51
|
Duan J, Liu H, Zhao F, Yuan Q, Ji Y, Cai X, He X, Li X, Li J, Wu K, Gao T, Zhu S, Lin S, Wang MW, Cheng X, Yin W, Jiang Y, Yang D, Xu HE. GPCR activation and GRK2 assembly by a biased intracellular agonist. Nature 2023; 620:676-681. [PMID: 37532940 DOI: 10.1038/s41586-023-06395-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Phosphorylation of G-protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) desensitizes G-protein signalling and promotes arrestin signalling, which is also modulated by biased ligands1-6. The molecular assembly of GRKs on GPCRs and the basis of GRK-mediated biased signalling remain largely unknown owing to the weak GPCR-GRK interactions. Here we report the complex structure of neurotensin receptor 1 (NTSR1) bound to GRK2, Gαq and the arrestin-biased ligand SBI-5537. The density map reveals the arrangement of the intact GRK2 with the receptor, with the N-terminal helix of GRK2 docking into the open cytoplasmic pocket formed by the outward movement of the receptor transmembrane helix 6, analogous to the binding of the G protein to the receptor. SBI-553 binds at the interface between GRK2 and NTSR1 to enhance GRK2 binding. The binding mode of SBI-553 is compatible with arrestin binding but clashes with the binding of Gαq protein, thus providing a mechanism for its arrestin-biased signalling capability. In sum, our structure provides a rational model for understanding the details of GPCR-GRK interactions and GRK2-mediated biased signalling.
Collapse
Affiliation(s)
- Jia Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Heng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fenghui Zhao
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yujie Ji
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Cai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinzhu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junrui Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tianyu Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shengnan Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Ming-Wei Wang
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wanchao Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China
| | - Dehua Yang
- University of Chinese Academy of Sciences, Beijing, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
52
|
Chen Q, Schafer CT, Mukherjee S, Gustavsson M, Agrawal P, Yao XQ, Kossiakoff AA, Handel TM, Tesmer JJG. ACKR3-arrestin2/3 complexes reveal molecular consequences of GRK-dependent barcoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549504. [PMID: 37502840 PMCID: PMC10370059 DOI: 10.1101/2023.07.18.549504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Atypical chemokine receptor 3 (ACKR3, also known as CXCR7) is a scavenger receptor that regulates extracellular levels of the chemokine CXCL12 to maintain responsiveness of its partner, the G protein-coupled receptor (GPCR), CXCR4. ACKR3 is notable because it does not couple to G proteins and instead is completely biased towards arrestins. Our previous studies revealed that GRK2 and GRK5 install distinct distributions of phosphates (or "barcodes") on the ACKR3 carboxy terminal tail, but how these unique barcodes drive different cellular outcomes is not understood. It is also not known if arrestin2 (Arr2) and 3 (Arr3) bind to these barcodes in distinct ways. Here we report cryo-electron microscopy structures of Arr2 and Arr3 in complex with ACKR3 phosphorylated by either GRK2 or GRK5. Unexpectedly, the finger loops of Arr2 and 3 directly insert into the detergent/membrane instead of the transmembrane core of ACKR3, in contrast to previously reported "core" GPCR-arrestin complexes. The distance between the phosphorylation barcode and the receptor transmembrane core regulates the interaction mode of arrestin, alternating between a tighter complex for GRK5 sites and heterogenous primarily "tail only" complexes for GRK2 sites. Arr2 and 3 bind at different angles relative to the core of ACKR3, likely due to differences in membrane/micelle anchoring at their C-edge loops. Our structural investigations were facilitated by Fab7, a novel Fab that binds both Arr2 and 3 in their activated states irrespective of receptor or phosphorylation status, rendering it a potentially useful tool to aid structure determination of any native GPCR-arrestin complex. The structures provide unprecedented insight into how different phosphorylation barcodes and arrestin isoforms can globally affect the configuration of receptor-arrestin complexes. These differences may promote unique downstream intracellular interactions and cellular responses. Our structures also suggest that the 100% bias of ACKR3 for arrestins is driven by the ability of arrestins, but not G proteins, to bind GRK-phosphorylated ACKR3 even when excluded from the receptor cytoplasmic binding pocket.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA
| | - Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Parth Agrawal
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA
| |
Collapse
|
53
|
Guo C, Yang L, Liu Z, Liu D, Wüthrich K. Two-Dimensional NMR Spectroscopy of the G Protein-Coupled Receptor A 2AAR in Lipid Nanodiscs. Molecules 2023; 28:5419. [PMID: 37513291 PMCID: PMC10383251 DOI: 10.3390/molecules28145419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Eight hundred and twenty-six human G protein-coupled receptors (GPCRs) mediate the actions of two-thirds of the human hormones and neurotransmitters and over one-third of clinically used drugs. Studying the structure and dynamics of human GPCRs in lipid bilayer environments resembling the native cell membrane milieu is of great interest as a basis for understanding structure-function relationships and thus benefits continued drug development. Here, we incorporate the human A2A adenosine receptor (A2AAR) into lipid nanodiscs, which represent a detergent-free environment for structural studies using nuclear magnetic resonance (NMR) in solution. The [15N,1H]-TROSY correlation spectra confirmed that the complex of [u-15N, ~70% 2H]-A2AAR with an inverse agonist adopts its global fold in lipid nanodiscs in solution at physiological temperature. The global assessment led to two observations of practical interest. First, A2AAR in nanodiscs can be stored for at least one month at 4 °C in an aqueous solvent. Second, LMNG/CHS micelles are a very close mimic of the environment of A2AAR in nanodiscs. The NMR signal of five individually assigned tryptophan indole 15N-1H moieties located in different regions of the receptor structure further enabled a detailed assessment of the impact of nanodiscs and LMNG/CHS micelles on the local structure and dynamics of A2AAR. As expected, the largest effects were observed near the lipid-water interface along the intra- and extracellular surfaces, indicating possible roles of tryptophan side chains in stabilizing GPCRs in lipid bilayer membranes.
Collapse
Affiliation(s)
- Canyong Guo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lingyun Yang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Kurt Wüthrich
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
54
|
Maharana J, Sarma P, Yadav MK, Saha S, Singh V, Saha S, Chami M, Banerjee R, Shukla AK. Structural snapshots uncover a key phosphorylation motif in GPCRs driving β-arrestin activation. Mol Cell 2023; 83:2091-2107.e7. [PMID: 37209686 PMCID: PMC7615930 DOI: 10.1016/j.molcel.2023.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/22/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
Agonist-induced GPCR phosphorylation is a key determinant for the binding and activation of β-arrestins (βarrs). However, it is not entirely clear how different GPCRs harboring divergent phosphorylation patterns impart converging active conformation on βarrs leading to broadly conserved functional responses such as desensitization, endocytosis, and signaling. Here, we present multiple cryo-EM structures of activated βarrs in complex with distinct phosphorylation patterns derived from the carboxyl terminus of different GPCRs. These structures help identify a P-X-P-P type phosphorylation motif in GPCRs that interacts with a spatially organized K-K-R-R-K-K sequence in the N-domain of βarrs. Sequence analysis of the human GPCRome reveals the presence of this phosphorylation pattern in a large number of receptors, and its contribution in βarr activation is demonstrated by targeted mutagenesis experiments combined with an intrabody-based conformational sensor. Taken together, our findings provide important structural insights into the ability of distinct GPCRs to activate βarrs through a significantly conserved mechanism.
