51
|
Moro K, Kawaguchi T, Tsuchida J, Gabriel E, Qi Q, Yan L, Wakai T, Takabe K, Nagahashi M. Ceramide species are elevated in human breast cancer and are associated with less aggressiveness. Oncotarget 2018; 9:19874-19890. [PMID: 29731990 PMCID: PMC5929433 DOI: 10.18632/oncotarget.24903] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/12/2018] [Indexed: 01/19/2023] Open
Abstract
Sphingolipids have emerged as key regulatory molecules in cancer cell survival and death. Although important roles of sphingolipids in breast cancer progression have been reported in experimental models, their roles in human patients are yet to be revealed. The aim of this study was to investigate the ceramide levels and its biosynthesis pathways in human breast cancer patients. Breast cancer, peri-tumor and normal breast tissue samples were collected from surgical specimens from a series of 44 patients with breast cancer. The amount of sphingolipid metabolites in the tissue were determined by mass spectrometry. The Cancer Genome Atlas was used to analyze gene expression related to the sphingolipid metabolism. Ceramide levels were higher in breast cancer tissue compared to both normal and peri-tumor breast tissue. Substrates and enzymes that generate ceramide were significantly increased in all three ceramide biosynthesis pathways in cancer. Further, higher levels of ceramide in breast cancer were associated with less aggressive cancer biology presented by Ki-67 index and nuclear grade of the cancer. Interestingly, patients with higher gene expressions of enzymes in the three major ceramide synthesis pathways showed significantly worse prognosis. This is the first study to reveal the clinical relevance of ceramide metabolism in breast cancer patients. We demonstrated that ceramide levels in breast cancer tissue were significantly higher than those in normal tissue, with activation of the three ceramide biosynthesis pathways. We also identified that ceramide levels have a significant association with aggressive phenotype and its enzymes have prognostic impact on breast cancer patients.
Collapse
Affiliation(s)
- Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan
| | - Tsutomu Kawaguchi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan
| | - Emmanuel Gabriel
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Qianya Qi
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan
| | - Kazuaki Takabe
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan.,Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA.,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, New York 14203, USA.,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan.,Department of Surgery, Yokohama City University, Yokohama 236-0004, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan
| |
Collapse
|
52
|
Molecular Targeting of Acid Ceramidase in Glioblastoma: A Review of Its Role, Potential Treatment, and Challenges. Pharmaceutics 2018; 10:pharmaceutics10020045. [PMID: 29642535 PMCID: PMC6027516 DOI: 10.3390/pharmaceutics10020045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma is the most common, malignant primary tumor of the central nervous system. The average prognosis for life expectancy after diagnosis, with the triad of surgery, chemotherapy, and radiation therapy, is less than 1.5 years. Chemotherapy treatment is mostly limited to temozolomide. In this paper, the authors review an emerging, novel drug called acid ceramidase, which targets glioblastoma. Its role in cancer treatment in general, and more specifically, in the treatment of glioblastoma, are discussed. In addition, the authors provide insights on acid ceramidase as a potential druggable target for glioblastoma.
Collapse
|
53
|
Meher AK, Spinosa M, Davis JP, Pope N, Laubach VE, Su G, Serbulea V, Leitinger N, Ailawadi G, Upchurch GR. Novel Role of IL (Interleukin)-1β in Neutrophil Extracellular Trap Formation and Abdominal Aortic Aneurysms. Arterioscler Thromb Vasc Biol 2018; 38:843-853. [PMID: 29472233 PMCID: PMC5864548 DOI: 10.1161/atvbaha.117.309897] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/12/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Neutrophils promote experimental abdominal aortic aneurysm (AAA) formation via a mechanism that is independent from MMPs (matrix metalloproteinases). Recently, we reported a dominant role of IL (interleukin)-1β in the formation of murine experimental AAAs. Here, the hypothesis that IL-1β-induced neutrophil extracellular trap formation (NETosis) promotes AAA was tested. APPROACH AND RESULTS NETs were identified through colocalized staining of neutrophil, Cit-H3 (citrullinated histone H3), and DNA, using immunohistochemistry. NETs were detected in human AAAs and were colocalized with IL-1β. In vitro, IL-1RA attenuated IL-1β-induced NETosis in human neutrophils. Mechanistically, IL-1β treatment of isolated neutrophils induced nuclear localization of ceramide synthase 6 and synthesis of C16-ceramide, which was inhibited by IL-1RA or fumonisin B1, an inhibitor of ceramide synthesis. Furthermore, IL-1RA or fumonisin B1 attenuated IL1-β-induced NETosis. In an experimental model of murine AAA, NETs were detected at a very early stage-day 3 of aneurysm induction. IL-1β-knockout mice demonstrated significantly lower infiltration of neutrophils to aorta and were protected from AAA. Adoptive transfer of wild-type neutrophils promoted AAA formation in IL-1β-knockout mice. Moreover, treatment of wild-type mice with Cl-amidine, an inhibitor NETosis, significantly attenuated AAA formation, whereas, treatment with deoxyribonuclease, a DNA digesting enzyme, had no effect on AAA formation. CONCLUSIONS Altogether, the results suggest a dominant role of IL-1β-induced NETosis in AAA formation.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Ceramides/metabolism
- Disease Models, Animal
- Extracellular Traps/drug effects
- Extracellular Traps/metabolism
- Humans
- Image Processing, Computer-Assisted/methods
- Interleukin-1beta/deficiency
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Microscopy, Fluorescence/methods
- Neutrophils/drug effects
- Neutrophils/metabolism
- Neutrophils/pathology
- Neutrophils/transplantation
- Ornithine/analogs & derivatives
- Ornithine/pharmacology
- Receptors, Interleukin-1/metabolism
- Signal Transduction
- Sphingosine N-Acyltransferase/metabolism
Collapse
Affiliation(s)
- Akshaya K Meher
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville.
| | - Michael Spinosa
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - John P Davis
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - Nicolas Pope
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - Victor E Laubach
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - Gang Su
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - Vlad Serbulea
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - Norbert Leitinger
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - Gorav Ailawadi
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| | - Gilbert R Upchurch
- From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of Biomedical Engineering (G.A.), University of Virginia, Charlottesville
| |
Collapse
|
54
|
Abstract
Sphingolipids, including the two central bioactive lipids ceramide and sphingosine-1-phosphate (S1P), have opposing roles in regulating cancer cell death and survival, respectively, and there have been exciting developments in understanding how sphingolipid metabolism and signalling regulate these processes in response to anticancer therapy. Recent studies have provided mechanistic details of the roles of sphingolipids and their downstream targets in the regulation of tumour growth and response to chemotherapy, radiotherapy and/or immunotherapy using innovative molecular, genetic and pharmacological tools to target sphingolipid signalling nodes in cancer cells. For example, structure-function-based studies have provided innovative opportunities to develop mechanism-based anticancer therapeutic strategies to restore anti-proliferative ceramide signalling and/or inhibit pro-survival S1P-S1P receptor (S1PR) signalling. This Review summarizes how ceramide-induced cellular stress mediates cancer cell death through various mechanisms involving the induction of apoptosis, necroptosis and/or mitophagy. Moreover, the metabolism of ceramide for S1P biosynthesis, which is mediated by sphingosine kinase 1 and 2, and its role in influencing cancer cell growth, drug resistance and tumour metastasis through S1PR-dependent or receptor-independent signalling are highlighted. Finally, studies targeting enzymes involved in sphingolipid metabolism and/or signalling and their clinical implications for improving cancer therapeutics are also presented.
Collapse
Affiliation(s)
- Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, MSC 957, Charleston, South Carolina 29425, USA
| |
Collapse
|
55
|
Williams B, Correnti J, Oranu A, Lin A, Scott V, Annoh M, Beck J, Furth E, Mitchell V, Senkal CE, Obeid L, Carr RM. A novel role for ceramide synthase 6 in mouse and human alcoholic steatosis. FASEB J 2017; 32:130-142. [PMID: 28864659 DOI: 10.1096/fj.201601142r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
Perilipin 2 (PLIN2) is a lipid-droplet protein that is up-regulated in alcoholic steatosis and associated with hepatic accumulation of ceramides, bioactive lipids implicated in alcoholic liver disease pathogenesis. The specific role of ceramide synthetic enzymes in the regulation of PLIN2 and promotion of hepatocellular lipid accumulation is not well understood. We examined the effects of pharmacologic ceramide synthesis inhibition on hepatic PLIN2 expression, steatosis, and glucose and lipid homeostasis in mice with alcoholic steatosis and in ethanol-incubated human hepatoma VL17A cells. In cells, pharmacologic inhibition of ceramide synthase reduced lipid accumulation by reducing PLIN2 RNA stability. The subtype ceramide synthase (CerS)6 was specifically up-regulated in experimental alcoholic steatosis in vivo and in vitro and was up-regulated in zone 3 hepatocytes in human alcoholic steatosis. In vivo ceramide reduction by inhibition of de novo ceramide synthesis reduced PLIN2 and hepatic steatosis in alcohol-fed mice, but only de novo synthesis inhibition, not sphingomyelin hydrolysis, improved glucose tolerance and dyslipidemia. These findings implicate CerS6 as a novel regulator of PLIN2 and suggest that ceramide synthetic enzymes may promote the earliest stage of alcoholic liver disease, alcoholic steatosis.-Williams, B., Correnti, J., Oranu, A., Lin, A., Scott, V., Annoh, M., Beck, J., Furth, E., Mitchell, V., Senkal, C. E., Obeid, L., Carr, R. M. A novel role for ceramide synthase 6 in mouse and human alcoholic steatosis.
Collapse
Affiliation(s)
- Bianca Williams
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason Correnti
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amanke Oranu
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Annie Lin
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Victoria Scott
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maxine Annoh
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James Beck
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emma Furth
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Victoria Mitchell
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Can E Senkal
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA; and
| | - Lina Obeid
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA; and.,Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
56
|
Camp ER, Patterson LD, Kester M, Voelkel-Johnson C. Therapeutic implications of bioactive sphingolipids: A focus on colorectal cancer. Cancer Biol Ther 2017; 18:640-650. [PMID: 28686076 DOI: 10.1080/15384047.2017.1345396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Therapy of colorectal cancer (CRC), especially a subset known as locally advanced rectal cancer, is challenged by progression and recurrence. Sphingolipids, a lipid subtype with vital roles in cellular function, play an important role in CRC and impact on therapeutic outcomes. In this review we discuss how dietary sphingolipids or the gut microbiome via alterations in sphingolipids influence CRC carcinogenesis. In addition, we discuss the expression of sphingolipid enzymes in the gastro-intestinal tract, their alterations in CRC, and the implications for therapy responsiveness. Lastly, we highlight some novel therapeutics that target sphingolipid signaling and have potential applications in the treatment of CRC. Understanding how sphingolipid metabolism impacts cell death susceptibility and drug resistance will be critical toward improving therapeutic outcomes.
