51
|
Sleep restriction induced energy, methylation and lipogenesis metabolic switches in rat liver. Int J Biochem Cell Biol 2017; 93:129-135. [DOI: 10.1016/j.biocel.2017.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/14/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022]
|
52
|
Helm B, Visser ME, Schwartz W, Kronfeld-Schor N, Gerkema M, Piersma T, Bloch G. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160246. [PMID: 28993490 PMCID: PMC5647273 DOI: 10.1098/rstb.2016.0246] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2017] [Indexed: 12/19/2022] Open
Abstract
Most processes within organisms, and most interactions between organisms and their environment, have distinct time profiles. The temporal coordination of such processes is crucial across levels of biological organization, but disciplines differ widely in their approaches to study timing. Such differences are accentuated between ecologists, who are centrally concerned with a holistic view of an organism in relation to its external environment, and chronobiologists, who emphasize internal timekeeping within an organism and the mechanisms of its adjustment to the environment. We argue that ecological and chronobiological perspectives are complementary, and that studies at the intersection will enable both fields to jointly overcome obstacles that currently hinder progress. However, to achieve this integration, we first have to cross some conceptual barriers, clarifying prohibitively inaccessible terminologies. We critically assess main assumptions and concepts in either field, as well as their common interests. Both approaches intersect in their need to understand the extent and regulation of temporal plasticity, and in the concept of 'chronotype', i.e. the characteristic temporal properties of individuals which are the targets of natural and sexual selection. We then highlight promising developments, point out open questions, acknowledge difficulties and propose directions for further integration of ecological and chronobiological perspectives through Wild Clock research.This article is part of the themed issue 'Wild Clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G128QQ, UK
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO 50, 6700 AB Wageningen, The Netherlands
| | - William Schwartz
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, USA
| | | | - Menno Gerkema
- Chronobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Theunis Piersma
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB Den Burg, Texel, The Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
53
|
den Boon FS, Sarabdjitsingh RA. Circadian and ultradian patterns of HPA-axis activity in rodents: Significance for brain functionality. Best Pract Res Clin Endocrinol Metab 2017; 31:445-457. [PMID: 29223280 DOI: 10.1016/j.beem.2017.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis comprises interactions between the hypothalamus, the pituitary and the adrenal glands and its activation results in the release of corticosteroid hormones. Corticosteroids are secreted from the adrenal gland in a distinct 24-h circadian rhythm overarching an ultradian rhythm, which consists of hourly corticosteroid pulses exposing target tissues to rapidly changing steroid levels. On top of these rhythms surges can take place after stress. HPA-axis rhythms promote adaptation to predictable (i.e. the earth's rotation) and unpredictable (i.e. stressors) changes in environmental factors. Two steroid hormone receptors, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), are activated by corticosteroids and mediate effects at fast and slow timescales on e.g. glucose availability, gene transcription and synaptic plasticity. The current review discusses the origin of the circadian and ultradian corticosteroid rhythms and their relevance for gene regulation, neuroendocrine and physiological responses to stress and the involvement in the maintenance of brain functionality in rodents.
Collapse
Affiliation(s)
- Femke S den Boon
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, UMC Utrecht, The Netherlands
| | | |
Collapse
|
54
|
Orozco-Solis R, Montellier E, Aguilar-Arnal L, Sato S, Vawter MP, Bunney BG, Bunney WE, Sassone-Corsi P. A Circadian Genomic Signature Common to Ketamine and Sleep Deprivation in the Anterior Cingulate Cortex. Biol Psychiatry 2017; 82:351-360. [PMID: 28395871 PMCID: PMC5660920 DOI: 10.1016/j.biopsych.2017.02.1176] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Conventional antidepressants usually require several weeks to achieve a full clinical response in patients with major depressive disorder, an illness associated with dysregulated circadian rhythms and a high incidence of suicidality. Two rapid-acting antidepressant strategies, low-dose ketamine (KT) and sleep deprivation (SD) therapies, dramatically reduce depressive symptoms within 24 hours in a subset of major depressive disorder patients. However, it is unknown whether they exert their actions through shared regulatory mechanisms. To address this question, we performed comparative transcriptomics analyses to identify candidate genes and relevant pathways common to KT and SD. METHODS We used the forced swim test, a standardized behavioral approach to measure antidepressant-like activity of KT and SD. We investigated gene expression changes using high-density microarrays and pathway analyses (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Enrichment Analysis) in KT- and SD-treated mice compared with saline-treated control male mice. RESULTS We show that KT and SD elicit common transcriptional responses implicating distinct elements of the circadian clock and processes involved in neuronal plasticity. There is an overlap of 64 genes whose expression is common in KT and SD. Specifically, there is downregulation of clock genes including Ciart, Per2, Npas4, Dbp, and Rorb in both KT- and SD-treated mice. CONCLUSIONS We demonstrate a potential involvement of the circadian clock in rapid antidepressant responses. These findings could open new research avenues to help design chronopharmacological strategies to treat major depressive disorder.
Collapse
Affiliation(s)
- Ricardo Orozco-Solis
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, Irvine, California
| | - Emilie Montellier
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, Irvine, California
| | - Lorena Aguilar-Arnal
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, Irvine, California
| | - Shogo Sato
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, Irvine, California
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California
| | - Blynn G Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California
| | - William E Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, Irvine, California.
| |
Collapse
|
55
|
Involvement of posttranscriptional regulation of Clock in the emergence of circadian clock oscillation during mouse development. Proc Natl Acad Sci U S A 2017; 114:E7479-E7488. [PMID: 28827343 DOI: 10.1073/pnas.1703170114] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circadian clock oscillation emerges in mouse embryo in the later developmental stages. Although circadian clock development is closely correlated with cellular differentiation, the mechanisms of its emergence during mammalian development are not well understood. Here, we demonstrate an essential role of the posttranscriptional regulation of Clock subsequent to the cellular differentiation for the emergence of circadian clock oscillation in mouse fetal hearts and mouse embryonic stem cells (ESCs). In mouse fetal hearts, no apparent oscillation of cell-autonomous molecular clock was detectable around E10, whereas oscillation was clearly visible in E18 hearts. Temporal RNA-sequencing analysis using mouse fetal hearts reveals many fewer rhythmic genes in E10-12 hearts (63, no core circadian genes) than in E17-19 hearts (483 genes), suggesting the lack of functional circadian transcriptional/translational feedback loops (TTFLs) of core circadian genes in E10 mouse fetal hearts. In both ESCs and E10 embryos, CLOCK protein was absent despite the expression of Clock mRNA, which we showed was due to Dicer/Dgcr8-dependent translational suppression of CLOCK. The CLOCK protein is required for the discernible molecular oscillation in differentiated cells, and the posttranscriptional regulation of Clock plays a role in setting the timing for the emergence of the circadian clock oscillation during mammalian development.
Collapse
|
56
|
Stevenson TJ. Environmental and hormonal regulation of epigenetic enzymes in the hypothalamus. J Neuroendocrinol 2017; 29. [PMID: 28370682 DOI: 10.1111/jne.12471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/09/2017] [Accepted: 03/25/2017] [Indexed: 12/13/2022]
Abstract
Neuroendocrine structures integrate a vast range of external cues and internal signals that, in turn, result in adaptive physiological responses. Emerging data indicate that light, social cues, stress and energy balance stimulate relatively short- and long-term genomic modifications in discrete neuroendocrine structures, which are mediated by epigenetic mechanisms. Moreover, environmentally-induced fluctuations in the synthesis of local hypothalamic and circulating hormones provide an internal signal that contributes to the extensive neuroendocrine genomic plasticity. This review examines the impact of environmental stimuli and endogenous hormonal signals on the regulation of epigenetic enzymes in key neuroendocrine structures. The data discussed are predominantly derived from studies in the neuroendocrine control of seasonal reproduction and the impact of social stress in rodent models. The perspective presented considers the role of oestrogen and glucocorticoids as the primary catalysts for inducing epigenetic modifications (eg, DNA methylation) in specific neuroendocrine structures. Oestrogen and glucocorticoid actions suggest: (i) a preferential action for specific epigenetic enzymes and (ii) nucleus- and cell-specific modifications. Untangling the complex web of hormonal regulation of methylation and acetylation will enhance our understanding of short- and long-term changes in epigenetic enzymes that generate adaptive and pathological neuroendocrine responses.
