLD) result from complex interactions between intrinsic and extrinsic factors, including genetics and exposure to obesogenic environments. These risk factors converge in aberrant gene expression patterns in the liver, which are underlined by altered cis-regulatory networks. In homeostasis and in disease states, liver cis-regulatory networks are established by coordinated action of liver-enriched transcription factors (TFs), which define enhancer landscapes, activating broad gene programs with spatiotemporal resolution. Recent advances in DNA sequencing have dramatically expanded our ability to map active transcripts, enhancers and TF cistromes, and to define the 3D chromatin topology that contains these elements. Deployment of these technologies has allowed investigation of the molecular processes that regulate liver development and metabolic homeostasis. Moreover, genomic studies of NAFLD patients and NAFLD models have demonstrated that the liver undergoes pervasive regulatory rewiring in NAFLD, which is reflected by aberrant gene expression profiles. We have therefore achieved an unprecedented level of detail in the understanding of liver cis-regulatory networks, particularly in physiological conditions. Future studies should aim to map active regulatory elements with added levels of resolution, addressing how the chromatin landscapes of different cell lineages contribute to and are altered in NAFLD and NAFLD-associated metabolic states. Such efforts would provide additional clues into the molecular factors that trigger this disease. This article is categorized under: Biological Mechanisms > Metabolism Biological Mechanisms > Regulatory Biology Laboratory Methods and Technologies > Genetic/Genomic Methods.
Collapse
Affiliation(s)
- Inês Cebola
- Department of Metabolism, Digestion and Reproduction, Section of Genetics and Genomics, Imperial College London, London, UK
| |
Collapse
|
95
|
Motohashi H, Tahara Y, Whittaker DS, Wang HB, Yamaji T, Wakui H, Haraguchi A, Yamazaki M, Miyakawa H, Hama K, Sasaki H, Sakai T, Hirooka R, Takahashi K, Takizawa M, Makino S, Aoyama S, Colwell CS, Shibata S. The circadian clock is disrupted in mice with adenine-induced tubulointerstitial nephropathy. Kidney Int 2020; 97:728-740. [PMID: 31948598 DOI: 10.1016/j.kint.2019.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
Chronic Kidney Disease (CKD) is increasing in incidence and has become a worldwide health problem. Sleep disorders are prevalent in patients with CKD raising the possibility that these patients have a disorganized circadian timing system. Here, we examined the effect of adenine-induced tubulointerstitial nephropathy on the circadian system in mice. Compared to controls, adenine-treated mice showed serum biochemistry evidence of CKD as well as increased kidney expression of inflammation and fibrosis markers. Mice with CKD exhibited fragmented sleep behavior and locomotor activity, with lower degrees of cage activity compared to mice without CKD. On a molecular level, mice with CKD exhibited low amplitude rhythms in their central circadian clock as measured by bioluminescence in slices of the suprachiasmatic nucleus of PERIOD 2::LUCIFERASE mice. Whole animal imaging indicated that adenine treated mice also exhibited dampened oscillations in intact kidney, liver, and submandibular gland. Consistently, dampened circadian oscillations were observed in several circadian clock genes and clock-controlled genes in the kidney of the mice with CKD. Finally, mice with a genetically disrupted circadian clock (Clock mutants) were treated with adenine and compared to wild type control mice. The treatment evoked worse kidney damage as indicated by higher deposition of gelatinases (matrix metalloproteinase-2 and 9) and adenine metabolites in the kidney. Adenine also caused non-dipping hypertension and lower heart rate. Thus, our data indicate that central and peripheral circadian clocks are disrupted in the adenine-treated mice, and suggest that the disruption of the circadian clock accelerates CKD progression.
