51
|
Zhang D, Li X, Li H, Xu Y. Microbial inoculants enhance the persistence of antibiotic resistance genes in aerobic compost of food waste mainly by altering interspecific relationships. BIORESOURCE TECHNOLOGY 2023:129443. [PMID: 37399957 DOI: 10.1016/j.biortech.2023.129443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The effects of microbial inoculants on ARG removal in composting are poorly understood. Here, a co-composting method for food waste and sawdust amended with different microbial agents (MAs) was designed. The results show that the compost without MA unexpectedly achieved the best ARG removal. The addition of MAs markedly increased the abundance of tet, sul and multidrug resistance genes (p < 0.05). Structural equation modeling demonstrated that MAs can enhance the contribution of the microbial community to ARG changes by reshaping community structure and altering the ecological niche, causing the proliferation of individual ARGs, an effect related to the MA component. Network analysis revealed that inoculants weakened the correlation between ARGs and community but increased the linkage between ARGs and core species, suggesting that inoculant-induced ARG proliferation may correspond with gene exchange occurring mainly between core species. The outcome provides new insights into MA application for ARG removal in waste treatment.
Collapse
Affiliation(s)
- Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
52
|
Wernli D, Søgaard Jørgensen P, Parmley EJ, Majowicz SE, Lambraki I, Carson CA, Cousins M, Graells T, Henriksson PJG, Léger A, Harbarth S, Troell M. Scope and applicability of social-ecological resilience to antimicrobial resistance. Lancet Planet Health 2023; 7:e630-e637. [PMID: 37438004 DOI: 10.1016/s2542-5196(23)00128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/15/2022] [Accepted: 05/31/2023] [Indexed: 07/14/2023]
Abstract
Social-ecological systems conceptualise how social human systems and ecological natural systems are intertwined. In this Personal View, we define the scope and applicability of social-ecological resilience to antimicrobial resistance. Resilience to antimicrobial resistance corresponds to the capacity to maintain the societal benefits of antimicrobial use and One Health systems' performance in the face of the evolutionary behaviour of microorganisms in response to antimicrobial use. Social-ecological resilience provides an appropriate framework to make sense of the disruptive impacts resulting from the emergence and spread of antimicrobial resistance; capture the diversity of strategies needed to tackle antimicrobial resistance and to live with it; understand the conditions that underpin the success or failure of interventions; and appreciate the need for adaptive and coevolutionary governance. Overall, resilience thinking is essential to improve understanding of how human societies dynamically can cope with, adapt, and transform to the growing global challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- Didier Wernli
- Global Studies Institute, University of Geneva, Geneva, Switzerland.
| | - Peter Søgaard Jørgensen
- Global Economic Dynamics and the Biosphere, The Royal Swedish Academy of Sciences, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - E Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shannon E Majowicz
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Irene Lambraki
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Carolee A Carson
- Centre for Food-borne, Environmental Zoonotic and Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - Melanie Cousins
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Tiscar Graells
- Global Economic Dynamics and the Biosphere, The Royal Swedish Academy of Sciences, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Patrik J G Henriksson
- Beijer Institute of Ecological Economics, The Royal Swedish Academy of Sciences, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; WorldFish, Jalan Batu Maung, Penang, Malaysia
| | - Anaïs Léger
- Federal Food Safety and Veterinary Office, Bern, Switzerland
| | - Stephan Harbarth
- Infection Control Program and WHO Collaborating Centre on Patient Safety, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Max Troell
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
53
|
Tripathi A, Kumar D, Chavda P, Rathore DS, Pandit R, Blake D, Tomley F, Joshi M, Joshi CG, Dubey SK. Resistome profiling reveals transmission dynamics of antimicrobial resistance genes from poultry litter to soil and plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121517. [PMID: 36990341 DOI: 10.1016/j.envpol.2023.121517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/26/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Poultry farming is a major livelihood in South and Southeast Asian economies where it is undergoing rapid intensification to meet the growing human demand for dietary protein. Intensification of poultry production systems is commonly supported by increased antimicrobial drug use, risking greater selection and dissemination of antimicrobial resistance genes (ARGs). Transmission of ARGs through food chains is an emerging threat. Here, we investigated transmission of ARGs from chicken (broiler and layer) litter to soil and Sorghum bicolor (L.) Moench plants based on field and pot experiments. The results demonstrate ARGs transmission from poultry litter to plant systems under field as well as experimental pot conditions. The most common ARGs could be tracked for transmission from litter to soil to plants were identified as detected were cmx, ErmX, ErmF, lnuB, TEM-98 and TEM-99, while common microorganisms included Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, and Vibrio cholerae. Using next generation sequencing and digital PCR assays we detected ARGs transmitted from poultry litter in both the roots and stems of S. bicolor (L.) Moench plants. Poultry litter is frequently used as a fertiliser because of its high nitrogen content; our studies show that ARGs can transmit from litter to plants and illustrates the risks posed to the environment by antimicrobial treatment of poultry. This knowledge is useful for formulating intervention strategies that can reduce or prevent ARGs transmission from one value chain to another, improving understanding of impacts on human and environmental health. The research outcome will help in further understanding the transmission and risks posed by ARGs from poultry to environmental and human/animal health.
Collapse
Affiliation(s)
- Animesh Tripathi
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Dinesh Kumar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology; (DST), Government of Gujarat, Gandhinagar, Gujarat, 382011, India
| | - Priyank Chavda
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology; (DST), Government of Gujarat, Gandhinagar, Gujarat, 382011, India
| | - Dalip Singh Rathore
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology; (DST), Government of Gujarat, Gandhinagar, Gujarat, 382011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology; (DST), Government of Gujarat, Gandhinagar, Gujarat, 382011, India
| | - Damer Blake
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Fiona Tomley
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology; (DST), Government of Gujarat, Gandhinagar, Gujarat, 382011, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology; (DST), Government of Gujarat, Gandhinagar, Gujarat, 382011, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
54
|
He LX, He LY, Gao FZ, Zhang M, Chen J, Jia WL, Ye P, Jia YW, Hong B, Liu SS, Liu YS, Zhao JL, Ying GG. Mariculture affects antibiotic resistome and microbiome in the coastal environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131208. [PMID: 36966625 DOI: 10.1016/j.jhazmat.2023.131208] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/23/2023] [Accepted: 03/12/2023] [Indexed: 05/03/2023]
Abstract
Antibiotics are increasingly used and released into the marine environment due to the rapid development of mariculture, resulting in spread of antibiotic resistance. The pollution, distribution, and characteristics of antibiotics, antibiotic resistance genes (ARGs) and microbiomes have been investigated in this study. Results showed that 20 antibiotics were detected in Chinese coastal environment, with predominance of erythromycin-H2O, enrofloxacin and oxytetracycline. In coastal mariculture sites, antibiotic concentrations were significantly higher than in control sites, and more types of antibiotics were detected in the South than in the North of China. Residues of enrofloxacin, ciprofloxacin and sulfadiazine posed high resistance selection risks. β-Lactam, multi-drug and tetracycline resistance genes were frequently detected with significantly higher abundance in the mariculture sites. Of the 262 detected ARGs, 10, 26, and 19 were ranked as high-risk, current-risk, future-risk, respectively. The main bacterial phyla were Proteobacteria and Bacteroidetes, of which 25 genera were zoonotic pathogens, with Arcobacter and Vibrio in particular ranking in the top10. Opportunistic pathogens were more widely distributed in the northern mariculture sites. Phyla of Proteobacteria and Bacteroidetes were the potential hosts of high-risk ARGs, while the conditional pathogens were associated with future-risk ARGs, indicating a potential threat to human health.
Collapse
Affiliation(s)
- Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China
| | - Jun Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China
| | - Wei-Li Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Pu Ye
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Wei Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bai Hong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Si Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
55
|
Wang Q, Wei S, Silva AF, Madsen JS. Cooperative antibiotic resistance facilitates horizontal gene transfer. THE ISME JOURNAL 2023; 17:846-854. [PMID: 36949153 PMCID: PMC10203111 DOI: 10.1038/s41396-023-01393-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
The rise of β-lactam resistance among pathogenic bacteria, due to the horizontal transfer of plasmid-encoded β-lactamases, is a current global health crisis. Importantly, β-lactam hydrolyzation by β-lactamases, not only protects the producing cells but also sensitive neighboring cells cooperatively. Yet, how such cooperative traits affect plasmid transmission and maintenance is currently poorly understood. Here we experimentally show that KPC-2 β-lactamase expression and extracellular activity were higher when encoded on plasmids compared with the chromosome, resulting in the elevated rescue of sensitive non-producers. This facilitated efficient plasmid transfer to the rescued non-producers and expanded the potential plasmid recipient pool and the probability of plasmid transfer to new genotypes. Social conversion of non-producers by conjugation was efficient yet not absolute. Non-cooperative plasmids, not encoding KPC-2, were moderately more competitive than cooperative plasmids when β-lactam antibiotics were absent. However, in the presence of a β-lactam antibiotic, strains with non-cooperative plasmids were efficiently outcompeted. Moreover, plasmid-free non-producers were more competitive than non-producers imposed with the metabolic burden of a plasmid. Our results suggest that cooperative antibiotic resistance especially promotes the fitness of replicons that transfer horizontally such as conjugative plasmids.
Collapse
Affiliation(s)
- Qinqin Wang
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Shaodong Wei
- National Food Institute, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ana Filipa Silva
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | | |
Collapse
|
56
|
Li B, Yan T. Metagenomic next generation sequencing for studying antibiotic resistance genes in the environment. ADVANCES IN APPLIED MICROBIOLOGY 2023; 123:41-89. [PMID: 37400174 DOI: 10.1016/bs.aambs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Bacterial antimicrobial resistance (AMR) is a persisting and growing threat to human health. Characterization of antibiotic resistance genes (ARGs) in the environment is important to understand and control ARG-associated microbial risks. Numerous challenges exist in monitoring ARGs in the environment, due to the extraordinary diversity of ARGs, low abundance of ARGs with respect to the complex environmental microbiomes, difficulties in linking ARGs with bacterial hosts by molecular methods, difficulties in achieving quantification and high throughput simultaneously, difficulties in assessing mobility potential of ARGs, and difficulties in determining the specific AMR determinant genes. Advances in the next generation sequencing (NGS) technologies and related computational and bioinformatic tools are facilitating rapid identification and characterization ARGs in genomes and metagenomes from environmental samples. This chapter discusses NGS-based strategies, including amplicon-based sequencing, whole genome sequencing, bacterial population-targeted metagenome sequencing, metagenomic NGS, quantitative metagenomic sequencing, and functional/phenotypic metagenomic sequencing. Current bioinformatic tools for analyzing sequencing data for studying environmental ARGs are also discussed.