Collapse
Affiliation(s)
- T J Stevenson
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
57
|
Stokes K, Cooke A, Chang H, Weaver DR, Breault DT, Karpowicz P. The Circadian Clock Gene BMAL1 Coordinates Intestinal Regeneration. Cell Mol Gastroenterol Hepatol 2017; 4:95-114. [PMID: 28593182 PMCID: PMC5453906 DOI: 10.1016/j.jcmgh.2017.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The gastrointestinal syndrome is an illness of the intestine caused by high levels of radiation. It is characterized by extensive loss of epithelial tissue integrity, which initiates a regenerative response by intestinal stem and precursor cells. The intestine has 24-hour rhythms in many physiological functions that are believed to be outputs of the circadian clock: a molecular system that produces 24-hour rhythms in transcription/translation. Certain gastrointestinal illnesses are worsened when the circadian rhythms are disrupted, but the role of the circadian clock in gastrointestinal regeneration has not been studied. METHODS We tested the timing of regeneration in the mouse intestine during the gastrointestinal syndrome. The role of the circadian clock was tested genetically using the BMAL1 loss of function mouse mutant in vivo, and in vitro using intestinal organoid culture. RESULTS The proliferation of the intestinal epithelium follows a 24-hour rhythm during the gastrointestinal syndrome. The circadian clock runs in the intestinal epithelium during this pathologic state, and the loss of the core clock gene, BMAL1, disrupts both the circadian clock and rhythmic proliferation. Circadian activity in the intestine involves a rhythmic production of inflammatory cytokines and subsequent rhythmic activation of the JNK stress response pathway. CONCLUSIONS Our results show that a circadian rhythm in inflammation and regeneration occurs during the gastrointestinal syndrome. The study and treatment of radiation-induced illnesses, and other gastrointestinal illnesses, should consider 24-hour timing in physiology and pathology.
Collapse
Affiliation(s)
- Kyle Stokes
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Abrial Cooke
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Hanna Chang
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - David R. Weaver
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David T. Breault
- Harvard Stem Cell Institute, Cambridge, Massachusetts,Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Phillip Karpowicz
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada,Correspondence Address correspondence to: Phillip Karpowicz, PhD, Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4.Department of Biological SciencesUniversity of WindsorWindsorOntarioCanada N9B 3P4
| |
Collapse
|
58
|
Selfridge JM, Gotoh T, Schiffhauer S, Liu J, Stauffer PE, Li A, Capelluto DGS, Finkielstein CV. Chronotherapy: Intuitive, Sound, Founded…But Not Broadly Applied. Drugs 2017; 76:1507-1521. [PMID: 27699644 PMCID: PMC5082589 DOI: 10.1007/s40265-016-0646-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circadian rhythms are a collection of endogenously driven biochemical, physiological, and behavioral processes that oscillate in a 24-h cycle and can be entrained by external cues. Circadian clock molecules are responsible for the expression of regulatory components that modulate, among others, the cell’s metabolism and energy consumption. In clinical practice, the regulation of clock mechanisms is relevant to biotransformation of therapeutics. Accordingly, xenobiotic metabolism and detoxification, the two processes that directly influence drug effectiveness and toxicity, are direct manifestations of the daily oscillations of the cellular and biochemical processes taking place within the gastrointestinal, hepatic/biliary, and renal/urologic systems. Consequently, the impact of circadian timing should be factored in when developing therapeutic regimens aimed at achieving maximum efficacy, minimum toxicity, and decreased adverse effects in a patient. However, and despite a strong mechanistic foundation, only 0.16 % of ongoing clinical trials worldwide exploit the concept of ‘time-of-day’ administration to develop safer and more effective therapies. In this article, we (1) emphasize points of control at which circadian biology intersects critical processes governing treatment interventions; (2) explore the extent to which chronotherapeutics are incorporated into clinical trials; (3) recognize roadblocks; and (4) recommend approaches to precipitate the integration of chronobiological concepts into clinical practice.
Collapse
Affiliation(s)
- Julia M Selfridge
- Virginia Tech Carilion School of Medicine and Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.,Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Samuel Schiffhauer
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA
| | - JingJing Liu
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Philip E Stauffer
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Andrew Li
- Virginia Tech Carilion School of Medicine and Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.,Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Carla V Finkielstein
- Virginia Tech Carilion School of Medicine and Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA. .,Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, 1015 Life Science Circle, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
59
|
Stevenson TJ. Circannual and circadian rhythms of hypothalamic DNA methyltransferase and histone deacetylase expression in male Siberian hamsters (Phodopus sungorus). Gen Comp Endocrinol 2017; 243:130-137. [PMID: 27916575 DOI: 10.1016/j.ygcen.2016.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022]
Abstract
Precise timing of gene transcription is a fundamental component of many biological rhythms. DNA methylation and histone acetylation are two epigenetic modifications that can affect the probability of gene transcription and RNA expression. Enzymes involved in DNA methylation (dnmts) have been shown to exhibit photoperiodic rhythms in expression in the hypothalamus, which coincide with hypothalamic expression of deiodinase type III (dio3), a gene involved in the photoperiodic regulation of reproduction. It is currently unknown whether enzymes involved in histone deacetylation (hdacs) also vary in response to photoperiod, nor have seasonal changes in the circadian waveforms of methylation and/or acetylation enzymes been examined. The present work documents circadian and photoperiodic changes in dnmts and hdacs in whole hypothalamic dissections obtained from male Siberian hamsters (Phodopus sungorus) after 5-6weeks of exposure to SD. The data indicate that short days (SD) markedly inhibit dnmt3a expression, and that SD inhibition of dnmt3a was evident regardless of the alignment of circadian waveforms. Among hdacs, photoperiodic and circadian changes in expression were only observed in hdac4 expression. Recurrent temporal waveforms in epigenetic enzyme expression may provide molecular inputs to the timing systems that reprogram RNA expression to generate daily and annual phenotypic plasticity.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
60
|
Moraes MN, Mezzalira N, de Assis LVM, Menaker M, Guler A, Castrucci AML. TRPV1 participates in the activation of clock molecular machinery in the brown adipose tissue in response to light-dark cycle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:324-335. [DOI: 10.1016/j.bbamcr.2016.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/07/2016] [Accepted: 11/12/2016] [Indexed: 02/02/2023]
|
61
|
Shukla M, Govitrapong P, Boontem P, Reiter RJ, Satayavivad J. Mechanisms of Melatonin in Alleviating Alzheimer's Disease. Curr Neuropharmacol 2017; 15:1010-1031. [PMID: 28294066 PMCID: PMC5652010 DOI: 10.2174/1570159x15666170313123454] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic, progressive and prevalent neurodegenerative disease characterized by the loss of higher cognitive functions and an associated loss of memory. The thus far "incurable" stigma for AD prevails because of variations in the success rates of different treatment protocols in animal and human studies. Among the classical hypotheses explaining AD pathogenesis, the amyloid hypothesis is currently being targeted for drug development. The underlying concept is to prevent the formation of these neurotoxic peptides which play a central role in AD pathology and trigger a multispectral cascade of neurodegenerative processes post-aggregation. This could possibly be achieved by pharmacological inhibition of β- or γ-secretase or stimulating the nonamyloidogenic α-secretase. Melatonin the pineal hormone is a multifunctioning indoleamine. Production of this amphiphilic molecule diminishes with advancing age and this decrease runs parallel with the progression of AD which itself explains the potential benefits of melatonin in line of development and devastating consequences of the disease progression. Our recent studies have revealed a novel mechanism by which melatonin stimulates the nonamyloidogenic processing and inhibits the amyloidogenic processing of β-amyloid precursor protein (βAPP) by stimulating α -secretases and consequently down regulating both β- and γ-secretases at the transcriptional level. In this review, we discuss and evaluate the neuroprotective functions of melatonin in AD pathogenesis, including its role in the classical hypotheses in cellular and animal models and clinical interventions in AD patients, and suggest that with early detection, melatonin treatment is qualified to be an anti-AD therapy.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Parichart Boontem
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jutamaad Satayavivad
- Chulabhorn Research Institute and Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok10210, Thailand
| |
Collapse
|
62
|
Romano A, De Giorgio B, Parolini M, Favero C, Possenti CD, Iodice S, Caprioli M, Rubolini D, Ambrosini R, Gianfranceschi L, Saino N, Bollati V. Methylation of the circadian Clock gene in the offspring of a free-living passerine bird increases with maternal and individual exposure to PM 10. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:29-37. [PMID: 27712846 DOI: 10.1016/j.envpol.2016.08.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/01/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
The consequences of exposure to particulate matter (PM) have been thoroughly investigated in humans and other model species, but there is a dearth of studies of the effects of PM on physiology and life-history traits of non-human organisms living in natural or semi-natural environments. Besides toxicological relevance, PM has been recently suggested to exert epigenetic effects by altering DNA methylation patterns. Here, we investigated for the first time the association between the exposure to free-air PM10 and DNA methylation at two loci ('poly-Q exon' and '5'-UTR') of the Clock gene in blood cells of the nestlings of a synanthropic passerine bird, the barn swallow (Hirundo rustica). The Clock gene is a phylogenetically highly conserved gene playing a major role in governing circadian rhythms and circannual life cycles of animals, implying that change in its level of methylation can impact on important fitness traits. We found that methylation at both loci significantly increased with PM10 levels recorded few days before blood sampling, and also with PM10 exposure experienced by the mother during or shortly before egg laying. This study is the first where methylation at a functionally important gene has been shown to vary according to the concentration of anthropogenic pollutants in any animal species in the wild. Since early-life environmental conditions produce epigenetic effects that can transgenerationally be transmitted, DNA methylation of genes controlling photoperiodic response can have far reaching consequences for the ecology and the evolution of wild animal populations.
