51
|
Bae JH, Lim H, Lim S. The Potential Cardiometabolic Effects of Long-Chain ω-3 Polyunsaturated Fatty Acids: Recent Updates and Controversies. Adv Nutr 2023; 14:612-628. [PMID: 37031750 PMCID: PMC10334139 DOI: 10.1016/j.advnut.2023.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
Various health-related effects of long-chain (LC) ω-3 PUFAs, EPA, and DHA have been suggested. LC ω-3 PUFAs reduce TG concentrations and have anti-inflammatory, immunomodulatory, antiplatelet, and vascular protective effects. Controversially, they might help in restoring glucose homeostasis via the gut microbiota. However, previous studies have not shown the clear benefits of LC ω-3 PUFAs for CVDs. REDUCE-IT and STRENGTH-representative randomized controlled trials (RCTs) that examined whether LC ω-3 PUFAs would prevent major adverse cardiovascular (CV) events (MACE)-showed conflicting results with differences in the types, doses, or comparators of LC ω-3 PUFAs and study populations. Therefore, we performed a meta-analysis using major RCTs to address this inconsistency and assess the clinical and biological effects of LC ω-3 PUFAs. We included RCTs that involved ≥500 participants with ≥1 y follow-up. Of 17 studies involving 143,410 people, LC ω-3 PUFA supplementation showed beneficial effects on CV death (RR: 0.94; 95% CI: 0.88, 0.99; P = 0.029) and fatal or nonfatal MI (RR: 0.83; 95% CI: 0.72, 0.95; P = 0.010). RCTs on EPA alone showed better results for 3-point MACE, CV death, and fatal or nonfatal MI. However, the benefits were not found for fatal or nonfatal stroke, all-cause mortality, and hospitalization for heart failure. Of note, studies of both the EPA/DHA combination and EPA alone showed a significant increase in risk of new-onset atrial fibrillation. Thus, well-designed studies are needed to investigate the underlying mechanisms involved in the distinct effects of EPA compared with DHA on cardiometabolic diseases. This review discusses the potential benefits and safety of LC ω-3 PUFAs from a cardiometabolic perspective focusing on recent updates and controversies.
Collapse
Affiliation(s)
- Jae Hyun Bae
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyunjung Lim
- Department of Medical Nutrition, Research Institute of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
52
|
Hirata Y, Ferreri C, Yamada Y, Inoue A, Sansone A, Vetica F, Suzuki W, Takano S, Noguchi T, Matsuzawa A, Chatgilialoglu C. Geometrical isomerization of arachidonic acid during lipid peroxidation interferes with ferroptosis. Free Radic Biol Med 2023:S0891-5849(23)00461-6. [PMID: 37257700 DOI: 10.1016/j.freeradbiomed.2023.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Geometrical mono-trans isomers of arachidonic acid (mtAA) are endogenous products of free radical-induced cis-trans double bond isomerization occurring to natural fatty acids during cell metabolism, including lipid peroxidation (LPO). Very little is known about the functional roles of mtAA and in general on the effects of mono-trans isomers of polyunsaturated fatty acids (mtPUFA) in various types of programmed cell death, including ferroptosis. Using HT1080 and MEF cell cultures, supplemented with 20 μM PUFA (i.e., AA, EPA or DHA) and their mtPUFA congeners, ferroptosis occurred in the presence of RSL3 (a direct inhibitor of glutathione peroxidase 4) only with the PUFA in their natural cis configuration, whereas mtPUFA showed an anti-ferroptotic effect. By performing the fatty acid-based membrane lipidome analyses, substantial differences emerged in the membrane fatty acid remodeling of the two different cell fates. In particular, during ferroptosis mtPUFA formation and their incorporation, together with the enrichment of SFA, occurred. This opens new perspectives in the role of the membrane composition for a ferroptotic outcome. While pre-treatment with AA promoted cell death for treatment with H2O2 and RSL3, mtAA did not. Cell death by AA supplementation was suppressed also in the presence of either ferroptosis inhibitors, such as the lipophilic antioxidant ferrostatin-1, or NADPH oxidase (NOX) inhibitors, including diphenyleneiodonium chloride and apocynin. Our results confirm a more complex scenario for ferroptosis than actually believed. While LPO processes are active, the importance of environmental lipid levels, balance among SFA, MUFA and PUFA in lipid pools and formation of mtPUFA influence the membrane phospholipid turnover, with crucial effects in the occurrence of cell death by ferroptosis.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Yuto Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Aya Inoue
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Fabrizio Vetica
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Wakana Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Saya Takano
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan.
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129, Bologna, Italy; Center for Advanced Technologies, Adam Mickiewicz University, 61-614, Poznan, Poland.
| |
Collapse
|
53
|
Wijerathne TD, Ozkan AD, Lacroix JJ. Microscopic mechanism of PIEZO1 activation by pressure-induced membrane stretch. J Gen Physiol 2023; 155:213842. [PMID: 36715688 PMCID: PMC9930135 DOI: 10.1085/jgp.202213260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Mechanosensitive PIEZO1 ion channels open in response to membrane stretch. Yet, the underlying microscopic mechanism of this activation remains unknown. To probe this mechanism, we used cell-attached pressure-clamp recordings to measure single channel currents at different steady-state negative pipette pressures, spanning the full range of the channel's pressure sensitivity. Pressure-dependent activation occurs through a sharp reduction of the mean shut duration and through a moderate increase of the mean open duration. Across all tested pressures, the distribution of open and shut dwell times best follows sums of two and three exponential components, respectively. As the magnitude of the pressure stimulus increases, the time constants of most of these exponential components gradually change, in opposite directions for open and shut dwell times, and to a similar extent. In addition, while the relative amplitudes of fast and slow components remain unchanged for open intervals, they fully reverse for shut intervals, further reducing the mean shut duration. Using two-dimensional dwell time analysis, Markov-chain modeling, and simulations, we identified a minimal five-states model which recapitulates essential characteristics of single channel data, including microscopic reversibility, correlations between adjacent open and shut intervals, and asymmetric modulation of dwell times by pressure. This study identifies a microscopic mechanism for the activation of PIEZO1 channels by pressure-induced membrane stretch and deepens our fundamental understanding of mechanotransduction by a vertebrate member of the PIEZO channel family.
Collapse
Affiliation(s)
- Tharaka D Wijerathne
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA, USA
| | - Alper D Ozkan
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA, USA
| | - Jérôme J Lacroix
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA, USA
| |
Collapse
|
54
|
Bergen J, Karasova M, Bileck A, Pignitter M, Marko D, Gerner C, Del Favero G. Exposure to dietary fatty acids oleic and palmitic acid alters structure and mechanotransduction of intestinal cells in vitro. Arch Toxicol 2023; 97:1659-1675. [PMID: 37117602 PMCID: PMC10182945 DOI: 10.1007/s00204-023-03495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Intestinal cells are continuously exposed to food constituents while adapting to peristaltic movement and fluid shear stress. Oleic acid (OA) and palmitic acid (PA) are among the most prevalent fatty acids with respect to dietary lipids. Despite the central importance of dietary lipids for a balanced diet, awareness about potential detrimental effects related to excessive consumption is increasing; this includes toxicity, metabolic deregulation, and, particularly for cancer cells, a benefit from the uptake of fatty acids related to promotion of metastasis. Expanding on this, we started elucidating the effects of OA and PA (25-500 µM) on non-transformed human intestinal epithelial cells (HCEC-1CT) in comparison to colon carcinoma cells (HCT116), with regard to the mechanosensory apparatus. Hence, intestinal cells' motility is on the one side essential to ensure adaption to peristaltic movement and barrier function, but also to enable metastatic progression. Incubation with both OA and PA (≥ 25 µM) significantly decreased membrane fluidity of HCT116 cells, whereas the effect on HCEC-1CT was more limited. Application of rhodamine-labelled PA demonstrated that the fatty acid is incorporated into the plasma membrane of HCT116, which could not be observed in the non-tumorigenic cell line. Down-streaming into the intracellular compartment, a pronounced rearrangement of actin cytoskeleton was evident in both cell lines (OA and PA; 25 and 100 µM). This was accompanied by a variation of translocation efficiency of the mechanosensitive co-transcription factor YAP1, albeit with a stronger effect seen for PA and the cancer cells. Untargeted proteomic analysis confirmed that exposure to OA and PA could alter the response capacity of HCT116 cells to fluid shear stress. Taken together, OA and PA were able to functionally modulate the mechanosensory apparatus of intestinal cells, implying a novel role for dietary fatty acids in the regulation of intestinal pathophysiology.
Collapse
Affiliation(s)
- Janice Bergen
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Martina Karasova
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria.
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria.
| |
Collapse
|
55
|
Dienes B, Bazsó T, Szabó L, Csernoch L. The Role of the Piezo1 Mechanosensitive Channel in the Musculoskeletal System. Int J Mol Sci 2023; 24:ijms24076513. [PMID: 37047487 PMCID: PMC10095409 DOI: 10.3390/ijms24076513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Since the recent discovery of the mechanosensitive Piezo1 channels, many studies have addressed the role of the channel in various physiological or even pathological processes of different organs. Although the number of studies on their effects on the musculoskeletal system is constantly increasing, we are still far from a precise understanding. In this review, the knowledge available so far regarding the musculoskeletal system is summarized, reviewing the results achieved in the field of skeletal muscles, bones, joints and cartilage, tendons and ligaments, as well as intervertebral discs.
