51
|
Pallett LJ, Swadling L, Diniz M, Maini AA, Schwabenland M, Gasull AD, Davies J, Kucykowicz S, Skelton JK, Thomas N, Schmidt NM, Amin OE, Gill US, Stegmann KA, Burton AR, Stephenson E, Reynolds G, Whelan M, Sanchez J, de Maeyer R, Thakker C, Suveizdyte K, Uddin I, Ortega-Prieto AM, Grant C, Froghi F, Fusai G, Lens S, Pérez-Del-Pulgar S, Al-Akkad W, Mazza G, Noursadeghi M, Akbar A, Kennedy PTF, Davidson BR, Prinz M, Chain BM, Haniffa M, Gilroy DW, Dorner M, Bengsch B, Schurich A, Maini MK. Tissue CD14 +CD8 + T cells reprogrammed by myeloid cells and modulated by LPS. Nature 2023; 614:334-342. [PMID: 36697826 DOI: 10.1038/s41586-022-05645-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/12/2022] [Indexed: 01/26/2023]
Abstract
The liver is bathed in bacterial products, including lipopolysaccharide transported from the intestinal portal vasculature, but maintains a state of tolerance that is exploited by persistent pathogens and tumours1-4. The cellular basis mediating this tolerance, yet allowing a switch to immunity or immunopathology, needs to be better understood for successful immunotherapy of liver diseases. Here we show that a variable proportion of CD8+ T cells compartmentalized in the human liver co-stain for CD14 and other prototypic myeloid membrane proteins and are enriched in close proximity to CD14high myeloid cells in hepatic zone 2. CD14+CD8+ T cells preferentially accumulate within the donor pool in liver allografts, among hepatic virus-specific and tumour-infiltrating responses, and in cirrhotic ascites. CD14+CD8+ T cells exhibit increased turnover, activation and constitutive immunomodulatory features with high homeostatic IL-10 and IL-2 production ex vivo, and enhanced antiviral/anti-tumour effector function after TCR engagement. This CD14+CD8+ T cell profile can be recapitulated by the acquisition of membrane proteins-including the lipopolysaccharide receptor complex-from mononuclear phagocytes, resulting in augmented tumour killing by TCR-redirected T cells in vitro. CD14+CD8+ T cells express integrins and chemokine receptors that favour interactions with the local stroma, which can promote their induction through CXCL12. Lipopolysaccharide can also increase the frequency of CD14+CD8+ T cells in vitro and in vivo, and skew their function towards the production of chemotactic and regenerative cytokines. Thus, bacterial products in the gut-liver axis and tissue stromal factors can tune liver immunity by driving myeloid instruction of CD8+ T cells with immunomodulatory ability.
Collapse
Affiliation(s)
- Laura J Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK.
| | - Leo Swadling
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Mariana Diniz
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | | | | | | | - Jessica Davies
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Stephanie Kucykowicz
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | | | - Niclas Thomas
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Nathalie M Schmidt
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Oliver E Amin
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Upkar S Gill
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kerstin A Stegmann
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Alice R Burton
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Emily Stephenson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matt Whelan
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Jenifer Sanchez
- School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Roel de Maeyer
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Clare Thakker
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Kornelija Suveizdyte
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Imran Uddin
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | | | | | - Farid Froghi
- Division of Surgery, University College London, London, UK
| | - Giuseppe Fusai
- Division of Surgery, University College London, London, UK
| | - Sabela Lens
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
- Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Sofia Pérez-Del-Pulgar
- Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Walid Al-Akkad
- Institute for Liver & Digestive Health, University College London, London, UK
| | - Giuseppe Mazza
- Institute for Liver & Digestive Health, University College London, London, UK
| | - Mahdad Noursadeghi
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Arne Akbar
- Division of Medicine, University College London, London, UK
| | - Patrick T F Kennedy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Benjamin M Chain
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
- Department of Computer Science, University College London, London, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek W Gilroy
- Division of Medicine, University College London, London, UK
| | - Marcus Dorner
- Department of Medicine, Imperial College London, London, UK
| | - Bertram Bengsch
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Anna Schurich
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
- School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Mala K Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK.
| |
Collapse
|
52
|
Wood-Trageser MA, Lesniak D, Gambella A, Golnoski K, Feng S, Bucuvalas J, Sanchez-Fueyo A, Demetris AJ. Next-generation pathology detection of T cell-antigen-presenting cell immune synapses in human liver allografts. Hepatology 2023; 77:355-366. [PMID: 35819312 PMCID: PMC9834436 DOI: 10.1002/hep.32666] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS In otherwise near-normal appearing biopsies by routine light microscopy, next-generation pathology (NGP) detected close pairings (immune pairs; iPAIRs) between lymphocytes and antigen-presenting cells (APCs) that predicted immunosuppression weaning failure in pediatric liver transplant (LTx) recipients (Immunosuppression Withdrawal for Stable Pediatric Liver Transplant Recipients [iWITH], NCT01638559). We hypothesized that NGP-detected iPAIRs enrich for true immune synapses, as determined by nuclear shape metrics, intercellular distances, and supramolecular activation complex (SMAC) formation. APPROACH AND RESULTS Intralobular iPAIRs (CD45 high lymphocyte-major histocompatibility complex II + APC pairs; n = 1167, training set) were identified at low resolution from multiplex immunohistochemistry-stained liver biopsy slides from several multicenter LTx immunosuppression titration clinical trials (iWITH; NCT02474199 (Donor Alloantigen Reactive Tregs (darTregs) for Calcineurin Inhibitor (CNI) Reduction (ARTEMIS); Prospective Longitudinal Study of iWITH Screen Failures Secondary to Histopathology). After excluding complex multicellular aggregates, high-resolution imaging was used to examine immune synapse formation ( n = 998). By enriching for close intranuclear lymphocyte-APC distance (mean: 0.713 μm) and lymphocyte nuclear flattening (mean ferret diameter: 2.1), SMAC formation was detected in 29% of iPAIR-engaged versus 9.5% of unpaired lymphocytes. Integration of these morphometrics enhanced NGP detection of immune synapses (ai-iSYN). Using iWITH preweaning biopsies from eligible patients ( n = 53; 18 tolerant, 35 nontolerant; testing set), ai-iSYN accurately predicted (87.3% accuracy vs. 81.4% for iPAIRs; 100% sensitivity, 75% specificity) immunosuppression weaning failure. This confirmed the presence and importance of intralobular immune synapse formation in liver allografts. Stratification of biopsy mRNA expression data by immune synapse quantity yielded the top 20 genes involved in T cell activation and immune synapse formation and stability. CONCLUSIONS NGP-detected immune synapses (subpathological rejection) in LTx patients prior to immunosuppression reduction suggests that NGP-detected (allo)immune activity usefulness for titration of immunosuppressive therapy in various settings.
Collapse
Affiliation(s)
- Michelle A Wood-Trageser
- Division of Liver and Transplant Pathology , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Drew Lesniak
- Division of Liver and Transplant Pathology , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Alessandro Gambella
- Division of Liver and Transplant Pathology , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
- Pathology Unit, Department of Medical Sciences , University of Turin , Torino , Italy
| | - Kayla Golnoski
- Division of Liver and Transplant Pathology , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Sandy Feng
- Division of Transplantation, Department of Surgery , University of California San Francisco , San Francisco , California , USA
| | - John Bucuvalas
- Mount Sinai Kravis Children's Hospital and Recanati/Miller Transplantation Institute , Mount Sinai Health System , New York , New York , USA
| | | | - A Jake Demetris
- Division of Liver and Transplant Pathology , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| |
Collapse
|
53
|
Wang WX, Jia R, Jin XY, Li X, Zhou SN, Zhang XN, Zhou CB, Wang FS, Fu J. Serum cytokine change profile associated with HBsAg loss during combination therapy with PEG-IFN-α in NAs-suppressed chronic hepatitis B patients. Front Immunol 2023; 14:1121778. [PMID: 36756119 PMCID: PMC9899895 DOI: 10.3389/fimmu.2023.1121778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Objective The aim of this study was to explore the profile of cytokine changes during the combination therapy with pegylated interferon alpha (PEG-IFN-α) and its relationship with HBsAg loss in nucleos(t)ide analogs (NAs)-suppressed chronic hepatitis B patients. Methods Seventy-six patients with chronic hepatitis B with HBsAg less than 1,500 IU/ml and HBV DNA negative after receiving ≥ 1-year NAs therapy were enrolled. Eighteen patients continued to take NAs monotherapy (the NAs group), and 58 patients received combination therapy with NAs and PEG-IFN-α (the Add-on group). The levels of IFNG, IL1B, IL1RN, IL2, IL4, IL6, IL10, IL12A, IL17A, CCL2, CCL3, CCL5, CXCL8, CXCL10, TNF, and CSF2 in peripheral blood during treatment were detected. Results At week 48, 0.00% (0/18) in the NAs group and 25.86% (15/58) in the Add-on group achieved HBsAg loss. During 48 weeks of combined treatment, there was a transitory increase in the levels of ALT, IL1RN, IL2, and CCL2. Compared to the NAs group, CXCL8 and CXCL10 in the Add-on group remain higher after rising, yet CCL3 showed a continuously increasing trend. Mild and early increases in IL1B, CCL3, IL17A, IL2, IL4, IL6, and CXCL8 were associated with HBsAg loss or decrease >1 log, while sustained high levels of CCL5 and CXCL10 were associated with poor responses to Add-on therapy at week 48. Conclusions The serum cytokine change profile is closely related to the response to the combination therapy with PEG-IFN-α and NAs, and may help to reveal the mechanism of functional cure and discover new immunological predictors and new therapeutic targets.
Collapse
Affiliation(s)
- Wen-Xin Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Rui Jia
- Department of Gastroenterology, The 985th Hospital of Joint Logistic Support Force of Chinese PLA, Taiyuan, China
| | - Xue-Yuan Jin
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiaoyan Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China
| | - Shuang-Nan Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiao-Ning Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China,*Correspondence: Junliang Fu, ; Fu-Sheng Wang,
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China,*Correspondence: Junliang Fu, ; Fu-Sheng Wang,
| |
Collapse
|
54
|
The scientific basis of combination therapy for chronic hepatitis B functional cure. Nat Rev Gastroenterol Hepatol 2023; 20:238-253. [PMID: 36631717 DOI: 10.1038/s41575-022-00724-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 01/13/2023]
Abstract
Functional cure of chronic hepatitis B (CHB) - or hepatitis B surface antigen (HBsAg) loss after 24 weeks off therapy - is now the goal of treatment, but is rarely achieved with current therapy. Understanding the hepatitis B virus (HBV) life cycle and immunological defects that lead to persistence can identify targets for novel therapy. Broadly, treatments fall into three categories: those that reduce viral replication, those that reduce antigen load and immunotherapies. Profound viral suppression alone does not achieve quantitative (q)HBsAg reduction or HBsAg loss. Combining nucleos(t)ide analogues and immunotherapy reduces qHBsAg levels and induces HBsAg loss in some patients, particularly those with low baseline qHBsAg levels. Even agents that are specifically designed to reduce viral antigen load might not be able to achieve sustained HBsAg loss when used alone. Thus, rationale exists for the use of combinations of all three therapy types. Monitoring during therapy is important not just to predict HBsAg loss but also to understand mechanisms of HBsAg loss using viral and immunological biomarkers, and in selected cases intrahepatic sampling. We consider various paths to functional cure of CHB and the need to individualize treatment of this heterogeneous infection until a therapeutic avenue for all patients with CHB is available.
