51
|
Rapid and Lasting Effects of Activating BDNF-Expressing PVH Neurons on Energy Balance. eNeuro 2022; 9:ENEURO.0009-22.2022. [PMID: 35338053 PMCID: PMC8994543 DOI: 10.1523/eneuro.0009-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), are implicit in causing obesity. Mutations that reduce BDNF and TrkB expression are associated with obesity in humans and mice. Recently, it was reported that Bdnf gene deletion in the neurons of the paraventricular hypothalamus (PVH) caused positive energy balance and severe obesity in the form of hyperphagia, impaired adaptive thermogenesis, and decreased energy expenditure. Thus, we hypothesize that activation of these neurons will have the opposite effect and provide an opportunity for long-lasting obesity treatment. To specifically activate BDNF-expressing PVH (PVHBDNF) neurons, we injected Cre-dependent adeno-associated virus (AAV) expressing the excitatory DREADD hM3Dq bilaterally into the PVH of Bdnf2A-Cre/+ knock-in mice and then administered clozapine-N-oxide (CNO). Using this technique, we demonstrated that acute activation of these neurons rapidly decreased normal nocturnal feeding and fasting-induced feeding in male and female mice. At thermoneutral temperatures, acute activation also rapidly increased adaptive thermogenesis, increased core body temperature, increased locomotion, increased energy expenditure, and decreased respiratory exchange ratio (RER) in male and female mice. These observations indicate that acute stimulation of PVHBDNF neurons promotes negative energy balance and weight loss. However, the rapid decrease in RER after activation of PVHBDNF neurons was followed by a delayed and prolonged increase in RER that remained elevated for 3 d in female mice. Thus, although acute activation of PVHBDNF neurons promotes negative energy balance in the short term, long-term effects of activation include sexually dimorphic overcompensatory mechanisms that may promote positive energy balance in female mice.
Collapse
|
52
|
Goit RK, Taylor AW, Yin Lo AC. The central melanocortin system as a treatment target for obesity and diabetes: A brief overview. Eur J Pharmacol 2022; 924:174956. [DOI: 10.1016/j.ejphar.2022.174956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
53
|
Battista MR, Grigoletto A, Tedeschini T, Cellucci A, Colaceci F, Laufer R, Pasut G, Di Marco A. Efficacy of PEGylated ciliary neurotrophic factor superagonist variant in diet-induced obesity mice. PLoS One 2022; 17:e0265749. [PMID: 35316287 PMCID: PMC8939829 DOI: 10.1371/journal.pone.0265749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a neurotrophic cytokine able to induce appetite reduction, weight loss and antidiabetic effects. However, its susceptibility to neutralizing anti-CNTF antibodies in patients hampered its use for treatment of human obesity and diabetes. In addition, CNTF has a very short plasma half-life, which limits its use as a therapeutic agent. Solutions, directed to prolong its in vivo effects, vary from the implantation of encapsulated secreting cells to identification of more active variants or chemical modification of the protein itself. PEGylation is a widely used modification for shielding proteins from circulating antibodies and for increasing their plasma half-life. Here, we have selected DH-CNTF, a CNTF variant which has a 40-fold higher affinity for the CNTF receptor α accompanied by an increased activity in cellular assays. The PEGylated DH-CNTF retained the biological activity of native protein in vitro and showed a significant improvement of pharmacokinetic parameters. In an acute model of glucose tolerance, the PEG-DH-CNTF was able to reduce the glycemia in diet-induced obese animals, with a performance equaled by a 10-fold higher dose of DH-CNTF. In addition, the PEGylated DH-CNTF analog demonstrated a more potent weight loss effect than the unmodified protein, opening to the use of CNTF as weight reducing agent with treatment regimens that can better meet patient compliance thanks to reduced dosing schedules.
Collapse
Affiliation(s)
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Tommaso Tedeschini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | | | | | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- * E-mail: (ADM); (GP)
| | | |
Collapse
|
54
|
Rossetti C, Cherix A, Guiraud LF, Cardinaux JR. New Insights Into the Pivotal Role of CREB-Regulated Transcription Coactivator 1 in Depression and Comorbid Obesity. Front Mol Neurosci 2022; 15:810641. [PMID: 35242012 PMCID: PMC8886117 DOI: 10.3389/fnmol.2022.810641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Depression and obesity are major public health concerns, and there is mounting evidence that they share etiopathophysiological mechanisms. The neurobiological pathways involved in both mood and energy balance regulation are complex, multifactorial and still incompletely understood. As a coactivator of the pleiotropic transcription factor cAMP response element-binding protein (CREB), CREB-regulated transcription coactivator 1 (CRTC1) has recently emerged as a novel regulator of neuronal plasticity and brain functions, while CRTC1 dysfunction has been associated with neurodegenerative and psychiatric diseases. This review focuses on recent evidence emphasizing the critical role of CRTC1 in the neurobiology of depression and comorbid obesity. We discuss the role of CRTC1 downregulation in mediating chronic stress-induced depressive-like behaviors, and antidepressant response in the light of the previously characterized Crtc1 knockout mouse model of depression. The putative role of CRTC1 in the alteration of brain energy homeostasis observed in depression is also discussed. Finally, we highlight rodent and human studies supporting the critical involvement of CRTC1 in depression-associated obesity.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Antoine Cherix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laetitia F. Guiraud
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
55
|
Abstract
The prevalence of obesity has tripled over the past four decades, imposing an enormous burden on people's health. Polygenic (or common) obesity and rare, severe, early-onset monogenic obesity are often polarized as distinct diseases. However, gene discovery studies for both forms of obesity show that they have shared genetic and biological underpinnings, pointing to a key role for the brain in the control of body weight. Genome-wide association studies (GWAS) with increasing sample sizes and advances in sequencing technology are the main drivers behind a recent flurry of new discoveries. However, it is the post-GWAS, cross-disciplinary collaborations, which combine new omics technologies and analytical approaches, that have started to facilitate translation of genetic loci into meaningful biology and new avenues for treatment.
Collapse
Affiliation(s)
- Ruth J. F. Loos
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark ,grid.59734.3c0000 0001 0670 2351Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Giles S. H. Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
56
|
Proteome Analysis of the Hypothalamic Arcuate Nucleus in Chronic High-Fat Diet-Induced Obesity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3501770. [PMID: 34840970 PMCID: PMC8617565 DOI: 10.1155/2021/3501770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022]
Abstract
The hypothalamus plays a central role in the integrated regulation of feeding and energy homeostasis. The hypothalamic arcuate nucleus (ARC) contains a population of neurons that express orexigenic and anorexigenic factors and is thought to control feeding behavior via several neuronal circuits. In this study, a comparative proteomic analysis of low-fat control diet- (LFD-) and high-fat diet- (HFD-) induced hypothalamic ARC was performed to identify differentially expressed proteins (DEPs) related to changes in body weight. In the ARC in the hypothalamus, 6621 proteins (FDR < 0.01) were detected, and 178 proteins were categorized as DEPs (89 upregulated and 89 downregulated in the HFD group). Among the Gene Ontology molecular function terms associated with the DEPs, protein binding was the most significant. Fibroblast growth factor receptor substrate 2 (Frs2) and SHC adaptor protein 3 (Shc3) were related to protein binding and involved in the neurotrophin signaling pathway according to Kyoto Encyclopedia of Genes and Genomes analysis. Furthermore, high-precision quantitative proteomic analysis revealed that the protein profile of the ARC in mice with HFD-induced obesity differed from that in LFD mice, thereby offering insight into the molecular basis of feeding regulation and suggesting Frs2 and Shc3 as novel treatment targets for central anorexigenic signal induction.
Collapse
|
57
|
Di Rosa MC, Zimbone S, Saab MW, Tomasello MF. The Pleiotropic Potential of BDNF beyond Neurons: Implication for a Healthy Mind in a Healthy Body. Life (Basel) 2021; 11:life11111256. [PMID: 34833132 PMCID: PMC8625665 DOI: 10.3390/life11111256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) represents one of the most widely studied neurotrophins because of the many mechanisms in which it is involved. Among these, a growing body of evidence indicates BDNF as a pleiotropic signaling molecule and unveils non-negligible implications in the regulation of energy balance. BDNF and its receptor are extensively expressed in the hypothalamus, regions where peripheral signals, associated with feeding control and metabolism activation, and are integrated to elaborate anorexigenic and orexigenic effects. Thus, BDNF coordinates adaptive responses to fluctuations in energy intake and expenditure, connecting the central nervous system with peripheral tissues, including muscle, liver, and the adipose tissue in a complex operational network. This review discusses the latest literature dealing with the involvement of BDNF in the maintenance of energy balance. We have focused on the physiological and molecular mechanisms by which BDNF: (I) controls the mitochondrial function and dynamics; (II) influences thermogenesis and tissue differentiation; (III) mediates the effects of exercise on cognitive functions; and (IV) modulates insulin sensitivity and glucose transport at the cellular level. Deepening the understanding of the mechanisms exploited to maintain energy homeostasis will lay the groundwork for the development of novel therapeutical approaches to help people to maintain a healthy mind in a healthy body.
Collapse
Affiliation(s)
- Maria Carmela Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Stefania Zimbone
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
| | | |
Collapse
|
58
|
Subramanian G, Duclos B, Johnson PD, Williams T, Ross JT, Bowen SJ, Zhu Y, White JA, Hedke C, Huczek D, Collard W, Javens C, Vairagoundar R, Respondek T, Zachary T, Maddux T, Cox MR, Kamerling S, Gonzales AJ. In Pursuit of an Allosteric Human Tropomyosin Kinase A ( hTrkA) Inhibitor for Chronic Pain. ACS Med Chem Lett 2021; 12:1847-1852. [PMID: 34795875 DOI: 10.1021/acsmedchemlett.1c00483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Human β-nerve growth factor (β-NGF) and its associated receptor, human tropomyosin receptor kinase A (hTrkA), have been demonstrated to be key factors in the perception of pain. However, efficacious small molecule therapies targeting the intracellularly located hTrkA kinase have not been explored thoroughly for pain management. Herein, we report the pharmacological properties of a selective hTrkA allosteric inhibitor, 1. 1 was shown to be active against the full length hTrkA, showing preferential binding for the inactive kinase, and was confirmed through the X-ray of hTrkA···1 bound complex. 1 was also found to inhibit β-NGF induced neurite outgrowth in rat PC12 cells. Daily oral administration of 1 improved the joint compression threshold of rats injected intra-articularly with monoiodoacetate over a 14-day period. The efficacy of 1 in a relevant chronic pain model of osteoarthritis coupled with in vitro confirmation of target mediation makes allosteric hTrkA inhibitors potential candidates for modulating pain.