Collapse
Affiliation(s)
- Bo Li
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI, United States.
| |
Collapse
|
57
|
Huang Q, Liu Z, Guo Y, Li B, Yang Z, Liu X, Ni J, Li X, Zhang X, Zhou N, Yin H, Jiang C, Hao L. Coal-source acid mine drainage reduced the soil multidrug-dominated antibiotic resistome but increased the heavy metal(loid) resistome and energy production-related metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162330. [PMID: 36813198 DOI: 10.1016/j.scitotenv.2023.162330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
A recent global scale study found that mining-impacted environments have multi-antibiotic resistance gene (ARG)-dominated resistomes with an abundance similar to urban sewage but much higher than freshwater sediment. These findings raised concern that mining may increase the risk of ARG environmental proliferation. The current study assessed how typical multimetal(loid)-enriched coal-source acid mine drainage (AMD) contamination affects soil resistomes by comparing with background soils unaffected by AMD. Both contaminated and background soils have multidrug-dominated antibiotic resistomes attributed to the acidic environment. AMD-contaminated soils had a lower relative abundance of ARGs (47.45 ± 23.34 ×/Gb) than background soils (85.47 ± 19.71 ×/Gb) but held high-level heavy metal(loid) resistance genes (MRGs, 133.29 ± 29.36 ×/Gb) and transposase- and insertion sequence-dominated mobile genetic elements (MGEs, 188.51 ± 21.81 ×/Gb), which was 56.26 % and 412.12 % higher than background soils, respectively. Procrustes analysis showed that the microbial community and MGEs exerted more influence on driving heavy metal(loid) resistome variation than antibiotic resistome. The microbial community increased energy production-related metabolism to fulfill the increasing energy needs required by acid and heavy metal(loid) resistance. Horizontal gene transfer (HGT) events primarily exchanged energy- and information-related genes to adapt to the harsh AMD environment. These findings provide new insight into the risk of ARG proliferation in mining environments.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Zhenghua Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Yuan Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Bao Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhenni Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jianmei Ni
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Xiutong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China.
| |
Collapse
|
58
|
Yan Z, Wang D, Gao Y. Nanomaterials for the treatment of bacterial infection by photothermal/photodynamic synergism. Front Bioeng Biotechnol 2023; 11:1192960. [PMID: 37251578 PMCID: PMC10210152 DOI: 10.3389/fbioe.2023.1192960] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
In the past few decades, great progress has been made in the field of nanomaterials against bacterial infection. However, with the widespread emergence of drug-resistant bacteria, people try their best to explore and develop new antibacterial strategies to fight bacteria without obtaining or increasing drug resistance. Recently, multi-mode synergistic therapy has been considered as an effective scheme for the treatment of bacterial infections, especially the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) with controllable, non-invasive, small side effects and broad-spectrum antibacterial characteristics. It can not only improve the efficiency of antibiotics, but also do not promote antibiotic resistance. Therefore, multifunctional nanomaterials which combine the advantages of PTT and PDT are more and more used in the treatment of bacterial infections. However, there is still a lack of a comprehensive review of the synergistic effect of PTT and PDT in anti-infection. This review first focuses on the synthesis of synergistic photothermal/photodynamic nanomaterials and discusses the ways and challenges of photothermal/photodynamic synergism, as well as the future research direction of photothermal/photodynamic synergistic antibacterial nanomaterials.
Collapse
|
59
|
Ayon NJ. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023; 13:625. [PMID: 37233666 PMCID: PMC10220967 DOI: 10.3390/metabo13050625] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Due to the continued emergence of resistance and a lack of new and promising antibiotics, bacterial infection has become a major public threat. High-throughput screening (HTS) allows rapid screening of a large collection of molecules for bioactivity testing and holds promise in antibacterial drug discovery. More than 50% of the antibiotics that are currently available on the market are derived from natural products. However, with the easily discoverable antibiotics being found, finding new antibiotics from natural sources has seen limited success. Finding new natural sources for antibacterial activity testing has also proven to be challenging. In addition to exploring new sources of natural products and synthetic biology, omics technology helped to study the biosynthetic machinery of existing natural sources enabling the construction of unnatural synthesizers of bioactive molecules and the identification of molecular targets of antibacterial agents. On the other hand, newer and smarter strategies have been continuously pursued to screen synthetic molecule libraries for new antibiotics and new druggable targets. Biomimetic conditions are explored to mimic the real infection model to better study the ligand-target interaction to enable the designing of more effective antibacterial drugs. This narrative review describes various traditional and contemporaneous approaches of high-throughput screening of natural products and synthetic molecule libraries for antibacterial drug discovery. It further discusses critical factors for HTS assay design, makes a general recommendation, and discusses possible alternatives to traditional HTS of natural products and synthetic molecule libraries for antibacterial drug discovery.
Collapse
Affiliation(s)
- Navid J Ayon
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
60
|
Huang HY, Wang Q, Zhang CY, Chen ZX, Wang JT, Liao XW, Yu RJ, Xiong YS. Synthesis and biological evaluation of ruthenium complexes containing phenylseleny against Gram-positive bacterial infection by damage membrane integrity and avoid drug-resistance. J Inorg Biochem 2023; 242:112175. [PMID: 36898296 DOI: 10.1016/j.jinorgbio.2023.112175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Compounds modified with selenium atom as potential antibacterial agents have been exploited to combat the nondrug-resistant bacterial infection. In this study, we designed and synthesized four ruthenium complexes retouching of selenium-ether. Fortunately, those four ruthenium complexes shown excellent antibacterial bioactive (MIC: 1.56-6.25 μg/mL) against Staphylococcus aureus (S. aureus), and the most active complex Ru(II)-4 could kill S. aureus by targeting the membrane integrity and avoid the bacteria to evolve drug resistance. Moreover, Ru(II)-4 was found to significantly inhibit the formation of biofilms and biofilm eradicate capacity. In toxicity experiments, Ru(II)-4 exhibited poor hemolysis and low mammalian toxicity. To illustrate the antibacterial mechanism: we conducted scanning electron microscope (SEM), fluorescent staining, membrane rupture and DNA leakage assays. Those results demonstrated that Ru(II)-4 could destroy the integrity of bacterial cell membrane. Furthermore, both G. mellonella wax worms infection model and mouse skin infection model were established to evaluate the antibacterial activity of Ru(II)-4 in vivo, the results indicated that Ru(II)-4 was a potential candidate for combating S. aureus infections, and almost non-toxic to mouse tissue. Thus, all the results indicated that introducing selenium-atom into ruthenium compounds were a promising strategy for developing interesting antibacterial agents.
Collapse
Affiliation(s)
- Hai-Yan Huang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Qian Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201500, China
| | - Chun-Yan Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Zi-Xiang Chen
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jin-Tao Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xiang-Wen Liao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ru-Jian Yu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yan-Shi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
61
|
Huang Q, Huang Y, Li B, Li X, Guo Y, Jiang Z, Liu X, Yang Z, Ning Z, Xiao T, Jiang C, Hao L. Metagenomic analysis characterizes resistomes of an acidic, multimetal(loid)-enriched coal source mine drainage treatment system. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130898. [PMID: 36731323 DOI: 10.1016/j.jhazmat.2023.130898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal(loid) contaminations caused by mine activities are potential hot spots of antibiotic resistance genes (ARGs) because of heavy metal(loid)-induced co-selection of ARGs and heavy metal(loid) resistance genes (MRGs). This study used high-throughput metagenomic sequencing to analyze the resistome characteristics of a coal source acid mine drainage passive treatment system. The multidrug efflux mechanism dominated the antibiotic resistome, and a highly diverse heavy metal(loid) resistome was dominated by mercury-, iron-, and arsenic--associated resistance. Correlation analysis indicated that mobile gene elements had a greater influence on the dynamic of MRGs than ARGs. Among the metagenome-assembled genomes, six potential pathogens carrying multiple resistance genes resistant to several antibiotics and heavy metal(loid)s were recovered. Pseudomonas spp. contained the highest numbers of resistance genes, with resistance to two types of antibiotics and 12 types of heavy metal(loid)s. Thus, high contents of heavy metal(loid)s drove the co-selection of ARGs and MRGs. The occurrence of potential pathogens containing multiple resistance genes might increase the risk of ARG dissemination in the environment.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bao Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiutong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuan Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Zhenni Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Tangfu Xiao
- Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China.
| |
Collapse
|
62
|
Xiao R, Huang D, Du L, Song B, Yin L, Chen Y, Gao L, Li R, Huang H, Zeng G. Antibiotic resistance in soil-plant systems: A review of the source, dissemination, influence factors, and potential exposure risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161855. [PMID: 36708845 DOI: 10.1016/j.scitotenv.2023.161855] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
As an emerging environmental contaminant, the widespread of antibiotic resistance has caused a series of environmental issues and human health concerns. A load of antibiotic residues induced by agricultural practices have exerted selective pressure to bacterial communities in the soil-plant system, which facilitated the occurrence and dissemination of antibiotic resistance genes (ARGs) through horizontal gene transfer. As a result, the enrichment of ARGs within crops at harvest under the influence of food ingestion could lead to critical concerns of public health. In this review, the prevalence and dissemination of antibiotic resistance in the soil-plant system are highlighted. Moreover, different underlying mechanisms and detection methods for ARGs transfer between the soil environment and plant compartments are summarized and discussed. On the other hand, a wide range of influencing factors for the transfer and distribution of antibiotic resistance within the soil-plant system are also presented and discussed. In response to exposure of antibiotic residues and resistomes, corresponding hazard identification assessments have been summarized, which could provide beneficial guides of the toxicological tolerance for the general population. Finally, further research priorities for detection and management ARGs spread are also suggested.
Collapse
Affiliation(s)
- Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yashi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lan Gao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Hai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| |
Collapse
|
63
|
Ren H, Lu Z, Sun R, Wang X, Zhong J, Su T, He Q, Liao X, Liu Y, Lian X, Sun J. Functional metagenomics reveals wildlife as natural reservoirs of novel β-lactamases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161505. [PMID: 36626997 DOI: 10.1016/j.scitotenv.2023.161505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The antibiotic resistances in bacteria are believed to rapidly evolve over time in the anthropogenic environments which enriched with selection pressures. However, the knowledge regarding the development of antibiotic resistance in wildlife and their habitats is scarce. It is, therefore, of great interest and significance to unveil the yet-unknown antibiotic resistances in wildlife in accordance with One Health concept. To this end, we analyzed the samples taken from wildlife and surrounding environments using a functional metagenomics approach. By functional screening in combination with Illumina sequencing, a total of 32 candidate genes which encoding putative novel β-lactamase were identified. These putative β-lactamase were taxonomically assigned into bacteria of 23 genera from 7 phyla, where Proteobacteria, Actinobacteria and Firmicutes were dominant. The following functional assessment demonstrated that 4 novel β-lactamases, namely blaSSA, blaSSB1, blaSSB2 and blaSSD, were functionally active to confer the phenotypical resistance to bacteria by increasing MICs up to 128-fold. Further analysis indicated that the novel β-lactamases identified in the current study were able to hydrolyze a broad spectrum of β-lactams including cephalosporins, and they were genetically unique comparing with known β-lactamases. The plausible transmission of some novel β-lactamase genes was supported by our results as the same gene was detected in different samples from different sites. This study shed the light on the active role of wildlife and associated environments as natural reservoirs of novel β-lactamases, implying that the antibiotic resistances might evolve in absence of selection pressure and threaten public health once spread into clinically important pathogens.
