51
|
Wen D, Xiao H, Gao Y, Zeng H, Deng J. N6-methyladenosine-modified SENP1, identified by IGF2BP3, is a novel molecular marker in acute myeloid leukemia and aggravates progression by activating AKT signal via de-SUMOylating HDAC2. Mol Cancer 2024; 23:116. [PMID: 38822351 PMCID: PMC11141000 DOI: 10.1186/s12943-024-02013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/30/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Elevated evidence suggests that the SENPs family plays an important role in tumor progression. However, the role of SENPs in AML remains unclear. METHODS We evaluated the expression pattern of SENP1 based on RNA sequencing data obtained from OHSU, TCGA, TARGET, and MILE datasets. Clinical samples were used to verify the expression of SENP1 in the AML cells. Lentiviral vectors shRNA and sgRNA were used to intervene in SENP1 expression in AML cells, and the effects of SENP1 on AML proliferation and anti-apoptosis were detected using in vitro and in vivo models. Chip-qPCR, MERIP-qPCR, CO-IP, RNA pulldown, and dual-luciferase reporter gene assays were used to explore the regulatory mechanisms of SNEP1 in AML. RESULTS SENP1 was significantly upregulated in high-risk AML patients and closely related to poor prognosis. The AKT/mTOR signaling pathway is a key downstream pathway that mediates SENP1's regulation of AML proliferation and anti-apoptosis. Mechanistically, the CO-IP assay revealed binding between SENP1 and HDAC2. SUMO and Chip-qPCR assays suggested that SENP1 can desumoylate HDAC2, which enhances EGFR transcription and activates the AKT pathway. In addition, we found that IGF2BP3 expression was upregulated in high-risk AML patients and was positively correlated with SENP1 expression. MERIP-qPCR and RIP-qPCR showed that IGF2BP3 binds SENP1 3-UTR in an m6A manner, enhances SENP1 expression, and promotes AKT pathway conduction. CONCLUSIONS Our findings reveal a distinct mechanism of SENP1-mediated HDAC2-AKT activation and establish the critical role of the IGF2BP3/SENP1signaling axis in AML development.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Cysteine Endopeptidases/metabolism
- Cysteine Endopeptidases/genetics
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Histone Deacetylase 2/metabolism
- Histone Deacetylase 2/genetics
- Mice
- Animals
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Cell Proliferation
- Sumoylation
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Signal Transduction
- Disease Progression
- Cell Line, Tumor
- Apoptosis
- Prognosis
- Female
- Male
- Gene Expression Regulation, Leukemic
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Diguang Wen
- Department of Hematology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hang Xiao
- Department of Hematology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yueyi Gao
- Department of Hematology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hanqing Zeng
- Department of Hematology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Jianchuan Deng
- Department of Hematology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
52
|
Zheng X, Chen Z, Guo M, Liang H, Song X, Liu Y, Liao Z, Zhang Y, Guo J, Zhou Y, Zhang ZM, Tu Z, Zhang Y, Chen Y, Zhang Z, Lu X. Structure-Based Optimization of Pyrazinamide-Containing Macrocyclic Derivatives as Fms-like Tyrosine Kinase 3 (FLT3) Inhibitors to Overcome Clinical Mutations. ACS Pharmacol Transl Sci 2024; 7:1485-1506. [PMID: 38751627 PMCID: PMC11092118 DOI: 10.1021/acsptsci.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024]
Abstract
Secondary mutations in Fms-like tyrosine kinase 3-tyrosine kinase domain (FLT3-TKD) (e.g., D835Y and F691L) have become a major on-target resistance mechanism of FLT3 inhibitors, which present a significant clinical challenge. To date, no effective drugs have been approved to simultaneously overcome clinical resistance caused by these two mutants. Thus, a series of pyrazinamide macrocyclic compounds were first designed and evaluated to overcome the secondary mutations of FLT3. The representative 8v exhibited potent inhibitory activities against FLT3D835Y and FLT3D835Y/F691L with IC50 values of 1.5 and 9.7 nM, respectively. 8v also strongly suppressed the proliferation against Ba/F3 cells transfected with FLT3-ITD, FLT3-ITD-D835Y, FLT3-ITD-F691L, FLT3-ITD-D835Y-F691L, and MV4-11 acute myeloid leukemia (AML) cell lines with IC50 values of 12.2, 10.5, 24.6, 16.9, and 6.8 nM, respectively. Furthermore, 8v demonstrated ideal anticancer efficacy in a Ba/F3-FLT3-ITD-D835Y xenograft model. The results suggested that 8v can serve as a promising macrocycle-based FLT3 inhibitor for the treatment of AML.
Collapse
Affiliation(s)
- Xuan Zheng
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Zhiwen Chen
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Ming Guo
- Department
of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local
Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong Liang
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaojuan Song
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Yiling Liu
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Zhenling Liao
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Yan Zhang
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Jing Guo
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Yang Zhou
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Zhi-min Zhang
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Zhengchao Tu
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Ye Zhang
- Guangxi
Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yongheng Chen
- Department
of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local
Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhang Zhang
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaoyun Lu
- State
Key Laboratory of Bioactive Molecules and Druggability Assessment,
International Cooperative Laboratory of Traditional Chinese Medicine
Modernization and Innovative Drug Discovery of Chinese Ministry of
Education, Guangzhou City Key Laboratory of Precision Chemical Drug
Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
- Department
of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|
53
|
Wan P, Zhong L, Yu L, Shen C, Shao X, Chen S, Zhou Z, Wang M, Zhang H, Liu B. Lysosome-related genes predict acute myeloid leukemia prognosis and response to immunotherapy. Front Immunol 2024; 15:1384633. [PMID: 38799454 PMCID: PMC11117069 DOI: 10.3389/fimmu.2024.1384633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Background Acute myeloid leukemia (AML) is a highly aggressive and pathogenic hematologic malignancy with consistently high mortality. Lysosomes are organelles involved in cell growth and metabolism that fuse to form specialized Auer rods in AML, and their role in AML has not been elucidated. This study aimed to identify AML subtypes centered on lysosome-related genes and to construct a prognostic model to guide individualized treatment of AML. Methods Gene expression data and clinical data from AML patients were downloaded from two high-throughput sequencing platforms. The 191 lysosomal signature genes were obtained from the database MsigDB. Lysosomal clusters were identified by unsupervised consensus clustering. The differences in molecular expression, biological processes, and the immune microenvironment among lysosomal clusters were subsequently analyzed. Based on the molecular expression differences between lysosomal clusters, lysosomal-related genes affecting AML prognosis were screened by univariate cox regression and multivariate cox regression analyses. Algorithms for LASSO regression analyses were employed to construct prognostic models. The risk factor distribution, KM survival curve, was applied to evaluate the survival distribution of the model. Time-dependent ROC curves, nomograms and calibration curves were used to evaluate the predictive performance of the prognostic models. TIDE scores and drug sensitivity analyses were used to explore the implication of the model for AML treatment. Results Our study identified two lysosomal clusters, cluster1 has longer survival time and stronger immune infiltration compared to cluster2. The differences in biological processes between the two lysosomal clusters are mainly manifested in the lysosomes, vesicles, immune cell function, and apoptosis. The prognostic model consisting of six prognosis-related genes was constructed. The prognostic model showed good predictive performance in all three data sets. Patients in the low-risk group survived significantly longer than those in the high-risk group and had higher immune infiltration and stronger response to immunotherapy. Patients in the high-risk group showed greater sensitivity to cytarabine, imatinib, and bortezomib, but lower sensitivity to ATRA compared to low -risk patients. Conclusion Our prognostic model based on lysosome-related genes can effectively predict the prognosis of AML patients and provide reference evidence for individualized immunotherapy and pharmacological chemotherapy for AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Lysosomes/metabolism
- Prognosis
- Female
- Male
- Immunotherapy/methods
- Biomarkers, Tumor/genetics
- Middle Aged
- Gene Expression Profiling
- Adult
- Nomograms
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Aged
- Gene Expression Regulation, Leukemic
- Transcriptome
Collapse
Affiliation(s)
- Peng Wan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lihua Yu
- Clinical Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Chenlan Shen
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xin Shao
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Shuyu Chen
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Ziwei Zhou
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Meng Wang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hongyan Zhang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
54
|
Leung B, Aung H, Nandini A, Abdulrasool G, Lau C, Seymour L. Analytical Validation of a 37-Gene Next-Generation Sequencing Panel for Myeloid Malignancies and Review of Initial Findings Incorporating Updated 2022 Diagnostic and Prognostic Guidelines. J Mol Diagn 2024; 26:399-412. [PMID: 38367765 DOI: 10.1016/j.jmoldx.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/23/2023] [Accepted: 01/16/2024] [Indexed: 02/19/2024] Open
Abstract
Myeloid neoplasms are clonal disorders that arise via acquisition of genetic mutations leading to excessive proliferation and defective differentiation. Mutational profiling is vital as it has implications for diagnosis, prognosis, and therapeutic decision-making. Next-generation sequencing (NGS) has become a mainstay in the evaluation of myeloid malignancies, as it enables efficient characterization of multiple genetic changes. Herein, the analytical validation of the 37-gene Archer VariantPlex Core Myeloid panel is reported, using 58 DNA specimens with 87 single-nucleotide variants and 23 insertions/deletions. The panel achieved good depth of coverage, 100% analytical sensitivity and specificity for single-nucleotide variants and insertions/deletions ≤21 bp, and 100% reproducibility, with a reportable limit of detection determined as 5%. The Archer NGS panel can accurately and reproducibly detect variants of clinical significance in myeloid neoplasms. A retrospective analysis of 535 clinical specimens tested with the Archer NGS panel showed a frequency and pattern of mutations across myeloid malignancies that were similar to other published studies. A review of the diagnostic classification of patients with acute myeloid leukemia and myelodysplastic syndrome using the World Health Organization 2017/2022 and International Consensus Classification 2022 guidelines, in addition to European LeukemiaNet 2017/2022 risk stratification of patients with acute myeloid leukemia, was also performed to assess the utility of the molecular information provided by the Archer NGS panel.
Collapse
Affiliation(s)
- Becky Leung
- Department of Haematology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; School of Medicine, Griffith University, Gold Coast, Queensland, Australia.
| | - Hnin Aung
- Department of Haematology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Adayapalam Nandini
- Department of Haematology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Ghusoon Abdulrasool
- Department of Haematology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Chiyan Lau
- Department of Haematology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Louise Seymour
- Department of Haematology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
55
|
Chen Y, Qiu X, Liu R. Comprehensive characterization of immunogenic cell death in acute myeloid leukemia revealing the association with prognosis and tumor immune microenvironment. BMC Med Genomics 2024; 17:107. [PMID: 38671491 PMCID: PMC11046942 DOI: 10.1186/s12920-024-01876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND This study aimed to explore the clinical significance of immunogenic cell death (ICD) in acute myeloid leukemia (AML) and its relationship with the tumor immune microenvironment characteristics. It also aimed to provide a potential perspective for bridging the pathogenesis of AML and immunological research, and to provide a theoretical basis for precise individualized treatment of AML patients. METHODS Firstly, we identified two subtypes associated with ICD by consensus clustering and explored the biological enrichment pathways, somatic mutations, and tumor microenvironment landscape between the ICD subtypes. Additionally, we developed and validated a prognostic model associated with ICD-related genes. Finally, we conducted a preliminary exploration of the construction of disease regulatory networks and prediction of small molecule drugs based on five signature genes. RESULTS Differentially expressed ICD-related genes can distinguish AML into subgroups with significant differences in clinical characteristics and survival prognosis. The relationship between the ICD- high subgroup and the immune microenvironment was tight, showing significant enrichment in immune-related pathways such as antibody production in the intestinal immune environment, allograft rejection, and Leishmaniasis infection. Additionally, the ICD- high subtype showed significant upregulation in a variety of immune cells such as B_cells, Macrophages_M2, Monocytes, and T_cells_CD4. We constructed a prognostic risk feature based on five signature genes (TNF, CXCR3, CD4, PIK3CA and CALR), and the time-dependent ROC curve confirmed the high accuracy in predicting the clinical outcomes. CONCLUSION There is a strong close relationship between the ICD- high subgroup and the immune microenvironment. Immunogenicity-related genes have the potential to be a prognostic biomarker for AML.
Collapse
Affiliation(s)
- Yongyu Chen
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Medical University, Nanning, China
| | - Xue Qiu
- Department of Cardiology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Medical University, Nanning, China
| | - Rongrong Liu
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
56
|
Wang J, Rong Q, Ye L, Fang B, Zhao Y, Sun Y, Zhou H, Wang D, He J, Cui Z, Zhang Q, Kang D, Hu L. Discovery of a Novel Orally Bioavailable FLT3-PROTAC Degrader for Efficient Treatment of Acute Myeloid Leukemia and Overcoming Resistance of FLT3 Inhibitors. J Med Chem 2024. [PMID: 38655686 DOI: 10.1021/acs.jmedchem.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Fms-like tyrosine receptor kinase 3 (FLT3) proteolysis-targeting chimeras (PROTACs) represent a promising approach to eliminate the resistance of FLT3 inhibitors. However, due to the poor druggability of PROTACs, the development of orally bioavailable FLT3-PROTACs faces great challenges. Herein, a novel orally bioavailable FLT3-ITD degrader A20 with excellent pharmacokinetic properties was discovered through reasonable design. A20 selectively inhibited the proliferation of FLT3-ITD mutant acute myeloid leukemia (AML) cells and potently induced FLT3-ITD degradation through the ubiquitin-proteasome system. Notably, oral administration of A20 resulted in complete tumor regression on subcutaneous AML xenograft models. Furthermore, on systemic AML xenograft models, A20 could completely eliminate the CD45+CD33+ human leukemic cells in murine and significantly prolonged the survival time of mice. Most importantly, A20 exerted significantly improved antiproliferative activity against drug-resistant AML cells compared to existing FLT3 inhibitors. These findings suggested that A20 could serve as a promising drug candidate for relapsed or refractory AML.