Collapse
Affiliation(s)
- Hiroaki Motohashi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Daniel S Whittaker
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Huei-Bin Wang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Takahiro Yamaji
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Mayu Yamazaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Miyakawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Koki Hama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Tomoko Sakai
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Rina Hirooka
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Kengo Takahashi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Miku Takizawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Saneyuki Makino
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shinya Aoyama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
96
|
|
97
|
Biancolin AD, Martchenko A, Mitova E, Gurges P, Michalchyshyn E, Chalmers JA, Doria A, Mychaleckyj JC, Adriaenssens AE, Reimann F, Gribble FM, Gil-Lozano M, Cox BJ, Brubaker PL. The core clock gene, Bmal1, and its downstream target, the SNARE regulatory protein secretagogin, are necessary for circadian secretion of glucagon-like peptide-1. Mol Metab 2020; 31:124-137. [PMID: 31918914 PMCID: PMC6920326 DOI: 10.1016/j.molmet.2019.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES The incretin hormone glucagon-like peptide-1 (GLP-1) is secreted from intestinal L-cells upon nutrient intake. While recent evidence has shown that GLP-1 is released in a circadian manner in rats, whether this occurs in mice and if this pattern is regulated by the circadian clock remain to be elucidated. Furthermore, although circadian GLP-1 secretion parallels expression of the core clock gene Bmal1, the link between the two remains largely unknown. Secretagogin (Scgn) is an exocytotic SNARE regulatory protein that demonstrates circadian expression and is essential for insulin secretion from β-cells. The objective of the current study was to establish the necessity of the core clock gene Bmal1 and the SNARE protein SCGN as essential regulators of circadian GLP-1 secretion. METHODS Oral glucose tolerance tests were conducted at different times of the day on 4-hour fasted C57BL/6J, Bmal1 wild-type, and Bmal1 knockout mice. Mass spectrometry, RNA-seq, qRT-PCR and/or microarray analyses, and immunostaining were conducted on murine (m) and human (h) primary L-cells and mGLUTag and hNCI-H716 L-cell lines. At peak and trough GLP-1 secretory time points, the mGLUTag cells were co-stained for SCGN and a membrane-marker, ChIP was used to analyze BMAL1 binding sites in the Scgn promoter, protein interaction with SCGN was tested by co-immunoprecipitation, and siRNA was used to knockdown Scgn for GLP-1 secretion assay. RESULTS C57BL/6J mice displayed a circadian rhythm in GLP-1 secretion that peaked at the onset of their feeding period. Rhythmic GLP-1 release was impaired in Bmal1 knockout (KO) mice as compared to wild-type controls at the peak (p < 0.05) but not at the trough secretory time point. Microarray identified SNARE and transport vesicle pathways as highly upregulated in mGLUTag L-cells at the peak time point of GLP-1 secretion (p < 0.001). Mass spectrometry revealed that SCGN was also increased at this time (p < 0.001), while RNA-seq, qRT-PCR, and immunostaining demonstrated Scgn expression in all human and murine primary L-cells and cell lines. The mGLUTag and hNCI-H716 L-cells exhibited circadian rhythms in Scgn expression (p < 0.001). The ChIP analysis demonstrated increased binding of BMAL1 only at the peak of Scgn expression (p < 0.01). Immunocytochemistry showed the translocation of SCGN to the cell membrane after stimulation at the peak time point only (p < 0.05), while CoIP showed that SCGN was pulled down with SNAP25 and β-actin, but only the latter interaction was time-dependent (p < 0.05). Finally, Scgn siRNA-treated cells demonstrated significantly blunted GLP-1 secretion (p < 0.01) in response to stimulation at the peak time point only. CONCLUSIONS These data demonstrate, for the first time, that mice display a circadian pattern in GLP-1 secretion, which is impaired in Bmal1 knockout mice, and that Bmal1 regulation of Scgn expression plays an essential role in the circadian release of the incretin hormone GLP-1.
Collapse
Affiliation(s)
| | | | - Emilia Mitova
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Patrick Gurges
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | | | - Alessandro Doria
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Alice E Adriaenssens
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Manuel Gil-Lozano
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Brian J Cox
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
98
|
The Timing Effects of Soy Protein Intake on Mice Gut Microbiota. Nutrients 2019; 12:nu12010087. [PMID: 31892229 PMCID: PMC7019473 DOI: 10.3390/nu12010087] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023] Open
Abstract
Soy protein intake is known to cause microbiota changes. While there are some reports about the effect of soy protein intake on gut microbiota and lipid metabolism, effective timing of soy protein intake has not been investigated. In this study, we examined the effect of soy protein intake timing on microbiota. Mice were fed twice a day, in the morning and evening, to compare the effect of soy protein intake in the morning with that in the evening. Mice were divided into three groups: mice fed only casein protein, mice fed soy protein in the morning, and mice fed soy protein in the evening under high-fat diet conditions. They were kept under the experimental condition for two weeks and were sacrificed afterward. We measured cecal pH and collected cecal contents and feces. Short-chain fatty acids (SCFAs) from cecal contents were measured by gas chromatography. The microbiota was analyzed by sequencing 16S rRNA genes from feces. Soy protein intake whether in the morning or evening led to a greater microbiota diversity and a decrease in cecal pH resulting from SCFA production compared to casein intake. In addition, these effects were relatively stronger by morning soy protein intake. Therefore, soy protein intake in the morning may have relatively stronger effects on microbiota than that in the evening.