Collapse
Affiliation(s)
- Andrea Romano
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Barbara De Giorgio
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, University of Milan, via San Barnaba 8, I-20122 Milan, Italy
| | - Marco Parolini
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Chiara Favero
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, University of Milan, via San Barnaba 8, I-20122 Milan, Italy
| | | | - Simona Iodice
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, University of Milan, via San Barnaba 8, I-20122 Milan, Italy
| | - Manuela Caprioli
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Diego Rubolini
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Roberto Ambrosini
- Department of Earth and Environmental Sciences (DISAT), University of Milano Bicocca, Piazza della Scienza, 1, I-20126 Milan, Italy
| | - Luca Gianfranceschi
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| | - Nicola Saino
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, University of Milan, via San Barnaba 8, I-20122 Milan, Italy.
| |
Collapse
|
63
|
Garay PM, Wallner MA, Iwase S. Yin-yang actions of histone methylation regulatory complexes in the brain. Epigenomics 2016; 8:1689-1708. [PMID: 27855486 PMCID: PMC5289040 DOI: 10.2217/epi-2016-0090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of histone methylation has emerged as a major driver of neurodevelopmental disorders including intellectual disabilities and autism spectrum disorders. Histone methyl writer and eraser enzymes generally act within multisubunit complexes rather than in isolation. However, it remains largely elusive how such complexes cooperate to achieve the precise spatiotemporal gene expression in the developing brain. Histone H3K4 methylation (H3K4me) is a chromatin signature associated with active gene-regulatory elements. We review a body of literature that supports a model in which the RAI1-containing H3K4me writer complex counterbalances the LSD1-containing H3K4me eraser complex to ensure normal brain development. This model predicts H3K4me as the nexus of previously unrelated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Patricia Marie Garay
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Shigeki Iwase
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
64
|
Abstract
A majority of mammalian genes exhibit daily fluctuations in expression levels, making circadian expression rhythms the largest known regulatory network in normal physiology. Cell-autonomous circadian clocks interact with daily light-dark and feeding-fasting cycles to generate approximately 24-hour oscillations in the function of thousands of genes. Circadian expression of secreted molecules and signaling components transmits timing information between cells and tissues. Such intra- and intercellular daily rhythms optimize physiology both by managing energy use and by temporally segregating incompatible processes. Experimental animal models and epidemiological data indicate that chronic circadian rhythm disruption increases the risk of metabolic diseases. Conversely, time-restricted feeding, which imposes daily cycles of feeding and fasting without caloric reduction, sustains robust diurnal rhythms and can alleviate metabolic diseases. These findings highlight an integrative role of circadian rhythms in physiology and offer a new perspective for treating chronic diseases in which metabolic disruption is a hallmark.
Collapse
Affiliation(s)
- Satchidananda Panda
- Salk Institute of Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
65
|
Bu B, Zhang L. A New Link Between Insulin Signaling and Fragile X Syndrome. Neurosci Bull 2016; 33:118-120. [PMID: 27838827 DOI: 10.1007/s12264-016-0083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Bei Bu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
66
|
Li S, Shui K, Zhang Y, Lv Y, Deng W, Ullah S, Zhang L, Xue Y. CGDB: a database of circadian genes in eukaryotes. Nucleic Acids Res 2016; 45:D397-D403. [PMID: 27789706 PMCID: PMC5210527 DOI: 10.1093/nar/gkw1028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/17/2022] Open
Abstract
We report a database of circadian genes in eukaryotes (CGDB, http://cgdb.biocuckoo.org), containing ∼73 000 circadian-related genes in 68 animals, 39 plants and 41 fungi. Circadian rhythm is ∼24 h rhythm in behavioral and physiological processes that exists in almost all organisms on the earth. Defects in the circadian system are highly associated with a number of diseases such as cancers. Although several databases have been established for rhythmically expressed genes, a comprehensive database of cycling genes across phyla is still lacking. From the literature, we collected 1382 genes of which transcript level oscillations were validated using methods such as RT-PCR, northern blot and in situ hybridization. Given that many genes exhibit different oscillatory patterns in different tissues/cells within an organism, we have included information regarding the phase and amplitude of the oscillation, as well as the tissue/cells in which the oscillation was identified. Using these well characterized cycling genes, we have then conducted an orthologous search and identified ∼45 000 potential cycling genes from 148 eukaryotes. Given that significant effort has been devoted to identifying cycling genes by transcriptome profiling, we have also incorporated these results, a total of over 26 000 genes, into our database.
Collapse
Affiliation(s)
- Shujing Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Ke Shui
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yongqiang Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wankun Deng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shahid Ullah
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
67
|
Gillespie ZE, Pickering J, Eskiw CH. Better Living through Chemistry: Caloric Restriction (CR) and CR Mimetics Alter Genome Function to Promote Increased Health and Lifespan. Front Genet 2016; 7:142. [PMID: 27588026 PMCID: PMC4988992 DOI: 10.3389/fgene.2016.00142] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022] Open
Abstract
Caloric restriction (CR), defined as decreased nutrient intake without causing malnutrition, has been documented to increase both health and lifespan across numerous organisms, including humans. Many drugs and other compounds naturally occurring in our diet (nutraceuticals) have been postulated to act as mimetics of caloric restriction, leading to a wave of research investigating the efficacy of these compounds in preventing age-related diseases and promoting healthier, longer lifespans. Although well studied at the biochemical level, there are still many unanswered questions about how CR and CR mimetics impact genome function and structure. Here we discuss how genome function and structure are influenced by CR and potential CR mimetics, including changes in gene expression profiles and epigenetic modifications and their potential to identify the genetic fountain of youth.
Collapse
Affiliation(s)
- Zoe E Gillespie
- Department of Food and Bioproduct Sciences, University of Saskatchewan Saskatoon, SK, Canada
| | - Joshua Pickering
- Department of Biochemistry, University of Saskatchewan Saskatoon, SK, Canada
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences, University of SaskatchewanSaskatoon, SK, Canada; Department of Biochemistry, University of SaskatchewanSaskatoon, SK, Canada
| |
Collapse
|
68
|
Hurley JM, Loros JJ, Dunlap JC. Circadian Oscillators: Around the Transcription-Translation Feedback Loop and on to Output. Trends Biochem Sci 2016; 41:834-846. [PMID: 27498225 DOI: 10.1016/j.tibs.2016.07.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Abstract
From cyanobacteria to mammals, organisms have evolved timing mechanisms to adapt to environmental changes in order to optimize survival and improve fitness. To anticipate these regular daily cycles, many organisms manifest ∼24h cell-autonomous oscillations that are sustained by transcription-translation-based or post-transcriptional negative-feedback loops that control a wide range of biological processes. With an eye to identifying emerging common themes among cyanobacterial, fungal, and animal clocks, some major recent developments in the understanding of the mechanisms that regulate these oscillators and their output are discussed. These include roles for antisense transcription, intrinsically disordered proteins, codon bias in clock genes, and a more focused discussion of post-transcriptional and translational regulation as a part of both the oscillator and output.
Collapse
Affiliation(s)
- Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Jennifer J Loros
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
69
|
Deibel SH, Zelinski EL, Keeley RJ, Kovalchuk O, McDonald RJ. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline. Oncotarget 2016; 6:23181-203. [PMID: 26252151 PMCID: PMC4695111 DOI: 10.18632/oncotarget.4036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 12/31/1969] [Indexed: 12/16/2022] Open
Abstract
Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline.
