51
|
Alemi A, Aksay ERF, Goldman MS. A Lyapunov theory demonstrating a fundamental limit on the speed of systems consolidation. ARXIV 2024:arXiv:2402.01605v1. [PMID: 38351934 PMCID: PMC10862927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
The nervous system reorganizes memories from an early site to a late site, a commonly observed feature of learning and memory systems known as systems consolidation. Previous work has suggested learning rules by which consolidation may occur. Here, we provide conditions under which such rules are guaranteed to lead to stable convergence of learning and consolidation. We use the theory of Lyapunov functions, which enforces stability by requiring learning rules to decrease an energy-like (Lyapunov) function. We present the theory in the context of a simple circuit architecture motivated by classic models of learning in systems consolidation mediated by the cerebellum. Stability is only guaranteed if the learning rate in the late stage is not faster than the learning rate in the early stage. Further, the slower the learning rate at the late stage, the larger the perturbation the system can tolerate with a guarantee of stability. We provide intuition for this result by mapping the consolidation model to a damped driven oscillator system, and showing that the ratio of early-to late-stage learning rates in the consolidation model can be directly identified with the (square of the) oscillator's damping ratio. This work suggests the power of the Lyapunov approach to provide constraints on nervous system function.
Collapse
Affiliation(s)
- Alireza Alemi
- Center for Neuroscience, and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Emre R. F. Aksay
- Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
| | - Mark S. Goldman
- Center for Neuroscience, and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
52
|
Koketsu S, Matsubara K, Ueki Y, Shinohara Y, Inoue K, Murakami S, Ueki T. The defects of the hippocampal ripples and theta rhythm in depression, and the effects of physical exercise on their amelioration. Heliyon 2024; 10:e23738. [PMID: 38226277 PMCID: PMC10788462 DOI: 10.1016/j.heliyon.2023.e23738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Adverse environmental stress causes depressive symptoms with the impairments of memory formation, cognition, and motivation, however, their underlying neural bases have not been well understood, especially based on the observation of living animals. In the present study, therefore, the mice model of restraint-induced stress was examined electrophysiologically to investigate the alterations of hippocampal sharp wave ripples (SWRs) and theta rhythms. In addition, the therapeutic effects of physical exercise on the amelioration of those hippocampal impairments were examined in combination with a series of behavioral tests. The data demonstrated that chronic restraint stress caused the reductions of occurrence and amplitude of hippocampal SWRs and the decreases of occurrence, duration, and power of theta rhythms, while physical exercise significantly reverted them to the levels of healthy control. Furthermore, hippocampal adult neurogenesis and microglial activation, previously reported to be involved in the etiology of depression, were histologically examined in the mice. The results showed that the impairment of neurogenesis and alleviation of microglial activation were induced in the depressed mice. On the other hand, physical exercise considerably ameliorated those pathological conditions in the affected brain. Consistently, the data of behavioral tests in mice suggested that physical exercise ameliorated the symptomatic defects of motivation, memory formation, and cognition in the depressed mice. The impairments of hippocampal SWRs and theta rhythms in the affected hippocampus are linked with the symptomatic impairments of cognition and motivation, and the defect of memory formation, respectively, in depression. Taken together, this study demonstrated the implications of impairment of the hippocampal SWRs and theta rhythms in the etiology of depression and their usefulness as diagnostic markers of depression.
Collapse
Affiliation(s)
- Shinnosuke Koketsu
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Physical Therapy, Nagoya Women's University Faculty of Medical Science, Nagoya, Aichi, 467-8610, Japan
| | - Kohki Matsubara
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Yoshiaki Shinohara
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Anatomy and Cell Biology, Yamanashi University Graduate School of Medical Sciences, Chuo, Yamanashi, 409-3898, Japan
| | - Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Satona Murakami
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
53
|
Zhang H, Skelin I, Ma S, Paff M, Mnatsakanyan L, Yassa MA, Knight RT, Lin JJ. Awake ripples enhance emotional memory encoding in the human brain. Nat Commun 2024; 15:215. [PMID: 38172140 PMCID: PMC10764865 DOI: 10.1038/s41467-023-44295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Enhanced memory for emotional experiences is hypothesized to depend on amygdala-hippocampal interactions during memory consolidation. Here we show using intracranial recordings from the human amygdala and the hippocampus during an emotional memory encoding and discrimination task increased awake ripples after encoding of emotional, compared to neutrally-valenced stimuli. Further, post-encoding ripple-locked stimulus similarity is predictive of later memory discrimination. Ripple-locked stimulus similarity appears earlier in the amygdala than in hippocampus and mutual information analysis confirms amygdala influence on hippocampal activity. Finally, the joint ripple-locked stimulus similarity in the amygdala and hippocampus is predictive of correct memory discrimination. These findings provide electrophysiological evidence that post-encoding ripples enhance memory for emotional events.
Collapse
Affiliation(s)
- Haoxin Zhang
- Department of Neurology, University of California Irvine, Irvine, 92603, CA, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, 92603, CA, USA.
| | - Ivan Skelin
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, M5T 1M8, Canada
- Department Center for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, M5G 2A2, Canada
| | - Shiting Ma
- Department of Neurology, University of California Irvine, Irvine, 92603, CA, USA
| | - Michelle Paff
- Department of Neurosurgery, University of California Irvine, Irvine, 92603, CA, USA
| | - Lilit Mnatsakanyan
- Department of Neurology, University of California Irvine, Irvine, 92603, CA, USA
| | - Michael A Yassa
- Department of Neurology, University of California Irvine, Irvine, 92603, CA, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, 92697, CA, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, 92697, CA, USA
| | - Robert T Knight
- Department of Psychology, University of California Berkeley, Berkeley, 94720, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, 94720, CA, USA
| | - Jack J Lin
- Department of Neurology, School of Medicine, University of California Davis, Sacramento, 95817, CA, USA.
- Center for Mind and Brain, University of California Davis, Davis, 95618, CA, USA.
| |
Collapse
|
54
|
Chen P, Hao C, Ma N. Sleep spindles consolidate declarative memory with tags: A meta-analysis of adult data. JOURNAL OF PACIFIC RIM PSYCHOLOGY 2024; 18. [DOI: 10.1177/18344909241226761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Tags are attached to salient information during the wake period, which can preferentially determine what information can be consolidated during sleep. Previous studies demonstrated that spindles during non-rapid eye movement (NREM) sleep give priority to strengthening memory representations with tags, indicating a privileged reactivation of tagged information. The current meta-analysis investigated whether and how spindles can capture different tags to consolidate declarative memory. This study searched the Web of Science, Google Scholar, PubMed, PsycINFO, and OATD databases for studies that spindles consolidate declarative memory with tags. A meta-analysis using a random-effects model was performed. Based on 19 datasets from 18 studies (N = 388), spindles had a medium effect on the consolidation of declarative memory with tags ( r = 0.519). In addition, spindles derived from whole-night sleep and nap studies were positively related to the consolidation of memory representations with tags. These findings reveal the shared mechanism that spindles are actively involved in the prefrontal-hippocampus circuits to consolidate memory with tags.
Collapse
Affiliation(s)
- Peiyao Chen
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Chao Hao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
55
|
Keil J, Kiiski H, Doherty L, Hernandez-Urbina V, Vassiliou C, Dean C, Müschenich M, Bahmani H. Artificial sharp-wave-ripples to support memory and counter neurodegeneration. Brain Res 2024; 1822:148646. [PMID: 37871674 DOI: 10.1016/j.brainres.2023.148646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Information processed in our sensory neocortical areas is transported to the hippocampus during memory encoding, and between hippocampus and neocortex during memory consolidation, and retrieval. Short bursts of high-frequency oscillations, so called sharp-wave-ripples, have been proposed as a potential mechanism for this information transfer: They can synchronize neural activity to support the formation of local neural networks to store information, and between distant cortical sites to act as a bridge to transfer information between sensory cortical areas and hippocampus. In neurodegenerative diseases like Alzheimer's Disease, different neuropathological processes impair normal neural functioning and neural synchronization as well as sharp-wave-ripples, which impairs consolidation and retrieval of information, and compromises memory. Here, we formulate a new hypothesis, that artificially inducing sharp-wave-ripples with noninvasive high-frequency visual stimulation could potentially support memory functioning, as well as target the neuropathological processes underlying neurodegenerative diseases. We also outline key challenges for empirical tests of the hypothesis.