Collapse
Affiliation(s)
- E Ramsay Camp
- a Department of Surgery Medical University of South Carolina , Charleston SC , USA
| | - Logan D Patterson
- b Department of Pharmacology , University of Virginia , Charlottesville VA , USA
| | - Mark Kester
- b Department of Pharmacology , University of Virginia , Charlottesville VA , USA
| | - Christina Voelkel-Johnson
- c Department of Microbiology & Immunology , Medical University of South Carolina , Charleston SC , USA
| |
Collapse
|
57
|
Chen J, Li X, Ma D, Liu T, Tian P, Wu C. Ceramide synthase-4 orchestrates the cell proliferation and tumor growth of liver cancer in vitro and in vivo through the nuclear factor-κB signaling pathway. Oncol Lett 2017; 14:1477-1483. [PMID: 28789368 PMCID: PMC5529835 DOI: 10.3892/ol.2017.6365] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/01/2017] [Indexed: 01/10/2023] Open
Abstract
Liver cancer is one of the leading causes of cancer-associated mortalities worldwide, partly due to the absence of effective therapeutic targets and diagnostic biomarkers. Therefore, novel molecular targets are critical to develop new therapeutic approaches for liver cancer. In the present study, ceramide synthase-4 (CERS4) was investigated as a novel molecular target for liver cancer. High expression of CERS4 in liver cancer tissues was detected by reverse transcription polymerase chain reaction and western blot analysis. Subsequently, CERS4 was silenced by lentivirus-mediated RNA interfere, and the proliferation rates of liver cancer cells were significantly suppressed (P<0.001). In addition, the weight and volume of the tumors were reduced subsequent to silencing of CERS4 in liver cancer cells, revealed by an in vivo study using Balb/c nude mice. In addition, the nuclear factor (NF)-κB signaling pathway was affected following knockdown of CERS4 in liver cancer cells. The present results proposed that CERS4 is an important regulator of liver cancer cell proliferation and indicated that CERS4 may be a potential anticancer therapeutic target and a promising diagnostic biomarker for human liver cancer.
Collapse
Affiliation(s)
- Jinwu Chen
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu, Sichuan 610064, P.R. China.,School of Life Sciences, Hefei Normal University, Hefei, Anhui 230601, P.R. China
| | - Xiaojie Li
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu, Sichuan 610064, P.R. China
| | - Dengjiao Ma
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu, Sichuan 610064, P.R. China
| | - Tao Liu
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu, Sichuan 610064, P.R. China
| | - Pingping Tian
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu, Sichuan 610064, P.R. China
| | - Chuanfang Wu
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu, Sichuan 610064, P.R. China
| |
Collapse
|
58
|
Senkal CE, Salama MF, Snider AJ, Allopenna JJ, Rana NA, Koller A, Hannun YA, Obeid LM. Ceramide Is Metabolized to Acylceramide and Stored in Lipid Droplets. Cell Metab 2017; 25:686-697. [PMID: 28273483 PMCID: PMC5472424 DOI: 10.1016/j.cmet.2017.02.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/22/2016] [Accepted: 02/16/2017] [Indexed: 12/26/2022]
Abstract
In an approach aimed at defining interacting partners of ceramide synthases (CerSs), we found that fatty acyl-CoA synthase ACSL5 interacts with all CerSs. We demonstrate that ACSL5-generated FA-CoA was utilized with de novo ceramide for the generation of acylceramides, poorly studied ceramide metabolites. Functionally, inhibition of ceramide channeling to acylceramide enhanced accumulation of de novo ceramide and resulted in augmentation of ceramide-mediated apoptosis. Mechanistically, we show that acylceramide generation is catalyzed by diacylglycerol acyltransferase 2 (DGAT2) on lipid droplets. In summary, this study identifies a metabolic pathway of acylceramide generation and its sequestration in LDs in cells and in livers of mice on a high-fat diet. The study also implicates this pathway in ceramide-mediated apoptosis, and has implications in co-regulation of triglyceride and sphingolipid metabolisms.
Collapse
Affiliation(s)
- Can E Senkal
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mohamed F Salama
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahlia Governorate 35516, Egypt
| | - Ashley J Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA
| | - Janet J Allopenna
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nadia A Rana
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Antonius Koller
- Proteomics Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
59
|
Hernández-Corbacho MJ, Salama MF, Canals D, Senkal CE, Obeid LM. Sphingolipids in mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:56-68. [PMID: 27697478 DOI: 10.1016/j.bbalip.2016.09.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/01/2016] [Accepted: 09/24/2016] [Indexed: 01/16/2023]
Abstract
Sphingolipids are bioactive lipids found in cell membranes that exert a critical role in signal transduction. In recent years, it has become apparent that sphingolipids participate in growth, senescence, differentiation and apoptosis. The anabolism and catabolism of sphingolipids occur in discrete subcellular locations and consist of a strictly regulated and interconnected network, with ceramide as the central hub. Altered sphingolipid metabolism is linked to several human diseases. Hence, an advanced knowledge of how and where sphingolipids are metabolized is of paramount importance in order to understand the role of sphingolipids in cellular functions. In this review, we provide an overview of sphingolipid metabolism. We focus on the distinct pathways of ceramide synthesis, highlighting the mitochondrial ceramide generation, transport of ceramide to mitochondria and its role in the regulation of mitochondrial-mediated apoptosis, mitophagy and implications to disease. We will discuss unanswered questions and exciting future directions. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- María José Hernández-Corbacho
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Mohamed F Salama
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Daniel Canals
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Can E Senkal
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA; The Northport VA Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
60
|
Podbielska M, Szulc ZM, Kurowska E, Hogan EL, Bielawski J, Bielawska A, Bhat NR. Cytokine-induced release of ceramide-enriched exosomes as a mediator of cell death signaling in an oligodendroglioma cell line. J Lipid Res 2016; 57:2028-2039. [PMID: 27623848 DOI: 10.1194/jlr.m070664] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 12/20/2022] Open
Abstract
Th1 pro-inflammatory cytokines, i.e., TNF-α and IFN-γ, in combination are known to induce cell death in several cell types, including oligodendrocytes, but the mechanism of their synergistic cytotoxicity is unclear. Although ceramide (Cer) has been implicated in cytokine- and stress-induced cell death, its intracellular levels alone cannot explain cytokine synergy. We considered the possibility that Cer released as part of extracellular vesicles may contribute to cytokine-induced synergistic cell death. Using a human oligodendroglioma (HOG) cell line as a model, here we show that exosomes derived from TNF-α-treated "donor" cells, while being mildly toxic to fresh cultures (similar to individual cytokines), induce enhanced cell death when added to IFN-γ-primed target cultures in a fashion resembling the effect of cytokine combination. Further, the sphingolipid profiles of secreted exosomes, as determined by HPLC-MS/MS, revealed that the treatment with the cytokines time-dependently induced the formation and exosomal release, in particular of C16-, C24-, and C24:1-Cer species; C16-, C24-, and C24:1-dihydroCer species; and C16-, C24-, and C24:1-SM species. Finally, exogenous C6-Cer or C16-Cer mimicked and enhanced the cytotoxic effects of the cytokines upon HOG cells, thereby supporting the cell death-signaling role of extracellular Cer.
Collapse
Affiliation(s)
- Maria Podbielska
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425.,Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425.,Laboratory of Signaling Proteins, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Zdzisław M Szulc
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Ewa Kurowska
- Laboratory of Signaling Proteins, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Edward L Hogan
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425
| | - Jacek Bielawski
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Alicja Bielawska
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Narayan R Bhat
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
61
|
García-Barros M, Coant N, Kawamori T, Wada M, Snider AJ, Truman JP, Wu BX, Furuya H, Clarke CJ, Bialkowska AB, Ghaleb A, Yang VW, Obeid LM, Hannun YA. Role of neutral ceramidase in colon cancer. FASEB J 2016; 30:4159-4171. [PMID: 27609772 DOI: 10.1096/fj.201600611r] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022]
Abstract
Alterations in sphingolipid metabolism, especially ceramide and sphingosine 1-phosphate, have been linked to colon cancer, suggesting that enzymes of sphingolipid metabolism may emerge as novel regulators and targets in colon cancer. Neutral ceramidase (nCDase), a key enzyme in sphingolipid metabolism that hydrolyzes ceramide into sphingosine, is highly expressed in the intestine; however, its role in colon cancer has not been defined. Here we show that molecular and pharmacological inhibition of nCDase in colon cancer cells increases ceramide, and this is accompanied by decreased cell survival and increased apoptosis and autophagy, with minimal effects on noncancerous cells. Inhibition of nCDase resulted in loss of β-catenin and inhibition of ERK, components of pathways relevant for colon cancer development. Furthermore, inhibition of nCDase in a xenograft model delayed tumor growth and increased ceramide while decreasing proliferation. It is noteworthy that mice lacking nCDase treated with azoxymethane were protected from tumor formation. Taken together, these studies show that nCDase is pivotal for regulating initiation and development of colon cancer, and these data suggest that this enzyme is a suitable and novel target for colon cancer therapy.-García-Barros, M., Coant, N., Kawamori, T., Wada, M., Snider, A. J., Truman, J.-P., Wu, B. X., Furuya, H., Clarke, C. J., Bialkowska, A. B., Ghaleb, A., Yang, V. W., Obeid, L. M., Hannun, Y. A. Role of neutral ceramidase in colon cancer.