Collapse
Affiliation(s)
- Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxiang Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ruanyang Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiran Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Su
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Qian He
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yahong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xinlei Lian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
64
|
Hilal MG, Han B, Yu Q, Feng T, Su W, Li X, Li H. Insight into the dynamics of drinking water resistome in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121185. [PMID: 36736566 DOI: 10.1016/j.envpol.2023.121185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance (AR) is a serious environmental hazard of the current age. Antibiotic resistance genes (ARGs) are the fundamental entities that spread AR in the environment. ARGs are likely to be transferred from the non-pathogenic to pathogenic microbes that might ultimately be responsible for the AR in humans and other organisms. Drinking water (DW) is the primary interaction route between ARGs and humans. Being the highest producer and consumer of antibiotics China poses a potential threat to developing superbugs and ARGs dissemination. Herein, we comprehensively seek to review the ARGs from dominant DW sources in China. Furthermore, the origin and influencing factors of the ARGs to the DW in China have been evaluated. Commonly used methods, both classical and modern, are being compiled. In addition, the risk posed and mitigation strategies of DW ARGs in China have been outlined. Overall, we believe this review would contribute to the assessment of ARGs in DW of China and their dissemination to humans and other animals and ultimately help the policymakers and scientists in the field to counteract this problem on an emergency basis.
Collapse
Affiliation(s)
- Mian Gul Hilal
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China; MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Binghua Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tianshu Feng
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
65
|
Shao M, Liu L, Liu B, Zheng H, Meng W, Liu Y, Zhang X, Ma X, Sun C, Luo X, Li F, Xing B. Hormetic Effect of Pyroligneous Acids on Conjugative Transfer of Plasmid-mediated Multi-antibiotic Resistance Genes within Bacterial Genus. ACS ENVIRONMENTAL AU 2023; 3:105-120. [PMID: 37102089 PMCID: PMC10125354 DOI: 10.1021/acsenvironau.2c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 04/28/2023]
Abstract
Spread of antibiotic resistance genes (ARGs) by conjugation poses great challenges to public health. Application of pyroligneous acids (PA) as soil amendments has been evidenced as a practical strategy to remediate pollution of ARGs in soils. However, little is known about PA effects on horizontal gene transfer (HGT) of ARGs by conjugation. This study investigated the effects of a woody waste-derived PA prepared at 450°C and its three distillation components (F1, F2, and F3) at different temperatures (98, 130, and 220°C) on conjugative transfer of plasmid RP4 within Escherichia coli. PA at relatively high amount (40-100 μL) in a 30-mL mating system inhibited conjugation by 74-85%, following an order of PA > F3 ≈ F2 ≈ F1, proving the hypothesis that PA amendments may mitigate soil ARG pollution by inhibiting HGT. The bacteriostasis caused by antibacterial components of PA, including acids, phenols, and alcohols, as well as its acidity (pH 2.81) contributed to the inhibited conjugation. However, a relatively low amount (10-20 μL) of PA in the same mating system enhanced ARG transfer by 26-47%, following an order of PA > F3 ≈ F2 > F1. The opposite effect at low amount is mainly attributed to the increased intracellular reactive oxygen species production, enhanced cell membrane permeability, increased extracellular polymeric substance contents, and reduced cell surface charge. Our findings highlight the hormesis (low-amount promotion and high-amount inhibition) of PA amendments on ARG conjugation and provide evidence for selecting an appropriate amount of PA amendment to control the dissemination of soil ARGs. Moreover, the promoted conjugation also triggers questions regarding the potential risks of soil amendments (e.g., PA) in the spread of ARGs via HGT.
Collapse
Affiliation(s)
- Mengying Shao
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Liuqingqing Liu
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bingjie Liu
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Ministry
of Ecology and Environment, South China
Institute of Environmental Sciences, Guangzhou 510535, China
| | - Hao Zheng
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572000, China
| | - Wei Meng
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yifan Liu
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xiao Zhang
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xiaohan Ma
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Cuizhu Sun
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xianxiang Luo
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572000, China
| | - Fengmin Li
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572000, China
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
66
|
Estimation, Evaluation and Characterization of Carbapenem Resistance Burden from a Tertiary Care Hospital, Pakistan. Antibiotics (Basel) 2023; 12:antibiotics12030525. [PMID: 36978392 PMCID: PMC10044297 DOI: 10.3390/antibiotics12030525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Carbapenem resistance has become major concern in healthcare settings globally; therefore, its monitoring is crucial for intervention efforts to halt resistance spread. During May 2019–April 2022, 2170 clinical strains were characterized for antimicrobial susceptibility, resistance genes, replicon and sequence types. Overall, 42.1% isolates were carbapenem-resistant, and significantly associated with Klebsiella pneumoniae (K. pneumoniae) (p = 0.008) and Proteus species (p = 0.043). Carbapenemases were detected in 82.2% of isolates, with blaNDM-1 (41.1%) associated with the ICU (p < 0.001), cardiology (p = 0.042), pediatric medicine (p = 0.013) and wound samples (p = 0.041); blaOXA-48 (32.6%) was associated with the ICU (p < 0.001), cardiology (p = 0.008), pediatric medicine (p < 0.001), general surgery (p = 0.001), general medicine (p = 0.005) and nephrology (p = 0.020); blaKPC-2 (5.5%) was associated with general surgery (p = 0.029); blaNDM-1/blaOXA-48 (11.4%) was associated with general surgery (p < 0.001), and wound (p = 0.002), urine (p = 0.003) and blood (p = 0.012) samples; blaOXA-48/blaVIM (3.1%) was associated with nephrology (p < 0.001) and urine samples (p < 0.001). Other detected carbapenemases were blaVIM (3.0%), blaIMP (2.7%), blaOXA-48/blaIMP (0.1%) and blaVIM/blaIMP (0.3%). Sequence type (ST)147 (39.7%) represented the most common sequence type identified among K. pneumoniae, along with ST11 (23.0%), ST14 (15.4%), ST258 (10.9%) and ST340 (9.6%) while ST405 comprised 34.5% of Escherichia coli (E. coli) isolates followed by ST131 (21.2%), ST101 (19.7%), ST10 (16.0%) and ST69 (7.4%). Plasmid replicon types IncFII, IncA/C, IncN, IncL/M, IncFIIA and IncFIIK were observed. This is first report describing the carbapenem-resistance burden and emergence of blaKPC-2-ST147, blaNDM-1-ST340 and blaNDM-1-ST14 in K. pneumoniae isolates and blaNDM-1-ST69 and blaNDM-1/blaOXA-48-ST69 in E. coli isolates coharboring extended-spectrum beta-lactamases (ESBLs) from Pakistan.
Collapse
|
67
|
O’Connor L, Heyderman R. The challenges of defining the human nasopharyngeal resistome. Trends Microbiol 2023:S0966-842X(23)00056-2. [DOI: 10.1016/j.tim.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 04/03/2023]
|
68
|
Ferrara F, Zovi A, Nava E, Trama U, Vitiello A. SARS-CoV-2 caused a surge in antibiotic consumption causing a silent pandemic inside the pandemic. A retrospective analysis of Italian data in the first half of 2022. ANNALES PHARMACEUTIQUES FRANÇAISES 2023:S0003-4509(23)00022-6. [PMID: 36858285 PMCID: PMC9970653 DOI: 10.1016/j.pharma.2023.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND The phenomenon of antibiotic resistance shows no sign of stopping, despite global policies to combat it that have been in place for several years. The risk of forms of pathogenic microorganisms that are increasingly resistant to common antibiotics has led health authorities around the world to pay greater attention to the phenomenon. The worrying situation, has led to further recommendations from the World Health Organization (WHO) and national recommendations in Italy through the new National Plan against Antibiotic Resistance 2022-2025 (PNCAR 2022-2025). AIM This manuscript aims to raise the awareness of all health professionals to follow what is suggested by regulatory agencies and scientific societies. METHOD We conducted a retrospective study of antibiotic pharmacoutilization in Italy, in the Campania region at the Azienda Sanitaria Locale (ASL) Napoli 3 Sud, on consumption in the first half of 2022 in a population of more than 1 million people. RESULT The results indicate that consumption, based on defined daily doses (DDDs), is above the national average. Probably the COVID-19 pandemic has influenced this growth in prescriptions. CONCLUSIONS Our study suggests an informed and appropriate use of antibiotics, so as to embark on a virtuous path in the fight against antibiotic resistance.
Collapse
Affiliation(s)
- F Ferrara
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell'amicizia street 22, 80035 Nola, Naples, Italy.
| | - A Zovi
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032 Camerino, Italy.
| | - E Nava
- Pharmaceutical Coordination Area, Asl Napoli 3 Sud, Dell'amicizia street 22, 80035 Nola, Naples, Italy.
| | - U Trama
- General Direction for Health Protection and Coordination of the Campania Regional Health System, Naples, Italy.
| | - A Vitiello
- Pharmaceutical Department, USL Umbria 1, Via Guerriero Guerra, 21, 06127 Perugia, Italy.
| |
Collapse
|
69
|
Suzuki Y, Kami D, Taya T, Sano A, Ogata T, Matoba S, Gojo S. ZLN005 improves the survival of polymicrobial sepsis by increasing the bacterial killing via inducing lysosomal acidification and biogenesis in phagocytes. Front Immunol 2023; 14:1089905. [PMID: 36820088 PMCID: PMC9938763 DOI: 10.3389/fimmu.2023.1089905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
Polymicrobial sepsis still has a high mortality rate despite the development of antimicrobial agents, elaborate strategies to protect major organs, and the investment of numerous medical resources. Mitochondrial dysfunction, which acts as the center of energy metabolism, is clearly the basis of pathogenesis. Drugs that act on PGC1α, the master regulator of mitochondrial biosynthesis, have shown useful effects in the treatment of sepsis; therefore, we investigated the efficacy of ZLN005, a PGC1α agonist, and found significant improvement in overall survival in an animal model. The mode of action of this effect was examined, and it was shown that the respiratory capacity of mitochondria was enhanced immediately after administration and that the function of TFEB, a transcriptional regulator that promotes lysosome biosynthesis and mutually enhances PGC1α, was enhanced, as was the physical contact between mitochondria and lysosomes. ZLN005 strongly supported immune defense in early sepsis by increasing lysosome volume and acidity and enhancing cargo degradation, resulting in a significant reduction in bacterial load. ZLN005 rapidly acted on two organelles, mitochondria and lysosomes, against sepsis and interactively linked the two to improve the pathogenesis. This is the first demonstration that acidification of lysosomes by a small molecule is a mechanism of action in the therapeutic strategy for sepsis, which will have a significant impact on future drug discovery.