Collapse
Affiliation(s)
- Julian Keil
- Department of Psychology, Christian-Albrechts-University Kiel, Germany; Ababax Health GmbH, Berlin, Germany; Department of Cognitive Science, University of Potsdam, Germany.
| | - Hanni Kiiski
- Ababax Health GmbH, Berlin, Germany; Department of Cognitive Science, University of Potsdam, Germany
| | | | | | - Chrystalleni Vassiliou
- German Center for Neurodegenerative Diseases, Charité University of Medicine, Berlin, Germany
| | - Camin Dean
- German Center for Neurodegenerative Diseases, Charité University of Medicine, Berlin, Germany
| | | | - Hamed Bahmani
- Ababax Health GmbH, Berlin, Germany; Bernstein Center for Computational Neuroscience, Tuebingen, Germany
| |
Collapse
|
56
|
Dorst KE, Ramirez S. Engrams: From Behavior to Brain-Wide Networks. ADVANCES IN NEUROBIOLOGY 2024; 38:13-28. [PMID: 39008008 DOI: 10.1007/978-3-031-62983-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Animals utilize a repertoire of behavioral responses during everyday experiences. During a potentially dangerous encounter, defensive actions such as "fight, flight, or freeze" are selected for survival. The successful use of behavior is determined by a series of real-time computations combining an animal's internal (i.e., body) and external (i.e., environment) state. Brain-wide neural pathways are engaged throughout this process to detect stimuli, integrate information, and command behavioral output. The hippocampus, in particular, plays a role in the encoding and storing of the episodic information surrounding these encounters as putative "engram" or experience-modified cellular ensembles. Recalling a negative experience then reactivates a dedicated engram ensemble and elicits a behavioral response. How hippocampus-based engrams modulate brain-wide states and an animal's internal/external milieu to influence behavior is an exciting area of investigation for contemporary neuroscience. In this chapter, we provide an overview of recent technological advancements that allow researchers to tag, manipulate, and visualize putative engram ensembles, with an overarching goal of casually connecting their brain-wide underpinnings to behavior. We then discuss how hippocampal fear engrams alter behavior in a manner that is contingent on an environment's physical features as well as how they influence brain-wide patterns of cellular activity. Overall, we propose here that studies on memory engrams offer an exciting avenue for contemporary neuroscience to casually link the activity of cells to cognition and behavior while also offering testable theoretical and experimental frameworks for how the brain organizes experience.
Collapse
Affiliation(s)
- Kaitlyn E Dorst
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Steve Ramirez
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA.
| |
Collapse
|
57
|
Veselic S, Muller TH, Gutierrez E, Behrens TEJ, Hunt LT, Butler JL, Kennerley SW. A cognitive map for value-guided choice in ventromedial prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571895. [PMID: 38168410 PMCID: PMC10760117 DOI: 10.1101/2023.12.15.571895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The prefrontal cortex is crucial for economic decision-making and representing the value of options. However, how such representations facilitate flexible decisions remains unknown. We reframe economic decision-making in prefrontal cortex in line with representations of structure within the medial temporal lobe because such cognitive map representations are known to facilitate flexible behaviour. Specifically, we framed choice between different options as a navigation process in value space. Here we show that choices in a 2D value space defined by reward magnitude and probability were represented with a grid-like code, analogous to that found in spatial navigation. The grid-like code was present in ventromedial prefrontal cortex (vmPFC) local field potential theta frequency and the result replicated in an independent dataset. Neurons in vmPFC similarly contained a grid-like code, in addition to encoding the linear value of the chosen option. Importantly, both signals were modulated by theta frequency - occurring at theta troughs but on separate theta cycles. Furthermore, we found sharp-wave ripples - a key neural signature of planning and flexible behaviour - in vmPFC, which were modulated by accuracy and reward. These results demonstrate that multiple cognitive map-like computations are deployed in vmPFC during economic decision-making, suggesting a new framework for the implementation of choice in prefrontal cortex.
Collapse
Affiliation(s)
- Sebastijan Veselic
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| | - Timothy H Muller
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| | - Elena Gutierrez
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| | - Timothy E J Behrens
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour College, University College London, London, UK
| | - Laurence T Hunt
- Department of Experimental Psychology, University of Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - James L Butler
- Department of Experimental Psychology, University of Oxford, UK
| | - Steven W Kennerley
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| |
Collapse
|
58
|
Shin JD, Jadhav SP. Cortical ripples mediate top-down suppression of hippocampal reactivation during sleep memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571373. [PMID: 38168420 PMCID: PMC10760112 DOI: 10.1101/2023.12.12.571373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Consolidation of initially encoded hippocampal representations in the neocortex through reactivation is crucial for long-term memory formation, and is facilitated by the coordination of hippocampal sharp-wave ripples (SWRs) with cortical oscillations during non-REM sleep. However, the contribution of high-frequency cortical ripples to consolidation is still unclear. We used continuous recordings in the hippocampus and prefrontal cortex (PFC) over the course of spatial learning and show that independent PFC ripples, when dissociated from SWRs, predominantly suppress hippocampal activity in non-REM sleep. PFC ripples paradoxically mediate top-down suppression of hippocampal reactivation, which is inversely related to reactivation strength during coordinated CA1-PFC ripples. Further, we show non-canonical, serial coordination of ripples with cortical slow and spindle oscillations. These results establish a role for cortical ripples in regulating consolidation.
Collapse
Affiliation(s)
- Justin D. Shin
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Shantanu P. Jadhav
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
59
|
Vitale P, Librizzi F, Vaiana AC, Capuana E, Pezzoli M, Shi Y, Romani A, Migliore M, Migliore R. Different responses of mice and rats hippocampus CA1 pyramidal neurons to in vitro and in vivo-like inputs. Front Cell Neurosci 2023; 17:1281932. [PMID: 38130870 PMCID: PMC10733970 DOI: 10.3389/fncel.2023.1281932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
The fundamental role of any neuron within a network is to transform complex spatiotemporal synaptic input patterns into individual output spikes. These spikes, in turn, act as inputs for other neurons in the network. Neurons must execute this function across a diverse range of physiological conditions, often based on species-specific traits. Therefore, it is crucial to determine the extent to which findings can be extrapolated between species and, ultimately, to humans. In this study, we employed a multidisciplinary approach to pinpoint the factors accounting for the observed electrophysiological differences between mice and rats, the two species most used in experimental and computational research. After analyzing the morphological properties of their hippocampal CA1 pyramidal cells, we conducted a statistical comparison of rat and mouse electrophysiological features in response to somatic current injections. This analysis aimed to uncover the parameters underlying these distinctions. Using a well-established computational workflow, we created ten distinct single-cell computational models of mouse CA1 pyramidal neurons, ready to be used in a full-scale hippocampal circuit. By comparing their responses to a variety of somatic and synaptic inputs with those of rat models, we generated experimentally testable hypotheses regarding species-specific differences in ion channel distribution, kinetics, and the electrophysiological mechanisms underlying their distinct responses to synaptic inputs during the behaviorally relevant Gamma and Sharp-Wave rhythms.
Collapse
Affiliation(s)
- Paola Vitale
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Fabio Librizzi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Andrea C. Vaiana
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Elisa Capuana
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Maurizio Pezzoli
- Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Ying Shi
- Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Armando Romani
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
60
|
Han F, Liu X, Mailman RB, Huang X, Liu X. Resting-state global brain activity affects early β-amyloid accumulation in default mode network. Nat Commun 2023; 14:7788. [PMID: 38012153 PMCID: PMC10682457 DOI: 10.1038/s41467-023-43627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
It remains unclear why β-amyloid (Aβ) plaque, a hallmark pathology of Alzheimer's disease (AD), first accumulates cortically in the default mode network (DMN), years before AD diagnosis. Resting-state low-frequency ( < 0.1 Hz) global brain activity recently was linked to AD, presumably due to its role in glymphatic clearance. Here we show that the preferential Aβ accumulation in the DMN at the early stage of Aβ pathology was associated with the preferential reduction of global brain activity in the same regions. This can be partly explained by its failure to reach these regions as propagating waves. Together, these findings highlight the important role of resting-state global brain activity in early preferential Aβ deposition in the DMN.
Collapse
Affiliation(s)
- Feng Han
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, USA
| | - Xufu Liu
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, USA
| | - Richard B Mailman
- Departments of Neurology and Pharmacology, Translational Brain Research Center, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Xuemei Huang
- Departments of Neurology and Pharmacology, Translational Brain Research Center, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA
- Departments of Radiology, Neurosurgery, and Kinesiology, Translational Brain Research Center, Pennsylvania State University and Milton S. Hershey Medical Center, Hershey, PA, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, State College, PA, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, USA.
- Institute for Computational and Data Sciences, The Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
61
|
Plitt MH, Kaganovsky K, Südhof TC, Giocomo LM. Hippocampal place code plasticity in CA1 requires postsynaptic membrane fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567978. [PMID: 38045362 PMCID: PMC10690209 DOI: 10.1101/2023.11.20.567978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Rapid delivery of glutamate receptors to the postsynaptic membrane via vesicle fusion is a central component of synaptic plasticity. However, it is unknown how this process supports specific neural computations during behavior. To bridge this gap, we combined conditional genetic deletion of a component of the postsynaptic membrane fusion machinery, Syntaxin3 (Stx3), in hippocampal CA1 neurons of mice with population in vivo calcium imaging. This approach revealed that Stx3 is necessary for forming the neural dynamics that support novelty processing, spatial reward memory and offline memory consolidation. In contrast, CA1 Stx3 was dispensable for maintaining aspects of the neural code that exist presynaptic to CA1 such as representations of context and space. Thus, manipulating postsynaptic membrane fusion identified computations that specifically require synaptic restructuring via membrane trafficking in CA1 and distinguished them from neural representation that could be inherited from upstream brain regions or learned through other mechanisms.
Collapse
Affiliation(s)
- Mark H. Plitt
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
- These authors contributed equally to this work
- Present address: Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA, USA
| | - Konstantin Kaganovsky
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA, USA
- These authors contributed equally to this work
- Present address: Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Thomas C. Südhof
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford, CA, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
62
|
Yang W, Sun C, Huszár R, Hainmueller T, Buzsáki G. Selection of experience for memory by hippocampal sharp wave ripples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565935. [PMID: 37987008 PMCID: PMC10659301 DOI: 10.1101/2023.11.07.565935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A general wisdom is that experiences need to be tagged during learning for further consolidation. However, brain mechanisms that select experiences for lasting memory are not known. Combining large-scale neural recordings with a novel application of dimensionality reduction techniques, we observed that successive traversals in the maze were tracked by continuously drifting populations of neurons, providing neuronal signatures of both places visited and events encountered (trial number). When the brain state changed during reward consumption, sharp wave ripples (SPW-Rs) occurred on some trials and their unique spike content most often decoded the trial in which they occurred. In turn, during post-experience sleep, SPW-Rs continued to replay those trials that were reactivated most frequently during awake SPW-Rs. These findings suggest that replay content of awake SPW-Rs provides a tagging mechanism to select aspects of experience that are preserved and consolidated for future use.