Collapse
Affiliation(s)
- Junwei Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Quanjin Rong
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lei Ye
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Bingqian Fang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yifan Zhao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yu Sun
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Haikun Zhou
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Dan Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jinting He
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zhenzhen Cui
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qijian Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Di Kang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
57
|
Sharma A, Dubey R, Asati V, Baweja GS, Gupta S, Asati V. Assessment of structural and activity-related contributions of various PIM-1 kinase inhibitors in the treatment of leukemia and prostate cancer. Mol Divers 2024:10.1007/s11030-023-10795-4. [PMID: 38642309 DOI: 10.1007/s11030-023-10795-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/07/2023] [Indexed: 04/22/2024]
Abstract
One of the most perilous illnesses in the world is cancer. The cancer may be associated with the mutation of different genes inside the body. The PIM kinase, also known as the serine/threonine kinase, plays a critical role in the biology of different kinds of cancer. They are widely distributed and associated with several biological processes, including cell division, proliferation, and death. Aberration of PIM-1 kinase is found in varieties of cancer. Prostate cancer and leukemia can both be effectively treated with PIM-1 kinase inhibitors. There are several potent compounds that have been explored in this review based on heterocyclic compounds for the treatment of prostate cancer and leukemia that have strong effects on the suppression of PIM-1 kinase. The present review summarizes the PIM-1 kinase pathway, their inhibitors under clinical trial, related patents, and SAR studies of several monocyclic, bicyclic, and polycyclic compounds. The study related to their molecular interactions with receptors is also included in the present manuscript. The study may be beneficial to scientists for the development of novel compounds as PIM-1 inhibitors in the treatment of prostate cancer and leukemia.
Collapse
Affiliation(s)
- Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vikas Asati
- Department of Medical Oncology, Sri Aurobindo Medical College and PG Institute, Indore, MP, India
| | - Gurkaran Singh Baweja
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
58
|
Coleman DJ, Keane P, Chin PS, Ames L, Kellaway S, Blair H, Khan N, Griffin J, Holmes E, Maytum A, Potluri S, Strate L, Koscielniak K, Raghavan M, Bushweller J, Heidenreich O, Rabbitts T, Cockerill PN, Bonifer C. Pharmacological inhibition of RAS overcomes FLT3 inhibitor resistance in FLT3-ITD+ AML through AP-1 and RUNX1. iScience 2024; 27:109576. [PMID: 38638836 PMCID: PMC11024925 DOI: 10.1016/j.isci.2024.109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
AML is characterized by mutations in genes associated with growth regulation such as internal tandem duplications (ITD) in the receptor kinase FLT3. Inhibitors targeting FLT3 (FLT3i) are being used to treat patients with FLT3-ITD+ but most relapse and become resistant. To elucidate the resistance mechanism, we compared the gene regulatory networks (GRNs) of leukemic cells from patients before and after relapse, which revealed that the GRNs of drug-responsive patients were altered by rewiring their AP-1-RUNX1 axis. Moreover, FLT3i induces the upregulation of signaling genes, and we show that multiple cytokines, including interleukin-3 (IL-3), can overcome FLT3 inhibition and send cells back into cycle. FLT3i leads to loss of AP-1 and RUNX1 chromatin binding, which is counteracted by IL-3. However, cytokine-mediated drug resistance can be overcome by a pan-RAS inhibitor. We show that cytokines instruct AML growth via the transcriptional regulators AP-1 and RUNX1 and that pan-RAS drugs bypass this barrier.
Collapse
Affiliation(s)
- Daniel J.L. Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Paulynn S. Chin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Luke Ames
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sophie Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, University of Newcastle, Newcastle upon Tyne, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - James Griffin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Elizabeth Holmes
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Alexander Maytum
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sandeep Potluri
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Lara Strate
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Kinga Koscielniak
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - John Bushweller
- School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, University of Newcastle, Newcastle upon Tyne, UK
- Princess Máxima Centrum of Pediatric Oncology, Utrecht, the Netherlands
| | - Terry Rabbitts
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Peter N. Cockerill
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
59
|
Ma Z, Tang M, Chen L. Study on tissue distribution, metabolite profiling, and excretion of [ 14C]-labeled flonoltinib maleate in rats. J Pharm Biomed Anal 2024; 241:115984. [PMID: 38266453 DOI: 10.1016/j.jpba.2024.115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Flonoltinib Maleate (FM) is a dual-target inhibitor that selectively suppresses Janus kinase 2/FMS-like tyrosine kinase 3 (JAK2/FLT3), which is currently in phase I/IIa clinical trial in China for the treatment of myeloproliferative neoplasms (MPNs). In this research, we used [14C]-labeled FM (14C-FM) to investigate the distribution, metabolism, and excretion of FM in rats using High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry/Radioactivity Monitoring (HPLC-HRMS/RAM) and liquid scintillation counter. The results revealed that FM displayed widespread distribution in rats. Furthermore, FM demonstrated rapid clearance without any observed risk of organ toxicity attributed to accumulation. Profiling of FM metabolites in rat plasma, feces, urine, and bile identified a total of 17 distinct metabolites, comprising 7 phase I metabolites and 10 phase II metabolites. The major metabolic reactions involved oxygenation, dealkylation, methylation, sulfation, glucuronidation and glutathione conjugation. Based on these findings, a putative metabolic pathway of FM in rats was proposed. The overall recovery rate in the excretion experiment ranged from 93.04 % to 94.74 %. The results indicated that FM undergoes extensive hepatic metabolism in SD rats, with the majority being excreted through bile as metabolites and ultimately eliminated via feces. A minor fraction of FM (<10 %) was excreted through renal excretion in the form of urine. Integration of the current results with previous pharmacokinetic investigations of FM in rats and dogs enables a comprehensive elucidation of the in vivo ADME processes and characteristics of FM, thereby establishing a solid foundation for subsequent clinical investigations of FM.
Collapse
Affiliation(s)
- Ziyan Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu 610041, China.
| |
Collapse
|
60
|
Ashoub MH, Razavi R, Heydaryan K, Salavati-Niasari M, Amiri M. Targeting ferroptosis for leukemia therapy: exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology. Eur J Med Res 2024; 29:224. [PMID: 38594732 PMCID: PMC11003188 DOI: 10.1186/s40001-024-01822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
The latest findings in iron metabolism and the newly uncovered process of ferroptosis have paved the way for new potential strategies in anti-leukemia treatments. In the current project, we reviewed and summarized the current role of nanomedicine in the treatment and diagnosis of leukemia through a comparison made between traditional approaches applied in the treatment and diagnosis of leukemia via the existing investigations about the ferroptosis molecular mechanisms involved in various anti-tumor treatments. The application of nanotechnology and other novel technologies may provide a new direction in ferroptosis-driven leukemia therapies. The article explores the potential of targeting ferroptosis, a new form of regulated cell death, as a new therapeutic strategy for leukemia. It discusses the mechanisms of ferroptosis and its role in leukemia and how nanotechnology can enhance the delivery and efficacy of ferroptosis-inducing agents. The article not only highlights the promise of ferroptosis-targeted therapies and nanotechnology in revolutionizing leukemia treatment, but also calls for further research to overcome challenges and fully realize the clinical potential of this innovative approach. Finally, it discusses the challenges and opportunities in clinical applications of ferroptosis.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Kamran Heydaryan
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
61
|
Mueller DM, Nathan DI, Liu A, Mascarenhas J, Marcellino BK. Myeloid neoplasms in inflammatory bowel disease: A case series and review of the literature. Leuk Res Rep 2024; 21:100458. [PMID: 38601955 PMCID: PMC11004982 DOI: 10.1016/j.lrr.2024.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Patients with inflammatory bowel disease (IBD) are exposed to chronic systemic inflammation and are at risk for secondary malignancies. Here we review the literature on the risk of myeloid neoplasms (MN) in IBD and present the disease profiles of patients at a single institution with IBD who later developed MN, comparing them to those in the literature. No IBD characteristic was found to associate with MN disease severity, including the previously-identified association between MNs and thiopurine exposure. Of the somatic mutations identified in out cohort's MN, mutations in TET2 were most prevalent, followed by FLT3-ITD, BCR-ABL, and NPM1 mutations.
Collapse
Affiliation(s)
- David M. Mueller
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daniel I. Nathan
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Angela Liu
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - John Mascarenhas
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bridget K. Marcellino
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
62
|
Su Y, Wu M, Zhou B, Bai Z, Pang R, Liu Z, Zhao W. Paclitaxel mediates the PI3K/AKT/mTOR pathway to reduce proliferation of FLT3‑ITD + AML cells and promote apoptosis. Exp Ther Med 2024; 27:161. [PMID: 38476887 PMCID: PMC10928971 DOI: 10.3892/etm.2024.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Acute myeloid leukemia (AML) with internal tandem duplication (ITD) mutations in the FLT3 tyrosine kinase tend to have a poor prognosis. FLT3-ITD can promote the progress of AML by activating the PI3K/AKT/mTOR pathway. Paclitaxel (PTX) is a natural anticancer drug that has been widely used in chemotherapy for multiple malignancies. The present study used the CCK-8 assay, flow cytometry, PCR and western blotting to explore the anti-leukemia effect and possible mechanisms of PTX on MV4-11 cells with the FLT3-ITD mutation and the underlying mechanism. As a result, it was found that PTX could inhibit proliferation of MV4-11 cells and promoted apoptosis by inhibiting the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yanyun Su
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Meiqing Wu
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Baowen Zhou
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ziwen Bai
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ruli Pang
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhenfang Liu
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Weihua Zhao
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
63
|
Bataller A, DiNardo CD, Bazinet A, Daver NG, Maiti A, Borthakur G, Short N, Sasaki K, Jabbour EJ, Issa GC, Pemmaraju N, Yilmaz M, Montalban-Bravo G, Loghavi S, Garcia-Manero G, Ravandi F, Kantarjian HM, Kadia TM. Targetable genetic abnormalities in patients with acute myeloblastic leukemia across age groups. Am J Hematol 2024; 99:792-796. [PMID: 38361282 DOI: 10.1002/ajh.27236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
Incidence of potential targetable genetic abnormalities by age in AML.
Collapse
Affiliation(s)
- Alex Bataller
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexandre Bazinet
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval G Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhishek Maiti
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas Short
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koji Sasaki
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias J Jabbour
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C Issa
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Musa Yilmaz
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Sanam Loghavi
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Farhad Ravandi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop M Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
64
|
Teng CLJ, Cheng PT, Cheng YC, Tsai JR, Chen MC, Lin H. Dinaciclib inhibits the growth of acute myeloid leukemia cells through either cell cycle-related or ERK1/STAT3/MYC pathways. Toxicol In Vitro 2024; 96:105768. [PMID: 38135130 DOI: 10.1016/j.tiv.2023.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Although immature differentiation and uncontrolled proliferation of hematopoietic stem cells are thought to be the primary mechanisms of acute myeloid leukemia (AML), the pathophysiology in most cases remains unclear. Dinaciclib, a selective small molecule targeting multiple cyclin-dependent kinases (CDKs), is currently being evaluated in oncological clinical trials. Despite the proven anticancer potential of dinaciclib, the differential molecular mechanisms by which it inhibits the growth of different AML cell lines remain unclear. In the current study, we treated HL-60 and KG-1 AML cell lines with dinaciclib and investigated the potential mechanisms of dinaciclib-induced AML cell growth inhibition using flow cytometry and western blotting assays. Data from HL-60 and KG-1 AML cells were validated using human primary AML cells. The results showed that the growth inhibitory effect of dinaciclib was more sensitive in HL-60 cells (IC50: 8.46 nM) than in KG-1 cells (IC50: 14.37 nM). The protein decline in Cyclin A/B and CDK1 and cell cycle arrest in the G2/M phase were more profound in HL-60 cells, corresponding to its growth inhibition. Although the growth inhibition of KG-1 cells by dinaciclib was still pronounced, the cell cycle-associated proteins were relatively insensitive. In addition to cell cycle regulation, the activation/expression of ERK1/STAT3/MYC signaling was significantly reduced by dinaciclib in KG-1 cells compared with that in HL-60 cells. Regarding the results of primary AML cells, we observed ERK1/STAT3/MYC inhibition and cell cycle regulation in different patients. These findings suggest that the cell cycle-associated and ERK1/STAT3/MYC signaling pathways might be two distinct mechanisms by which dinaciclib inhibits AML cells, which could facilitate the development of combination therapy for AML in the future.
Collapse
Affiliation(s)
- Chieh-Lin Jerry Teng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pang-Ting Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Chiao Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jia-Rung Tsai
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
65
|
Chitluri KK, Emerson IA. The importance of protein domain mutations in cancer therapy. Heliyon 2024; 10:e27655. [PMID: 38509890 PMCID: PMC10950675 DOI: 10.1016/j.heliyon.2024.e27655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Cancer is a complex disease that is caused by multiple genetic factors. Researchers have been studying protein domain mutations to understand how they affect the progression and treatment of cancer. These mutations can significantly impact the development and spread of cancer by changing the protein structure, function, and signalling pathways. As a result, there is a growing interest in how these mutations can be used as prognostic indicators for cancer prognosis. Recent studies have shown that protein domain mutations can provide valuable information about the severity of the disease and the patient's response to treatment. They may also be used to predict the response and resistance to targeted therapy in cancer treatment. The clinical implications of protein domain mutations in cancer are significant, and they are regarded as essential biomarkers in oncology. However, additional techniques and approaches are required to characterize changes in protein domains and predict their functional effects. Machine learning and other computational tools offer promising solutions to this challenge, enabling the prediction of the impact of mutations on protein structure and function. Such predictions can aid in the clinical interpretation of genetic information. Furthermore, the development of genome editing tools like CRISPR/Cas9 has made it possible to validate the functional significance of mutants more efficiently and accurately. In conclusion, protein domain mutations hold great promise as prognostic and predictive biomarkers in cancer. Overall, considerable research is still needed to better define genetic and molecular heterogeneity and to resolve the challenges that remain, so that their full potential can be realized.