Collapse
Affiliation(s)
- Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Manish K Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sayantan Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Vinay Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Shirsha Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
55
|
Zheng C, Weinstein LD, Nguyen KK, Grewal A, Gurevich EV, Gurevich VV. GPCR Binding and JNK3 Activation by Arrestin-3 Have Different Structural Requirements. Cells 2023; 12:1563. [PMID: 37371033 DOI: 10.3390/cells12121563] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Arrestins bind active phosphorylated G protein-coupled receptors (GPCRs). Among the four mammalian subtypes, only arrestin-3 facilitates the activation of JNK3 in cells. In available structures, Lys-295 in the lariat loop of arrestin-3 and its homologue Lys-294 in arrestin-2 directly interact with the activator-attached phosphates. We compared the roles of arrestin-3 conformational equilibrium and Lys-295 in GPCR binding and JNK3 activation. Several mutants with enhanced ability to bind GPCRs showed much lower activity towards JNK3, whereas a mutant that does not bind GPCRs was more active. The subcellular distribution of mutants did not correlate with GPCR recruitment or JNK3 activation. Charge neutralization and reversal mutations of Lys-295 differentially affected receptor binding on different backgrounds but had virtually no effect on JNK3 activation. Thus, GPCR binding and arrestin-3-assisted JNK3 activation have distinct structural requirements, suggesting that facilitation of JNK3 activation is the function of arrestin-3 that is not bound to a GPCR.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Liana D Weinstein
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kevin K Nguyen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Abhijeet Grewal
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
56
|
Liu H, Zhang Q, He X, Jiang M, Wang S, Yan X, Cheng X, Liu Y, Nan FJ, Xu HE, Xie X, Yin W. Structural insights into ligand recognition and activation of the medium-chain fatty acid-sensing receptor GPR84. Nat Commun 2023; 14:3271. [PMID: 37277332 DOI: 10.1038/s41467-023-38985-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/23/2023] [Indexed: 06/07/2023] Open
Abstract
GPR84 is an orphan class A G protein-coupled receptor (GPCR) that is predominantly expressed in immune cells and plays important roles in inflammation, fibrosis, and metabolism. Here, we present cryo-electron microscopy (cryo-EM) structures of Gαi protein-coupled human GPR84 bound to a synthetic lipid-mimetic ligand, LY237, or a putative endogenous ligand, a medium-chain fatty acid (MCFA) 3-hydroxy lauric acid (3-OH-C12). Analysis of these two ligand-bound structures reveals a unique hydrophobic nonane tail -contacting patch, which forms a blocking wall to select MCFA-like agonists with the correct length. We also identify the structural features in GPR84 that coordinate the polar ends of LY237 and 3-OH-C12, including the interactions with the positively charged side chain of R172 and the downward movement of the extracellular loop 2 (ECL2). Together with molecular dynamics simulations and functional data, our structures reveal that ECL2 not only contributes to direct ligand binding, but also plays a pivotal role in ligand entry from the extracellular milieu. These insights into the structure and function of GPR84 could improve our understanding of ligand recognition, receptor activation, and Gαi-coupling of GPR84. Our structures could also facilitate rational drug discovery against inflammation and metabolic disorders targeting GPR84.
Collapse
Affiliation(s)
- Heng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qing Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 264117, Yantai, Shandong, China
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mengting Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Siwei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoci Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Fa-Jun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 264117, Yantai, Shandong, China
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China.
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 264117, Yantai, Shandong, China.
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Wanchao Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 528400, Guangdong, China.
| |
Collapse
|
57
|
Portales-Castillo I, Dean T, Cheloha RW, Creemer BA, Vilardaga JP, Savransky S, Khatri A, Jüppner H, Gardella TJ. Altered Signaling and Desensitization Responses in PTH1R Mutants Associated with Eiken Syndrome. Commun Biol 2023; 6:599. [PMID: 37268817 PMCID: PMC10238420 DOI: 10.1038/s42003-023-04966-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
The parathyroid hormone receptor type 1 (PTH1R) is a G protein-coupled receptor that plays key roles in regulating calcium homeostasis and skeletal development via binding the ligands, PTH and PTH-related protein (PTHrP), respectively. Eiken syndrome is a rare disease of delayed bone mineralization caused by homozygous PTH1R mutations. Of the three mutations identified so far, R485X, truncates the PTH1R C-terminal tail, while E35K and Y134S alter residues in the receptor's amino-terminal extracellular domain. Here, using a variety of cell-based assays, we show that R485X increases the receptor's basal rate of cAMP signaling and decreases its capacity to recruit β-arrestin2 upon ligand stimulation. The E35K and Y134S mutations each weaken the binding of PTHrP leading to impaired β-arrestin2 recruitment and desensitization of cAMP signaling response to PTHrP but not PTH. Our findings support a critical role for interaction with β-arrestin in the mechanism by which the PTH1R regulates bone formation.