Collapse
Affiliation(s)
- Wannan Yang
- Center for Neural Science, New York University, NY, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA
| | - Chen Sun
- Mila - Quebec AI Institute, Montréal, Canada
| | - Roman Huszár
- Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA
| | - Thomas Hainmueller
- Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - György Buzsáki
- Center for Neural Science, New York University, NY, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
63
|
Takagi S. Exploring Ripple Waves in the Human Brain. Clin EEG Neurosci 2023; 54:594-600. [PMID: 34287087 DOI: 10.1177/15500594211034371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ripples are brief (<150 ms) high-frequency oscillatory neural activities in the brain with a range of 140 to 200 Hz in rodents and 80 to 140 Hz in humans. Ripples are regarded as playing an essential role in several aspects of memory function, mainly in the hippocampus. This type of ripple generally occurs with sharp waves and is called a sharp-wave ripple (SPW-R). Extensive research of SPW-Rs in the rodent brain while actively awake has also linked the function of these SPW-Rs to navigation and decision making. Although many studies with rodents unveiled SPW-R function, research in humans on this subject is still sparse. Therefore, unveiling SPW-R function in the human hippocampus is warranted. A certain type of ripples may also be a biomarker of epilepsy. This type of ripple is called a pathological ripple (p-ripple). p-ripples have a wider range of frequency (80-500 Hz) than SPW-Rs, and the range of frequency is especially higher in brain regions that are intrinsically linked to epilepsy onset. Brain regions producing ripples are too small for scalp electrode recording, and intracranial recording is typically needed to detect ripples. In addition, SPW-Rs in the human hippocampus have been recorded from patients with epilepsy who may have p-ripples. Differentiating SPW-Rs and p-ripples is often not easy. We need to develop more sophisticated methods to record SPW-Rs to differentiate them from p-ripples. This paper reviews the general features and roles of ripple waves.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| |
Collapse
|
64
|
Haam J, Gunin S, Wilson L, Fry S, Bernstein B, Thomson E, Noblet H, Cushman J, Yakel JL. Entorhinal cortical delta oscillations drive memory consolidation. Cell Rep 2023; 42:113267. [PMID: 37838945 PMCID: PMC10872950 DOI: 10.1016/j.celrep.2023.113267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Long-term memories are formed by creating stable memory representations via memory consolidation, which mainly occurs during sleep following the encoding of labile memories in the hippocampus during waking. The entorhinal cortex (EC) has intricate connections with the hippocampus, but its role in memory consolidation is largely unknown. Using cell-type- and input-specific in vivo neural activity recordings, here we show that the temporoammonic pathway neurons in the EC, which directly innervate the output area of the hippocampus, exhibit potent oscillatory activities during anesthesia and sleep. Using in vivo individual and populational neuronal activity recordings, we demonstrate that a subpopulation of the temporoammonic pathway neurons, which we termed sleep cells, generate delta oscillations via hyperpolarization-activated cyclic-nucleotide-gated channels during sleep. The blockade of these oscillations significantly impaired the consolidation of hippocampus-dependent memory. Together, our findings uncover a key driver of delta oscillations and memory consolidation that are found in the EC.
Collapse
Affiliation(s)
- Juhee Haam
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | - Suman Gunin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Leslie Wilson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Sydney Fry
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Briana Bernstein
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Eric Thomson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Hayden Noblet
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jesse Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
65
|
Yang Y, Leopold DA, Duyn JH, Sipe GO, Liu X. Intrinsic forebrain arousal dynamics governs sensory stimulus encoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560900. [PMID: 37986990 PMCID: PMC10659438 DOI: 10.1101/2023.10.04.560900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The neural encoding of sensory stimuli is subject to the brain's internal circuit dynamics. Recent work has demonstrated that the resting brain exhibits widespread, coordinated activity that plays out over multisecond timescales in the form of quasi-periodic spiking cascades. Here we demonstrate that these intrinsic dynamics persist during the presentation of visual stimuli and markedly influence the efficacy of feature encoding in the visual cortex. During periods of passive viewing, the sensory encoding of visual stimuli was determined by quasi-periodic cascade cycle evolving over several seconds. During this cycle, high efficiency encoding occurred during peak arousal states, alternating in time with hippocampal ripples, which were most frequent in low arousal states. However, during bouts of active locomotion, these arousal dynamics were abolished: the brain remained in a state in which visual coding efficiency remained high and ripples were absent. We hypothesize that the brain's observed dynamics during awake, passive viewing reflect an adaptive cycle of alternating exteroceptive sensory sampling and internal mnemonic function.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David A. Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological. Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeff H. Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grayson O. Sipe
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
66
|
Khatib M, Zhao ET, Wei S, Abramson A, Bishop ES, Chen CH, Thomas AL, Xu C, Park J, Lee Y, Hamnett R, Yu W, Root SE, Yuan L, Chakhtoura D, Kim KK, Zhong D, Nishio Y, Zhao C, Wu C, Jiang Y, Zhang A, Li J, Wang W, Salimi-Jazi F, Rafeeqi TA, Hemed NM, Tok JBH, Chen X, Kaltschmidt JA, Dunn JC, Bao Z. Spiral NeuroString: High-Density Soft Bioelectronic Fibers for Multimodal Sensing and Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560482. [PMID: 37873341 PMCID: PMC10592902 DOI: 10.1101/2023.10.02.560482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Bioelectronic fibers hold promise for both research and clinical applications due to their compactness, ease of implantation, and ability to incorporate various functionalities such as sensing and stimulation. However, existing devices suffer from bulkiness, rigidity, limited functionality, and low density of active components. These limitations stem from the difficulty to incorporate many components on one-dimensional (1D) fiber devices due to the incompatibility of conventional microfabrication methods (e.g., photolithography) with curved, thin and long fiber structures. Herein, we introduce a fabrication approach, ‶spiral transformation″, to convert two-dimensional (2D) films containing microfabricated devices into 1D soft fibers. This approach allows for the creation of high density multimodal soft bioelectronic fibers, termed Spiral NeuroString (S-NeuroString), while enabling precise control over the longitudinal, angular, and radial positioning and distribution of the functional components. We show the utility of S-NeuroString for motility mapping, serotonin sensing, and tissue stimulation within the dynamic and soft gastrointestinal (GI) system, as well as for single-unit recordings in the brain. The described bioelectronic fibers hold great promises for next-generation multifunctional implantable electronics.
Collapse
Affiliation(s)
- Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eric Tianjiao Zhao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shiyuan Wei
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alex Abramson
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Estelle Spear Bishop
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Chih-Hsin Chen
- Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA
| | - Anne-Laure Thomas
- Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA
| | - Chengyi Xu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jaeho Park
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yeongjun Lee
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ryan Hamnett
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Weilai Yu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Samuel E. Root
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Lei Yuan
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Dorine Chakhtoura
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Kyun Kyu Kim
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yuya Nishio
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chuanzhen Zhao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Can Wu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Anqi Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jinxing Li
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48823, USA
| | - Weichen Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Talha A. Rafeeqi
- Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA
| | - Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jeffrey B.-H. Tok
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Julia A. Kaltschmidt
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - James C.Y. Dunn
- Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
67
|
Han F, Lee J, Chen X, Ziontz J, Ward T, Landau SM, Baker SL, Harrison TM, Jagust WJ. Global brain activity and its coupling with cerebrospinal fluid flow is related to tau pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557492. [PMID: 37745434 PMCID: PMC10515801 DOI: 10.1101/2023.09.12.557492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Amyloid-β (Aβ) and tau deposition constitute Alzheimer's disease (AD) neuropathology. Cortical tau deposits first in the entorhinal cortex and hippocampus and then propagates to neocortex in an Aβ-dependent manner. Tau also tends to accumulate earlier in higher-order association cortex than in lower-order primary sensory-motor cortex. While previous research has examined the production and spread of tau, little attention has been paid to its clearance. Low-frequency (<0.1 Hz) global brain activity during the resting state is coupled with cerebrospinal fluid (CSF) flow and potentially reflects glymphatic clearance. Here we report that tau deposition in subjects with evaluated Aβ, accompanied by cortical thinning and cognitive decline, is strongly associated with decreased coupling between CSF flow and global brain activity. Substantial modulation of global brain activity is also manifested as propagating waves of brain activation between higher- and lower-order regions, resembling tau spreading. Together, the findings suggest an important role of resting-state global brain activity in AD tau pathology.