Collapse
Affiliation(s)
- Yosuke Suzuki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Arata Sano
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Pathology and Cell Regulation, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
70
|
Pleskova SN, Lazarenko EV, Sudakova IS, Kriukov RN, Bezrukov NA. A New Method for Express Detection of Antibiotic Resistance. APPL BIOCHEM MICRO+ 2023. [DOI: 10.1134/s0003683823010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
71
|
Fuhrmann G. Drug delivery as a sustainable avenue to future therapies. J Control Release 2023; 354:746-754. [PMID: 36690037 DOI: 10.1016/j.jconrel.2023.01.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Climate change and the need for sustainable, technological developments are the greatest challenges facing humanity in the coming decades. To address these issues, in 2015 the United Nations have established 17 Sustainable Development Goals. Anthropogenic climate change will not only affect everyone personally in the coming years, it will also reinforce the need to become more sustainable within drug delivery research. In 2021, I was appointed professor for pharmaceutical biology at the Friedrich-Alexander-University Erlangen-Nürnberg. Our research is at the interface between developing biogenic therapies and understanding of bacterial infections. In this contribution to the Orations - New Horizons of the Journal of Controlled Release, I would like to underline the need for future sustainable approaches in our research area, by highlighting selected examples from the fields of infection research, natural product characterisation and extracellular vesicles. My aim is to put into perspective current issues for these research topics, but also encourage our current student-training framework to contribute to education for sustainable development. This contribution is a personal statement to increase the overall awareness for sustainability challenges in drug delivery and beyond.
Collapse
Affiliation(s)
- Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
72
|
Liu H, Ding M, Wang H, Chen Y, Liu Y, Wei L, Cui X, Han Y, Zhang B, Zou T, Zhang Y, Li H, Chen R, Liu X, Cheng Y. Silver nanoparticles modified hFGF2-linking camelina oil bodies accelerate infected wound healing. Colloids Surf B Biointerfaces 2023; 222:113089. [PMID: 36527806 DOI: 10.1016/j.colsurfb.2022.113089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/27/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Bacterial infection wounds are common in life. At present, although various wound materials have shown antibacterial activity, there is a lack of overall strategy to promote wound healing. Therefore, it is necessary to develop multifunctional wound materials. In this study, silver nanoparticles (Ag NPs) modified camelina oil bodies (OB) which surface covalently bonded human fibroblast growth factor 2 (Ag NPs-hFGF2-OB) were designed for the treatment of bacterial infection wounds. The prepared Ag NPs-hFGF2-OB not only act as an antibacterial agent to realize sterilization, but also act as a tissue repair agent that effectively promotes wound healing. Ag+ was reduced in situ to Ag NPs by ascorbic acid, and the activity of hFGF2 protein was not affected after hFGF2-OB was modified by Ag NPs, which displaying broad apectrum antibacterial ability for both S. aureus and E. coli, with an antibacterial rate of more than 70 % (the concentration of Ag NPs was 20 μg/mL, the hFGF2 protein concentration was 20 µg/mL). Ag NPs-hFGF2-OB can effectively promote the migration of NIH/3T3 cells, showing good biocompatibility. The mouse bacterial infection wound model experiments proved that the wound healing rate of Ag NPs-hFGF2-OB group (the concentration of Ag NPs was 20 μg/mL, the hFGF2 protein concentration was 20 µg/mL) was much higher than other treatment groups, especially on the 7th day after treatment, the wound healing rate reached 71.71 ± 2.38 %, while the healing rate of other treatment groups were only 34.54 ± 1.10 %, 37.08 ± 2.85 % and 47.99 ± 2.01 %. Therefore, Ag NPs-hFGF2-OB, which can inhibit bacterial growth, promotes collagen deposition, granulation tissue regeneration and angiogenesis without any significant toxicity, shows good potential for application in the repair of bacterial infection wounds.
Collapse
Affiliation(s)
- Hongxiang Liu
- College of Life Science, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Miao Ding
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Hao Wang
- College of Life Science, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yining Chen
- College of Life Science, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yang Liu
- College of Science, Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun 130022, China
| | - Liqi Wei
- College of Life Science, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xingyu Cui
- College of Life Science, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yu Han
- College of Life Science, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Biao Zhang
- College of Life Science, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Tianshu Zou
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yuan Zhang
- College of Life Science, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Haiyan Li
- College of Life Science, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Rui Chen
- College of Science, Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun 130022, China.
| | - Xin Liu
- College of Life Science, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yan Cheng
- College of Life Science, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
73
|
Huang H, Su Y, Wang C, Lei B, Song X, Wang W, Wu P, Liu X, Dong X, Zhong L. Injectable Tissue-Adhesive Hydrogel for Photothermal/Chemodynamic Synergistic Antibacterial and Wound Healing Promotion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2714-2724. [PMID: 36602415 DOI: 10.1021/acsami.2c19566] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is an exigent need for the development of hydrogel dressings with desirable injectability, good adhesive, antibacterial, and wound healing promotion properties. Herein, the multifunctional injectable hydrogels with good tissue adhesion are designed based on Ag-doped Mo2C-derived polyoxometalate (AgPOM) nanoparticles, urea, gelatin, and tea polyphenols (TPs) for antibacterial and wound healing acceleration. After being injected into the tissue, urea diffuses out under the concentration gradient, and TPs and gelatin chains recombine to trigger the in situ formation of hydrogel with excellent adhesiveness. AgPOM fixed in the hydrogel could not only react with hydrogen peroxide in the infection site to generate singlet oxygen to kill the bacteria but also convert near-infrared light into heat under 1060 nm laser irradiation to realize sterilization. In vitro studies display the high bactericidal ability of the hydrogel against drug-resistant Staphylococcus aureus and also exhibit a prominent therapeutic effect on infected wounds through synergistic photothermal/chemodynamic therapy and accelerate wound healing. Hence, the injectable hydrogel with AgPOM as the antimicrobial agent can be a novel therapeutic agent for drug-resistant bacteria-infected wounds and wound healing promotion.
Collapse
Affiliation(s)
- Han Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing211816, China
| | - Yan Su
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing211816, China
| | - Chenxi Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing211816, China
| | - Bing Lei
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng252059, China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng252059, China
| | - Pan Wu
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Pharmaceutical College Guangxi Medical University, Guangxi Medical University, Guangxi530021, China
| | - Xiyu Liu
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Pharmaceutical College Guangxi Medical University, Guangxi Medical University, Guangxi530021, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou221116, China
| | - Liping Zhong
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Pharmaceutical College Guangxi Medical University, Guangxi Medical University, Guangxi530021, China
| |
Collapse
|
74
|
Musial J, Mlynarczyk DT, Stanisz BJ. Photocatalytic degradation of sulfamethoxazole using TiO 2-based materials - Perspectives for the development of a sustainable water treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159122. [PMID: 36183772 DOI: 10.1016/j.scitotenv.2022.159122] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Heterogeneous photocatalysis using titanium dioxide-based materials is considered a promising and innovative solution to the water pollution problem. However, due to the limitations concerning the use of the developed materials and the applied photodegradation conditions, the research on photoremediation using TiO2 often stays behind the lab door. The challenge is to convert the basic research into a successful innovation, leading to the implementation of this process into wastewater treatment. For this purpose, the most active materials and optimal photodegradation conditions must be chosen. This article collects and compares the studies on photocatalytic degradation of an emerging pollutant - sulfamethoxazole, an antibacterial drug - and attempts to find the best approaches to be successfully applied on an industrial scale. Various types of TiO2-based photocatalysts are compared, including different nanoforms, doped or polymer-based composites, composites with graphene, activated carbon, dyes or natural compounds, as well as possible supporting materials for TiO2. The paper covers the impact of the irradiation source (natural sunlight, LED, mercury or xenon lamps) and water matrix on the photodegradation process, considering the ecological and economic sustainability of the process. Emphasis is put on the stability, ease of separation and reuse of the photocatalyst, power and safety of the irradiation source, identification of photodegradation intermediates and toxicity assays. The main approaches are critically discussed, main challenges and perspectives for an effective photocatalytic water treatment technology are pointed out.
Collapse
Affiliation(s)
- Joanna Musial
- Chair and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Dariusz T Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Beata J Stanisz
- Chair and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
| |
Collapse
|
75
|
Chen J, Chen H, Liu C, Huan H, Teng Y. Evaluation of FEAST for metagenomics-based source tracking of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130116. [PMID: 36209606 DOI: 10.1016/j.jhazmat.2022.130116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
A metagenomics-based technological framework has been proposed for evaluating the potential and utility of FEAST as an ARG profile-based source apportionment tool. To this end, a large panel of metagenomic data sets was analyzed, associating with eight source types of ARGs in environments. Totally, 1089 different ARGs were found in the 604 source metagenomes, and 396 ARG indicators were identified as the source-specific fingerprints to characterize each of the source types. With the source fingerprints, predictive performance of FEAST was checked using "leave-one-out" cross-validation strategy. Furthermore, artificial sink communities were simulated to evaluate the FEAST for source apportionment of ARGs. The prediction of FEAST showed high accuracy values (0.933 ± 0.046) and specificity values (0.959 ± 0.041), confirming its suitability to discriminate samples from different source types. The apportionment results reflected well the expected output of artificial communities which were generated with different ratios of source types to simulate various contamination levels. Finally, the validated FEAST was applied to track the sources of ARGs in river sediments. Results showed STP effluents were the main contributor of ARGs, with an average contribution of 76 %, followed by sludge (10 %) and aquaculture effluent (2.7 %), which were basically consistent with the actual environment in the area.