Collapse
Affiliation(s)
- Ignacio Portales-Castillo
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
- Department of Medicine, Division of Nephrology, Washington University in St. Louis, BJCIH Building, 425 South Euclid St, St. Louis, MO, 63110, USA
| | - Thomas Dean
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
| | - Ross W Cheloha
- Chemical Biology in Signaling Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, Building 8, 8 Center Drive, Bethesda, MD, 20891, USA
| | - Brendan A Creemer
- Chemical Biology in Signaling Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, Building 8, 8 Center Drive, Bethesda, MD, 20891, USA
| | - Jean-Pierre Vilardaga
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA, 15261, USA
| | - Sofya Savransky
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA, 15261, USA
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital, and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA.
| |
Collapse
|
58
|
Coupland CE, Ansell TB, Sansom MSP, Siebold C. Rocking the MBOAT: Structural insights into the membrane bound O-acyltransferase family. Curr Opin Struct Biol 2023; 80:102589. [PMID: 37040671 DOI: 10.1016/j.sbi.2023.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/13/2023]
Abstract
The membrane-bound O-acyltransferase (MBOAT) superfamily catalyses the transfer of acyl chains to substrates implicated in essential cellular functions. Aberrant function of MBOATs is associated with various diseases and MBOATs are promising drug targets. There has been recent progress in structural characterisation of MBOATs, advancing our understanding of their functional mechanism. Integrating information across the MBOAT family, we characterise a common MBOAT fold and provide a blueprint for substrate and inhibitor engagement. This work provides context for the diverse substrates, mechanisms, and evolutionary relationships of protein and small-molecule MBOATs. Further work should aim to characterise MBOATs, as inherently lipid-associated proteins, within their membrane environment.
Collapse
Affiliation(s)
- Claire E Coupland
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - T Bertie Ansell
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
59
|
Gusach A, García-Nafría J, Tate CG. New insights into GPCR coupling and dimerisation from cryo-EM structures. Curr Opin Struct Biol 2023; 80:102574. [PMID: 36963163 PMCID: PMC10423944 DOI: 10.1016/j.sbi.2023.102574] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/01/2023] [Accepted: 02/19/2023] [Indexed: 03/26/2023]
Abstract
Over the past three years (2020-2022) more structures of GPCRs have been determined than in the previous twenty years (2000-2019), primarily of GPCR complexes that are large enough for structure determination by single-particle cryo-EM. This review will present some structural highlights that have advanced our molecular understanding of promiscuous G protein coupling, how a G protein receptor kinase and β-arrestins couple to GPCRs, and GPCR dimerisation. We will also discuss advances in the use of gene fusions, nanobodies, and Fab fragments to facilitate the structure determination of GPCRs in the inactive state that, on their own, are too small for structure determination by single-particle cryo-EM.
Collapse
Affiliation(s)
- Anastasiia Gusach
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 2QH, UK. https://twitter.com/GusachAnastasia
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain. https://twitter.com/JGarciaNafria
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 2QH, UK.