Collapse
Affiliation(s)
- Feng Han
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - JiaQie Lee
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Xi Chen
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jacob Ziontz
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Tyler Ward
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | | | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
68
|
Zutshi I, Buzsáki G. Hippocampal sharp-wave ripples and their spike assembly content are regulated by the medial entorhinal cortex. Curr Biol 2023; 33:3648-3659.e4. [PMID: 37572665 PMCID: PMC10530523 DOI: 10.1016/j.cub.2023.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
Hippocampal sharp-wave ripples (SPW-Rs) are critical for memory consolidation and retrieval. The neuronal content of spiking during SPW-Rs is believed to be under the influence of neocortical inputs via the entorhinal cortex (EC). Optogenetic silencing of the medial EC (mEC) reduced the incidence of SPW-Rs with minor impacts on their magnitude or duration, similar to local CA1 silencing. The effect of mEC silencing on CA1 firing and field potentials was comparable to the effect of transient cortex-wide DOWN states of non-REM (NREM) sleep, implying that decreased SPW-R incidence in both cases is due to tonic disfacilitation of hippocampal circuits. The neuronal composition of CA1 pyramidal neurons during SPW-Rs was altered by mEC silencing but was restored immediately after silencing. We suggest that the mEC provides both tonic and transient influences on hippocampal network states by timing the occurrence of SPW-Rs and altering their neuronal content.
Collapse
Affiliation(s)
- Ipshita Zutshi
- New York University Neuroscience Institute, New York, NY, USA
| | - György Buzsáki
- New York University Neuroscience Institute, New York, NY, USA; Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
69
|
Li Z, Athwal D, Lee HL, Sah P, Opazo P, Chuang KH. Locating causal hubs of memory consolidation in spontaneous brain network in male mice. Nat Commun 2023; 14:5399. [PMID: 37669938 PMCID: PMC10480429 DOI: 10.1038/s41467-023-41024-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/17/2023] [Indexed: 09/07/2023] Open
Abstract
Memory consolidation after learning involves spontaneous, brain-wide network reorganization during rest and sleep, but how this is achieved is still poorly understood. Current theory suggests that the hippocampus is pivotal for this reshaping of connectivity. Using fMRI in male mice, we identify that a different set of spontaneous networks and their hubs are instrumental in consolidating memory during post-learning rest. We found that two types of spatial memory training invoke distinct functional connections, but that a network of the sensory cortex and subcortical areas is common for both tasks. Furthermore, learning increased brain-wide network integration, with the prefrontal, striatal and thalamic areas being influential for this network-level reconfiguration. Chemogenetic suppression of each hub identified after learning resulted in retrograde amnesia, confirming the behavioral significance. These results demonstrate the causal and functional roles of resting-state network hubs in memory consolidation and suggest that a distributed network beyond the hippocampus subserves this process.
Collapse
Affiliation(s)
- Zengmin Li
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dilsher Athwal
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Hsu-Lei Lee
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Joint Center for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Patricio Opazo
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD, Australia
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Kai-Hsiang Chuang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Centre of Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia.
| |
Collapse
|
70
|
Zaki Y, Pennington ZT, Morales-Rodriguez D, Francisco TR, LaBanca AR, Dong Z, Lamsifer S, Segura SC, Chen HT, Wick ZC, Silva AJ, van der Meer M, Shuman T, Fenton A, Rajan K, Cai DJ. Aversive experience drives offline ensemble reactivation to link memories across days. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532469. [PMID: 36993254 PMCID: PMC10054942 DOI: 10.1101/2023.03.13.532469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Memories are encoded in neural ensembles during learning and stabilized by post-learning reactivation. Integrating recent experiences into existing memories ensures that memories contain the most recently available information, but how the brain accomplishes this critical process remains unknown. Here we show that in mice, a strong aversive experience drives the offline ensemble reactivation of not only the recent aversive memory but also a neutral memory formed two days prior, linking the fear from the recent aversive memory to the previous neutral memory. We find that fear specifically links retrospectively, but not prospectively, to neutral memories across days. Consistent with prior studies, we find reactivation of the recent aversive memory ensemble during the offline period following learning. However, a strong aversive experience also increases co-reactivation of the aversive and neutral memory ensembles during the offline period. Finally, the expression of fear in the neutral context is associated with reactivation of the shared ensemble between the aversive and neutral memories. Taken together, these results demonstrate that strong aversive experience can drive retrospective memory-linking through the offline co-reactivation of recent memory ensembles with memory ensembles formed days prior, providing a neural mechanism by which memories can be integrated across days.
Collapse
Affiliation(s)
- Yosif Zaki
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Zachary T. Pennington
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | | | - Taylor R. Francisco
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Alexa R. LaBanca
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Zhe Dong
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Sophia Lamsifer
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Simón Carrillo Segura
- Graduate Program in Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201
| | - Hung-Tu Chen
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH, 03755
| | - Zoé Christenson Wick
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Alcino J. Silva
- Department of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, UCLA, Los Angeles, CA 90095
| | | | - Tristan Shuman
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - André Fenton
- Center for Neural Science, New York University, New York, NY, 10003
- Neuroscience Institute at the NYU Langone Medical Center, New York, NY, 10016
| | - Kanaka Rajan
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Denise J. Cai
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| |
Collapse
|
71
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
72
|
Guskjolen A, Cembrowski MS. Engram neurons: Encoding, consolidation, retrieval, and forgetting of memory. Mol Psychiatry 2023; 28:3207-3219. [PMID: 37369721 PMCID: PMC10618102 DOI: 10.1038/s41380-023-02137-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Tremendous strides have been made in our understanding of the neurobiological substrates of memory - the so-called memory "engram". Here, we integrate recent progress in the engram field to illustrate how engram neurons transform across the "lifespan" of a memory - from initial memory encoding, to consolidation and retrieval, and ultimately to forgetting. To do so, we first describe how cell-intrinsic properties shape the initial emergence of the engram at memory encoding. Second, we highlight how these encoding neurons preferentially participate in synaptic- and systems-level consolidation of memory. Third, we describe how these changes during encoding and consolidation guide neural reactivation during retrieval, and facilitate memory recall. Fourth, we describe neurobiological mechanisms of forgetting, and how these mechanisms can counteract engram properties established during memory encoding, consolidation, and retrieval. Motivated by recent experimental results across these four sections, we conclude by proposing some conceptual extensions to the traditional view of the engram, including broadening the view of cell-type participation within engrams and across memory stages. In collection, our review synthesizes general principles of the engram across memory stages, and describes future avenues to further understand the dynamic engram.
Collapse
Affiliation(s)
- Axel Guskjolen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Mark S Cembrowski
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
73
|
Harvey RE, Robinson HL, Liu C, Oliva A, Fernandez-Ruiz A. Hippocampo-cortical circuits for selective memory encoding, routing, and replay. Neuron 2023; 111:2076-2090.e9. [PMID: 37196658 PMCID: PMC11146684 DOI: 10.1016/j.neuron.2023.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Traditionally considered a homogeneous cell type, hippocampal pyramidal cells have been recently shown to be highly diverse. However, how this cellular diversity relates to the different hippocampal network computations that support memory-guided behavior is not yet known. We show that the anatomical identity of pyramidal cells is a major organizing principle of CA1 assembly dynamics, the emergence of memory replay, and cortical projection patterns in rats. Segregated pyramidal cell subpopulations encoded trajectory and choice-specific information or tracked changes in reward configuration respectively, and their activity was selectively read out by different cortical targets. Furthermore, distinct hippocampo-cortical assemblies coordinated the reactivation of complementary memory representations. These findings reveal the existence of specialized hippocampo-cortical subcircuits and provide a cellular mechanism that supports the computational flexibility and memory capacities of these structures.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Heath L Robinson
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Can Liu
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Azahara Oliva
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
74
|
Navas-Olive A, Rubio A, Abbaspoor S, Hoffman KL, de la Prida LM. A machine learning toolbox for the analysis of sharp-wave ripples reveal common features across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547382. [PMID: 37461661 PMCID: PMC10349962 DOI: 10.1101/2023.07.02.547382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The study of sharp-wave ripples (SWRs) has advanced our understanding of memory function, and their alteration in neurological conditions such as epilepsy and Alzheimer's disease is considered a biomarker of dysfunction. SWRs exhibit diverse waveforms and properties that cannot be fully characterized by spectral methods alone. Here, we describe a toolbox of machine learning (ML) models for automatic detection and analysis of SWRs. The ML architectures, which resulted from a crowdsourced hackathon, are able to capture a wealth of SWR features recorded in the dorsal hippocampus of mice. When applied to data from the macaque hippocampus, these models were able to generalize detection and revealed shared SWR properties across species. We hereby provide a user-friendly open-source toolbox for model use and extension, which can help to accelerate and standardize SWR research, lowering the threshold for its adoption in biomedical applications.