Collapse
|
56
|
Vasileva V, Chubinskiy-Nadezhdin V. Regulation of PIEZO1 channels by lipids and the structural components of extracellular matrix/cell cytoskeleton. J Cell Physiol 2023; 238:918-930. [PMID: 36947588 DOI: 10.1002/jcp.31001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
PIEZO1 is a mechanosensitive channel widely presented in eukaryotic organisms. Although the PIEZO family was discovered in 2010, main questions related to the molecular structure as well as to specific activation mechanisms and regulating pathways remain open. Two hypotheses of PIEZO1 gating were formulated: the first, as a dominant hypothesis, through the plasma membrane (force-from-lipids) and the second, via the participation of the cytoskeleton and the components of the extracellular matrix (ECM) (force-from-filaments). Many researchers provide convincing evidence for both hypotheses. It was demonstrated that PIEZO1 has a propeller-like shape forming a membrane curvature within the lipid bilayer. That suggests the participation of lipids in channel modulation, and many studies demonstrate the critical role of lipids and compounds that modify the lipid bilayer in the regulation of PIEZO1 properties. At the same time, the components of ECM and cortical cytoskeleton can be affected by the membrane curvature and thus have an impact on PIEZO1 properties. In living cells, PIEZO1 properties are reported to be critically dependent on channel microenvironment that is on combinatorial influence of plasma membrane, cytoskeleton and ECM. Thus, it is necessary to understand which factors can affect PIEZO1 and consider them when interpreting the role of PIEZO1 in various physiological processes. This review summarizes the current knowledge about regulation of Piezo1 by lipids and the components of ECM and cytoskeleton.
Collapse
Affiliation(s)
- Valeria Vasileva
- Group of Ionic Mechanisms of Cell Signalling, Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Vladislav Chubinskiy-Nadezhdin
- Group of Ionic Mechanisms of Cell Signalling, Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
57
|
Goodman MB, Haswell ES, Vásquez V. Mechanosensitive membrane proteins: Usual and unusual suspects in mediating mechanotransduction. J Gen Physiol 2023; 155:e202213248. [PMID: 36696153 PMCID: PMC9930137 DOI: 10.1085/jgp.202213248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This Viewpoint, which accompanies a Special Issue focusing on membrane mechanosensors, discusses unifying and unique features of both established and emerging mechanosensitive (MS) membrane proteins, their distribution across protein families and phyla, and current and future challenges in the study of these important proteins and their partners. MS membrane proteins are essential for tissue development, cellular motion, osmotic homeostasis, and sensing external and self-generated mechanical cues like those responsible for touch and proprioception. Though researchers' attention and this Viewpoint focus on a few famous ion channels that are considered the usual suspects as MS mechanosensors, we also discuss some of the more unusual suspects, such as G-protein coupled receptors. As the field continues to grow, so too will the list of proteins suspected to function as mechanosensors and the diversity of known MS membrane proteins.
Collapse
Affiliation(s)
- Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Elizabeth S. Haswell
- Department of Biology, Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
58
|
Savadipour A, Palmer D, Ely EV, Collins KH, Garcia-Castorena JM, Harissa Z, Kim YS, Oestrich A, Qu F, Rashidi N, Guilak F. The role of PIEZO ion channels in the musculoskeletal system. Am J Physiol Cell Physiol 2023; 324:C728-C740. [PMID: 36717101 PMCID: PMC10027092 DOI: 10.1152/ajpcell.00544.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
PIEZO1 and PIEZO2 are mechanosensitive cation channels that are highly expressed in numerous tissues throughout the body and exhibit diverse, cell-specific functions in multiple organ systems. Within the musculoskeletal system, PIEZO1 functions to maintain muscle and bone mass, sense tendon stretch, and regulate senescence and apoptosis in response to mechanical stimuli within cartilage and the intervertebral disc. PIEZO2 is essential for transducing pain and touch sensations as well as proprioception in the nervous system, which can affect musculoskeletal health. PIEZO1 and PIEZO2 have been shown to act both independently as well as synergistically in different cell types. Conditions that alter PIEZO channel mechanosensitivity, such as inflammation or genetic mutations, can have drastic effects on these functions. For this reason, therapeutic approaches for PIEZO-related disease focus on altering PIEZO1 and/or PIEZO2 activity in a controlled manner, either through inhibition with small molecules, or through dietary control and supplementation to maintain a healthy cell membrane composition. Although many opportunities to better understand PIEZO1 and PIEZO2 remain, the studies summarized in this review highlight how crucial PIEZO channels are to musculoskeletal health and point to promising possible avenues for their modulation as a therapeutic target.
Collapse
Affiliation(s)
- Alireza Savadipour
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Daniel Palmer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Erica V Ely
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jaquelin M Garcia-Castorena
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Zainab Harissa
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Yu Seon Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Arin Oestrich
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Feini Qu
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Neda Rashidi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| |
Collapse
|
59
|
Romero LO, Caires R, Kaitlyn Victor A, Ramirez J, Sierra-Valdez FJ, Walsh P, Truong V, Lee J, Mayor U, Reiter LT, Vásquez V, Cordero-Morales JF. Linoleic acid improves PIEZO2 dysfunction in a mouse model of Angelman Syndrome. Nat Commun 2023; 14:1167. [PMID: 36859399 PMCID: PMC9977963 DOI: 10.1038/s41467-023-36818-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability and atypical behaviors. AS results from loss of expression of the E3 ubiquitin-protein ligase UBE3A from the maternal allele in neurons. Individuals with AS display impaired coordination, poor balance, and gait ataxia. PIEZO2 is a mechanosensitive ion channel essential for coordination and balance. Here, we report that PIEZO2 activity is reduced in Ube3a deficient male and female mouse sensory neurons, a human Merkel cell carcinoma cell line and female human iPSC-derived sensory neurons with UBE3A knock-down, and de-identified stem cell-derived neurons from individuals with AS. We find that loss of UBE3A decreases actin filaments and reduces PIEZO2 expression and function. A linoleic acid (LA)-enriched diet increases PIEZO2 activity, mechano-excitability, and improves gait in male AS mice. Finally, LA supplementation increases PIEZO2 function in stem cell-derived neurons from individuals with AS. We propose a mechanism whereby loss of UBE3A expression reduces PIEZO2 function and identified a fatty acid that enhances channel activity and ameliorates AS-associated mechano-sensory deficits.
Collapse
Affiliation(s)
- Luis O Romero
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, Memphis, TN, 38163, USA
| | - Rebeca Caires
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - A Kaitlyn Victor
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain
| | - Francisco J Sierra-Valdez
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| | | | | | - Jungsoo Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Lawrence T Reiter
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38104, USA
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38104, USA
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| | - Julio F Cordero-Morales
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
60
|
Kim YJ, Hyun J. Mechanosensitive ion channels in apoptosis and ferroptosis: focusing on the role of Piezo1. BMB Rep 2023; 56:145-152. [PMID: 36724905 PMCID: PMC10068349 DOI: 10.5483/bmbrep.2023-0002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 08/27/2023] Open
Abstract
Mechanosensitive ion channels sense mechanical stimuli applied directly to the cellular membranes or indirectly through their tethered components, provoking cellular mechanoresponses. Among others, Piezo1 mechanosensitive ion channel is a relatively novel Ca2+-permeable channel that is primarily present in non-sensory tissues. Recent studies have demonstrated that Piezo1 plays an important role in Ca2+-dependent cell death, including apoptosis and ferroptosis, in the presence of mechanical stimuli. It has also been proven that cancer cells are sensitive to mechanical stresses due to higher expression levels of Piezo1 compared to normal cells. In this review, we discuss Piezo1-mediated cell death mechanisms and therapeutic strategies to inhibit or induce cell death by modulating the activity of Piezo1 with pharmacological drugs or mechanical perturbations induced by stretch and ultrasound. [BMB Reports 2023; 56(3): 145-152].
Collapse
Affiliation(s)
- Yong-Jae Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Mechanobiology Dental Medicine Research Center, College of Dentistry, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
61
|
Gsmtx4 Alleviated Osteoarthritis through Piezo1/Calcineurin/NFAT1 Signaling Axis under Excessive Mechanical Strain. Int J Mol Sci 2023; 24:ijms24044022. [PMID: 36835440 PMCID: PMC9961447 DOI: 10.3390/ijms24044022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Excessive mechanical strain is the prominent risk factor for osteoarthritis (OA), causing cartilage destruction and degeneration. However, the underlying molecular mechanism contributing to mechanical signaling transduction remains unclear in OA. Piezo type mechanosensitive ion channel component 1 (Piezo1) is a calcium-permeable mechanosensitive ion channel and provides mechanosensitivity to cells, but its role in OA development has not been determined. Herein, we found up-regulated expression of Piezo1 in OA cartilage, and that its activation contributes to chondrocyte apoptosis. The knockdown of Piezo1 could protect chondrocytes from apoptosis and maintain the catabolic and anabolic balance under mechanical strain. In vivo, Gsmtx4, a Piezo1 inhibitor, markedly ameliorated the progression of OA, inhibited the chondrocyte apoptosis, and accelerated the production of the cartilage matrix. Mechanistically, we observed the elevated activity of calcineurin (CaN) and the nuclear transfection of nuclear factor of activated T cells 1 (NFAT1) under mechanical strain in chondrocytes. Inhibitors of CaN or NFAT1 rescued the pathologic changes induced by mechanical strain in chondrocytes. Overall, our findings revealed that Piezo1 was the essential molecule response to mechanical signals and regulated apoptosis and cartilage matrix metabolism via the CaN/NFAT1 signaling axis in chondrocytes, and that Gsmtx4 could be an attractive therapeutic drug for OA treatment.