Collapse
|
55
|
Min Y, Wei X, Xia X, Wei Z, Li R, Jin J, Liu Z, Hu X, Peng X. Hepatitis B virus infection: An insight into the clinical connection and molecular interaction between hepatitis B virus and host extrahepatic cancer risk. Front Immunol 2023; 14:1141956. [PMID: 36936956 PMCID: PMC10014788 DOI: 10.3389/fimmu.2023.1141956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
The evidence for chronic hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) occurrence is well established. The hepatocyte epithelium carcinogenesis caused by HBV has been investigated and reviewed in depth. Nevertheless, recent findings from preclinical and observational studies suggested that chronic HBV infection is equally important in extrahepatic cancer occurrence and survival, specifically gastrointestinal system-derived cancers. Immune microenvironment changes (immune-suppressive cytokine infiltration), epigenetic modification (N6-methyladenosine), molecular signaling pathways (PI3K-Akt and Wnt), and serum biomarkers such as hepatitis B virus X (HBx) protein are potential underlying mechanisms in chronic HBV infection-induced extrahepatic cancers. This narrative review aimed to comprehensively summarize the most recent advances in evaluating the association between chronic HBV infection and extrahepatic cancer risk and explore the potential underlying molecular mechanisms in the carcinogenesis induction of extrahepatic cancers in chronic HBV conditions.
Collapse
Affiliation(s)
- Yu Min
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Xiaoyuan Wei
- Department of Head and Neck Oncology, Department of Radiation Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Xi Xia
- Research and Development Department Shanghai ETERN Biopharma Co., Ltd., Shanghai, China
| | - Zhigong Wei
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Ruidan Li
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jing Jin
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Zheran Liu
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Xiaolin Hu
- West China School of Nursing, West China Hospital, Sichuan University, Sichuan, China
- *Correspondence: Xingchen Peng, ; Xiaolin Hu,
| | - Xingchen Peng
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
- *Correspondence: Xingchen Peng, ; Xiaolin Hu,
| |
Collapse
|
56
|
Chen X, Liu X, Jiang Y, Xia N, Liu C, Luo W. Abnormally primed CD8 T cells: The Achilles' heel of CHB. Front Immunol 2023; 14:1106700. [PMID: 36936922 PMCID: PMC10014547 DOI: 10.3389/fimmu.2023.1106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a significant public health challenge, and more than 250 million people around world are infected with HBV. The clearance of HBV with virus-specific CD8 T cells is critical for a functional cure. However, naïve HBV-specific CD8 T cells are heavily hindered during the priming process, and this phenomenon is closely related to abnormal cell and signal interactions in the complex immune microenvironment. Here, we briefly summarize the recent progress in understanding the abnormal priming of HBV-specific CD8 T cells and some corresponding immunotherapies to facilitate their functional recovery, which provides a novel perspective for the design and development of immunotherapy for chronic HBV infection (CHB). Finally, we also highlight the balance between viral clearance and pathological liver injury induced by CD8 T-cell activation that should be carefully considered during drug development.
Collapse
Affiliation(s)
- Xiaoqing Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- The Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| |
Collapse
|
57
|
Lim TY, Perpiñán E, Londoño MC, Miquel R, Ruiz P, Kurt AS, Kodela E, Cross AR, Berlin C, Hester J, Issa F, Douiri A, Volmer FH, Taubert R, Williams E, Demetris AJ, Lesniak A, Bensimon G, Lozano JJ, Martinez-Llordella M, Tree T, Sánchez-Fueyo A. Low dose interleukin-2 selectively expands circulating regulatory T cells but fails to promote liver allograft tolerance in humans. J Hepatol 2023; 78:153-164. [PMID: 36087863 DOI: 10.1016/j.jhep.2022.08.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS CD4+CD25+Foxp3+ regulatory T cells (Tregs) are essential to maintain immunological tolerance and have been shown to promote liver allograft tolerance in both rodents and humans. Low-dose IL-2 (LDIL-2) can expand human endogenous circulating Tregs in vivo, but its role in suppressing antigen-specific responses and promoting Treg trafficking to the sites of inflammation is unknown. Likewise, whether LDIL-2 facilitates the induction of allograft tolerance has not been investigated in humans. METHODS We conducted a clinical trial in stable liver transplant recipients 2-6 years post-transplant to determine the capacity of LDIL-2 to suppress allospecific immune responses and allow for the complete discontinuation of maintenance immunosuppression (ClinicalTrials.gov NCT02949492). One month after LDIL-2 was initiated, those exhibiting at least a 2-fold increase in circulating Tregs gradually discontinued immunosuppression over a 4-month period while continuing LDIL-2 for a total treatment duration of 6 months. RESULTS All participants achieved a marked and sustained increase in circulating Tregs. However, this was not associated with the preferential expansion of donor-reactive Tregs and did not promote the accumulation of intrahepatic Tregs. Furthermore, LDIL-2 induced a marked IFNγ-orchestrated transcriptional response in the liver even before immunosuppression weaning was initiated. The trial was terminated after the first 6 participants failed to reach the primary endpoint owing to rejection requiring reinstitution of immunosuppression. CONCLUSIONS The expansion of circulating Tregs in response to LDIL-2 is not sufficient to control alloimmunity and to promote liver allograft tolerance, due, at least in part, to off-target effects that increase liver immunogenicity. Our trial provides unique insight into the mechanisms of action of immunomodulatory therapies such as LDIL-2 and their limitations in promoting alloantigen-specific effects and immunological tolerance. CLINICAL TRIALS REGISTRATION The study is registered at ClinicalTrials.gov (NCT02949492). IMPACT AND IMPLICATIONS The administration of low-dose IL-2 is an effective way of increasing the number of circulating regulatory T cells (Tregs), an immunosuppressive lymphocyte subset that is key for the establishment of immunological tolerance, but its use to promote allograft tolerance in the setting of clinical liver transplantation had not been explored before. In liver transplant recipients on tacrolimus monotherapy, low-dose IL-2 effectively expanded circulating Tregs but did not increase the number of Tregs with donor specificity, nor did it promote their trafficking to the transplanted liver. Low-dose IL-2 did not facilitate the discontinuation of tacrolimus and elicited, as an off-target effect, an IFNγ-orchestrated inflammatory response in the liver that resembled T cell-mediated rejection. These results, supporting an unexpected role for IL-2 in regulating the immunogenicity of the liver, highlight the need to carefully evaluate systemic immunoregulatory strategies with investigations that are not restricted to the blood compartment and involve target tissues such as the liver.
Collapse
Affiliation(s)
- Tiong Y Lim
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elena Perpiñán
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Maria-Carlota Londoño
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Liver Unit, Hospital Clínic Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Rosa Miquel
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Liver Histopathology Laboratory, King's College Hospital, London, UK
| | - Paula Ruiz
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ada S Kurt
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elisavet Kodela
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Amy R Cross
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Claudia Berlin
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Abdel Douiri
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Felix H Volmer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Evangelia Williams
- Department of Immunobiology, School of Immunology & Microbial Sciences (SIMS), King's College London, London, UK
| | | | - Andrew Lesniak
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gilbert Bensimon
- Département de Pharmacologie Clinique, Hôpital de la Pitié-Salpêtrière et UPMC Pharmacologie, Paris-Sorbonne Université, Paris, France; Laboratoire de Biostatistique, Epidémiologie Clinique, Santé Publique Innovation et Méthodologie (BESPIM), CHU-Nîmes, Nîmes, France
| | - Juan José Lozano
- Bioinformatic Platform, Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Carlos III Health Institute, Barcelona, Spain
| | - Marc Martinez-Llordella
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Tim Tree
- Department of Immunobiology, School of Immunology & Microbial Sciences (SIMS), King's College London, London, UK
| | - Alberto Sánchez-Fueyo
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
58
|
The Tumor Microenvironment of Hepatocellular Carcinoma: Untying an Intricate Immunological Network. Cancers (Basel) 2022; 14:cancers14246151. [PMID: 36551635 PMCID: PMC9776867 DOI: 10.3390/cancers14246151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
HCC, the most prevalent form of primary liver cancer, is prototypically an inflammation-driven cancer developing after years of inflammatory insults. Consequently, the hepatic microenvironment is a site of complex immunological activities. Moreover, the tolerogenic nature of the liver can act as a barrier to anti-tumor immunity, fostering cancer progression and resistance to immunotherapies based on immune checkpoint inhibitors (ICB). In addition to being a site of primary carcinogenesis, many cancer types have high tropism for the liver, and patients diagnosed with liver metastasis have a dismal prognosis. Therefore, understanding the immunological networks characterizing the tumor microenvironment (TME) of HCC will deepen our understanding of liver immunity, and it will underpin the dominant mechanisms controlling both spontaneous and therapy-induced anti-tumor immune responses. Herein, we discuss the contributions of the cellular and molecular components of the liver immune contexture during HCC onset and progression by underscoring how the balance between antagonistic immune responses can recast the properties of the TME and the response to ICB.
Collapse
|
59
|
Tang Q, Leung J, Peng Y, Sanchez-Fueyo A, Lozano JJ, Lam A, Lee K, Greenland JR, Hellerstein M, Fitch M, Li KW, Esensten JH, Putnam AL, Lares A, Nguyen V, Liu W, Bridges ND, Odim J, Demetris AJ, Levitsky J, Taner T, Feng S. Selective decrease of donor-reactive T regs after liver transplantation limits T reg therapy for promoting allograft tolerance in humans. Sci Transl Med 2022; 14:eabo2628. [PMID: 36322627 PMCID: PMC11016119 DOI: 10.1126/scitranslmed.abo2628] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2024]
Abstract
Promoting immune tolerance to transplanted organs can minimize the amount of immunosuppressive drugs that patients need to take, reducing lifetime risks of mortality and morbidity. Regulatory T cells (Tregs) are essential for immune tolerance, and preclinical studies have shown their therapeutic efficacy in inducing transplantation tolerance. Here, we report the results of a phase 1/2 trial (ARTEMIS, NCT02474199) of autologous donor alloantigen-reactive Treg (darTreg) therapy in individuals 2 to 6 years after receiving a living donor liver transplant. The primary efficacy endpoint was calcineurin inhibitor dose reduction by 75% with stable liver function tests for at least 12 weeks. Among 10 individuals who initiated immunosuppression withdrawal, 1 experienced rejection before planned darTreg infusion, 5 received darTregs, and 4 were not infused because of failure to manufacture the minimal infusible dose of 100 × 106 cells. darTreg infusion was not associated with adverse events. Two darTreg-infused participants reached the primary endpoint, but an insufficient number of recipients were treated for assessing the efficacy of darTregs. Mechanistic studies revealed generalized Treg activation, senescence, and selective reduction of donor reactivity after liver transplantation. Overall, the ARTEMIS trial features a design concept for evaluating the efficacy of Treg therapy in transplantation. The mechanistic insight gained from the study may help guide the design of future trials.
Collapse
Affiliation(s)
- Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Joey Leung
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yani Peng
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, School of Immunology and Microbial Sciences, King’s College London University, London WC2R 2LS, UK
| | - Juan-Jose Lozano
- Bioinformatic Platform, Biomedical Research Center in Hepatic and Digestive Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alice Lam
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karim Lee
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Medical Service, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Marc Hellerstein
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mark Fitch
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kelvin W. Li
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan H. Esensten
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Lab Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy L. Putnam
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Angela Lares
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vinh Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weihong Liu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nancy D. Bridges
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Jonah Odim
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute and Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Josh Levitsky
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Timucin Taner
- Departments of Surgery and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sandy Feng
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
60
|
Pallett LJ, Maini MK. Liver-resident memory T cells: life in lockdown. Semin Immunopathol 2022; 44:813-825. [PMID: 35482059 PMCID: PMC9708784 DOI: 10.1007/s00281-022-00932-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
A subset of memory T cells has been identified in the liver with a tissue-resident profile and the capacity for long-term 'lockdown'. Here we review how they are retained in, and adapted to, the hepatic microenvironment, including its unique anatomical features and metabolic challenges. We describe potential interactions with other local cell types and the need for a better understanding of this complex bidirectional crosstalk. Pathogen or tumour antigen-specific tissue-resident memory T cells (TRM) can provide rapid frontline immune surveillance; we review the evidence for this in hepatotropic infections of major worldwide importance like hepatitis B and malaria and in liver cancers like hepatocellular carcinoma. Conversely, TRM can be triggered by pro-inflammatory and metabolic signals to mediate bystander tissue damage, with an emerging role in a number of liver pathologies. We discuss the need for liver sampling to gain a window into these compartmentalised T cells, allowing more accurate disease monitoring and future locally targeted immunotherapies.