| |
Collapse
|
60
|
Vuckovic Z, Wang J, Pham V, Mobbs JI, Belousoff MJ, Bhattarai A, Burger WAC, Thompson G, Yeasmin M, Nawaratne V, Leach K, van der Westhuizen ET, Khajehali E, Liang YL, Glukhova A, Wootten D, Lindsley CW, Tobin A, Sexton P, Danev R, Valant C, Miao Y, Christopoulos A, Thal DM. Pharmacological hallmarks of allostery at the M4 muscarinic receptor elucidated through structure and dynamics. eLife 2023; 12:83477. [PMID: 37248726 DOI: 10.7554/elife.83477] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Allosteric modulation of G protein-coupled receptors (GPCRs) is a major paradigm in drug discovery. Despite decades of research, a molecular-level understanding of the general principles that govern the myriad pharmacological effects exerted by GPCR allosteric modulators remains limited. The M4 muscarinic acetylcholine receptor (M4 mAChR) is a validated and clinically relevant allosteric drug target for several major psychiatric and cognitive disorders. In this study, we rigorously quantified the affinity, efficacy, and magnitude of modulation of two different positive allosteric modulators, LY2033298 (LY298) and VU0467154 (VU154), combined with the endogenous agonist acetylcholine (ACh) or the high-affinity agonist iperoxo (Ipx), at the human M4 mAChR. By determining the cryo-electron microscopy structures of the M4 mAChR, bound to a cognate Gi1 protein and in complex with ACh, Ipx, LY298-Ipx, and VU154-Ipx, and applying molecular dynamics simulations, we determine key molecular mechanisms underlying allosteric pharmacology. In addition to delineating the contribution of spatially distinct binding sites on observed pharmacology, our findings also revealed a vital role for orthosteric and allosteric ligand-receptor-transducer complex stability, mediated by conformational dynamics between these sites, in the ultimate determination of affinity, efficacy, cooperativity, probe dependence, and species variability. There results provide a holistic framework for further GPCR mechanistic studies and can aid in the discovery and design of future allosteric drugs.
Collapse
Affiliation(s)
- Ziva Vuckovic
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jesse I Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Apurba Bhattarai
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Geoff Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Mahmuda Yeasmin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Vindhya Nawaratne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Emma T van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Elham Khajehali
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yi-Lynn Liang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Alisa Glukhova
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Craig W Lindsley
- Department of Pharmacology, Warren Center for Neuroscience Drug Discovery and Department of Chemistry, Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, United States
| | - Andrew Tobin
- The Centre for Translational Pharmacology, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Patrick Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| |
Collapse
|
61
|
Isaikina P, Petrovic I, Jakob RP, Sarma P, Ranjan A, Baruah M, Panwalkar V, Maier T, Shukla AK, Grzesiek S. A key GPCR phosphorylation motif discovered in arrestin2⋅CCR5 phosphopeptide complexes. Mol Cell 2023:S1097-2765(23)00326-X. [PMID: 37244255 DOI: 10.1016/j.molcel.2023.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/15/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
The two non-visual arrestins, arrestin2 and arrestin3, bind hundreds of GPCRs with different phosphorylation patterns, leading to distinct functional outcomes. Structural information on these interactions is available only for very few GPCRs. Here, we have characterized the interactions between the phosphorylated human CC chemokine receptor 5 (CCR5) and arrestin2. We identified several new CCR5 phosphorylation sites necessary for stable arrestin2 complex formation. Structures of arrestin2 in the apo form and complexes with CCR5 C-terminal phosphopeptides, together with NMR, biochemical, and functional assays, revealed three phosphoresidues in a pXpp motif that are essential for arrestin2 binding and activation. The identified motif appears responsible for robust arrestin2 recruitment in many other GPCRs. An analysis of receptor sequences and available structural and functional information provides hints on the molecular basis of arrestin2/arrestin3 isoform specificity. Our findings demonstrate how multi-site phosphorylation controls GPCR⋅arrestin interactions and provide a framework to probe the intricate details of arrestin signaling.
Collapse
Affiliation(s)
- Polina Isaikina
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | - Ivana Petrovic
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Roman P Jakob
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ashutosh Ranjan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Minakshi Baruah
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Vineet Panwalkar
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
62
|
Vishnivetskiy SA, Weinstein LD, Zheng C, Gurevich EV, Gurevich VV. Functional Role of Arrestin-1 Residues Interacting with Unphosphorylated Rhodopsin Elements. Int J Mol Sci 2023; 24:ijms24108903. [PMID: 37240250 DOI: 10.3390/ijms24108903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Arrestin-1, or visual arrestin, exhibits an exquisite selectivity for light-activated phosphorylated rhodopsin (P-Rh*) over its other functional forms. That selectivity is believed to be mediated by two well-established structural elements in the arrestin-1 molecule, the activation sensor detecting the active conformation of rhodopsin and the phosphorylation sensor responsive to the rhodopsin phosphorylation, which only active phosphorylated rhodopsin can engage simultaneously. However, in the crystal structure of the arrestin-1-rhodopsin complex there are arrestin-1 residues located close to rhodopsin, which do not belong to either sensor. Here we tested by site-directed mutagenesis the functional role of these residues in wild type arrestin-1 using a direct binding assay to P-Rh* and light-activated unphosphorylated rhodopsin (Rh*). We found that many mutations either enhanced the binding only to Rh* or increased the binding to Rh* much more than to P-Rh*. The data suggest that the native residues in these positions act as binding suppressors, specifically inhibiting the arrestin-1 binding to Rh* and thereby increasing arrestin-1 selectivity for P-Rh*. This calls for the modification of a widely accepted model of the arrestin-receptor interactions.