Collapse
Affiliation(s)
- Jinping Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Chang Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huan Huan
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100012, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| |
Collapse
|
76
|
Xu Y, You G, Yin J, Zhang M, Peng D, Xu J, Yang S, Hou J. Salt tolerance evolution facilitates antibiotic resistome in soil microbiota: Evidences from dissemination evaluation, hosts identification and co-occurrence exploration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120830. [PMID: 36481466 DOI: 10.1016/j.envpol.2022.120830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Salinity is considered as one of the vital factors affecting the profiles of antibiotic resistance genes (ARGs) in soils, whereby its roles in shaping the antibiotic resistome were still poorly understood. Here, metagenomic analysis was conducted to track the ARGs distributions and dissemination in soils during salt accumulation and desalinization processes. Neutral-salt accumulation for 45 and 90 days significantly increased the relative abundances of ARGs and mobile genetic elements (MGEs) carrying antibiotic resistance contigs (ARCs). The ARGs within antibiotic efflux and target protection families primarily carried by Streptomyces, Nocardioides, Rhodanobacter and Monashia were largely enriched by salinity. The ARGs subtypes of the resistance-nodulation-division (RND) family, ATP-binding cassette (ABC) family, rRNA methyltransferase and other efflux were closely associated with MGEs, contributing to the enrichment of ARGs. Moreover, the ARGs subtypes and transposons were genetically linked with the salt-tolerance mechanisms of organic osmolyte transporters and K+ uptake proteins on the same ARC, demonstrating the coselection of ARGs and halotolerant genes. Furthermore, the antibiotic resistome could recover to a normal state after the prolonged incubation by alleviating salt stress. Nevertheless, the acquisition of ARGs by opportunistic pathogens after salt treatment was increased, serving to prioritize further efforts on the health risks correlated with resistance propagation and human exposure in saline soils.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, People's Republic of China, 210098.
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, People's Republic of China, 210098
| | - Jinbao Yin
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, People's Republic of China, 210098
| | - Mairan Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, People's Republic of China, 210098
| | - Dengyun Peng
- College of Agricultural Science and Engineering, Hohai University, Nanjing, People's Republic of China, 210098
| | - Junzeng Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, People's Republic of China, 210098; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, PR China
| | - Shihong Yang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, People's Republic of China, 210098; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, PR China.
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, People's Republic of China, 210098
| |
Collapse
|
77
|
Mishra S, Gupta A, Upadhye V, Singh SC, Sinha RP, Häder DP. Therapeutic Strategies against Biofilm Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010172. [PMID: 36676121 PMCID: PMC9866932 DOI: 10.3390/life13010172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
A biofilm is an aggregation of surface-associated microbial cells that is confined in an extracellular polymeric substance (EPS) matrix. Infections caused by microbes that form biofilms are linked to a variety of animals, including insects and humans. Antibiotics and other antimicrobials can be used to remove or eradicate biofilms in order to treat infections. However, due to biofilm resistance to antibiotics and antimicrobials, clinical observations and experimental research clearly demonstrates that antibiotic and antimicrobial therapies alone are frequently insufficient to completely eradicate biofilm infections. Therefore, it becomes crucial and urgent for clinicians to properly treat biofilm infections with currently available antimicrobials and analyze the results. Numerous biofilm-fighting strategies have been developed as a result of advancements in nanoparticle synthesis with an emphasis on metal oxide np. This review focuses on several therapeutic strategies that are currently being used and also those that could be developed in the future. These strategies aim to address important structural and functional aspects of microbial biofilms as well as biofilms' mechanisms for drug resistance, including the EPS matrix, quorum sensing (QS), and dormant cell targeting. The NPs have demonstrated significant efficacy against bacterial biofilms in a variety of bacterial species. To overcome resistance, treatments such as nanotechnology, quorum sensing, and photodynamic therapy could be used.
Collapse
Affiliation(s)
- Sonal Mishra
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Amit Gupta
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vijay Upadhye
- Department of Microbiology, Parul Institute of Applied Science (PIAS), Center of Research for Development (CR4D), Parul University, Vadodara 391760, Gujarat, India
| | - Suresh C. Singh
- Pathkits Healthcare Pvt. Ltd., Gurugram 122001, Haryana, India
| | - Rajeshwar P. Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Donat-P. Häder
- Department of Botany, Emeritus from Friedrich-Alexander University, 91096 Möhrendorf, Germany
- Correspondence: ; Tel.: +49-913-148-730
| |
Collapse
|
78
|
Silva V, Araújo S, Monteiro A, Eira J, Pereira JE, Maltez L, Igrejas G, Lemsaddek TS, Poeta P. Staphylococcus aureus and MRSA in Livestock: Antimicrobial Resistance and Genetic Lineages. Microorganisms 2023; 11:microorganisms11010124. [PMID: 36677414 PMCID: PMC9865216 DOI: 10.3390/microorganisms11010124] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Animal production is associated with the frequent use of antimicrobial agents for growth promotion and for the prevention, treatment, and control of animal diseases, thus maintaining animal health and productivity. Staphylococcus aureus, in particular methicillin-resistant S. aureus (MRSA), can cause a variety of infections from superficial skin and soft tissue infections to life-threatening septicaemia. S. aureus represents a serious public health problem in hospital and community settings, as well as an economic and animal welfare problem. Livestock-associated MRSA (LA-MRSA) was first described associated with the sequence (ST) 398 that was grouped within the clonal complex (CC) 398. Initially, LA-MRSA strains were restricted to CC398, but over the years it has become clear that its diversity is much greater and that it is constantly changing, a trend increasingly associated with multidrug resistance. Therefore, in this review, we aimed to describe the main clonal lineages associated with different production animals, such as swine, cattle, rabbits, and poultry, as well as verify the multidrug resistance associated with each animal species and clonal lineage. Overall, S. aureus ST398 still remains the most common clone among livestock and was reported in rabbits, goats, cattle, pigs, and birds, often together with spa-type t011. Nevertheless, a wide diversity of clonal lineages was reported worldwide in livestock.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
| | - Sara Araújo
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Andreia Monteiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Eira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Eduardo Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís Maltez
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
| | - Teresa Semedo Lemsaddek
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
- Correspondence: (T.S.L.); (P.P.)
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence: (T.S.L.); (P.P.)
| |
Collapse
|
79
|
Sun MC, Chen YF, Liu D, Xu XL, You YC, Lu W, Shi YJ, Ren MY, Fan YB, Du YZ, Tao XH. Effective decolonization strategy for mupirocin-resistant Staphylococcus aureus by TPGS-modified mupirocin-silver complex. Mater Today Bio 2023; 18:100534. [PMID: 36686036 PMCID: PMC9850068 DOI: 10.1016/j.mtbio.2022.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
The widespread utilization of mupirocin to treat methicillin-resistant Staphylococcus aureus (MRSA)-caused infectious diseases has led to the emergence of mupirocin-resistant Staphylococcus aureus (MuRSA), posing a serious global medical threat. In order to counteract MuRSA, we develop a d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) modified mupirocin and silver complex (TPGS/Mup-Ag) to combat MuRSA. The surfactivity of TPGS endows Mup-Ag with a homogeneous and small particle size (∼16 nm), which significantly enhances bacterial internalization. Silver ions are released from the mupirocin-Ag complex (Mup-Ag) to exert a synergistic antibacterial activity with mupirocin. Results manifest that our strategy reduces the concentration of mupirocin that induces 50% bacterial death from about 1000 μmol/mL to about 16 μmol/mL. In vitro bacterial infection model suggests that TPGS/Mup-Ag can not only eliminate both intracellular and inhibit bacterial adhesion, but also living cells are not affected. Results of in vivo experiments demonstrate that TPGS/Mup-Ag can effectively inhibit the progression of skin infection and accelerate wound healing, as well as alleviate systemic inflammation in both the subcutaneous infection model and the wound infection model. Furthermore, this study may contribute to the development of therapeutic agents for antibiotic-resistant bacteria and offer ideas for silver-based bactericides.
Collapse
Affiliation(s)
- Ming-Chen Sun
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Fang Chen
- HangZhou Xiaoshan District Skin Disease Hospital, Hangzhou, 311200, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yu-Chan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Lu
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Yun-Juan Shi
- Department of Graduate School, Bengbu Medical College, Bengbu, 233030, China
| | - Ming-Yang Ren
- Department of Graduate School, Bengbu Medical College, Bengbu, 233030, China
| | - Yi-Bin Fan
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China,Corresponding author. Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.
| | - Xiao-Hua Tao
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China,Corresponding author. Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, 158 Shangtang Road, Hangzhou, 310014, China.
| |
Collapse
|
80
|
Li J, Qiu X, Ren S, Liu H, Zhao S, Tong Z, Wang Y. High performance electroactive ultrafiltration membrane for antibiotic resistance removal from wastewater effluent. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
81
|
Lv M, Zhu C, Zhu C, Yao J, Xie L, Zhang C, Huang J, Du X, Feng G. Clinical values of metagenomic next-generation sequencing in patients with severe pneumonia: a systematic review and meta-analysis. Front Cell Infect Microbiol 2023; 13:1106859. [PMID: 37091676 PMCID: PMC10117876 DOI: 10.3389/fcimb.2023.1106859] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Background Clinical values of metagenomic next-generation sequencing (mNGS) in patients with severe pneumonia remain controversial. Therefore, we conduct this meta-analysis to evaluate the diagnostic performance of mNGS for pathogen detection and its role in the prognosis of severe pneumonia. Methods We systematically searched the literature published in PubMed, Embase, Cochrane Library, Web of Science, Clinical Trials.gov, CNKI, Wanfang Data, and CBM from the inception to the 28th September 2022. Relevant trials comparing mNGS with conventional methods applied to patients with severe pneumonia were included. The primary outcomes of this study were the pathogen-positive rate, the 28-day mortality, and the 90-day mortality; secondary outcomes included the duration of mechanical ventilation, the length of hospital stay, and the length of stay in the ICU. Results Totally, 24 publications with 3220 patients met the inclusion criteria and were enrolled in this study. Compared with conventional methods (45.78%, 705/1540), mNGS (80.48%, 1233/1532) significantly increased the positive rate of pathogen detection [OR = 6.81, 95% CI (4.59, 10.11, P < 0.001]. The pooled 28-day and 90-day mortality in mNGS group were 15.08% (38/252) and 22.36% (36/161), respectively, which were significantly lower than those in conventional methods group 33.05% (117/354) [OR = 0.35, 95% CI (0.23, 0.55), P < 0.001, I2 = 0%] and 43.43%(109/251) [OR = 0.34, 95% CI (0.21, 0.54), P < 0.001]. Meanwhile, adjusted treatment based on the results of mNGS shortened the length of hospital stay [MD = -2.76, 95% CI (- 3.56, - 1.96), P < 0.001] and the length of stay in ICU [MD = -4.11, 95% CI (- 5.35, - 2.87), P < 0.001]. Conclusion The pathogen detection positive rate of mNGS was much higher than that of conventional methods. Adjusted treatment based on mNGS results can reduce the 28-day and 90-day mortality of patients with severe pneumonia, and shorten the length of hospital and ICU stay. Therefore, mNGS advised to be applied to severe pneumonia patients as early as possible in addition to conventional methods to improve the prognosis and reduce the length of hospital stay.