Collapse
|
62
|
Levental I, Lyman E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat Rev Mol Cell Biol 2023; 24:107-122. [PMID: 36056103 PMCID: PMC9892264 DOI: 10.1038/s41580-022-00524-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 02/04/2023]
Abstract
Transmembrane proteins comprise ~30% of the mammalian proteome, mediating metabolism, signalling, transport and many other functions required for cellular life. The microenvironment of integral membrane proteins (IMPs) is intrinsically different from that of cytoplasmic proteins, with IMPs solvated by a compositionally and biophysically complex lipid matrix. These solvating lipids affect protein structure and function in a variety of ways, from stereospecific, high-affinity protein-lipid interactions to modulation by bulk membrane properties. Specific examples of functional modulation of IMPs by their solvating membranes have been reported for various transporters, channels and signal receptors; however, generalizable mechanistic principles governing IMP regulation by lipid environments are neither widely appreciated nor completely understood. Here, we review recent insights into the inter-relationships between complex lipidomes of mammalian membranes, the membrane physicochemical properties resulting from such lipid collectives, and the regulation of IMPs by either or both. The recent proliferation of high-resolution methods to study such lipid-protein interactions has led to generalizable insights, which we synthesize into a general framework termed the 'functional paralipidome' to understand the mutual regulation between membrane proteins and their surrounding lipid microenvironments.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Molecular and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Ed Lyman
- Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
63
|
PIEZO1-Related Physiological and Pathological Processes in CNS: Focus on the Gliomas. Cancers (Basel) 2023; 15:cancers15030883. [PMID: 36765838 PMCID: PMC9913778 DOI: 10.3390/cancers15030883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
PIEZO1 is ubiquitously expressed in cells in different kinds of tissues throughout the body, which can sense physical or mechanical stimuli and translate them into intracellular electrochemical signals to regulate organism functions. In particular, PIEZO1 appears in complex interactive regulatory networks as a central node, governing normal and pathological functions in the body. However, the effect and mechanism of the activation or expression of PIEZO1 in diseases of the central nervous system (CNS) remain unclear. On one hand, in CNS diseases, pathophysiological processes in neurons and glial are often accompanied by variations in the mechanical properties of the cellular and extracellular matrix stiffness. The expression of PIEZO1 can therefore be upregulated, in responding to mechanical stimulation, to drive the biological process in cells, which in turns indirectly affects the cellular microenvironment, resulting in alterations of the cellular status. On the other hand, it may have contradictory effects with the change of active patterns and/or subcellular location. This review highlights the biological processes involved with PIEZO1 in CNS cells, with special emphasis on its multiple roles in glioma-associated phenotypes. In conclusion, PIEZO1 can be used as an indicator to assess the malignancy and prognosis of patients with gliomas, as well as a therapeutic target for clinical application following fully exploring the potential mechanism of PIEZO1 in CNS diseases.
Collapse
|
64
|
Karska J, Kowalski S, Saczko J, Moisescu MG, Kulbacka J. Mechanosensitive Ion Channels and Their Role in Cancer Cells. MEMBRANES 2023; 13:167. [PMID: 36837670 PMCID: PMC9965697 DOI: 10.3390/membranes13020167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Mechanical forces are an inherent element in the world around us. The effects of their action can be observed both on the macro and molecular levels. They can also play a prominent role in the tissues and cells of animals due to the presence of mechanosensitive ion channels (MIChs) such as the Piezo and TRP families. They are essential in many physiological processes in the human body. However, their role in pathology has also been observed. Recent discoveries have highlighted the relationship between these channels and the development of malignant tumors. Multiple studies have shown that MIChs mediate the proliferation, migration, and invasion of various cancer cells via various mechanisms. This could show MIChs as new potential biomarkers in cancer detection and prognosis and interesting therapeutic targets in modern oncology. Our paper is a review of the latest literature on the role of the Piezo1 and TRP families in the molecular mechanisms of carcinogenesis in different types of cancer.
Collapse
Affiliation(s)
- Julia Karska
- Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mihaela G. Moisescu
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| |
Collapse
|
65
|
Ma S, Dubin AE, Romero LO, Loud M, Salazar A, Chu S, Klier N, Masri S, Zhang Y, Wang Y, Chesler AT, Wilkinson KA, Vásquez V, Marshall KL, Patapoutian A. Excessive mechanotransduction in sensory neurons causes joint contractures. Science 2023; 379:201-206. [PMID: 36634173 PMCID: PMC10163824 DOI: 10.1126/science.add3598] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/04/2022] [Indexed: 01/13/2023]
Abstract
Distal arthrogryposis (DA) is a collection of rare disorders that are characterized by congenital joint contractures. Most DA mutations are in muscle- and joint-related genes, and the anatomical defects originate cell-autonomously within the musculoskeletal system. However, gain-of-function mutations in PIEZO2, a principal mechanosensor in somatosensation, cause DA subtype 5 (DA5) through unknown mechanisms. We show that expression of a gain-of-function PIEZO2 mutation in proprioceptive sensory neurons that mainly innervate muscle spindles and tendons is sufficient to induce DA5-like phenotypes in mice. Overactive PIEZO2 causes anatomical defects through increased activity within the peripheral nervous system during postnatal development. Furthermore, botulinum toxin (Botox) and a dietary fatty acid that modulates PIEZO2 activity reduce DA5-like deficits. This reveals a role for somatosensory neurons: Excessive mechanosensation within these neurons disrupts musculoskeletal development.
Collapse
Affiliation(s)
- Shang Ma
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Adrienne E. Dubin
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Luis O. Romero
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meaghan Loud
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Alexandra Salazar
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Sarah Chu
- Department of Biological Sciences, San Jose State University, San Jose, CA, USA
| | - Nikola Klier
- Department of Biological Sciences, San Jose State University, San Jose, CA, USA
| | - Sameer Masri
- Department of Biological Sciences, San Jose State University, San Jose, CA, USA
| | - Yunxiao Zhang
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Yu Wang
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Alex T. Chesler
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | | | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kara L. Marshall
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
66
|
Bryniarska-Kubiak N, Kubiak A, Basta-Kaim A. Mechanotransductive Receptor Piezo1 as a Promising Target in the Treatment of Neurological Diseases. Curr Neuropharmacol 2023; 21:2030-2035. [PMID: 36173070 PMCID: PMC10556366 DOI: 10.2174/1570159x20666220927103454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, increasing attention has been paid to the role of physical factors in biological processes. This direction was ultimately confirmed by the recent 2021 Nobel Prize in medicine and physiology awarded in ½ to Ardem Patapoutian for his discovery of Piezo1 and Piezo2 mechanosensitive receptors. Among them, Piezo2 is responsible for sensing touch, while Piezo1 is engaged in a variety of mechanotransduction events. Piezo1 is expressed in various central nervous system cells, while its expression may be affected in the course of various pathological conditions. Recently, thanks to the development of Piezo1 modulators (i.e. Yoda1, Jedi1/2 and Dooku2), it is possible to study the role of Piezo1 in the pathogenesis of various neurological diseases including ischemia, glioma, and age-related dementias. The results obtained in this field suggest that proper modulation of Piezo1 receptor might be beneficial in the course of various neurological diseases.
Collapse
Affiliation(s)
- Natalia Bryniarska-Kubiak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., Kraków, 31-343, Poland
| | - Andrzej Kubiak
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., Kraków, 31-343, Poland
| |
Collapse
|
67
|
Huh JH, Jo SH. Omega-3 fatty acids and atrial fibrillation. Korean J Intern Med 2022; 38:282-289. [PMID: 36514212 PMCID: PMC10175873 DOI: 10.3904/kjim.2022.266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Although some clinical trials have demonstrated reduced incidence of cardiovascular disease with the use of omega-3 fatty acids, others have found an increased risk of atrial fibrillation (AF). AF is the most common sustained cardiac arrhythmia worldwide. It is associated with high morbidity and mortality rates and significant public health burden. Previous studies of the effect of omega-3 fatty acids on AF occurrence have reported contradictory results. Here we reviewed the effect of omega-3 fatty acids on the risk of AF.
Collapse
Affiliation(s)
- Ji Hye Huh
- Division of Endocrinology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Sang-Ho Jo
- Division of Cardiology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| |
Collapse
|
68
|
Jiang W, Lacroix J, Luo YL. Importance of molecular dynamics equilibrium protocol on protein-lipid interaction near channel pore. BIOPHYSICAL REPORTS 2022; 2:100080. [PMID: 36425669 PMCID: PMC9680783 DOI: 10.1016/j.bpr.2022.100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Multiscale molecular dynamics simulations using Martini coarse-grained (CG) and all-atom (AA) force fields are commonly used in membrane protein studies. In particular, reverse mapping an equilibrated CG model to an AA model offers an efficient way for preparing large membrane protein systems with complex protein shapes and lipid compositions. Here, we report that this hybrid CG-equilibrium-AA-production protocol may artificially increase lipid density and decrease hydration in ion channel pores walled with transmembrane gaps. To understand the origin of this conundrum, we conducted replicas of CG, AA, and CG reverse-mapped AA simulations of the pore domain of the mechanosensitive Piezo1 channel in a nonconducting conformation. Lipid/water density analysis and free energy calculations reveal that the lack of initial pore hydration allows excessive lipids to enter the upper pore lumen through gaps between pore helices during CG simulation. Due to the mismatch between CG and AA lipid kinetics, these pore lipids remain trapped in the subsequent AA simulations, despite unfavorable binding free energy. We tested several CG equilibrium protocols and found that a protocol restraining the whole lipid produces pore hydration consistent with AA results, thus eliminating this artifact for further studies of lipid gating and protein-lipid interactions.