Collapse
Affiliation(s)
| | - Liana D Weinstein
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
63
|
Grimes J, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien SL, Stepniewski TM, Medel-Lacruz B, Baidya M, Makarova M, Mistry R, Goulding J, Drube J, Hoffmann C, Owen DM, Shukla AK, Selent J, Hill SJ, Calebiro D. Plasma membrane preassociation drives β-arrestin coupling to receptors and activation. Cell 2023; 186:2238-2255.e20. [PMID: 37146613 PMCID: PMC7614532 DOI: 10.1016/j.cell.2023.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/16/2022] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
β-arrestin plays a key role in G protein-coupled receptor (GPCR) signaling and desensitization. Despite recent structural advances, the mechanisms that govern receptor-β-arrestin interactions at the plasma membrane of living cells remain elusive. Here, we combine single-molecule microscopy with molecular dynamics simulations to dissect the complex sequence of events involved in β-arrestin interactions with both receptors and the lipid bilayer. Unexpectedly, our results reveal that β-arrestin spontaneously inserts into the lipid bilayer and transiently interacts with receptors via lateral diffusion on the plasma membrane. Moreover, they indicate that, following receptor interaction, the plasma membrane stabilizes β-arrestin in a longer-lived, membrane-bound state, allowing it to diffuse to clathrin-coated pits separately from the activating receptor. These results expand our current understanding of β-arrestin function at the plasma membrane, revealing a critical role for β-arrestin preassociation with the lipid bilayer in facilitating its interactions with receptors and subsequent activation.
Collapse
Affiliation(s)
- Jak Grimes
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Shannon L O'Brien
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Tomasz M Stepniewski
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain
| | - Brian Medel-Lacruz
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain
| | - Mithu Baidya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Maria Makarova
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK; School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ravi Mistry
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Joëlle Goulding
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Julia Drube
- Institut für Molekulare Zellbiologie, Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität, Jena 07745, Germany
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität, Jena 07745, Germany
| | - Dylan M Owen
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK; Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Jana Selent
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08003, Spain
| | - Stephen J Hill
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
64
|
Vilardaga JP, Clark LJ, White AD, Sutkeviciute I, Lee JY, Bahar I. Molecular Mechanisms of PTH/PTHrP Class B GPCR Signaling and Pharmacological Implications. Endocr Rev 2023; 44:474-491. [PMID: 36503956 PMCID: PMC10461325 DOI: 10.1210/endrev/bnac032] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
The classical paradigm of G protein-coupled receptor (GPCR) signaling via G proteins is grounded in a view that downstream responses are relatively transient and confined to the cell surface, but this notion has been revised in recent years following the identification of several receptors that engage in sustained signaling responses from subcellular compartments following internalization of the ligand-receptor complex. This phenomenon was initially discovered for the parathyroid hormone (PTH) type 1 receptor (PTH1R), a vital GPCR for maintaining normal calcium and phosphate levels in the body with the paradoxical ability to build or break down bone in response to PTH binding. The diverse biological processes regulated by this receptor are thought to depend on its capacity to mediate diverse modes of cyclic adenosine monophosphate (cAMP) signaling. These include transient signaling at the plasma membrane and sustained signaling from internalized PTH1R within early endosomes mediated by PTH. Here we discuss recent structural, cell signaling, and in vivo studies that unveil potential pharmacological outputs of the spatial versus temporal dimension of PTH1R signaling via cAMP. Notably, the combination of molecular dynamics simulations and elastic network model-based methods revealed how precise modulation of PTH signaling responses is achieved through structure-encoded allosteric coupling within the receptor and between the peptide hormone binding site and the G protein coupling interface. The implications of recent findings are now being explored for addressing key questions on how location bias in receptor signaling contributes to pharmacological functions, and how to drug a difficult target such as the PTH1R toward discovering nonpeptidic small molecule candidates for the treatment of metabolic bone and mineral diseases.