Collapse
Affiliation(s)
- Kiran Kumar Chitluri
- Bioinformatics Programming Lab, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - Isaac Arnold Emerson
- Bioinformatics Programming Lab, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| |
Collapse
|
66
|
Spertini C, Bénéchet AP, Birch F, Bellotti A, Román-Trufero M, Arber C, Auner HW, Mitchell RA, Spertini O, Smirnova T. Macrophage migration inhibitory factor blockade reprograms macrophages and disrupts prosurvival signaling in acute myeloid leukemia. Cell Death Discov 2024; 10:157. [PMID: 38548753 PMCID: PMC10978870 DOI: 10.1038/s41420-024-01924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
The malignant microenvironment plays a major role in the development of resistance to therapies and the occurrence of relapses in acute myeloid leukemia (AML). We previously showed that interactions of AML blasts with bone marrow macrophages (MΦ) shift their polarization towards a protumoral (M2-like) phenotype, promoting drug resistance; we demonstrated that inhibiting the colony-stimulating factor-1 receptor (CSF1R) repolarizes MΦ towards an antitumoral (M1-like) phenotype and that other factors may be involved. We investigated here macrophage migration inhibitory factor (MIF) as a target in AML blast survival and protumoral interactions with MΦ. We show that pharmacologically inhibiting MIF secreted by AML blasts results in their apoptosis. However, this effect is abrogated when blasts are co-cultured in close contact with M2-like MΦ. We next demonstrate that pharmacological inhibition of MIF secreted by MΦ, in the presence of granulocyte macrophage-colony stimulating factor (GM-CSF), efficiently reprograms MΦ to an M1-like phenotype that triggers apoptosis of interacting blasts. Furthermore, contact with reprogrammed MΦ relieves blast resistance to venetoclax and midostaurin acquired in contact with CD163+ protumoral MΦ. Using intravital imaging in mice, we also show that treatment with MIF inhibitor 4-IPP and GM-CSF profoundly affects the tumor microenvironment in vivo: it strikingly inhibits tumor vasculature, reduces protumoral MΦ, and slows down leukemia progression. Thus, our data demonstrate that MIF plays a crucial role in AML MΦ M2-like protumoral phenotype that can be reversed by inhibiting its activity and suggest the therapeutic targeting of MIF as an avenue towards improved AML treatment outcomes.
Collapse
Affiliation(s)
- Caroline Spertini
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Alexandre P Bénéchet
- In Vivo Imaging Facility (IVIF), Department of Research and Training, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
| | - Flora Birch
- Department of oncology UNIL-CHUV, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, 1015, Lausanne, Switzerland
| | - Axel Bellotti
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Mónica Román-Trufero
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Caroline Arber
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
- Department of oncology UNIL-CHUV, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, 1015, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011, Lausanne, Switzerland
- Service of Immuno-oncology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Holger W Auner
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011, Lausanne, Switzerland
| | - Robert A Mitchell
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, 40202, USA
| | - Olivier Spertini
- Faculty of Biology and Medicine, University of Lausanne, 1011, Lausanne, Switzerland
| | - Tatiana Smirnova
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland.
| |
Collapse
|
67
|
Zaiema SEGE, Hafez HM. Unpredicted transformation of acute myeloid leukemia with translocation (16;16) (p13; q22): a case report and review of the literature. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2024; 36:28. [DOI: https:/doi.org/10.1186/s43162-024-00295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/25/2024] [Indexed: 04/02/2024] Open
Abstract
Abstract
Introduction
The transformation of acute myeloid leukemia with translocation (16;16) (p13; q22) from AML M2 to acute monocytic leukemia (AML M5) during therapy is a rare clinical occurrence, and this is the first time it has been reported.
Clinical complain
A 19-year-old male patient was admitted for severe fatigue with anemic manifestation and weight loss, for more than 1 month, with exacerbation of the condition in the last 2 days.
Diagnosis
A primary diagnosis was made for AML M2 with t (16;16) (p13; q22) established on bone marrow (BM) morphology. A consequential detection of FLT-3 ITD mutation was done. At day 28 follow-up after induction and maintenance therapy, the diagnosis of AML M2 was maintained with a high bone marrow (BM) blast count, prompting the initiation of a more aggressive treatment protocol. After 1 month of implementing the recent protocol, the patient remains morphologically resistant with a notable transformation of bone marrow infiltration by an abnormal monocytic population (monoblasts and promonocytes). The final diagnosis of transforming FLT3-mutated AML with t (16;16) (p13; q22) was established.
Intervention
After the initial diagnosis of AML M2 with t (16;16) (p13; q22), the patient received the 3 + 7 induction protocol. The 2nd induction protocol initiated after the second evaluation and morphological resistance was the FLAG Adrian protocol. The 3rd protocol after transformation to AML M5 was 1 cycle of the MEC protocol. Anti-FLT3 treatment was considered.
Outcomes
The patient was maintained on the 3rd protocol of chemotherapy. Unfortunately, he was admitted to the ICU unit complaining of neutropenic fever and severe sepsis where he died before final re-evaluation and the anti-FLT3 treatment initiation.
Conclusion
AML with t (16;16) (p13; q22) characterized by favorable outcome. However, identifying additional chromosome abnormality or genetic aberration, especially FLT3 gene mutation, is recognized as an important factor influencing final disease outcome. Therefore, early detection of FLT3 mutations will allow comprehensive disease course prediction and targeted therapy that might achieve longer and more durable remissions.
Collapse
|
68
|
Chen N, Pan J, Zhou Y, Mao L, Lou Y, Qian J, Xu G, Wei J, Zhou D, Shou L, Huang L, Yan M, Zeng H, Fan C, Wu G, Feng W, Tong H, Jin J, Wang H. Gilteritinib-based combination therapy in adult relapsed/refractory FLT3-mutated acute myeloid leukaemia. Br J Haematol 2024; 204:861-870. [PMID: 37939390 DOI: 10.1111/bjh.19182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
Gilteritinib, a potent FMS-like tyrosine kinase 3 (FLT3) inhibitor, was approved for relapsed/refractory (R/R) FLT3-mutated acute myeloid leukaemia (AML) patients but still showed limited efficacy. Here, we retrospectively analysed the efficacy and safety of different gilteritinib-based combination therapies (gilteritinib plus hypomethylating agent and venetoclax, G + HMA + VEN; gilteritinib plus HMA, G + HMA; gilteritinib plus venetoclax, G + VEN) in 33 R/R FLT3-mutated AML patients. The composite complete response (CRc) and modified CRc (mCRc) rates were 66.7% (12/18) and 88.9% (16/18) in patients received G + HMA + VEN, which was higher compared with that in G + HMA (CRc: 18.2%, 2/11; mCRc: 45.5%, 5/11) or G + VEN (CRc: 50.0%, 2/4; mCRc: 50.0%, 2/4). The median overall survival (OS) for G + HMA + VEN, G + HMA and G + VEN treatment was not reached, 160.0 days and 231.0 days. The median duration of remission (DOR) for G + HMA + VEN, G + HMA and G + VEN treatment was not reached, 82.0 days and 77.0 days. Four patients in the G + HMA + VEN group received alloHSCT after remission exhibited prolonged median DOR. The most common grade 3/4 adverse events were cytopenia, febrile neutropenia and pulmonary infection; there were no differences among the three groups. In conclusion, our data demonstrated promising response of G + HMA + VEN combination therapy in R/R FLT3-mutated AML, and it may be considered an effective therapy bridge to transplantation.
Collapse
Affiliation(s)
- Nianci Chen
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China
| | - Jiajia Pan
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China
| | - Yile Zhou
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China
| | - Liping Mao
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China
| | - Yinjun Lou
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China
| | - Jiejing Qian
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China
| | - Gaixiang Xu
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China
| | - Juying Wei
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China
| | - De Zhou
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China
| | - Lihong Shou
- Department of Hematology, Huzhou Central Hospital, Huzhou, Zhejiang, PR China
| | - Li Huang
- Jinhua People's Hospital, Jinhua, Zhejiang, PR China
| | - Minchao Yan
- Department of Hematology, the First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Hui Zeng
- Department of Hematology, the First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Cuihua Fan
- Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, PR China
| | - Gongqiang Wu
- Department of Hematology, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang People's Hospital, Dongyang, Zhejiang, PR China
| | - Weiying Feng
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, PR China
| | - Hongyan Tong
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, PR China
| | - Huafeng Wang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, PR China
| |
Collapse
|
69
|
Ali KA, Shah RD, Dhar A, Myers NM, Nguyen C, Paul A, Mancuso JE, Scott Patterson A, Brody JP, Heiser D. Ex vivo discovery of synergistic drug combinations for hematologic malignancies. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100129. [PMID: 38101570 DOI: 10.1016/j.slasd.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Combination therapies have improved outcomes for patients with acute myeloid leukemia (AML). However, these patients still have poor overall survival. Although many combination therapies are identified with high-throughput screening (HTS), these approaches are constrained to disease models that can be grown in large volumes (e.g., immortalized cell lines), which have limited translational utility. To identify more effective and personalized treatments, we need better strategies for screening and exploring potential combination therapies. Our objective was to develop an HTS platform for identifying effective combination therapies with highly translatable ex vivo disease models that use size-limited, primary samples from patients with leukemia (AML and myelodysplastic syndrome). We developed a system, ComboFlow, that comprises three main components: MiniFlow, ComboPooler, and AutoGater. MiniFlow conducts ex vivo drug screening with a miniaturized flow-cytometry assay that uses minimal amounts of patient sample to maximize throughput. ComboPooler incorporates computational methods to design efficient screens of pooled drug combinations. AutoGater is an automated gating classifier for flow cytometry that uses machine learning to rapidly analyze the large datasets generated by the assay. We used ComboFlow to efficiently screen more than 3000 drug combinations across 20 patient samples using only 6 million cells per patient sample. In this screen, ComboFlow identified the known synergistic combination of bortezomib and panobinostat. ComboFlow also identified a novel drug combination, dactinomycin and fludarabine, that synergistically killed leukemic cells in 35 % of AML samples. This combination also had limited effects in normal, hematopoietic progenitors. In conclusion, ComboFlow enables exploration of massive landscapes of drug combinations that were previously inaccessible in ex vivo models. We envision that ComboFlow can be used to discover more effective and personalized combination therapies for cancers amenable to ex vivo models.
Collapse
Affiliation(s)
- Kamran A Ali
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA; Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA.
| | - Reecha D Shah
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | - Anukriti Dhar
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | - Nina M Myers
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | | | - Arisa Paul
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | | | | | - James P Brody
- Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Diane Heiser
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| |
Collapse
|
70
|
Zhong F, Yao F, Jiang J, Yu X, Liu J, Huang B, Wang X. CD8 + T cell-based molecular subtypes with heterogeneous immune landscapes and clinical significance in acute myeloid leukemia. Inflamm Res 2024; 73:329-344. [PMID: 38195768 DOI: 10.1007/s00011-023-01839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy. Although high-dose chemotherapy is the primary treatment option, it cannot cure the disease, and new approaches need to be developed. The tumor microenvironment (TME) plays a crucial role in tumor biology and immunotherapy. CD8 + T cells are the main anti-tumor immune effector cells, and it is essential to understand their relationship with the TME and the clinicopathological characteristics of AML. METHODS In this study, we conducted a systematic analysis of CD8 + T cell infiltration through multi-omics data and identified molecular subtypes with significant differences in CD8 + T cell infiltration and prognosis. We aimed to provide a comprehensive evaluation of the pathological factors affecting the prognosis of AML patients and to offer theoretical support for the precise treatment of AML. RESULTS Our results indicate that CD8 + T cell infiltration is accompanied by immunosuppression, and that there are two molecular subtypes, with the C2 subtype having a significantly worse prognosis than the C1 subtype, as well as less CD8 + T cell infiltration. We developed a signature to distinguish molecular subtypes using multiple machine learning algorithms and validated the prognostic predictive power of molecular subtypes in nine AML cohorts including 2059 AML patients. Our findings suggest that there are different immunosuppressive characteristics between the two subtypes. The C1 subtype has up-regulated expression of immune checkpoints such as CTLA4, PD-1, LAG3, and TIGITD, while the C2 subtype infiltrates more immunosuppressive cells such as Tregs and M2 macrophages. The C1 subtype is more responsive to anti-PD-1 immunotherapy and induction chemotherapy, as well as having higher immune and cancer-promoting variant-related pathway activity. Patients with the C2 subtype had a higher FLT3 mutation rate, higher WBC counts, and a higher percentage of blasts, as indicated by increased activity of signaling pathways involved in energy metabolism and cell proliferation. Analysis of data from ex vivo AML cell drug assays has identified a group of drugs that differ in therapeutic sensitivity between molecular subtypes. CONCLUSIONS Our results suggest that the molecular subtypes we constructed have potential application value in the prognosis evaluation and treatment guidance of AML patients.
Collapse
Affiliation(s)
- Fangmin Zhong
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fangyi Yao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junyao Jiang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiajing Yu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
71
|
Nopora A, Weidle UH. CircRNAs as New Therapeutic Entities and Tools for Target Identification in Acute Myeloid Leukemia. Cancer Genomics Proteomics 2024; 21:118-136. [PMID: 38423599 PMCID: PMC10905271 DOI: 10.21873/cgp.20434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a genetically extremely heterogeneous disease. Drug resistance after induction therapy is a very frequent event resulting in poor medium survival times. Therefore, the identification of new targets and treatment modalities is a medical high priority issue. We addressed our attention to circular RNAs (circRNAs), which can act as oncogenes or tumor suppressors in AML. We searched the literature (PubMed) and identified eight up-regulated and two down-regulated circ-RNAs with activity in preclinical in vivo models. In addition, we identified twenty-two up-regulated and four down-regulated circRNAs with activity in preclinical in vitro systems, but pending in vivo activity. Up-regulated RNAs are potential targets for si- or shRNA-based approaches, and down-regulated circRNAs can be reconstituted by replacement therapy to achieve a therapeutic benefit in preclinical systems. The up-regulated targets can be tackled with small molecules, antibody-based entities, or other modes of intervention. For down-regulated targets, up-regulators must be identified. The ranking of the identified circRNAs with respect to therapy of AML will depend on further target validation experiments.