Collapse
Affiliation(s)
- Mónica García-Barros
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Nicolas Coant
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Toshihiko Kawamori
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA.,Research Institute for Cancer Prevention and Pathologic Diagnosis at Tokyo Leon Clinics, Nagoya, Japan
| | - Masayuki Wada
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Ashley J Snider
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA.,Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Jean-Philip Truman
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Bill X Wu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hideki Furuya
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Christopher J Clarke
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | | | - Amr Ghaleb
- Department of Medicine, Stony Brook University, New York, USA
| | - Vincent W Yang
- Department of Medicine, Stony Brook University, New York, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, New York, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA.,Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, New York, USA; .,Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA.,Department of Biochemistry, Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacology, Stony Brook University, Stony Brook, New York, USA; and.,Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
62
|
Perimenis P, Galaris A, Voulgari A, Prassa M, Pintzas A. IAP antagonists Birinapant and AT-406 efficiently synergise with either TRAIL, BRAF, or BCL-2 inhibitors to sensitise BRAFV600E colorectal tumour cells to apoptosis. BMC Cancer 2016; 16:624. [PMID: 27520705 PMCID: PMC4982265 DOI: 10.1186/s12885-016-2606-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022] Open
Abstract
Background High expression levels of Inhibitors of Apoptosis Proteins (IAPs) have been correlated with poor cancer prognosis and block the cell death pathway by interfering with caspase activation. SMAC-mimetics are small-molecule inhibitors of IAPs that mimic the endogenous SMAC and promote the induction of cell death by neutralizing IAPs. Methods In this study, anti-tumour activity of new SMAC-mimetics Birinapant and AT-406 is evaluated against colorectal adenocarcinoma cells and IAP cross-talk with either oncogenic BRAF or BCL-2, or with the TRAIL are further exploited towards rational combined protocols. Results It is shown that pre-treatment of SMAC-mimetics followed by their combined treatment with BRAF inhibitors can decrease cell viability, migration and can very efficiently sensitize colorectal tumour cells to apoptosis. Moreover, co-treatment of TRAIL with SMAC-mimetics can efficiently sensitize resistant tumour cells to apoptosis synergistically, as shown by median effect analysis. Finally, Birinapant and AT-406 can synergise with BCL-2 inhibitor ABT-199 to reduce viability of adenocarcinoma cells with high BCL-2 expression. Conclusions Proposed synergistic rational anticancer combined protocols of IAP antagonists Birinapant and AT-406 in 2D and 3D cultures can be later further exploited in vivo, from precision tumour biology to precision medical oncology. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2606-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philippos Perimenis
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Apostolos Galaris
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Alexandra Voulgari
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Margarita Prassa
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Alexander Pintzas
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
| |
Collapse
|
63
|
Wegner MS, Schiffmann S, Parnham MJ, Geisslinger G, Grösch S. The enigma of ceramide synthase regulation in mammalian cells. Prog Lipid Res 2016; 63:93-119. [PMID: 27180613 DOI: 10.1016/j.plipres.2016.03.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/17/2016] [Accepted: 03/27/2016] [Indexed: 12/20/2022]
Abstract
Ceramide synthases (CerS) are key enzymes in the lipid metabolism of eukaryotic cells. Their products, ceramides (Cer), are components of cellular membranes but also mediate signaling functions in physiological processes such as proliferation, skin barrier function and cerebellar development. In pathophysiological processes such as multiple sclerosis and tumor progression, ceramide levels are altered, which can be ascribed, partly, to dysregulation of CerS gene transcription. Most publications deal with the effects of altered ceramide levels on physiological and pathophysiological processes, but the regulation of the appropriate CerS is frequently not investigated. This is insufficient for the clarification of the role of ceramides, because most ceramide species are generated by at least two CerS. The mechanisms of CerS regulation are manifold and it seems that each CerS isoform is regulated individually. For this reason, we discuss the different CerS separately in this review. From transcriptional regulation to alteration of protein activity, the possibilities to influence CerS are diverse. Furthermore, CerS are influenced by a variety of molecules including hormones and lipids. Without claiming completeness, we provide a résumé of the regulatory mechanisms for each CerS in mammalian cells and how dysregulation of these mechanisms during physiological processes may lead to pathophysiological processes.
Collapse
Affiliation(s)
- Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Michael John Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
64
|
Tang Y, Cao K, Wang Q, Chen J, Liu R, Wang S, Zhou J, Xie H. Silencing of CerS6 increases the invasion and glycolysis of melanoma WM35, WM451 and SK28 cell lines via increased GLUT1-induced downregulation of WNT5A. Oncol Rep 2016; 35:2907-15. [PMID: 26934938 DOI: 10.3892/or.2016.4646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
Ceramide synthases (CerSs) have been shown to regulate numerous aspects of cancer development. CerS6 has been suggested to be involved in cancer etiology. However, little is known concerning the exact effect of CerS6 on the malignant behavior of melanoma, including glycolysis, proliferation and invasion. In the present study, we found that the expression of CerS6 was low in the melanoma cell lines, including WM35, WM451 and SK-28, and the expression level was related to the malignanct behavior of the melanoma cell lines. We constructed overexpression and silencing models of CerS6 in three melanoma cell lines and found that silencing of CerS6 promoted the ability of proliferation and invasion in the melanoma cell lines. Additionally, downregulation of CerS6 upregulated the activity of glycolysis-related enzyme, and enhanced the expression of glycolysis-related genes, including GLUT1 and MCT1. Furthermore, we identified the genes whose expression levels were changed after silencing of CerS6 by gene microarray. The expression of glycolysis-related gene SLC2A1 (also known as GLUT1) was found to be upregulated, while notably WNT5A was downregulated. The altered expression of GLUT1 and WNT5A was verified by qPCR and western blotting. Furthermore, silencing of GLUT1 in the melanoma cells resulted in the increased expression of WNT5A and the decreased ability of invasion and proliferation in the melanoma cells. Collectively, silencing of CerS6 induced the increased expression of GLUT1, which downregulated the expression of WNT5A and enhanced the invasion and proliferation of melanoma cells. Thus, CerS6 may provide a novel therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Yuanyuan Tang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Qi Wang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jia Chen
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Rui Liu
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Shaohua Wang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Huiqing Xie
- Department of Rehabilitation, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
65
|
Lee DH, Sung KS, Guo ZS, Kwon WT, Bartlett DL, Oh SC, Kwon YT, Lee YJ. TRAIL-Induced Caspase Activation Is a Prerequisite for Activation of the Endoplasmic Reticulum Stress-Induced Signal Transduction Pathways. J Cell Biochem 2016. [DOI: 10.1002/jcb.25289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dae-Hee Lee
- Department of Surgery; School of Medicine, University of Pittsburgh; Pittsburgh 15213 Pennsylvania
- Division of Oncology/Hematology, Department of Internal Medicine; Korea University College of Medicine; Seoul Republic of Korea
| | - Ki Sa Sung
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences; School of Pharmacy, University of Pittsburgh; Pittsburgh 15261 Pennsylvania
- Protein Metabolism Medical Research Center and Department of Biomedical Science; College of Medicine, Seoul National University; Seoul 110-799 Korea
| | - Zong Sheng Guo
- Department of Surgery; School of Medicine, University of Pittsburgh; Pittsburgh 15213 Pennsylvania
| | - William Taehyung Kwon
- Department of Surgery; School of Medicine, University of Pittsburgh; Pittsburgh 15213 Pennsylvania
| | - David L. Bartlett
- Department of Surgery; School of Medicine, University of Pittsburgh; Pittsburgh 15213 Pennsylvania
| | - Sang Cheul Oh
- Division of Oncology/Hematology, Department of Internal Medicine; Korea University College of Medicine; Seoul Republic of Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Science; College of Medicine, Seoul National University; Seoul 110-799 Korea
| | - Yong J. Lee
- Department of Surgery; School of Medicine, University of Pittsburgh; Pittsburgh 15213 Pennsylvania
- Department of Pharmacology and Chemical Biology; School of Medicine, University of Pittsburgh; Pittsburgh 15213 Pennsylvania
| |
Collapse
|
66
|
Park WJ, Park JW. The effect of altered sphingolipid acyl chain length on various disease models. Biol Chem 2016; 396:693-705. [PMID: 25720066 DOI: 10.1515/hsz-2014-0310] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/21/2015] [Indexed: 01/15/2023]
Abstract
Sphingolipids have emerged as an important lipid mediator in intracellular signalling and metabolism. Ceramide, which is central to sphingolipid metabolism, is generated either via a de novo pathway, by attaching fatty acyl CoA to a long-chain base, or via a salvage pathway, by degrading pre-existing sphingolipids. As a 'sphingolipid rheostat' has been proposed, the balance between ceramide and sphingosine-1-phosphate has been the object of considerable attention. Ceramide has recently been reported to have a different function depending on its acyl chain length: six ceramide synthases (CerS) determine the specific ceramide acyl chain length in mammals. All CerS-deficient mice generated to date show that sphingolipids with defined acyl chain lengths play distinct pathophysiological roles in disease models. This review describes recent advances in understanding the associations of CerS with various diseases and includes clinical case reports.
Collapse
|
67
|
Ceramide Synthase 6 Is a Novel Target of Methotrexate Mediating Its Antiproliferative Effect in a p53-Dependent Manner. PLoS One 2016; 11:e0146618. [PMID: 26783755 PMCID: PMC4718595 DOI: 10.1371/journal.pone.0146618] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 01/28/2023] Open
Abstract
We previously reported that ceramide synthase 6 (CerS6) is elevated in response to folate stress in cancer cells, leading to enhanced production of C16-ceramide and apoptosis. Antifolate methotrexate (MTX), a drug commonly used in chemotherapy of several types of cancer, is a strong inhibitor of folate metabolism. Here we investigated whether this drug targets CerS6. We observed that CerS6 protein was markedly elevated in several cancer cell lines treated with MTX. In agreement with the enzyme elevation, its product C16-ceramide was also strongly elevated, so as several other ceramide species. The increase in C16-ceramide, however, was eliminated in MTX-treated cells lacking CerS6 through siRNA silencing, while the increase in other ceramides sustained. Furthermore, the siRNA silencing of CerS6 robustly protected A549 lung adenocarcinoma cells from MTX toxicity, while the silencing of another ceramide synthase, CerS4, which was also responsive to folate stress in our previous study, did not interfere with the MTX effect. The rescue effect of CerS6 silencing upon MTX treatment was further confirmed in HCT116 and HepG2 cell lines. Interestingly, CerS6 itself, but not CerS4, induced strong antiproliferative effect in several cancer cell lines if elevated by transient transfection. The effect of MTX on CerS6 elevation was likely p53 dependent, which is in agreement with the hypothesis that the protein is a transcriptional target of p53. In line with this notion, lometrexol, the antifolate inducing cytotoxicity through the p53-independent mechanism, did not affect CerS6 levels. We have also found that MTX induces the formation of ER aggregates, enriched with CerS6 protein. We further demonstrated that such aggregation requires CerS6 and suggests that it is an indication of ER stress. Overall, our study identified CerS6 and ceramide pathways as a novel MTX target.
Collapse
|
68
|
Abstract
Studies over the past two decades have identified ceramide as a multifunctional central molecule in the sphingolipid biosynthetic pathway. Given its diverse tumor suppressive activities, molecular understanding of ceramide action will produce fundamental insights into processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. Ceramide can be activated by a diverse array of stresses such as heat shock, genotoxic damage, oxidative stress and anticancer drugs. Ceramide triggers a variety of tumor suppressive and anti-proliferative cellular programs such as apoptosis, autophagy, senescence, and necroptosis by activating or repressing key effector molecules. Defects in ceramide generation and metabolism in cancer contribute to tumor cell survival and resistance to chemotherapy. The potent and versatile anticancer activity profile of ceramide has motivated drug development efforts to (re-)activate ceramide in established tumors. This review focuses on our current understanding of the tumor suppressive functions of ceramide and highlights the potential downstream targets of ceramide which are involved in its tumor suppressive action.