Collapse
Affiliation(s)
- Govindan Subramanian
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Brian Duclos
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Paul D. Johnson
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Tracey Williams
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Jason T. Ross
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Scott J. Bowen
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Yaqi Zhu
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Julie A. White
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Carolyn Hedke
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Dennis Huczek
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Wendy Collard
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Christopher Javens
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Rajendran Vairagoundar
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Tomasz Respondek
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Theresa Zachary
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Todd Maddux
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Mark R. Cox
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Steven Kamerling
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Andrea J. Gonzales
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| |
Collapse
|
59
|
Borsdorf B, Dahmen B, Buehren K, Dempfle A, Egberts K, Ehrlich S, Fleischhaker C, Konrad K, Schwarte R, Timmesfeld N, Wewetzer C, Biemann R, Scharke W, Herpertz-Dahlmann B, Seitz J. BDNF levels in adolescent patients with anorexia nervosa increase continuously to supranormal levels 2.5 years after first hospitalization. J Psychiatry Neurosci 2021; 46:E568-E578. [PMID: 34654737 PMCID: PMC8526129 DOI: 10.1503/jpn.210049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/14/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) influences brain plasticity and feeding behaviour, and it has been linked to anorexia nervosa in numerous studies. Findings in mostly adult patients point to reduced serum BDNF levels in the acute stage of anorexia nervosa and rising levels with weight recovery. However, it is unclear whether this increase leads to normalization or supranormal levels, a difference that is potentially important for the etiology of anorexia nervosa and relapse. METHODS We measured serum BDNF at admission (n = 149), discharge (n = 130), 1-year follow-up (n = 116) and 2.5-year follow-up (n = 76) in adolescent female patients with anorexia nervosa hospitalized for the first time, and in healthy controls (n = 79). We analyzed associations with body mass index, eating disorder psychopathology and comorbidities. RESULTS Serum BDNF was only nominally lower at admission in patients with anorexia nervosa compared to healthy controls, but it increased continuously and reached supranormal levels at 2.5-year follow-up. BDNF was inversely associated with eating disorder psychopathology at discharge and positively associated with previous weight gain at 1-year follow-up. LIMITATIONS We compensated for attrition and batch effects using statistical measures. CONCLUSION In this largest longitudinal study to date, we found only nonsignificant reductions in BDNF in the acute stage of anorexia nervosa, possibly because of a shorter illness duration in adolescent patients. Supranormal levels of BDNF at 2.5-year follow-up could represent a pre-existing trait or a consequence of the illness. Because of the anorexigenic effect of BDNF, it might play an important predisposing role for relapse and should be explored further in studies that test causality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jochen Seitz
- From the Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH University Aachen, Germany (Borsdorf, Dahmen, Buehren, Scharke, Herpertz-Dahlmann, Seitz); the kbo-Heckscher Klinikum, Academic Teaching Hospital, Ludwig Maximilian University, Munich, Germany (Buehren); the Institute of Medical Informatics and Statistics, Kiel University, Germany (Dempfle); the Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Wuerzburg, Germany (Egberts); the Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany (Ehrlich); the Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany (Ehrlich); the Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Freiburg, Germany (Fleischhaker); the Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH University Aachen (Konrad); the JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Juelich Research Centre, Germany (Konrad); the Oberberg Fachklinik Konraderhof, Cologne-Huerth, Germany (Schwarte); the Institute of Medical Biometry and Epidemiology, Philipps-University Marburg, Germany (Timmesfeld); the Department of Medical Informatics, Biometrics and Epidemiology, Ruhr University Bochum, Germany (Timmesfeld); the Department of Child and Adolescent Psychiatry and Psychotherapy, Cologne City Hospitals, Germany (Wewetzer); the Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany (Biemann); the Cognitive and Experimental Psychology, Institute of Psychology, RWTH Aachen University, Germany (Scharke)
| |
Collapse
|
60
|
Zheng Y, Chen Z. Targeting Histamine and Histamine Receptors for the Precise Regulation of Feeding. Curr Top Behav Neurosci 2021; 59:355-387. [PMID: 34622397 DOI: 10.1007/7854_2021_258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Histamine has long been accepted as an anorexigenic agent. However, lines of evidence have suggested that the roles of histamine in feeding behaviors are much more complex than previously thought, being involved in satiety, satiation, feeding motivation, feeding circadian rhythm, and taste perception and memory. The functional diversity of histamine makes it a viable target for clinical management of obesity and other feeding-related disorders. Here, we update the current knowledge about the functions of histamine in feeding and summarize the underlying molecular and neural circuit mechanisms. Finally, we review the main clinical studies about the impacts of histamine-related compounds on weight control and discuss insights into future research on the roles of histamine in feeding. Despite the recent progress in histamine research, the histaminergic feeding circuits are poorly understood, and it is also worth verifying the functions of histamine receptors in a more spatiotemporally specific manner.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
61
|
Javed S, Lee YJ, Xu J, Huang WH. Temporal dissection of Rai1 function reveals brain-derived neurotrophic factor as a potential therapeutic target for Smith-Magenis syndrome. Hum Mol Genet 2021; 31:275-288. [PMID: 34463714 DOI: 10.1093/hmg/ddab245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Haploinsufficiency of RAI1 is responsible for Smith-Magenis Syndrome (SMS), a childhood neurodevelopmental disorder associated with hyperphagia, obesity, and autistic features. We previously showed that constitutive inactivation of one or both copies of Rai1 in the germline or developing brain induces SMS-like neurobehavioral deficits and obesity in mice. By contrast, the postnatal function of Rai1 is unclear. Here, we globally deleted one or both copies of Rai1 during two postnatal developmental windows by generating an inducible Rai1 knockout mouse model. We found that delayed Rai1 deletion at 3 or 8 weeks of age had no effect on neurobehavioral functions but resulted in adult-onset obesity and decreased expression of brain-derived neurotrophic factor (Bdnf) in the hypothalamus. Remarkably, genetic overexpression of human Bdnf in Rai1 heterozygous mice reversed SMS-like obesity, hyperphagia, metabolic syndrome-like features, and hyposociability. Increasing Bdnf signaling in the paraventricular nucleus of the hypothalamus (PVH) or the ventromedial nucleus of the hypothalamus (VMH) was sufficient to mediate the anti-obesity effect. Our work identifies the function of Rai1 in different temporal windows after birth and provides in vivo evidence that increasing Bdnf signaling is therapeutically effective in a preclinical mouse model of SMS.
Collapse
Affiliation(s)
- Sehrish Javed
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Québec H3G 1A3, Canada.,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec H3G 1A3, Canada
| | - Yu-Ju Lee
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Québec H3G 1A3, Canada.,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec H3G 1A3, Canada
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Hsiang Huang
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Québec H3G 1A3, Canada.,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec H3G 1A3, Canada
| |
Collapse
|
62
|
Cocozza G, Garofalo S, Morotti M, Chece G, Grimaldi A, Lecce M, Scavizzi F, Menghini R, Casagrande V, Federici M, Raspa M, Wulff H, Limatola C. The feeding behaviour of Amyotrophic Lateral Sclerosis mouse models is modulated by the Ca 2+ -activated K Ca 3.1 channels. Br J Pharmacol 2021; 178:4891-4906. [PMID: 34411281 PMCID: PMC9293222 DOI: 10.1111/bph.15665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) patients exhibit dysfunctional energy metabolism and weight loss, which is negatively correlated with survival, together with neuroinflammation. However, the possible contribution of neuroinflammation to deregulations of feeding behaviour in ALS has not been studied in detail. We here investigated if microglial KCa 3.1 is linked to hypothalamic neuroinflammation and affects feeding behaviours in ALS mouse models. EXPERIMENTAL APPROACH hSOD1G93A and TDP43A315T mice were treated daily with 120 mg·kg-1 of TRAM-34 or vehicle by intraperitoneal injection from the presymptomatic until the disease onset phase. Body weight and food intake were measured weekly. The later by weighing food provided minus that left in the cage. RT-PCR and immunofluorescence analysis were used to characterize microglia phenotype and the main populations of melanocortin neurons in the hypothalamus of hSOD1G93A and age-matched non-tg mice. The cannabinoid-opioid interactions in feeding behaviour of hSOD1G93A mice were studied using an inverse agonist and an antagonist of the cannabinoid receptor CB1 (rimonabant) and μ-opioid receptors (naloxone), respectively. KEY RESULTS We found that treatment of hSOD1G93A mice with the KCa 3.1 inhibitor TRAM-34 (i), attenuates the pro-inflammatory phenotype of hypothalamic microglia, (ii) increases food intake and promotes weight gain, (iii) increases the number of healthy pro-opiomelanocortin (POMC) neurons and (iv), changes the expression of cannabinoid receptors involved in energy homeostasis. CONCLUSION AND IMPLICATIONS Using ALS mouse models, we describe defects in the hypothalamic melanocortin system that affect appetite control. These results reveal a new regulatory role for KCa 3.1 to counteract weight loss in ALS.
Collapse
Affiliation(s)
- Germana Cocozza
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marta Morotti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppina Chece
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Alfonso Grimaldi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Mario Lecce
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Rossella Menghini
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Massimo Federici
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | | | - Heike Wulff
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Cristina Limatola
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
63
|
Xiu J, Han R, Liu Z, Li J, Liu S, Shen Y, Ding YQ, Xu Q. Hijacking Dorsal Raphe to Improve Metabolism and Depression-Like Behaviors via BDNF Gene Transfer in Mice. Diabetes 2021; 70:1780-1793. [PMID: 33962999 DOI: 10.2337/db20-1030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/29/2021] [Indexed: 11/13/2022]
Abstract
Moods and metabolism modulate each other. High comorbidity of depression and metabolic disorders, such as diabetes and obesity, poses a great challenge to treat such conditions. Here we report the therapeutic efficacy of brain-derived neurotrophic factor (BDNF) by gene transfer in the dorsal raphe nucleus (DRN) in a chronic unpredictable mild stress model (CUMS) of depression and models of diabetes and obesity. In CUMS, BDNF-expressing mice displayed antidepressant- and anxiolytic-like behaviors, which are associated with augmented serotonergic activity. Both in the diet-induced obesity model (DIO) and in db/db mice, BDNF ameliorated obesity and diabetes, which may be mediated by enhanced sympathetic activity not involving DRN serotonin. Chronic activation of DRN neurons via chemogenetic tools produced similar effects as BDNF in DIO mice. These results established the DRN as a key nexus in regulating depression-like behaviors and metabolism, which can be exploited to combat comorbid depression and metabolic disorders via BDNF gene transfer.