Collapse
Affiliation(s)
- Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Erin L Zelinski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robin J Keeley
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
70
|
Rangappa SB, Munivenkatappa S, Narayanaswamy JC, Jain S, Reddy YCJ. Predominant mania course in Indian patients with bipolar I disorder. Asian J Psychiatr 2016; 22:22-7. [PMID: 27520890 DOI: 10.1016/j.ajp.2016.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/03/2016] [Accepted: 04/16/2016] [Indexed: 01/22/2023]
Abstract
Many long-term follow-up studies suggest that bipolar disorder (BD) is highly recurrent and that depressive episodes are commoner than hypomania/manic episodes. However, some studies from tropical countries including India suggest that the patients experience a greater proportion of manic episodes than depressive episodes. The aim of the present study was to examine the course of BD type 1 (BD I) in a sample of hospitalized Indian subjects. We examined the clinical course of 285 BD I subjects with at least 5 years of illness using standard life charting method. These subjects were hospitalized between October 2010 and October 2012. The predominant polarity (having at least two-thirds of their lifetime episodes at one polarity) was mania (79%). Unipolar mania (≥ 3 mania episodes and no episodes of depression) was observed in 48% of the subjects. The frequency of rapid cycling course was noted in 2.5% of the subjects. Predominant manic polarity group had the illness onset mostly with a manic episode (88.9%) and the predominant depressive polarity group with a depressive episode (73.8%). Mania was the predominant polarity with a high rate of unipolar mania and a majority of the subjects had greater number of manic episodes than depressive/mixed episodes. The onset polarity determined the predominant polarity during the course of illness. Predominantly, mania course could have significant implications in the treatment of bipolar disorder.
Collapse
Affiliation(s)
- Sushma Bilichodu Rangappa
- Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Shashidhara Munivenkatappa
- Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | | | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Y C Janardhan Reddy
- Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|
71
|
Wadas B, Borjigin J, Huang Z, Oh JH, Hwang CS, Varshavsky A. Degradation of Serotonin N-Acetyltransferase, a Circadian Regulator, by the N-end Rule Pathway. J Biol Chem 2016; 291:17178-96. [PMID: 27339900 DOI: 10.1074/jbc.m116.734640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Indexed: 12/22/2022] Open
Abstract
Serotonin N-acetyltransferase (AANAT) converts serotonin to N-acetylserotonin (NAS), a distinct biological regulator and the immediate precursor of melatonin, a circulating hormone that influences circadian processes, including sleep. N-terminal sequences of AANAT enzymes vary among vertebrates. Mechanisms that regulate the levels of AANAT are incompletely understood. Previous findings were consistent with the possibility that AANAT may be controlled through its degradation by the N-end rule pathway. By expressing the rat and human AANATs and their mutants not only in mammalian cells but also in the yeast Saccharomyces cerevisiae, and by taking advantage of yeast genetics, we show here that two "complementary" forms of rat AANAT are targeted for degradation by two "complementary" branches of the N-end rule pathway. Specifically, the N(α)-terminally acetylated (Nt-acetylated) Ac-AANAT is destroyed through the recognition of its Nt-acetylated N-terminal Met residue by the Ac/N-end rule pathway, whereas the non-Nt-acetylated AANAT is targeted by the Arg/N-end rule pathway, which recognizes the unacetylated N-terminal Met-Leu sequence of rat AANAT. We also show, by constructing lysine-to-arginine mutants of rat AANAT, that its degradation is mediated by polyubiquitylation of its Lys residue(s). Human AANAT, whose N-terminal sequence differs from that of rodent AANATs, is longer-lived than its rat counterpart and appears to be refractory to degradation by the N-end rule pathway. Together, these and related results indicate both a major involvement of the N-end rule pathway in the control of rodent AANATs and substantial differences in the regulation of rodent and human AANATs that stem from differences in their N-terminal sequences.
Collapse
Affiliation(s)
- Brandon Wadas
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Jimo Borjigin
- the Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Zheping Huang
- the Department of Immunology, University of Connecticut School of Medicine, Farmington, Connecticut 06030, and
| | - Jang-Hyun Oh
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Cheol-Sang Hwang
- the Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 790-784, South Korea
| | - Alexander Varshavsky
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125,
| |
Collapse
|
72
|
Abstract
Most animals alternate periods of feeding with periods of fasting often coinciding with sleep. Upon >24 hr of fasting, humans, rodents, and other mammals enter alternative metabolic phases, which rely less on glucose and more on ketone body-like carbon sources. Both intermittent and periodic fasting result in benefits ranging from the prevention to the enhanced treatment of diseases. Similarly, time-restricted feeding (TRF), in which food consumption is restricted to certain hours of the day, allows the daily fasting period to last >12 hr, thus imparting pleiotropic benefits. Understanding the mechanistic link between nutrients and the fasting benefits is leading to the identification of fasting-mimicking diets (FMDs) that achieve changes similar to those caused by fasting. Given the pleiotropic and sustained benefits of TRF and FMDs, both basic science and translational research are warranted to develop fasting-associated interventions into feasible, effective, and inexpensive treatments with the potential to improve healthspan.
Collapse
|
73
|
Lynch EWJ, Coyle CS, Lorgen M, Campbell EM, Bowman AS, Stevenson TJ. Cyclical DNA Methyltransferase 3a Expression Is a Seasonal and Estrus Timer in Reproductive Tissues. Endocrinology 2016; 157:2469-78. [PMID: 27105384 DOI: 10.1210/en.2015-1988] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is becoming clear that epigenetic modifications such as DNA methylation can be dynamic and, in many cases, reversible. Here we investigated the photoperiod and hormone regulation of DNA methylation in testes, ovaries, and uterine tissue across multiple time scales. We hypothesized that DNA methyltransferase 3a (dnmt3a) is driven by photoperiodic treatment and exhibits natural variation across the female reproductive cycle and that melatonin increases whereas estrogen reduces DNA methylation. We used Siberian hamsters (Phodopus sungorus) due to their robust changes in reproductive physiology across seasonal and estrus time scales. Our findings indicate that short-day (SD) winter-like conditions significantly increased global DNA methylation and dnmt3a expression in the testes. Using immunohistochemistry, we confirm that increased dnmt3a expression was primarily localized to spermatogonium. Conversely, the ovaries did not exhibit variation in DNA methylation or dnmt3a/3b expression. However, exposure to SD significantly increased uterine dnmt3a expression. We then determined that dnmt3a was significantly decreased during the estrus stage. Next, we ovariectomized females and subsequently identified that a single estrogen+progesterone injection was sufficient to rapidly inhibit dnmt3a and dnmt3b expression. Finally, we demonstrate that treatment of human embryonic kidney-293 cells with melatonin significantly increased both dnmt3a and dnmt3b expression, suggesting that long-duration nocturnal signaling in SD may be involved in the regulation of DNA methylation in both sexes. Overall, our data indicate that dnmt3a shows marked photoperiod and estrus plasticity that likely has broad downstream effects on the timing of the genomic control of reproductive function.
Collapse
Affiliation(s)
- Eloise W J Lynch
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Chris S Coyle
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Marlene Lorgen
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Ewan M Campbell
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Alan S Bowman
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Tyler J Stevenson
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| |
Collapse
|
74
|
Solovyov IA, Dobrovol’skaya EV, Moskalev AA. Genetic control of circadian rhythms and aging. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416040104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
75
|
Derous D, Mitchell SE, Green CL, Chen L, Han JJ, Wang Y, Promislow DE, Lusseau D, Speakman JR, Douglas A. The effects of graded levels of calorie restriction: VI. Impact of short-term graded calorie restriction on transcriptomic responses of the hypothalamic hunger and circadian signaling pathways. Aging (Albany NY) 2016; 8:642-63. [PMID: 26945906 PMCID: PMC4925820 DOI: 10.18632/aging.100895] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/20/2016] [Indexed: 01/03/2023]
Abstract
Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti-ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin-like growth factor 1 (IGF-1), insulin, and tumor necrosis factor alpha (TNF-α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF-α, leptin and IGF-1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes.
Collapse
Affiliation(s)
- Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, Scotland, AB24 3RL, UK
| | - Sharon E. Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - Cara L. Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - Luonan Chen
- Key laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing‐Dong J. Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences‐Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingchun Wang
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Daniel E.L. Promislow
- Department of Pathology and Department of Biology, University of Washington at Seattle, Seattle, WA 98195, USA
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, Scotland, AB24 3RL, UK
| |
Collapse
|
76
|
Sarnowski C, Laprise C, Malerba G, Moffatt MF, Dizier MH, Morin A, Vincent QB, Rohde K, Esparza-Gordillo J, Margaritte-Jeannin P, Liang L, Lee YA, Bousquet J, Siroux V, Pignatti PF, Cookson WO, Lathrop M, Pastinen T, Demenais F, Bouzigon E. DNA methylation within melatonin receptor 1A (MTNR1A) mediates paternally transmitted genetic variant effect on asthma plus rhinitis. J Allergy Clin Immunol 2016; 138:748-753. [PMID: 27038909 DOI: 10.1016/j.jaci.2015.12.1341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/10/2015] [Accepted: 12/15/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Asthma and allergic rhinitis (AR) are common allergic comorbidities with a strong genetic component in which epigenetic mechanisms might be involved. OBJECTIVE We aimed to identify novel risk loci for asthma and AR while accounting for parent-of-origin effect. METHODS We performed a series of genetic analyses, taking into account the parent-of-origin effect in families ascertained through asthma: (1) genome-wide linkage scan of asthma and AR in 615 European families, (2) association analysis with 1233 single nucleotide polymorphisms (SNPs) covering the significant linkage region in 162 French Epidemiological Study on the Genetics and Environment of Asthma families with replication in 154 Canadian Saguenay-Lac-Saint-Jean asthma study families, and (3) association analysis of disease and significant SNPs with DNA methylation (DNAm) at CpG sites in 40 Saguenay-Lac-Saint-Jean asthma study families. RESULTS We detected a significant paternal linkage of the 4q35 region to asthma and allergic rhinitis comorbidity (AAR; P = 7.2 × 10(-5)). Association analysis in this region showed strong evidence for the effect of the paternally inherited G allele of rs10009104 on AAR (P = 1.1 × 10(-5), reaching the multiple-testing corrected threshold). This paternally inherited allele was also significantly associated with DNAm levels at the cg02303933 site (P = 1.7 × 10(-4)). Differential DNAm at this site was found to mediate the identified SNP-AAR association. CONCLUSION By integrating genetic and epigenetic data, we identified that a differentially methylated CpG site within the melatonin receptor 1A (MTNR1A) gene mediates the effect of a paternally transmitted genetic variant on the comorbidity of asthma and AR. This study provides a novel insight into the role of epigenetic mechanisms in patients with allergic respiratory diseases.