Collapse
|
69
|
del Solar V, Lizardo D, Li N, Hurst J, Brais C, Atilla-Gokcumen G. Differential Regulation of Specific Sphingolipids in Colon Cancer Cells during Staurosporine-Induced Apoptosis. ACTA ACUST UNITED AC 2015; 22:1662-70. [DOI: 10.1016/j.chembiol.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023]
|
70
|
Shaulov-Rotem Y, Merquiol E, Weiss-Sadan T, Moshel O, Salpeter S, Shabat D, Kaschani F, Kaiser M, Blum G. A novel quenched fluorescent activity-based probe reveals caspase-3 activity in the endoplasmic reticulum during apoptosis. Chem Sci 2015; 7:1322-1337. [PMID: 29910890 PMCID: PMC5975724 DOI: 10.1039/c5sc03207e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/07/2015] [Indexed: 01/03/2023] Open
Abstract
A selective quenched activity-based probe detects caspase-3 activity in the endoplasmic reticulum of cancerous cells during apoptosis.
The caspases are a family of cysteine proteases that are key regulators of apoptosis and their activity may thus serve as a good marker to monitor cell death. We have developed a quenched fluorescent activity-based probe (qABP) that is selective for caspase-3 activity and emits a fluorescent signal after covalently modifying its target. The probe has a wide range of potential applications, e.g. in real-time imaging, FACS analysis or biochemical quantification of caspase activity in intact cells. Application of the probe allowed us to monitor caspase-3 activation after chemotherapy-treatment and to distinguish between apoptosis sensitive and resistant cells. Moreover, it enabled real-time high-resolution visualization of active caspase-3 during apoptosis. This led to the surprising finding that in cancerous cells active caspase-3 is not only found at the familiar cellular locations but also in mitochondria and the endoplasmic reticulum. Thus, our novel covalent probe allows high spatial and temporal resolution imaging of caspase-3 activation and may thus be used as an effective tool to study molecular mechanisms of programmed cell death in healthy and disease states.
Collapse
Affiliation(s)
- Yulia Shaulov-Rotem
- Institute of Drug Research , The School of Pharmacy , The Faculty of Medicine , Campus Ein Karem , The Hebrew University , Jerusalem , 9112001 , Israel
| | - Emmanuelle Merquiol
- Institute of Drug Research , The School of Pharmacy , The Faculty of Medicine , Campus Ein Karem , The Hebrew University , Jerusalem , 9112001 , Israel
| | - Tommy Weiss-Sadan
- Institute of Drug Research , The School of Pharmacy , The Faculty of Medicine , Campus Ein Karem , The Hebrew University , Jerusalem , 9112001 , Israel
| | - Ofra Moshel
- Institute of Drug Research , The School of Pharmacy , The Faculty of Medicine , Campus Ein Karem , The Hebrew University , Jerusalem , 9112001 , Israel
| | - Seth Salpeter
- Institute of Drug Research , The School of Pharmacy , The Faculty of Medicine , Campus Ein Karem , The Hebrew University , Jerusalem , 9112001 , Israel
| | - Doron Shabat
- School of Chemistry , Faculty of Exact Sciences , Tel-Aviv University , Tel Aviv , 69978 , Israel
| | - Farnusch Kaschani
- Department of Chemical Biology , University of Duisburg-Essen , Center for Medical Biotechnology , Faculty of Biology , 45117 Essen , Germany
| | - Markus Kaiser
- Department of Chemical Biology , University of Duisburg-Essen , Center for Medical Biotechnology , Faculty of Biology , 45117 Essen , Germany
| | - Galia Blum
- Institute of Drug Research , The School of Pharmacy , The Faculty of Medicine , Campus Ein Karem , The Hebrew University , Jerusalem , 9112001 , Israel
| |
Collapse
|
71
|
Hernández-Corbacho MJ, Canals D, Adada MM, Liu M, Senkal CE, Yi JK, Mao C, Luberto C, Hannun YA, Obeid LM. Tumor Necrosis Factor-α (TNFα)-induced Ceramide Generation via Ceramide Synthases Regulates Loss of Focal Adhesion Kinase (FAK) and Programmed Cell Death. J Biol Chem 2015; 290:25356-73. [PMID: 26318452 DOI: 10.1074/jbc.m115.658658] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/06/2022] Open
Abstract
Ceramide synthases (CerS1-CerS6), which catalyze the N-acylation of the (dihydro)sphingosine backbone to produce (dihydro)ceramide in both the de novo and the salvage or recycling pathway of ceramide generation, have been implicated in the control of programmed cell death. However, the regulation of the de novo pathway compared with the salvage pathway is not fully understood. In the current study, we have found that late accumulation of multiple ceramide and dihydroceramide species in MCF-7 cells treated with TNFα occurred by up-regulation of both pathways of ceramide synthesis. Nevertheless, fumonisin B1 but not myriocin was able to protect from TNFα-induced cell death, suggesting that ceramide synthase activity is crucial for the progression of cell death and that the pool of ceramide involved derives from the salvage pathway rather than de novo biosynthesis. Furthermore, compared with control cells, TNFα-treated cells exhibited reduced focal adhesion kinase and subsequent plasma membrane permeabilization, which was blocked exclusively by fumonisin B1. In addition, exogenously added C6-ceramide mimicked the effects of TNFα that lead to cell death, which were inhibited by fumonisin B1. Knockdown of individual ceramide synthases identified CerS6 and its product C16-ceramide as the ceramide synthase isoform essential for the regulation of cell death. In summary, our data suggest a novel role for CerS6/C16-ceramide as an upstream effector of the loss of focal adhesion protein and plasma membrane permeabilization, via the activation of caspase-7, and identify the salvage pathway as the critical mechanism of ceramide generation that controls cell death.
Collapse
Affiliation(s)
| | - Daniel Canals
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Mohamad M Adada
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Mengling Liu
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Can E Senkal
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Jae Kyo Yi
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Cungui Mao
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Chiara Luberto
- From the Stony Brook Cancer Center, the Department of Physiology and Biophysics, Stony Brook University, Health Sciences Center, Stony Brook, New York 11794 and
| | - Yusuf A Hannun
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Lina M Obeid
- From the Stony Brook Cancer Center, the Department of Medicine, and the Northport Veterans Affairs Medical Center, Northport, New York 11768
| |
Collapse
|
72
|
Aureli M, Murdica V, Loberto N, Samarani M, Prinetti A, Bassi R, Sonnino S. Exploring the link between ceramide and ionizing radiation. Glycoconj J 2015; 31:449-59. [PMID: 25129488 DOI: 10.1007/s10719-014-9541-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of radiotherapy is to eradicate cancer cells with ionizing radiation; tumor cell death following irradiation can be induced by several signaling pathways, most of which are triggered as a consequence of DNA damage, the primary and major relevant cell response to radiation. Several lines of evidence demonstrated that ceramide, a crucial sensor and/or effector of different signalling pathways promoting cell cycle arrest, death and differentiation, is directly involved in the molecular mechanisms underlying cellular response to irradiation. Most of the studies strongly support a direct relationship between ceramide accumulation and radiation-induced cell death, mainly apoptosis; for this reason, defining the contribution of the multiple metabolic pathways leading to ceramide formation and the causes of its dysregulated metabolism represent the main goal in order to elucidate the ceramide-mediated signaling in radiotherapy. In this review, we summarize the current knowledge concerning the different routes leading to ceramide accumulation in radiation-induced cell response with particular regard to the role of the enzymes involved in both ceramide neogenesis and catabolism. Emphasis is placed on sphingolipid breakdown as mechanism of ceramide generation activated following cell irradiation; the functional relevance of this pathway, and the role of glycosphingolipid glycohydrolases as direct targets of ionizing radiation are also discussed. These new findings add a further attractive point of investigation to better define the complex interplay between sphingolipid metabolism and radiation therapy.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, Italy
| | | | | | | | | | | | | |
Collapse
|
73
|
Chen L, Chen H, Li Y, Li L, Qiu Y, Ren J. Endocannabinoid and ceramide levels are altered in patients with colorectal cancer. Oncol Rep 2015; 34:447-54. [PMID: 25975960 DOI: 10.3892/or.2015.3973] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/27/2015] [Indexed: 11/06/2022] Open
Abstract
Endocannabinoids and ceramides have demonstrated growth inhibition, cell death induction and pro-apoptotic activity in cancer research. In the present study, we describe the profiles of two major endocannabinoids, ceramides, free fatty acids and relevant metabolic enzymes in 47 pairs of human colorectal cancer tissues and adjacent non-tumor tissues. Among them, anandamide (AEA) and its metabolite, arachidonic acid (AA), were markedly upregulated in cancer tissues particularly in those with lymphatic metastasis. The levels of C16 and C24 ceramides were significantly elevated in the colorectal tumor tissues, while levels of C18 and C20 ceramides showed opposite trends. Levels of two enzymes participating in the biosynthesis and degradation of AEA, N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D (NPLD) and fatty acid amide hydrolase (FAAH), together with the most abundant ceramide synthases (CerS1, CerS2, CerS5 and CerS6) in the colon were also determined. Quantitative-PCR analysis indicated that the mRNA levels of these enzymes were overexpressed in the tumor tissues. The activities of NPLD and FAAH were also upregulated. In addition, both gene and protein expression levels of cannabinoid receptor 1 (CB1) were elevated but not of CB2. Elevation of AEA and alteration of ceramides (C16, C24, C18, C20) may qualify as potential endogenous biomarkers and novel drug targets for colorectal cancer.