Collapse
Affiliation(s)
- Minjie Lv
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changjun Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenghua Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Yao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lixu Xie
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changwen Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianling Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingran Du
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Xingran Du, ; Ganzhu Feng,
| | - Ganzhu Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Xingran Du, ; Ganzhu Feng,
| |
Collapse
|
82
|
Apjok G, Számel M, Christodoulou C, Seregi V, Vásárhelyi BM, Stirling T, Eszenyi B, Sári T, Vidovics F, Nagrand E, Kovács D, Szili P, Lantos II, Méhi O, Jangir PK, Herczeg R, Gálik B, Urbán P, Gyenesei A, Draskovits G, Nyerges Á, Fekete G, Bodai L, Zsindely N, Dénes B, Yosef I, Qimron U, Papp B, Pál C, Kintses B. Characterization of antibiotic resistomes by reprogrammed bacteriophage-enabled functional metagenomics in clinical strains. Nat Microbiol 2023; 8:410-423. [PMID: 36759752 PMCID: PMC9981461 DOI: 10.1038/s41564-023-01320-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
Functional metagenomics is a powerful experimental tool to identify antibiotic resistance genes (ARGs) in the environment, but the range of suitable host bacterial species is limited. This limitation affects both the scope of the identified ARGs and the interpretation of their clinical relevance. Here we present a functional metagenomics pipeline called Reprogrammed Bacteriophage Particle Assisted Multi-species Functional Metagenomics (DEEPMINE). This approach combines and improves the use of T7 bacteriophage with exchanged tail fibres and targeted mutagenesis to expand phage host-specificity and efficiency for functional metagenomics. These modified phage particles were used to introduce large metagenomic plasmid libraries into clinically relevant bacterial pathogens. By screening for ARGs in soil and gut microbiomes and clinical genomes against 13 antibiotics, we demonstrate that this approach substantially expands the list of identified ARGs. Many ARGs have species-specific effects on resistance; they provide a high level of resistance in one bacterial species but yield very limited resistance in a related species. Finally, we identified mobile ARGs against antibiotics that are currently under clinical development or have recently been approved. Overall, DEEPMINE expands the functional metagenomics toolbox for studying microbial communities.
Collapse
Affiliation(s)
- Gábor Apjok
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Mónika Számel
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Chryso Christodoulou
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Viktória Seregi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary
| | - Bálint Márk Vásárhelyi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Tamás Stirling
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary ,grid.481814.00000 0004 0479 9817Institute of Biochemistry, Biological Research Centre, National Laboratory for Health Security, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Bálint Eszenyi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Tóbiás Sári
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Fanni Vidovics
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Erika Nagrand
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Dorina Kovács
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Petra Szili
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Ildikó Ilona Lantos
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Orsolya Méhi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Pramod K. Jangir
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary ,grid.4991.50000 0004 1936 8948Present Address: Department of Zoology, University of Oxford, Oxford, UK
| | - Róbert Herczeg
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Bence Gálik
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary ,grid.48324.390000000122482838Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Péter Urbán
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary ,grid.48324.390000000122482838Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Gábor Draskovits
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Ákos Nyerges
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Gergely Fekete
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - László Bodai
- grid.9008.10000 0001 1016 9625Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- grid.9008.10000 0001 1016 9625Department of Genetics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Béla Dénes
- grid.432859.10000 0004 4647 7293Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Ido Yosef
- grid.12136.370000 0004 1937 0546Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Udi Qimron
- grid.12136.370000 0004 1937 0546Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Balázs Papp
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.481814.00000 0004 0479 9817Institute of Biochemistry, Biological Research Centre, National Laboratory for Health Security, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Csaba Pál
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
| | - Bálint Kintses
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary. .,HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary. .,Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
83
|
Cao H, Bougouffa S, Park TJ, Lau A, Tong MK, Chow KH, Ho PL. Sharing of Antimicrobial Resistance Genes between Humans and Food Animals. mSystems 2022; 7:e0077522. [PMID: 36218363 PMCID: PMC9765467 DOI: 10.1128/msystems.00775-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 12/25/2022] Open
Abstract
The prevalence and propagation of antimicrobial resistance (AMR) are serious global public health concerns. The large and the ever-increasing use of antibiotics in livestock is also considered a great concern. The extent of the similarity of acquired antibiotic resistance genes (ARGs) between humans and food animals and the driving factors underlying AMR transfer between them are not clear, although a link between ARGs in both hosts was proposed. To address this question, with swine and chicken as examples of food animals, we analyzed over 1,000 gut metagenomes of humans and food animals from over the world. A relatively high abundance and diversity of ARGs were observed in swine compared with those in humans as a whole. Commensal bacteria, particularly species from Clostridiales, contribute the most ARGs associated with mobile genetic elements (MGEs) and were found in both humans and food animals. Further studies demonstrate that overrepresented MGEs, namely, Tn4451/Tn4453 and TnAs3, are attributed mainly to the sharing between humans and food animals. A member of large resolvase family site-specific recombinases, TnpX, is found in Tn4451/Tn4453 which facilitates the insertions of the transient circular molecule. Although the variance in the transferability of ARGs in humans is higher than that in swine, a higher average transferability was observed in swine than that in humans. In conclusion, the potential antibiotic resistance hot spots with higher transferability in food animals observed in the present study emphasize the importance of surveillance for emerging resistance threats before they spread. IMPORTANCE Antimicrobial resistance (AMR) has proven to be a global public health concern. To conquer this increasingly worrying trend, an overarching, One Health approach has been used that brings together different sectors, but the fundamental knowledge of the relationship between humans, food animals, and their environments is not mature yet or is lacking in some aspect. With swine and chicken as examples of food animals, a large global data set of over 1,000 human and food animal gut metagenomes was analyzed with a focus on acquired antibiotic resistance genes (ARGs) associated with mobile genetic elements (MGEs) to answer this question. Outputs from this work open a new avenue to further our understanding of ARG transferability in food animals. It is a necessary milestone to better equip governmental agencies to monitor and pre-empt antibiotic resistance hot spots. This work will assist and give guidance on how to decipher other links within any One Health initiatives with expected positive feedback to human health.
Collapse
Affiliation(s)
- Huiluo Cao
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Salim Bougouffa
- Computational Bioscience Research Center and Bioscience Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tae-Jin Park
- HME Healthcare Co., Ltd., Suwon-si, Gyeonggi-do, Republic of Korea
| | - Andes Lau
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Man-Ki Tong
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Kin-Hung Chow
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Pak-Leung Ho
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Hong Kong, People’s Republic of China
| |
Collapse
|
84
|
Pillay S, Calderón-Franco D, Urhan A, Abeel T. Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings. Front Microbiol 2022; 13:1066995. [PMID: 36532424 PMCID: PMC9755710 DOI: 10.3389/fmicb.2022.1066995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 08/12/2023] Open
Abstract
The success of antibiotics as a therapeutic agent has led to their ineffectiveness. The continuous use and misuse in clinical and non-clinical areas have led to the emergence and spread of antibiotic-resistant bacteria and its genetic determinants. This is a multi-dimensional problem that has now become a global health crisis. Antibiotic resistance research has primarily focused on the clinical healthcare sectors while overlooking the non-clinical sectors. The increasing antibiotic usage in the environment - including animals, plants, soil, and water - are drivers of antibiotic resistance and function as a transmission route for antibiotic resistant pathogens and is a source for resistance genes. These natural compartments are interconnected with each other and humans, allowing the spread of antibiotic resistance via horizontal gene transfer between commensal and pathogenic bacteria. Identifying and understanding genetic exchange within and between natural compartments can provide insight into the transmission, dissemination, and emergence mechanisms. The development of high-throughput DNA sequencing technologies has made antibiotic resistance research more accessible and feasible. In particular, the combination of metagenomics and powerful bioinformatic tools and platforms have facilitated the identification of microbial communities and has allowed access to genomic data by bypassing the need for isolating and culturing microorganisms. This review aimed to reflect on the different sequencing techniques, metagenomic approaches, and bioinformatics tools and pipelines with their respective advantages and limitations for antibiotic resistance research. These approaches can provide insight into resistance mechanisms, the microbial population, emerging pathogens, resistance genes, and their dissemination. This information can influence policies, develop preventative measures and alleviate the burden caused by antibiotic resistance.
Collapse
Affiliation(s)
- Stephanie Pillay
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | | | - Aysun Urhan
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
85
|
Li Y, Xiong J, Hu Y, Miao W, Huang H. Wrapping collagen-based nanoparticle with macrophage membrane for treating multidrug-resistant bacterial infection. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractNowadays, multidrug-resistant (MDR) bacterial infectious diseases has become a thorny issue in the healthcare field. Owning to its intrinsic merits, photodynamic therapy (PDT) shows tremendous strengths in fighting against MDR bacterial infections. However, most photodynamic nanoplatforms exhibit unsatisfactory targeting efficiency towards bacteria and infection site, which may compromise the bactericidal effect of PDT. Herein, we firstly reported a bacteria-targeted collagen-based nanoparticle, named Ce6/Col/MM, for treating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound. Ce6/Col/MM was fabricated by wrapping chlorin e6 (Ce6)-loaded collagen-based nanoparticles with macrophage membrane (MM), showing excellent photodynamic activity and good biocompatibility. In vitro studies demonstrated that Ce6/Col/MM could target to bacteria and then exhibit prominent antibacterial capacity against planktonic MRSA under light irradiation. Furthermore, the treatment of MRSA-infected wound in mice with Ce6/Col/MM plus light illumination resulted in potent bacterial inactivation and accelerated wound healing, accompanied by favorable histological compatibility. Collectively, Ce6/Col/MM with superior targeting ability towards bacteria, effective photodynamic antibacterial potency and minimal safety concerns, might be a powerful bactericidal nanoagent for treating infections caused by MDR bacteria.
Graphical Abstract
Collapse
|
86
|
Host-dependent resistance of Group A Streptococcus to sulfamethoxazole mediated by a horizontally-acquired reduced folate transporter. Nat Commun 2022; 13:6557. [PMID: 36450721 PMCID: PMC9712650 DOI: 10.1038/s41467-022-34243-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Described antimicrobial resistance mechanisms enable bacteria to avoid the direct effects of antibiotics and can be monitored by in vitro susceptibility testing and genetic methods. Here we describe a mechanism of sulfamethoxazole resistance that requires a host metabolite for activity. Using a combination of in vitro evolution and metabolic rescue experiments, we identify an energy-coupling factor (ECF) transporter S component gene (thfT) that enables Group A Streptococcus to acquire extracellular reduced folate compounds. ThfT likely expands the substrate specificity of an endogenous ECF transporter to acquire reduced folate compounds directly from the host, thereby bypassing the inhibition of folate biosynthesis by sulfamethoxazole. As such, ThfT is a functional equivalent of eukaryotic folate uptake pathways that confers very high levels of resistance to sulfamethoxazole, yet remains undetectable when Group A Streptococcus is grown in the absence of reduced folates. Our study highlights the need to understand how antibiotic susceptibility of pathogens might function during infections to identify additional mechanisms of resistance and reduce ineffective antibiotic use and treatment failures, which in turn further contribute to the spread of antimicrobial resistance genes amongst bacterial pathogens.