Collapse
Affiliation(s)
- Chloé Sarnowski
- INSERM, UMR946, Genetic Variation and Human Diseases Unit, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | | | - Giovanni Malerba
- Section of Biology and Genetics, Department of Mother and Child, and Biology-Genetics, University of Verona, Verona, Italy
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Marie-Hélène Dizier
- INSERM, UMR946, Genetic Variation and Human Diseases Unit, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Andréanne Morin
- Université du Québec, à Chicoutimi, Québec, Canada; McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada
| | - Quentin B Vincent
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, UMR1163, Paris, France; Université Paris Descartes, Imagine Institute, Paris, France
| | - Klaus Rohde
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Jorge Esparza-Gordillo
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; Clinic for Pediatric Allergy, Experimental and Clinical Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Margaritte-Jeannin
- INSERM, UMR946, Genetic Variation and Human Diseases Unit, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Liming Liang
- Department of Epidemiology, Harvard School of Public Health, Boston, Mass
| | - Young-Ae Lee
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Jean Bousquet
- Hôpital Arnaud de Villeneuve, Service des Maladies Respiratoires, Montpellier, France
| | - Valérie Siroux
- Université Grenoble Alpes, IAB, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France; INSERM, IAB, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France; CHU de Grenoble, IAB, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Pier Franco Pignatti
- Section of Biology and Genetics, Department of Mother and Child, and Biology-Genetics, University of Verona, Verona, Italy
| | - William O Cookson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Mark Lathrop
- McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada
| | - Tomi Pastinen
- McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada
| | - Florence Demenais
- INSERM, UMR946, Genetic Variation and Human Diseases Unit, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Emmanuelle Bouzigon
- INSERM, UMR946, Genetic Variation and Human Diseases Unit, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.
| |
Collapse
|
77
|
Orozco-Solis R, Aguilar-Arnal L, Murakami M, Peruquetti R, Ramadori G, Coppari R, Sassone-Corsi P. The Circadian Clock in the Ventromedial Hypothalamus Controls Cyclic Energy Expenditure. Cell Metab 2016; 23:467-78. [PMID: 26959185 PMCID: PMC5373494 DOI: 10.1016/j.cmet.2016.02.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/07/2015] [Accepted: 02/05/2016] [Indexed: 11/21/2022]
Abstract
Organismal homeostasis relies on coherent interactions among tissues, specifically between brain-driven functions and peripheral metabolic organs. Hypothalamic circuits compute metabolic information to optimize energetic resources, but the role of the circadian clock in these pathways remains unclear. We have generated mice with targeted ablation of the core-clock gene Bmal1 within Sf1-neurons of the ventromedial hypothalamus (VMH). While this mutation does not affect the central clock in the suprachiasmatic nucleus (SCN), the VMH clock controls cyclic thermogenesis in brown adipose tissue (BAT), a tissue that governs energy balance by dissipating chemical energy as heat. VMH-driven control is exerted through increased adrenergic signaling within the sympathetic nervous system, without affecting the BAT's endogenous clock. Moreover, we show that the VMH circadian clock computes light and feeding inputs to modulate basal energy expenditure. Thus, we reveal a previously unsuspected circuit where an SCN-independent, hypothalamic circadian clock controls BAT function, energy expenditure, and thermogenesis.
Collapse
Affiliation(s)
- Ricardo Orozco-Solis
- Center for Epigenetics and Metabolism, Unite 904 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Lorena Aguilar-Arnal
- Center for Epigenetics and Metabolism, Unite 904 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Mari Murakami
- Center for Epigenetics and Metabolism, Unite 904 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rita Peruquetti
- Center for Epigenetics and Metabolism, Unite 904 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Giorgio Ramadori
- CMU Departement Phyme, Universite de Geneve, rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Roberto Coppari
- CMU Departement Phyme, Universite de Geneve, rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Unite 904 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
78
|
Zhou D, Wang Y, Chen L, Jia L, Yuan J, Sun M, Zhang W, Wang P, Zuo J, Xu Z, Luan J. Evolving roles of circadian rhythms in liver homeostasis and pathology. Oncotarget 2016; 7:8625-39. [PMID: 26843619 PMCID: PMC4890992 DOI: 10.18632/oncotarget.7065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Circadian clock in mammals is determined by a core oscillator in the suprachiasmatic nucleus (SCN) of the hypothalamus and synchronized peripheral clocks in other tissues. The coherent timing systems could sustain robust output of circadian rhythms in response to the entrainment controlled environmentally. Disparate approaches have discovered that clock genes and clock-controlled genes (CCGs) exist in nearly all mammalian cell types and are essential for establishing the mechanisms and complexity of internal time-keeping systems. Accumulating evidence demonstrates that the control of homeostasis and pathology in the liver involves intricate loops of transcriptional and post-translational regulation of clock genes expression. This review will focus on the recent advances with great importance concerning clock rhythms linking liver homeostasis and diseases. We particularly highlight what is currently known of the evolving insights into the mechanisms underlying circadian clock . Eventually , findings during recent years in the field might prompt new circadian-related chronotherapeutic strategies for the diagnosis and treatment of liver diseases by coupling these processes.
Collapse
Affiliation(s)
- Dexi Zhou
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Yaqin Wang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Lu Chen
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Leijuan Jia
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jie Yuan
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Mei Sun
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Wen Zhang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Peipei Wang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jian Zuo
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhenyu Xu
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jiajie Luan
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
79
|
Ray S, Reddy AB. Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness. Bioessays 2016; 38:394-405. [PMID: 26866932 PMCID: PMC4817226 DOI: 10.1002/bies.201500056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep‐wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of autonomous redox oscillations in cells has expanded our view of the clockwork beyond conventional transcription/translation feedback loop models, which have been dominant since the first circadian period mutants were identified in fruit fly. Consequently, non‐transcriptional timekeeping mechanisms have been proposed, and the antioxidant peroxiredoxin proteins have been identified as conserved markers for 24‐hour rhythms. Here, we review recent advances in our understanding of interdependencies amongst circadian rhythms, sleep homeostasis, redox cycles, and other cellular metabolic networks. We speculate that systems‐level investigations implementing integrated multi‐omics approaches could provide novel mechanistic insights into the connectivity between daily cycles and metabolic systems.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Akhilesh B Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
80
|
Hosokawa T, Tsuchiya Y, Okubo N, Kunimoto T, Minami Y, Fujiwara H, Umemura Y, Koike N, Kubo T, Yagita K. Robust Circadian Rhythm and Parathyroid Hormone-Induced Resetting during Hypertrophic Differentiation in ATDC5 Chondroprogenitor Cells. Acta Histochem Cytochem 2015; 48:165-71. [PMID: 26855448 PMCID: PMC4731854 DOI: 10.1267/ahc.15025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/04/2015] [Indexed: 11/22/2022] Open
Abstract
Cartilage tissues possess intrinsic circadian oscillators, which influence chondrocyte function and chondrocyte specific gene expression. However, it is not fully understood how chondrogenesis influences the circadian clock, and vice versa. Thus, we established ATDC5 cells which were stably transfected with the Bmal1:luc reporter and revealed robust circadian rhythms in ATDC5 cells during differentiation. Moreover, the circadian clock in ATDC5 cells was strongly reset by PTH in a circadian time-dependent manner. This assay system is expected to be useful for investigating the role of the circadian clock in chondrogenic differentiation and the precise molecular mechanisms underlying PTH action on the chondrocyte circadian clock.