Collapse
Affiliation(s)
- Laura J Pallett
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rowland Hill St, London, NW3 2PP, UK.
| | - Mala K Maini
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rowland Hill St, London, NW3 2PP, UK.
| |
Collapse
|
61
|
Tran NL, Ferreira LM, Alvarez-Moya B, Buttiglione V, Ferrini B, Zordan P, Monestiroli A, Fagioli C, Bezzecchi E, Scotti GM, Esposito A, Leone R, Gnasso C, Brendolan A, Guidotti LG, Sitia G. Continuous sensing of IFNα by hepatic endothelial cells shapes a vascular antimetastatic barrier. eLife 2022; 11:e80690. [PMID: 36281643 PMCID: PMC9596162 DOI: 10.7554/elife.80690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatic metastases are a poor prognostic factor of colorectal carcinoma (CRC) and new strategies to reduce the risk of liver CRC colonization are highly needed. Herein, we used mouse models of hepatic metastatization to demonstrate that the continuous infusion of therapeutic doses of interferon-alpha (IFNα) controls CRC invasion by acting on hepatic endothelial cells (HECs). Mechanistically, IFNα promoted the development of a vascular antimetastatic niche characterized by liver sinusoidal endothelial cells (LSECs) defenestration extracellular matrix and glycocalyx deposition, thus strengthening the liver vascular barrier impairing CRC trans-sinusoidal migration, without requiring a direct action on tumor cells, hepatic stellate cells, hepatocytes, or liver dendritic cells (DCs), Kupffer cells (KCs) and liver capsular macrophages (LCMs). Moreover, IFNα endowed LSECs with efficient cross-priming potential that, along with the early intravascular tumor burden reduction, supported the generation of antitumor CD8+ T cells and ultimately led to the establishment of a protective long-term memory T cell response. These findings provide a rationale for the use of continuous IFNα therapy in perioperative settings to reduce CRC metastatic spreading to the liver.
Collapse
Affiliation(s)
- Ngoc Lan Tran
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Lorena Maria Ferreira
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Blanca Alvarez-Moya
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Valentina Buttiglione
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Barbara Ferrini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Paola Zordan
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita-Salute San Raffaele UniversityMilanItaly
| | - Andrea Monestiroli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Claudio Fagioli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | | | | | - Antonio Esposito
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Riccardo Leone
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Chiara Gnasso
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Andrea Brendolan
- Division of Experimental Oncology, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita-Salute San Raffaele UniversityMilanItaly
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
62
|
Wang D, Fu B, Wei H. Advances in Immunotherapy for Hepatitis B. Pathogens 2022; 11:1116. [PMID: 36297173 PMCID: PMC9612046 DOI: 10.3390/pathogens11101116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus with the potential to cause chronic infection, and it is one of the common causes of liver disease worldwide. Chronic HBV infection leads to liver cirrhosis and, ultimately, hepatocellular carcinoma (HCC). The persistence of covalently closed circular DNA (cccDNA) and the impaired immune response in patients with chronic hepatitis B (CHB) has been studied over the past few decades. Despite advances in the etiology of HBV and the development of potent virus-suppressing regimens, a cure for HBV has not been found. Both the innate and adaptive branches of immunity contribute to viral eradication. However, immune exhaustion and evasion have been demonstrated during CHB infection, although our understanding of the mechanism is still evolving. Recently, the successful use of an antiviral drug for hepatitis C has greatly encouraged the search for a cure for hepatitis B, which likely requires an approach focused on improving the antiviral immune response. In this review, we discuss our current knowledge of the immunopathogenic mechanisms and immunobiology of HBV infection. In addition, we touch upon why the existing therapeutic approaches may not achieve the goal of a functional cure. We also propose how combinations of new drugs, and especially novel immunotherapies, contribute to HBV clearance.
Collapse
Affiliation(s)
- Dongyao Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei 230001, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, China
| | - Binqing Fu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
| | - Haiming Wei
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
63
|
Zhang W, Sun H, Sun R, Lian Z, Wei H, Tian Z, Chen Y. HBV immune tolerance of HBs-transgenic mice observed through parabiosis with WT mice. Front Immunol 2022; 13:993246. [PMID: 36203595 PMCID: PMC9530942 DOI: 10.3389/fimmu.2022.993246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
It was extensively recognized that central tolerance to HBV exists in HBs-transgenic (Tg) mice, however, the immune response to HBV vaccine may be inspired in adult HBs-Tg mice after boosting with potent adjuvants, leaving a mystery to explore its immune tolerance. Here, WT-HBs-Tg parabiotic mice model was generated by conjoining WT (donor) and HBs-Tg (host) mouse via parabiotic surgery, in order to see how immunocompetent WT mice naturally respond to HBV, and how tolerant HBs-Tg mice influence the anti-HBV immunity from WT mice. It was found that WT CD8+ T cells markedly accumulated into the liver of HBs-Tg parabionts, and importantly, almost all HBsAg-specific CD8+ T cells derived from WT but not HBs-Tg mice, making a clear separation of a normal immune response from WT donor and a tolerant response by recipient host. Further, in the absence of host but not donor spleen, HBsAg-specific CD8+ T cells disappeared, indicating that host spleen was the indispensable site for donor HBsAg-specific CD8+ T cell priming though its mechanisms need further study. We found that donor CD4+ T helper cells were necessary for donor HBsAg-specific CD8+ T cell response by CD4-deficiency in WT or in HBs-Tg mice, indicating that an immune response was elicited between CD4+ T helper cells and CD8+ cytotoxic T cells of donor in the host but not donor spleen. It was noted that compared to donor CD4+ T cells, host CD4+ T cells were characterized with more tolerant features by harboring more CD25+Foxp3+ Tregs with higher expression of PD-1 and TIGIT in the spleen of HBs-Tg parabionts, which exhibited suppressive function on CD8+ T cells directly. Moreover, the Th1/Treg ratio was enhanced after parabiosis, suggesting that donor T helper cells may overcome the negative regulation of host Tregs in host spleen. In conclusion, both incompetent anti-HBV CD8+ T cells and insufficient help from CD4+ T cells are the major mechanisms underlying immune tolerance in HBs-Tg mice which helps explain HBV persistence.
Collapse
Affiliation(s)
- Wendi Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haoyu Sun
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhexiong Lian
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Zhigang Tian, ; Yongyan Chen,
| | - Yongyan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Zhigang Tian, ; Yongyan Chen,
| |
Collapse
|
64
|
Yenyuwadee S, Sanchez-Trincado Lopez JL, Shah R, Rosato PC, Boussiotis VA. The evolving role of tissue-resident memory T cells in infections and cancer. SCIENCE ADVANCES 2022; 8:eabo5871. [PMID: 35977028 PMCID: PMC9385156 DOI: 10.1126/sciadv.abo5871] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/05/2022] [Indexed: 06/12/2023]
Abstract
Resident memory T cells (TRM) form a distinct type of T memory cells that stably resides in tissues. TRM form an integral part of the immune sensing network and have the ability to control local immune homeostasis and participate in immune responses mediated by pathogens, cancer, and possibly autoantigens during autoimmunity. TRM express residence gene signatures, functional properties of both memory and effector cells, and remarkable plasticity. TRM have a well-established role in pathogen immunity, whereas their role in antitumor immune responses and immunotherapy is currently evolving. As TRM form the most abundant T memory cell population in nonlymphoid tissues, they are attractive targets for therapeutic exploitation. Here, we provide a concise review of the development and physiological role of CD8+ TRM, their involvement in diseases, and their potential therapeutic exploitation.
Collapse
Affiliation(s)
- Sasitorn Yenyuwadee
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jose Luis Sanchez-Trincado Lopez
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Laboratory of Immunomedicine, School of Medicine, Complutense University of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Rushil Shah
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Cornell University, Ithaca, NY 14850 , USA
| | - Pamela C Rosato
- The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
65
|
Bhat S, Kazim SN. HBV cccDNA-A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure. ACS OMEGA 2022; 7:24066-24081. [PMID: 35874215 PMCID: PMC9301636 DOI: 10.1021/acsomega.2c02216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hepatitis B virus infection (HBV) is still a big health problem across the globe. It has been linked to the development of liver cirrhosis and hepatocellular carcinoma and can trigger different types of liver damage. Existing medicines are unable to disable covalently closed circular DNA (cccDNA), which may result in HBV persistence and recurrence. The current therapeutic goal is to achieve a functional cure, which means HBV-DNA no longer exists when treatment stops and the absence of HBsAg seroclearance. However, due to the presence of integrated HBV DNA and cccDNA functional treatment is now regarded to be difficult. In order to uncover pathways for potential therapeutic targets and identify medicines that could result in large rates of functional cure, a thorough understanding of the virus' biology is required. The proteins of the virus and episomal cccDNA are thought to be critical for the management and support of the HBV replication cycle as they interact directly with the host proteome to establish the best atmosphere for the virus while evading immune detection. The breakthroughs of host dependence factors, cccDNA transcription, epigenetic regulation, and immune-mediated breakdown have all produced significant progress in our understanding of cccDNA biology during the past decade. There are some strategies where cccDNA can be targeted either in a direct or indirect way and are presently at the point of discovery or preclinical or early clinical advancement. Editing of genomes, techniques targeting host dependence factors or epigenetic gene maintenance, nucleocapsid modulators, miRNA, siRNA, virion secretory inhibitors, and immune-mediated degradation are only a few examples. Though cccDNA approaches for direct targeting are still in the early stages of development, the assembly of capsid modulators and immune-reliant treatments have made it to the clinic. Clinical trials are currently being conducted to determine their efficiency and safety in patients, as well as their effect on viral cccDNA. The influence of recent breakthroughs in the development of new treatment techniques on cccDNA biology is also summarized in this review.
Collapse
Affiliation(s)
- Sajad
Ahmad Bhat
- Jamia Millia Islamia Central University, Centre for Interdisciplinary Research in Basic Sciences, New Delhi 110025, India
| | - Syed Naqui Kazim
- Jamia Millia Islamia Central University, Centre for Interdisciplinary Research in Basic Sciences, New Delhi 110025, India
| |
Collapse
|
66
|
Naumenko VA, Vishnevskiy DA, Stepanenko AA, Sosnovtseva AO, Chernysheva AA, Abakumova TO, Valikhov MP, Lipatova AV, Abakumov MA, Chekhonin VP. In Vivo Tracking for Oncolytic Adenovirus Interactions with Liver Cells. Biomedicines 2022; 10:biomedicines10071697. [PMID: 35885002 PMCID: PMC9313019 DOI: 10.3390/biomedicines10071697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022] Open
Abstract
Hepatotoxicity remains an as yet unsolved problem for adenovirus (Ad) cancer therapy. The toxic effects originate both from rapid Kupffer cell (KCs) death (early phase) and hepatocyte transduction (late phase). Several host factors and capsid components are known to contribute to hepatotoxicity, however, the complex interplay between Ad and liver cells is not fully understood. Here, by using intravital microscopy, we aimed to follow the infection and immune response in mouse liver from the first minutes up to 72 h post intravenous injection of three Ads carrying delta-24 modification (Ad5-RGD, Ad5/3, and Ad5/35). At 15–30 min following the infusion of Ad5-RGD and Ad5/3 (but not Ad5/35), the virus-bound macrophages demonstrated signs of zeiosis: the formation of long-extended protrusions and dynamic membrane blebbing with the virus release into the blood in the membrane-associated vesicles. Although real-time imaging revealed interactions between the neutrophils and virus-bound KCs within minutes after treatment, and long-term contacts of CD8+ T cells with transduced hepatocytes at 24–72 h, depletion of neutrophils and CD8+ T cells affected neither rate nor dynamics of liver infection. Ad5-RGD failed to complete replicative cycle in hepatocytes, and transduced cells remained impermeable for propidium iodide, with a small fraction undergoing spontaneous apoptosis. In Ad5-RGD-immune mice, the virus neither killed KCs nor transduced hepatocytes, while in the setting of hepatic regeneration, Ad5-RGD enhanced liver transduction. The clinical and biochemical signs of hepatotoxicity correlated well with KC death, but not hepatocyte transduction. Real-time in vivo tracking for dynamic interactions between virus and host cells provides a better understanding of mechanisms underlying Ad-related hepatotoxicity.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
- Correspondence:
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Anastasiia O. Sosnovtseva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
| | - Anastasiia A. Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
| | - Tatiana O. Abakumova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia;
| | - Marat P. Valikhov
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Maxim A. Abakumov
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| |
Collapse
|
67
|
English K, Tan SY, Kwan R, Holz LE, Sierro F, McGuffog C, Kaisho T, Heath WR, MacDonald KPA, McCaughan GW, Bowen DG, Bertolino P. The liver contains distinct interconnected networks of
CX3CR1
+
macrophages,
XCR1
+
type 1 and
CD301a
+
type 2 conventional dendritic cells embedded within portal tracts. Immunol Cell Biol 2022; 100:394-408. [PMID: 35718354 PMCID: PMC9541163 DOI: 10.1111/imcb.12559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022]
Abstract
Portal tracts are key intrahepatic structures where leukocytes accumulate during immune responses. They contain the blood inflow, which includes portal blood from the gut, and lymphatic and biliary outflow of the liver, and as such represent a key interface for potential pathogen entry to the liver. Myeloid cells residing in the interstitium of the portal tract might play an important role in the surveillance or prevention of pathogen dissemination; however, the exact composition and localization of this population has not been explored fully. Our in‐depth characterization of portal tract myeloid cells revealed that in addition to T lymphocytes, portal tracts contain a heterogeneous population of MHCIIhigh myeloid cells with potential antigen presenting cell (APC) function. These include a previously unreported subset of CSF1R‐dependent CX3CR1+ macrophages that phenotypically and morphologically resemble liver capsular macrophages, as well as the two main dendritic cell subsets (cDC1 and cDC2). These cells are not randomly distributed, but each subset forms interconnected networks intertwined with specific components of the portal tract. The CX3CR1+ cells were preferentially detected along the outer border of the portal tracts, and also in the portal interstitium adjacent to the portal vein, bile duct, lymphatic vessels and hepatic artery. cDC1s abounded along the lymphatic vessels, while cDC2s mostly surrounded the biliary tree. The specific distributions of these discrete subsets predict that they may serve distinct functions in this compartment. Overall, our findings suggest that portal tracts and their embedded cellular networks of myeloid cells form a distinctive lymphoid compartment in the liver that has the potential to orchestrate immune responses in this organ.