Collapse
Affiliation(s)
- Ling Chen
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen 361102, P.R. China
| | - Huixia Chen
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen 361102, P.R. China
| | - Yanting Li
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen 361102, P.R. China
| | - Lei Li
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen 361102, P.R. China
| | - Yan Qiu
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen 361102, P.R. China
| | - Jie Ren
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen 361102, P.R. China
| |
Collapse
|
74
|
Tirodkar TS, Lu P, Bai A, Scheffel MJ, Gencer S, Garrett-Mayer E, Bielawska A, Ogretmen B, Voelkel-Johnson C. Expression of Ceramide Synthase 6 Transcriptionally Activates Acid Ceramidase in a c-Jun N-terminal Kinase (JNK)-dependent Manner. J Biol Chem 2015; 290:13157-67. [PMID: 25839235 DOI: 10.1074/jbc.m114.631325] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 12/16/2022] Open
Abstract
A family of six ceramide synthases with distinct but overlapping substrate specificities is responsible for generation of ceramides with acyl chains ranging from ∼14-26 carbons. Ceramide synthase 6 (CerS6) preferentially generates C14- and C16-ceramides, and we have previously shown that down-regulation of this enzyme decreases apoptotic susceptibility. In this study, we further evaluated how increased CerS6 expression impacts sphingolipid composition and metabolism. Overexpression of CerS6 in HT29 colon cancer cells resulted in increased apoptotic susceptibility and preferential generation of C16-ceramide, which occurred at the expense of very long chain, saturated ceramides. These changes were also reflected in sphingomyelin composition. HT-CerS6 cells had increased intracellular levels of sphingosine, which is generated by ceramidases upon hydrolysis of ceramide. qRT-PCR analysis revealed that only expression of acid ceramidase (ASAH1) was increased. The increase in acid ceramidase was confirmed by expression and activity analyses. Pharmacological inhibition of JNK (SP600125) or curcumin reduced transcriptional up-regulation of acid ceramidase. Using an acid ceramidase promoter driven luciferase reporter plasmid, we demonstrated that CerS1 has no effect on transcriptional activation of acid ceramidase and that CerS2 slightly but significantly decreased the luciferase signal. Similar to CerS6, overexpression of CerS3-5 resulted in an ∼2-fold increase in luciferase reporter gene activity. Exogenous ceramide failed to induce reporter activity, while a CerS inhibitor and a catalytically inactive mutant of CerS6 failed to reduce it. Taken together, these results suggest that increased expression of CerS6 can mediate transcriptional activation of acid ceramidase in a JNK-dependent manner that is independent of CerS6 activity.
Collapse
Affiliation(s)
| | - Ping Lu
- From the Departments of Microbiology and Immunology
| | | | | | - Salih Gencer
- Biochemistry and Molecular Biology, and the Department of Molecular Biology and Genetics, 34662 Istanbul, Turkey
| | | | | | | | | |
Collapse
|
75
|
Cytochrome c oxidase deficiency accelerates mitochondrial apoptosis by activating ceramide synthase 6. Cell Death Dis 2015; 6:e1691. [PMID: 25766330 PMCID: PMC4385940 DOI: 10.1038/cddis.2015.62] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 12/21/2022]
Abstract
Although numerous pathogenic changes within the mitochondrial respiratory chain (RC) have been associated with an elevated occurrence of apoptosis within the affected tissues, the mechanistic insight into how mitochondrial dysfunction initiates apoptotic cell death is still unknown. In this study, we show that the specific alteration of the cytochrome c oxidase (COX), representing a common defect found in mitochondrial diseases, facilitates mitochondrial apoptosis in response to oxidative stress. Our data identified an increased ceramide synthase 6 (CerS6) activity as an important pro-apoptotic response to COX dysfunction induced either by chemical or genetic approaches. The elevated CerS6 activity resulted in accumulation of the pro-apoptotic C16 : 0 ceramide, which facilitates the mitochondrial apoptosis in response to oxidative stress. Accordingly, inhibition of CerS6 or its specific knockdown diminished the increased susceptibility of COX-deficient cells to oxidative stress. Our results provide new insights into how mitochondrial RC dysfunction mechanistically interferes with the apoptotic machinery. On the basis of its pivotal role in regulating cell death upon COX dysfunction, CerS6 might potentially represent a novel target for therapeutic intervention in mitochondrial diseases caused by COX dysfunction.
Collapse
|
76
|
Skender B, Hofmanová J, Slavík J, Jelínková I, Machala M, Moyer MP, Kozubík A, Hyršlová Vaculová A. DHA-mediated enhancement of TRAIL-induced apoptosis in colon cancer cells is associated with engagement of mitochondria and specific alterations in sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1308-17. [PMID: 24953781 DOI: 10.1016/j.bbalip.2014.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/01/2014] [Accepted: 06/09/2014] [Indexed: 12/25/2022]
Abstract
Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid present in fish oil, may exert cytotoxic and/or cytostatic effects on colon cancer cells when applied individually or in combination with some anticancer drugs. Here we demonstrate a selective ability of subtoxic doses of DHA to enhance antiproliferative and apoptotic effects of clinically useful cytokine TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in cancer but not normal human colon cells. DHA-mediated stimulation of TRAIL-induced apoptosis was associated with extensive engagement of mitochondrial pathway (Bax/Bak activation, drop of mitochondrial membrane potential, cytochrome c release), activation of endoplasmic reticulum stress response (CHOP upregulation, changes in PERK level), decrease of cellular inhibitor of apoptosis protein (XIAP, cIAP1) levels and significant changes in sphingolipid metabolism (intracellular levels of ceramides, hexosyl ceramides, sphingomyelines, sphingosines; HPLC/MS/MS). Interestingly, we found significant differences in representation of various classes of ceramides (especially C16:0, C24:1) between the cancer and normal colon cells treated with DHA and TRAIL, and suggested their potential role in the regulation of the cell response to the drug combination. These study outcomes highlight the potential of DHA for a new combination therapy with TRAIL for selective elimination of colon cancer cells via simultaneous targeting of multiple steps in apoptotic pathways.
Collapse
Affiliation(s)
- Belma Skender
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Josef Slavík
- Department of Toxicology, Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Iva Jelínková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Miroslav Machala
- Department of Toxicology, Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | | | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Alena Hyršlová Vaculová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic.
| |
Collapse
|
77
|
Abstract
Therapy resistance is a major limitation to the successful treatment of cancer. Here, we identify Bcl2-like 13 (Bcl2L13), an atypical member of the Bcl-2 family, as a therapy susceptibility gene with elevated expression in solid and blood cancers, including glioblastoma (GBM). We demonstrate that mitochondria-associated Bcl2L13 inhibits apoptosis induced by a wide spectrum of chemo- and targeted therapies upstream of Bcl2-associated X protein activation and mitochondrial outer membrane permeabilization in vitro and promotes GBM tumor growth in vivo. Mechanistically, Bcl2L13 binds to proapoptotic ceramide synthases 2 (CerS2) and 6 (CerS6) via a unique C-terminal 250-aa sequence located between its Bcl-2 homology and membrane anchor domains and blocks homo- and heteromeric CerS2/6 complex formation and activity. Correspondingly, CerS2/6 activity and Bcl2L13 abundance are inversely correlated in GBM tumors. Thus, our genetic and functional studies identify Bcl2L13 as a regulator of therapy susceptibility and point to the Bcl2L13-CerS axis as a promising target to enhance responses of therapy-refractory cancers toward conventional and targeted regimens currently in clinical use.
Collapse
|
78
|
Don AS, Lim XY, Couttas TA. Re-configuration of sphingolipid metabolism by oncogenic transformation. Biomolecules 2014; 4:315-53. [PMID: 24970218 PMCID: PMC4030989 DOI: 10.3390/biom4010315] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/11/2014] [Accepted: 02/27/2014] [Indexed: 12/15/2022] Open
Abstract
The sphingolipids are one of the major lipid families in eukaryotes, incorporating a diverse array of structural variants that exert a powerful influence over cell fate and physiology. Increased expression of sphingosine kinase 1 (SPHK1), which catalyses the synthesis of the pro-survival, pro-angiogenic metabolite sphingosine 1-phosphate (S1P), is well established as a hallmark of multiple cancers. Metabolic alterations that reduce levels of the pro-apoptotic lipid ceramide, particularly its glucosylation by glucosylceramide synthase (GCS), have frequently been associated with cancer drug resistance. However, the simple notion that the balance between ceramide and S1P, often referred to as the sphingolipid rheostat, dictates cell survival contrasts with recent studies showing that highly potent and selective SPHK1 inhibitors do not affect cancer cell proliferation or survival, and studies demonstrating higher ceramide levels in some metastatic cancers. Recent reports have implicated other sphingolipid metabolic enzymes such as acid sphingomyelinase (ASM) more strongly in cancer pathogenesis, and highlight lysosomal sphingolipid metabolism as a possible weak point for therapeutic targeting in cancer. This review describes the evidence implicating different sphingolipid metabolic enzymes and their products in cancer pathogenesis, and suggests how newer systems-level approaches may improve our overall understanding of how oncogenic transformation reconfigures sphingolipid metabolism.
Collapse
Affiliation(s)
- Anthony S Don
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Xin Y Lim
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Timothy A Couttas
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
79
|
TolC-dependent modulation of host cell death by the Francisella tularensis live vaccine strain. Infect Immun 2014; 82:2068-78. [PMID: 24614652 DOI: 10.1128/iai.00044-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Francisella tularensis is a facultative intracellular, Gram-negative pathogen and the causative agent of tularemia. We previously identified TolC as a virulence factor of the F. tularensis live vaccine strain (LVS) and demonstrated that a ΔtolC mutant exhibits increased cytotoxicity toward host cells and elicits increased proinflammatory responses compared to those of the wild-type (WT) strain. TolC is the outer membrane channel component used by the type I secretion pathway to export toxins and other bacterial virulence factors. Here, we show that the LVS delays activation of the intrinsic apoptotic pathway in a TolC-dependent manner, both during infection of primary macrophages and during organ colonization in mice. The TolC-dependent delay in host cell death is required for F. tularensis to preserve its intracellular replicative niche. We demonstrate that TolC-mediated inhibition of apoptosis is an active process and not due to defects in the structural integrity of the ΔtolC mutant. These findings support a model wherein the immunomodulatory capacity of F. tularensis relies, at least in part, on TolC-secreted effectors. Finally, mice vaccinated with the ΔtolC LVS are protected from lethal challenge and clear challenge doses faster than WT-vaccinated mice, demonstrating that the altered host responses to primary infection with the ΔtolC mutant led to altered adaptive immune responses. Taken together, our data demonstrate that TolC is required for temporal modulation of host cell death during infection by F. tularensis and highlight how shifts in the magnitude and timing of host innate immune responses may lead to dramatic changes in the outcome of infection.