Collapse
Affiliation(s)
- Toshihiro Hosokawa
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine
- Department of Musculoskeletal Chronobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Yoshiki Tsuchiya
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine
| | - Naoki Okubo
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine
- Department of Musculoskeletal Chronobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Tatsuya Kunimoto
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine
- Department of Musculoskeletal Chronobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Yoichi Minami
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine
- Department of Musculoskeletal Chronobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Hiroyoshi Fujiwara
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Yasuhiro Umemura
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine
| | - Toshikazu Kubo
- Department of Musculoskeletal Chronobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine
- Department of Musculoskeletal Chronobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
81
|
Tsuchiya Y, Minami Y, Umemura Y, Watanabe H, Ono D, Nakamura W, Takahashi T, Honma S, Kondoh G, Matsuishi T, Yagita K. Disruption of MeCP2 attenuates circadian rhythm in CRISPR/Cas9-based Rett syndrome model mouse. Genes Cells 2015; 20:992-1005. [DOI: 10.1111/gtc.12305] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/23/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Yoshiki Tsuchiya
- Department of Physiology and Systems Bioscience; Kyoto Prefectural University of Medicine; Kyoto 602-8566 Japan
| | - Yoichi Minami
- Department of Physiology and Systems Bioscience; Kyoto Prefectural University of Medicine; Kyoto 602-8566 Japan
| | - Yasuhiro Umemura
- Department of Physiology and Systems Bioscience; Kyoto Prefectural University of Medicine; Kyoto 602-8566 Japan
| | - Hitomi Watanabe
- Laboratory of Animal Experiments for Regeneration; Institute for Frontier Medical Sciences; Kyoto University; Kyoto 606-8507 Japan
| | - Daisuke Ono
- Department of Chronomedicine; Hokkaido University Graduate School of Medicine; Sapporo 060-8638 Japan
| | - Wataru Nakamura
- Laboratory of Oral Chronobiology; Graduate School of Dentistry; Osaka University; Suita Osaka 565-0871 Japan
| | - Tomoyuki Takahashi
- Department of Pediatrics and Child Health; Kurume University School of Medicine; Kurume 830-0011 Japan
| | - Sato Honma
- Department of Chronomedicine; Hokkaido University Graduate School of Medicine; Sapporo 060-8638 Japan
| | - Gen Kondoh
- Laboratory of Animal Experiments for Regeneration; Institute for Frontier Medical Sciences; Kyoto University; Kyoto 606-8507 Japan
| | - Toyojiro Matsuishi
- Department of Pediatrics and Child Health; Kurume University School of Medicine; Kurume 830-0011 Japan
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience; Kyoto Prefectural University of Medicine; Kyoto 602-8566 Japan
| |
Collapse
|
82
|
Abstract
Circadian regulation of epigenetic chromatin marks drives daily transcriptional oscillation of thousands of genes and is intimately linked to cellular metabolism and bioenergetics. New work links circadian fluctuations in the activity of the SIRT1 deacetylase, a sensor of the cellular energy state, to histone-methylation changes and the circadian expression of clock-controlled genes.
Collapse
|
83
|
Perreau-Lenz S, Spanagel R. Clock genes × stress × reward interactions in alcohol and substance use disorders. Alcohol 2015; 49:351-7. [PMID: 25943583 PMCID: PMC4457607 DOI: 10.1016/j.alcohol.2015.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 12/31/2022]
Abstract
Adverse life events and highly stressful environments have deleterious consequences for mental health. Those environmental factors can potentiate alcohol and drug abuse in vulnerable individuals carrying specific genetic risk factors, hence producing the final risk for alcohol- and substance-use disorders development. The nature of these genes remains to be fully determined, but studies indicate their direct or indirect relation to the stress hypothalamo-pituitary-adrenal (HPA) axis and/or reward systems. Over the past decade, clock genes have been revealed to be key-players in influencing acute and chronic alcohol/drug effects. In parallel, the influence of chronic stress and stressful life events in promoting alcohol and substance use and abuse has been demonstrated. Furthermore, the reciprocal interaction of clock genes with various HPA-axis components, as well as the evidence for an implication of clock genes in stress-induced alcohol abuse, have led to the idea that clock genes, and Period genes in particular, may represent key genetic factors to consider when examining gene × environment interaction in the etiology of addiction. The aim of the present review is to summarize findings linking clock genes, stress, and alcohol and substance abuse, and to propose potential underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Stéphanie Perreau-Lenz
- Institute of Psychopharmacology, Central Institute for Mental Health, Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany; SRI International, Center for Neuroscience, Biosciences Division, Menlo Park, CA, USA.
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute for Mental Health, Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
84
|
Jiménez-Chillarón JC, Nijland MJ, Ascensão AA, Sardão VA, Magalhães J, Hitchler MJ, Domann FE, Oliveira PJ. Back to the future: transgenerational transmission of xenobiotic-induced epigenetic remodeling. Epigenetics 2015; 10:259-73. [PMID: 25774863 DOI: 10.1080/15592294.2015.1020267] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epigenetics, or regulation of gene expression independent of DNA sequence, is the missing link between genotype and phenotype. Epigenetic memory, mediated by histone and DNA modifications, is controlled by a set of specialized enzymes, metabolite availability, and signaling pathways. A mostly unstudied subject is how sub-toxic exposure to several xenobiotics during specific developmental stages can alter the epigenome and contribute to the development of disease phenotypes later in life. Furthermore, it has been shown that exposure to low-dose xenobiotics can also result in further epigenetic remodeling in the germ line and contribute to increase disease risk in the next generation (multigenerational and transgenerational effects). We here offer a perspective on current but still incomplete knowledge of xenobiotic-induced epigenetic alterations, and their possible transgenerational transmission. We also propose several molecular mechanisms by which the epigenetic landscape may be altered by environmental xenobiotics and hypothesize how diet and physical activity may counteract epigenetic alterations.
Collapse
|
85
|
Bunney BG, Li JZ, Walsh DM, Stein R, Vawter MP, Cartagena P, Barchas JD, Schatzberg AF, Myers RM, Watson SJ, Akil H, Bunney WE. Circadian dysregulation of clock genes: clues to rapid treatments in major depressive disorder. Mol Psychiatry 2015; 20:48-55. [PMID: 25349171 PMCID: PMC4765913 DOI: 10.1038/mp.2014.138] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/06/2014] [Accepted: 09/10/2014] [Indexed: 12/19/2022]
Abstract
Conventional antidepressants require 2-8 weeks for a full clinical response. In contrast, two rapidly acting antidepressant interventions, low-dose ketamine and sleep deprivation (SD) therapy, act within hours to robustly decrease depressive symptoms in a subgroup of major depressive disorder (MDD) patients. Evidence that MDD may be a circadian-related illness is based, in part, on a large set of clinical data showing that diurnal rhythmicity (sleep, temperature, mood and hormone secretion) is altered during depressive episodes. In a microarray study, we observed widespread changes in cyclic gene expression in six regions of postmortem brain tissue of depressed patients matched with controls for time-of-death (TOD). We screened 12 000 transcripts and observed that the core clock genes, essential for controlling virtually all rhythms in the body, showed robust 24-h sinusoidal expression patterns in six brain regions in control subjects. In MDD patients matched for TOD with controls, the expression patterns of the clock genes in brain were significantly dysregulated. Some of the most robust changes were seen in anterior cingulate (ACC). These findings suggest that in addition to structural abnormalities, lesion studies, and the large body of functional brain imaging studies reporting increased activation in the ACC of depressed patients who respond to a wide range of therapies, there may be a circadian dysregulation in clock gene expression in a subgroup of MDDs. Here, we review human, animal and neuronal cell culture data suggesting that both low-dose ketamine and SD can modulate circadian rhythms. We hypothesize that the rapid antidepressant actions of ketamine and SD may act, in part, to reset abnormal clock genes in MDD to restore and stabilize circadian rhythmicity. Conversely, clinical relapse may reflect a desynchronization of the clock, indicative of a reactivation of abnormal clock gene function. Future work could involve identifying specific small molecules capable of resetting and stabilizing clock genes to evaluate if they can rapidly relieve symptoms and sustain improvement.