Collapse
Affiliation(s)
- Wenjuan Jiang
- College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Jerome Lacroix
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| | - Yun Lyna Luo
- College of Pharmacy, Western University of Health Sciences, Pomona, California
| |
Collapse
|
69
|
Advances and recent insights into the gating mechanisms of the mechanically-activated ion channels PIEZO1 and PIEZO2. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
70
|
Mechanosensitive Ion Channel PIEZO1 Signaling in the Hall-Marks of Cancer: Structure and Functions. Cancers (Basel) 2022; 14:cancers14194955. [PMID: 36230880 PMCID: PMC9563973 DOI: 10.3390/cancers14194955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Tumor cells obtain various unique characteristics, which known as hallmarks of cancers, including sustained proliferative signaling, apoptosis resistance, and metastasis. These characteristics are crucial for tumor cells survival and for supporting their rapid growth. Studies have revealed that tumorigenesis is also accompanied by alteration in mechanical properties. Tumor cells could sense various mechanical forces, such as compressive force, shear stress, and portal vein pressure, which in turn could affect tumor progression. Piezo1 is a mechanically sensitive ion channel protein that can be activated mechanically, and is closely related to various diseases. Recent studies showed that Piezo1 is overexpressed in numerous tumors and is associated with poor prognosis. Furthermore, previous studies revealed that Piezo1 mediates these cancer hallmarks, and thus links up mechanical forces with tumor progression. Therefore, the discovery of Piezo1 provides a new insight for elucidating the mechanism of tumor progression under a mechanical microenvironment. Abstract Tumor cells alter their characteristics and behaviors during tumorigenesis. These characteristics, known as hallmarks of cancer, are crucial for supporting their rapid growth, need for energy, and adaptation to tumor microenvironment. Tumorigenesis is also accompanied by alteration in mechanical properties. Cells in tumor tissue sense mechanical signals from the tumor microenvironment, which consequently drive the acquisition of hallmarks of cancer, including sustained proliferative signaling, evading growth suppressors, apoptosis resistance, sustained angiogenesis, metastasis, and immune evasion. Piezo-type mechanosensitive ion channel component 1 (Piezo1) is a mechanically sensitive ion channel protein that can be activated mechanically and is closely related to various diseases. Recent studies showed that Piezo1 mediates tumor development through multiple mechanisms, and its overexpression is associated with poor prognosis. Therefore, the discovery of Piezo1, which links-up physical factors with biological properties, provides a new insight for elucidating the mechanism of tumor progression under a mechanical microenvironment, and suggests its potential application as a tumor marker and therapeutic target. In this review, we summarize current knowledge regarding the role of Piezo1 in regulating cancer hallmarks and the underlying molecular mechanisms. Furthermore, we discuss the potential of Piezo1 as an antitumor therapeutic target and the limitations that need to be overcome.
Collapse
|
71
|
Xu H, He Y, Hong T, Bi C, Li J, Xia M. Piezo1 in vascular remodeling of atherosclerosis and pulmonary arterial hypertension: A potential therapeutic target. Front Cardiovasc Med 2022; 9:1021540. [PMID: 36247424 PMCID: PMC9557227 DOI: 10.3389/fcvm.2022.1021540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular remodeling (VR) is a structural and functional change of blood vessels to adapt to the changes of internal and external environment. It is one of the common pathological features of many vascular proliferative diseases. The process of VR is mainly manifested in the changes of vascular wall structure and function, including intimal hyperplasia, thickening or thinning of media, fibrosis of adventitia, etc. These changes are also the pathological basis of aging and various cardiovascular diseases. Mechanical force is the basis of cardiovascular biomechanics, and the newly discovered mechanical sensitive ion channel Piezo1 is widely distributed in the whole cardiovascular system. Studies have confirmed that Piezo1, a mechanically sensitive ion channel, plays an important role in cardiovascular remodeling diseases. This article reviews the molecular mechanism of Piezo1 in atherosclerosis, hypertension and pulmonary hypertension, in order to provide a theoretical basis for the further study of vascular remodeling.
Collapse
Affiliation(s)
- Han Xu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu He
- Cardiovascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Tianying Hong
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cong Bi
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Jing Li
| | - Mingfeng Xia
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Mingfeng Xia
| |
Collapse
|
72
|
An R. MRTF may be the missing link in a multiscale mechanobiology approach toward macrophage dysfunction in space. Front Cell Dev Biol 2022; 10:997365. [PMID: 36172272 PMCID: PMC9510870 DOI: 10.3389/fcell.2022.997365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages exhibit impaired phagocytosis, adhesion, migration, and cytokine production in space, hindering their ability to elicit immune responses. Considering that the combined effect of spaceflight microgravity and radiation is multiscale and multifactorial in nature, it is expected that contradictory findings are common in the field. This theory paper reanalyzes research on the macrophage spaceflight response across multiple timescales from seconds to weeks, and spatial scales from the molecular, intracellular, extracellular, to the physiological. Key findings include time-dependence of both pro-inflammatory activation and integrin expression. Here, we introduce the time-dependent, intracellular localization of MRTF-A as a hypothetical confounder of macrophage activation. We discuss the mechanosensitive MRTF-A/SRF pathway dependence on the actin cytoskeleton/nucleoskeleton, microtubules, membrane mechanoreceptors, hypoxia, oxidative stress, and intracellular/extracellular crosstalk. By adopting a multiscale perspective, this paper provides the first mechanistic answer for a three-decade-old question regarding impaired cytokine secretion in microgravity—and strengthens the connection between the recent advances in mechanobiology, microgravity, and the spaceflight immune response. Finally, we hypothesize MRTF involvement and complications in treating spaceflight-induced cardiovascular, skeletal, and immune disease.
Collapse
Affiliation(s)
- Rocky An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
- *Correspondence: Rocky An,
| |
Collapse
|
73
|
Nourse JL, Leung VM, Abuwarda H, Evans EL, Izquierdo-Ortiz E, Ly AT, Truong N, Smith S, Bhavsar H, Bertaccini G, Monuki ES, Panicker MM, Pathak MM. Piezo1 regulates cholesterol biosynthesis to influence neural stem cell fate during brain development. J Gen Physiol 2022; 154:213449. [PMID: 36069933 PMCID: PMC9458470 DOI: 10.1085/jgp.202213084] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023] Open
Abstract
Mechanical forces and tissue mechanics influence the morphology of the developing brain, but the underlying molecular mechanisms have been elusive. Here, we examine the role of mechanotransduction in brain development by focusing on Piezo1, a mechanically activated ion channel. We find that Piezo1 deletion results in a thinner neuroepithelial layer, disrupts pseudostratification, and reduces neurogenesis in E10.5 mouse embryos. Proliferation and differentiation of Piezo1 knockout (KO) mouse neural stem cells (NSCs) isolated from E10.5 embryos are reduced in vitro compared to littermate WT NSCs. Transcriptome analysis of E10.5 Piezo1 KO brains reveals downregulation of the cholesterol biosynthesis superpathway, in which 16 genes, including Hmgcr, the gene encoding the rate-limiting enzyme of the cholesterol biosynthesis pathway, are downregulated by 1.5-fold or more. Consistent with this finding, membrane lipid composition is altered, and the cholesterol levels are reduced in Piezo1 KO NSCs. Cholesterol supplementation of Piezo1 KO NSCs partially rescues the phenotype in vitro. These findings demonstrate a role for Piezo1 in the neurodevelopmental process that modulates the quantity, quality, and organization of cells by influencing cellular cholesterol metabolism. Our study establishes a direct link in NSCs between PIEZO1, intracellular cholesterol levels, and neural development.
Collapse
Affiliation(s)
- Jamison L. Nourse
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Vivian M. Leung
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Hamid Abuwarda
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Elizabeth L. Evans
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Esmeralda Izquierdo-Ortiz
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Alan T. Ly
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Nguyen Truong
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Samantha Smith
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Harsh Bhavsar
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Gabriella Bertaccini
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Edwin S. Monuki
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA,Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA
| | - Mitradas M. Panicker
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Medha M. Pathak
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA,Correspondence to Medha M. Pathak:
| |
Collapse
|
74
|
Caires R, Garrud TAC, Romero LO, Fernández-Peña C, Vásquez V, Jaggar JH, Cordero-Morales JF. Genetic- and diet-induced ω-3 fatty acid enrichment enhances TRPV4-mediated vasodilation in mice. Cell Rep 2022; 40:111306. [PMID: 36070688 PMCID: PMC9498980 DOI: 10.1016/j.celrep.2022.111306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
TRPV4 channel activation in endothelial cells leads to vasodilation, while impairment of TRPV4 activity is implicated in vascular dysfunction. Strategies that increase TRPV4 activity could enhance vasodilation and ameliorate vascular disorders. Here, we show that supplementation with eicosapentaenoic acid (EPA), an ω-3 polyunsaturated fatty acid known to have beneficial cardiovascular effects, increases TRPV4 activity in human endothelial cells of various vascular beds. Mice carrying the C. elegans FAT-1 enzyme, which converts ω-6 to ω-3 polyunsaturated fatty acids, display higher EPA content and increased TRPV4-mediated vasodilation in mesenteric arteries. Likewise, mice fed an EPA-enriched diet exhibit enhanced and prolonged TRPV4-dependent vasodilation in an endothelial cell-specific manner. We also show that EPA supplementation reduces TRPV4 desensitization, which contributes to the prolonged vasodilation. Neutralization of positive charges in the TRPV4 N terminus impairs the effect of EPA on channel desensitization. These findings highlight the beneficial effects of manipulating fatty acid content to enhance TRPV4-mediated vasodilation.
Collapse
Affiliation(s)
- Rebeca Caires
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Tessa A C Garrud
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Luis O Romero
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, Memphis, TN 38163, USA
| | - Carlos Fernández-Peña
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jonathan H Jaggar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Julio F Cordero-Morales
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
75
|
Huang J, Zhang K, Du R, Liu W, Zhang H, Tian T, Wang Y, Wang G, Yin T. The Janus-faced role of Piezo1 in cardiovascular health under mechanical stimulation. Genes Dis 2022. [PMID: 37492728 PMCID: PMC10363580 DOI: 10.1016/j.gendis.2022.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
In recent years, cardiovascular health problems are becoming more and more serious. At the same time, mechanical stimulation closely relates to cardiovascular health. In this context, Piezo1, which is very sensitive to mechanical stimulation, has attracted our attention. Here, we review the critical significance of Piezo1 in mechanical stimulation of endothelial cells, NO production, lipid metabolism, DNA damage protection, the development of new blood vessels and maturation, narrowing of blood vessels, blood pressure regulation, vascular permeability, insulin sensitivity, and maintenance of red blood cell function. Besides, Piezo1 may participate in the occurrence and development of atherosclerosis, diabetes, hypertension, and other cardiovascular diseases. It is worth noting that Piezo1 has dual effects on maintaining cardiovascular health. On the one hand, the function of Piezo1 is necessary to maintain cardiovascular health; on the other hand, under some extreme mechanical stimulation, the overexpression of Piezo1 may bring adverse factors such as inflammation. Therefore, this review discusses the Janus-faced role of Piezo1 in maintaining cardiovascular health and puts forward new ideas to provide references for gene therapy or nanoagents targeting Piezo1.