Collapse
Affiliation(s)
- Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
72
|
Behrens YL, Pietzsch S, Antić Ž, Zhang Y, Bergmann AK. The landscape of cytogenetic and molecular genetic methods in diagnostics for hematologic neoplasia. Best Pract Res Clin Haematol 2024; 37:101539. [PMID: 38490767 DOI: 10.1016/j.beha.2024.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/28/2024] [Indexed: 03/17/2024]
Abstract
Improvements made during the last decades in the management of patients with hematologic neoplasia have resulted in increase of overall survival. These advancements have become possible through progress in our understanding of genetic basis of different hematologic malignancies and their role in the current risk-adapted treatment protocols. In this review, we provide an overview of current cytogenetic and molecular genetic methods, commonly used in the genetic characterization of hematologic malignancies, describe the current developments in the cytogenetic and molecular diagnostics, and give an outlook into their future development. Furthermore, we give a brief overview of the most important public databases and guidelines for sequence variant interpretation.
Collapse
Affiliation(s)
- Yvonne Lisa Behrens
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Stefan Pietzsch
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Željko Antić
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Yanming Zhang
- Cytogenetics Laboratory, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
73
|
Cruchaga C, Ali M, Shen Y, Do A, Wang L, Western D, Liu M, Beric A, Budde J, Gentsch J, Schindler S, Morris J, Holtzman D, Fernández M, Ruiz A, Alvarez I, Aguilar M, Pastor P, Rutledge J, Oh H, Wilson E, Le Guen Y, Khalid R, Robins C, Pulford D, Ibanez L, Wyss-Coray T, Ju Sung Y. Multi-cohort cerebrospinal fluid proteomics identifies robust molecular signatures for asymptomatic and symptomatic Alzheimer's disease. RESEARCH SQUARE 2024:rs.3.rs-3631708. [PMID: 38410465 PMCID: PMC10896368 DOI: 10.21203/rs.3.rs-3631708/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Changes in Amyloid-β (A), hyperphosphorylated Tau (T) in brain and cerebrospinal fluid (CSF) precedes AD symptoms, making CSF proteome a potential avenue to understand the pathophysiology and facilitate reliable diagnostics and therapies. Using the AT framework and a three-stage study design (discovery, replication, and meta-analysis), we identified 2,173 proteins dysregulated in AD, that were further validated in a third totally independent cohort. Machine learning was implemented to create and validate highly accurate and replicable (AUC>0.90) models that predict AD biomarker positivity and clinical status. These models can also identify people that will convert to AD and those AD cases with faster progression. The associated proteins cluster in four different protein pseudo-trajectories groups spanning the AD continuum and were enrichment in specific pathways including neuronal death, apoptosis and tau phosphorylation (early stages), microglia dysregulation and endolysosomal dysfuncton(mid-stages), brain plasticity and longevity (mid-stages) and late microglia-neuron crosstalk (late stages).
Collapse
Affiliation(s)
| | | | | | - Anh Do
- Washington University School of Medicine
| | - Lihua Wang
- Washington University School of Medicine
| | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | - Ignacio Alvarez
- Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
| | | | - Pau Pastor
- University Hospital Germans Trias i Pujol
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Wei TH, Zhou Y, Yang J, Zhang MY, Wang JJ, Tong ZJ, Wu JZ, Wang YB, Sha JK, Chen M, Ding N, Yu YC, Dai WC, Leng XJ, Xue X, Sun SL, Wang XL, Li NG, Shi ZH. Design and synthesis 1H-Pyrrolo[2,3-b]pyridine derivatives as FLT3 inhibitors for the treatment of Acute myeloid Leukemia. Bioorg Med Chem 2024; 100:117631. [PMID: 38330848 DOI: 10.1016/j.bmc.2024.117631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Acute myeloid leukemia (AML) is the most common type of blood cancer and has been strongly correlated with the overexpression of Fms-like tyrosine kinase 3 (FLT3), a member of the class III receptor tyrosine kinase family. With the emergence of FLT3 internal tandem duplication alteration (ITD) and tyrosine kinase domain (TKD) mutations, the development of FLT3 small molecule inhibitors has become an effective medicinal chemistry strategy for AML. Herein, we have designed and synthesized two series of 1H-pyrrolo[2,3-b]pyridine derivatives CM1-CM24, as FLT3 inhibitors based on F14, which we previously reported, that can target the hydrophobic FLT3 back pocket. Among these derivates, CM5 showed significant inhibition of FLT3 and FLT3-ITD, with inhibitory percentages of 57.72 % and 53.77 % respectively at the concentration of 1 μΜ. Furthermore, CM5 demonstrated potent inhibition against FLT3-dependent human AML cell lines MOLM-13 and MV4-11 (both harboring FLT3-ITD mutant), with IC50 values of 0.75 μM and 0.64 μM respectively. In our cellular mechanistic studies, CM5 also effectively induces apoptosis by arresting cell cycle progression in the G0/G1 phase. In addition, the amide and urea linker function were discussed in detail based on computational simulations studies. CM5 will serve as a novel lead compound for further structural modification and development of FLT3 inhibitors specifically targeting AML with FLT3-ITD mutations.
Collapse
Affiliation(s)
- Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jiu-Kai Sha
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Min Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Xiao-Long Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
75
|
Gong B, Cheng LJ, Young CH, Krishnan P, Wang Y, Wei H, Zhou C, Wei S, Li Y, Fang Q, Zhong J, Wu EQ, Mi Y, Wang J. Treatment Patterns and FLT3 Mutation Testing Among Patients with Acute Myeloid Leukemia in China: A Retrospective Observational Study. Ther Clin Risk Manag 2024; 20:59-73. [PMID: 38347921 PMCID: PMC10861151 DOI: 10.2147/tcrm.s434556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
Introduction For acute myeloid leukemia (AML), prognosis is particularly poor in patients harboring FMS-like tyrosine kinase 3 (FLT3) gene mutations, though routine screening for these mutations at diagnosis has been shown to be insufficient. The understanding of the impact of FLT3 mutations on treatment decisions is limited. Methods In this retrospective, observational study, we investigated the key epidemiological characteristics, treatment patterns and responses among adult patients with newly diagnosed (ND) AML in China, who initiated treatment from January 1, 2015, to December 31, 2019, or progressed to relapsed/refractory (R/R) AML by December 31, 2020. Results Of the 853 ND AML patients included, 63.4% were screened for FLT3 status, and 20.1% tested positive (FLT3MUT) at initial diagnosis. Of 289 patients who progressed to R/R AML during the study period, 24.9% were screened at the diagnosis of R/R AML, and 19.4% tested positive; 20.5% of screened patients changed FLT3 status at first diagnosis of R/R AML. Initial treatment regimens or treatment responses did not seem to differ in patients with ND AML by FLT3 mutation status. In patients with R/R AML, there was an apparent difference in second-line treatment choices by FLT3 mutation status; however, the number of FLT3-mutated patients were limited to demonstrate any meaningful distinction. FLT3-mutated R/R AML was associated with shorter relapse time. Conclusion Study findings showed that there was a lack of routine testing for FLT3 mutations at first diagnosis of R/R AML, and initial treatment decisions did not differ by FLT3 mutation status. Given the clinical burden of FLT3MUT, likelihood of FLT3 status changes, and emerging FLT3 inhibitors, further routine FLT3 screening is needed to optimize treatment of R/R AML.
Collapse
Affiliation(s)
- Benfa Gong
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People’s Republic of China
| | - Li-Jen Cheng
- Medical Affairs, Astellas Pharma Singapore Pte. Ltd, Singapore
| | - Christopher H Young
- Advanced Informatics & Analytics, Astellas Pharma US Inc., Northbrook, IL, USA
| | | | - Ying Wang
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People’s Republic of China
| | - Hui Wei
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People’s Republic of China
| | - Chunlin Zhou
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People’s Republic of China
| | - Shuning Wei
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People’s Republic of China
| | - Yan Li
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People’s Republic of China
| | - Qiuyun Fang
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People’s Republic of China
| | - Jia Zhong
- Analysis Group, Inc., Beijing, People’s Republic of China
| | - Eric Q Wu
- Analysis Group, Inc., Boston, MA, USA
| | - Yingchang Mi
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People’s Republic of China
| | - Jianxiang Wang
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People’s Republic of China
| |
Collapse
|
76
|
Tang S, Zhu H, Sheng L, Mu Q, Wang Y, Xu K, Zhou M, Xu Z, Wu A, Ouyang G. CALCRL knockdown suppresses cancer stemness and chemoresistance in acute myeloid leukemia with FLT3-ITD and DNM3TA-R882 double mutations. Drug Dev Res 2024; 85:e22137. [PMID: 38349260 DOI: 10.1002/ddr.22137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 02/15/2024]
Abstract
Acute myeloid leukemia (AML) patients with FLT3 internal tandem duplication (FLT3-ITD) and DNA methyltransferase 3A (DNMT3A) R882 double mutations had a worse prognosis compared with AML with FLT3-ITD or DNMT3A R882 single mutation. This study was designed to explore the specific role of Calcitonin Receptor Like (CALCRL) in AML with FLT3-ITD and DNMT3A R882 double mutations. MOLM13 cells were transduced with CRISPR knockout sgRNA constructs to establish the FTL3-ITD and DNMT3A-R882 double-mutated AML cell model. Quantitative real-time PCR and Western blot assay were carried out to examine corresponding gene and protein expression. Methylation of CALCRL promoter was measured by methylation-specific PCR (MSP). Cell viability, colony formation, flow cytometry, and sphere formation assays were conducted to determine cell proliferation, apoptosis, and stemness. MOLM13 cells were exposed to stepwise increasing concentrations of cytarabine (Ara-C) to generate MOLM13/Ara-C cells. An in vivo AML animal model was established, and the tumor volume and weight were recorded. TUNEL assay was adopted to examine cell apoptosis in tumor tissues. DNMT3A-R882 mutation upregulated the expression of CALCRL while downregulated the DNA methylation level of CALCRL in MOLM13 cells. CALCRL knockdown greatly inhibited cell proliferation, promoted apoptosis and repressed cell stemness, accompanied with the downregulated Oct4, SOX2, and Nanog in DNMT3A-R882-mutated MOLM13 cells and MOLM13/Ara-C cells. Furthermore, CALCRL knockdown restricted tumor growth and the chemoresistance of AML in vivo, as well as inducing cell apoptosis in tumor tissues. Together, these data reveal that CALCRL is a vital regulator of leukemia cell survival and resistance to chemotherapy, suggesting CALCRL as a promising therapeutic target for the treatment of FTL3-ITD and DNMT3A-R882 double-mutated AML.
Collapse
Affiliation(s)
- Shanhao Tang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Huiling Zhu
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lixia Sheng
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Qitian Mu
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yi Wang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kaihong Xu
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Miao Zhou
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zhijuan Xu
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - An Wu
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Guifang Ouyang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
77
|
Wang X, DeFilippis RA, Leung YK, Shah NP, Li HY. N-(3-Methoxyphenyl)-6-(7-(1-methyl-1H-pyrazol-4-yl)imidazo[1,2-a]pyridin-3-yl)pyridin-2-amine is an inhibitor of the FLT3-ITD and BCR-ABL pathways, and potently inhibits FLT3-ITD/D835Y and FLT3-ITD/F691L secondary mutants. Bioorg Chem 2024; 143:106966. [PMID: 37995643 DOI: 10.1016/j.bioorg.2023.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Activating mutations within FLT3 make up 30 % of all newly diagnosed acute myeloid leukemia (AML) cases, with the most common mutation being an internal tandem duplication (FLT3-ITD) in the juxtamembrane region (25 %). Currently, two generations of FLT3 kinase inhibitors have been developed, with three inhibitors clinically approved. However, treatment of FLT3-ITD mutated AML is limited due to the emergence of secondary clinical resistance, caused by multiple mechanism including on-target FLT3 secondary mutations - FLT3-ITD/D835Y and FLT3-ITD/F691L being the most common, as well as the off-target activation of alternative pathways including the BCR-ABL pathway. Through the screening of imidazo[1,2-a]pyridine derivatives, N-(3-methoxyphenyl)-6-(7-(1-methyl-1H-pyrazol-4-yl)imidazo[1,2-a]pyridin-3-yl)pyridin-2-amine (compound 1) was identified as an inhibitor of both the FLT3-ITD and BCR-ABL pathways. Compound 1 potently inhibits clinically related leukemia cell lines driven by FLT3-ITD, FLT3-ITD/D835Y, FLT3-ITD/F691L, or BCR-ABL. Studies indicate that it mediates proapoptotic effects on cells by inhibiting FLT3 and BCR-ABL pathways, and other possible targets. Compound 1 is more potent against FLT3-ITD than BCR-ABL, and it may have other possible targets; however, compound 1 is first step for further optimization for the development of a balanced FLT3-ITD/BCR-ABL dual inhibitor for the treatment of relapsed FLT3-ITD mutated AML with multiple secondary clinical resistant subtypes such as FLT3-ITD/D835Y, FLT3-ITD/F691L, and cells co-expressing FLT3-ITD and BCR-ABL.