Collapse
Affiliation(s)
| | | | - Saman Abbaspoor
- Psychological Sciences, Vanderbilt Brain Institute, Vanderbilt University, USA
| | - Kari L. Hoffman
- Psychological Sciences, Vanderbilt Brain Institute, Vanderbilt University, USA
- Biomedical Engineering, Vanderbilt University, USA
| | | |
Collapse
|
75
|
Wang W, Wang Z, Cao J, Dong Y, Chen Y. Roles of Rac1-Dependent Intrinsic Forgetting in Memory-Related Brain Disorders: Demon or Angel. Int J Mol Sci 2023; 24:10736. [PMID: 37445914 DOI: 10.3390/ijms241310736] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Animals are required to handle daily massive amounts of information in an ever-changing environment, and the resulting memories and experiences determine their survival and development, which is critical for adaptive evolution. However, intrinsic forgetting, which actively deletes irrelevant information, is equally important for memory acquisition and consolidation. Recently, it has been shown that Rac1 activity plays a key role in intrinsic forgetting, maintaining the balance of the brain's memory management system in a controlled manner. In addition, dysfunctions of Rac1-dependent intrinsic forgetting may contribute to memory deficits in neurological and neurodegenerative diseases. Here, these new findings will provide insights into the neurobiology of memory and forgetting, pathological mechanisms and potential therapies for brain disorders that alter intrinsic forgetting mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
76
|
Xie B, Zhen Z, Guo O, Li H, Guo M, Zhen J. Progress on the hippocampal circuits and functions based on sharp wave ripples. Brain Res Bull 2023:110695. [PMID: 37353037 DOI: 10.1016/j.brainresbull.2023.110695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Sharp wave ripples (SWRs) are high-frequency synchronization events generated by hippocampal neuronal circuits during various forms of learning and reactivated during memory consolidation and recall. There is mounting evidence that SWRs are essential for storing spatial and social memories in rodents and short-term episodic memories in humans. Sharp wave ripples originate mainly from the hippocampal CA3 and subiculum, and can be transmitted to modulate neuronal activity in cortical and subcortical regions for long-term memory consolidation and behavioral guidance. Different hippocampal subregions have distinct functions in learning and memory. For instance, the dorsal CA1 is critical for spatial navigation, episodic memory, and learning, while the ventral CA1 and dorsal CA2 may work cooperatively to store and consolidate social memories. Here, we summarize recent studies demonstrating that SWRs are essential for the consolidation of spatial, episodic, and social memories in various hippocampal-cortical pathways, and review evidence that SWR dysregulation contributes to cognitive impairments in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Boxu Xie
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihang Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ouyang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Heming Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Moran Guo
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Junli Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Neurological Laboratory of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
77
|
Wang Y, Xin Y, Zhao T, Shen H, Liu X, Wang J, Wang Q, Shen R, Feng D, Wei B. PTH levels, sleep quality, and cognitive function in primary hyperparathyroidism. Endocrine 2023:10.1007/s12020-023-03410-x. [PMID: 37266901 DOI: 10.1007/s12020-023-03410-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Cognitive function in patients with primary hyperparathyroidism (PHPT) may be affected and be identified to have been linked to the level of parathyroid hormone (PTH). Previous studies have suggested that patients with PHPT present poor sleep quality, which might interact with cognitive decline. The purpose of this study was to determine whether sleep quality mediates the association between PTH level and cognitive function and investigate whether surgery improves sleep quality and cognition in PHPT patients. METHODS Between June 2019 and August 2022, we recruited 146 patients diagnosed with PHPT (n = 146). We collected clinical data from medical records and evaluated sleep quality and cognition preoperatively and 2 months postoperatively by using the Pittsburgh Sleep Quality Index and Min-Mental State Examination. We examined the mediation effects of sleep disturbance and latency on correlations between PTH level and cognitive impairment by using the Bootstrap method. RESULTS The sleep quality and cognitive function were correlated with PTH level before surgery. Sleep latency or sleep disturbance exhibited a partial mediating effect on the association between PTH level and MMSE scores in PHPT patients (p < 0.05). In PHPT patients, there was a significant decline in PTH levels and an improvement in cognitive function post-surgery compared to pre-surgery, but no significant differences in sleep quality. CONCLUSION Sleep disturbance and sleep latency may mediate the association between PTH level and cognitive impairment in PHPT before surgery. The surgery could reduce PTH levels and improve cognition, but might not improve sleep quality in PHPT patients.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yunhui Xin
- Department of Anaesthesia, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Teng Zhao
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hong Shen
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiacheng Wang
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qian Wang
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Rongfang Shen
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Dalin Feng
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bojun Wei
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
78
|
Shiozaki H, Kuga N, Kayama T, Ikegaya Y, Sasaki T. Selective serotonin reuptake inhibitors suppress sharp wave ripples in the ventral hippocampus. J Pharmacol Sci 2023; 152:136-143. [PMID: 37169478 DOI: 10.1016/j.jphs.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Biased memory processing contributes to the development and exacerbation of depression, and thus could represent a potential therapeutic target for stress-induced mental disorders. Synchronized spikes in hippocampal neurons, corresponding to sharp wave ripples (SWRs), may play a crucial role in memory reactivation. In this study, we showed that the frequency of SWRs increased in the ventral hippocampus, but not in the dorsal hippocampus, after stress exposure. Administration of the selective serotonin reuptake inhibitors (SSRIs) fluoxetine and fluvoxamine inhibited the generation of ventral hippocampal SWRs and reduced locomotor activity and local field potential power in the gamma bands. These results suggest that the antidepressant effects of SSRIs may be mediated by the suppression of ventral hippocampal SWRs.
Collapse
Affiliation(s)
- Hiromi Shiozaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan.
| | - Tasuku Kayama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
79
|
Srinivasan A, Riceberg JS, Goodman MR, Srinivasan A, Guise KG, Shapiro ML. Goal Choices Modify Frontotemporal Memory Representations. J Neurosci 2023; 43:3353-3364. [PMID: 36977579 PMCID: PMC10162456 DOI: 10.1523/jneurosci.1939-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Adapting flexibly to changing circumstances is guided by memory of past choices, their outcomes in similar circumstances, and a method for choosing among potential actions. The hippocampus (HPC) is needed to remember episodes, and the prefrontal cortex (PFC) helps guide memory retrieval. Single-unit activity in the HPC and PFC correlates with such cognitive functions. Previous work recorded CA1 and mPFC activity as male rats performed a spatial reversal task in a plus maze that requires both structures, found that PFC activity helps reactivate HPC representations of pending goal choices but did not describe frontotemporal interactions after choices. We describe these interactions after choices here. CA1 activity tracked both current goal location and the past starting location of single trials; PFC activity tracked current goal location better than past start location. CA1 and PFC reciprocally modulated representations of each other both before and after goal choices. After choices, CA1 activity predicted changes in PFC activity in subsequent trials, and the magnitude of this prediction correlated with faster learning. In contrast, PFC start arm activity more strongly modulated CA1 activity after choices correlated with slower learning. Together, the results suggest post-choice HPC activity conveys retrospective signals to the PFC, which combines different paths to common goals into rules. In subsequent trials, prechoice mPFC activity modulates prospective CA1 signals informing goal selection.SIGNIFICANCE STATEMENT HPC and PFC activity supports cognitive flexibility in changing circumstances. HPC signals represent behavioral episodes that link the start, choice, and goal of paths. PFC signals represent rules that guide goal-directed actions. Although prior studies described HPC-PFC interactions preceding decisions in the plus maze, post-decision interactions were not investigated. Here, we show post-choice HPC and PFC activity distinguished the start and goal of paths, and CA1 signaled the past start of each trial more accurately than mPFC. Postchoice CA1 activity modulated subsequent PFC activity, so rewarded actions were more likely to occur. Together, the results show that in changing circumstances, HPC retrospective codes modulate subsequent PFC coding, which in turn modulates HPC prospective codes that predict choices.
Collapse
Affiliation(s)
- Aditya Srinivasan
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York 12208
| | - Justin S Riceberg
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York 12208
- Department of Psychiatry, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michael R Goodman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York 12208
| | - Arvind Srinivasan
- College of Health Sciences, California Northstate University, Rancho Cordova, California 95670
| | - Kevin G Guise
- Friedman Brain Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Matthew L Shapiro
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York 12208
| |
Collapse
|
80
|
Osse AML, Pandey RS, Wirt RA, Ortiz AA, Salazar A, Kimmich M, Toledano Strom EN, Oblak A, Lamb B, Hyman JM, Carter GW, Kinney J. Reduction in GABAB on glia induce Alzheimer's disease related changes. Brain Behav Immun 2023; 110:260-275. [PMID: 36906075 PMCID: PMC10115139 DOI: 10.1016/j.bbi.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by beta-amyloid plaques (Aβ), neurofibrillary tangles (NFT), and neuroinflammation. Data have demonstrated that neuroinflammation contributes to Aβ and NFT onset and progression, indicating inflammation and glial signaling is vital to understanding AD. A previous investigation demonstrated a significant decrease of the GABAB receptor (GABABR) in APP/PS1 mice (Salazar et al., 2021). To determine if changes in GABABR restricted to glia serve a role in AD, we developed a mouse model with a reduction of GABABR restricted to macrophages, GAB/CX3ert. This model exhibits changes in gene expression and electrophysiological alterations similar to amyloid mouse models of AD. Crossing the GAB/CX3ert mouse with APP/PS1 resulted in significant increases in Aβ pathology. Our data demonstrates that decreased GABABR on macrophages leads to several changes observed in AD mouse models, as well as exacerbation of AD pathology when crossed with existing models. These data suggest a novel mechanism in AD pathogenesis.
Collapse
Affiliation(s)
- Amanda M Leisgang Osse
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States.
| | - Ravi S Pandey
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, United States
| | - Ryan A Wirt
- University of Nevada, Las Vegas, Department of Psychology, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Andrew A Ortiz
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Arnold Salazar
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Michael Kimmich
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Erin N Toledano Strom
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Adrian Oblak
- Indiana University, School of Medicine, 340 W 10(th) Street, Indianapolis, IN 46202, United States
| | - Bruce Lamb
- Indiana University, School of Medicine, 340 W 10(th) Street, Indianapolis, IN 46202, United States
| | - James M Hyman
- University of Nevada, Las Vegas, Department of Psychology, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Gregory W Carter
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, United States
| | - Jefferson Kinney
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| |
Collapse
|
81
|
Kuga N, Nakayama R, Morikawa S, Yagishita H, Konno D, Shiozaki H, Honjoya N, Ikegaya Y, Sasaki T. Hippocampal sharp wave ripples underlie stress susceptibility in male mice. Nat Commun 2023; 14:2105. [PMID: 37080967 PMCID: PMC10119298 DOI: 10.1038/s41467-023-37736-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
The ventral hippocampus (vHC) is a core brain region for emotional memory. Here, we examined how the vHC regulates stress susceptibility from the level of gene expression to neuronal population dynamics in male mice. Transcriptome analysis of samples from stress-naïve mice revealed that intrinsic calbindin (Calb1) expression in the vHC is associated with susceptibility to social defeat stress. Mice with Calb1 gene knockdown in the vHC exhibited increased stress resilience and failed to show the increase in the poststress ventral hippocampal sharp wave ripple (SWR) rate. Poststress vHC SWRs triggered synchronous reactivation of stress memory-encoding neuronal ensembles and facilitated information transfer to the amygdala. Suppression of poststress vHC SWRs by real-time feedback stimulation or walking prevented social behavior deficits. Taken together, our results demonstrate that internal reactivation of memories of negative stressful episodes supported by ventral hippocampal SWRs serves as a crucial neurophysiological substrate for determining stress susceptibility.