Collapse
|
80
|
Paschall AV, Zimmerman MA, Torres CM, Yang D, Chen MR, Li X, Bieberich E, Bai A, Bielawski J, Bielawska A, Liu K. Ceramide targets xIAP and cIAP1 to sensitize metastatic colon and breast cancer cells to apoptosis induction to suppress tumor progression. BMC Cancer 2014; 14:24. [PMID: 24422988 PMCID: PMC3898374 DOI: 10.1186/1471-2407-14-24] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/09/2014] [Indexed: 11/10/2022] Open
Abstract
Background Ceramide is a bioeffector that mediates various cellular processes, including apoptosis. However, the mechanism underlying ceramide function in apoptosis is apparently cell type-dependent and is not well-understood. We aimed at identifying molecular targets of ceramide in metastatic human colon and breast cancer cells, and determining the efficacy of ceramide analog in suppression of colon and breast cancer metastasis. Methods The activity of and mechanism underlying ceramide as a cytotoxic agent, and as a sensitizer for Fas-mediated apoptosis was analyzed in human cell lines established from primary or metastatic colon and breast cancers. The efficacy of ceramide analog LCL85 in suppression of metastasis was examined in preclinical mouse tumor models. Results Exposure of human colon carcinoma cells to ceramide analog LCL85 results in apoptosis in a dose-dependent manner. Interestingly, a sublethal dose of LCL85 increased C16 ceramide content and overcame tumor cell resistance to Fas-mediated apoptosis. Subsequently, treatment of tumor cells with exogenous C16 ceramide resulted in increased tumor cell sensitivity to Fas-mediated apoptosis. LCL85 resembles Smac mimetic BV6 in sensitization of colon carcinoma cells to Fas-mediated apoptosis by inducing proteasomal degradation of cIAP1 and xIAP proteins. LCL85 also decreased xIAP1 and cIAP1 protein levels and sensitized metastatic human breast cancer cells to Fas-mediated apoptosis. Silencing xIAP and cIAP1 with specific siRNAs significantly increased the metastatic human colon carcinoma cell sensitivity to Fas-mediated apoptosis, suggesting that IAP proteins mediate apoptosis resistance in metastatic human colon carcinoma cells and ceramide induces IAP protein degradation to sensitize the tumor cells to apoptosis induction. Consistent with its apoptosis sensitization activity, subtoxic doses of LCL85 suppressed colon carcinoma cell metastatic potential in an experimental lung metastasis mouse model, as well as breast cancer growth and spontaneous lung metastasis in an orthotopic breast cancer mouse model. Conclusion We have identified xIAP and cIAP1 as molecular targets of ceramide and determined that ceramide analog LCL85 is an effective sensitizer in overcoming resistance of human cell lines established from metastatic colon and breast cancers to apoptosis induction to suppress metastasis in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
81
|
Porwal M, Cohen S, Snoussi K, Popa-Wagner R, Anderson F, Dugot-Senant N, Wodrich H, Dinsart C, Kleinschmidt JA, Panté N, Kann M. Parvoviruses cause nuclear envelope breakdown by activating key enzymes of mitosis. PLoS Pathog 2013; 9:e1003671. [PMID: 24204256 PMCID: PMC3814971 DOI: 10.1371/journal.ppat.1003671] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/16/2013] [Indexed: 11/18/2022] Open
Abstract
Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca++ efflux from the lumen between inner and outer nuclear membrane we found that Ca++ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis. Parvoviruses are small non-enveloped DNA viruses successfully used in gene therapy. Their nuclear replication requires transit of the nuclear envelope. Analyzing the interaction between parvoviruses and the nucleus, we showed that despite their small size, they did not traverse the nuclear pore, but attached directly to proteins of the nuclear pore complex. We observed that this binding induced structural changes of the parvoviruses and that the structural rearrangement was essential for triggering a signal cascade resulting in disintegration of the nuclear envelope. Physiologically such nuclear envelope breakdown occurs late during prophase of mitosis. Our finding that the parvovirus-mediated nuclear envelope breakdown also occurred in the absence of soluble cytosolic factors allowed us to decipher the intra nuclear pathways involved in nuclear envelope destabilization. Consistently with the physiological disintegration we found that key enzymes of mitosis were essential and we further identified Ca++ as the initial trigger. Thus our data not only show a unique pathway of how a DNA virus interacts with the nucleus but also describes a virus-based system allowing the first time to analyze selectively the intranuclear pathways leading to nuclear envelope disintegration.
Collapse
Affiliation(s)
- Manvi Porwal
- Institute of Medical Virology, University of Giessen, Giessen, Germany
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Sarah Cohen
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kenza Snoussi
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | | | - Fenja Anderson
- Institute of Medical Virology, University of Giessen, Giessen, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Harald Wodrich
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | | | | | - Nelly Panté
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Kann
- Institute of Medical Virology, University of Giessen, Giessen, Germany
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
82
|
García-Barros M, Coant N, Truman JP, Snider AJ, Hannun YA. Sphingolipids in colon cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:773-82. [PMID: 24060581 DOI: 10.1016/j.bbalip.2013.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 01/28/2023]
Abstract
Colorectal cancer is one of the major causes of death in the western world. Despite increasing knowledge of the molecular signaling pathways implicated in colon cancer, therapeutic outcomes are still only moderately successful. Sphingolipids, a family of N-acyl linked lipids, have not only structural functions but are also implicated in important biological functions. Ceramide, sphingosine and sphingosine-1-phosphate are the most important bioactive lipids, and they regulate several key cellular functions. Accumulating evidence suggests that many cancers present alterations in sphingolipids and their metabolizing enzymes. The aim of this review is to discuss the emerging roles of sphingolipids, both endogenous and dietary, in colon cancer and the interaction of sphingolipids with WNT/β-catenin pathway, one of the most important signaling cascades that regulate development and homeostasis in intestine. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Mónica García-Barros
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, 101 Nicolls Road, T15, 023, 11794, Stony Brook, NY, USA.
| | - Nicolas Coant
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, 101 Nicolls Road, T15, 023, 11794, Stony Brook, NY, USA.
| | - Jean-Philip Truman
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, 101 Nicolls Road, T15, 023, 11794, Stony Brook, NY, USA.
| | - Ashley J Snider
- VAMC Northport, 79 Middleville Road, Northport, NY, USA, Health Science Center, Stony Brook University, Stony Brook, NY, USA.
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, 101 Nicolls Road, T15, 023, 11794, Stony Brook, NY, USA.
| |
Collapse
|
83
|
Cheng JC, Bai A, Beckham TH, Marrison ST, Yount CL, Young K, Lu P, Bartlett AM, Wu BX, Keane BJ, Armeson KE, Marshall DT, Keane TE, Smith MT, Jones EE, Drake RR, Bielawska A, Norris JS, Liu X. Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J Clin Invest 2013; 123:4344-58. [PMID: 24091326 DOI: 10.1172/jci64791] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/11/2013] [Indexed: 01/06/2023] Open
Abstract
Escape of prostate cancer (PCa) cells from ionizing radiation-induced (IR-induced) killing leads to disease progression and cancer relapse. The influence of sphingolipids, such as ceramide and its metabolite sphingosine 1-phosphate, on signal transduction pathways under cell stress is important to survival adaptation responses. In this study, we demonstrate that ceramide-deacylating enzyme acid ceramidase (AC) was preferentially upregulated in irradiated PCa cells. Radiation-induced AC gene transactivation by activator protein 1 (AP-1) binding on the proximal promoter was sensitive to inhibition of de novo ceramide biosynthesis, as demonstrated by promoter reporter and ChIP-qPCR analyses. Our data indicate that a protective feedback mechanism mitigates the apoptotic effect of IR-induced ceramide generation. We found that deregulation of c-Jun induced marked radiosensitization in vivo and in vitro, which was rescued by ectopic AC overexpression. AC overexpression in PCa clonogens that survived a fractionated 80-Gy IR course was associated with increased radioresistance and proliferation, suggesting a role for AC in radiotherapy failure and relapse. Immunohistochemical analysis of human PCa tissues revealed higher levels of AC after radiotherapy failure than those in therapy-naive PCa, prostatic intraepithelial neoplasia, or benign tissues. Addition of an AC inhibitor to an animal model of xenograft irradiation produced radiosensitization and prevention of relapse. These data indicate that AC is a potentially tractable target for adjuvant radiotherapy.
Collapse
|
84
|
Park JW, Park WJ, Futerman AH. Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:671-81. [PMID: 24021978 DOI: 10.1016/j.bbalip.2013.08.019] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/10/2023]
Abstract
Ceramide is located at a key hub in the sphingolipid metabolic pathway and also acts as an important cellular signaling molecule. Ceramide contains one acyl chain which is attached to a sphingoid long chain base via an amide bond, with the acyl chain varying in length and degree of saturation. The identification of a family of six mammalian ceramide synthases (CerS) that synthesize ceramide with distinct acyl chains, has led to significant advances in our understanding of ceramide biology, including further delineation of the role of ceramide in various pathophysiologies in both mice and humans. Since ceramides, and the complex sphingolipids generated from ceramide, are implicated in disease, the CerS might potentially be novel targets for therapeutic intervention in the diseases in which the ceramide acyl chain length is altered. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Joo-Won Park
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158-710, South Korea
| | - Woo-Jae Park
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-799, South Korea
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
85
|
Halasiddappa LM, Koefeler H, Futerman AH, Hermetter A. Oxidized phospholipids induce ceramide accumulation in RAW 264.7 macrophages: role of ceramide synthases. PLoS One 2013; 8:e70002. [PMID: 23936132 PMCID: PMC3729465 DOI: 10.1371/journal.pone.0070002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
Oxidized phospholipids (OxPLs), including 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphocholine (POVPC) are among several biologically active derivatives that are generated during oxidation of low-density lipoproteins (LDLs). These OxPLs are factors contributing to pro-atherogenic effects of oxidized LDLs (OxLDLs), including inflammation, proliferation and death of vascular cells. OxLDL also elicits formation of the lipid messenger ceramide (Cer) which plays a pivotal role in apoptotic signaling pathways. Here we report that both PGPC and POVPC are cytotoxic to cultured macrophages and induce apoptosis in these cells which is associated with increased cellular ceramide levels after several hours. In addition, exposure of RAW 264.7 cells to POVPC and PGPC under the same conditions resulted in a significant increase in ceramide synthase activity, whereas, acid or neutral sphingomyelinase activities were not affected. PGPC is not only more toxic than POVPC, but also a more potent inducer of ceramide formation by activating a limited subset of CerS isoforms. The stimulated CerS activities are in line with the C16-, C22-, and C24:0-Cer species that are generated under the influence of the OxPL. Fumonisin B1, a specific inhibitor of CerS, suppressed OxPL-induced ceramide generation, demonstrating that OxPL-induced CerS activity in macrophages is responsible for the accumulation of ceramide. OxLDL elicits the same cellular ceramide and CerS effects. Thus, it is concluded that PGPC and POVPC are active components that contribute to the capacity of this lipoprotein to elevate ceramide levels in macrophages.