Collapse
|
76
|
Buyan A, Allender DW, Corry B, Schick M. Lipid redistribution in the highly curved footprint of Piezo1. Biophys J 2022:S0006-3495(22)00595-1. [PMID: 35927961 DOI: 10.1016/j.bpj.2022.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/06/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
We investigate the effects on the distribution of lipids in the plasma membrane that are caused by the insertion of a protein, Piezo1, that significantly distorts the membrane toward the cytosol. From coarse-grained molecular dynamics simulations, we find that the major effects occur in the outer, extracellular, leaflet. The mol fraction of cholesterol increases significantly in the curved region of the membrane close to Piezo1, while those of phosphatidylcholine and of sphingomyelin decrease. In the inner leaflet, mol fractions of cholesterol and of phosphatidylethanolamine decrease slightly as the protein is approached, while that of phosphatidylserine increases slightly. The mol fraction of phosphatidylcholine decreases markedly as the protein is approached. Most of these results are understood in the context of a theoretical model that utilizes two elements; (i) a coupling between the leaflets' actual curvatures and their compositionally-dependent spontaneous curvatures and, (ii) the dependence of the spontaneous curvatures not only on the mol fractions of the phospholipids, but also on the effect that cholesterol has on the spontaneous curvatures of the phospholipids.
Collapse
Affiliation(s)
- Amanda Buyan
- Research School of Biology, The Australian National University, Acton, Australia
| | - D W Allender
- Department of Physics, University of Washington, Seattle WA; Department of Physics, Kent State University, Kent OH
| | - Ben Corry
- Research School of Biology, The Australian National University, Acton, Australia
| | - M Schick
- Department of Physics, University of Washington, Seattle WA
| |
Collapse
|
77
|
Del Rosario JS, Gabrielle M, Yudin Y, Rohacs T. TMEM120A/TACAN inhibits mechanically activated PIEZO2 channels. J Gen Physiol 2022; 154:e202213164. [PMID: 35819364 PMCID: PMC9280072 DOI: 10.1085/jgp.202213164] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023] Open
Abstract
PIEZO2 channels mediate rapidly adapting mechanically activated currents in peripheral sensory neurons of the dorsal root ganglia (DRG), and they are indispensable for light touch and proprioception. Relatively little is known about what other proteins regulate PIEZO2 activity in a cellular context. TMEM120A (TACAN) was proposed to act as a high threshold mechanically activated ion channel in nociceptive DRG neurons. Here, we find that Tmem120a coexpression decreased the amplitudes of mechanically activated PIEZO2 currents and increased their threshold of activation. TMEM120A did not inhibit mechanically activated PIEZO1 and TREK1 channels and TMEM120A alone did not result in the appearance of mechanically activated currents above background. Tmem120a and Piezo2 expression in mouse DRG neurons overlapped, and siRNA-mediated knockdown of Tmem120a increased the amplitudes of rapidly adapting mechanically activated currents and decreased their thresholds to mechanical activation. Our data identify TMEM120A as a negative modulator of PIEZO2 channel activity, and do not support TMEM120A being a mechanically activated ion channel.
Collapse
Affiliation(s)
- John Smith Del Rosario
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Matthew Gabrielle
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Yevgen Yudin
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
78
|
Lin Y, Buyan A, Corry B. Characterizing the lipid fingerprint of the mechanosensitive channel Piezo2. J Gen Physiol 2022; 154:213361. [PMID: 35861699 PMCID: PMC9532583 DOI: 10.1085/jgp.202113064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/22/2022] [Accepted: 07/01/2022] [Indexed: 01/23/2023] Open
Abstract
Piezo2 is a mechanosensitive ion channel that plays critical roles in sensing touch and pain, proprioception, and regulation of heart rate. Global knockout of Piezo2 leads to perinatal lethality in mice, and Piezo2 gain-of-function mutations are associated with distal arthrogryposis, a disease characterized by congenital joint contractures. Emerging evidence suggests that Piezo channels (Piezo1 and Piezo2) can be regulated by their local membrane environment and particularly by cholesterol and phosphoinositides. To characterize the local Piezo2 lipid environment and investigate key lipid-protein interactions, we carried out coarse-grained molecular dynamics simulations of Piezo2 embedded in a complex mammalian membrane containing >60 distinct lipid species. We show that Piezo2 alters its local membrane composition such that it becomes enriched with specific lipids, such as phosphoinositides, and forms specific, long-term interactions with a variety of lipids at functionally relevant sites.
Collapse
Affiliation(s)
| | | | - Ben Corry
- Research School of Biology, Canberra, Australia,Correspondence to Ben Corry:
| |
Collapse
|
79
|
Young M, Lewis AH, Grandl J. Physics of mechanotransduction by Piezo ion channels. J Gen Physiol 2022; 154:213231. [PMID: 35593732 PMCID: PMC9127981 DOI: 10.1085/jgp.202113044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/26/2022] Open
Abstract
Piezo ion channels are sensors of mechanical forces and mediate a wide range of physiological mechanotransduction processes. More than a decade of intense research has elucidated much of the structural and mechanistic principles underlying Piezo gating and its roles in physiology, although wide gaps of knowledge continue to exist. Here, we review the forces and energies involved in mechanical activation of Piezo ion channels and their functional modulation by other chemical and physical stimuli including lipids, voltage, and temperature. We compare the three predominant mechanisms likely to explain Piezo activation—the force-from-lipids mechanism, the tether model, and the membrane footprint theory. Additional sections shine light on how Piezo ion channels may affect each other through spatial clustering and functional cooperativity, and how substantial functional heterogeneity of Piezo ion channels arises as a byproduct of the precise physical environment each channel experiences. Finally, our review concludes by pointing out major research questions and technological limitations that future research can address.
Collapse
Affiliation(s)
- Michael Young
- Department of Neurobiology, Duke University Medical Center, Durham, NC
| | - Amanda H Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC
| |
Collapse
|
80
|
Bavi O, Zhou Z, Bavi N, Mehdi Vaez Allaei S, Cox CD, Martinac B. Asymmetric effects of amphipathic molecules on mechanosensitive channels. Sci Rep 2022; 12:9976. [PMID: 35705645 PMCID: PMC9200802 DOI: 10.1038/s41598-022-14446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Mechanosensitive (MS) ion channels are primary transducers of mechanical force into electrical and/or chemical intracellular signals. Many diverse MS channel families have been shown to respond to membrane forces. As a result of this intimate relationship with the membrane and proximal lipids, amphipathic compounds exert significant effects on the gating of MS channels. Here, we performed all-atom molecular dynamics (MD) simulations and employed patch-clamp recording to investigate the effect of two amphipaths, Fluorouracil (5-FU) a chemotherapy agent, and the anaesthetic trifluoroethanol (TFE) on structurally distinct mechanosensitive channels. We show that these amphipaths have a profound effect on the bilayer order parameter as well as transbilayer pressure profile. We used bacterial mechanosensitive channels (MscL/MscS) and a eukaryotic mechanosensitive channel (TREK-1) as force-from-lipids reporters and showed that these amphipaths have differential effects on these channels depending on the amphipaths' size and shape as well as which leaflet of the bilayer they incorporate into. 5-FU is more asymmetric in shape and size than TFE and does not penetrate as deep within the bilayer as TFE. Thereby, 5-FU has a more profound effect on the bilayer and channel activity than TFE at much lower concentrations. We postulate that asymmetric effects of amphipathic molecules on mechanosensitive membrane proteins through the bilayer represents a general regulatory mechanism for these proteins.
Collapse
Affiliation(s)
- Omid Bavi
- grid.444860.a0000 0004 0600 0546Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Zijing Zhou
- grid.1057.30000 0000 9472 3971Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010 Australia
| | - Navid Bavi
- grid.170205.10000 0004 1936 7822Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL USA
| | - S. Mehdi Vaez Allaei
- grid.46072.370000 0004 0612 7950Department of Physics, University of Tehran, 1439955961 Tehran, Iran
| | - Charles D. Cox
- grid.1057.30000 0000 9472 3971Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010 Australia ,grid.1005.40000 0004 4902 0432Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW 2010 Australia
| | - B. Martinac
- grid.1057.30000 0000 9472 3971Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010 Australia ,grid.1005.40000 0004 4902 0432Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW 2010 Australia
| |
Collapse
|
81
|
Bernareggi A, Bosutti A, Massaria G, Giniatullin R, Malm T, Sciancalepore M, Lorenzon P. The State of the Art of Piezo1 Channels in Skeletal Muscle Regeneration. Int J Mol Sci 2022; 23:ijms23126616. [PMID: 35743058 PMCID: PMC9224226 DOI: 10.3390/ijms23126616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023] Open
Abstract
Piezo1 channels are highly mechanically-activated cation channels that can sense and transduce the mechanical stimuli into physiological signals in different tissues including skeletal muscle. In this focused review, we summarize the emerging evidence of Piezo1 channel-mediated effects in the physiology of skeletal muscle, with a particular focus on the role of Piezo1 in controlling myogenic precursor activity and skeletal muscle regeneration and vascularization. The disclosed effects reported by pharmacological activation of Piezo1 channels with the selective agonist Yoda1 indicate a potential impact of Piezo1 channel activity in skeletal muscle regeneration, which is disrupted in various muscular pathological states. All findings reported so far agree with the idea that Piezo1 channels represent a novel, powerful molecular target to develop new therapeutic strategies for preventing or ameliorating skeletal muscle disorders characterized by an impairment of tissue regenerative potential.