Collapse
Affiliation(s)
- Nahoko Kuga
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Ryota Nakayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shota Morikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Haruya Yagishita
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Daichi Konno
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Laboratory of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiromi Shiozaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Natsumi Honjoya
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan
- Institute for AI and Beyond, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| |
Collapse
|
82
|
Duan QT, Dai L, Wang LK, Shi XJ, Chen X, Liao X, Zhang CQ, Yang H. Hippocampal ripples correlate with memory performance in humans. Brain Res 2023; 1810:148370. [PMID: 37080267 DOI: 10.1016/j.brainres.2023.148370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Memory performance evaluation has generally been based on behavioral tests in the past decades. However, its neural correlates remain largely unknown, particularly in humans. Here we addressed this question using intracranial electroencephalography in patients with refractory epilepsy, performing an episodic memory test. We used the presurgical Wechsler Memory Scale (WMS) test to assess the memory performance of each patient. We found that hippocampal ripples significantly exhibited a transient increase during visual stimulation or before verbal recall. This increase in hippocampal ripples positively correlated with memory performance. By contrast, memory performance is negatively correlated with hippocampal interictal epileptic discharges (IEDs) or epileptic ripples in the memory task. However, these correlations were not present during quiet wakefulness. Thus, our findings uncover the neural correlates of memory performance in addition to traditional behavioral tests.
Collapse
Affiliation(s)
- Qing-Tian Duan
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Lu Dai
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Lu-Kang Wang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xian-Jun Shi
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
83
|
Brodt S, Inostroza M, Niethard N, Born J. Sleep-A brain-state serving systems memory consolidation. Neuron 2023; 111:1050-1075. [PMID: 37023710 DOI: 10.1016/j.neuron.2023.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Although long-term memory consolidation is supported by sleep, it is unclear how it differs from that during wakefulness. Our review, focusing on recent advances in the field, identifies the repeated replay of neuronal firing patterns as a basic mechanism triggering consolidation during sleep and wakefulness. During sleep, memory replay occurs during slow-wave sleep (SWS) in hippocampal assemblies together with ripples, thalamic spindles, neocortical slow oscillations, and noradrenergic activity. Here, hippocampal replay likely favors the transformation of hippocampus-dependent episodic memory into schema-like neocortical memory. REM sleep following SWS might balance local synaptic rescaling accompanying memory transformation with a sleep-dependent homeostatic process of global synaptic renormalization. Sleep-dependent memory transformation is intensified during early development despite the immaturity of the hippocampus. Overall, beyond its greater efficacy, sleep consolidation differs from wake consolidation mainly in that it is supported, rather than impaired, by spontaneous hippocampal replay activity possibly gating memory formation in neocortex.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
84
|
Zhou Z, Norimoto H. Sleep sharp wave ripple and its functions in memory and synaptic plasticity. Neurosci Res 2023; 189:20-28. [PMID: 37045494 DOI: 10.1016/j.neures.2023.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 04/14/2023]
Abstract
Memory is one of the fundamental cognitive functions of brain. The formation and consolidation of memory depend on the hippocampus and sleep. Sharp wave ripple (SWR) is an electrophysiological event which is most frequently observed in the hippocampus during sleep. It represents a highly synchronized neuronal activity pattern which modulates numerous brain regions including the neocortex, subcortical areas, and the hippocampus itself. In this review, we discuss how SWRs link experiences to memories and what happens in the hippocampus and other brain regions during sleep by focusing on synaptic plasticity.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Graduate School of Medicine, Hokkaido University, West 7 North 15 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Hiroaki Norimoto
- Graduate School of Medicine, Hokkaido University, West 7 North 15 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
85
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
86
|
Lodovichi C, Ratto GM. Control of circadian rhythm on cortical excitability and synaptic plasticity. Front Neural Circuits 2023; 17:1099598. [PMID: 37063387 PMCID: PMC10098176 DOI: 10.3389/fncir.2023.1099598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/09/2023] [Indexed: 04/18/2023] Open
Abstract
Living organisms navigate through a cyclic world: activity, feeding, social interactions are all organized along the periodic succession of night and day. At the cellular level, periodic activity is controlled by the molecular machinery driving the circadian regulation of cellular homeostasis. This mechanism adapts cell function to the external environment and its crucial importance is underlined by its robustness and redundancy. The cell autonomous clock regulates cell function by the circadian modulation of mTOR, a master controller of protein synthesis. Importantly, mTOR integrates the circadian modulation with synaptic activity and extracellular signals through a complex signaling network that includes the RAS-ERK pathway. The relationship between mTOR and the circadian clock is bidirectional, since mTOR can feedback on the cellular clock to shift the cycle to maintain the alignment with the environmental conditions. The mTOR and ERK pathways are crucial determinants of synaptic plasticity and function and thus it is not surprising that alterations of the circadian clock cause defective responses to environmental challenges, as witnessed by the bi-directional relationship between brain disorders and impaired circadian regulation. In physiological conditions, the feedback between the intrinsic clock and the mTOR pathway suggests that also synaptic plasticity should undergo circadian regulation.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
| | - Gian Michele Ratto
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
87
|
Cope EC, Wang SH, Waters RC, Gore IR, Vasquez B, Laham BJ, Gould E. Activation of the CA2-ventral CA1 pathway reverses social discrimination dysfunction in Shank3B knockout mice. Nat Commun 2023; 14:1750. [PMID: 36991001 PMCID: PMC10060401 DOI: 10.1038/s41467-023-37248-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Mutation or deletion of the SHANK3 gene, which encodes a synaptic scaffolding protein, is linked to autism spectrum disorder and Phelan-McDermid syndrome, conditions associated with social memory impairments. Shank3B knockout mice also exhibit social memory deficits. The CA2 region of the hippocampus integrates numerous inputs and sends a major output to the ventral CA1 (vCA1). Despite finding few differences in excitatory afferents to the CA2 in Shank3B knockout mice, we found that activation of CA2 neurons as well as the CA2-vCA1 pathway restored social recognition function to wildtype levels. vCA1 neuronal oscillations have been linked to social memory, but we observed no differences in these measures between wildtype and Shank3B knockout mice. However, activation of the CA2 enhanced vCA1 theta power in Shank3B knockout mice, concurrent with behavioral improvements. These findings suggest that stimulating adult circuitry in a mouse model with neurodevelopmental impairments can invoke latent social memory function.
Collapse
Affiliation(s)
- Elise C Cope
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Samantha H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Renée C Waters
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Isha R Gore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Betsy Vasquez
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Blake J Laham
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
88
|
Vancura B, Geiller T, Losonczy A. Organization and Plasticity of Inhibition in Hippocampal Recurrent Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532296. [PMID: 36993553 PMCID: PMC10054977 DOI: 10.1101/2023.03.13.532296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Excitatory-inhibitory interactions structure recurrent network dynamics for efficient cortical computations. In the CA3 area of the hippocampus, recurrent circuit dynamics, including experience-induced plasticity at excitatory synapses, are thought to play a key role in episodic memory encoding and consolidation via rapid generation and flexible selection of neural ensembles. However, in vivo activity of identified inhibitory motifs supporting this recurrent circuitry has remained largely inaccessible, and it is unknown whether CA3 inhibition is also modifiable upon experience. Here we use large-scale, 3-dimensional calcium imaging and retrospective molecular identification in the mouse hippocampus to obtain the first comprehensive description of molecularly-identified CA3 interneuron dynamics during both spatial navigation and sharp-wave ripple (SWR)-associated memory consolidation. Our results uncover subtype-specific dynamics during behaviorally distinct brain-states. Our data also demonstrate predictive, reflective, and experience-driven plastic recruitment of specific inhibitory motifs during SWR-related memory reactivation. Together these results assign active roles for inhibitory circuits in coordinating operations and plasticity in hippocampal recurrent circuits.