Collapse
Affiliation(s)
- Kieran English
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| | - Sioh Yang Tan
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| | - Rain Kwan
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| | - Lauren E Holz
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity at the University of Melbourne Melbourne VIC Australia
| | - Frederic Sierro
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| | - Claire McGuffog
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine Wakayama Medical University Wakayama Japan
| | - William R Heath
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity at the University of Melbourne Melbourne VIC Australia
| | - Kelli PA MacDonald
- Antigen Presentation and Immunoregulation Laboratory QIMR Berghofer Medical Research Institute Brisbane QLD Australia
| | - Geoffrey W McCaughan
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| | - David G Bowen
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| | - Patrick Bertolino
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| |
Collapse
|
68
|
Wang Y, Wang J. Intravital Imaging of Inflammatory Response in Liver Disease. Front Cell Dev Biol 2022; 10:922041. [PMID: 35837329 PMCID: PMC9274191 DOI: 10.3389/fcell.2022.922041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The healthy liver requires a strictly controlled crosstalk between immune and nonimmune cells to maintain its function and homeostasis. A well-conditioned immune system can effectively recognize and clear noxious stimuli by a self-limited, small-scale inflammatory response. This regulated inflammatory process enables the liver to cope with daily microbial exposure and metabolic stress, which is beneficial for hepatic self-renewal and tissue remodeling. However, the failure to clear noxious stimuli or dysregulation of immune response can lead to uncontrolled liver inflammation, liver dysfunction, and severe liver disease. Numerous highly dynamic circulating immune cells and sessile resident immune and parenchymal cells interact and communicate with each other in an incredibly complex way to regulate the inflammatory response in both healthy and diseased liver. Intravital imaging is a powerful tool to visualize individual cells in vivo and has been widely used for dissecting the behavior and interactions between various cell types in the complex architecture of the liver. Here, we summarize some new findings obtained with the use of intravital imaging, which enhances our understanding of the complexity of immune cell behavior, cell–cell interaction, and spatial organization during the physiological and pathological liver inflammatory response.
Collapse
|
69
|
Liu Y, Qin L, Wang J, Xie X, Zhang Y, Li C, Guan Z, Qian L, Chen L, Hu J, Meng S. miR-146a Maintains Immune Tolerance of Kupffer Cells and Facilitates Hepatitis B Virus Persistence in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2558-2572. [PMID: 35562117 DOI: 10.4049/jimmunol.2100618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Kupffer cells (KCs), the largest tissue-resident macrophage population in the body, play a central role in maintaining a delicate balance between immune tolerance and immunity in the liver. However, the underlying molecular mechanism remains elusive. In this study, we show that KCs express high levels of miR-146a, which is under control of the PU.1 transcription factor. miR-146a deficiency promoted KCs differentiation toward a proinflammatory phenotype; conversely, miR-146a overexpression suppressed this phenotypic differentiation. We found that hepatitis B virus (HBV) persistence or HBV surface Ag treatment significantly upregulated miR-146a expression and thereby impaired polarization of KCs toward a proinflammatory phenotype. Furthermore, in an HBV carrier mouse model, KCs depletion by clodronate liposomes dramatically promoted HBV clearance and enhanced an HBV-specific hepatic CD8+ T cell and CD4+ T cell response. Consistent with this finding, miR-146a knockout mice cleared HBV faster and elicited a stronger adaptive antiviral immunity than wild-type mice. In vivo IL-12 blockade promoted HBV persistence and tempered the HBV-specific CTL response in the liver of miR-146a knockout mice. Taken together, our results identified miR-146a as a critical intrinsic regulator of an immunosuppressive phenotype in KCs under inflammatory stimuli, which may be beneficial in maintenance of liver homeostasis under physiological condition. Meanwhile, during HBV infection, miR-146a contributed to viral persistence by inhibiting KCs proinflammatory polarization, highlighting its potential as a therapeutic target in HBV infection.
Collapse
Affiliation(s)
- Yongai Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Qin
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiuru Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xialin Xie
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- Department of Pathology and Hepatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China; and
| | - Changfei Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zeliang Guan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyuan Qian
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, Beijing, China
| | - Lizhao Chen
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Hu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;
| | - Songdong Meng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
70
|
Montali I, Vecchi A, Rossi M, Tiezzi C, Penna A, Reverberi V, Laccabue D, Missale G, Boni C, Fisicaro P. Antigen Load and T Cell Function: A Challenging Interaction in HBV Infection. Biomedicines 2022; 10:biomedicines10061224. [PMID: 35740243 PMCID: PMC9220332 DOI: 10.3390/biomedicines10061224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/18/2022] Open
Abstract
Current treatment for chronic HBV infection is mainly based on nucleos(t)ide analogues, that in most cases need to be administered for a patient’s lifetime. There is therefore a pressing need to develop new therapeutic strategies to shorten antiviral treatments. A severe dysfunction of virus-specific T cell responses contributes to virus persistence; hence, immune-modulation to reconstitute an efficient host antiviral response is considered a potential approach for HBV cure. In this perspective, a detailed understanding of the different causes of T cell exhaustion is essential for the design of successful functional T cell correction strategies. Among many different mechanisms which are widely believed to play a role in T cell dysfunction, persistent T cell exposure to high antigen burden, in particular HBsAg, is expected to influence T cell differentiation and function. Definitive evidence of the possibility to improve anti-viral T cell functions by antigen decline is, however, still lacking. This review aims at recapitulating what we have learned so far on the complex T cell–viral antigen interplay in chronic HBV infection.
Collapse
Affiliation(s)
- Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Camilla Tiezzi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Reverberi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence: (C.B.); (P.F.); Tel.: +39-0521-703865 (C.B. & P.F.); Fax: +39-0521-703857 (C.B. & P.F.)
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence: (C.B.); (P.F.); Tel.: +39-0521-703865 (C.B. & P.F.); Fax: +39-0521-703857 (C.B. & P.F.)
| |
Collapse
|
71
|
Iannacone M, Andreata F, Guidotti LG. Immunological insights in the treatment of chronic hepatitis B. Curr Opin Immunol 2022; 77:102207. [PMID: 35588690 DOI: 10.1016/j.coi.2022.102207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022]
Abstract
Hepatitis B virus (HBV) causes either acute or chronic liver diseases. Chronic hepatitis B (CHB) often progresses to the development of cirrhosis and hepatocellular carcinoma. As HBV is extremely noncytopathic, immunological events play a key role in the infection outcome. Indeed, adaptive immune responses trigger viral clearance during acute infection and viral persistence reflects the failure to generate and maintain such responses. Current therapies for patients with CHB rely on direct-acting antivirals (DAAs) that suppress viral replication without eradicating HBV from the liver. Cure of CHB may well require combining these and forthcoming DAAs with immune-stimulating approaches of different nature and function. Here, we review the relative potential of these combination therapies.
Collapse
Affiliation(s)
- Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
72
|
Ander SE, Li FS, Carpentier KS, Morrison TE. Innate immune surveillance of the circulation: A review on the removal of circulating virions from the bloodstream. PLoS Pathog 2022; 18:e1010474. [PMID: 35511797 PMCID: PMC9070959 DOI: 10.1371/journal.ppat.1010474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Many viruses utilize the lymphohematogenous route for dissemination; however, they may not freely use this highway unchecked. The reticuloendothelial system (RES) is an innate defense system that surveys circulating blood, recognizing and capturing viral particles. Examination of the literature shows that the bulk of viral clearance is mediated by the liver; however, the precise mechanism(s) mediating viral vascular clearance vary between viruses and, in many cases, remains poorly defined. Herein, we summarize what is known regarding the recognition and capture of virions from the circulation prior to the generation of a specific antibody response. We also discuss the consequences of viral capture on viral pathogenesis and the fate of the captor cell. Finally, this understudied topic has implications beyond viral pathogenesis, including effects on arbovirus ecology and the application of virus-vectored gene therapies.
Collapse
Affiliation(s)
- Stephanie E. Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Frances S. Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kathryn S. Carpentier
- Department of Natural Sciences, Greensboro College, Greensboro, North Carolina, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
73
|
Gottwick C, Carambia A, Herkel J. Harnessing the liver to induce antigen-specific immune tolerance. Semin Immunopathol 2022; 44:475-484. [PMID: 35513495 PMCID: PMC9256566 DOI: 10.1007/s00281-022-00942-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases develop when the adaptive immune system attacks the body’s own antigens leading to tissue damage. At least 80 different conditions are believed to have an autoimmune aetiology, including rheumatoid arthritis, type I diabetes, multiple sclerosis or systemic lupus erythematosus. Collectively, autoimmune diseases are a leading cause of severe health impairment along with substantial socioeconomic costs. Current treatments are mostly symptomatic and non-specific, and it is typically not possible to cure these diseases. Thus, the development of more causative treatments that suppress only the pathogenic immune responses, but spare general immunity is of great biomedical interest. The liver offers considerable potential for development of such antigen-specific immunotherapies, as it has a distinct physiological capacity to induce immune tolerance. Indeed, the liver has been shown to specifically suppress autoimmune responses to organ allografts co-transplanted with the liver or to autoantigens that were transferred to the liver. Liver tolerance is established by a unique microenvironment that facilitates interactions between liver-resident antigen-presenting cells and lymphocytes passing by in the low blood flow within the hepatic sinusoids. Here, we summarise current concepts and mechanisms of liver immune tolerance, and review present approaches to harness liver tolerance for antigen-specific immunotherapy.