Collapse
Affiliation(s)
- Annalisa Bernareggi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
- Correspondence:
| | - Alessandra Bosutti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
| | - Gabriele Massaria
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (R.G.); (T.M.)
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (R.G.); (T.M.)
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
| |
Collapse
|
82
|
Kim HS, Suh JS, Jang YK, Ahn SH, Choi GH, Yang JY, Lim GH, Jung Y, Jiang J, Sun J, Suk M, Wang Y, Kim TJ. Förster Resonance Energy Transfer-Based Single-Cell Imaging Reveals Piezo1-Induced Ca 2+ Flux Mediates Membrane Ruffling and Cell Survival. Front Cell Dev Biol 2022; 10:865056. [PMID: 35646889 PMCID: PMC9136143 DOI: 10.3389/fcell.2022.865056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/25/2022] [Indexed: 01/18/2023] Open
Abstract
A mechanosensitive ion channel, Piezo1 induces non-selective cation flux in response to various mechanical stresses. However, the biological interpretation and underlying mechanisms of cells resulting from Piezo1 activation remain elusive. This study elucidates Piezo1-mediated Ca2+ influx driven by channel activation and cellular behavior using novel Förster Resonance Energy Transfer (FRET)-based biosensors and single-cell imaging analysis. Results reveal that extracellular Ca2+ influx via Piezo1 requires intact caveolin, cholesterol, and cytoskeletal support. Increased cytoplasmic Ca2+ levels enhance PKA, ERK, Rac1, and ROCK activity, which have the potential to promote cancer cell survival and migration. Furthermore, we demonstrate that Piezo1-mediated Ca2+ influx upregulates membrane ruffling, a characteristic feature of cancer cell metastasis, using spatiotemporal image correlation spectroscopy. Thus, our findings provide new insights into the function of Piezo1, suggesting that Piezo1 plays a significant role in the behavior of cancer cells.
Collapse
Affiliation(s)
- Heon-Su Kim
- Department of Integrated Biological Science, Pusan National University, Pusan, South Korea,Institute of Systems Biology, Pusan National University, Pusan, South Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, Pusan National University, Pusan, South Korea
| | - Yoon-Kwan Jang
- Department of Integrated Biological Science, Pusan National University, Pusan, South Korea
| | - Sang-Hyun Ahn
- Department of Integrated Biological Science, Pusan National University, Pusan, South Korea
| | - Gyu-Ho Choi
- Department of Integrated Biological Science, Pusan National University, Pusan, South Korea
| | - Jin-Young Yang
- Department of Integrated Biological Science, Pusan National University, Pusan, South Korea
| | - Gah-Hyun Lim
- Department of Integrated Biological Science, Pusan National University, Pusan, South Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan, South Korea
| | - Jie Jiang
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Sun
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Myungeun Suk
- Department of Mechanical Engineering, Dong-Eui University, Pusan, South Korea
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Pusan, South Korea,Institute of Systems Biology, Pusan National University, Pusan, South Korea,Department of Biological Sciences, Pusan National University, Pusan, South Korea,*Correspondence: Tae-Jin Kim,
| |
Collapse
|
83
|
Chuang YC, Chen CC. Force From Filaments: The Role of the Cytoskeleton and Extracellular Matrix in the Gating of Mechanosensitive Channels. Front Cell Dev Biol 2022; 10:886048. [PMID: 35586339 PMCID: PMC9108448 DOI: 10.3389/fcell.2022.886048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 01/16/2023] Open
Abstract
The senses of proprioception, touch, hearing, and blood pressure on mechanosensitive ion channels that transduce mechanical stimuli with high sensitivity and speed. This conversion process is usually called mechanotransduction. From nematode MEC-4/10 to mammalian PIEZO1/2, mechanosensitive ion channels have evolved into several protein families that use variant gating models to convert different forms of mechanical force into electrical signals. In addition to the model of channel gating by stretching from lipid bilayers, another potent model is the opening of channels by force tethering: a membrane-bound channel is elastically tethered directly or indirectly between the cytoskeleton and the extracellular molecules, and the tethering molecules convey force to change the channel structure into an activation form. In general, the mechanical stimulation forces the extracellular structure to move relative to the cytoskeleton, deforming the most compliant component in the system that serves as a gating spring. Here we review recent studies focusing on the ion channel mechanically activated by a tethering force, the mechanotransduction-involved cytoskeletal protein, and the extracellular matrix. The mechanosensitive channel PIEZO2, DEG/ENaC family proteins such as acid-sensing ion channels, and transient receptor potential family members such as NompC are discussed. State-of-the-art techniques, such as polydimethylsiloxane indentation, the pillar array, and micropipette-guided ultrasound stimulation, which are beneficial tools for exploring the tether model, are also discussed.
Collapse
Affiliation(s)
- Yu-Chia Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
- Taiwan Mouse Clinic, BioTReC, Academia Sinica, Taipei, Taiwan
- *Correspondence: Chih-Cheng Chen,
| |
Collapse
|
84
|
Tang H, Zeng R, He E, Zhang I, Ding C, Zhang A. Piezo-Type Mechanosensitive Ion Channel Component 1 (Piezo1): A Promising Therapeutic Target and Its Modulators. J Med Chem 2022; 65:6441-6453. [DOI: 10.1021/acs.jmedchem.2c00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hairong Tang
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruoqing Zeng
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ende He
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Chunyong Ding
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ao Zhang
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Lingang National Laboratory, Shanghai 200210,China
| |
Collapse
|
85
|
Inhibiting Endocannabinoid Hydrolysis as Emerging Analgesic Strategy Targeting a Spectrum of Ion Channels Implicated in Migraine Pain. Int J Mol Sci 2022; 23:ijms23084407. [PMID: 35457225 PMCID: PMC9027089 DOI: 10.3390/ijms23084407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
Migraine is a disabling neurovascular disorder characterized by severe pain with still limited efficient treatments. Endocannabinoids, the endogenous painkillers, emerged, alternative to plant cannabis, as promising analgesics against migraine pain. In this thematic review, we discuss how inhibition of the main endocannabinoid-degrading enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), could raise the level of endocannabinoids (endoCBs) such as 2-AG and anandamide in order to alleviate migraine pain. We describe here: (i) migraine pain signaling pathways, which could serve as specific targets for antinociception; (ii) a divergent distribution of MAGL and FAAH activities in the key regions of the PNS and CNS implicated in migraine pain signaling; (iii) a complexity of anti-nociceptive effects of endoCBs mediated by cannabinoid receptors and through a direct modulation of ion channels in nociceptive neurons; and (iv) the spectrum of emerging potent MAGL and FAAH inhibitors which efficiently increase endoCBs levels. The specific distribution and homeostasis of endoCBs in the main regions of the nociceptive system and their generation ‘on demand’, along with recent availability of MAGL and FAAH inhibitors suggest new perspectives for endoCBs-mediated analgesia in migraine pain.
Collapse
|
86
|
Affiliation(s)
- Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia (D.F., C.D.C., B.M.).,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Kensington, Australia (D.F., C.D.C., B.M.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, Australia (D.F.)
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia (D.F., C.D.C., B.M.).,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Kensington, Australia (D.F., C.D.C., B.M.)
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia (D.F., C.D.C., B.M.).,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Kensington, Australia (D.F., C.D.C., B.M.)
| |
Collapse
|
87
|
Foodborne compounds that alter plasma membrane architecture can modify the response of intestinal cells to shear stress in vitro. Toxicol Appl Pharmacol 2022; 446:116034. [DOI: 10.1016/j.taap.2022.116034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 01/25/2023]
|
88
|
Zainal Abidin NA, Poon EKW, Szydzik C, Timofeeva M, Akbaridoust F, Brazilek RJ, Tovar Lopez FJ, Ma X, Lav C, Marusic I, Thompson PE, Mitchell A, Ooi ASH, Hamilton JR, Nesbitt WS. An extensional strain sensing mechanosome drives adhesion-independent platelet activation at supraphysiological hemodynamic gradients. BMC Biol 2022; 20:73. [PMID: 35331224 PMCID: PMC8944166 DOI: 10.1186/s12915-022-01274-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Background Supraphysiological hemodynamics are a recognized driver of platelet activation and thrombosis at high-grade stenosis and in blood contacting circulatory support devices. However, whether platelets mechano-sense hemodynamic parameters directly in free flow (in the absence of adhesion receptor engagement), the specific hemodynamic parameters at play, the precise timing of activation, and the signaling mechanism(s) involved remain poorly elucidated. Results Using a generalized Newtonian computational model in combination with microfluidic models of flow acceleration and quasi-homogenous extensional strain, we demonstrate that platelets directly mechano-sense acute changes in free-flow extensional strain independent of shear strain, platelet amplification loops, von Willebrand factor, and canonical adhesion receptor engagement. We define an extensional strain sensing “mechanosome” in platelets involving cooperative Ca2+ signaling driven by the mechanosensitive channel Piezo1 (as the primary strain sensor) and the fast ATP gated channel P2X1 (as the secondary signal amplifier). We demonstrate that type II PI3 kinase C2α activity (acting as a “clutch”) couples extensional strain to the mechanosome. Conclusions Our findings suggest that platelets are adapted to rapidly respond to supraphysiological extensional strain dynamics, rather than the peak magnitude of imposed wall shear stress. In the context of overall platelet activation and thrombosis, we posit that “extensional strain sensing” acts as a priming mechanism in response to threshold levels of extensional strain allowing platelets to form downstream adhesive interactions more rapidly under the limiting effects of supraphysiological hemodynamics. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01274-7.