Collapse
Affiliation(s)
- Lingaraju M. Halasiddappa
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Harald Koefeler
- Core Facility for Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Anthony H. Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
86
|
Horova V, Hradilova N, Jelinkova I, Koc M, Svadlenka J, Brazina J, Klima M, Slavik J, Hyrslova Vaculova A, Andera L. Inhibition of vacuolar ATPase attenuates the TRAIL-induced activation of caspase-8 and modulates the trafficking of TRAIL receptosomes. FEBS J 2013; 280:3436-50. [PMID: 23678861 DOI: 10.1111/febs.12347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/13/2013] [Accepted: 05/13/2013] [Indexed: 01/14/2023]
Abstract
Tumour necrosis factor (TNF) related apoptosis inducing ligand (TRAIL), a membrane-bound ligand from the TNF family, has attracted significant attention due to its rather specific and effective ability to induce apoptotic death in various types of cancer cells via binding to and activating its pro-apoptotic death receptors. However, a significant number of primary cancer cells often develop resistance to TRAIL treatment, and the signalling platform behind this phenomenon is not fully understood. Upon blocking endosomal acidification by the vacuolar ATPase (V-ATPase) inhibitors bafilomycin A1 (BafA1) or concanamycin A, we observed a significantly reduced initial sensitivity of several, mainly colorectal, tumour cell lines to TRAIL-induced apoptosis. In cells pretreated with these inhibitors, the TRAIL-induced processing of caspase-8 and the aggregation and trafficking of the TRAIL receptor complexes were temporarily attenuated. Nuclear factor κB or mitogen activated protein/stress kinase signalling from the activated TRAIL receptors remained unchanged, and neither possible lysosomal permeabilization nor acid sphingomyelinase was involved in this process. The cell surface expression of TRAIL receptors and their TRAIL-induced internalization were not affected by V-ATPase inhibitors. The inhibitory effect of BafA1, however, was blunted by knockdown of the caspase-8 inhibitor cFLIP. Altogether, the data obtained provide the first evidence that endosomal acidification could represent an important regulatory node in the proximal part of TRAIL-induced pro-apoptotic signalling.
Collapse
Affiliation(s)
- Vladimira Horova
- Department of Cell Signalling and Apoptosis, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Hoeferlin LA, Fekry B, Ogretmen B, Krupenko SA, Krupenko NI. Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6. J Biol Chem 2013; 288:12880-90. [PMID: 23519469 DOI: 10.1074/jbc.m113.461798] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have investigated the role of ceramide in the cellular adaptation to folate stress induced by Aldh1l1, the enzyme involved in the regulation of folate metabolism. Our previous studies demonstrated that Aldh1l1, similar to folate deficiency, evokes metabolic stress and causes apoptosis in cancer cells. Here we report that the expression of Aldh1l1 in A549 or HCT116 cells results in the elevation of C16-ceramide and a transient up-regulation of ceramide synthase 6 (CerS6) mRNA and protein. Pretreatment with ceramide synthesis inhibitors myriocin and fumonisin B1 or siRNA silencing of CerS6 prevented C16-ceramide accumulation and rescued cells supporting the role of CerS6/C16-ceramide as effectors of Aldh1l1-induced apoptosis. The CerS6 activation by Aldh1l1 and increased ceramide generation were p53-dependent; this effect was ablated in p53-null cells. Furthermore, the expression of wild type p53 but not transcriptionally inactive R175H p53 mutant strongly elevated CerS6. Also, this dominant negative mutant prevented accumulation of CerS6 in response to Aldh1l1, indicating that CerS6 is a transcriptional target of p53. In support of this mechanism, bioinformatics analysis revealed the p53 binding site 3 kb downstream of the CerS6 transcription start. Interestingly, ceramide elevation in response to Aldh1l1 was inhibited by silencing of PUMA, a proapoptotic downstream effector of p53 whereas the transient expression of CerS6 elevated PUMA in a p53-dependent manner indicating reciprocal relationships between ceramide and p53/PUMA pathways. Importantly, folate withdrawal also induced CerS6/C16-ceramide elevation accompanied by p53 accumulation. Overall, these novel findings link folate and de novo ceramide pathways in cellular stress response.
Collapse
Affiliation(s)
- L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
88
|
Abstract
Chemotherapy is frequently used to treat primary or metastatic cancers, but intrinsic or acquired drug resistance limits its efficiency. Sphingolipids are important regulators of various cellular processes including proliferation, apoptosis, differentiation, angiogenesis, stress, and inflammatory responses which are linked to various aspects of cancer, like tumor growth, neoangiogenesis, and response to chemotherapy. Ceramide, the central molecule of sphingolipid metabolism, generally mediates antiproliferative and proapoptotic functions, whereas sphingosine-1-phosphate and other derivatives have opposing effects. Among the variety of enzymes that control ceramide generation, acid or neutral sphingomyelinases and ceramide synthases are important targets to allow killing of cancer cells by chemotherapeutic drugs. On the contrary, glucosylceramide synthase, ceramidase, and sphingosine kinase are other targets driving cancer cell resistance to chemotherapy. This chapter focuses on ceramide-based mechanisms leading to cancer therapy sensitization or resistance which could have some impacts on the development of novel cancer therapeutic strategies.
Collapse
|
89
|
Abstract
One crucial barrier to progress in the treatment of cancer has been the inability to control the balance between cell proliferation and apoptosis: enter ceramide. Discoveries over the past 15 years have elevated this sphingolipid to the lofty position of a regulator of cell fate. Ceramide, it turns out, is a powerful tumour suppressor, potentiating signalling events that drive apoptosis, autophagic responses and cell cycle arrest. However, defects in ceramide generation and metabolism in cancer cells contribute to tumour cell survival and resistance to chemotherapy. This Review focuses on ceramide signalling and the targeting of specific metabolic junctures to amplify the tumour suppressive activities of ceramide. The potential of ceramide-based therapeutics in the treatment of cancer is also discussed.
Collapse
Affiliation(s)
- Samy A F Morad
- Department of Experimental Therapeutics, John Wayne Cancer Institute at Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, California 90404, USA.
| | | |
Collapse
|
90
|
Burns TA, Subathra M, Signorelli P, Choi Y, Yang X, Wang Y, Villani M, Bhalla K, Zhou D, Luberto C. Sphingomyelin synthase 1 activity is regulated by the BCR-ABL oncogene. J Lipid Res 2012; 54:794-805. [PMID: 23160178 DOI: 10.1194/jlr.m033985] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sphingomyelin synthase (SMS) produces sphingomyelin while consuming ceramide (a negative regulator of cell proliferation) and forming diacylglycerol (DAG) (a mitogenic factor). Therefore, enhanced SMS activity could favor cell proliferation. To examine if dysregulated SMS contributes to leukemogenesis, we measured SMS activity in several leukemic cell lines and found that it is highly elevated in K562 chronic myelogenous leukemia (CML) cells. The increased SMS in K562 cells was caused by the presence of Bcr-abl, a hallmark of CML; stable expression of Bcr-abl elevated SMS activity in HL-60 cells while inhibition of the tyrosine kinase activity of Bcr-abl with Imatinib mesylate decreased SMS activity in K562 cells. The increased SMS activity was the result of up-regulation of the Sms1 isoform. Inhibition of SMS activity with D609 (a pharmacological SMS inhibitor) or down-regulation of SMS1 expression by siRNA selectively inhibited the proliferation of Bcr-abl-positive cells. The inhibition was associated with an increased production of ceramide and a decreased production of DAG, conditions that antagonize cell proliferation. A similar change in lipid profile was also observed upon pharmacological inhibition of Bcr-abl (K526 cells) and siRNA-mediated down-regulation of BCR-ABL (HL-60/Bcr-abl cells). These findings indicate that Sms1 is a downstream target of Bcr-abl, involved in sustaining cell proliferation of Bcr-abl-positive cells.
Collapse
Affiliation(s)
- Tara Ann Burns
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
| | - Marimuthu Subathra
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
| | - Paola Signorelli
- Laboratory of Biochemistry and Molecular Biology, San Paolo University Hospital, Medical School, University of Milan, Italy
| | - Young Choi
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
| | - Xiaofeng Yang
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Yong Wang
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Maristella Villani
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC; Pathology and Laboratory Medicine, Polispecialistica Bios, Crotone, Italy
| | - Kapil Bhalla
- Pathology and Laboratory Medicine, The University of Kansas Cancer Center, Kansas City, KS
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Chiara Luberto
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
91
|
Yu WY, Xu JH, Wang GJ, Zhang RJ, Sun J, Fan ZZ. Application of RNA interference in research of multidrug resistance in colorectal cancer: Recent progress. Shijie Huaren Xiaohua Zazhi 2012; 20:2926-2930. [DOI: 10.11569/wcjd.v20.i30.2926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is one of the most common malignant digestive tract tumors in the world. Chemotherapy is the main treatment for colorectal cancer. However, multidrug resistance of tumor cells hinders its treatment. RNA interference, which allows specifically inhibiting the expression of multidrug genes, has been gradually applied to gene treatment for multidrug resistance. This paper aims to summarize the progress of application of RNA interference in research of multidrug resistance in colorectal cancer.
Collapse
|
92
|
Kauntz H, Bousserouel S, Gossé F, Raul F. The flavonolignan silibinin potentiates TRAIL-induced apoptosis in human colon adenocarcinoma and in derived TRAIL-resistant metastatic cells. Apoptosis 2012; 17:797-809. [PMID: 22555452 DOI: 10.1007/s10495-012-0731-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Silibinin, a flavonolignan, is the major active component of the milk thistle plant (Silybum marianum) and has been shown to possess anti-neoplastic properties. TNF-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent which selectively induces apoptosis in cancer cells. However, resistance to TRAIL-induced apoptosis is an important and frequent problem in cancer treatment. In this study, we investigated the effect of silibinin and TRAIL in an in vitro model of human colon cancer progression, consisting of primary colon tumor cells (SW480) and their derived TRAIL-resistant metastatic cells (SW620). We showed by flow cytometry that silibinin and TRAIL synergistically induced cell death in the two cell lines. Up-regulation of death receptor 4 (DR4) and DR5 by silibinin was shown by RT-PCR and by flow cytometry. Human recombinant DR5/Fc chimera protein that has a dominant-negative effect by competing with the endogenous receptors abrogated cell death induced by silibinin and TRAIL, demonstrating the activation of the death receptor pathway. Synergistic activation of caspase-3, -8, and -9 by silibinin and TRAIL was shown by colorimetric assays. When caspase inhibitors were used, cell death was blocked. Furthermore, silibinin and TRAIL potentiated activation of the mitochondrial apoptotic pathway and down-regulated the anti-apoptotic proteins Mcl-1 and XIAP. The involvement of XIAP in sensitization of the two cell lines to TRAIL was demonstrated using the XIAP inhibitor embelin. These findings demonstrate the synergistic action of silibinin and TRAIL, suggesting chemopreventive and therapeutic potential which should be further explored.