Collapse
|
87
|
The Power of Biocatalysts for Highly Selective and Efficient Phosphorylation Reactions. Catalysts 2022. [DOI: 10.3390/catal12111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reactions involving the transfer of phosphorus-containing groups are of key importance for maintaining life, from biological cells, tissues and organs to plants, animals, humans, ecosystems and the whole planet earth. The sustainable utilization of the nonrenewable element phosphorus is of key importance for a balanced phosphorus cycle. Significant advances have been achieved in highly selective and efficient biocatalytic phosphorylation reactions, fundamental and applied aspects of phosphorylation biocatalysts, novel phosphorylation biocatalysts, discovery methodologies and tools, analytical and synthetic applications, useful phosphoryl donors and systems for their regeneration, reaction engineering, product recovery and purification. Biocatalytic phosphorylation reactions with complete conversion therefore provide an excellent reaction platform for valuable analytical and synthetic applications.
Collapse
|
88
|
Yang R, Wei Y, Zhao M, Shi M, Zhao Y, Sun P. PBA functionalized single-atom Fe for efficient therapy of multidrug-resistant bacterial infections. Colloids Surf B Biointerfaces 2022; 219:112811. [PMID: 36067683 DOI: 10.1016/j.colsurfb.2022.112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/31/2022]
Abstract
The abuse of antibiotics has led to the emergence of multidrug-resistant bacterial strains worldwide, which greatly threatens human health. In the present work, we developed single-atom catalysts (SACs) with atomically dispersed Fe as catalytic sites (Fe-SACs) to combat multidrug-resistant bacteria by elevating cellular reactive oxygen species (ROS). Our intensive studies confirmed that Fe-SACs were successfully prepared and exhibited excellent catalase (CAT)-, oxidase (OXD)-, and peroxidase (POD)-like activities. To enhance water dispersibility, biosafety and the interactions between the nanodrugs and gram-positive bacteria, phenylboronic acid group-functionalized carboxylated chitosan (CCS-PBA) was coated on the surface of Fe-SACs to yield Fe-SACs@CCS-PBA for in vitro and in vivo studies. The synergistic catalytic activity and photothermal activity of Fe-SACs@CCS-PBA effectively overcame multidrug-resistant bacterial strains (MRSA) in vitro and significantly accelerated wound healing in vivo, suggesting the great potential of SACs to overcome infectious disease caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Ruigeng Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yueru Wei
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mengyang Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mengxiao Shi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Pengchao Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
89
|
Magaziner SJ, Salmond GPC. A novel T4- and λ-based receptor binding protein family for bacteriophage therapy host range engineering. Front Microbiol 2022; 13:1010330. [PMID: 36386655 PMCID: PMC9659904 DOI: 10.3389/fmicb.2022.1010330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Widespread multidrug antimicrobial resistance in emerging pathogens has led to a renewed interest in phage therapy as an alternative or supplement to traditional small molecule drugs. The primary limiting factors of phage therapy deployment rest in the narrow host range specificity of phage as well as a poor understanding of many phages’ unintended downstream effects on host physiology and microbiota as well as on adverse pathogen evolution. Consequently, this has made assembling well-defined and safe “phage-cocktails” of solely naturally occurring phages labor- and time-intensive. To increase the speed, efficacy, and safety of therapeutic deployment, there is exceptional interest in modulating the host ranges of well-characterized lytic phages (e.g., T4 and T7) by using synthetic strategies to the swap phage tail components, the receptor binding proteins (RBPs) key for host specificity. Here we identify the RBP of the Citrobacter rodentium temperate phage ΦNP as ORF6. Through bioinformatic and phylogenetic assays, we demonstrate this RBP to be closely related to the known RBPs of T4 and λ. Further investigation reveals a novel, greater than 200 members RBP family with phages targeting several notable human pathogens, including Klebsiella pneumoniae, Escherichia coli O157:H7, Salmonella spp., and Shigella spp. With well characterized lytic members, this RBP family represents an ideal candidate for use in synthetic strategies for expanding therapeutic phage host ranges.
Collapse
|
90
|
Takahashi H, Sovadinova I, Yasuhara K, Vemparala S, Caputo GA, Kuroda K. Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1866. [PMID: 36300561 DOI: 10.1002/wnan.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Hiroshima Japan
| | - Iva Sovadinova
- RECETOX, Faculty of Science Masaryk University Brno Czech Republic
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Nara Japan
- Center for Digital Green‐Innovation Nara Institute of Science and Technology Nara Japan
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences CIT Campus Chennai India
- Homi Bhabha National Institute Training School Complex Mumbai India
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
91
|
Pan X, Zhou Z, Liu B, Wu Z. A novel therapeutic concern: Antibiotic resistance genes in common chronic diseases. Front Microbiol 2022; 13:1037389. [DOI: 10.3389/fmicb.2022.1037389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Infections caused by multidrug-resistant bacteria carrying antibiotic resistance genes pose a severe threat to global public health and human health. In clinical practice, it has been found that human gut microbiota act as a “reservoir” of antibiotic resistance genes (ARGs) since gut microbiota contain a wide variety of ARGs, and that the structure of the gut microbiome is influenced by the profile of the drug resistance genes present. In addition, ARGs can spread within and between species of the gut microbiome in multiple ways. To better understand gut microbiota ARGs and their effects on patients with chronic diseases, this article reviews the generation of ARGs, common vectors that transmit ARGs, the characteristics of gut microbiota ARGs in common chronic diseases, their impact on prognosis, the current state of treatment for ARGs, and what should be addressed in future research.
Collapse
|
92
|
Yang L, Chen S, Wei H, Luo Y, Cong F, Li W, Hong L, Su J. Low-Temperature Photothermal Therapy Based on Borneol-Containing Polymer-Modified MXene Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45178-45188. [PMID: 36178205 DOI: 10.1021/acsami.2c12839] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Noninvasive photothermal therapy (PTT) is an emerging strategy for eliminating multidrug-resistant (MDR) bacteria that achieve sterilization by generating temperatures above 50 °C; however, such a high temperature also causes collateral damage to healthy tissues. In this study, we developed a low-temperature PTT based on borneol-containing polymer-modified MXene nanosheets (BPM) with bacteria-targeting capabilities. BPM was fabricated through the electrostatic coassembly of negatively charged two-dimensional MXene nanosheets (2DM) and positively charged quaternized α-(+)-borneol-poly(N,N-dimethyl ethyl methacrylate) (BPQ) polymers. Integrating BPQ with 2DM improved the stability of 2DM in physiological environments and enabled the bacterial membrane to be targeted due to the presence of a borneol group and the partially positive charge of BPQ. With the aid of near-infrared irradiation, BPM was able to effectively eliminate methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) through targeted photothermal hyperthermia. More importantly, BPM effectively eradicated more than 99.999% (>5 orders of magnitude) of MRSA by localized heating at a temperature that is safe for the human body (≤40 °C). Together, these findings suggest that BPM has good biocompatibility and that membrane-targeting low-temperature PTT could have great therapeutic potential against MDR infections.
Collapse
Affiliation(s)
- Liu Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Siyu Chen
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, Guangdong, China
| | - Hongxin Wei
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Yinzhu Luo
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, Guangdong, China
| | - Feng Cong
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, Guangdong, China
| | - Wende Li
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, Guangdong, China
| | - Liangzhi Hong
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- China-Singapore International Joint Research Institute, Guangzhou 510700, China
- Guangdong Huaqingyuan Biotechnology Co., Ltd., Meizhou 514600, China
| |
Collapse
|
93
|
Irfan M, Almotiri A, AlZeyadi ZA. Antimicrobial Resistance and Its Drivers-A Review. Antibiotics (Basel) 2022; 11:1362. [PMID: 36290020 PMCID: PMC9598832 DOI: 10.3390/antibiotics11101362] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) is a critical issue in health care in terms of mortality, quality of services, and financial damage. In the battle against AMR, it is crucial to recognize the impacts of all four domains, namely, mankind, livestock, agriculture, and the ecosystem. Many sociocultural and financial practices that are widespread in the world have made resistance management extremely complicated. Several pathways, including hospital effluent, agricultural waste, and wastewater treatment facilities, have been identified as potential routes for the spread of resistant bacteria and their resistance genes in soil and surrounding ecosystems. The overuse of uncontrolled antibiotics and improper treatment and recycled wastewater are among the contributors to AMR. Health-care organizations have begun to address AMR, although they are currently in the early stages. In this review, we provide a brief overview of AMR development processes, the worldwide burden and drivers of AMR, current knowledge gaps, monitoring methodologies, and global mitigation measures in the development and spread of AMR in the environment.
Collapse
Affiliation(s)
- Mohammad Irfan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Ad Dawadmi 17464, Saudi Arabia
| | | | | |
Collapse
|
94
|
Active antibiotic resistome in soils unraveled by single-cell isotope probing and targeted metagenomics. Proc Natl Acad Sci U S A 2022; 119:e2201473119. [PMID: 36161886 DOI: 10.1073/pnas.2201473119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial resistance (AMR) in soils represents a serious risk to human health through the food chain and human-nature contact. However, the active antibiotic-resistant bacteria (ARB) residing in soils that primarily drive AMR dissemination are poorly explored. Here, single-cell Raman-D2O coupled with targeted metagenomics is developed as a culture-independent approach to phenotypically and genotypically profiling active ARB against clinical antibiotics in a wide range of soils. This method quantifies the prevalence (contamination degree) and activity (spread potential) of soil ARB and reveals a clear elevation with increasing anthropogenic activities such as farming and the creation of pollution, thereby constituting a factor that is critical for the assessment of AMR risks. Further targeted sorting and metagenomic sequencing of the most active soil ARB uncover several uncultured genera and a pathogenic strain. Furthermore, the underlying resistance genes, virulence factor genes, and associated mobile genetic elements (including plasmids, insertion sequences, and prophages) are fully deciphered at the single-cell level. This study advances our understanding of the soil active AMR repertoire by linking the resistant phenome to the genome. It will aid in the risk assessment of environmental AMR and guide the combat under the One Health framework.