Collapse
|
89
|
Meftah S, Gan J. Alzheimer's disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. Front Synaptic Neurosci 2023; 15:1129036. [PMID: 36970154 PMCID: PMC10033629 DOI: 10.3389/fnsyn.2023.1129036] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The synapse has consistently been considered a vulnerable and critical target within Alzheimer's disease, and synapse loss is, to date, one of the main biological correlates of cognitive decline within Alzheimer's disease. This occurs prior to neuronal loss with ample evidence that synaptic dysfunction precedes this, in support of the idea that synaptic failure is a crucial stage within disease pathogenesis. The two main pathological hallmarks of Alzheimer's disease, abnormal aggregates of amyloid or tau proteins, have had demonstrable effects on synaptic physiology in animal and cellular models of Alzheimer's disease. There is also growing evidence that these two proteins may have a synergistic effect on neurophysiological dysfunction. Here, we review some of the main findings of synaptic alterations in Alzheimer's disease, and what we know from Alzheimer's disease animal and cellular models. First, we briefly summarize some of the human evidence to suggest that synapses are altered, including how this relates to network activity. Subsequently, animal and cellular models of Alzheimer's disease are considered, highlighting mouse models of amyloid and tau pathology and the role these proteins may play in synaptic dysfunction, either in isolation or examining how the two pathologies may interact in dysfunction. This specifically focuses on neurophysiological function and dysfunction observed within these animal models, typically measured using electrophysiology or calcium imaging. Following synaptic dysfunction and loss, it would be impossible to imagine that this would not alter oscillatory activity within the brain. Therefore, this review also discusses how this may underpin some of the aberrant oscillatory patterns seen in animal models of Alzheimer's disease and human patients. Finally, an overview of some key directions and considerations in the field of synaptic dysfunction in Alzheimer's disease is covered. This includes current therapeutics that are targeted specifically at synaptic dysfunction, but also methods that modulate activity to rescue aberrant oscillatory patterns. Other important future avenues of note in this field include the role of non-neuronal cell types such as astrocytes and microglia, and mechanisms of dysfunction independent of amyloid and tau in Alzheimer's disease. The synapse will certainly continue to be an important target within Alzheimer's disease for the foreseeable future.
Collapse
Affiliation(s)
- Soraya Meftah
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jian Gan
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
90
|
Chen ZS, Wilson MA. How our understanding of memory replay evolves. J Neurophysiol 2023; 129:552-580. [PMID: 36752404 PMCID: PMC9988534 DOI: 10.1152/jn.00454.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Memory reactivations and replay, widely reported in the hippocampus and cortex across species, have been implicated in memory consolidation, planning, and spatial and skill learning. Technological advances in electrophysiology, calcium imaging, and human neuroimaging techniques have enabled neuroscientists to measure large-scale neural activity with increasing spatiotemporal resolution and have provided opportunities for developing robust analytic methods to identify memory replay. In this article, we first review a large body of historically important and representative memory replay studies from the animal and human literature. We then discuss our current understanding of memory replay functions in learning, planning, and memory consolidation and further discuss the progress in computational modeling that has contributed to these improvements. Next, we review past and present analytic methods for replay analyses and discuss their limitations and challenges. Finally, looking ahead, we discuss some promising analytic methods for detecting nonstereotypical, behaviorally nondecodable structures from large-scale neural recordings. We argue that seamless integration of multisite recordings, real-time replay decoding, and closed-loop manipulation experiments will be essential for delineating the role of memory replay in a wide range of cognitive and motor functions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
91
|
Oliva A, Fernandez-Ruiz A, Karaba LA. CA2 orchestrates hippocampal network dynamics. Hippocampus 2023; 33:241-251. [PMID: 36575880 PMCID: PMC9974898 DOI: 10.1002/hipo.23495] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/25/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022]
Abstract
The hippocampus is composed of various subregions: CA1, CA2, CA3, and the dentate gyrus (DG). Despite the abundant hippocampal research literature, until recently, CA2 received little attention. The development of new genetic and physiological tools allowed recent studies characterizing the unique properties and functional roles of this hippocampal subregion. Despite its small size, the cellular content of CA2 is heterogeneous at the molecular and physiological levels. CA2 has been heavily implicated in social behaviors, including social memory. More generally, the mechanisms by which the hippocampus is involved in memory include the reactivation of neuronal ensembles following experience. This process is coordinated by synchronous network events known as sharp-wave ripples (SWRs). Recent evidence suggests that CA2 plays an important role in the generation of SWRs. The unique connectivity and physiological properties of CA2 pyramidal cells make this region a computational hub at the core of hippocampal information processing. Here, we review recent findings that support the role of CA2 in coordinating hippocampal network dynamics from a systems neuroscience perspective.
Collapse
Affiliation(s)
- Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | | | - Lindsay A Karaba
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| |
Collapse
|
92
|
Salimi-Nezhad N, Missault S, Notario-Reinoso A, Hassani A, Amiri M, Keliris GA. The impact of selective and non-selective medial septum stimulation on hippocampal neuronal oscillations: A study based on modeling and experiments. Neurobiol Dis 2023; 180:106052. [PMID: 36822547 DOI: 10.1016/j.nbd.2023.106052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with a rising socioeconomic impact on societies. The hippocampus (HPC), which plays an important role in AD, is affected in the early stages. The medial septum (MS) in the forebrain provides major cholinergic input to the HPC and has been shown to play a significant role in generating oscillations in hippocampal neurons. Cholinergic neurons in the basal forebrain are particularly vulnerable to neurodegeneration in AD. To better understand the role of MS neurons including the cholinergic, glutamatergic, and GABAergic subpopulations in generating the well-known brain rhythms in HPC including delta, theta, slow gamma, and fast gamma oscillations, we designed a detailed computational model of the septohippocampal pathway. We validated the results of our model, using electrophysiological recordings in HPC with and without stimulation of the cholinergic neurons in MS using designer receptors exclusively activated by designer drugs (DREADDs) in healthy male ChAT-cre rats. Then, we eliminated 75% of the MS cholinergic neurons in the model to simulate degeneration in AD. A series of selective and non-selective stimulations of the remaining MS neurons were performed to understand the dynamics of oscillation regulation in the HPC during the degenerated state. In this way, appropriate stimulation strategies able to normalize the aberrant oscillations are proposed. We found that selectively stimulating the remaining healthy cholinergic neurons was sufficient for network recovery and compare this to stimulating other subpopulations and a non-selective stimulation of all MS neurons. Our data provide valuable information for the development of new therapeutic strategies in AD and a tool to test and predict the outcome of potential theranostic manipulations.
Collapse
Affiliation(s)
- Nima Salimi-Nezhad
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Anaïs Notario-Reinoso
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Atefe Hassani
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Georgios A Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
93
|
Giri B, Kaya U, Maboudi K, Abel T, Diba K. Sleep loss diminishes hippocampal reactivation and replay. RESEARCH SQUARE 2023:rs.3.rs-2540186. [PMID: 36824950 PMCID: PMC9949250 DOI: 10.21203/rs.3.rs-2540186/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Memories benefit from sleep, and sleep loss immediately following learning has a negative impact on subsequent memory storage. Several prominent hypotheses ascribe a central role to hippocampal sharp-wave ripples (SWRs), and the concurrent reactivation and replay of neuronal patterns from waking experience, in the offline memory consolidation process that occurs during sleep. However, little is known about how SWRs, reactivation, and replay are affected when animals are subjected to sleep deprivation. We performed long duration (~12 h), high-density silicon probe recordings from rat hippocampal CA1 neurons, in animals that were either sleeping or sleep deprived following exposure to a novel maze environment. We found that SWRs showed a sustained rate of activity during sleep deprivation, similar to or higher than in natural sleep, but with decreased amplitudes for the sharp-waves combined with higher frequencies for the ripples. Furthermore, while hippocampal pyramidal cells showed a log-normal distribution of firing rates during sleep, these distributions were negatively skewed with a higher mean firing rate in both pyramidal cells and interneurons during sleep deprivation. During SWRs, however, firing rates were remarkably similar between both groups. Despite the abundant quantity of SWRs and the robust firing activity during these events in both groups, we found that reactivation of neurons was either completely abolished or significantly diminished during sleep deprivation compared to sleep. Interestingly, reactivation partially rebounded upon recovery sleep, but failed to reach the levels characteristic of natural sleep. Similarly, the number of replays were significantly lower during sleep deprivation and recovery sleep compared to natural sleep. These results provide a network-level account for the negative impact of sleep loss on hippocampal function and demonstrate that sleep loss impacts memory storage by causing a dissociation between the amount of SWRs and the replays and reactivations that take place during these events.
Collapse
Affiliation(s)
- Bapun Giri
- Dept of Anesthesiology and Neuroscience Graduate Program, 1150 W Medical Center Dr, University of Michigan Medical School, Ann Arbor, MI 48109
- Dept of Psychology, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201
| | - Utku Kaya
- Dept of Anesthesiology and Neuroscience Graduate Program, 1150 W Medical Center Dr, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kourosh Maboudi
- Dept of Anesthesiology and Neuroscience Graduate Program, 1150 W Medical Center Dr, University of Michigan Medical School, Ann Arbor, MI 48109
- Dept of Psychology, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Kamran Diba
- Dept of Anesthesiology and Neuroscience Graduate Program, 1150 W Medical Center Dr, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
94
|
Wimmer GE, Liu Y, McNamee DC, Dolan RJ. Distinct replay signatures for prospective decision-making and memory preservation. Proc Natl Acad Sci U S A 2023; 120:e2205211120. [PMID: 36719914 PMCID: PMC9963918 DOI: 10.1073/pnas.2205211120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/05/2022] [Indexed: 02/01/2023] Open
Abstract
Theories of neural replay propose that it supports a range of functions, most prominently planning and memory consolidation. Here, we test the hypothesis that distinct signatures of replay in the same task are related to model-based decision-making ("planning") and memory preservation. We designed a reward learning task wherein participants utilized structure knowledge for model-based evaluation, while at the same time had to maintain knowledge of two independent and randomly alternating task environments. Using magnetoencephalography and multivariate analysis, we first identified temporally compressed sequential reactivation, or replay, both prior to choice and following reward feedback. Before choice, prospective replay strength was enhanced for the current task-relevant environment when a model-based planning strategy was beneficial. Following reward receipt, and consistent with a memory preservation role, replay for the alternative distal task environment was enhanced as a function of decreasing recency of experience with that environment. Critically, these planning and memory preservation relationships were selective to pre-choice and post-feedback periods, respectively. Our results provide support for key theoretical proposals regarding the functional role of replay and demonstrate that the relative strength of planning and memory-related signals are modulated by ongoing computational and task demands.