Collapse
Affiliation(s)
- BG Bunney
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - JZ Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - DM Walsh
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - R Stein
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - MP Vawter
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - P Cartagena
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - JD Barchas
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - AF Schatzberg
- Department of Psychiatry, Stanford University, Palo Alto, CA, USA
| | - RM Myers
- HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA
| | - SJ Watson
- Department of Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - H Akil
- Department of Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - WE Bunney
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
86
|
Lomniczi A, Wright H, Ojeda SR. Epigenetic regulation of female puberty. Front Neuroendocrinol 2015; 36:90-107. [PMID: 25171849 PMCID: PMC6824271 DOI: 10.1016/j.yfrne.2014.08.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/15/2014] [Accepted: 08/20/2014] [Indexed: 12/18/2022]
Abstract
Substantial progress has been made in recent years toward deciphering the molecular and genetic underpinnings of the pubertal process. The availability of powerful new methods to interrogate the human genome has led to the identification of genes that are essential for puberty to occur. Evidence has also emerged suggesting that the initiation of puberty requires the coordinated activity of gene sets organized into functional networks. At a cellular level, it is currently thought that loss of transsynaptic inhibition, accompanied by an increase in excitatory inputs, results in the pubertal activation of GnRH release. This concept notwithstanding, a mechanism of epigenetic repression targeting genes required for the pubertal activation of GnRH neurons was recently identified as a core component of the molecular machinery underlying the central restraint of puberty. In this chapter we will discuss the potential contribution of various mechanisms of epigenetic regulation to the hypothalamic control of female puberty.
Collapse
Affiliation(s)
- Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA.
| | - Hollis Wright
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA.
| |
Collapse
|
87
|
Transcriptional program of Kpna2/Importin-α2 regulates cellular differentiation-coupled circadian clock development in mammalian cells. Proc Natl Acad Sci U S A 2014; 111:E5039-48. [PMID: 25389311 DOI: 10.1073/pnas.1419272111] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The circadian clock in mammalian cells is cell-autonomously generated during the cellular differentiation process, but the underlying mechanisms are not understood. Here we show that perturbation of the transcriptional program by constitutive expression of transcription factor c-Myc and DNA methyltransferase 1 (Dnmt1) ablation disrupts the differentiation-coupled emergence of the clock from mouse ESCs. Using these model ESCs, 484 genes are identified by global gene expression analysis as factors correlated with differentiation-coupled circadian clock development. Among them, we find the misregulation of Kpna2 (Importin-α2) during the differentiation of the c-Myc-overexpressed and Dnmt1(-/-) ESCs, in which sustained cytoplasmic accumulation of PER proteins is observed. Moreover, constitutive expression of Kpna2 during the differentiation culture of ESCs significantly impairs clock development, and KPNA2 facilitates cytoplasmic localization of PER1/2. These results suggest that the programmed gene expression network regulates the differentiation-coupled circadian clock development in mammalian cells, at least in part via posttranscriptional regulation of clock proteins.
Collapse
|
88
|
Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential. Proc Natl Acad Sci U S A 2014; 111:16995-7002. [PMID: 25362047 DOI: 10.1073/pnas.1418963111] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation-based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from ∼10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter-luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level.
Collapse
|
89
|
Dmitrzak-Weglarz MP, Pawlak JM, Maciukiewicz M, Moczko J, Wilkosc M, Leszczynska-Rodziewicz A, Zaremba D, Hauser J. Clock gene variants differentiate mood disorders. Mol Biol Rep 2014; 42:277-88. [DOI: 10.1007/s11033-014-3770-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/20/2014] [Indexed: 11/30/2022]
|
90
|
Masri S, Sassone-Corsi P. Sirtuins and the circadian clock: bridging chromatin and metabolism. Sci Signal 2014; 7:re6. [PMID: 25205852 DOI: 10.1126/scisignal.2005685] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The circadian clock is a finely tuned system of transcriptional and translational regulation that is required for daily synchrony of organismal physiological processes. Additional layers of complexity that contribute to efficient clock function involve posttranslational modifications and enzymatic feedback loops. SIRT1, the founding member of the sirtuin family of protein deacetylases, was the first sirtuin to be reported to modulate circadian function. SIRT1 affects the circadian clock by its actions in the nucleus. Moreover, recent data implicate SIRT3 and SIRT6 in controlling mitochondrial and nuclear circadian functions, revealing previously unappreciated roles that extend to various subcellular domains, including fatty acid metabolism in the mitochondria. This review focuses on the roles of sirtuins in directing circadian functions in diverse organelles and speculates on the endogenous signals that may mediate the segregated roles of this family of enzymes.
Collapse
Affiliation(s)
- Selma Masri
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U904 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U904 INSERM, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
91
|
Park I, Lee Y, Kim HD, Kim K. Effect of Resveratrol, a SIRT1 Activator, on the Interactions of the CLOCK/BMAL1 Complex. Endocrinol Metab (Seoul) 2014; 29:379-87. [PMID: 25309798 PMCID: PMC4192820 DOI: 10.3803/enm.2014.29.3.379] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 03/11/2014] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND In mammals, the CLOCK/BMAL1 heterodimer is a key transcription factor complex that drives the cyclic expression of clock-controlled genes involved in various physiological functions and behavioral consequences. Recently, a growing number of studies have reported a molecular link between the circadian clock and metabolism. In the present study, we explored the regulatory effects of SIRTUIN1 (SIRT1), an NAD(+)-dependent deacetylase, on CLOCK/BMAL1-mediated clock gene expression. METHODS To investigate the interaction between SIRT1 and CLOCK/BMAL1, we conducted bimolecular fluorescence complementation (BiFC) analyses supplemented with immunocytochemistry assays. BiFC experiments employing deletion-specific mutants of BMAL1 were used to elucidate the specific domains that are necessary for the SIRT1-BMAL1 interaction. Additionally, luciferase reporter assays were used to delineate the effects of SIRT1 on circadian gene expression. RESULTS BiFC analysis revealed that SIRT1 interacted with both CLOCK and BMAL1 in most cell nuclei. As revealed by BiFC assays using various BMAL1 deletion mutants, the PAS-B domain of BMAL1 was essential for interaction with SIRT1. Activation of SIRT1 with resveratrol did not exert any significant change on the interaction with the CLOCK/BMAL1 complex. However, promoter analysis using Per1-Luc and Ebox-Luc reporters showed that SIRT1 significantly downregulated both promoter activities. This inhibitory effect was intensified by treatment with resveratrol, indicating a role for SIRT1 and its activator in CLOCK/BMAL1-mediated transcription of clock genes. CONCLUSION These results suggest that SIRT1 may form a regulatory complex with CLOCK/BMAL1 that represses clock gene expression, probably via deacetylase activity.
Collapse
Affiliation(s)
- Insung Park
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Yool Lee
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Hee-Dae Kim
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Kyungjin Kim
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| |
Collapse
|
92
|
Wu C, Sui G, Archer SN, Sassone-Corsi P, Aitken K, Bagli D, Chen Y. Local receptors as novel regulators for peripheral clock expression. FASEB J 2014; 28:4610-6. [PMID: 25145629 PMCID: PMC4200324 DOI: 10.1096/fj.13-243295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mammalian circadian control is determined by a central clock in the brain suprachiasmatic nucleus (SCN) and synchronized peripheral clocks in other tissues. Increasing evidence suggests that SCN-independent regulation of peripheral clocks also occurs. We examined how activation of excitatory receptors influences the clock protein PERIOD 2 (PER2) in a contractile organ, the urinary bladder. PERIOD2::LUCIFERASE-knock-in mice were used to report real-time PER2 circadian dynamics in the bladder tissue. Rhythmic PER2 activities occurred in the bladder wall with a cycle of ∼24 h and peak at ∼12 h. Activation of the muscarinic and purinergic receptors by agonists shifted the peak to an earlier time (7.2±2.0 and 7.2±0.9 h, respectively). PER2 expression was also sensitive to mechanical stimulation. Aging significantly dampened PER2 expression and its response to the agonists. Finally, muscarinic agonist-induced smooth muscle contraction also exhibited circadian rhythm. These data identified novel regulators, endogenous receptors, in determining local clock activity, in addition to mediating the central control. Furthermore, the local clock appears to reciprocally align receptor activity to circadian rhythm for muscle contraction. The interaction between receptors and peripheral clock represents an important mechanism for maintaining physiological functions and its dysregulation may contribute to age-related organ disorders.—Wu, C., Sui, G., Archer, S. N., Sassone-Corsi, P., Aitken, K., Bagli, D., Chen, Y. Local receptors as novel regulators for peripheral clock expression.