Collapse
Affiliation(s)
- Jianbo Xiu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Rongrong Han
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Zeyue Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiayu Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
64
|
Xiao R, Ali S, Caligiuri MA, Cao L. Enhancing Effects of Environmental Enrichment on the Functions of Natural Killer Cells in Mice. Front Immunol 2021; 12:695859. [PMID: 34394087 PMCID: PMC8355812 DOI: 10.3389/fimmu.2021.695859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
The environment of an organism can convey a powerful influence over its biology. Environmental enrichment (EE), as a eustress model, has been used extensively in neuroscience to study neurogenesis and brain plasticity. EE has also been used as an intervention for the treatment and prevention of neurological and psychiatric disorders with limited clinical application. By contrast, the effects of EE on the immune system are relatively less investigated. Recently, accumulating evidence has demonstrated that EE can robustly impact immune function. In this review, we summarize the major components of EE, the impact of EE on natural killer (NK) cells, EE's immunoprotective roles in cancer, and the underlying mechanisms of EE-induced NK cell regulation. Moreover, we discuss opportunities for translational application based on insights from animal research of EE-induced NK cell regulation.
Collapse
Affiliation(s)
- Run Xiao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States
| | - Michael A. Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and the Beckman Research Institute, Los Angeles, CA, United States
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
| |
Collapse
|
65
|
Podyma B, Parekh K, Güler AD, Deppmann CD. Metabolic homeostasis via BDNF and its receptors. Trends Endocrinol Metab 2021; 32:488-499. [PMID: 33958275 PMCID: PMC8192464 DOI: 10.1016/j.tem.2021.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Metabolic disorders result from dysregulation of central nervous system and peripheral metabolic energy homeostatic pathways. To maintain normal energy balance, neural circuits must integrate feedforward and feedback signals from the internal metabolic environment to orchestrate proper food intake and energy expenditure. These signals include conserved meal and adipocyte cues such as glucose and leptin, respectively, in addition to more novel players including brain-derived neurotrophic factor (BDNF). In particular, BDNF's two receptors, tropomyosin related kinase B (TrkB) and p75 neurotrophin receptor (p75NTR), are increasingly appreciated to be involved in whole body energy homeostasis. At times, these two receptors even seem to functionally oppose one another's actions, providing the framework for a potential neurotrophin mediated energy regulatory axis, which we explore further here.
Collapse
Affiliation(s)
- Brandon Podyma
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908-0738, USA.
| | - Kavya Parekh
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Ali D Güler
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | | |
Collapse
|
66
|
Rana S, Sultana A, Bhatti AA. Effect of interaction between obesity-promoting genetic variants and behavioral factors on the risk of obese phenotypes. Mol Genet Genomics 2021; 296:919-938. [PMID: 33966103 DOI: 10.1007/s00438-021-01793-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 01/28/2023]
Abstract
The studies investigating gene-gene and gene-environment (or gene-behavior) interactions provide valuable insight into the pathomechanisms underlying obese phenotypes. The Pakistani population due to its unique characteristics offers numerous advantages for conducting such studies. In this view, the current study was undertaken to examine the effects of gene-gene and gene-environment/behavior interactions on the risk of obesity in a sample of Pakistani population. A total of 578 adult participants including 290 overweight/obese cases and 288 normal-weight controls were involved. The five key obesity-associated genetic variants namely MC4R rs17782313, BDNF rs6265, FTO rs1421085, TMEM18 rs7561317, and NEGR1 rs2815752 were genotyped using the TaqMan allelic discrimination assays. The data related to behavioral factors, such as eating pattern, diet consciousness, the tendency toward fat-dense food (TFDF), sleep duration, sleep-wake cycle (SWC), shift work (SW), and physical activity levels were collected via a questionnaire. Gene-gene and gene-behavior interactions were analyzed by multifactor dimensionality reduction and linear regression, respectively. In our study, only TMEM18 rs7561317 was found to be significantly associated with anthropometric traits with no significant effect of gene-gene interactions were observed on obesity-related phenotypes. However, the genetic variants were found to interact with the behavioral factors to significantly influence various obesity-related anthropometric traits including BMI, waist circumference, hip circumference, waist-to-hip ratio, waist-to-height ratio, and percentage of body fat. In conclusion, the interaction between genetic architecture and behavior/environment determines the outcome of obesity-related anthropometric phenotypes. Thus, gene-environment/behavior interaction studies should be promoted to explore the risk of complex and multifactorial disorders, such as obesity.
Collapse
Affiliation(s)
- Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - Ayesha Sultana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Adil Anwar Bhatti
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
67
|
Abou Al Hassan S, Cutinha D, Mattar L. The impact of COMT, BDNF and 5-HTT brain-genes on the development of anorexia nervosa: a systematic review. Eat Weight Disord 2021; 26:1323-1344. [PMID: 32783113 DOI: 10.1007/s40519-020-00978-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The genetic aspect of anorexia nervosa (AN) involving specific genes of the central-nervous-system has not yet been clearly understood. The aim of this systematic review is to assess the impact of three candidate genes of the brain: catechol-O-methyltransferase, brain-derived neurotrophic factor (BDNF) and serotonin transporter protein, on the susceptibility to AN and identify whether a clear connection persists between each of the gene-polymorphisms and AN. METHODS A total of 21 articles were selected for this review conforming to the PRISMA guidelines. Detailed keyword combinations were implemented within specific databases such as MEDLINE, SCIENCEDIRECT and PUBMED. RESULTS The catechol-O-methyltransferase gene-polymorphism did not show any change in phenotypic variation between AN and control subjects; but the familial association was rather strong with an over-transmission of the H allele. The latter also correlated with several dimensions of the Temperament and Character Inventory (TCI) scale. A notable relation was indicated between BDNF gene-polymorphism and anorexia-restrictive in terms of phenotypic distribution; the Met66-allele also depicted high association with anorexic behavioral traits. The 5-HTTLPR gene-polymorphism was found to be significantly associated with AN susceptibility with an over-transmission of the S-allele from parents to offspring. CONCLUSION The systematic review distinctively emphasized the genetic contribution of the brain-genes on the development of AN. Despite significant study findings, no clear and standardized genetic route was determined to be the cause of AN development. Future research is needed on these specific genes to closely monitor the genetic polymorphisms and their mechanism on AN susceptibility. LEVEL OF EVIDENCE I, systematic review.
Collapse
Affiliation(s)
- Sirine Abou Al Hassan
- Dietetic Department, Saint George Hospital University Medical Center, Beirut, Lebanon.,Division of Medicine, Eating Disorders and Clinical Nutrition, University College London, London, UK
| | - Darren Cutinha
- Division of Medicine, Eating Disorders and Clinical Nutrition, University College London, London, UK
| | - Lama Mattar
- Nutrition Division, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
68
|
Microglia-Neuron Crosstalk in Obesity: Melodious Interaction or Kiss of Death? Int J Mol Sci 2021; 22:ijms22105243. [PMID: 34063496 PMCID: PMC8155827 DOI: 10.3390/ijms22105243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Diet-induced obesity can originate from the dysregulated activity of hypothalamic neuronal circuits, which are critical for the regulation of body weight and food intake. The exact mechanisms underlying such neuronal defects are not yet fully understood, but a maladaptive cross-talk between neurons and surrounding microglial is likely to be a contributing factor. Functional and anatomical connections between microglia and hypothalamic neuronal cells are at the core of how the brain orchestrates changes in the body's metabolic needs. However, such a melodious interaction may become maladaptive in response to prolonged diet-induced metabolic stress, thereby causing overfeeding, body weight gain, and systemic metabolic perturbations. From this perspective, we critically discuss emerging molecular and cellular underpinnings of microglia-neuron communication in the hypothalamic neuronal circuits implicated in energy balance regulation. We explore whether changes in this intercellular dialogue induced by metabolic stress may serve as a protective neuronal mechanism or contribute to disease establishment and progression. Our analysis provides a framework for future mechanistic studies that will facilitate progress into both the etiology and treatments of metabolic disorders.
Collapse
|
69
|
Rana S, Bhatti AA. Predicting anthropometric and metabolic traits with a genetic risk score for obesity in a sample of Pakistanis. Sci Rep 2021; 11:8320. [PMID: 33859285 PMCID: PMC8050295 DOI: 10.1038/s41598-021-87702-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is an outcome of multiple factors including environmental and genetic influences. Common obesity is a polygenic trait indicating that multiple genetic variants act synergistically to influence its expression. We constructed a genetic risk score (GRS) based on five genetic variants (MC4R rs17782313, BDNF rs6265, FTO rs1421085, TMEM18 rs7561317, and NEGR1 rs2815752) and examined its association with obesity-related traits in a sample of Pakistanis. The study involved 306 overweight/obese (OW/OB) and 300 normal-weight (NW) individuals. The age range of the study participants was 12-63 years. All anthropometric and metabolic parameters were measured for each participant via standard procedures and biochemical assays, respectively. The genetic variants were genotyped by allelic discrimination assays. The age- and gender-adjusted associations between the GRS and obesity-related anthropometric and metabolic measures were determined using linear regression analyses. The results showed that OW/OB individuals had significantly higher mean ranks of GRS than NW individuals. Moreover, a significant association of the GRS with obesity-related anthropometric traits was seen. However, the GRS did not appear to affect any obesity-related metabolic parameter. In conclusion, our findings indicate the combined effect of multiple genetic variants on the obesity-related anthropometric phenotypes in Pakistanis.
Collapse
Affiliation(s)
- Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - Adil Anwar Bhatti
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
70
|
Association of metabolites with obesity based on two gene variants, MC4R rs17782313 and BDNF rs6265. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166144. [PMID: 33862146 DOI: 10.1016/j.bbadis.2021.166144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Previous genome-wide association analyses for obesity related genes demonstrated the association of BDNF gene variant rs6265 and MC4R gene variant rs17782313 with body mass index (BMI). However, the associated metabolite pathways are still behind the curtain. The aim of the current study is to investigate the associations of metabolic changes in obesity with MC4R gene variant rs17782313 and BDNF variant rs6265. Gas chromatography-mass spectrometry based untargeted metabolomics approach was used and 42 identified serum metabolites were selected for statistical analyses. Significant association of seven metabolites with MC4R gene variant rs17782313 based on obesity and thirty metabolites with obesity dependent BDNF variant rs6265 using additive model (adjusted p < 0.05) was observed. This study highlights the importance of alteration of fatty acid biosynthesis, probably due to high consumption of fats may cause to develop obesity. But obesity is a complex disorder and the full clarification of this complex machinery is still distant. To understand the obesity in a better way, more studies are required to identify remaining metabolites and also mechanism of these metabolic entities.