Collapse
Affiliation(s)
- G. Elliott Wimmer
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, LondonWC1B 5EH, UK
- Wellcome Centre for Human Neuroimaging, University College London, LondonWC1N 3BG, UK
| | - Yunzhe Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
- Chinese Institute for Brain Research, Beijing100875, China
| | - Daniel C. McNamee
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, LondonWC1B 5EH, UK
- Wellcome Centre for Human Neuroimaging, University College London, LondonWC1N 3BG, UK
- Neuroscience Programme, Champalimaud Research, Lisbon1400-038, Portugal
| | - Raymond J. Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, LondonWC1B 5EH, UK
- Wellcome Centre for Human Neuroimaging, University College London, LondonWC1N 3BG, UK
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
| |
Collapse
|
95
|
Aru J, Drüke M, Pikamäe J, Larkum ME. Mental navigation and the neural mechanisms of insight. Trends Neurosci 2023; 46:100-109. [PMID: 36462993 DOI: 10.1016/j.tins.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
How do new ideas come about? The central hypothesis presented here states that insights might happen during mental navigation and correspond to rapid plasticity at the cellular level. We highlight the differences between neocortical and hippocampal mechanisms of insight. We argue that the suddenness of insight can be related to the sudden emergence of place fields in the hippocampus. According to our hypothesis, insights are supported by a state of mind-wandering that can be tied to the process of combining knowledge pieces during sharp-wave ripples (SWRs). Our framework connects the dots between research on creativity, mental navigation, and specific synaptic plasticity mechanisms in the hippocampus.
Collapse
Affiliation(s)
- Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia.
| | - Moritz Drüke
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Juhan Pikamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Matthew E Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
96
|
Doostmohammadi J, Gieselmann MA, van Kempen J, Lashgari R, Yoonessi A, Thiele A. Ripples in macaque V1 and V4 are modulated by top-down visual attention. Proc Natl Acad Sci U S A 2023; 120:e2210698120. [PMID: 36696442 PMCID: PMC9945997 DOI: 10.1073/pnas.2210698120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/22/2022] [Indexed: 01/26/2023] Open
Abstract
Sharp-wave ripples (SWRs) are highly synchronous neuronal activity events. They have been predominantly observed in the hippocampus during offline states such as pause in exploration, slow-wave sleep, and quiescent wakefulness. SWRs have been linked to memory consolidation, spatial navigation, and spatial decision-making. Recently, SWRs have been reported during visual search, a form of remote spatial exploration, in macaque hippocampus. However, the association between SWRs and multiple forms of awake conscious and goal-directed behavior is unknown. We report that ripple activity occurs in macaque visual areas V1 and V4 during focused spatial attention. The occurrence of ripples is modulated by stimulus characteristics, increased by attention toward the receptive field, and by the size of the attentional focus. During attention cued to the receptive field, the monkey's reaction time in detecting behaviorally relevant events was reduced by ripples. These results show that ripple activity is not limited to hippocampal activity during offline states, rather they occur in the neocortex during active attentive states and vigilance behaviors.
Collapse
Affiliation(s)
- Jafar Doostmohammadi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran13, Iran
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran13, Iran
| | - Marc Alwin Gieselmann
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
| | - Jochem van Kempen
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
| | - Reza Lashgari
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran13, Iran
| | - Ali Yoonessi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran13, Iran
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
| |
Collapse
|
97
|
Abstract
The restorative function of sleep is shaped by its duration, timing, continuity, subjective quality, and efficiency. Current sleep recommendations specify only nocturnal duration and have been largely derived from sleep self-reports that can be imprecise and miss relevant details. Sleep duration, preferred timing, and ability to withstand sleep deprivation are heritable traits whose expression may change with age and affect the optimal sleep prescription for an individual. Prevailing societal norms and circumstances related to work and relationships interact to influence sleep opportunity and quality. The value of allocating time for sleep is revealed by the impact of its restriction on behavior, functional brain imaging, sleep macrostructure, and late-life cognition. Augmentation of sleep slow oscillations and spindles have been proposed for enhancing sleep quality, but they inconsistently achieve their goal. Crafting bespoke sleep recommendations could benefit from large-scale, longitudinal collection of objective sleep data integrated with behavioral and self-reported data.
Collapse
Affiliation(s)
- Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
98
|
Activity Patterns of Individual Neurons and Ensembles Correlated with Retrieval of a Contextual Memory in the Dorsal CA1 of Mouse Hippocampus. J Neurosci 2023; 43:113-124. [PMID: 36332977 PMCID: PMC9838698 DOI: 10.1523/jneurosci.1407-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
The hippocampus is crucial for retrieval of contextual memories. The activation of a subpopulation of neurons in the dorsal CA1 (dCA1) of the hippocampus is required for memory retrieval. Given that hippocampal neurons exhibit distinct patterns of response during memory retrieval, the activity patterns of individual neurons or ensembles may be critically involved in memory retrieval. However, this relation has been unclear. To investigate this question, we used an in vivo microendoscope calcium imaging technique to optically record neuronal activity in the dCA1 of male and female mice. We observed that a portion of dCA1 neurons increased their responses to the learned context after contextual fear conditioning (FC), resulting in overall increase in response of neuronal population compared with simple context exposure. Such increased response was specific to the conditioned context as it disappeared in neutral context. The magnitude of increase in neuronal responses by FC was proportional to memory strength during retrieval. The increases in activity preferentially occurred during the putative sharp wave ripple events and were not simply because of animal's movement and immobility. At the ensemble level, synchronous cell activity patterns were associated with memory retrieval. Accordingly, when such patterns were more similar between conditioned and neutral context, animals displayed proportionally more similar level of freezing. Together, these results indicate that increase in responses of individual neurons and synchronous cell activity patterns in the dCA1 neuronal network are critically involved in representing a contextual memory recall.SIGNIFICANCE STATEMENT Neurons in the dorsal CA1 of the hippocampus are crucial for memory retrieval. By using in vivo calcium imaging methods for recording neuronal activity, we demonstrate that dCA1 neurons increased their responses to the learned context specifically by FC and such changes correlated with memory strength during retrieval. Moreover, distinct synchronous cell activity patterns were formed by FC and involved in representing contextual memory retrieval. These findings reveal dynamic activity features of dCA1 neurons that are involved in contextual memory retrieval.
Collapse
|
99
|
Kim J, Joshi A, Frank L, Ganguly K. Cortical-hippocampal coupling during manifold exploration in motor cortex. Nature 2023; 613:103-110. [PMID: 36517602 DOI: 10.1038/s41586-022-05533-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Systems consolidation-a process for long-term memory stabilization-has been hypothesized to occur in two stages1-4. Whereas new memories require the hippocampus5-9, they become integrated into cortical networks over time10-12, making them independent of the hippocampus. How hippocampal-cortical dialogue precisely evolves during this and how cortical representations change in concert is unknown. Here, we use a skill learning task13,14 to monitor the dynamics of cross-area coupling during non-rapid eye movement sleep along with changes in primary motor cortex (M1) representational stability. Our results indicate that precise cross-area coupling between hippocampus, prefrontal cortex and M1 can demarcate two distinct stages of processing. We specifically find that each animal demonstrates a sharp increase in prefrontal cortex and M1 sleep slow oscillation coupling with stabilization of performance. This sharp increase then predicts a drop in hippocampal sharp-wave ripple (SWR)-M1 slow oscillation coupling-suggesting feedback to inform hippocampal disengagement and transition to a second stage. Notably, the first stage shows significant increases in hippocampal SWR-M1 slow oscillation coupling in the post-training sleep and is closely associated with rapid learning and variability of the M1 low-dimensional manifold. Strikingly, even after consolidation, inducing new manifold exploration by changing task parameters re-engages hippocampal-M1 coupling. We thus find evidence for dynamic hippocampal-cortical dialogue associated with manifold exploration during learning and adaptation.
Collapse
Affiliation(s)
- Jaekyung Kim
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Abhilasha Joshi
- HHMI and Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Loren Frank
- HHMI and Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Karunesh Ganguly
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
100
|
Jackson A, Xu W. Role of cerebellum in sleep-dependent memory processes. Front Syst Neurosci 2023; 17:1154489. [PMID: 37143709 PMCID: PMC10151545 DOI: 10.3389/fnsys.2023.1154489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
The activities and role of the cerebellum in sleep have, until recently, been largely ignored by both the sleep and cerebellum fields. Human sleep studies often neglect the cerebellum because it is at a position in the skull that is inaccessible to EEG electrodes. Animal neurophysiology sleep studies have focussed mainly on the neocortex, thalamus and the hippocampus. However, recent neurophysiological studies have shown that not only does the cerebellum participate in the sleep cycle, but it may also be implicated in off-line memory consolidation. Here we review the literature on cerebellar activity during sleep and the role it plays in off-line motor learning, and introduce a hypothesis whereby the cerebellum continues to compute internal models during sleep that train the neocortex.
Collapse
Affiliation(s)
- Andrew Jackson
- Institute of Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wei Xu
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Wei Xu,
| |
Collapse
|