Collapse
Affiliation(s)
- Cornelia Gottwick
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Antonella Carambia
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Herkel
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
74
|
Jiang D, Chen C, Yan D, Zhang X, Liu X, Yan D, Cui D, Yang S. Exhausted phenotype of circulating CD8 + T cell subsets in hepatitis B virus carriers. BMC Immunol 2022; 23:18. [PMID: 35443611 PMCID: PMC9022260 DOI: 10.1186/s12865-022-00488-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Chronic hepatitis B virus (HBV) infection is characterized by the presence of dysfunctional exhausted CD8+ T cells that hamper viral control. We investigated the phenotypic heterogeneity of exhausted CD8+ T cells in HBV carriers. Methods We enrolled 31 HBV carriers and 23 healthy controls (HCs) in our study. Peripheral blood mononuclear cells (PBMCs) were isolated, and flow cytometry was used to determine the phenotypic distribution of CD8+ T cell subsets. Expression of cytokines such as TNF-α and IFN-γ was detected by quantitative reverse transcription–PCR, a fluorescence flow cytometry-based immunomicrobead assay and flow cytometry. Results There were no significant differences in the baseline characteristics between the 31 HBV carriers and the 23 sex- and age-matched HCs. CD8+ T cells exhibited higher levels of inhibitory receptors (TIM3 and PD1) in the HBV carriers than in the HCs (P < 0.05); in particular, Tfc cells (CXCR5+CD25−) expressed higher levels of TIM3 and PD1 than non-Tfc cells in the HBV carriers. In addition, among the subsets of Tc cells, the Tc17 (CXCR5−CD25−CCR6+) subset displayed increased expression of TIM3 and LAG3 in the HBV carriers. Our findings further showed that CD8+ T cells produced lower levels of IFN-γ, TNF-α, and Granzyme B. Paired analysis of the Tfc subset and the Tc subset indicated that higher levels of cytokines (IFN-γ and TNF-α) were produced by the Tfc subset in the HBV carriers. Among the Tc subsets, the Tc17 subset produced lower levels of cytokines. Conclusion The Tfc subset exhibited an enhanced exhausted phenotype but possessed some functional properties during chronic HBV infection, while the Tc subset showed a lower functional level. The identification of these unique subsets may provide a potential immunotherapeutic target in chronic HBV infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00488-2.
Collapse
Affiliation(s)
- Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Can Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Danying Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Xiaobao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Xiaoxiao Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China. .,School of Public Health, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
75
|
|
76
|
Ye J, Xie P, Zhou Z, Sun Y, Wang F, You Y, Teng J, Yang C, Zhang X, Han Y. Protective Role of Rheumatic Diseases Against Hepatitis B Virus Infection and Human Leukocyte Antigen B27 Highlighted. Front Med (Lausanne) 2022; 9:814423. [PMID: 35223909 PMCID: PMC8867399 DOI: 10.3389/fmed.2022.814423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND By determining the hepatitis B virus (HBV) surface antigen (HBsAg) positive rate postexposure and HBV-specific antigen/antibody (Ag/Ab) level in patients with rheumatic diseases, we aimed at exploring the rheumatic link to HBV control. METHODS Patients who underwent HBV screening in the Ruijin Hospital from 2020 to 2021 were enrolled for the exposure rate estimation. Among antibody to HBV core antigen (HBcAb)-positive patients, we adopted propensity score matching (PSM) to study the impact of rheumatism on HBsAg seroprevalence after exposure. A second PSM evaluated the Ag/Ab differences. We also had HBsAg prevalence in human leukocyte antigen B2 (HLA-B27) tested patients studied. RESULTS With 33,989 screened patients, exposure rates remained comparable between rheumatic and non-rheumatic patients: 48.94 vs. 49.86%. PSM first yielded 2,618 balanced pairs. We observed significantly fewer patients with rheumatic diseases in HBsAg positive cases than negative ones (p < 0.001). In the second round, PSM matched 279 pairs, HBsAg (p < 0.001) and HBeAg (p < 0.05) positivity rates were significantly lower in the rheumatic patients, whereas HBsAb positivity rate (p < 0.001) and level (p < 0.01) were significantly higher. Though the value of HBcAb was overall significantly lower (p < 0.001) within the realm of rheumatic diseases, patients with ankylosing spondylitis (AS) demonstrated a significantly higher value than other rheumatic diseases. We saw significantly fewer HBV infections in HLA-B27 positive subjects than in the negative ones (p < 0.001). CONCLUSION In this propensity score-matched study, rheumatic patients had an advantage in HBV control. In rheumatic patients, HBcAb levels, together with the beneficial role of HLA-B27, were highlighted.
Collapse
Affiliation(s)
- Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Xie
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuochao Zhou
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun You
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Han
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
77
|
Fumagalli V, Venzin V, Di Lucia P, Moalli F, Ficht X, Ambrosi G, Giustini L, Andreata F, Grillo M, Magini D, Ravà M, Friedrich C, Fontenot JD, Bousso P, Gilmore SA, Khan S, Baca M, Vivier E, Gasteiger G, Kuka M, Guidotti LG, Iannacone M. Group 1 ILCs regulate T cell-mediated liver immunopathology by controlling local IL-2 availability. Sci Immunol 2022; 7:eabi6112. [PMID: 35213210 DOI: 10.1126/sciimmunol.abi6112] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Group 1 innate lymphoid cells (ILCs), which comprise both natural killer (NK) cells and ILC1s, are important innate effectors that can also positively and negatively influence adaptive immune responses. The latter function is generally ascribed to the ability of NK cells to recognize and kill activated T cells. Here, we used multiphoton intravital microscopy in mouse models of hepatitis B to study the intrahepatic behavior of group 1 ILCs and their cross-talk with hepatitis B virus (HBV)-specific CD8+ T cells. We found that hepatocellular antigen recognition by effector CD8+ T cells triggered a prominent increase in the number of hepatic NK cells and ILC1s. Group 1 ILCs colocalized and engaged in prolonged interactions with effector CD8+ T cells undergoing hepatocellular antigen recognition; however, they did not induce T cell apoptosis. Rather, group 1 ILCs constrained CD8+ T cell proliferation by controlling local interleukin-2 (IL-2) availability. Accordingly, group 1 ILC depletion, or genetic removal of their IL-2 receptor a chain, considerably increased the number of intrahepatic HBV-specific effector CD8+ T cells and the attendant immunopathology. Together, these results reveal a role for group 1 ILCs in controlling T cell-mediated liver immunopathology by limiting local IL-2 concentration and have implications for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valentina Venzin
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Moalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gioia Ambrosi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marta Grillo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diletta Magini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Christin Friedrich
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximiliams-Universität Würzburg, Würzburg, Germany
| | | | - Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | | | | | | | - Eric Vivier
- Aix Marseille University, CNRS, INSERM, CIML, Marseille 13288, France.,Innate Pharma Research Laboratories, Innate Pharma, Marseille 13276, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille 13005, France
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximiliams-Universität Würzburg, Würzburg, Germany
| | - Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy.,Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
78
|
Titov A, Kaminskiy Y, Ganeeva I, Zmievskaya E, Valiullina A, Rakhmatullina A, Petukhov A, Miftakhova R, Rizvanov A, Bulatov E. Knowns and Unknowns about CAR-T Cell Dysfunction. Cancers (Basel) 2022; 14:1078. [PMID: 35205827 PMCID: PMC8870103 DOI: 10.3390/cancers14041078] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR) T cells is a promising option for cancer treatment. However, T cells and CAR-T cells frequently become dysfunctional in cancer, where numerous evasion mechanisms impair antitumor immunity. Cancer frequently exploits intrinsic T cell dysfunction mechanisms that evolved for the purpose of defending against autoimmunity. T cell exhaustion is the most studied type of T cell dysfunction. It is characterized by impaired proliferation and cytokine secretion and is often misdefined solely by the expression of the inhibitory receptors. Another type of dysfunction is T cell senescence, which occurs when T cells permanently arrest their cell cycle and proliferation while retaining cytotoxic capability. The first section of this review provides a broad overview of T cell dysfunctional states, including exhaustion and senescence; the second section is focused on the impact of T cell dysfunction on the CAR-T therapeutic potential. Finally, we discuss the recent efforts to mitigate CAR-T cell exhaustion, with an emphasis on epigenetic and transcriptional modulation.
Collapse
Affiliation(s)
- Aleksei Titov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Yaroslav Kaminskiy
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexey Petukhov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
79
|
Dudek M, Lohr K, Donakonda S, Baumann T, Lüdemann M, Hegenbarth S, Dübbel L, Eberhagen C, Michailidou S, Yassin A, Prinz M, Popper B, Rose-John S, Zischka H, Knolle PA. IL-6-induced FOXO1 activity determines the dynamics of metabolism in CD8 T cells cross-primed by liver sinusoidal endothelial cells. Cell Rep 2022; 38:110389. [PMID: 35172161 DOI: 10.1016/j.celrep.2022.110389] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/16/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are liver-resident antigen (cross)-presenting cells that generate memory CD8 T cells, but metabolic properties of LSECs and LSEC-primed CD8 T cells remain understudied. Here, we report that high-level mitochondrial respiration and constitutive low-level glycolysis support LSEC scavenger and sentinel functions. LSECs fail to increase glycolysis and co-stimulation after TLR4 activation, indicating absence of metabolic and functional maturation compared with immunogenic dendritic cells. LSEC-primed CD8 T cells show a transient burst of oxidative phosphorylation and glycolysis. Mechanistically, co-stimulatory IL-6 signaling ensures high FOXO1 expression in LSEC-primed CD8 T cells, curtails metabolic activity associated with T cell activation, and is indispensable for T cell functionality after re-activation. Thus, distinct immunometabolic features characterize non-immunogenic LSECs compared with immunogenic dendritic cells and LSEC-primed CD8 T cells with memory features compared with effector CD8 T cells. This reveals local features of metabolism and function of T cells in the liver.
Collapse
Affiliation(s)
- Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Kerstin Lohr
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Sainitin Donakonda
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Tobias Baumann
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Max Lüdemann
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Silke Hegenbarth
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Lena Dübbel
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Carola Eberhagen
- Institute of Toxicology, Helmholtz Center München, München, Germany
| | - Savvoula Michailidou
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Abdallah Yassin
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Center for NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bastian Popper
- Biomedical Center, Ludwig-Maximilians-University Munich, München, Germany
| | | | - Hans Zischka
- Institute of Toxicology, Helmholtz Center München, München, Germany; Institute of Toxicology and Environmental Hygiene, Technical University Munich, München, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany; German Center for Infection Research, Munich site, München, Germany.
| |
Collapse
|
80
|
Humoral immunity in hepatitis B virus infection: Rehabilitating the B in HBV. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100398. [PMID: 35059620 PMCID: PMC8760517 DOI: 10.1016/j.jhepr.2021.100398] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Insights into the immunopathogenesis of chronic HBV infections are fundamental in the quest for novel treatment approaches aimed at a functional cure. While much is known about the ineffective HBV-specific T-cell responses that characterise persistent HBV replication, B cells have been left largely understudied. However, an important role for humoral immunity during the natural history of HBV infections, as well as after functional cure, has been inadvertently revealed by the occurrence of HBV flares following B cell-depleting treatments. Herein, we review our current understanding of the role of the humoral immune response in chronic HBV, both at the level of HBV-specific antibody production and at the phenotypic and broader functional level of B cells. The recent development of fluorescently labelled HBV proteins has given us unprecedented insights into the phenotype and function of HBsAg- and HBcAg-specific B cells. This should fuel novel research into the mechanisms behind dysfunctional HBsAg-specific and fluctuating, possibly pathogenic, HBcAg-specific B-cell responses in chronic HBV. Finally, novel immunomodulatory treatments that partly target B cells are currently in clinical development, but a detailed assessment of their impact on HBV-specific B-cell responses is lacking. We plead for a rehabilitation of B-cell studies related to both the natural history of HBV and treatment development programmes.