Collapse
|
71
|
Dimmek DJ, Korallus C, Buyny S, Christoph G, Lichtinghagen R, Jacobs R, Nugraha B. Brain-Derived Neurotrophic Factor and Immune Cells in Osteoarthritis, Chronic Low Back Pain, and Chronic Widespread Pain Patients: Association with Anxiety and Depression. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:327. [PMID: 33915758 PMCID: PMC8065931 DOI: 10.3390/medicina57040327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 01/09/2023]
Abstract
Background and Objectives: Musculoskeletal dysfunction can induce several types of chronic pain syndromes. It is of particular interest to elucidate the pathomechanism of different forms of chronic pain. It is possible that patients who have developed chronic widespread pain (CWP) may endure different pathomechanisms as compared to those who suffer from local pain (osteoarthritis, OA) and regional pain (chronic low back pain, cLBP), especially with regard to pain regulation and its related biomediators. The aim of this study was to determine the differences in pathomechanisms among these patients by measuring pain-related biomediators, particularly brain-derived neurotrophic factor (BDNF). Additionally, subpopulations of immune cells were determined in parallel. Materials and Methods: Patients and healthy subjects (HSs) were recruited (age and gender-matched). BDNF was measured from serum samples of patients and HSs and the data of body composition parameters were recorded. Additionally, both patients and HSs were asked to fill in questionnaires related to pain intensity, anxiety, and depression. Results: Our results highlight that the levels of both free and total BDNF are significantly lower in pain patients compared to HSs, with p values of 0.041 and 0.024, respectively. The number of CD3- CD56bright natural killer (NK) cells shows significant differences between the groups. Comparing all chronic pain patients with HSs reveals a significantly lower number of CD4+ CD8+ T cells (p = 0.031), CD3- CD56bright NK cells (p = 0.049) and CD20+ CD3- cells (p = 0.007). Conclusions: To conclude, it seems that a general conformity between the pathomechanisms of different chronic pain diseases exists, although there are unique findings only in specific chronic pain patients.
Collapse
Affiliation(s)
- Dominique Josephine Dimmek
- Department of Rehabilitation Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; (D.J.D.); (C.K.); (G.C.)
| | - Christoph Korallus
- Department of Rehabilitation Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; (D.J.D.); (C.K.); (G.C.)
| | - Sabine Buyny
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; (S.B.); (R.J.)
| | - Gutenbrunner Christoph
- Department of Rehabilitation Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; (D.J.D.); (C.K.); (G.C.)
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany;
| | - Roland Jacobs
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; (S.B.); (R.J.)
| | - Boya Nugraha
- Department of Rehabilitation Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; (D.J.D.); (C.K.); (G.C.)
| |
Collapse
|
72
|
Beddows CA, Dodd GT. Insulin on the brain: The role of central insulin signalling in energy and glucose homeostasis. J Neuroendocrinol 2021; 33:e12947. [PMID: 33687120 DOI: 10.1111/jne.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Insulin signals to the brain where it coordinates multiple physiological processes underlying energy and glucose homeostasis. This review explores where and how insulin interacts within the brain parenchyma, how brain insulin signalling functions to coordinate energy and glucose homeostasis and how this contributes to the pathogenesis of metabolic disease.
Collapse
Affiliation(s)
- Cait A Beddows
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
73
|
Elesawy BH, Raafat BM, Muqbali AA, Abbas AM, Sakr HF. The Impact of Intermittent Fasting on Brain-Derived Neurotrophic Factor, Neurotrophin 3, and Rat Behavior in a Rat Model of Type 2 Diabetes Mellitus. Brain Sci 2021; 11:brainsci11020242. [PMID: 33671898 PMCID: PMC7918995 DOI: 10.3390/brainsci11020242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 01/17/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is known to be associated with an increased risk of dementia, specifically Alzheimer’s disease and vascular dementia. Intermittent fasting (IF) has been proposed to produce neuroprotective effects through the activation of several signaling pathways. In this study, we investigated the effect of IF on rat behavior in type 2 diabetic rats. Forty male Wistar Kyoto rats were divided into four groups (n = 10 for each): the ad libitum (Ad) group, the intermittent fasting group (IF), the streptozotocin-induced diabetic 2 group (T2DM) fed a high-fat diet for 4 weeks followed by a single intraperitoneal (i.p.) injection of streptozotocin (STZ) 25 mg kg−1, and the diabetic group with intermittent fasting (T2DM+IF). We evaluated the impact of 3 months of IF (16 h of food deprivation daily) on the levels of brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), serotonin, dopamine, and glutamate in the hippocampus, and rat behavior was assessed by the forced swim test and elevated plus maze. IF for 12 weeks significantly increased (p < 0.05) the levels of NT3 and BDNF in both control and T2DM rats. Additionally, it increased serotonin, dopamine, and glutamic acid in diabetic rats. Moreover, IF modulated glucose homeostasis parameters, with a significant decrease (p < 0.05) in insulin resistance and downregulation of serum corticosterone level. Interestingly, T2DM rats showed a significant increase in anxiety and depression behaviors, which were ameliorated by IF. These findings suggest that IF could produce a potentially protective effect by increasing the levels of BDNF and NT3 in both control and T2DM rats. IF could be considered as an additional therapy for depression, anxiety, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Basem H. Elesawy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Bassem M. Raafat
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Aya Al Muqbali
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Koudh, Muscat PC 123, Oman;
| | - Amr M. Abbas
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hussein F. Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Koudh, Muscat PC 123, Oman;
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|
74
|
Zhong P, Zeng G, Lei C, Tian G, Ouyang S, Liu F, Peng J. Ciliary neurotrophic factor overexpression protects the heart against pathological remodelling in angiotensin II-infused mice. Biochem Biophys Res Commun 2021; 547:15-22. [PMID: 33588234 DOI: 10.1016/j.bbrc.2021.01.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ciliary neurotrophic factor (CNTF), which is a neural peptide, has been reported to confer cardioprotective effects. However, whether CNTF-based gene therapy could prevent cardiac remodelling remains incompletely clear. In this study, we used adeno-associated viral vector serotype 9 (AAV9)-based cardiac gene therapy to test the effects of CNTF overexpression on adverse ventricular remodelling in angiotensin II (Ang II)-infused mice. METHODS First, AAV9-EGFP and AAV9-CNTF constructs were generated with virus concentration at 5 × 1012 vg/ml. Next, postnatal (P3-P10) mice with C57BL/6J background were administered with 5 × 1011 vg of AAV9 recombinant genome diluted in 50 μl of saline, and delivered through intraperitoneal injection. Implantation of osmotic minipumps was performed in 8-week-old male mice and human Ang II solution was administrated in the mice subcutaneously for 14 days through the pumps. Finally, we evaluated the effects of CNTF overexpression on mouse cardiac function, hypertrophy and fibrosis, as well as investigated the possible mechanisms. RESULTS Our data showed that CNTF overexpression in mouse cardiomyocytes prevents cardiac hypertrophy and fibrosis induced by chronic Ang II stimulation. Mechanistic study found that CNTF overexpression upregulated NFE2-related factor 2 (Nrf2) antioxidant pathway, coupled with decreased ROS level in the cardiac tissues. Additionally, inflammatory cytokines were found to be reduced upon cardiac CNTF overexpression in response to chronic Ang II stimulation. CONCLUSIONS Altogether, these results provide further evidence that CNTF can alleviate the condition of cardiac remodelling induced by chronic Ang II stimulation. Therefore, our results suggest a potential therapeutic role of CNTF in cardiac pathological remodelling.
Collapse
Affiliation(s)
- Peng Zhong
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, Hubei, PR China
| | - Gaofeng Zeng
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - ChangCheng Lei
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - Guoping Tian
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - Shao Ouyang
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - Fangyao Liu
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - Jianye Peng
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China.
| |
Collapse
|
75
|
Cao L, Ali S, Queen NJ. Hypothalamic gene transfer of BDNF promotes healthy aging. VITAMINS AND HORMONES 2021; 115:39-66. [PMID: 33706955 DOI: 10.1016/bs.vh.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aging process and age-related diseases all involve metabolic decline and impaired ability to cope with adversity. Environmental enrichment (EE)-a housing environment which recapitulates aspects of active lifestyle-exerts a wide range of health benefits in laboratory rodents. Brain-derived neurotrophic factor (BDNF) in the hypothalamus orchestrates autonomic and neuroendocrine processes, serving as one key brain mediator of EE-induced resistance to obesity, cancer, and autoimmunity. Recombinant adeno-associated virus (AAV)-mediated hypothalamic BDNF gene transfer alleviates obesity, diabetes, and metabolic syndromes in both diet-induced and genetic models. One recent study by our lab demonstrates the efficacy and safety of a built-in autoregulatory system to control transgene BDNF expression, mimicking the body's natural feedback systems in middle-age mice. Twelve-month old mice were treated with autoregulatory BDNF vector and monitored for 7months. BDNF gene transfer prevented age-associated metabolic decline by: reducing adiposity, preventing the decline of brown fat activity, increasing adiponectin while reducing leptin and insulin in circulation, improving glucose tolerance, increasing energy expenditure, alleviating hepatic steatosis, and suppressing inflammatory genes in the hypothalamus and adipose tissues. Furthermore, BDNF treatment reduced anxiety-like and depression-like behaviors. This chapter summarizes this work and discusses potential roles that hypothalamic BDNF might play in promoting healthy aging.
Collapse
Affiliation(s)
- Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States; The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States; The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Nicholas J Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States; The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
76
|
Abstract
β-hydroxybutyrate, a ketone body metabolite, has been shown to suppress depression-like behavior in rodents. In this study, we examined its antidepressive property in acute and chronic administration modes in mice by using forced swim test and tail suspension test. Results showed that the decrease effect of β-hydroxybutyrate (300 mg/kg) on immobility time in the tail suspension test and forced swim test in stress-naive mice began to be significant at day 11. In a dose-dependent experiment, β-hydroxybutyrate treatment (11 days) showed significant antidepressant activities at the dose of 200 and 300 mg/kg. Unlike fluoxetine, β-hydroxybutyrate treatment (300 mg/kg) showed no antidepressant activities in the acute (1 hour before the test) and three times administration mode within 24 hours (1, 5, and 24 hours before the test). But in a co-administration mode, β-hydroxybutyrate (100 mg/kg) -fluoxetine (2.5 mg/kg) co-administration exhibited an obvious antidepressant activity in the tail suspension test and forced swim test. Further analysis showed that the antidepressant effects of β-hydroxybutyrate and fluoxetine were not associated with the change in mouse locomotor activity. Furthermore, both chronic β-hydroxybutyrate treatment and β-hydroxybutyrate-fluoxetine co-treatment suppressed chronic unpredictable stress-induced increase in immobility time in the tail suspension test and forced swim test as well as chronic unpredictable stress-induced decrease in mouse body weight. Taken together, these results indicate that β-hydroxybutyrate (1) needs a relatively long time to show comparable behavioral activity to that of fluoxetine in assays that are sensitive to the behavioral effects of established antidepressant compounds and (2) can augment the antidepressant action of a sub-therapeutic dose of fluoxetine.