Collapse
Affiliation(s)
- Changhao Wu
- Department of Biochemistry and Physiology, University of Surrey, Surrey, UK;
| | - Guiping Sui
- Oesophageal Laboratory, Guy's and St. Thomas Hospitals National Health Service Trust, London, UK
| | - Simon N Archer
- Department of Biochemistry and Physiology, University of Surrey, Surrey, UK
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, University of California, Irvine, California, USA; and
| | - Karen Aitken
- Department of Urology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Darius Bagli
- Department of Urology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ying Chen
- Department of Biochemistry and Physiology, University of Surrey, Surrey, UK
| |
Collapse
|
93
|
Janich P, Meng QJ, Benitah SA. Circadian control of tissue homeostasis and adult stem cells. Curr Opin Cell Biol 2014; 31:8-15. [PMID: 25016176 DOI: 10.1016/j.ceb.2014.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 01/21/2023]
Abstract
The circadian timekeeping mechanism adapts physiology to the 24-hour light/dark cycle. However, how the outputs of the circadian clock in different peripheral tissues communicate and synchronize each other is still not fully understood. The circadian clock has been implicated in the regulation of numerous processes, including metabolism, the cell cycle, cell differentiation, immune responses, redox homeostasis, and tissue repair. Accordingly, perturbation of the machinery that generates circadian rhythms is associated with metabolic disorders, premature ageing, and various diseases including cancer. Importantly, it is now possible to target circadian rhythms through systemic or local delivery of time cues or compounds. Here, we summarize recent findings in peripheral tissues that link the circadian clock machinery to tissue-specific functions and diseases.
Collapse
Affiliation(s)
- Peggy Janich
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Qing-Jun Meng
- MRC Career Development Award Fellow, Faculty of Life Sciences, University of Manchester, United Kingdom
| | - Salvador Aznar Benitah
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.
| |
Collapse
|
94
|
Chaves I, van der Horst GTJ, Schellevis R, Nijman RM, Koerkamp MG, Holstege FCP, Smidt MP, Hoekman MFM. Insulin-FOXO3 signaling modulates circadian rhythms via regulation of clock transcription. Curr Biol 2014; 24:1248-55. [PMID: 24856209 DOI: 10.1016/j.cub.2014.04.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 02/14/2014] [Accepted: 04/07/2014] [Indexed: 01/08/2023]
Abstract
Circadian rhythms are responsive to external and internal cues, light and metabolism being among the most important. In mammals, the light signal is sensed by the retina and transmitted to the suprachiasmatic nucleus (SCN) master clock [1], where it is integrated into the molecular oscillator via regulation of clock gene transcription. The SCN synchronizes peripheral oscillators, an effect that can be overruled by incoming metabolic signals [2]. As a consequence, peripheral oscillators can be uncoupled from the master clock when light and metabolic signals are not in phase. The signaling pathways responsible for coupling metabolic cues to the molecular clock are being rapidly uncovered [3-5]. Here we show that insulin-phosphatidylinositol 3-kinase (PI3K)-Forkhead box class O3 (FOXO3) signaling is required for circadian rhythmicity in the liver via regulation of Clock. Knockdown of FoxO3 dampens circadian amplitude, an effect that is rescued by overexpression of Clock. Subsequently, we show binding of FOXO3 to two Daf-binding elements (DBEs) located in the Clock promoter area, implicating Clock as a transcriptional target of FOXO3. Transcriptional oscillation of both core clock and output genes in the liver of FOXO3-deficient mice is affected, indicating a disrupted hepatic circadian rhythmicity. Finally, we show that insulin, a major regulator of FOXO activity [6-9], regulates Clock levels in a PI3K- and FOXO3-dependent manner. Our data point to a key role of the insulin-FOXO3-Clock signaling pathway in the modulation of circadian rhythms.
Collapse
Affiliation(s)
- Inês Chaves
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Gijsbertus T J van der Horst
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Raymond Schellevis
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, PO Box 85060, 3508 TA Utrecht, the Netherlands
| | - Romana M Nijman
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Marian Groot Koerkamp
- Molecular Cancer Research, University Medical Center Utrecht, PO Box 85060, 3508 AB Utrecht, the Netherlands
| | - Frank C P Holstege
- Molecular Cancer Research, University Medical Center Utrecht, PO Box 85060, 3508 AB Utrecht, the Netherlands
| | - Marten P Smidt
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, PO Box 85060, 3508 TA Utrecht, the Netherlands; Swammerdam Institute of Life Sciences, University of Amsterdam, PO Box 94232, 1090 GE Amsterdam, the Netherlands
| | - Marco F M Hoekman
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, PO Box 85060, 3508 TA Utrecht, the Netherlands; Swammerdam Institute of Life Sciences, University of Amsterdam, PO Box 94232, 1090 GE Amsterdam, the Netherlands.
| |
Collapse
|
95
|
Pérez-Mendoza M, Rivera-Zavala JB, Díaz-Muñoz M. Daytime restricted feeding modifies the daily variations of liver gluconeogenesis: Adaptations in biochemical and endocrine regulators. Chronobiol Int 2014; 31:815-28. [DOI: 10.3109/07420528.2014.908898] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
96
|
Abstract
The circadian clock choreographs fundamental biological rhythms. This system is comprised of the master circadian pacemaker in the suprachiasmatic nucleus and associated pacemakers in other tissues that coordinate complex physiological processes and behaviors, such as sleep, feeding, and metabolism. The molecular circuitry that underlies these clocks and orchestrates circadian gene expression has been the focus of intensive investigation, and it is becoming clear that epigenetic factors are highly integrated into these networks. In this review, we draw attention to the fundamental roles played by epigenetic mechanisms in transcriptional and post-transcriptional regulation within the circadian clock system. We also highlight how alterations in epigenetic factors and mechanisms are being linked with sleep-wake disorders. These observations provide important insights into the pathogenesis and potential treatment of these disorders and implicate epigenetic deregulation in the significant but poorly understood interconnections now emerging between circadian processes and neurodegeneration, metabolic diseases, cancer, and aging.
Collapse
Affiliation(s)
- Irfan A. Qureshi
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mark F. Mehler
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Ruth S. and David L. Gottesman Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Center for Epigenomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
97
|
Azzi A, Dallmann R, Casserly A, Rehrauer H, Patrignani A, Maier B, Kramer A, Brown SA. Circadian behavior is light-reprogrammed by plastic DNA methylation. Nat Neurosci 2014; 17:377-82. [PMID: 24531307 DOI: 10.1038/nn.3651] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/17/2014] [Indexed: 12/12/2022]
Abstract
The timing of daily circadian behavior can be highly variable among different individuals, and twin studies have suggested that about half of this variability is environmentally controlled. Similar plasticity can be seen in mice exposed to an altered lighting environment, for example, 22-h instead of 24-h, which stably alters the genetically determined period of circadian behavior for months. The mechanisms mediating these environmental influences are unknown. We found that transient exposure of mice to such lighting stably altered global transcription in the suprachiasmatic nucleus (SCN) of the hypothalamus (the master clock tissue regulating circadian behavior in mammals). In parallel, genome-wide methylation profiling revealed global alterations in promoter DNA methylation in the SCN that correlated with these changes. Behavioral, transcriptional and DNA methylation changes were reversible after prolonged re-entrainment to 24-h d. Notably, infusion of a methyltransferase inhibitor to the SCN suppressed period changes. We conclude that the SCN utilizes DNA methylation as a mechanism to drive circadian clock plasticity.
Collapse
Affiliation(s)
- Abdelhalim Azzi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Robert Dallmann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Alison Casserly
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Centre, University of Zurich, Zurich, Switzerland
| | - Andrea Patrignani
- Functional Genomics Centre, University of Zurich, Zurich, Switzerland
| | - Bert Maier
- Laboratory of Chronobiology, Institute of Medical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Institute of Medical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
98
|
Cuesta IH, Lahiri K, Lopez-Olmeda JF, Loosli F, Foulkes NS, Vallone D. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes). Chronobiol Int 2014; 31:468-78. [PMID: 24456338 DOI: 10.3109/07420528.2013.856316] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.
Collapse
|
99
|
Golombek DA, Bussi IL, Agostino PV. Minutes, days and years: molecular interactions among different scales of biological timing. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120465. [PMID: 24446499 DOI: 10.1098/rstb.2012.0465] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biological clocks are genetically encoded oscillators that allow organisms to keep track of their environment. Among them, the circadian system is a highly conserved timing structure that regulates several physiological, metabolic and behavioural functions with periods close to 24 h. Time is also crucial for everyday activities that involve conscious time estimation. Timing behaviour in the second-to-minutes range, known as interval timing, involves the interaction of cortico-striatal circuits. In this review, we summarize current findings on the neurobiological basis of the circadian system, both at the genetic and behavioural level, and also focus on its interactions with interval timing and seasonal rhythms, in order to construct a multi-level biological clock.
Collapse
Affiliation(s)
- Diego A Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, , Roque Sáenz Peña 352, Bernal, Buenos Aires B1876BXD, Argentina
| | | | | |
Collapse
|
100
|
Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia. PLoS One 2014; 9:e85255. [PMID: 24454829 PMCID: PMC3891749 DOI: 10.1371/journal.pone.0085255] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/25/2013] [Indexed: 12/27/2022] Open
Abstract
From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues - mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN) controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH) in comparison to those of healthy controls (HC). Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG) and Multiple Sleep Latency Test (MSLT). Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep - wake rhythms in IH.
Collapse
|