Collapse
|
81
|
Fumagalli V, Ravà M, Marotta D, Di Lucia P, Laura C, Sala E, Grillo M, Bono E, Giustini L, Perucchini C, Mainetti M, Sessa A, Garcia-Manteiga JM, Donnici L, Manganaro L, Delbue S, Broccoli V, De Francesco R, D’Adamo P, Kuka M, Guidotti LG, Iannacone M. Administration of aerosolized SARS-CoV-2 to K18-hACE2 mice uncouples respiratory infection from fatal neuroinvasion. Sci Immunol 2022; 7:eabl9929. [PMID: 34812647 PMCID: PMC9835999 DOI: 10.1126/sciimmunol.abl9929] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of a tractable small animal model faithfully reproducing human coronavirus disease 2019 pathogenesis would arguably meet a pressing need in biomedical research. Thus far, most investigators have used transgenic mice expressing the human ACE2 in epithelial cells (K18-hACE2 transgenic mice) that are intranasally instilled with a liquid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suspension under deep anesthesia. Unfortunately, this experimental approach results in disproportionate high central nervous system infection leading to fatal encephalitis, which is rarely observed in humans and severely limits this model’s usefulness. Here, we describe the use of an inhalation tower system that allows exposure of unanesthetized mice to aerosolized virus under controlled conditions. Aerosol exposure of K18-hACE2 transgenic mice to SARS-CoV-2 resulted in robust viral replication in the respiratory tract, anosmia, and airway obstruction but did not lead to fatal viral neuroinvasion. When compared with intranasal inoculation, aerosol infection resulted in a more pronounced lung pathology including increased immune infiltration, fibrin deposition, and a transcriptional signature comparable to that observed in SARS-CoV-2–infected patients. This model may prove useful for studies of viral transmission, disease pathogenesis (including long-term consequences of SARS-CoV-2 infection), and therapeutic interventions.
Collapse
Affiliation(s)
- Valeria Fumagalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Davide Marotta
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Laura
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy.,Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Eleonora Sala
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Marta Grillo
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elisa Bono
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Perucchini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marta Mainetti
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandro Sessa
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Lorena Donnici
- INGM - Istituto Nazionale di Genetica Molecolare “Romeo ed Erica Invernizzi”, Milan, Italy
| | - Lara Manganaro
- INGM - Istituto Nazionale di Genetica Molecolare “Romeo ed Erica Invernizzi”, Milan, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Vania Broccoli
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,National Research Council of Italy, Institute of Neuroscience
| | - Raffaele De Francesco
- INGM - Istituto Nazionale di Genetica Molecolare “Romeo ed Erica Invernizzi”, Milan, Italy,Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Italy
| | - Patrizia D’Adamo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Center of Advanced Services for in-vivo testing – Animal behavior Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mirela Kuka
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Luca G. Guidotti
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy.,Correspondence to: or
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy.,Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Correspondence to: or
| |
Collapse
|
82
|
Zhou S, Li Y, Gao J, Wang Y, Ma X, Ding H, Li X, Sun S. Novel protein kinase C phosphorylated kinase inhibitor-matrine suppresses replication of hepatitis B virus via modulating the mitogen-activated protein kinase signal. Bioengineered 2022; 13:2851-2865. [PMID: 35037840 PMCID: PMC8974119 DOI: 10.1080/21655979.2021.2024957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
HBV (hepatitis B virus) infection still threatens human health. Therefore, it is essential to find new effective anti-HBV compounds. Here, we identified matrine as a novel inhibitor of PKC (protein kinase C) phosphorylated kinase by screening a natural compound library. After HepG2.215 cells were treated with matrine, we carried out a phosphorylated proteomics sequence study and analyzed the prediction of related kinase expression level. In the case of HBV infection, it was found that PKC kinase mediates the activation of mitogen-activated protein kinase (MAPK) signaling pathway known as son of sevenless (SOS) activation. It was also found that PKC kinase inhibits the expression of C-X-C Motif Chemokine Ligand 8 (CXCL8) by inhibiting the activity of activating transcription factor 2/ cAMP response element binding protein (ATF2/CREB), and this effect is independent of its activated MAPK signaling pathway. Finally, Western blot was used to detect the expression of MAPK, ATF2, CREB3 phosphorylation and nonphosphorylation in matrine-treated cells and PKC-treated cells. PKC phosphorylated kinase inhibitor-matrine suppresses the replication of HBV via modulating the MAPK/ATF2 signal. Matrine is a good clinical drug to enhance the autoimmunity in the adjuvant treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Shen Zhou
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yuan Li
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital Affiliated of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jing Gao
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yanyan Wang
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xinping Ma
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hui Ding
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xiuling Li
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Suofeng Sun
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
83
|
Association of PD-L1 gene polymorphisms and circulating sPD-L1 levels with HBV infection susceptibility and related liver disease progression. Gene 2022; 806:145935. [PMID: 34478821 DOI: 10.1016/j.gene.2021.145935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023]
Abstract
Soluble molecules of programmed death ligand 1 (sPD-L1) are known to modulate T-cell depletion, an important mechanism of hepatitis B virus (HBV) persistence and liver disease progression. In addition, PD-L1 polymorphisms in the 3'-UTR can influence PD-L1 expression and have been associated with cancer risk, although not definitively. The purpose of this study was to investigate the association of PD-L1 polymorphisms and circulating levels of sPD-L1 in HBV infection and live disease progression. In this study, five hundred fifty-one HBV infected patients of the three clinically well-defined subgroups chronic hepatitis B (CHB, n = 186), liver cirrhosis (LC, n = 142) and hepatocellular carcinoma (HCC, n = 223) and 240 healthy individuals (HC) were enrolled. PD-L1 polymorphisms (rs2297136 and rs4143815) were genotyped by in-house validated ARMS assays. Logistic regression models were applied in order to determine the association of PD-L1 polymorphisms with HBV infection as well as with progression of related liver diseases. Plasma sPD-L1 levels were quantified by ELISA assays. The PD-L1 rs2297136 AA genotype was associated with HBV infection susceptibility (HBV vs. HC: OR = 1.6; 95%CI = 1.1-2.3; p = 0.0087) and disease progression (LC vs. CHB: OR = 1.8; 95%CI = 1.1-2.9; p = 0.018). Whereas, the rs2297136 GG genotype was a protective factor for HCC development. Plasma sPD-L1 levels were significantly high in HBV patients (p < 0.0001) and higher in the LC followed by CHB and HCC groups. High sPD-L1 levels correlated with increased liver enzymes and with advanced liver disease progression (Child-pugh C > B > A, p < 0.0001) and BCLC classification (BCLC D > C > B > A, p = 0.031). We could, for the first time, conclude that PD-L1 rs2297136 polymorphism and plasma sPD-L1 protein levels associate with HBV infection and HBV-related liver disease progression.
Collapse
|
84
|
Conforti A, Marra E, Palombo F, Roscilli G, Ravà M, Fumagalli V, Muzi A, Maffei M, Luberto L, Lione L, Salvatori E, Compagnone M, Pinto E, Pavoni E, Bucci F, Vitagliano G, Stoppoloni D, Pacello ML, Cappelletti M, Ferrara FF, D'Acunto E, Chiarini V, Arriga R, Nyska A, Di Lucia P, Marotta D, Bono E, Giustini L, Sala E, Perucchini C, Paterson J, Ryan KA, Challis AR, Matusali G, Colavita F, Caselli G, Criscuolo E, Clementi N, Mancini N, Groß R, Seidel A, Wettstein L, Münch J, Donnici L, Conti M, De Francesco R, Kuka M, Ciliberto G, Castilletti C, Capobianchi MR, Ippolito G, Guidotti LG, Rovati L, Iannacone M, Aurisicchio L. COVID-eVax, an electroporated DNA vaccine candidate encoding the SARS-CoV-2 RBD, elicits protective responses in animal models. Mol Ther 2022; 30:311-326. [PMID: 34547465 PMCID: PMC8483992 DOI: 10.1016/j.ymthe.2021.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax-a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)-induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started.
Collapse
Affiliation(s)
- Antonella Conforti
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy; Evvivax Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | | | - Fabio Palombo
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy; Neomatrix Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | | | - Micol Ravà
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alessia Muzi
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | - Mariano Maffei
- Evvivax Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | - Laura Luberto
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | - Lucia Lione
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, Haharuv 18, PO Box 184, Timrat 36576, Israel
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Davide Marotta
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Elisa Bono
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Eleonora Sala
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Chiara Perucchini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Jemma Paterson
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Kathryn Ann Ryan
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Amy-Rose Challis
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Giulia Matusali
- National Institute for Infectious Diseases Lazzaro Spallanzani, Via Portuense 292, 00149 Rome, Italy
| | - Francesca Colavita
- National Institute for Infectious Diseases Lazzaro Spallanzani, Via Portuense 292, 00149 Rome, Italy
| | | | | | - Nicola Clementi
- Vita-Salute San Raffaele University, 20132 Milan, Italy; Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Nicasio Mancini
- Vita-Salute San Raffaele University, 20132 Milan, Italy; Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany
| | - Lukas Wettstein
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany
| | - Lorena Donnici
- INGM-Istituto Nazionale di Genetica Molecolare "Romeo ed Erica Invernizzi," Milan, Italy
| | - Matteo Conti
- INGM-Istituto Nazionale di Genetica Molecolare "Romeo ed Erica Invernizzi," Milan, Italy
| | - Raffaele De Francesco
- INGM-Istituto Nazionale di Genetica Molecolare "Romeo ed Erica Invernizzi," Milan, Italy; National Cancer Institute Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gennaro Ciliberto
- National Cancer Institute Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Concetta Castilletti
- National Institute for Infectious Diseases Lazzaro Spallanzani, Via Portuense 292, 00149 Rome, Italy
| | - Maria Rosaria Capobianchi
- National Institute for Infectious Diseases Lazzaro Spallanzani, Via Portuense 292, 00149 Rome, Italy
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases Lazzaro Spallanzani, Via Portuense 292, 00149 Rome, Italy
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Lucio Rovati
- Rottapharm Biotech s.r.l., Via Valosa di Sopra 9, 20900 Monza, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy; Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Luigi Aurisicchio
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy; Evvivax Biotech, Via Castel Romano 100, 00128 Rome, Italy; Neomatrix Biotech, Via Castel Romano 100, 00128 Rome, Italy.
| |
Collapse
|
85
|
Salkeni MA, Shin JY, Gulley JL. Resistance to Immunotherapy: Mechanisms and Means for Overcoming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:45-80. [PMID: 34972962 DOI: 10.1007/978-3-030-79308-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immune checkpoint blockade transformed cancer therapy during the last decade. However, durable responses remain uncommon, early and late relapses occur over the course of treatment, and many patients with PD-L1-expressing tumors do not respond to PD-(L)1 blockade. In addition, while some malignancies exhibit inherent resistance to treatment, others develop adaptations that allow them to evade antitumor immunity after a period of response. It is crucial to understand the pathophysiology of the tumor-immune system interplay and the mechanisms of immune escape in order to circumvent primary and acquired resistance. Here we provide an outline of the most well-defined mechanisms of resistance and shed light on ongoing efforts to reinvigorate immunoreactivity.
Collapse
Affiliation(s)
- Mohamad A Salkeni
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA.
| | - John Y Shin
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
86
|
Lee JC, Green MD, Huppert LA, Chow C, Pierce RH, Daud AI. The Liver-Immunity Nexus and Cancer Immunotherapy. Clin Cancer Res 2022; 28:5-12. [PMID: 34285059 PMCID: PMC8897983 DOI: 10.1158/1078-0432.ccr-21-1193] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 07/16/2021] [Indexed: 01/03/2023]
Abstract
The impact of liver metastases on immune checkpoint-inhibitor effectiveness in patients with solid-tumor malignancies has been the focus of several recent clinical and translational studies. We review the literature describing the immune functions of the liver and particularly the mechanistic observations in these studies. The initial clinical observation was that pembrolizumab appeared to be much less effective in melanoma and non-small cell lung cancer (NSCLC) patients with liver metastasis. Subsequently other clinical studies have extended and reported similar findings with programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) inhibitors in many cancers. Two recent translational studies in animal models have dissected the mechanism of this systemic immune suppression. In both studies CD11b+ suppressive macrophages generated by liver metastasis in a two-site MC38 model appear to delete CD8+ T cells in a FasL-dependent manner. In addition, regulatory T-cell (Treg) activation was observed and contributed to the distal immunosuppression. Finally, we discuss some of the interventions reported to address liver immune suppression, such as radiation therapy, combination checkpoint blockade, and Treg depletion.