Collapse
|
77
|
Hang PZ, Zhu H, Li PF, Liu J, Ge FQ, Zhao J, Du ZM. The Emerging Role of BDNF/TrkB Signaling in Cardiovascular Diseases. Life (Basel) 2021; 11:life11010070. [PMID: 33477900 PMCID: PMC7833389 DOI: 10.3390/life11010070] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most abundantneurotrophins in the central nervous system. Numerous studies suggestthat BDNF has extensive roles by binding to its specific receptor, tropomyosin-related kinase receptor B (TrkB), and thereby triggering downstream signaling pathways. Recently, growing evidence highlightsthat the BDNF/TrkB pathway is expressed in the cardiovascular system andclosely associated with the development and outcome of cardiovascular diseases (CVD), including coronary artery disease, heart failure, cardiomyopathy, hypertension, and metabolic diseases. Furthermore, circulating BDNF has also been revealed as a new potential biomarker for both diagnosis and prognosis of CVD. In this review, we discuss the current evidence of the emerging role of BDNF/TrkBsignalingand address the challenges that remain in translating these discoveries to novel therapeutic strategies for CVD.
Collapse
Affiliation(s)
- Peng-Zhou Hang
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China; (P.-Z.H.); (H.Z.); (F.-Q.G.)
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
| | - Hua Zhu
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China; (P.-Z.H.); (H.Z.); (F.-Q.G.)
| | - Pei-Feng Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
| | - Jie Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
| | - Feng-Qin Ge
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China; (P.-Z.H.); (H.Z.); (F.-Q.G.)
| | - Jing Zhao
- Medical Research Center, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China
- Correspondence: or (J.Z.); or (Z.-M.D.); Tel.: +86-514-8737-3691 (J.Z.); +86-451-8660-5353 (Z.-M.D.); Fax: +86-514-8737-3039 (J.Z.); +86-451-8666-5559 (Z.-M.D.)
| | - Zhi-Min Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
- Correspondence: or (J.Z.); or (Z.-M.D.); Tel.: +86-514-8737-3691 (J.Z.); +86-451-8660-5353 (Z.-M.D.); Fax: +86-514-8737-3039 (J.Z.); +86-451-8666-5559 (Z.-M.D.)
| |
Collapse
|
78
|
Bumb JM, Bach P, Grosshans M, Wagner X, Koopmann A, Vollstädt-Klein S, Schuster R, Wiedemann K, Kiefer F. BDNF influences neural cue-reactivity to food stimuli and food craving in obesity. Eur Arch Psychiatry Clin Neurosci 2021; 271:963-974. [PMID: 33367955 PMCID: PMC8236045 DOI: 10.1007/s00406-020-01224-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023]
Abstract
There is increasing evidence that brain-derived neurotrophic factor (BDNF) impacts on the development of obesity. We are the first to test the hypothesis that BDNF levels might be associated with neural reactivity to food cues in patients suffering from obesity and healthy controls. We assessed visual food cue-induced neural response in 19 obese patients and 20 matched controls using functional magnetic resonance imaging and analyzed the associations between BDNF levels, food cue-reactivity and food craving. Whole-brain analysis in both groups revealed that food cues elicited higher neural activation in clusters of mesolimbic brain areas including the insula (food > neutral). Patients suffering from obesity showed a significant positive correlation between plasma BDNF levels and visual food cue-reactivity in the bilateral insulae. In addition, patients suffering from obesity with positive food cue-induced insula activation also reported significantly higher food craving than those with low cue-reactivity-an effect that was absent in normal weight participants. The present findings implicate that BDNF levels in patients suffering from obesity might be involved in food craving and obesity in humans. This highlights the importance to consider BDNF pathways when investigating obesity and obesity treatment.
Collapse
Affiliation(s)
- Jan Malte Bumb
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany. .,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany.
| | - Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Martin Grosshans
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany
| | - Xenija Wagner
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany
| | - Anne Koopmann
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rilana Schuster
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Klaus Wiedemann
- Department of Psychiatry and Psychotherapy, University Medical Center, Martinistr, 52, 20246 Hamburg, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany ,Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
79
|
Marcos-Pasero H, Aguilar-Aguilar E, Ikonomopoulou MP, Loria-Kohen V. BDNF Gene as a Precision Skill of Obesity Management. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:233-248. [PMID: 34453302 DOI: 10.1007/978-3-030-74046-7_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The scarcity of the results obtained for the treatment of obesity leads us to consider new strategies, contemplating all the factors involved in the development of the disease. One of the key molecules for controlling body weight and energy homeostasis is the brain-derived neurotrophic factor (BDNF). This work summarizes the mechanisms in which BDNF gene regulates this multifactorial disease. In addition, we discuss the role of other BDNF polymorphisms as genetic determinants of obesity. In this context, a total of 14 SNPs near or inside BDNF/BDNF-AS related to BMI were identified in various GWASs. Finally, we assess gene-diet interaction as a novel tool to prevent obesity and formulate solid and personalized nutritional management. Our research group has performed the first study on the association of BDNF-AS rs925946 polymorphism and calcium intake as potential modulators of the nutritional status. Although these results should be confirmed in future studies, they open the path for new prevention opportunities.
Collapse
Affiliation(s)
- Helena Marcos-Pasero
- Nutrition and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Elena Aguilar-Aguilar
- Nutrition and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Maria P Ikonomopoulou
- Translational Venomics Group, IMDEA-Food, CEI UAM+CSIC, Madrid, Spain.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | - Viviana Loria-Kohen
- Nutrition and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain. .,Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
80
|
Neuritin-overexpressing transgenic mice demonstrate enhanced neuroregeneration capacity and improved spatial learning and memory recovery after ischemia-reperfusion injury. Aging (Albany NY) 2020; 13:2681-2699. [PMID: 33323541 PMCID: PMC7880330 DOI: 10.18632/aging.202318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/01/2020] [Indexed: 02/01/2023]
Abstract
Acute ischemia-reperfusion (IR)-induced brain injury is further exacerbated by a series of slower secondary pathogenic events, including delayed apoptosis due to neurotrophic factor deficiency. Neuritin, a neurotrophic factor regulating nervous system development and plasticity, is a potential therapeutic target for treatment of IR injury. In this study, Neuritin-overexpressing transgenic (Tg) mice were produced by pronuclear injection and offspring with high overexpression used to generate a line with stable inheritance for testing the neuroprotective capacity of Neuritin against transient global ischemia (TGI). Compared to wild-type mice, transgenic mice demonstrated reduced degradation of the DNA repair factor poly [ADP-ribose] polymerase 1 (PARP 1) in the hippocampus, indicating decreased hippocampal apoptosis rate, and a greater number of surviving hippocampal neurons during the first week post-TGI. In addition, Tg mice showed increased expression of the regeneration markers NF-200, synaptophysin, and GAP-43, and improved recovery of spatial learning and memory. Our findings exhibited that the window of opportunity of neural recovery in Neuritin transgenic mice group had a tendency to move ahead after TGI, which indicated that Neuritin can be used as a potential new therapeutic strategy for improving the outcome of cerebral ischemia injury.
Collapse
|
81
|
Blaszkiewicz M, Wood E, Koizar S, Willows J, Anderson R, Tseng YH, Godwin J, Townsend KL. The involvement of neuroimmune cells in adipose innervation. Mol Med 2020; 26:126. [PMID: 33297933 PMCID: PMC7727151 DOI: 10.1186/s10020-020-00254-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Innervation of adipose tissue is essential for the proper function of this critical metabolic organ. Numerous surgical and chemical denervation studies have demonstrated how maintenance of brain-adipose communication through both sympathetic efferent and sensory afferent nerves helps regulate adipocyte size, cell number, lipolysis, and 'browning' of white adipose tissue. Neurotrophic factors are growth factors that promote neuron survival, regeneration, and plasticity, including neurite outgrowth and synapse formation. Peripheral immune cells have been shown to be a source of neurotrophic factors in humans and mice. Although a number of immune cells reside in the adipose stromal vascular fraction (SVF), it has remained unclear what roles they play in adipose innervation. We previously demonstrated that adipose SVF secretes brain derived neurotrophic factor (BDNF). METHODS We now show that deletion of this neurotrophic factor from the myeloid lineage of immune cells led to a 'genetic denervation' of inguinal subcutaneous white adipose tissue (scWAT), thereby causing decreased energy expenditure, increased adipose mass, and a blunted UCP1 response to cold stimulation. RESULTS We and others have previously shown that noradrenergic stimulation via cold exposure increases adipose innervation in the inguinal depot. Here we have identified a subset of myeloid cells that home to scWAT upon cold exposure and are Ly6C+ CCR2+ Cx3CR1+ monocytes/macrophages that express noradrenergic receptors and BDNF. This subset of myeloid lineage cells also clearly interacted with peripheral nerves in the scWAT and were therefore considered neuroimmune cells. CONCLUSIONS We propose that these myeloid lineage, cold induced neuroimmune cells (CINCs) are key players in maintaining adipose innervation as well as promoting adipose nerve remodeling under noradrenergic stimulation, such as cold exposure.
Collapse
Affiliation(s)
- Magdalena Blaszkiewicz
- School of Biology and Ecology, University of Maine, Orono, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Elizabeth Wood
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Sigi Koizar
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Jake Willows
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Ryan Anderson
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - James Godwin
- Jackson Laboratory, Bar Harbor, ME, USA
- MDI Biological Laboratory, Bar Harbor, ME, USA
| | - Kristy L Townsend
- School of Biology and Ecology, University of Maine, Orono, ME, USA.
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.
- The Ohio State University, 1014 Biomedical Research Tower, 460 W 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
82
|
Impact of Genetic Variations and Epigenetic Mechanisms on the Risk of Obesity. Int J Mol Sci 2020; 21:ijms21239035. [PMID: 33261141 PMCID: PMC7729759 DOI: 10.3390/ijms21239035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Rare genetic obesity disorders are characterized by mutations of genes strongly involved in the central or peripheral regulation of energy balance. These mutations are effective in causing the early onset of severe obesity and insatiable hunger (hyperphagia), suggesting that the genetic component can contribute to 40–70% of obesity. However, genes’ roles in the processes leading to obesity are still unclear. This review is aimed to summarize the current knowledge of the genetic causes of obesity, especially monogenic obesity, describing the role of epigenetic mechanisms in obesity and metabolic diseases. A comprehensive understanding of the underlying genetic and epigenetic mechanisms, with the metabolic processes they control, will permit adequate management and prevention of obesity.
Collapse
|
83
|
Abstract
Obesity is associated with an increased risk of various diseases and mortality. Although nearly 50 % of adults have been reported trying to lose weight, the prevalence of obesity has increased. One factor that hinders weight loss-induced decrease in obesity prevalence is weight regain. Although behavioural, psychological and physiological factors associated with weight regain have been reviewed, the information regarding the relationship between weight regain and genetics has not been previously summarised. In this paper, we comprehensively review the association between genetic polymorphisms and weight regain in adults and children with obesity after weight loss. Based on this information, identification of genetic polymorphism in patients who undergo weight loss intervention might be used to estimate their risks of weight regain. Additionally, the genetic-based risk estimation may be used as a guide for physicians and dietitians to provide each of their patients with the most appropriate strategies for weight loss and weight maintenance.