Collapse
Affiliation(s)
- Xiuqi Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rosa Anna DeFilippis
- Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Yuet-Kin Leung
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neil P Shah
- Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
78
|
Wiesen MHJ, Stemler J, Fietz C, Joisten C, Cornely OA, Verougstraete N, Streichert T, Müller C. Quantification of midostaurin in plasma and serum by stable isotope dilution liquid chromatography-tandem mass spectrometry: Application to a cohort of patients with acute myeloid leukemia. Eur J Haematol 2024. [PMID: 38297484 DOI: 10.1111/ejh.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
OBJECTIVES Midostaurin is an oral multitargeted tyrosine kinase inhibitor for the treatment of acute myeloid leukemia (AML). Therapeutic drug monitoring of midostaurin may support its safe use when suspecting toxicity or combined with strong CYP3A4 inhibitors. METHODS A stable isotope dilution liquid chromatography-tandem mass spectrometry method was developed and validated for the determination and quantification of midostaurin in human plasma and serum. Midostaurin serum concentrations were analyzed in 12 patients with FMS-like tyrosine kinase 3 (FLT3)-mutated AML during induction chemotherapy with cytarabine, daunorubicin, and midostaurin. Posaconazole was used as prophylaxis of invasive fungal infections. RESULTS Linear quantification of midostaurin was demonstrated across a concentration range of 0.01-8.00 mg/L. Inter- and intraday imprecisions of the proposed method were well within ±10%. Venous blood samples were taken in nine and three patients in the first and second cycle of induction chemotherapy. Median (range) midostaurin serum concentration was 7.9 mg/L (1.5-26.1 mg/L) as determined in 37 independent serum specimens. CONCLUSION In a real-life cohort of AML patients, interindividual variability in midostaurin serum concentrations was high, highlighting issues concerning optimal drug dosing in AML patients. A personalized dosage approach may maximize the safety of midostaurin. Prospective studies and standardization of analytical methods to support such an approach are needed.
Collapse
Affiliation(s)
- Martin H J Wiesen
- Therapeutic Drug Monitoring, Pharmacology at the Laboratory Diagnostics Centre, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Clinical Chemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jannik Stemler
- Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Cornelia Fietz
- Therapeutic Drug Monitoring, Pharmacology at the Laboratory Diagnostics Centre, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carolin Joisten
- Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Nick Verougstraete
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Thomas Streichert
- Therapeutic Drug Monitoring, Pharmacology at the Laboratory Diagnostics Centre, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Clinical Chemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carsten Müller
- Therapeutic Drug Monitoring, Pharmacology at the Laboratory Diagnostics Centre, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
79
|
Dragomir M, Călugăru OT, Popescu B, Jardan C, Jardan D, Popescu M, Aposteanu S, Bădeliță S, Nedelcu G, Șerban C, Popa C, Vassu-Dimov T, Coriu D. DNA Sequencing of CD138 Cell Population Reveals TP53 and RAS-MAPK Mutations in Multiple Myeloma at Diagnosis. Cancers (Basel) 2024; 16:358. [PMID: 38254847 PMCID: PMC10813921 DOI: 10.3390/cancers16020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple myeloma is a hematologic neoplasm caused by abnormal proliferation of plasma cells. Sequencing studies suggest that plasma cell disorders are caused by both cytogenetic abnormalities and oncogene mutations. Therefore, it is necessary to detect molecular abnormalities to improve the diagnosis and management of MM. The main purpose of this study is to determine whether NGS, in addition to cytogenetics, can influence risk stratification and management. Additionally, we aim to establish whether mutational analysis of the CD138 cell population is a suitable option for the characterization of MM compared to the bulk population. Following the separation of the plasma cells harvested from 35 patients newly diagnosed with MM, we performed a FISH analysis to detect the most common chromosomal abnormalities. Consecutively, we used NGS to evaluate NRAS, KRAS, BRAF, and TP53 mutations in plasma cell populations and in bone marrow samples. NGS data showed that sequencing CD138 cells provides a more sensitive approach. We identified several variants in BRAF, KRAS, and TP53 that were not previously associated with MM. Considering that the presence of somatic mutations could influence risk stratification and therapeutic approaches of patients with MM, sensitive detection of these mutations at diagnosis is essential for optimal management of MM.
Collapse
Affiliation(s)
- Mihaela Dragomir
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (M.D.); (T.V.-D.)
- Fundeni Clinical Institute, 022328 Bucharest, Romania; (C.J.); (M.P.); (S.A.); (S.B.); (G.N.); (C.Ș.); (C.P.); (D.C.)
| | - Onda-Tabita Călugăru
- Fundeni Clinical Institute, 022328 Bucharest, Romania; (C.J.); (M.P.); (S.A.); (S.B.); (G.N.); (C.Ș.); (C.P.); (D.C.)
| | - Bogdan Popescu
- Hematology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Cerasela Jardan
- Fundeni Clinical Institute, 022328 Bucharest, Romania; (C.J.); (M.P.); (S.A.); (S.B.); (G.N.); (C.Ș.); (C.P.); (D.C.)
- Hematology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dumitru Jardan
- Molecular Biology Laboratory, Medlife Bucharest, 010093 Bucharest, Romania;
| | - Monica Popescu
- Fundeni Clinical Institute, 022328 Bucharest, Romania; (C.J.); (M.P.); (S.A.); (S.B.); (G.N.); (C.Ș.); (C.P.); (D.C.)
| | - Silvia Aposteanu
- Fundeni Clinical Institute, 022328 Bucharest, Romania; (C.J.); (M.P.); (S.A.); (S.B.); (G.N.); (C.Ș.); (C.P.); (D.C.)
| | - Sorina Bădeliță
- Fundeni Clinical Institute, 022328 Bucharest, Romania; (C.J.); (M.P.); (S.A.); (S.B.); (G.N.); (C.Ș.); (C.P.); (D.C.)
| | - Gabriela Nedelcu
- Fundeni Clinical Institute, 022328 Bucharest, Romania; (C.J.); (M.P.); (S.A.); (S.B.); (G.N.); (C.Ș.); (C.P.); (D.C.)
| | - Cătălin Șerban
- Fundeni Clinical Institute, 022328 Bucharest, Romania; (C.J.); (M.P.); (S.A.); (S.B.); (G.N.); (C.Ș.); (C.P.); (D.C.)
| | - Codruța Popa
- Fundeni Clinical Institute, 022328 Bucharest, Romania; (C.J.); (M.P.); (S.A.); (S.B.); (G.N.); (C.Ș.); (C.P.); (D.C.)
- Hematology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Tatiana Vassu-Dimov
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (M.D.); (T.V.-D.)
| | - Daniel Coriu
- Fundeni Clinical Institute, 022328 Bucharest, Romania; (C.J.); (M.P.); (S.A.); (S.B.); (G.N.); (C.Ș.); (C.P.); (D.C.)
- Hematology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
80
|
Chandra R, Horne RI, Vendruscolo M. Bayesian Optimization in the Latent Space of a Variational Autoencoder for the Generation of Selective FLT3 Inhibitors. J Chem Theory Comput 2024; 20:469-476. [PMID: 38112559 PMCID: PMC10782437 DOI: 10.1021/acs.jctc.3c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
The process of drug design requires the initial identification of compounds that bind their targets with high affinity and selectivity. Advances in generative modeling of small molecules based on deep learning are offering novel opportunities for making this process faster and cheaper. Here, we propose an approach to achieve this goal, where predictions of binding affinity are used in conjunction with the Junction Tree Variational Autoencoder (JTVAE) whose latent space is used to facilitate the efficient exploration of the chemical space using a Bayesian optimization strategy. The exploration identifies small molecules predicted to have both high affinity and high selectivity by using an objective function that optimizes the binding to the target while penalizing the binding to off-targets. The framework is demonstrated for FMS-like tyrosine kinase 3 (FLT3) and shown to predict small molecules with predicted affinity and selectivity comparable to those of clinically approved drugs for this target.
Collapse
Affiliation(s)
- Raghav Chandra
- Centre for Misfolding Diseases,
Yusuf Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Robert I. Horne
- Centre for Misfolding Diseases,
Yusuf Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Michele Vendruscolo
- Centre for Misfolding Diseases,
Yusuf Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
81
|
Ma C, Cui S, Xu R. Developments of Fms-like Tyrosine Kinase 3 Inhibitors as Anticancer Agents for AML Treatment. Curr Med Chem 2024; 31:4657-4686. [PMID: 38204232 DOI: 10.2174/0109298673277543231205072556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/01/2023] [Accepted: 10/25/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND FMS-like tyrosine kinase 3 (FLT3) is a commonly mutated gene in acute myeloid leukemia. As a receptor tyrosine kinase (RTK), FLT3 plays a role in the proliferation and differentiation of hematopoietic stem cells. As the most frequent molecular alteration in AML, FLT3 has drawn the attention of many researchers, and a lot of small molecule inhibitors targeting FLT3 have been intensively investigated as potential drugs for AML therapy. METHODS In this paper, PubMed and SciFinder® were used as a tool; the publications about "FLT3 inhibitor" and "Acute myeloid leukemia" were surveyed from 2014 to the present with an exclusion of those published as patents. RESULTS In this study, the structural characterization and biological activities of representative FLT3 inhibitors were summarized. The major challenges and future directions for further research are discussed. CONCLUSION Recently, numerous FLT3 inhibitors have been discovered and employed in FLT3-mutated AML treatment. In order to overcome the drug resistance caused by FLT3 mutations, screening multitargets FLT3 inhibitors has become the main research direction. In addition, the emergence of irreversible FLT3 inhibitors also provides new ideas for discovering new FLT3 inhibitors.
Collapse
Affiliation(s)
- Chenchen Ma
- College of Integrated Traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Central Laboratory of Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Shandong Key Laboratory of Dominant Diseases of traditional Chinese Medicine, Jinan 250014, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
82
|
Cui Y, Zhang J, Zhang G. The Potential Strategies for Overcoming Multidrug Resistance and Reducing Side Effects of Monomer Tubulin Inhibitors for Cancer Therapy. Curr Med Chem 2024; 31:1874-1895. [PMID: 37349994 DOI: 10.2174/0929867330666230622142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Tubulin is an essential target in tumor therapy, and this is attributed to its ability to target MT dynamics and interfere with critical cellular functions, including mitosis, cell signaling, and intracellular trafficking. Several tubulin inhibitors have been approved for clinical application. However, the shortcomings, such as drug resistance and toxic side effects, limit its clinical application. Compared with single-target drugs, multi-target drugs can effectively improve efficacy to reduce side effects and overcome the development of drug resistance. Tubulin protein degraders do not require high concentrations and can be recycled. After degradation, the protein needs to be resynthesized to regain function, which significantly delays the development of drug resistance. METHODS Using SciFinder® as a tool, the publications about tubulin-based dual-target inhibitors and tubulin degraders were surveyed with an exclusion of those published as patents. RESULTS This study presents the research progress of tubulin-based dual-target inhibitors and tubulin degraders as antitumor agents to provide a reference for developing and applying more efficient drugs for cancer therapy. CONCLUSION The multi-target inhibitors and protein degraders have shown a development prospect to overcome multidrug resistance and reduce side effects in the treatment of tumors. Currently, the design of dual-target inhibitors for tubulin needs to be further optimized, and it is worth further clarifying the detailed mechanism of protein degradation.
Collapse
Affiliation(s)
- Yingjie Cui
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| | - Guifang Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
83
|
Weng G, Huang J, An N, Zhang Y, Yu G, Sun Z, Lin D, Deng L, Liang X, Xiao J, Zhang H, Guo Z, He X, Jin H, Liu Q, Du X. Clinical and genetic characteristics predict outcomes of acute myeloid leukemia patients with FLT3 mutations receiving venetoclax-based therapy. Cancer Med 2024; 13:e6885. [PMID: 38334500 PMCID: PMC10854448 DOI: 10.1002/cam4.6885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous disease, and its heterogeneity is associated with treatment response. Despite the demonstrated success of venetoclax (VEN)-based therapy for AML, the effect of FLT3 mutations on the efficacy of the therapy is poorly understood. We aimed to compare the efficacy of VEN-based therapy between FLT3-mutated (FLT3mut ) and FLT3 wild-type (FLT3wt ) patients and identify the predictors of efficacy in FLT3mut patients. METHODS A total of 266 AML patients (127 newly diagnosed [ND] and 139 refractory/relapsed [R/R]) receiving VEN-based regimens were enrolled in this study. A retrospective analysis was performed, and the treatment responses and overall survival (OS) of FLT3mut and FLT3wt patients were compared. Logistic regression and Cox proportional hazards model were applied to examine the clinical and genetic predictors of outcomes. RESULTS With a median of two cycles of VEN-based therapy, for the ND AML cohort, the FLT3mut group had a comparable composite complete remission (CRc) rate with the FLT3wt group (79.3% vs. 61.2%, p = 0.072). For the R/R AML cohort, the FLT3mut group exhibited a lower CRc rate than the FLT3wt group. With a median follow-up of 8.6 months (95% confidence interval [CI], 8.0-10), the median OS observed in the FLT3mut and FLT3wt groups for both cohorts were close (14.0 vs. 19.9 months, p = 0.356; 10.0 vs. 11.9 months, p = 0.680). For the ND AML cohort, in FLT3mut patients, MRD-positive and RNA-splicing mutation predicted inferior survival (hazard ratio [HR], 10.3; 95% CI: 2.0-53.8; p = 0.006; HR 11.3; 95% CI: 1.2-109.3; p = 0.036, respectively). For the R/R AML cohort, in FLT3mut patients, adverse ELN risk was associated with an inferior response (odds ratio [OR], 0.2; 95% CI: 0.1-0.8; p = 0.025), whereas NPM1 co-mutation was associated with a superior response (57.1%; OR, 6.7; 95% CI: 1.5-30.1; p = 0.014). CR/CRi predicted a better survival (HR 0.2; 95% CI: 0.1-0.8; p = 0.029), while DNMT3A mutation predicted an inferior survival (HR, 4.6; 95% CI: 1.4-14.9; p = 0.011). CONCLUSIONS FLT3 mutations may influence response to VEN-based therapy in R/R AML patients but not in ND AML patients. Furthermore, clinical and genetic characteristics could predict outcomes of FLT3mut patients receiving VEN-based therapy.