Collapse
Affiliation(s)
- James C. Lee
- Divisions of Hematology and Medical Oncology, Department of
Medicine, University of California San Francisco, San Francisco, California.,Parker Institute for Cancer Immunotherapy, San Francisco,
California
| | - Michael D. Green
- Department of Radiation Oncology, Michigan Medicine,
University of Michigan, Ann Arbor, Michigan.,Veterans Affairs Ann Arbor Healthcare System, U.S.
Department of Veterans Affairs, Ann Arbor, Michigan
| | - Laura A. Huppert
- Divisions of Hematology and Medical Oncology, Department of
Medicine, University of California San Francisco, San Francisco, California
| | - Christine Chow
- Divisions of Hematology and Medical Oncology, Department of
Medicine, University of California San Francisco, San Francisco, California
| | | | - Adil I. Daud
- Divisions of Hematology and Medical Oncology, Department of
Medicine, University of California San Francisco, San Francisco, California.,Parker Institute for Cancer Immunotherapy, San Francisco,
California
| |
Collapse
|
87
|
Kurt AS, Strobl K, Ruiz P, Osborn G, Chester T, Dawson L, Warwas KM, Grey EH, Mastoridis S, Kodela E, Safinia N, Sanchez-Fueyo A, Martinez-Llordella M. IL-2 availability regulates the tissue specific phenotype of murine intra-hepatic Tregs. Front Immunol 2022; 13:1040031. [PMID: 36389734 PMCID: PMC9661520 DOI: 10.3389/fimmu.2022.1040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
CD4+CD25+Foxp3+ Tregs are known to acquire tissue-specific features and exert cytoprotective and regenerative functions. The extent to which this applies to liver-resident Tregs is unknown. In this study, we aimed to explore the phenotypic and functional characteristics of adult murine liver resident Tregs during homeostasis. Additionally, we investigated their role in ameliorating liver inflammation and tissue damage. Quantification of Foxp3+CD4+CD25+ cells comparing different tissues showed that the liver contained significantly fewer resident Tregs. A combination of flow cytometry phenotyping and microarray analysis of intra-hepatic and splenic Tregs under homeostatic conditions revealed that, although intra-hepatic Tregs exhibited the core transcriptional Treg signature, they expressed a distinct transcriptional profile. This was characterized by reduced CD25 expression and increased levels of pro-inflammatory Th1 transcripts Il1b and Ifng. In vivo ablation of Tregs in the Foxp3-DTR mouse model showed that Tregs had a role in reducing the magnitude of systemic and intra-hepatic inflammatory responses following acute carbon tetrachloride (CCl₄) injury, but their absence did not impact the development of hepatocyte necrosis. Conversely, the specific expansion of Tregs by administration of IL-2 complexes increased the number of intra-hepatic Tregs and significantly ameliorated tissue damage following CCl₄ administration in C57BL/6 mice. The cytoprotective effect observed in response to IL-2c was associated with the increased expression of markers known to regulate Treg suppressive function. Our results offer insight into the transcriptome and complex immune network of intra-hepatic Tregs and suggest that strategies capable of selectively increasing the pool of intra-hepatic Tregs could constitute effective therapies in inflammatory liver diseases.
Collapse
Affiliation(s)
- Ada S. Kurt
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Karoline Strobl
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Paula Ruiz
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Gabriel Osborn
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Tonika Chester
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Lauren Dawson
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Karsten M. Warwas
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
- Applied Tumour Immunity, German Cancer Research Centre (DKFZ), Ruprecht-Karls-Universitat, Heidelberg, Germany
| | - Elizabeth H. Grey
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Sotiris Mastoridis
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Elisavet Kodela
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Niloufar Safinia
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
- *Correspondence: Alberto Sanchez-Fueyo,
| | - Marc Martinez-Llordella
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| |
Collapse
|
88
|
Abstract
Hepatitis B virus (HBV) is a non-cytopathic, hepatotropic virus with the potential to cause a persistent infection, ultimately leading to cirrhosis and hepatocellular carcinoma. Over the past four decades, the basic principles of HBV gene expression and replication as well as the viral and host determinants governing infection outcome have been largely uncovered. Whereas HBV appears to induce little or no innate immune activation, the adaptive immune response mediates both viral clearance as well as liver disease. Here, we review our current knowledge on the immunobiology and pathogenesis of HBV infection, focusing in particular on the role of CD8+ T cells and on several recent breakthroughs that challenge current dogmas. For example, we now trust that HBV integration into the host genome often serves as a relevant source of hepatitis B surface antigen (HBsAg) expression during chronic infection, possibly triggering dysfunctional T cell responses and favouring detrimental immunopathology. Further, the unique haemodynamics and anatomy of the liver - and the changes they frequently endure during disease progression to liver fibrosis and cirrhosis - profoundly influence T cell priming, differentiation and function. We also discuss why therapeutic approaches that limit the intrahepatic inflammatory processes triggered by HBV-specific T cells might be surprisingly beneficial for patients with chronic infection.
Collapse
|
89
|
Andreata F, Blériot C, Di Lucia P, De Simone G, Fumagalli V, Ficht X, Beccaria CG, Kuka M, Ginhoux F, Iannacone M. Isolation of mouse Kupffer cells for phenotypic and functional studies. STAR Protoc 2021; 2:100831. [PMID: 34585164 PMCID: PMC8450292 DOI: 10.1016/j.xpro.2021.100831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Here, we provide detailed protocols for the isolation of mouse Kupffer cells - the liver-resident macrophages - for phenotypic (e.g., via flow cytometry, mass cytometry, or RNA-sequencing) analyses or for functional experiments involving cell culture. The procedures presented can be adapted for the isolation of other hepatic cell populations. For complete details on the use and execution of this protocol, please refer to De Simone et al. (2021).
Collapse
Affiliation(s)
- Francesco Andreata
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Camille Blériot
- Singapore Immunology Network (SIgN), Agency for Science, Technology & Research (A∗STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648, Singapore
| | - Pietro Di Lucia
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giorgia De Simone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Xenia Ficht
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cristian Gabriel Beccaria
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mirela Kuka
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology & Research (A∗STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648, Singapore
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
90
|
Khan IW, Dad Ullah MU, Choudhry M, Ali MJ, Ali MA, Lam SLK, Shah PA, Kaur SP, Lau DTY. Novel Therapies of Hepatitis B and D. Microorganisms 2021; 9:2607. [PMID: 34946209 PMCID: PMC8707465 DOI: 10.3390/microorganisms9122607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health issue and is a major cause of cirrhosis and hepatocellular carcinoma (HCC). Hepatitis D virus (HDV) requires the hepatitis B surface antigen (HBsAg) to replicate. The eradication of HBV, therefore, can also cure HDV. The current therapies for chronic hepatitis B and D are suboptimal and cannot definitely cure the viruses. In order to achieve functional or complete cure of these infections, novel therapeutic agents that target the various sites of the viral replicative cycle are necessary. Furthermore, novel immunomodulatory agents are also essential to achieve viral clearance. Many of these new promising compounds such as entry inhibitors, covalently closed circular DNA (cccDNA) inhibitors, small interfering RNAs (siRNAs), capsid assembly modulators and nucleic acid polymers are in various stages of clinical developments. In this review article, we provided a comprehensive overview of the structure and lifecycle of HBV, the limitations of the current therapies and a summary of the novel therapeutic agents for both HDV and HBV infection.
Collapse
Affiliation(s)
- Iman Waheed Khan
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mati Ullah Dad Ullah
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mina Choudhry
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mukarram Jamat Ali
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Muhammad Ashar Ali
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Sam L. K. Lam
- Liver Center, Department of Medicine, Department of Pharmacy, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Pir Ahmad Shah
- Department of Internal Medicine, University of Texas, San Antonio, TX 78229, USA;
| | - Satinder Pal Kaur
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Daryl T. Y. Lau
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| |
Collapse
|
91
|
Zhang C, Liu S, Yang M. Functions of two distinct Kupffer cells in the liver. EXPLORATION OF MEDICINE 2021:511-515. [DOI: 10.37349/emed.2021.00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2023] Open
Abstract
Tissue-resident macrophages play critically important roles in host homeostasis and pathogenesis of diseases, with the functions of phagocytosis, metabolism, and immune modulation. Recently, two research studies accomplished by a collaborated group of researchers showed that there are two populations of liver resident Kupffer cells (KCs), including a major cluster of differentiation 206 low expression (CD206low)endothelial cell-selective adhesion molecule negative (ESAM-) population (KC1) and a minor CD206highESAM+ population (KC2). Both KC1 and KC2 express KC markers, such as C-type lectin domain family 4 member F (CLEC4F) and T-cell membrane protein 4 (Tim4). In fatty liver, the frequency of KC2 was increased, and those KC2 expressed some markers like liver sinusoidal endothelial cells (LSECs), such as CD31 and ESAM. In addition, KC2 population had a relatively higher expression of CD36, as fatty acid transporter, which was implicated in the production of reactive oxygen species (ROS) and lipid peroxidation. Furthermore, this collaborated group also showed that KC2 can cross-present hepatocellular antigens to prime antiviral function of CD8+ T cells by sensing interleukin-2 (IL-2) in hepatitis B virus (HBV) replication-competent transgenic mice. Increasing evidence shows that targeting hepatic macrophages can prevent and reverse non-alcoholic fatty liver disease (NAFLD), with a new suggested name metabolic dysfunction-associated fatty liver disease (MAFLD) to include metabolic dysfunction-associated fatty liver diseases, such as viruses and alcohol. In summary, differentiating specific populations of hepatic macrophages is critically important for the treatment of MAFLD or NAFLD, and their overlaps. Markers specifically expressed on sub-types of hepatic macrophages may be applied for liver disease diagnosis.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
92
|
Chiale C, Marchese AM, Furuya Y, Robek MD. Virus-based vaccine vectors with distinct replication mechanisms differentially infect and activate dendritic cells. NPJ Vaccines 2021; 6:138. [PMID: 34811393 PMCID: PMC8608815 DOI: 10.1038/s41541-021-00400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
The precise mechanism by which many virus-based vectors activate immune responses remains unknown. Dendritic cells (DCs) play key roles in priming T cell responses and controlling virus replication, but their functions in generating protective immunity following vaccination with viral vectors are not always well understood. We hypothesized that highly immunogenic viral vectors with identical cell entry pathways but unique replication mechanisms differentially infect and activate DCs to promote antigen presentation and activation of distinctive antigen-specific T cell responses. To evaluate differences in replication mechanisms, we utilized a rhabdovirus vector (vesicular stomatitis virus; VSV) and an alphavirus-rhabdovirus hybrid vector (virus-like vesicles; VLV), which replicates like an alphavirus but enters the cell via the VSV glycoprotein. We found that while virus replication promotes CD8+ T cell activation by VLV, replication is absolutely required for VSV-induced responses. DC subtypes were differentially infected in vitro with VSV and VLV, and displayed differences in activation following infection that were dependent on vector replication but were independent of interferon receptor signaling. Additionally, the ability of the alphavirus-based vector to generate functional CD8+ T cells in the absence of replication relied on cDC1 cells. These results highlight the differential activation of DCs following infection with unique viral vectors and indicate potentially discrete roles of DC subtypes in activating the immune response following immunization with vectors that have distinct replication mechanisms.