Collapse
|
84
|
Wang P, Jia Y, Liu T, Jan YN, Zhang W. Visceral Mechano-sensing Neurons Control Drosophila Feeding by Using Piezo as a Sensor. Neuron 2020; 108:640-650.e4. [PMID: 32910893 DOI: 10.1016/j.neuron.2020.08.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/24/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Animal feeding is controlled by external sensory cues and internal metabolic states. Does it also depend on enteric neurons that sense mechanical cues to signal fullness of the digestive tract? Here, we identify a group of piezo-expressing neurons innervating the Drosophila crop (the fly equivalent of the stomach) that monitor crop volume to avoid food overconsumption. These neurons reside in the pars intercerebralis (PI), a neuro-secretory center in the brain involved in homeostatic control, and express insulin-like peptides with well-established roles in regulating food intake and metabolism. Piezo knockdown in these neurons of wild-type flies phenocopies the food overconsumption phenotype of piezo-null mutant flies. Conversely, expression of either fly Piezo or mammalian Piezo1 in these neurons of piezo-null mutants suppresses the overconsumption phenotype. Importantly, Piezo+ neurons at the PI are activated directly by crop distension, thus conveying a rapid satiety signal along the "brain-gut axis" to control feeding.
Collapse
Affiliation(s)
- Pingping Wang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yinjun Jia
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Ting Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Wei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
85
|
Suleiman JB, Nna VU, Zakaria Z, Othman ZA, Bakar ABA, Mohamed M. Obesity-induced testicular oxidative stress, inflammation and apoptosis: Protective and therapeutic effects of orlistat. Reprod Toxicol 2020; 95:113-122. [DOI: 10.1016/j.reprotox.2020.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
|
86
|
Wang X, Li D, Liu F, Cui Y, Li X. Dietary citrus and/or its extracts intake contributed to weight control: Evidence from a systematic review and meta-analysis of 13 randomized clinical trials. Phytother Res 2020; 34:2006-2022. [PMID: 32182635 DOI: 10.1002/ptr.6673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/06/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022]
Abstract
Randomized controlled trials, being published in English and investigating the associations of at least 4 weeks intervention of citrus and/or its extracts on weight loss among adults, were searched from PubMed, Web of Science, Scopus, and Cochrane by June 2019 to conduct a meta-analysis. Thirteen articles, including 921 participants, were selected and evaluated by modified Jadad scale. Pooled results by the random-effects model showed that citrus and/or its extracts administration significantly reduced 1.280 kg body weight (95% CI: -1.818 to -0.741, p = 0.000, I2 = 81.4%), 0.322 kg/m2 BMI (95% CI: -0.599 to -0.046, p = 0.022, I2 = 87.0%), 2.185 cm WC (95% CI: -3.804 to -0.566, p = 0.008, I2 = 98.3%), and 2.137 cm HC (95% CI: -3.775 to -0.500, p = 0.011, I2 = 96.2%), respectively, but no significantly decreased effects on WHR and body fat were observed. Subgroup analysis deduced the different effects of study location, intervention duration on body weight associated indices. No publication bias was observed. Our meta-analysis supported the beneficial effects of citrus and/or its extracts supplement on body weight control, and future well-designed studies are required to firmly establish the clinical efficacy of citrus and/or its extracts intervention on body weight.
Collapse
Affiliation(s)
- Xinjing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Deming Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Fang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yuan Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xinli Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
87
|
Wang P, Loh KH, Wu M, Morgan DA, Schneeberger M, Yu X, Chi J, Kosse C, Kim D, Rahmouni K, Cohen P, Friedman J. A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue. Nature 2020; 583:839-844. [PMID: 32699414 DOI: 10.1038/s41586-020-2527-y] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/01/2020] [Indexed: 11/09/2022]
Abstract
Mutations in the leptin gene (ob) result in a metabolic disorder that includes severe obesity1, and defects in thermogenesis2 and lipolysis3, both of which are adipose tissue functions regulated by the sympathetic nervous system. However, the basis of these sympathetic-associated abnormalities remains unclear. Furthermore, chronic leptin administration reverses these abnormalities in adipose tissue, but the underlying mechanism remains to be discovered. Here we report that ob/ob mice, as well as leptin-resistant diet-induced obese mice, show significant reductions of sympathetic innervation of subcutaneous white and brown adipose tissue. Chronic leptin treatment of ob/ob mice restores adipose tissue sympathetic innervation, which in turn is necessary to correct the associated functional defects. The effects of leptin on innervation are mediated via agouti-related peptide and pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus. Deletion of the gene encoding the leptin receptor in either population leads to reduced innervation in fat. These agouti-related peptide and pro-opiomelanocortin neurons act via brain-derived neurotropic factor-expressing neurons in the paraventricular nucleus of the hypothalamus (BDNFPVH). Deletion of BDNFPVH blunts the effects of leptin on innervation. These data show that leptin signalling regulates the plasticity of sympathetic architecture of adipose tissue via a top-down neural pathway that is crucial for energy homeostasis.
Collapse
Affiliation(s)
- Putianqi Wang
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Ken H Loh
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Michelle Wu
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Xiaofei Yu
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Christin Kosse
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Damian Kim
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Jeffrey Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
88
|
Neto J, da Silva DS, da Silva IV, Thill J, Pochmann D, Brito C, Elsner V. Relationship between levels of physical activity and brain derived neurotrophic factor in peripheral blood of monozygotic twins. COMPARATIVE EXERCISE PHYSIOLOGY 2020. [DOI: 10.3920/cep190061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies involving monozigotic (MZ) twins are of great importance for the understanding of genetic and environmental influences without the development of individual pathologies and pathways associated with lifestyle. In this context, discordance has recently been suggested in the levels of the brain-derived neurotrophic factor (BDNF) in MZ twins, which may be associated with the practice of physical activity (PA). The objective was to verify the relationship between the peripheral levels of BDNF and PA in MZ twins. This transversal and quantitative study included 11 pairs of MZ twins that answered the International Physical Activity Questionnaire (IPAQ), a brief anamnesis and were submitted to a blood collection (15 ml) for BDNF levels analysis, measured through ELISA kit according to the manufacturer’s instructions. The study was approved by the Ethics Committee of Centro Universitário Metodista IPA (no. 1.746.954). There was no statistically significant relationship between BDNF and PA levels in sedentary and physically active MZ twins (P=0.431). PA practice does not seem to influence BDNF levels in these individuals.
Collapse
Affiliation(s)
- J.P. Neto
- Programa de Pós-graduação em Biociências e Reabilitação, Centro Universitário Metodista – IPA, Street Coronel Joaquim Pedro Salgado 80 – Rio Branco, Porto Alegre, RS 90420-060, Brazil
- Curso de Fisioterapia, Centro Universitário Anhanguera, Porto Alegre, RS, Brazil
| | - D. Santos da Silva
- Curso de Fisioterapia, Centro Universitário Metodista – IPA, Porto Alegre, RS, Brazil
| | - I.R. Vital da Silva
- Programa de Pós-graduação em Biociências e Reabilitação, Centro Universitário Metodista – IPA, Street Coronel Joaquim Pedro Salgado 80 – Rio Branco, Porto Alegre, RS 90420-060, Brazil
| | - J. Thill
- Curso de Fisioterapia, Centro Universitário Metodista – IPA, Porto Alegre, RS, Brazil
| | - D. Pochmann
- Programa de Pós-graduação em Biociências e Reabilitação, Centro Universitário Metodista – IPA, Street Coronel Joaquim Pedro Salgado 80 – Rio Branco, Porto Alegre, RS 90420-060, Brazil
| | - C. Brito
- Curso de Fisioterapia, Centro Universitário Metodista – IPA, Porto Alegre, RS, Brazil
| | - V.R. Elsner
- Programa de Pós-graduação em Biociências e Reabilitação, Centro Universitário Metodista – IPA, Street Coronel Joaquim Pedro Salgado 80 – Rio Branco, Porto Alegre, RS 90420-060, Brazil
- Curso de Fisioterapia, Centro Universitário Metodista – IPA, Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
89
|
Gonzalez-Gil AM, Elizondo-Montemayor L. The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review. Nutrients 2020; 12:E1899. [PMID: 32604889 PMCID: PMC7353393 DOI: 10.3390/nu12061899] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Exercise is an effective strategy for preventing and treating obesity and its related cardiometabolic disorders, resulting in significant loss of body fat mass, white adipose tissue browning, redistribution of energy substrates, optimization of global energy expenditure, enhancement of hypothalamic circuits that control appetite-satiety and energy expenditure, and decreased systemic inflammation and insulin resistance. Novel exercise-inducible soluble factors, including myokines, hepatokines, and osteokines, and immune cytokines and adipokines are hypothesized to play an important role in the body's response to exercise. To our knowledge, no review has provided a comprehensive integrative overview of these novel molecular players and the mechanisms involved in the redistribution of metabolic fuel during and after exercise, the loss of weight and fat mass, and reduced inflammation. In this review, we explain the potential role of these exercise-inducible factors, namely myokines, such as irisin, IL-6, IL-15, METRNL, BAIBA, and myostatin, and hepatokines, in particular selenoprotein P, fetuin A, FGF21, ANGPTL4, and follistatin. We also describe the function of osteokines, specifically osteocalcin, and of adipokines such as leptin, adiponectin, and resistin. We also emphasize an integrative overview of the pleiotropic mechanisms, the metabolic pathways, and the inter-organ crosstalk involved in energy expenditure, fat mass loss, reduced inflammation, and healthy weight induced by exercise.
Collapse
Affiliation(s)
- Adrian M. Gonzalez-Gil
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey N.L. 64710, Mexico;
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Ave. Morones Prieto 300, Monterrey N.L. 64710, Mexico
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey N.L. 64710, Mexico;
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Ave. Morones Prieto 300, Monterrey N.L. 64710, Mexico
- Tecnologico de Monterrey, Cardiovascular and Metabolomics Research Group, Hospital Zambrano Hellion, San Pedro Garza Garcia P.C. 66278, Mexico
| |
Collapse
|
90
|
Tunçel ÖK, Sarisoy G, Çetin E, Kaynar Tunçel E, Bilgici B, Karaustaoğlu A. Neurotrophic factors in bipolar disorders patients with manic episode. Turk J Med Sci 2020; 50:985-993. [PMID: 32283906 PMCID: PMC7379459 DOI: 10.3906/sag-1907-70] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 04/11/2020] [Indexed: 12/31/2022] Open
Abstract
Background/aim Neurotrophins are one of the most important molecule groups affecting cerebral neuroplasticity. The amount of
evidence about the role of changes in neuroplasticity in the pathophysiology of bipolar disease is growing. Materials and methods We measured serum levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), glial cell-line derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), fibroblast growth factor (FGF)-2, neuritin 1 (Nrn 1) in bipolar 1 manic episode patients (n = 45) and healthy control group. Results When controlled for age, BMI and cortisol, it was found that the serum levels of BDNF, NGF, NT-3, VEGF and FGF-2 of bipolar manic episode patients were not statistically different compared to those of the control group. GDNF level and Nrn 1 levels were significantly lower (P = 0.003 and P = 0.025 respectively) while IGF-1 levels were significantly higher than the control group (P = 0.0001). ROC analysis was performed and the area under the the curve was calculated as 0.737, 0.766 for GDNF, IGF-1 respectively. Conclusion The changes in the levels of GDNF, IGF-1 and Nrn 1 might be involved in pathopysiology of bipolar disorder, and GDNF, IGF-1 may be considered as state markers in bipolar manic episode.