Collapse
Affiliation(s)
- Nurul A Zainal Abidin
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| | - Eric K W Poon
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Crispin Szydzik
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,School of Engineering, RMIT University, La Trobe Street, Melbourne, VIC, 3004, Australia
| | - Mariia Timofeeva
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Farzan Akbaridoust
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Rose J Brazilek
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| | | | - Xiao Ma
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Chitrarth Lav
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,CFD Methodology Group, Scuderia AlphaTauri F1, Bicester, OX26 4LD, UK
| | - Ivan Marusic
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Arnan Mitchell
- School of Engineering, RMIT University, La Trobe Street, Melbourne, VIC, 3004, Australia
| | - Andrew S H Ooi
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Justin R Hamilton
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| | - Warwick S Nesbitt
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
89
|
Intrinsically disordered intracellular domains control key features of the mechanically-gated ion channel PIEZO2. Nat Commun 2022; 13:1365. [PMID: 35292651 PMCID: PMC8924262 DOI: 10.1038/s41467-022-28974-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
A central question in mechanobiology is how mechanical forces acting in or on cells are transmitted to mechanically-gated PIEZO channels that convert these forces into biochemical signals. Here we examined the role of the intracellular domains of PIEZO2, which account for 25% of the channel, and demonstrate that these domains fine-tune properties such as poking and stretch-sensitivity, velocity coding and single channel conductance. Moreover, we show that the intrinsically disordered linker between the transmembrane helices twelve and thirteen (IDR5) is required for the activation of PIEZO2 by cytoskeleton-transmitted forces. The deletion of IDR5 abolishes PIEZO2-mediated inhibition of neurite outgrowth, while it only partially affected its sensitivity to cell indentation and does not alter its stretch sensitivity. Thus, we propose that PIEZO2 is a polymodal mechanosensor that detects different types of mechanical stimuli via different force transmission pathways, which highlights the importance of utilizing multiple complementary assays when investigating PIEZO function. A key question in mechanobiology is how mechanical forces are transmitted to PIEZO ion channels. Here, Verkest et al. identify an intracellular channel domain that is required for the activation of PIEZO2 by cytoskeleton-transmitted forces.
Collapse
|
90
|
Hughes K, Shah A, Bai X, Adams J, Bauer R, Jackson J, Harris E, Ficca A, Freebairn P, Mohammed S, Fernández EM, Bainbridge C, Brocco M, Stein W, Vidal-Gadea AG. Distinct mechanoreceptor pezo-1 isoforms modulate food intake in the nematode Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkab429. [PMID: 35100363 PMCID: PMC9210275 DOI: 10.1093/g3journal/jkab429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022]
Abstract
Two PIEZO mechanosensitive cation channels, PIEZO1 and PIEZO2, have been identified in mammals, where they are involved in numerous sensory processes. While structurally similar, PIEZO channels are expressed in distinct tissues and exhibit unique properties. How different PIEZOs transduce force, how their transduction mechanism varies, and how their unique properties match the functional needs of the tissues they are expressed in remain all-important unanswered questions. The nematode Caenorhabditis elegans has a single PIEZO ortholog (pezo-1) predicted to have 12 isoforms. These isoforms share many transmembrane domains but differ in those that distinguish PIEZO1 and PIEZO2 in mammals. We used transcriptional and translational reporters to show that putative promoter sequences immediately upstream of the start codon of long pezo-1 isoforms predominantly drive green fluorescent protein (GFP) expression in mesodermally derived tissues (such as muscle and glands). In contrast, sequences upstream of shorter pezo-1 isoforms resulted in GFP expression primarily in neurons. Putative promoters upstream of different isoforms drove GFP expression in different cells of the same organs of the digestive system. The observed unique pattern of complementary expression suggests that different isoforms could possess distinct functions within these organs. We used mutant analysis to show that pharyngeal muscles and glands require long pezo-1 isoforms to respond appropriately to the presence of food. The number of pezo-1 isoforms in C. elegans, their putative differential pattern of expression, and roles in experimentally tractable processes make this an attractive system to investigate the molecular basis for functional differences between members of the PIEZO family of mechanoreceptors.
Collapse
Affiliation(s)
- Kiley Hughes
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Ashka Shah
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Xiaofei Bai
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Adams
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Rosemary Bauer
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Janelle Jackson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Emily Harris
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Alyson Ficca
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Ploy Freebairn
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Shawn Mohammed
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Eliana M Fernández
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Buenos Aires 1650, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires 1650, Argentina
| | - Chance Bainbridge
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Marcela Brocco
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Buenos Aires 1650, Argentina
| | - Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | | |
Collapse
|
91
|
Fatty acids as biomodulators of Piezo1 mediated glial mechanosensitivity in Alzheimer's disease. Life Sci 2022; 297:120470. [DOI: 10.1016/j.lfs.2022.120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/09/2021] [Accepted: 03/06/2022] [Indexed: 11/18/2022]
|
92
|
Liu H, Hu J, Zheng Q, Feng X, Zhan F, Wang X, Xu G, Hua F. Piezo1 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. Front Immunol 2022; 13:816149. [PMID: 35154133 PMCID: PMC8826255 DOI: 10.3389/fimmu.2022.816149] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mechanical damage is one of the predisposing factors of inflammation, and it runs through the entire inflammatory pathological process. Repeated or persistent damaging mechanical irritation leads to chronic inflammatory diseases. The mechanism of how mechanical forces induce inflammation is not fully understood. Piezo1 is a newly discovered mechanically sensitive ion channel. The Piezo1 channel opens in response to mechanical stimuli, transducing mechanical signals into an inflammatory cascade in the cell leading to tissue inflammation. A large amount of evidence shows that Piezo1 plays a vital role in the occurrence and progression of chronic inflammatory diseases. This mini-review briefly presents new evidence that Piezo1 responds to different mechanical stresses to trigger inflammation in various tissues. The discovery of Piezo1 provides new insights for the treatment of chronic inflammatory diseases related to mechanical stress. Inhibiting the transduction of damaging mechanical signals into inflammatory signals can inhibit inflammation and improve the outcome of inflammation at an early stage. The pharmacology of Piezo1 has shown bright prospects. The development of tissue-specific Piezo1 drugs for clinical use may be a new target for treating chronic inflammation.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojin Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xifeng Wang
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
93
|
Sot J, García-Arribas AB, Abad B, Arranz S, Portune K, Andrade F, Martín-Nieto A, Velasco O, Arana E, Tueros I, Ferreri C, Gaztambide S, Goñi FM, Castaño L, Alonso A. Erythrocyte Membrane Nanomechanical Rigidity Is Decreased in Obese Patients. Int J Mol Sci 2022; 23:ijms23031920. [PMID: 35163842 PMCID: PMC8836476 DOI: 10.3390/ijms23031920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/13/2022] Open
Abstract
This work intends to describe the physical properties of red blood cell (RBC) membranes in obese adults. The hypothesis driving this research is that obesity, in addition to increasing the amount of body fat, will also modify the lipid composition of membranes in cells other than adipocytes. Forty-nine control volunteers (16 male, 33 female, BMI 21.8 ± 5.6 and 21.5 ± 4.2 kg/m2, respectively) and 52 obese subjects (16 male and 36 female, BMI 38.2± 11.0 and 40.7 ± 8.7 kg/m2, respectively) were examined. The two physical techniques applied were atomic force microscopy (AFM) in the force spectroscopy mode, which allows the micromechanical measurement of penetration forces, and fluorescence anisotropy of trimethylammonium diphenylhexatriene (TMA-DPH), which provides information on lipid order at the membrane polar–nonpolar interface. These techniques, in combination with lipidomic studies, revealed a decreased rigidity in the interfacial region of the RBC membranes of obese as compared to control patients, related to parallel changes in lipid composition. Lipidomic data show an increase in the cholesterol/phospholipid mole ratio and a decrease in sphingomyelin contents in obese membranes. ω-3 fatty acids (e.g., docosahexaenoic acid) appear to be less prevalent in obese patient RBCs, and this is the case for both the global fatty acid distribution and for the individual major lipids in the membrane phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS). Moreover, some ω-6 fatty acids (e.g., arachidonic acid) are increased in obese patient RBCs. The switch from ω-3 to ω-6 lipids in obese subjects could be a major factor explaining the higher interfacial fluidity in obese patient RBC membranes.
Collapse
Affiliation(s)
- Jesús Sot
- Instituto BIOFISIKA (CSIC, UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (J.S.); (A.B.G.-A.); (F.M.G.)
| | - Aritz B. García-Arribas
- Instituto BIOFISIKA (CSIC, UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (J.S.); (A.B.G.-A.); (F.M.G.)
| | - Beatriz Abad
- SGIKER, Servicios Generales de Investigación (SGiker), Universidad del País Vasco, 48940 Leioa, Spain;
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.); (K.P.); (I.T.)
| | - Kevin Portune
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.); (K.P.); (I.T.)
| | - Fernando Andrade
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Alicia Martín-Nieto
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Olaia Velasco
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Eunate Arana
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Itziar Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.); (K.P.); (I.T.)
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy;
| | - Sonia Gaztambide
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Félix M. Goñi
- Instituto BIOFISIKA (CSIC, UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (J.S.); (A.B.G.-A.); (F.M.G.)
| | - Luis Castaño
- Biocruces Bizkaia, Hospital Universitario Cruces, CIBERDEM, CIBERER, Endo-ERN, UPV-EHU, 48903 Barakaldo, Spain; (F.A.); (A.M.-N.); (O.V.); (E.A.); (S.G.); (L.C.)
| | - Alicia Alonso
- Instituto BIOFISIKA (CSIC, UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (J.S.); (A.B.G.-A.); (F.M.G.)