Collapse
|
95
|
Nausch B, Bittner CB, Höller M, Abramov-Sommariva D, Hiergeist A, Gessner A. Contribution of Symptomatic, Herbal Treatment Options to Antibiotic Stewardship and Microbiotic Health. Antibiotics (Basel) 2022; 11:1331. [PMID: 36289988 PMCID: PMC9598931 DOI: 10.3390/antibiotics11101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 12/03/2022] Open
Abstract
Epithelial surfaces in humans are home to symbiotic microbes (i.e., microbiota) that influence the defensive function against pathogens, depending on the health of the microbiota. Healthy microbiota contribute to the well-being of their host, in general (e.g., via the gut-brain axis), and their respective anatomical site, in particular (e.g., oral, urogenital, skin, or respiratory microbiota). Despite efforts towards a more responsible use of antibiotics, they are often prescribed for uncomplicated, self-limiting infections and can have a substantial negative impact on the gut microbiota. Treatment alternatives, such as non-steroidal anti-inflammatory drugs, may also influence the microbiota; thus, they can have lasting adverse effects. Herbal drugs offer a generally safe treatment option for uncomplicated infections of the urinary or respiratory tract. Additionally, their microbiota preserving properties allow for a more appropriate therapy of uncomplicated infections, without contributing to an increase in antibiotic resistance or disturbing the gut microbiota. Here, herbal treatments may be a more appropriate therapy, with a generally favorable safety profile.
Collapse
Affiliation(s)
- Bernhard Nausch
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Claudia B. Bittner
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Martina Höller
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Dimitri Abramov-Sommariva
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
96
|
Shivalkar S, Arshad F, Sahoo AK, Sk MP. Visible Light-Mediated Photoactivated Sulfur Quantum Dots as Heightened Antibacterial Agents. ACS OMEGA 2022; 7:33358-33364. [PMID: 36157767 PMCID: PMC9494441 DOI: 10.1021/acsomega.2c03968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
The need for antimicrobial or antibacterial fabric has increased exponentially in recent past years, especially after the outbreak of the SARS-CoV-2 pandemic. Several studies have been conducted, and the primary focus is the development of simple, automated, performance efficient and cost-efficient fabric for disposable and frequent-use items such as personal protective materials. In this regard, we have explored the light-driven antibacterial activity of water-soluble Sdots for the first time. Sdots are a new class of non-metallic quantum dots of the nanosulfur family having a polymeric sulfur core. These Sdots exhibited excellent antibacterial activity by generating reactive oxygen species under sunlight or visible light. Under 6 h of sunlight irradiation, it was observed that >90% of the bacterial growth was inhibited in the presence of Sdots. Furthermore, low toxic Sdots were employed to develop antibacterial fabric for efficiently cleaning the bacterial infection. The prominent zone of inhibition of up to 9 mm was observed post 12 h incubation of Sdots treated fabric with E. coli in the presence of visible light. Furthermore, the SEM study confirmed the bactericidal effect of these Sdots-treated fabrics. Moreover, this study might help explore the photocatalytic disinfection application of Sdots in diverse locations of interest, Sdots-based photodynamic antimicrobial chemotherapy application, and provide an opportunity to develop Sdots as a visible light photocatalyst for organic transformations and other promising applications.
Collapse
Affiliation(s)
- Saurabh Shivalkar
- Department
of Applied Sciences, Indian Institute of
Information Technology Allahabad, Jhalwa, Prayagraj 211012, Uttar Pradesh, India
| | - Farwa Arshad
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh , India
| | - Amaresh Kumar Sahoo
- Department
of Applied Sciences, Indian Institute of
Information Technology Allahabad, Jhalwa, Prayagraj 211012, Uttar Pradesh, India
| | - Md Palashuddin Sk
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh , India
| |
Collapse
|
97
|
Gude F, Molloy EM, Horch T, Dell M, Dunbar KL, Krabbe J, Groll M, Hertweck C. A Specialized Polythioamide-Binding Protein Confers Antibiotic Self-Resistance in Anaerobic Bacteria. Angew Chem Int Ed Engl 2022; 61:e202206168. [PMID: 35852818 PMCID: PMC9545259 DOI: 10.1002/anie.202206168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/04/2022]
Abstract
Understanding antibiotic resistance mechanisms is central to the development of anti-infective therapies and genomics-based drug discovery. Yet, many knowledge gaps remain regarding the resistance strategies employed against novel types of antibiotics from less-explored producers such as anaerobic bacteria, among them the Clostridia. Through the use of genome editing and functional assays, we found that CtaZ confers self-resistance against the copper chelator and gyrase inhibitor closthioamide (CTA) in Ruminiclostridium cellulolyticum. Bioinformatics, biochemical analyses, and X-ray crystallography revealed CtaZ as a founding member of a new group of GyrI-like proteins. CtaZ is unique in binding a polythioamide scaffold in a ligand-optimized hydrophobic pocket, thereby confining CTA. By genome mining using CtaZ as a handle, we discovered previously overlooked homologs encoded by diverse members of the phylum Firmicutes, including many pathogens. In addition to characterizing both a new role for a GyrI-like domain in self-resistance and unprecedented thioamide binding, this work aids in uncovering related drug-resistance mechanisms.
Collapse
Affiliation(s)
- Finn Gude
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Evelyn M Molloy
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Therese Horch
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Maria Dell
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Kyle L Dunbar
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Jana Krabbe
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Michael Groll
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85747, Garching, Germany
| | - Christian Hertweck
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
98
|
Cui G, Liu Z, Xu W, Gao Y, Yang S, Grossart HP, Li M, Luo Z. Metagenomic exploration of antibiotic resistance genes and their hosts in aquaculture waters of the semi-closed Dongshan Bay (China). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155784. [PMID: 35537512 DOI: 10.1016/j.scitotenv.2022.155784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
In marine environments, increasing occurrence and numbers of microbial Antibiotic Resistance Gene (ARG) subtypes, especially of new beta-lactamases, have received lots of attention in recent years. Updated databases with novel developed tools provide new opportunities to obtain more comprehensive ARG profiles as well as ARG-carrying hosts. Yet, ARGs in human-associated marine aquaculture environments, e.g. in China, remains largely unknown. Using metagenomic data, we revealed high numbers of Multi-drug Resistance, beta-lactamase and aminoglycoside genes throughout the year. Thereby, Alpha- and Gamma-proteobacteria were assigned to the majority of beta-lactamase-carrying hosts. From Metagenome-assembled genomes, three blaF-like beta-lactamases (91.7-94.7% identity with beta-lactamase from Mycobacterium fortuitum (blaF)) were exclusively observed in an unclassified Mycobacterium genus. Notably, other new beta-lactamases, VMB-1-like (n = 3) (58.5-67.4% identity to Vibrio metallo-beta-lactamase 1 (VMB-1)), were found in Gammaproteobacteria. Additionally, 175 Multi-drug Resistant Organisms possessed at least 3 ARG subtypes, and seven of the potentially pathogenic genera (n = 17) were assigned to Gammaproteobacteria. These results, together with high-risk ARGs (e.g. tetM, dfrA14 and dfrA17), provide hosts and new beta-lactamases of ARGs in Chinese coastal aquaculture.
Collapse
Affiliation(s)
- Guojie Cui
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zongbao Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yuanhao Gao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shuai Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany; Institute of Biochemistry and Biology, Postdam University, Potsdam 14469, Germany
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
99
|
Guitor AK, Yousuf EI, Raphenya AR, Hutton EK, Morrison KM, McArthur AG, Wright GD, Stearns JC. Capturing the antibiotic resistome of preterm infants reveals new benefits of probiotic supplementation. MICROBIOME 2022; 10:136. [PMID: 36008821 PMCID: PMC9414150 DOI: 10.1186/s40168-022-01327-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Probiotic use in preterm infants can mitigate the impact of antibiotic exposure and reduce rates of certain illnesses; however, the benefit on the gut resistome, the collection of antibiotic resistance genes, requires further investigation. We hypothesized that probiotic supplementation of early preterm infants (born < 32-week gestation) while in hospital reduces the prevalence of antibiotic resistance genes associated with pathogenic bacteria in the gut. We used a targeted capture approach to compare the resistome from stool samples collected at the term corrected age of 40 weeks for two groups of preterm infants (those that routinely received a multi-strain probiotic during hospitalization and those that did not) with samples from full-term infants at 10 days of age to identify if preterm birth or probiotic supplementation impacted the resistome. We also compared the two groups of preterm infants up to 5 months of age to identify persistent antibiotic resistance genes. RESULTS At the term corrected age, or 10 days of age for the full-term infants, we found over 80 antibiotic resistance genes in the preterm infants that did not receive probiotics that were not identified in either the full-term or probiotic-supplemented preterm infants. More genes associated with antibiotic inactivation mechanisms were identified in preterm infants unexposed to probiotics at this collection time-point compared to the other infants. We further linked these genes to mobile genetic elements and Enterobacteriaceae, which were also abundant in their gut microbiomes. Various genes associated with aminoglycoside and beta-lactam resistance, commonly found in pathogenic bacteria, were retained for up to 5 months in the preterm infants that did not receive probiotics. CONCLUSIONS This pilot survey of preterm infants shows that probiotics administered after preterm birth during hospitalization reduced the diversity and prevented persistence of antibiotic resistance genes in the gut microbiome. The benefits of probiotic use on the microbiome and the resistome should be further explored in larger groups of infants. Due to its high sensitivity and lower sequencing cost, our targeted capture approach can facilitate these surveys to further address the implications of resistance genes persisting into infancy without the need for large-scale metagenomic sequencing. Video Abstract.
Collapse
Affiliation(s)
- Allison K Guitor
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Efrah I Yousuf
- Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Amogelang R Raphenya
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Eileen K Hutton
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Canada
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada
| | - Katherine M Morrison
- Department of Pediatrics, McMaster University, Hamilton, Canada
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Jennifer C Stearns
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada.
- Department of Medicine, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
| |
Collapse
|
100
|
Aljeldah MM. Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics (Basel) 2022; 11:antibiotics11081082. [PMID: 36009948 PMCID: PMC9405321 DOI: 10.3390/antibiotics11081082] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance (AMR) is a challenge to human wellbeing the world over and is one of the more serious public health concerns. AMR has the potential to emerge as a serious healthcare threat if left unchecked, and could put into motion another pandemic. This establishes the need for the establishment of global health solutions around AMR, taking into account microdata from different parts of the world. The positive influences in this regard could be establishing conducive social norms, charting individual and group behavior practices that favor global human health, and lastly, increasing collective awareness around the need for such action. Apart from being an emerging threat in the clinical space, AMR also increases treatment complexity, posing a real challenge to the existing guidelines around the management of antibiotic resistance. The attribute of resistance development has been linked to many genetic elements, some of which have complex transmission pathways between microbes. Beyond this, new mechanisms underlying the development of AMR are being discovered, making this field an important aspect of medical microbiology. Apart from the genetic aspects of AMR, other practices, including misdiagnosis, exposure to broad-spectrum antibiotics, and lack of rapid diagnosis, add to the creation of resistance. However, upgrades and innovations in DNA sequencing technologies with bioinformatics have revolutionized the diagnostic industry, aiding the real-time detection of causes of AMR and its elements, which are important to delineating control and prevention approaches to fight the threat.
Collapse
Affiliation(s)
- Mohammed M Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafar al-Batin 31991, Saudi Arabia
| |
Collapse
|