Collapse
Affiliation(s)
- Henriette Kauntz
- Laboratory of Nutritional Cancer Prevention, Unit EA 4438, IRCAD, University of Strasbourg, 1 Place de l'Hôpital, 67091, Strasbourg-Cedex, France
| | | | | | | |
Collapse
|
93
|
Fhaner CJ, Liu S, Ji H, Simpson RJ, Reid GE. Comprehensive lipidome profiling of isogenic primary and metastatic colon adenocarcinoma cell lines. Anal Chem 2012; 84:8917-26. [PMID: 23039336 DOI: 10.1021/ac302154g] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A "shotgun" lipidomics strategy consisting of sequential functional group selective chemical modification reactions coupled with high-resolution/accurate mass spectrometry and "targeted" tandem mass spectrometry (MS/MS) analysis has been developed and applied toward the comprehensive identification, characterization and quantitative analysis of changes in relative abundances of >600 individual glycerophospholipid, glycerolipid, sphingolipid and sterol lipids between a primary colorectal cancer (CRC) cell line, SW480, and its isogenic lymph node metastasized derivative, SW620. Selective chemical derivatization of glycerophosphoethanolamine and glycerophosphoserine lipids using a "fixed charge" sulfonium ion containing, d(6)-S,S'-dimethylthiobutanoylhydroxysuccinimide ester (d(6)-DMBNHS) reagent was used to eliminate the possibility of isobaric mass overlap of these species with the precursor ions of all other lipids in the crude extracts, thereby enabling their unambiguous assignment, while subsequent selective mild acid hydrolysis of plasmenyl (vinyl-ether) containing lipids using formic acid enabled these species to be readily differentiated from isobaric mass plasmanyl (alkyl-ether) containing lipids. Using this approach, statistically significant differences in the abundances of numerous lipid species previously identified as being associated with cancer progression or that play known roles as mediators in a range of physiological and pathological processes were observed between the SW480 and SW620 cells. Most notably, these included increased plasmanylcholine and triglyceride lipid levels, decreased plasmenylethanolamine lipids, decreased C-16 containing sphingomyelin and ceramide lipid levels, and a dramatic increase in the abundances of total cholesterol ester and triglyceride lipids in the SW620 cells compared to those in the SW480 cells.
Collapse
Affiliation(s)
- Cassie J Fhaner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | | | | | | | | |
Collapse
|
94
|
Epstein S, Castillon GA, Qin Y, Riezman H. An essential function of sphingolipids in yeast cell division. Mol Microbiol 2012; 84:1018-32. [DOI: 10.1111/j.1365-2958.2012.08087.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
95
|
Pintzas A, Zhivotovsky B, Workman P, Clarke PA, Linardopoulos S, Martinou JC, Lacal JC, Robine S, Nasioulas G, Andera L. Sensitization of (colon) cancer cells to death receptor related therapies: a report from the FP6-ONCODEATH research consortium. Cancer Biol Ther 2012; 13:458-66. [PMID: 22406997 DOI: 10.4161/cbt.19600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The objective of the ONCODEATH consortium [EU Research Consortium "ONCODEATH" (2006-2010)] was to achieve sensitization of solid tumor cells to death receptor related therapies using rational mechanism-based drug combinations of targeted therapies. In this collaborative effort, during a period of 42 mo, cell and animal model systems of defined oncogenes were generated. Exploitation of generated knowledge and tools enabled the consortium to achieve the following research objectives: (1) elucidation of tumor components which confer sensitivity or resistance to TRAIL-induced cell death; (2) providing detailed knowledge on how small molecule Hsp90, Aurora, Choline kinase, BRAF inhibitors, DNA damaging agents, HDAC and DNMT inhibitors affect the intrinsic apoptotic amplification and execution machineries; (3) optimization of combined action of TRAIL with these therapeutics for optimum effects with minimum concentrations and toxicity in vivo. These findings provide mechanistic basis for a pharmacogenomic approach, which could be exploited further therapeutically, in order to reach novel personalized therapies for cancer patients.
Collapse
Affiliation(s)
- Alexander Pintzas
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Sphingolipid metabolism in metazoan cells consists of a complex interconnected web of numerous enzymes, metabolites and modes of regulation. At the centre of sphingolipid metabolism reside CerSs (ceramide synthases), a group of enzymes that catalyse the formation of ceramides from sphingoid base and acyl-CoA substrates. From a metabolic perspective, these enzymes occupy a unique niche in that they simultaneously regulate de novo sphingolipid synthesis and the recycling of free sphingosine produced from the degradation of pre-formed sphingolipids (salvage pathway). Six mammalian CerSs (CerS1-CerS6) have been identified. Unique characteristics have been described for each of these enzymes, but perhaps the most notable is the ability of individual CerS isoforms to produce ceramides with characteristic acyl-chain distributions. Through this control of acyl-chain length and perhaps in a compartment-specific manner, CerSs appear to regulate multiple aspects of sphingolipid-mediated cell and organismal biology. In the present review, we discuss the function of CerSs as critical regulators of sphingolipid metabolism, highlight their unique characteristics and explore the emerging roles of CerSs in regulating programmed cell death, cancer and many other aspects of biology.
Collapse
|
97
|
Ifeadi V, Garnett-Benson C. Sub-lethal irradiation of human colorectal tumor cells imparts enhanced and sustained susceptibility to multiple death receptor signaling pathways. PLoS One 2012; 7:e31762. [PMID: 22389673 PMCID: PMC3289623 DOI: 10.1371/journal.pone.0031762] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/18/2012] [Indexed: 01/01/2023] Open
Abstract
Background Death receptors (DR) of the TNF family function as anti-tumor immune effector molecules. Tumor cells, however, often exhibit DR-signaling resistance. Previous studies indicate that radiation can modify gene expression within tumor cells and increase tumor cell sensitivity to immune attack. The aim of this study is to investigate the synergistic effect of sub-lethal doses of ionizing radiation in sensitizing colorectal carcinoma cells to death receptor-mediated apoptosis. Methodology/Principal Findings The ability of radiation to modulate the expression of multiple death receptors (Fas/CD95, TRAILR1/DR4, TRAILR2/DR5, TNF-R1 and LTβR) was examined in colorectal tumor cells. The functional significance of sub-lethal doses of radiation in enhancing tumor cell susceptibility to DR-induced apoptosis was determined by in vitro functional sensitivity assays. The longevity of these changes and the underlying molecular mechanism of irradiation in sensitizing diverse colorectal carcinoma cells to death receptor-mediated apoptosis were also examined. We found that radiation increased surface expression of Fas, DR4 and DR5 but not LTβR or TNF-R1 in these cells. Increased expression of DRs was observed 2 days post-irradiation and remained elevated 7-days post irradiation. Sub-lethal tumor cell irradiation alone exhibited minimal cell death, but effectively sensitized three of three colorectal carcinoma cells to both TRAIL and Fas-induced apoptosis, but not LTβR-induced death. Furthermore, radiation-enhanced Fas and TRAIL-induced cell death lasted as long as 5-days post-irradiation. Specific analysis of intracellular sensitizers to apoptosis indicated that while radiation did reduce Bcl-XL and c-FLIP protein expression, this reduction did not correlate with the radiation-enhanced sensitivity to Fas and/or TRAIL mediated apoptosis among the three cell types. Conclusions/Significance Irradiation of tumor cells can overcome Fas and TRAIL resistance that is long lasting. Overall, results of these investigations suggest that non-lethal doses of radiation can be used to make human tumors more amenable to attack by anti-tumor effector molecules and cells.
Collapse
Affiliation(s)
| | - Charlie Garnett-Benson
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
98
|
Palma CD, Perrotta C. Ceramide as a target of chemotherapy: its role in apoptosis and autophagy. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.11.71] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
99
|
Hartmann D, Lucks J, Fuchs S, Schiffmann S, Schreiber Y, Ferreirós N, Merkens J, Marschalek R, Geisslinger G, Grösch S. Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int J Biochem Cell Biol 2012; 44:620-8. [PMID: 22230369 DOI: 10.1016/j.biocel.2011.12.019] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/14/2011] [Accepted: 12/22/2011] [Indexed: 01/14/2023]
Abstract
Ceramides are known to be key players in intracellular signaling and are involved in apoptosis, cell senescence, proliferation, cell growth and differentiation. They are synthesized by ceramide synthases (CerS). So far, six different mammalian CerS (CerS1-6) have been described. Recently, we demonstrated that human breast cancer tissue displays increased activity of CerS2, 4, and 6, together with enhanced generation of their products, ceramides C(16:0), C(24:0), and C(24:1). Moreover, these increases were significantly associated with tumor dignity. To clarify the impact of this observation, we manipulated cellular ceramide levels by overexpressing ceramide synthases 2, 4 or 6 in MCF-7 (breast cancer) and HCT-116 (colon cancer) cells, respectively. Overexpression of ceramide synthases 4 and 6 elevated generation of short chain ceramides C(16:0), C(18:0) and C(20:0), while overexpression of ceramide synthase 2 had no effect on ceramide production in vivo, presumably due to limited substrate availability, because external addition of very long chain acyl-CoAs resulted in a significant upregulation of very long chain ceramides. We also demonstrated that upregulation of CerS4 and 6 led to the inhibition of cell proliferation and induction of apoptosis, whereas upregulation of CerS2 increased cell proliferation. On the basis of our data, we propose that a disequilibrium between ceramides of various chain length is crucial for cancer progression, while normal cells require an equilibrium between very long and long chain ceramides for normal physiology.
Collapse
Affiliation(s)
- Daniela Hartmann
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Ceramides are a class of sphingolipids that are abundant in cell membranes. They are important structural components of the membrane but can also act as second messengers in various signaling pathways. Until recently, ceramides and dihydroceramides were considered as a single functional class of lipids and no distinction was made between molecules with different chain lengths. However, based on the development of high-throughput, structure-specific and quantitative analytical methods to measure ceramides, it has now become clear that in cellular systems the amounts of ceramides differ with respect to their chain length. Further studies have indicated that some functions of ceramides are chain-length dependent. In this review, we discuss the chain length-specific differences of ceramides including their pathological impact on Alzheimer's disease, inflammation, autophagy, apoptosis and cancer.
Collapse
Affiliation(s)
- Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany.
| | | | | |
Collapse
|