- Correspondence:
| |
Collapse
|
94
|
|
95
|
Millet JRM, Romero LO, Lee J, Bell B, Vásquez V. C. elegans PEZO-1 is a mechanosensitive ion channel involved in food sensation. J Gen Physiol 2022; 154:212890. [PMID: 34854875 PMCID: PMC8647359 DOI: 10.1085/jgp.202112960] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/28/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
PIEZO channels are force sensors essential for physiological processes, including baroreception and proprioception. The Caenorhabditis elegans genome encodes an orthologue gene of the Piezo family, pezo-1, which is expressed in several tissues, including the pharynx. This myogenic pump is an essential component of the C. elegans alimentary canal, whose contraction and relaxation are modulated by mechanical stimulation elicited by food content. Whether pezo-1 encodes a mechanosensitive ion channel and contributes to pharyngeal function remains unknown. Here, we leverage genome editing, genetics, microfluidics, and electropharyngeogram recording to establish that pezo-1 is expressed in the pharynx, including in a proprioceptive-like neuron, and regulates pharyngeal function. Knockout (KO) and gain-of-function (GOF) mutants reveal that pezo-1 is involved in fine-tuning pharyngeal pumping frequency, as well as sensing osmolarity and food mechanical properties. Using pressure-clamp experiments in primary C. elegans embryo cultures, we determine that pezo-1 KO cells do not display mechanosensitive currents, whereas cells expressing wild-type or GOF PEZO-1 exhibit mechanosensitivity. Moreover, infecting the Spodoptera frugiperda cell line with a baculovirus containing the G-isoform of pezo-1 (among the longest isoforms) demonstrates that pezo-1 encodes a mechanosensitive channel. Our findings reveal that pezo-1 is a mechanosensitive ion channel that regulates food sensation in worms.
Collapse
Affiliation(s)
- Jonathan R M Millet
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Luis O Romero
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN
| | - Jungsoo Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Briar Bell
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
96
|
Shinge SAU, Zhang D, Din AU, Yu F, Nie Y. Emerging Piezo1 signaling in inflammation and atherosclerosis; a potential therapeutic target. Int J Biol Sci 2022; 18:923-941. [PMID: 35173527 PMCID: PMC8771847 DOI: 10.7150/ijbs.63819] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose of Review: Atherosclerosis is the principal cause of cardiovascular diseases (CVDs) which are the major cause of death worldwide. Mechanical force plays an essential role in cardiovascular health and disease. To bring the awareness of mechanosensitive Piezo1 role in atherosclerosis and its therapeutic potentials we review recent literature to highlight its involvement in various mechanisms of the disease. Recent Findings: Recent studies reported Piezo1 channel as a sensor, and transducer of various mechanical forces into biochemical signals, which affect various cellular activities such as proliferation, migration, apoptosis and vascular remodeling including immune/inflammatory mechanisms fundamental phenomenon in atherogenesis. Summary: Numerous evidences suggest Piezo1 as a player in different mechanisms of cell biology, including immune/inflammatory and other cellular mechanisms correlated with atherosclerosis. This review discusses mechanistic insight about this matter and highlights the drugability and therapeutic potentials consistent with emerging functions Piezo1 in various mechanisms of atherosclerosis. Based on the recent works, we suggest Piezo1 as potential therapeutic target and a valid candidate for future research. Therefore, a deeper exploration of Piezo1 biology and translation towards the clinic will be a novel strategy for treating atherosclerosis and other CVDs.
Collapse
Affiliation(s)
- Shafiu A. Umar Shinge
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
| | - Daifang Zhang
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Clinical Research Center, Southwest Medical University, Luzhou, Sichuan PRC
| | - Ahmad Ud Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan PRC
| | - FengXu Yu
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan PRC
| | - YongMei Nie
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan PRC
| |
Collapse
|
97
|
Dąbrowski G, Konopka I. Update on food sources and biological activity of odd-chain, branched and cyclic fatty acids –– A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
98
|
Tsai MC, Fleuriot L, Janel S, Gonzalez-Rodriguez D, Morel C, Mettouchi A, Debayle D, Dallongeville S, Olivo-Marin JC, Antonny B, Lafont F, Lemichez E, Barelli H. DHA-phospholipids control membrane fusion and transcellular tunnel dynamics. J Cell Sci 2021; 135:273659. [PMID: 34878112 DOI: 10.1242/jcs.259119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/27/2021] [Indexed: 11/20/2022] Open
Abstract
Metabolic studies and animal knockout models point to the critical role of polyunsaturated docosahexaenoic acid (22:6, DHA)-containing phospholipids (PLs) in physiology. Here, we investigated the impact of DHA-PLs on the dynamics of transendothelial cell macroapertures (TEMs) triggered by RhoA inhibition-associated cell spreading. Lipidomic analyses show that human umbilical vein endothelial cells (HUVECs) subjected to DHA-diet undergo a 6-fold enrichment in DHA-PLs at plasma membrane (PM) at the expense of monounsaturated OA-PLs. Consequently, DHA-PLs enrichment at the PM induces a reduction of cell thickness and shifts cellular membranes towards a permissive mode of membrane fusion for transcellular tunnel initiation. We provide evidence that a global homeostatic control of membrane tension and cell cortex rigidity minimizes overall changes of TEM area through a decrease of TEM size and lifetime. Conversely, low DHA-PL levels at the PM leads to the opening of unstable and wider TEMs. Together, this provides evidence that variations of DHA-PLs levels in membranes affect cell biomechanical properties.
Collapse
Affiliation(s)
- Meng-Chen Tsai
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France.,Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Lucile Fleuriot
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| | - Sébastien Janel
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | - Camille Morel
- Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Amel Mettouchi
- Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Delphine Debayle
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| | | | | | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| | - Frank Lafont
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Emmanuel Lemichez
- Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Hélène Barelli
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| |
Collapse
|
99
|
Bosutti A, Giniatullin A, Odnoshivkina Y, Giudice L, Malm T, Sciancalepore M, Giniatullin R, D'Andrea P, Lorenzon P, Bernareggi A. "Time window" effect of Yoda1-evoked Piezo1 channel activity during mouse skeletal muscle differentiation. Acta Physiol (Oxf) 2021; 233:e13702. [PMID: 34097801 PMCID: PMC9286833 DOI: 10.1111/apha.13702] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Aim Mechanosensitive Piezo1 ion channels emerged recently as important contributors to various vital functions including modulation of the blood supply to skeletal muscles. The specific Piezo1 channel agonist Yoda1 was shown to regulate the tone of blood vessels similarly to physical exercise. However, the direct role of Piezo1 channels in muscle function has been little studied so far. We therefore investigated the action of Yoda1 on the functional state of skeletal muscle precursors (satellite cells and myotubes) and on adult muscle fibres. Methods Immunostaining, electrophysiological intracellular recordings and Ca2+ imaging experiments were performed to localize and assess the effect of the chemical activation of Piezo1 channels with Yoda1, on myogenic precursors, adult myofibres and at the adult neuromuscular junction. Results Piezo1 channels were detected by immunostaining in satellite cells (SCs) and myotubes as well as in adult myofibres. In the skeletal muscle precursors, Yoda1 treatment stimulated the differentiation and cell fusion rather than the proliferation of SCs. Moreover, in myotubes, Yoda1 induced significant [Ca2+]i transients, without detectable [Ca2+]i response in adult myofibres. Furthermore, although expression of Piezo1 channels was detected around the muscle endplate region, Yoda1 application did not alter either the nerve‐evoked or spontaneous synaptic activity or muscle contractions in adult myofibres. Conclusion Our data indicate that the chemical activation of Piezo1 channels specifically enhances the differentiation of skeletal muscle precursors, suggesting a possible new strategy to promote muscle regeneration.
Collapse
Affiliation(s)
| | - Arthur Giniatullin
- Department of Physiology Kazan State Medical University Kazan Russia
- Laboratory of Biophysics of Synaptic Processes Kazan Institute of Biochemistry and BiophysicsFederal Research Center “Kazan Scientific Center of RAS” Kazan Russia
| | | | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
| | - Marina Sciancalepore
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
- Institute of Fundamental Medicine and Biology Federal University Kazan Russia
| | - Paola D'Andrea
- Department of Life Sciences University of Trieste Trieste Italy
| | - Paola Lorenzon
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| | - Annalisa Bernareggi
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| |
Collapse
|
100
|
Lai A, Cox CD, Chandra Sekar N, Thurgood P, Jaworowski A, Peter K, Baratchi S. Mechanosensing by Piezo1 and its implications for physiology and various pathologies. Biol Rev Camb Philos Soc 2021; 97:604-614. [PMID: 34781417 DOI: 10.1111/brv.12814] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022]
Abstract
Piezo1 is a mechanosensitive ion channel with essential roles in cardiovascular, lung, urinary, and immune functions. Piezo1 is widely distributed in different tissues in the human body and its specific roles have been identified following a decade of research; however, not all are well understood. Many structural and functional characteristics of Piezo1 have been discovered and are known to differ greatly from the characteristics of other mechanosensitive ion channels. Understanding the mechanisms by which this ion channel functions may be useful in determining its physiological roles in various organ systems. This review provides insight into the signalling pathways activated by mechanical stimulation of Piezo1 in various organ systems and cell types. We discuss downstream targets of Piezo1 and the overall effects resulting from Piezo1 activation, which may provide insights into potential treatment targets for diseases involving this ion channel.
Collapse
Affiliation(s)
- Austin Lai
- School of Health and Biomedical Sciences, RMIT University, 289 McKimmies Rd, Bundoora, Victoria, 3083, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, 405 Liverpool St, Sydney, New South Wales, 2010, Australia
| | - Nadia Chandra Sekar
- School of Health and Biomedical Sciences, RMIT University, 289 McKimmies Rd, Bundoora, Victoria, 3083, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, 124 La Trobe St, Melbourne, Victoria, 3001, Australia
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences, RMIT University, 289 McKimmies Rd, Bundoora, Victoria, 3083, Australia
| | - Karlheinz Peter
- School of Health and Biomedical Sciences, RMIT University, 289 McKimmies Rd, Bundoora, Victoria, 3083, Australia.,Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria, 3004, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, 30 Flemington Rd, Parkville, 3053, Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, 289 McKimmies Rd, Bundoora, Victoria, 3083, Australia.,Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria, 3004, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, 30 Flemington Rd, Parkville, 3053, Australia
| |
Collapse
|