Collapse
Affiliation(s)
- Guangyang Weng
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service PlatformThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | | | - Na An
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences CenterShenzhenChina
| | - Yu Zhang
- Department of HematologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Guopan Yu
- Department of HematologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Zhiqiang Sun
- Department of Hematology, Shenzhen HospitalSouthern Medical UniversityShenzhenChina
| | - Dongjun Lin
- Department of Hematologythe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenChina
| | - Lan Deng
- Department of Hematology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xinquan Liang
- Department of HematologyThe First People's Hospital of ChenzhouChenzhouChina
| | - Jie Xiao
- Department of HematologySun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Hongyu Zhang
- Department of HematologyPeking University Shenzhen HospitalShenzhenChina
| | - Ziwen Guo
- Department of HematologyZhongshan City People's HospitalZhongshanChina
| | - Xin He
- Department of HematologyZhongshan City People's HospitalZhongshanChina
| | - Hua Jin
- Department of HematologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Qifa Liu
- Department of HematologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Xin Du
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service PlatformThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| |
Collapse
|
84
|
Guarnera L, Santinelli E, Galossi E, Cristiano A, Fabiani E, Falconi G, Voso MT. Microenvironment in acute myeloid leukemia: focus on senescence mechanisms, therapeutic interactions, and future directions. Exp Hematol 2024; 129:104118. [PMID: 37741607 DOI: 10.1016/j.exphem.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Acute myeloid leukemia (AML) is a disease with a dismal prognosis, mainly affecting the elderly. In recent years, new drugs have improved life expectancy and quality of life, and a better understanding of the genetic-molecular nature of the disease has shed light on previously unknown aspects of leukemogenesis. In parallel, increasing attention has been attracted to the complex interactions between cells and soluble factors in the bone marrow (BM) environment, collectively known as the microenvironment. In this review, we discuss the central role of the microenvironment in physiologic and pathologic hematopoiesis and the mechanisms of senescence, considered a fundamental protective mechanism against the proliferation of damaged and pretumoral cells. The microenvironment also represents a fertile ground for the development of myeloid malignancies, and the leukemic niche significantly interacts with drugs commonly used in AML treatment. Finally, we focus on the role of the microenvironment in the engraftment and complications of allogeneic hematopoietic stem cell transplantation, the only curative option in a conspicuous proportion of patients.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Enrico Santinelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Elisa Galossi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Antonio Cristiano
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Emiliano Fabiani
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Saint Camillus International, University of Health Sciences, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Neuro-Oncohematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
85
|
Urbino I, Secreto C, Apolito V, Olivi M, Arrigo G, Boscaro E, Catania FM, D'Ardia S, Frairia C, Giai V, Freilone R, Bruno B, Lanzarone G, Giaccone L, Busca A, Dellacasa CM, Ferrero D, Audisio E, Cerrano M. Sorafenib in combination with intensive chemotherapy for relapsed or refractory FLT3-ITD positive acute myeloid leukemia: A two centers experience. Leuk Res 2024; 136:107421. [PMID: 38042648 DOI: 10.1016/j.leukres.2023.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023]
Affiliation(s)
- Irene Urbino
- Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Carolina Secreto
- Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Vincenzo Apolito
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Turin, Italy; Pediatric Oncohematology, Stem Cell Transplantation and Cell Therapy Division, Regina Margherita Children's Hospital, Turin, Italy
| | - Matteo Olivi
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Turin, Italy
| | - Giulia Arrigo
- Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza, Turin, Italy; Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Turin, Italy
| | - Eleonora Boscaro
- Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza, Turin, Italy; Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Turin, Italy
| | - Federica Maria Catania
- Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza, Turin, Italy; Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Turin, Italy
| | - Stefano D'Ardia
- Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Chiara Frairia
- Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Valentina Giai
- Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Roberto Freilone
- Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Benedetto Bruno
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Turin, Italy; Division of Hematology, Allogeneic Transplant and Cell Therapy Unit, AOU "Città della Salute e della Scienza di Torino" University of Turin, Italy
| | - Giuseppe Lanzarone
- Division of Hematology, Allogeneic Transplant and Cell Therapy Unit, AOU "Città della Salute e della Scienza di Torino" University of Turin, Italy
| | - Luisa Giaccone
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Turin, Italy; Division of Hematology, Allogeneic Transplant and Cell Therapy Unit, AOU "Città della Salute e della Scienza di Torino" University of Turin, Italy
| | - Alessandro Busca
- Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Chiara Maria Dellacasa
- Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Dario Ferrero
- Department of Molecular Biotechnology and Health Sciences, Division of Hematology, University of Turin, Italy; Division of Hematology, Allogeneic Transplant and Cell Therapy Unit, AOU "Città della Salute e della Scienza di Torino" University of Turin, Italy
| | - Ernesta Audisio
- Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Marco Cerrano
- Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza, Turin, Italy.
| |
Collapse
|
86
|
Zbieranski N, Insuasti-Beltran G. Analytical Validation of an Automated Semiconductor-Based Next-Generation Sequencing Assay for Detection of DNA and RNA Alterations in Myeloid Neoplasms. J Mol Diagn 2024; 26:29-36. [PMID: 37879438 DOI: 10.1016/j.jmoldx.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
Myeloid neoplasms are heterogeneous tumors derived from early hematopoietic progenitors. Most international guidelines, including the European LeukemiaNet 2022 update, recommend testing a comprehensive set of genes, most within a 3- to 5-day period for optimal treatment decisions. Next-generation sequencing gene panels are essential for identifying genetic alterations, risk stratification, and determining targeted therapies for myeloid malignancies. This study describes the analytical validation of the Oncomine Myeloid Assay GX v2 (Myeloid GX v2) in combination with the Ion Torrent Genexus System using commercial controls, 16 variant-negative samples, and 130 clinical samples of myeloid neoplasms. The Myeloid GX v2 panel detected single nucleotide variants (SNVs), insertions/deletions (indels) (allele frequency >5%), and gene fusions (minimum 11 fusion copies/μL) in synthetic controls with a sensitivity of 100%. Specificity for detection of SNVs, indels, or fusions in 16 variant-negative samples was 100%. Sensitivity for detection of SNVs, indels, and gene fusions in 130 clinical samples was 99%, 97%, and 100%, respectively. Overall precision was 100% for SNVs, 96% for indels, and 100% for fusions. The average turnaround time from nucleic acid extraction to results was 2 days. The Myeloid GX v2 panel is highly accurate and reproducible for the detection of SNVs, indels, and gene fusions in myeloid neoplasms. The ability to deliver clinically relevant results in a short time is key to providing personalized treatments.
Collapse
Affiliation(s)
- Nora Zbieranski
- Department of Pathology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | | |
Collapse
|
87
|
Coleman DJL, Keane P, Luque-Martin R, Chin PS, Blair H, Ames L, Kellaway SG, Griffin J, Holmes E, Potluri S, Assi SA, Bushweller J, Heidenreich O, Cockerill PN, Bonifer C. Gene regulatory network analysis predicts cooperating transcription factor regulons required for FLT3-ITD+ AML growth. Cell Rep 2023; 42:113568. [PMID: 38104314 PMCID: PMC10874628 DOI: 10.1016/j.celrep.2023.113568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by different mutations. Previously, we showed that each mutational subtype develops its specific gene regulatory network (GRN) with transcription factors interacting within multiple gene modules, many of which are transcription factor genes themselves. Here, we hypothesize that highly connected nodes within such networks comprise crucial regulators of AML maintenance. We test this hypothesis using FLT3-ITD-mutated AML as a model and conduct an shRNA drop-out screen informed by this analysis. We show that AML-specific GRNs predict crucial regulatory modules required for AML growth. Furthermore, our work shows that all modules are highly connected and regulate each other. The careful multi-omic analysis of the role of one (RUNX1) module by shRNA and chemical inhibition shows that this transcription factor and its target genes stabilize the GRN of FLT3-ITD+ AML and that its removal leads to GRN collapse and cell death.
Collapse
Affiliation(s)
- Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Rosario Luque-Martin
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Paulynn S Chin
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Luke Ames
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - James Griffin
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Elizabeth Holmes
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sandeep Potluri
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - John Bushweller
- University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK; Prinses Máxima Centrum for Pediatric Oncology, Postbus 113, 3720 AC Bilthoven, Heidelberglaan 25, 3584CS Utrecht, the Netherlands.
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
88
|
Ko B, Jang Y, Kim MH, Lam TT, Seo HK, Jeong P, Choi M, Kang KW, Lee SD, Park JH, Kim M, Han SY, Kim YC. Discovery of benzimidazole-indazole derivatives as potent FLT3-tyrosine kinase domain mutant kinase inhibitors for acute myeloid leukemia. Eur J Med Chem 2023; 262:115860. [PMID: 37866334 DOI: 10.1016/j.ejmech.2023.115860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The FMS-like tyrosine kinase 3 (FLT3) gene encodes a class III receptor tyrosine kinase that is expressed in hematopoietic stem cells. The mutations of FLT3 gene found in 30% of acute myeloid leukemia (AML), leads to an abnormal constitutive activation of FLT3 kinase of the receptor and results in immature myeloblast cell proliferation. Although small molecule drugs targeting the FLT3 kinase have been approved, new FLT3 inhibitors are needed owing to the side effects and drug resistances arising from kinase domain mutations, such as D835Y and F691L. In this study, we have developed benzimidazole-indazole based novel inhibitors targeting mutant FLT3 kinases through the optimization of diverse chemical moieties substituted around the core skeleton. The most optimized compound 22f exhibited potent inhibitory activities against FLT3 and FLT3/D835Y, with IC50 values of 0.941 and 0.199 nM, respectively. Furthermore, 22f exhibited strong antiproliferative activity against an AML cell line, MV4-11 cells with a GI50 of 0.26 nM. More importantly, 22f showed single-digit nanomolar GI50 values in the mutant FLT kinase expressed Ba/F3 cell lines including FLT-D835Y (GI50 = 0.29 nM) and FLT3-F691L (GI50 = 2.87 nM). Molecular docking studies indicated that the compound exhibits a well-fitted binding mode as a type 1 inhibitor in the homology model of active conformation of FLT3 kinase.
Collapse
Affiliation(s)
- Bongki Ko
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Yongsoo Jang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Min Ha Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, South Korea
| | - Thai Thi Lam
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, South Korea
| | - Hye Kyung Seo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, South Korea
| | - Pyeonghwa Jeong
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Munkyung Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So-Deok Lee
- R&D Center, PeLeMed, Co. Ltd, Seoul, 06100, South Korea
| | - Jin-Hee Park
- R&D Center, PeLeMed, Co. Ltd, Seoul, 06100, South Korea
| | - Myungjin Kim
- R&D Center, PeLeMed, Co. Ltd, Seoul, 06100, South Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, South Korea.
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea; Center for AI-Applied High Efficiency Drug Discovery (AHEDD), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea; R&D Center, PeLeMed, Co. Ltd, Seoul, 06100, South Korea.
| |
Collapse
|
89
|
Bergeron J, Capo-Chichi JM, Tsui H, Mahe E, Berardi P, Minden MD, Brandwein JM, Schuh AC. The Clinical Utility of FLT3 Mutation Testing in Acute Leukemia: A Canadian Consensus. Curr Oncol 2023; 30:10410-10436. [PMID: 38132393 PMCID: PMC10742150 DOI: 10.3390/curroncol30120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations are detected in approximately 20-30% of patients with acute myeloid leukemia (AML), with the presence of a FLT3 internal tandem duplication (FLT3-ITD) mutation being associated with an inferior outcome. Assessment of FLT3 mutational status is now essential to define optimal upfront treatment in both newly diagnosed and relapsed AML, to support post-induction allogeneic hematopoietic stem cell transplantation (alloSCT) decision-making, and to evaluate treatment response via measurable (minimal) residual disease (MRD) evaluation. In view of its importance in AML diagnosis and management, the Canadian Leukemia Study Group/Groupe canadien d'étude sur la leucémie (CLSG/GCEL) undertook the development of a consensus statement on the clinical utility of FLT3 mutation testing, as members reported considerable inter-center variability across Canada with respect to testing availability and timing of use, methodology, and interpretation. The CLSG/GCEL panel identified key clinical and hematopathological questions, including: (1) which patients should be tested for FLT3 mutations, and when?; (2) which is the preferred method for FLT3 mutation testing?; (3) what is the clinical relevance of FLT3-ITD size, insertion site, and number of distinct FLT3-ITDs?; (4) is there a role for FLT3 analysis in MRD assessment?; (5) what is the clinical relevance of the FLT3-ITD allelic burden?; and (6) how should results of FLT3 mutation testing be reported? The panel followed an evidence-based approach, taken together with Canadian clinical and laboratory experience and expertise, to create a consensus document to facilitate a more uniform approach to AML diagnosis and treatment across Canada.
Collapse
Affiliation(s)
- Julie Bergeron
- CEMTL Installation Maisonneuve-Rosemont, Institut Universitaire d’Hématologie-Oncologie et de Thérapie Cellulaire, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Jose-Mario Capo-Chichi
- Division of Clinical Laboratory Genetics, Department of Laboratory Medicine and Pathobiology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada;
| | - Hubert Tsui
- Division of Hematological Pathology, Department of Laboratory Medicine and Molecular Diagnostics, Precision Diagnostics and Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
- Department of Laboratory Medicine and Pathobiology, Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Etienne Mahe
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Division of Hematology and Hematological Malignancies, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Philip Berardi
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital/Eastern Ontario Regional Laboratory Association, Ottawa, ON K1H 8M2, Canada;
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mark D. Minden
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.D.M.); (A.C.S.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Joseph M. Brandwein
- Division of Hematology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Andre C. Schuh
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.D.M.); (A.C.S.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
90
|
Li G, Yao J, Lu Z, Yu L, Chen Q, Ding L, Fang Z, Li Y, Xu B. Simvastatin Preferentially Targets FLT3/ITD Acute Myeloid Leukemia by Inhibiting MEK/ERK and p38-MAPK Signaling Pathways. Drugs R D 2023; 23:439-451. [PMID: 37847357 PMCID: PMC10676344 DOI: 10.1007/s40268-023-00442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND The FLT3/ITD mutation exists in many acute myeloid leukemia (AML) patients and is related to the poor prognosis of patients. In this study, we attempted to evaluate the antitumor activity of simvastatin, a member of the statin class of drugs, in vitro and in vivo models of FLT3/ITD AML and to identify the potential mechanisms. METHODS Cell Counting Kit-8 (CCK-8) and Annexin V/propidium iodide (PI) staining kits were used to detect cell viability and apoptosis, respectively. Subsequently, Western blot and rescue experiment were applied to explore the potential molecular mechanism. In vivo anti-leukemia activity of simvastatin was evaluated in xenograft mouse models. RESULTS In vitro experiments revealed that simvastatin inhibited AML progression in a dose- and time-dependent manner, while in vivo experiments showed that simvastatin significantly reduced tumor burden in FLT3/ITD xenograft mouse models. After simvastatin treatment of FLT3/ITD AML cells, intracellular Rap1 was downregulated and the phosphorylation levels of its downstream targets MEK, ERK and p38 were significantly inhibited. The rescue experiment showed that mevalonate, an intermediate product of the metabolic pathway of mevalonate, and its downstream geranylgeranyl pyrophosphate (GGPP) played a key role in this process. Finally, we demonstrate that simvastatin can induce apoptosis of primary AML cells, while having no effect on peripheral blood mononuclear cells from normal donors. CONCLUSIONS Simvastatin can selectively and effectively eradicate FLT3/ITD AML cells in vitro and in vivo, and its mechanism may be related to the disruption of the HMG-CoA reductase pathway and the downregulation of the MEK/ERK and p38-MAPK signaling pathways.