Collapse
|
99
|
Yang Y, Yuan G, Xie H, Wei T, Zhu D, Cui J, Liu X, Shen R, Zhu Y, Yang X. Circadian clock associates with tumor microenvironment in thoracic cancers. Aging (Albany NY) 2019; 11:11814-11828. [PMID: 31881010 PMCID: PMC6949103 DOI: 10.18632/aging.102450] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/07/2019] [Indexed: 12/21/2022]
Abstract
The application of cancer chronotherapy is to treat cancers based on at specific times during circadian rhythms. Previous studies have characterized the impact of circadian clock on tumorigenesis and specific immune cells. Here, by using multi-omics computation techniques, we systematically characterized the distinct roles of core circadian clock genes in thoracic cancers including lung adenocarcinoma, lung squamous cell carcinoma, and esophageal carcinoma. Strikingly, a wide range of core clock genes are epigenetically altered in lung adenocarcinomas and lung squamous cell carcinomas but not esophageal carcinomas. Further cancer hallmark analysis reveals that several core clock genes highly correlate with apoptosis and cell cycle such as RORA and PER2. Interestingly, our results reveal that CD4 and CD8 T cells are correlated with core clock molecules especially in lung adenocarcinomas and lung squamous cell carcinomas, indicating that chrono-immunotherapy may serve as a candidate option for future cancer management.
Collapse
Affiliation(s)
- Yong Yang
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Guangda Yuan
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Hongya Xie
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Tengteng Wei
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Donglin Zhu
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Jianyong Cui
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Xiaoqiang Liu
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Rongming Shen
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Yimeng Zhu
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| | - Xuefang Yang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu 215001, China
| |
Collapse
|
100
|
Zhou Z, Lin Y, Gao L, Yang Z, Wang S, Wu B. Circadian pharmacological effects of berberine on chronic colitis in mice: Role of the clock component Rev-erbα. Biochem Pharmacol 2019; 172:113773. [PMID: 31866303 DOI: 10.1016/j.bcp.2019.113773] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Berberine, initially isolated from Rhizoma Coptidis (Huanglian in Chinese), is a drug used to treat gastrointestinal disorders such as colitis. Here we uncovered a time-varying berberine effect on chronic colitis in mice, and investigated a potential role of the clock protein Rev-erbα in this timing effect. Berberine activity toward Rev-erbα was determined by luciferase reporter, Gal4-cotransfection assay and target gene expression analyses. Chronic colitis was induced by feeding mice with dextran sulfate sodium in drinking water. Colitis severity and pharmacological effects of berberine were assessed by measuring myeloperoxidase and malondialdehyde activities as well as the levels of inflammatory factors (IL-1β, IL-6, IL-18 and Ccl2). Berberine significantly inhibited Bmal1 (-2000/+100 bp)- and Nlrp3 (-1310/+100 bp)-Luc reporter activities, and dose-dependently decreased cellular expressions of both Bmal1 and Nlrp3. Also, it enhanced the transcriptional repressor activity of Rev-erbα in the Gal4 chimeric assay. These data indicated berberine as a Rev-erbα agonist. As expected, berberine attenuated inflammatory responses in BMDMs (bone marrow-derived macrophages) and in colitis mice. However, the anti-inflammatory effects of berberine were lost in BMDMs derived from Rev-erbα-deficient mice. Furthermore, chronic colitis displayed a diurnal rhythmicity in disease severity and its diurnal pattern was in an opposite phase to that of Rev-erbα expression, supporting a direct control of colitis by Rev-erbα. Moreover, berberine effects on chronic colitis were dosing time-dependent. ZT10 dosing generated a better treatment outcome compared to ZT2. This was because colitis was less severe and Rev-erbα expression was much higher at ZT10 than at ZT2. In conclusion, circadian pharmacological effects of berberine on chronic colitis were mainly contributed by diurnal rhythms of both disease severity and Rev-erbα (as a drug target). The findings may have implications for chronotherapeutic practice on colitis or related diseases.
Collapse
Affiliation(s)
- Ziyue Zhou
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Yanke Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Lu Gao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Zemin Yang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Shuai Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China.
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|