Collapse
Affiliation(s)
- Carolina Chiale
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.,Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Anthony M Marchese
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yoichi Furuya
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Michael D Robek
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
93
|
Knolle PA, Huang LR, Kosinska A, Wohlleber D, Protzer U. Improving Therapeutic Vaccination against Hepatitis B-Insights from Preclinical Models of Immune Therapy against Persistent Hepatitis B Virus Infection. Vaccines (Basel) 2021; 9:1333. [PMID: 34835264 PMCID: PMC8623083 DOI: 10.3390/vaccines9111333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic hepatitis B affects more than 250 million individuals worldwide, putting them at risk of developing liver cirrhosis and liver cancer. While antiviral immune responses are key to eliminating hepatitis B virus (HBV) infections, insufficient antiviral immunity characterized by failure to eliminate HBV-infected hepatocytes is associated with chronic hepatitis B. Prophylactic vaccination against hepatitis B successfully established protective immunity against infection with the hepatitis B virus and has been instrumental in controlling hepatitis B. However, prophylactic vaccination schemes have not been successful in mounting protective immunity to eliminate HBV infections in patients with chronic hepatitis B. Here, we discuss the current knowledge on the development and efficacy of therapeutic vaccination strategies against chronic hepatitis B with particular emphasis on the pathogenetic understanding of dysfunctional anti-viral immunity. We explore the development of additional immune stimulation measures within tissues, in particular activation of immunogenic myeloid cell populations, and their use for combination with therapeutic vaccination strategies to improve the efficacy of therapeutic vaccination against chronic hepatitis B.
Collapse
Affiliation(s)
- Percy A. Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- German Center for infection Research (DZIF), Munich Site, 81675 Munich, Germany;
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli City 350, Taiwan;
| | - Anna Kosinska
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Ulrike Protzer
- German Center for infection Research (DZIF), Munich Site, 81675 Munich, Germany;
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| |
Collapse
|
94
|
Delphin M, Desmares M, Schuehle S, Heikenwalder M, Durantel D, Faure-Dupuy S. How to get away with liver innate immunity? A viruses' tale. Liver Int 2021; 41:2547-2559. [PMID: 34520597 DOI: 10.1111/liv.15054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
In their never-ending quest towards persistence within their host, hepatitis viruses have developed numerous ways to counteract the liver innate immunity. This review highlights the different and common mechanisms employed by these viruses to (i) establish in the liver (passive entry or active evasion from immune recognition) and (ii) actively inhibit the innate immune response (ie modulation of pattern recognition receptor expression and/or signalling pathways, modulation of interferon response and modulation of immune cells count or phenotype).
Collapse
Affiliation(s)
- Marion Delphin
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Manon Desmares
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Svenja Schuehle
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - David Durantel
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France.,DEVweCAN Laboratory of Excellence, Lyon, France
| | - Suzanne Faure-Dupuy
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
95
|
Barili V, Vecchi A, Rossi M, Montali I, Tiezzi C, Penna A, Laccabue D, Missale G, Fisicaro P, Boni C. Unraveling the Multifaceted Nature of CD8 T Cell Exhaustion Provides the Molecular Basis for Therapeutic T Cell Reconstitution in Chronic Hepatitis B and C. Cells 2021; 10:2563. [PMID: 34685543 PMCID: PMC8533840 DOI: 10.3390/cells10102563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
In chronic hepatitis B and C virus infections persistently elevated antigen levels drive CD8+ T cells toward a peculiar differentiation state known as T cell exhaustion, which poses crucial constraints to antiviral immunity. Available evidence indicates that T cell exhaustion is associated with a series of metabolic and signaling deregulations and with a very peculiar epigenetic status which all together lead to reduced effector functions. A clear mechanistic network explaining how intracellular metabolic derangements, transcriptional and signaling alterations so far described are interconnected in a comprehensive and unified view of the T cell exhaustion differentiation profile is still lacking. Addressing this issue is of key importance for the development of innovative strategies to boost host immunity in order to achieve viral clearance. This review will discuss the current knowledge in HBV and HCV infections, addressing how innate immunity, metabolic derangements, extensive stress responses and altered epigenetic programs may be targeted to restore functionality and responsiveness of virus-specific CD8 T cells in the context of chronic virus infections.
Collapse
Affiliation(s)
- Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Camilla Tiezzi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| |
Collapse
|
96
|
De Simone G, Andreata F, Bleriot C, Fumagalli V, Laura C, Garcia-Manteiga JM, Di Lucia P, Gilotto S, Ficht X, De Ponti FF, Bono EB, Giustini L, Ambrosi G, Mainetti M, Zordan P, Bénéchet AP, Ravà M, Chakarov S, Moalli F, Bajenoff M, Guidotti LG, Ginhoux F, Iannacone M. Identification of a Kupffer cell subset capable of reverting the T cell dysfunction induced by hepatocellular priming. Immunity 2021; 54:2089-2100.e8. [PMID: 34469774 PMCID: PMC8459394 DOI: 10.1016/j.immuni.2021.05.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/13/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Kupffer cells (KCs) are highly abundant, intravascular, liver-resident macrophages known for their scavenger and phagocytic functions. KCs can also present antigens to CD8+ T cells and promote either tolerance or effector differentiation, but the mechanisms underlying these discrepant outcomes are poorly understood. Here, we used a mouse model of hepatitis B virus (HBV) infection, in which HBV-specific naive CD8+ T cells recognizing hepatocellular antigens are driven into a state of immune dysfunction, to identify a subset of KCs (referred to as KC2) that cross-presents hepatocellular antigens upon interleukin-2 (IL-2) administration, thus improving the antiviral function of T cells. Removing MHC-I from all KCs, including KC2, or selectively depleting KC2 impaired the capacity of IL-2 to revert the T cell dysfunction induced by intrahepatic priming. In summary, by sensing IL-2 and cross-presenting hepatocellular antigens, KC2 overcome the tolerogenic potential of the hepatic microenvironment, suggesting new strategies for boosting hepatic T cell immunity.
Collapse
Affiliation(s)
- Giorgia De Simone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Camille Bleriot
- Singapore Immunology Network (SIgN), Agency for Science, Technology & Research (A(∗)STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Chiara Laura
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Gilotto
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federico F De Ponti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elisa B Bono
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gioia Ambrosi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marta Mainetti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paola Zordan
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alexandre P Bénéchet
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Svetoslav Chakarov
- Singapore Immunology Network (SIgN), Agency for Science, Technology & Research (A(∗)STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648
| | - Federica Moalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marc Bajenoff
- Aix Marseille University, CNRS, INSERM, CIML, Marseille 13288, France
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology & Research (A(∗)STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, 169856, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy; Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
97
|
Wang T, Yeh MM, Avigan MI, Pelosof L, Feldman GM. Deciphering the Dynamic Complexities of the Liver Microenvironment - Toward a Better Understanding of Immune-Mediated liver Injury Caused by Immune Checkpoint Inhibitors (ILICI). AAPS JOURNAL 2021; 23:99. [PMID: 34401948 DOI: 10.1208/s12248-021-00629-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
Immune checkpoint inhibitors (ICIs) represent a promising therapy for many types of cancer. However, only a portion of patients respond to this therapy and some patients develop clinically significant immune-mediated liver injury caused by immune checkpoint inhibitors (ILICI), an immune-related adverse event (irAE) that may require the interruption or termination of treatment and administration of systemic corticosteroids or other immunosuppressive agents. Although the incidence of ILICI is lower with monotherapy, the surge in combining ICIs with chemotherapy, targeted therapy, and combination of different ICIs has led to an increase in the incidence and severity of ILICI - a major challenge for development of effective and safe ICI therapy. In this review, we highlight the importance and contribution of the liver microenvironment to ILICI by focusing on the emerging roles of resident liver cells in modulating immune homeostasis and hepatocyte regeneration, two important decisive factors that dictate the initiation, progression, and recovery from ILICI. Based on the proposed contribution of the liver microenvironment on ICILI, we discuss the clinical characteristics of ILICI in patients with preexisting liver diseases, as well as the challenges of identifying prognostic biomarkers to guide the clinical management of severe ILICI. A better understanding of the liver microenvironment may lead to novel strategies and identification of novel biomarkers for effective management of ILICI.
Collapse
Affiliation(s)
- Tao Wang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
| | - Matthew M Yeh
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, 98195, USA
| | - Mark I Avigan
- Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Lorraine Pelosof
- Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Gerald M Feldman
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
98
|
Shared immunotherapeutic approaches in HIV and hepatitis B virus: combine and conquer. Curr Opin HIV AIDS 2021; 15:157-164. [PMID: 32167944 DOI: 10.1097/coh.0000000000000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to identify similarities, differences and lessons to be shared from recent progress in HIV and hepatitis B virus (HBV) immunotherapeutic approaches. RECENT FINDINGS Immune dysregulation is a hallmark of both HIV and HBV infection, which have shared routes of transmission, with approximately 10% of HIV-positive patients worldwide being coinfected with HBV. Immune modulation therapies to orchestrate effective innate and adaptive immune responses are currently being sought as potential strategies towards a functional cure in both HIV and HBV infection. These are based on activating immunological mechanisms that would allow durable control by triggering innate immunity, reviving exhausted endogenous responses and/or generating new immune responses. Recent technological advances and increased appreciation of humoral responses in the control of HIV have generated renewed enthusiasm in the cure field. SUMMARY For both HIV and HBV infection, a primary consideration with immunomodulatory therapies continues to be a balance between generating highly effective immune responses and mitigating any significant toxicity. A large arsenal of new approaches and ongoing research offer the opportunity to define the pathways that underpin chronic infection and move closer to a functional cure.
Collapse
|
99
|
Abstract
PURPOSE OF REVIEW Antiviral therapy for chronic hepatitis B infection is rarely curative, thus research in HBV cure strategies is a priority. Drug development and testing has been hampered by the lack of robust cell culture systems and small animal models. This review summarizes existing models for HBV cure research and focuses on recent developments since 2017 until today. RECENT FINDINGS The field has progressed in the development of cell culture and animal models to study HBV. Although early cell culture systems relied on transfection of HBV genomes in hepatoma cell lines, novel models expressing the entry receptor for HBV are susceptible to infection. Improved culture conditions for primary human hepatocytes, the primary target of HBV, have enabled the screening and validation of novel antivirals. Mouse models grafted with partially humanized livers are suitable for testing viral entry inhibitors or direct acting antivirals, and can be reconstituted with human immune cells to analyze immunotherapies. Other immunocompetent models include mice transduced with HBV genomes or woodchucks infected with their native hepatitis virus. SUMMARY Model systems for HBV research have helped lay the groundwork for the development and optimization of antiviral and immune-based therapeutic approaches that are now moving to clinical trials.
Collapse
|
100
|
Yang S, Zeng W, Zhang J, Lu F, Chang J, Guo JT. Restoration of a functional antiviral immune response to chronic HBV infection by reducing viral antigen load: if not sufficient, is it necessary? Emerg Microbes Infect 2021; 10:1545-1554. [PMID: 34227927 PMCID: PMC8354158 DOI: 10.1080/22221751.2021.1952851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The prolonged viral antigen stimulation is the driving force for the development of immune tolerance to chronic hepatitis B virus (HBV) infection. The sustained reduction of viral proteins may allow for the recovery and efficient activation of HBV-specific T and B cells by immune-stimulating agents, checkpoint blockades and/or therapeutic vaccinations. Recently, several therapeutic approaches have been shown to significantly reduce intrahepatic viral proteins and/or circulating HBV surface antigen (HBsAg) with variable impacts on the host antiviral immune responses in animal models or human clinical trials. It remains to be further investigated whether reduction of viral protein expression or induction of intrahepatic viral protein degradation is more efficacious to break the immune tolerance to chronic HBV infection. It is also of great interest to know if the accelerated clearance of circulating HBsAg by antibodies has a long-term immunological impact on HBV infection and disease progression. Although it is clear that removal of antigen stimulation alone is not sufficient to induce the functional recovery of exhausted T and B cells, accumulating evidence suggests that the reduction of viral antigen load appears to facilitate the therapeutic activation of functional antiviral immunity in chronic HBV carriers. Based on a systematic review of the findings in animal models and clinical studies, the research directions toward discovery and development of more efficacious therapeutic approaches to reinvigorate HBV-specific adaptive immune function and achieve the durable control of chronic HBV infection, i.e. a functional cure, in the vast majority of treated patients are discussed.
Collapse
Affiliation(s)
- Sisi Yang
- Baruch S. Blumberg Institute, Doylestown, PA, USA.,Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wanjia Zeng
- Peking University Health Science Center, Beijing, People's Republic of China
| | - Jiming Zhang
- Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Fengmin Lu
- Peking University Health Science Center, Beijing, People's Republic of China
| | | | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| |
Collapse
|