Collapse
Affiliation(s)
- Genhong Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, People's Republic of China
- Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, Xiamen, 361003, People's Republic of China
| | - Jingwei Yao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, People's Republic of China
| | - Zhen Lu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, People's Republic of China
| | - Lian Yu
- Department of Hematology and Rheumatology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, People's Republic of China
| | - Qinwei Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, People's Republic of China
| | - Lihong Ding
- Department of Pathology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, People's Republic of China.
| | - Yin Li
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, People's Republic of China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, People's Republic of China.
| |
Collapse
|
91
|
Alshamleh I, Kurrle N, Makowka P, Bhayadia R, Kumar R, Süsser S, Seibert M, Ludig D, Wolf S, Koschade SE, Stoschek K, Kreitz J, Fuhrmann DC, Toenges R, Notaro M, Comoglio F, Schuringa JJ, Berg T, Brüne B, Krause DS, Klusmann JH, Oellerich T, Schnütgen F, Schwalbe H, Serve H. PDP1 is a key metabolic gatekeeper and modulator of drug resistance in FLT3-ITD-positive acute myeloid leukemia. Leukemia 2023; 37:2367-2382. [PMID: 37935978 PMCID: PMC10681906 DOI: 10.1038/s41375-023-02041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 11/09/2023]
Abstract
High metabolic flexibility is pivotal for the persistence and therapy resistance of acute myeloid leukemia (AML). In 20-30% of AML patients, activating mutations of FLT3, specifically FLT3-ITD, are key therapeutic targets. Here, we investigated the influence of FLT3-ITD on AML metabolism. Nuclear Magnetic Resonance (NMR) profiling showed enhanced reshuffling of pyruvate towards the tricarboxylic acid (TCA) cycle, suggesting an increased activity of the pyruvate dehydrogenase complex (PDC). Consistently, FLT3-ITD-positive cells expressed high levels of PDP1, an activator of the PDC. Combining endogenous tagging of PDP1 with genome-wide CRISPR screens revealed that FLT3-ITD induces PDP1 expression through the RAS signaling axis. PDP1 knockdown resulted in reduced cellular respiration thereby impairing the proliferation of only FLT3-ITD cells. These cells continued to depend on PDP1, even in hypoxic conditions, and unlike FLT3-ITD-negative cells, they exhibited a rapid, PDP1-dependent revival of their respiratory capacity during reoxygenation. Moreover, we show that PDP1 modifies the response to FLT3 inhibition. Upon incubation with the FLT3 tyrosine kinase inhibitor quizartinib (AC220), PDP1 persisted or was upregulated, resulting in a further shift of glucose/pyruvate metabolism towards the TCA cycle. Overexpression of PDP1 enhanced, while PDP1 depletion diminished AC220 resistance in cell lines and peripheral blasts from an AC220-resistant AML patient in vivo. In conclusion, FLT3-ITD assures the expression of PDP1, a pivotal metabolic regulator that enhances oxidative glucose metabolism and drug resistance. Hence, PDP1 emerges as a potentially targetable vulnerability in the management of AML.
Collapse
Affiliation(s)
- Islam Alshamleh
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Nina Kurrle
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Philipp Makowka
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Raj Bhayadia
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
- Department of Pediatrics, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Sebastian Süsser
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Marcel Seibert
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Damian Ludig
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Sebastian Wolf
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Sebastian E Koschade
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Karoline Stoschek
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Johanna Kreitz
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Rosa Toenges
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | | | | | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tobias Berg
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Centre for Discovery in Cancer Research and Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Bernhard Brüne
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596, Frankfurt am Main, Germany
| | - Daniela S Krause
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
- Georg-Speyer-Haus; German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan-Henning Klusmann
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
- Department of Pediatrics, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Thomas Oellerich
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Frank Schnütgen
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany.
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany.
| | - Hubert Serve
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany.
| |
Collapse
|
92
|
Liebers N, Bruch PM, Terzer T, Hernandez-Hernandez M, Paramasivam N, Fitzgerald D, Altmann H, Roider T, Kolb C, Knoll M, Lenze A, Platzbecker U, Röllig C, Baldus C, Serve H, Bornhäuser M, Hübschmann D, Müller-Tidow C, Stölzel F, Huber W, Benner A, Zenz T, Lu J, Dietrich S. Ex vivo drug response profiling for response and outcome prediction in hematologic malignancies: the prospective non-interventional SMARTrial. NATURE CANCER 2023; 4:1648-1659. [PMID: 37783805 PMCID: PMC10733146 DOI: 10.1038/s43018-023-00645-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/31/2023] [Indexed: 10/04/2023]
Abstract
Ex vivo drug response profiling is a powerful tool to study genotype-drug response associations and is being explored as a tool set for precision medicine in cancer. Here we conducted a prospective non-interventional trial to investigate feasibility of ex vivo drug response profiling for treatment guidance in hematologic malignancies (SMARTrial, NCT03488641 ). The primary endpoint to provide drug response profiling reports within 7 d was met in 91% of all study participants (N = 80). Secondary endpoint analysis revealed that ex vivo resistance to chemotherapeutic drugs predicted chemotherapy treatment failure in vivo. We confirmed the predictive value of ex vivo response to chemotherapy in a validation cohort of 95 individuals with acute myeloid leukemia treated with daunorubicin and cytarabine. Ex vivo drug response profiles improved ELN-22 risk stratification in individuals with adverse risk. We conclude that ex vivo drug response profiling is clinically feasible and has the potential to predict chemotherapy response in individuals with hematologic malignancies beyond clinically established genetic markers.
Collapse
Affiliation(s)
- Nora Liebers
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Aachen Bonn Cologne Düsseldorf, Germany
| | - Peter-Martin Bruch
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Aachen Bonn Cologne Düsseldorf, Germany
| | - Tobias Terzer
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Nagarajan Paramasivam
- Computational Oncology Group, Molecular Precision Oncology Program, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Donnacha Fitzgerald
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Tobias Roider
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Carolin Kolb
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Mareike Knoll
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Lenze
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | - Claudia Baldus
- Department of Internal Medicine II, University Hospital of Kiel, Kiel, Germany
| | - Hubert Serve
- Department of Internal Medicine II, University Hospital of Frankfurt Main, Frankfurt am Main, Germany
| | | | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, NCT Heidelberg and DKFZ, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Friedrich Stölzel
- Department of Internal Medicine II, University Hospital of Kiel, Kiel, Germany
| | - Wolfgang Huber
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, Universitätsspital & Universität Zürich, Zürich, Switzerland
- The LOOP Zürich-Medical Research Center, Zürich, Switzerland
| | - Junyan Lu
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany.
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Aachen Bonn Cologne Düsseldorf, Germany.
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
93
|
Xiao X, Wang P, Zhang W, Wang J, Cai M, Jiang H, Wu Y, Shan H. GNF-7, a novel FLT3 inhibitor, overcomes drug resistance for the treatment of FLT3‑ITD acute myeloid leukemia. Cancer Cell Int 2023; 23:302. [PMID: 38037057 PMCID: PMC10691066 DOI: 10.1186/s12935-023-03142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) with FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutation accounts for a large proportion of AML patients and diagnosed with poor prognosis. Although the prognosis of FLT3-ITD AML has been greatly improved, the drug resistance frequently occurred in the treatment of FLT3 targeting drugs. GNF-7, a multitargeted kinase inhibitor, which provided a novel therapeutic strategy for overriding leukemia. In this study, we explored the antitumor activity of GNF-7 against FLT3-ITD and clinically-relevant drug resistance in FLT3 mutant AML. METHODS Growth inhibitory assays were performed in AML cell lines and Ba/F3 cells expressing various FLT3 mutants to evaluate the antitumor activity of GNF-7 in vitro. Western blotting was used to examine the inhibitory effect of GNF-7 on FLT3 and its downstream pathways. Molecular docking and cellular thermal shift assay (CETSA) were performed to demonstrate the binding of FLT3 to GNF-7. The survival benefit of GNF-7 in vivo was assessed in mouse models of transformed Ba/F3 cells harboring FLT3-ITD and FLT3-ITD/F691L mutation. Primary patient samples and a patient-derived xenograft (PDX) model were also used to determine the efficacy of GNF-7. RESULTS GNF-7 inhibited the cell proliferation of Ba/F3 cells expressing FLT3-ITD and exhibited potently anti-leukemia activity on primary FLT3-ITD AML samples. Moreover, GNF-7 could bind to FLT3 protein and inhibit the downstream signaling pathway activated by FLT3 including STAT5, PI3K/AKT and MAPK/ERK. In vitro and in vivo studies showed that GNF-7 exhibited potent inhibitory activity against FLT3-ITD/F691L that confers resistant to quizartinib (AC220) or gilteritinib. Importantly, GNF-7 showed potent cytotoxic effect on leukemic stem cells, significantly extend the survival of PDX model and exhibited similar therapy effect compared with gilteritinib. CONCLUSIONS Our results show that GNF-7 is a potent FLT3-ITD inhibitor and may become a promising lead compound applied for treating some of the clinically drug resistant patients.
Collapse
Affiliation(s)
- Xinhua Xiao
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Peihong Wang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510000, Guangdong, China
| | - Weina Zhang
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jiayi Wang
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Mansi Cai
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hua Jiang
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Research Units of Stress and Tumor (2019RU043), Shanghai Jiao Tong University School of Medicine, Chinese Academy of Medical Sciences, Shanghai, 200025, China.
| | - Huizhuang Shan
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
94
|
Andrews C, Pullarkat V, Recher C. CPX-351 in FLT3-mutated acute myeloid leukemia. Front Oncol 2023; 13:1271722. [PMID: 38044999 PMCID: PMC10691756 DOI: 10.3389/fonc.2023.1271722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
CPX-351, a dual-drug liposomal encapsulation of daunorubicin and cytarabine in a 1:5 molar ratio, is approved for the treatment of newly diagnosed therapy-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes. In a pivotal phase III trial, CPX-351 significantly improved overall survival compared with standard-of-care 7 + 3 chemotherapy (7 days cytarabine; 3 days daunorubicin) in adults aged 60-75 years with newly diagnosed high-risk or secondary AML (median = 9.56 months vs. 5.95 months; hazard ratio = 0.69; 95% confidence interval = 0.52-0.90; p = 0.003). Approximately 30% of patients with newly diagnosed AML have mutations in the FLT3 gene, which may be associated with poor outcomes. Here, we review the current in vitro, clinical, and real-world evidence on the use of CPX-351 in patients with AML and mutations in FLT3. Additionally, we review preliminary data from clinical trials and patient case reports that suggest the combination of CPX-351 with FLT3 inhibitors may represent another treatment option for patients with FLT3 mutation-positive AML.
Collapse
Affiliation(s)
- Claire Andrews
- Department of Haematology, St Vincent’s University Hospital, Dublin, Ireland
| | - Vinod Pullarkat
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Christian Recher
- Service d’Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
95
|
Cao H, Naik SH, Amann-Zalcenstein D, Hickey P, Salim A, Cao B, Nilsson SK, Keightley MC, Lieschke GJ. Late fetal hematopoietic failure results from ZBTB11 deficiency despite abundant HSC specification. Blood Adv 2023; 7:6506-6519. [PMID: 37567157 PMCID: PMC10632610 DOI: 10.1182/bloodadvances.2022009580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Hematopoiesis produces diverse blood cell lineages to meet the basal needs and sudden demands of injury or infection. A rapid response to such challenges requires the expansion of specific lineages and a prompt return to balanced steady-state levels, necessitating tightly coordinated regulation. Previously we identified a requirement for the zinc finger and broad complex, tramtrak, bric-a-brac domain-containing 11 (ZBTB11) transcription factor in definitive hematopoiesis using a forward genetic screen for zebrafish myeloid mutants. To understand its relevance to mammalian systems, we extended these studies to mice. When Zbtb11 was deleted in the hematopoietic compartment, embryos died at embryonic day (E) 18.5 with hematopoietic failure. Zbtb11 hematopoietic knockout (Zbtb11hKO) hematopoietic stem cells (HSCs) were overabundantly specified from E14.5 to E17.5 compared with those in controls. Overspecification was accompanied by loss of stemness, inability to differentiate into committed progenitors and mature lineages in the fetal liver, failure to seed fetal bone marrow, and total hematopoietic failure. The Zbtb11hKO HSCs did not proliferate in vitro and were constrained in cell cycle progression, demonstrating the cell-intrinsic role of Zbtb11 in proliferation and cell cycle regulation in mammalian HSCs. Single-cell RNA sequencing analysis identified that Zbtb11-deficient HSCs were underrepresented in an erythroid-primed subpopulation and showed downregulation of oxidative phosphorylation pathways and dysregulation of genes associated with the hematopoietic niche. We identified a cell-intrinsic requirement for Zbtb11-mediated gene regulatory networks in sustaining a pool of maturation-capable HSCs and progenitor cells.