Collapse
Affiliation(s)
- Özgür Korhan Tunçel
- Medical Biochemistry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun,Turkey
| | - Gökhan Sarisoy
- Psychiatry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Eda Çetin
- Psychiatry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | | | - Birşen Bilgici
- Medical Biochemistry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun,Turkey
| | - Arzu Karaustaoğlu
- Medical Biochemistry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun,Turkey
| |
Collapse
|
91
|
Reduction in BDNF from Inefficient Precursor Conversion Influences Nest Building and Promotes Depressive-Like Behavior in Mice. Int J Mol Sci 2020; 21:ijms21113984. [PMID: 32492978 PMCID: PMC7312902 DOI: 10.3390/ijms21113984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/17/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022] Open
Abstract
We generated a knock-in mouse line in which the gene encoding brain-derived neurotrophic factor (Bdnf) was replaced with a sequence for proBDNF containing human single nucleotide polymorphisms encoding arginines proximal to the cleavage site (R125M and R127L). The ratio of the mature form of BDNF (mBDNF) to precursor BDNF (proBDNF) in hippocampal tissue lysates was decreased in a manner dependent on the number of copies of the mutant gene, indicating that the mutations inhibited proteolytic conversion of proBDNF into mBDNF. Although homozygous mice had a proBDNF/mBDNF ratio of ~9:1, they survived until adulthood. The levels of mBDNF were reduced by 57% in heterozygous mutant mice, which exhibited a depressive-like behavior in the tail suspension test and weight gain when housed in social isolation, showing that impaired proBDNF cleavage contributes to stress-induced depressive-like phenotypes. Furthermore, socially isolated heterozygous mice displayed a pronounced deficit in daily nest-building behaviors. These findings suggest that the decreased production of mBDNF by impaired proBDNF cleavage disturbs daily activities in mice.
Collapse
|
92
|
Neuschwander-Tetri BA. Therapeutic Landscape for NAFLD in 2020. Gastroenterology 2020; 158:1984-1998.e3. [PMID: 32061596 DOI: 10.1053/j.gastro.2020.01.051] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Lifestyle modifications focused on healthy eating and regular exercise are the primary recommendations for patients with nonalcoholic steatohepatitis (NASH). However, for multiple societal, psychological, physical, genetic, and epigenetic reasons, the ability of people to adopt and sustain such changes is challenging and typically not successful. To end the epidemic of NASH and prevent its complications, including cirrhosis and hepatocellular carcinoma, pharmacological interventions are now being evaluated in clinical trials. Treatments include drugs targeting energy intake, energy disposal, lipotoxic liver injury, and the resulting inflammation and fibrogenesis that lead to cirrhosis. It is likely that patients develop the phenotype of NASH by multiple mechanisms, and thus the optimal treatments of NASH will likely evolve to personalized therapy once we understand the mechanistic underpinnings of NASH in each patient. Reviewed here is the treatment landscape in this rapidly evolving field with an emphasis on drugs in Phase 2 and Phase 3 trials.
Collapse
|
93
|
Fulgenzi G, Hong Z, Tomassoni-Ardori F, Barella LF, Becker J, Barrick C, Swing D, Yanpallewar S, Croix BS, Wess J, Gavrilova O, Tessarollo L. Novel metabolic role for BDNF in pancreatic β-cell insulin secretion. Nat Commun 2020; 11:1950. [PMID: 32327658 PMCID: PMC7181656 DOI: 10.1038/s41467-020-15833-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
BDNF signaling in hypothalamic circuitries regulates mammalian food intake. However, whether BDNF exerts metabolic effects on peripheral organs is currently unknown. Here, we show that the BDNF receptor TrkB.T1 is expressed by pancreatic β-cells where it regulates insulin release. Mice lacking TrkB.T1 show impaired glucose tolerance and insulin secretion. β-cell BDNF-TrkB.T1 signaling triggers calcium release from intracellular stores, increasing glucose-induced insulin secretion. Additionally, BDNF is secreted by skeletal muscle and muscle-specific BDNF knockout phenocopies the β-cell TrkB.T1 deletion metabolic impairments. The finding that BDNF is also secreted by differentiated human muscle cells and induces insulin secretion in human islets via TrkB.T1 identifies a new regulatory function of BDNF on metabolism that is independent of CNS activity. Our data suggest that muscle-derived BDNF may be a key factor mediating increased glucose metabolism in response to exercise, with implications for the treatment of diabetes and related metabolic diseases. Glucose metabolism is regulated by hypothalamic brain functions and factors produced by peripheral tissues. Here, the authors show that the regulator of food intake Brain-derived neurotrophic factor is also produced and secreted by muscle and stimulates pancreas insulin release.
Collapse
Affiliation(s)
| | - Zhenyi Hong
- Mouse Cancer Genetics Program, CCR, NCI, NIH, Frederick, USA
| | | | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, USA
| | - Jodi Becker
- Mouse Cancer Genetics Program, CCR, NCI, NIH, Frederick, USA
| | - Colleen Barrick
- Mouse Cancer Genetics Program, CCR, NCI, NIH, Frederick, USA
| | - Deborah Swing
- Mouse Cancer Genetics Program, CCR, NCI, NIH, Frederick, USA
| | | | - Brad St Croix
- Mouse Cancer Genetics Program, CCR, NCI, NIH, Frederick, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, USA
| | | | - Lino Tessarollo
- Mouse Cancer Genetics Program, CCR, NCI, NIH, Frederick, USA.
| |
Collapse
|
94
|
Kumar U, Singh S. Role of Somatostatin in the Regulation of Central and Peripheral Factors of Satiety and Obesity. Int J Mol Sci 2020; 21:ijms21072568. [PMID: 32272767 PMCID: PMC7177963 DOI: 10.3390/ijms21072568] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is one of the major social and health problems globally and often associated with various other pathological conditions. In addition to unregulated eating behaviour, circulating peptide-mediated hormonal secretion and signaling pathways play a critical role in food intake induced obesity. Amongst the many peptides involved in the regulation of food-seeking behaviour, somatostatin (SST) is the one which plays a determinant role in the complex process of appetite. SST is involved in the regulation of release and secretion of other peptides, neuronal integrity, and hormonal regulation. Based on past and recent studies, SST might serve as a bridge between central and peripheral tissues with a significant impact on obesity-associated with food intake behaviour and energy expenditure. Here, we present a comprehensive review describing the role of SST in the modulation of multiple central and peripheral signaling molecules. In addition, we highlight recent progress and contribution of SST and its receptors in food-seeking behaviour, obesity (orexigenic), and satiety (anorexigenic) associated pathways and mechanism.
Collapse
|
95
|
Khaltourina D, Matveyev Y, Alekseev A, Cortese F, Ioviţă A. Aging Fits the Disease Criteria of the International Classification of Diseases. Mech Ageing Dev 2020; 189:111230. [PMID: 32251691 DOI: 10.1016/j.mad.2020.111230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
The disease criteria used by the World Health Organization (WHO) were applied to human biological aging in order to assess whether aging can be classified as a disease. These criteria were developed for the 11th revision of the International Classification of Diseases (ICD) and included disease diagnostics, mechanisms, course and outcomes, known interventions, and linkage to genetic and environmental factors. RESULTS: Biological aging can be diagnosed with frailty indices, functional, blood-based biomarkers. A number of major causal mechanisms of human aging involved in various organs have been described, such as inflammation, replicative cellular senescence, immune senescence, proteostasis failures, mitochondrial dysfunctions, fibrotic propensity, hormonal aging, body composition changes, etc. We identified a number of clinically proven interventions, as well as genetic and environmental factors of aging. Therefore, aging fits the ICD-11 criteria and can be considered a disease. Our proposal was submitted to the ICD-11 Joint Task force, and this led to the inclusion of the extension code for "Ageing-related" (XT9T) into the "Causality" section of the ICD-11. This might lead to greater focus on biological aging in global health policy and might provide for more opportunities for the new therapy developers.
Collapse
Affiliation(s)
- Daria Khaltourina
- Department of Risk Factor Prevention, Federal Research Institute for Health Organization and Informatics of Ministry of Health of the Russian Federation, Dobrolyubova St. 11, Moscow, 127254, Russia; International Longevity Alliance, 19 avenue Jean Jaurès, Sceaux, 92330, France.
| | - Yuri Matveyev
- Research Lab, Moscow Regional Research and Clinical Institute, Schepkina St. 61/2 k.1, Moscow, 129110, Russia
| | - Aleksey Alekseev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow, 119991, Russia
| | - Franco Cortese
- Biogerontology Research Foundation, Apt 2354 Chynoweth House, Trevissome Park, Truro, London, TR4 8UN, UK
| | - Anca Ioviţă
- International Longevity Alliance, 19 avenue Jean Jaurès, Sceaux, 92330, France
| |
Collapse
|
96
|
Pascual-Gamarra JM, Salazar-Tortosa DF, Labayen I, Rupérez AI, Censi L, Béghin L, Michels N, Gonzalez-Gross M, Manios Y, Lambrinou CP, Moreno LA, Meirhaeghe A, Castillo MJ, Ruiz JR. Association between CNTF Polymorphisms and Adiposity Markers in European Adolescents. J Pediatr 2020; 219:23-30.e1. [PMID: 32037156 DOI: 10.1016/j.jpeds.2019.12.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/28/2019] [Accepted: 12/17/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To examine the association between polymorphisms of the ciliary neurotrophic factor gene (CNTF) and total and central adiposity markers in adolescents. STUDY DESIGN This cross-sectional study involved 1057 European adolescents aged 12-18 years enrolled in the Healthy Lifestyle in Europe by Nutrition in Adolescence Cross-Sectional Study. Five polymorphisms of CNTF were genotyped, and the weight, height, waist and hip circumference, and triceps and subscapular skinfold thickness of the subjects were measured and recorded. RESULTS The T allele of rs2509914, the C allele of rs2515363, and the G allele of rs2515362 were significantly associated (after Bonferroni correction) with higher values for several adiposity markers under different inheritance models. The CNTF CCGGA haplotype (rs2509914, rs17489568, rs2515363 rs1800169, and rs2515362) was also significantly associated with lower body mass index, waist circumference, waist/height ratio, and waist/hip ratio values compared with the TCCGG haplotype under several inheritance models. CONCLUSIONS Three polymorphisms-rs2509914, rs2515363, and rs2515362-and the CCGGA haplotype of CNTF were significantly associated with adiposity in European adolescents. These results suggest the potential role of CTNF in the development of obesity-related phenotypes.
Collapse
Affiliation(s)
- Jose M Pascual-Gamarra
- PROFITH (Promoting Fitness and Health Through Physical Activity) Research Group, Faculty of Medicine, Department of Physiology, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain.
| | | | - Idoia Labayen
- Department of Health Sciences, Public University of Navarra, Pamplona, Spain
| | - Azahara I Rupérez
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Department of Health and Human Performance, School of Health Sciences, University of Zaragoza, Zaragoza, Spain
| | - Laura Censi
- Council for Agricultural Research and Economics, Research Center for Food and Nutrition, Rome, Italy
| | - Laurent Béghin
- Research Center, Faculty of Medicine, Lille Inflammation Research International Center, Lille Cedex, France
| | - Nathalie Michels
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Marcela Gonzalez-Gross
- Department of Health and Human Performance, Universidad Politécnica de Madrid, Madrid, Spain
| | - Yannis Manios
- Department of Nutrition and Dietetics, Harokopio University of Athens, Greece
| | | | - Luis A Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Department of Health and Human Performance, School of Health Sciences, University of Zaragoza, Zaragoza, Spain
| | - Aline Meirhaeghe
- INSERM, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Manuel J Castillo
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Jonatan R Ruiz
- PROFITH Research Group, Faculty of Sport Sciences, Department of Physical Education and Sport, Sport and Health University Research Institute, University of Granada, Granada, Spain; Department of Biosciences and Nutrition at NOVUM, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
97
|
Nadermann N, Volkoff H. Effects of short-term exercise on food intake and the expression of appetite-regulating factors in goldfish. Peptides 2020; 123:170182. [PMID: 31678371 DOI: 10.1016/j.peptides.2019.170182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
Abstract
In mammals, growing evidence indicates that exercise affects food intake, metabolism and the expression and blood levels of appetite regulators. In this study, we examined the effects of short-term (30 min, at low and high water flow) exercise on food intake, glucose levels and the expressions of appetite regulators in goldfish hypothalamus (irisin, orexin, CART, leptin), intestine (CCK, PYY, proglucagon/GLP-1), muscle (irisin) and liver (leptin), of brain-derived neurotrophic factor (BDNF) in brain, interleukin-6 (IL6) in muscle and hypothalamus, and major metabolic enzymes, the glycolytic enzyme glucokinase (GCK) and its regulatory protein (GCKR) in liver, the lipolytic enzyme lipoprotein lipase in intestine and muscle, and trypsin in intestine. Fish submitted to high flow exercise had a lower post-exercise food intake compared to control fish but no differences were seen in glucose levels between groups. Exercise induced an increase in hypothalamic expression levels of CART, IL6 and BDNF, but not orexin, irisin, CRF, leptin and NPY. High flow exercise induced an increase in intestine CCK, PYY and GLP-1, and muscle irisin and IL-6 expression levels. Exercise had no effects on expression levels of hepatic leptin or any of the metabolic enzymes examined. Our results suggest that, in goldfish, short-term exercise might decrease feeding in part by affecting the expressions of myokines and peripheral, but not central appetite regulators or metabolic enzyme/hormones.
Collapse
Affiliation(s)
- Noelle Nadermann
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada; Hochschule Mannheim University, Mannheim, 68163, Germany
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
98
|
Qureshi K, Neuschwander-Tetri BA. The molecular basis for current targets of NASH therapies. Expert Opin Investig Drugs 2019; 29:151-161. [PMID: 31847612 DOI: 10.1080/13543784.2020.1703949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Nonalcoholic steatohepatitis (NASH) is a leading cause of liver disease in children and adults, a major contributor to health-care expenditures, and now a leading reason for liver transplantation. Adopting lifestyle modifications with regular exercise and a focus on healthy eating habits is the primary recommendation. However, patients are often unable to achieve and sustain such changes for a variety of social, physical, psychological and genetic reasons. Thus, treatments that can prevent and reverse NASH and its associated fibrosis are a major focus of current drug development.Areas covered: This review covers the current understanding of lipotoxic liver injury in the pathogenesis of NASH and how lifestyle modification and the spectrum of drugs currently in clinical trials address the many pathways leading to the phenotype of NASH.Expert opinion: Contrary to the frequently expressed nihilistic view of our understanding of NASH and disappointment with clinical trial results, much is known about the pathogenesis of NASH and there is much reason to be optimistic that effective therapies will be identified in the next 5-10 years. Achieving this will require continued refinement of clinical trial endpoints, continued engagement of trial sponsors and regulatory authorities, and continued participation of dedicated patients in clinical trials.
Collapse
Affiliation(s)
- Kamran Qureshi
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, MO, USA
| | | |
Collapse
|
99
|
You H, Chu P, Guo W, Lu B. A subpopulation of Bdnf-e1-expressing glutamatergic neurons in the lateral hypothalamus critical for thermogenesis control. Mol Metab 2019; 31:109-123. [PMID: 31918913 PMCID: PMC6920260 DOI: 10.1016/j.molmet.2019.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Brown adipose tissue (BAT)–mediated thermogenesis plays a key role in energy homeostasis and the maintenance of body temperature. Previous work suggests that brain-derived neurotrophic factor (BDNF) is involved in BAT thermogenesis, but the underlying neural circuits and molecular mechanism remain largely unknown. This is in part due to the difficulties in manipulating BDNF expression in different brain regions through different promoters and the lack of tools to identify neurons in the brain specifically involved in BAT thermogenesis. Methods We have created several lines of mutant mice in which BDNF transcription from a specific promoter was selectively disrupted by replacing Bdnf with green fluorescent protein (GFP; Bdnf-e1, -e4, and -e6−/− mice). As such, cells expressing Bdnf-e1, -e4, or -e6 were labeled with GFP. To identify BAT-connected thermogenesis neurons in brain, we applied the retrograde pseudorabies virus labeling method from BAT. We also used chemogenetic tools to manipulate specific neurons coupled with BAT temperature recording. Moreover, we developed a new TrkB agonist antibody to rescue the BAT thermogenesis deficits. Results We show that selective disruption of Bdnf expression from promoter 1 (Bdnf-e1) resulted in severe obesity and deficits of BAT-mediated thermogenesis. Body temperature response to cold was impaired in Bdnf-e1−/− mice. BAT expression of Ucp1 and Pcg1a, genes known to regulate thermogenesis, was also reduced, accompanying a decrease in the sympathetic activity of BAT. Staining of cells expressing Bdnf-e1 transcript, combined with transsynaptic, retrograde-tracing labeling of BAT-connected neurons, identified a group of excitatory neurons in lateral hypothalamus (LH) critical for thermogenesis regulation. Moreover, an adaptive thermogenesis defect in Bdnf-e1−/− mice was rescued by injecting an agonistic antibody for TrkB, the BDNF receptor, into LH. Remarkably, activation of the excitatory neurons (VGLUT2+) in LH through chemogenetic tools resulted in a rise of BAT temperature. Conclusions These results reveal a specific role of BDNF promoter I in thermogenesis regulation and define a small subset of neurons in LH that contribute to such regulation. Only Bdnf-e1−/−, but not Bdnf-e4−/− or Bdnf-e6−/−, mutant mice exhibited deficiencies of BAT thermogenesis. Neurons that are both Bdnf-e1 expressing and BAT-connected were found only in LH. BAT-connected neurons in LH are glutamatergic. Activation of the LH glutamatergic neurons resulted in an increase in BAT temperature. Administration of TrkB agonist antibody in LH rescued thermogenesis deficits.
Collapse
Affiliation(s)
- He You
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pengcheng Chu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Bai Lu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
100
|
Redlich R, Schneider I, Kerkenberg N, Opel N, Bauhaus J, Enneking V, Repple J, Leehr EJ, Grotegerd D, Kähler C, Förster K, Dohm K, Meinert S, Hahn T, Kugel H, Schwarte K, Schettler C, Domschke K, Arolt V, Heindel W, Baune BT, Zhang W, Hohoff C, Dannlowski U. The role of BDNF methylation and Val 66 Met in amygdala reactivity during emotion processing. Hum Brain Mapp 2019; 41:594-604. [PMID: 31617281 PMCID: PMC7268057 DOI: 10.1002/hbm.24825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Epigenetic alterations of the brain-derived neurotrophic factor (BDNF) gene have been associated with psychiatric disorders in humans and with differences in amygdala BDNF mRNA levels in rodents. This human study aimed to investigate the relationship between the functional BDNF-Val66 Met polymorphism, its surrounding DNA methylation in BDNF exon IX, amygdala reactivity to emotional faces, and personality traits. Healthy controls (HC, n = 189) underwent functional MRI during an emotional face-matching task. Harm avoidance, novelty seeking and reward dependence were measured using the Tridimensional Personality Questionnaire (TPQ). Individual BDNF methylation profiles were ascertained and associated with several BDNF single nucleotide polymorphisms surrounding the BDNF-Val66 Met, amygdala reactivity, novelty seeking and harm avoidance. Higher BDNF methylation was associated with higher amygdala reactivity (x = 34, y = 0, z = -26, t(166) = 3.00, TFCE = 42.39, p(FWE) = .045), whereby the BDNF-Val66 Met genotype per se did not show any significant association with brain function. Furthermore, novelty seeking was negatively associated with BDNF methylation (r = -.19, p = .015) and amygdala reactivity (r = -.17, p = .028), while harm avoidance showed a trend for a positive association with BDNF methylation (r = .14, p = .066). The study provides first insights into the relationship among BDNF methylation, BDNF genotype, amygdala reactivity and personality traits in humans, highlighting the multidimensional relations among genetics, epigenetics, and neuronal functions. The present study suggests a possible involvement of epigenetic BDNF modifications in psychiatric disorders and related brain functions, whereby high BDNF methylation might reduce BDNF mRNA expression and upregulate amygdala reactivity.
Collapse
Affiliation(s)
- Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ilona Schneider
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | | | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jonas Bauhaus
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | | | - Claas Kähler
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Katharina Dohm
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Kathrin Schwarte
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Katharina Domschke
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Psychiatry, Melbourne Medical School and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Weiqi Zhang
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Christa Hohoff
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|