Collapse
Affiliation(s)
- Huimin Cao
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Shalin H. Naik
- Department of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Daniela Amann-Zalcenstein
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Peter Hickey
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Agus Salim
- Mathematics and Statistics, La Trobe University, Bundoora, VIC, Australia
- Melbourne School of Population and Global Health, School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, Australia
| | - Benjamin Cao
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Susan K. Nilsson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - M. Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
- Rural Clinical Sciences, La Trobe Rural Health School, Bendigo, VIC, Australia
| | - Graham J. Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
96
|
Sierra J, Montesinos P, Thomas X, Griskevicius L, Cluzeau T, Caillot D, Legrand O, Minotti C, Luppi M, Farkas F, Bengoudifa BR, Gilotti G, Hodzic S, Rambaldi A, Venditti A. Midostaurin plus daunorubicin or idarubicin for young and older adults with FLT3-mutated AML: a phase 3b trial. Blood Adv 2023; 7:6441-6450. [PMID: 37581981 PMCID: PMC10632658 DOI: 10.1182/bloodadvances.2023009847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
The pivotal RATIFY study demonstrated midostaurin (50 mg twice daily) with standard chemotherapy significantly reduced mortality in adult patients (<60 years) with newly diagnosed (ND) FLT3mut acute myeloid leukemia (AML). Considering that AML often present in older patients who show poor response to chemotherapy, this open-label, multicenter phase 3b trial was designed to further assess safety and efficacy of midostaurin plus chemotherapy in induction, consolidation, and maintenance monotherapy in young (≤60 years) and older (>60 years) patients with FLT3mut ND-AML. Compared with RATIFY, this study extended midostaurin treatment from 14 days to 21 days, substituted anthracyclines (idarubicin or daunorubicin), and introduced variation in standard combination chemotherapy dosing ("7+3" or "5+2" in more fragile patients). Total 301 patients (47.2% >60 years and 82.7% with FLT3-ITDmut) of median age 59 years entered induction phase. Overall, 295 patients (98.0%) had at least 1 adverse event (AE), including 254 patients (84.4%) with grade ≥3 AE. The grade ≥3 serious AEs occurred in 134 patients. No difference was seen in AE frequency between age groups, but grade ≥3AE frequency was higher in older patients. Overall, complete remission (CR) rate including incomplete hematologic recovery (CR + CRi) (80.7% [95% confidence interval, 75.74-84.98]) was comparable between age groups (≤60 years [83.5%]; >60 to ≤70 years [82.5%]; in patients >70 years [64.1%]) and the type of anthracycline used in induction. CR + CRi rate was lower in males (76.4%) than females (84.4%). Overall, the safety and efficacy of midostaurin remains consistent with previous findings, regardless of age, sex, or induction regimen. The trial is registered at www.clinicaltrials.gov as #NCT03379727.
Collapse
Affiliation(s)
- Jorge Sierra
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute. Universitat Autonoma of Barcelona, Barcelona, Spain
| | - Pau Montesinos
- Hospital Universitari i Politècnic La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Thomas
- Department of Hematology, Hospices Civils de Lyon, Lyon-Sud Hospital, Lyon, France
| | - Laimonas Griskevicius
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Thomas Cluzeau
- Department of Hematology, CHU de Nice, Cote D’Azur University, Nice, France
- Sophia Antipolis University, Nice, France
- INSERM U1065, Mediterranean Center of Molecular Medicine, Cote D’Azur University, Nice, France
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, Paris, France
| | - Denis Caillot
- Department of Hematology, Dijon University Hospital, Dijon, France
| | - Ollivier Legrand
- Department of Hematology and Cellular Therapy, Saint Antoine Hospital, Assistance Publique–Hôpitaux de Paris, Paris, France
- UMRS 938, INSERM, Paris, France
- Université Pierre et Marie Curie Paris VI, Sorbonne University, Paris, France
| | - Clara Minotti
- Hematology, Department of Translational and Precision Medicine, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Mario Luppi
- Hematology Unit, Azienda Ospedaliera Universitaria di Modena and Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Firas Farkas
- Department of Hematology and Transfusion Medicine, Faculty of Medicine of Comenius University, University Hospital, Bratislava, Slovakia
| | | | | | - Sejla Hodzic
- Novartis Pharmaceuticals Corporation, East Hanover, NJ
| | - Alessandro Rambaldi
- Department of Oncology and Hematology, University of Milan and Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
97
|
Xu Y, Baylink DJ, Chen CS, Tan L, Xiao J, Park B, Valladares I, Reeves ME, Cao H. Transient TKI-resistant CD44+pBAD+ blasts undergo intrinsic homeostatic adaptation to promote the survival of acute myeloid leukemia in vitro. Front Oncol 2023; 13:1286863. [PMID: 38023123 PMCID: PMC10664142 DOI: 10.3389/fonc.2023.1286863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Acute myeloid leukemia (AML) patients have frequent mutations in FMS-like receptor tyrosine kinase 3 (FLT3-mut AML), who respond poorly to salvage chemotherapies and targeted therapies such as tyrosine kinase inhibitors (TKIs). Disease relapse is a common reason of treatment failures in FLT3-mut AML patients, but its intracellular refractory mechanism remains to be discovered. In this study, we designed serial in vitro time-course studies to investigate the biomarkers of TKI-resistant blasts and their survival mechanism. First, we found that a group of transient TKI-resistant blasts were CD44+Phosphorylated-BAD (pBAD)+ and that they could initiate the regrowth of blast clusters in vitro. Notably, TKI-treatments upregulated the compensation pathways to promote PIM2/3-mediated phosphorylation of BAD to initiate the blast survival. Next, we discovered a novel process of intracellular adaptive responses in these transient TKI-resistant blasts, including upregulated JAK/STAT signaling pathways for PIM2/3 expressions and activated SOCS1/SOCS3/PIAS2 inhibitory pathways to down-regulate redundant signal transduction and kinase phosphorylation to regain intracellular homeostasis. Finally, we found that the combination of TKIs with TYK2/STAT4 pathways-driven inhibitors could effectively treat FLT3-mut AML in vitro. In summary, our findings reveal that TKI-treatment can activate a JAK/STAT-PIM2/3 axis-mediated signaling pathways to promote the survival of CD44+pBAD+blasts in vitro. Disrupting these TKIs-activated redundant pathways and blast homeostasis could be a novel therapeutic strategy to treat FLT3-mut AML and prevent disease relapse in vivo.
Collapse
Affiliation(s)
- Yi Xu
- Division of Hematology and Oncology, Loma Linda University Medical Center and Loma Linda University Cancer Center, Loma Linda University Health, Loma Linda, CA, United States
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Loma Linda University Medical Center and Loma Linda University Cancer Center, Loma Linda University Health, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| | - Laren Tan
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
- Department of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brandon Park
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Ismael Valladares
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E. Reeves
- Division of Hematology and Oncology, Loma Linda University Medical Center and Loma Linda University Cancer Center, Loma Linda University Health, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Loma Linda University Medical Center and Loma Linda University Cancer Center, Loma Linda University Health, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| |
Collapse
|
98
|
Shin JE, Kim SH, Kong M, Kim HR, Yoon S, Kee KM, Kim JA, Kim DH, Park SY, Park JH, Kim H, No KT, Lee HW, Gee HY, Hong S, Guan KL, Roe JS, Lee H, Kim DW, Park HW. Targeting FLT3-TAZ signaling to suppress drug resistance in blast phase chronic myeloid leukemia. Mol Cancer 2023; 22:177. [PMID: 37932786 PMCID: PMC10626670 DOI: 10.1186/s12943-023-01837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/01/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Although the development of BCR::ABL1 tyrosine kinase inhibitors (TKIs) rendered chronic myeloid leukemia (CML) a manageable condition, acquisition of drug resistance during blast phase (BP) progression remains a critical challenge. Here, we reposition FLT3, one of the most frequently mutated drivers of acute myeloid leukemia (AML), as a prognostic marker and therapeutic target of BP-CML. METHODS We generated FLT3 expressing BCR::ABL1 TKI-resistant CML cells and enrolled phase-specific CML patient cohort to obtain unpaired and paired serial specimens and verify the role of FLT3 signaling in BP-CML patients. We performed multi-omics approaches in animal and patient studies to demonstrate the clinical feasibility of FLT3 as a viable target of BP-CML by establishing the (1) molecular mechanisms of FLT3-driven drug resistance, (2) diagnostic methods of FLT3 protein expression and localization, (3) association between FLT3 signaling and CML prognosis, and (4) therapeutic strategies to tackle FLT3+ CML patients. RESULTS We reposition the significance of FLT3 in the acquisition of drug resistance in BP-CML, thereby, newly classify a FLT3+ BP-CML subgroup. Mechanistically, FLT3 expression in CML cells activated the FLT3-JAK-STAT3-TAZ-TEAD-CD36 signaling pathway, which conferred resistance to a wide range of BCR::ABL1 TKIs that was independent of recurrent BCR::ABL1 mutations. Notably, FLT3+ BP-CML patients had significantly less favorable prognosis than FLT3- patients. Remarkably, we demonstrate that repurposing FLT3 inhibitors combined with BCR::ABL1 targeted therapies or the single treatment with ponatinib alone can overcome drug resistance and promote BP-CML cell death in patient-derived FLT3+ BCR::ABL1 cells and mouse xenograft models. CONCLUSION Here, we reposition FLT3 as a critical determinant of CML progression via FLT3-JAK-STAT3-TAZ-TEAD-CD36 signaling pathway that promotes TKI resistance and predicts worse prognosis in BP-CML patients. Our findings open novel therapeutic opportunities that exploit the undescribed link between distinct types of malignancies.
Collapse
Affiliation(s)
- Ji Eun Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soo-Hyun Kim
- Leukemia Omics Research Institute, Eulji University, Uijeongbu-si, Gyeonggi-Do, Republic of Korea
| | - Mingyu Kong
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungmin Yoon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyung-Mi Kee
- Leukemia Omics Research Institute, Eulji University, Uijeongbu-si, Gyeonggi-Do, Republic of Korea
| | - Jung Ah Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dong Hyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - So Yeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Hyung Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hongtae Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyoung Tai No
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon, 21983, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seunghee Hong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunbeom Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Dong-Wook Kim
- Leukemia Omics Research Institute, Eulji University, Uijeongbu-si, Gyeonggi-Do, Republic of Korea.
- Hematology Department, Eulji Medical Center, Eulji University, Uijeongbu-si, Gyeonggi-Do, Republic of Korea.
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
99
|
Isidori A, Visani G, Ferrara F. Fms -like tyrosine kinase 3 positive acute myeloid leukemia. Curr Opin Oncol 2023; 35:589-593. [PMID: 37820093 DOI: 10.1097/cco.0000000000000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW Fms -like tyrosine kinase 3 (FLT3) mutations are common in newly diagnosed patients with acute myeloid leukemia (AML). They are associated with a high risk of relapse. The identification of FLT3 mutations has important implications for the management of AML. FLT3 inhibitors have shown improved outcomes in FLT3-positive AML when used as a single agent in the salvage setting. However, the combination of inhibitors and chemotherapy in the first-line setting is the real game changer in FLT3mutant AML. The introduction of these drugs has improved the prognosis of FLT3-mutant AML, but the development of resistance is common. There are still many unanswered questions about FLT3-mutant AML. RECENT FINDINGS This article will analyze recent advances for FLT3-mutant AML, focusing on front-line therapy and post-transplant maintenance. SUMMARY Novel drug combinations and strategies against FLT3 mutated AML are currently under investigation and will be the focus of future studies. The development of more selective and potent FLT3 inhibitors may further improve outcomes for patients with FLT3-positive AML. Monitoring minimal residual disease and overcoming resistance are key issues for the future.
Collapse
Affiliation(s)
| | - Giuseppe Visani
- Hematology and Stem Cell Transplantation, AORMN Hospital, Pesaro
| | | |
Collapse
|
100
|
Ma H, Cui J, Liu Z, Fang W, Lu S, Cao S, Zhang Y, Chen JA, Lu L, Xie Q, Wang Y, Huang Y, Li K, Tong H, Huang J, Lu W. Blockade of de novo pyrimidine biosynthesis triggers autophagic degradation of oncoprotein FLT3-ITD in acute myeloid leukemia. Oncogene 2023; 42:3331-3343. [PMID: 37752234 DOI: 10.1038/s41388-023-02848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
The internal tandem duplication of the FMS-like tyrosine kinase 3 (FLT3-ITD) is one of the most frequent genetic alterations in acute myeloid leukemia (AML). Limited and transient clinical benefit of FLT3 kinase inhibitors (FLT3i) emphasizes the need for alternative therapeutic options for this subset of myeloid malignancies. Herein, we showed that FLT3-ITD mutant (FLT3-ITD+) AML cells were susceptible toward inhibitors of DHODH, a rate-limiting enzyme of de novo pyrimidine biosynthesis. Genetic and pharmacological blockade of DHODH triggered downregulation of FLT3-ITD protein, subsequently suppressed activation of downstream ERK and STAT5, and promoted cell death of FLT3-ITD+ AML cells. Mechanistically, DHODH blockade triggered autophagy-mediated FLT3-ITD degradation via inactivating mTOR, a potent autophagy repressor. Notably, blockade of DHODH synergized with an FDA-approved FLT3i quizartinib in significantly impairing the growth of FLT3-ITD+ AML cells and improving tumor-bearing mice survival. We further demonstrated that DHODH blockade exhibited profound anti-proliferation effect on quizartinib-resistant cells in vitro and in vivo. In summary, this study demonstrates that the induction of degradation of FLT3-ITD protein by DHODH blockade may offer a promising therapeutic strategy for AML patients harboring FLT3-ITD mutation.
Collapse
Affiliation(s)
- Hui Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Jiayan Cui
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Zehui Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Wenqing Fang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Sisi Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Shuying Cao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Yuanyuan Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Ji-An Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Lixue Lu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Ying Huang
- NMPA Key Laboratory of Rapid Drug Inspection Technology, Guangdong Institute for Drug Control, 510663, Guangzhou, China
| | - Kongfei Li
- Department of Hematology, People's Hospital Affiliated to Ningbo University, 315000, Ningbo, China
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, 310003, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, 310003, Hangzhou, China
| | - Jin Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China.
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|