Collapse
Affiliation(s)
- Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lisa J Clark
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alex D White
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ieva Sutkeviciute
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ji Young Lee
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
65
|
Zheng C, Weinstein LD, Nguyen KK, Grewal A, Gurevich EV, Gurevich VV. GPCR binding and JNK3 activation by arrestin-3 have different structural requirements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538990. [PMID: 37205393 PMCID: PMC10187157 DOI: 10.1101/2023.05.01.538990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Arrestins bind active phosphorylated G protein-coupled receptors (GPCRs). Among the four mammalian subtypes, only arrestin-3 facilitates the activation of JNK3 in cells. In available structures, Lys-295 in the lariat loop of arrestin-3 and its homologue Lys-294 in arrestin-2 directly interact with the activator-attached phosphates. We compared the role of arrestin-3 conformational equilibrium and of Lys-295 in GPCR binding and JNK3 activation. Several mutants with enhanced ability to bind GPCRs showed much lower activity towards JNK3, whereas a mutant that does not bind GPCRs was more active. Subcellular distribution of mutants did not correlate with GPCR recruitment or JNK3 activation. Charge neutralization and reversal mutations of Lys-295 differentially affected receptor binding on different backgrounds, but had virtually no effect on JNK3 activation. Thus, GPCR binding and arrestin-3-assisted JNK3 activation have distinct structural requirements, suggesting that facilitation of JNK3 activation is the function of arrestin-3 that is not bound to a GPCR.
Collapse
|
66
|
Radoux-Mergault A, Oberhauser L, Aureli S, Gervasio FL, Stoeber M. Subcellular location defines GPCR signal transduction. SCIENCE ADVANCES 2023; 9:eadf6059. [PMID: 37075112 PMCID: PMC10115417 DOI: 10.1126/sciadv.adf6059] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Intracellular G protein-coupled receptors (GPCRs) can be activated by permeant ligands, which contributes to agonist selectivity. Opioid receptors (ORs) provide a notable example, where opioid drugs rapidly activate ORs in the Golgi apparatus. Our knowledge on intracellular GPCR function remains incomplete, and it is unknown whether OR signaling in plasma membrane (PM) and Golgi apparatus differs. Here, we assess the recruitment of signal transducers to mu- and delta-ORs in both compartments. We find that Golgi ORs couple to Gαi/o probes and are phosphorylated but, unlike PM receptors, do not recruit β-arrestin or a specific Gα probe. Molecular dynamics simulations with OR-transducer complexes in bilayers mimicking PM or Golgi composition reveal that the lipid environment promotes the location-selective coupling. We then show that delta-ORs in PM and Golgi have distinct effects on transcription and protein phosphorylation. The study reveals that the subcellular location defines the signaling effects of opioid drugs.
Collapse
Affiliation(s)
| | - Lucie Oberhauser
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Simone Aureli
- Department of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics, University of Geneva, CH-1206, Geneva, Switzerland
| | - Francesco Luigi Gervasio
- Department of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics, University of Geneva, CH-1206, Geneva, Switzerland
- Department of Chemistry, University College London, London WC1E 6BT, UK
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
67
|
Wang D, Yao Y, Wang S, Hou Y, Zhao L, Wang H, Chen H, Xu J. Structural Insights into M1 Muscarinic Acetylcholine Receptor Signaling Bias between Gαq and β-Arrestin through BRET Assays and Molecular Docking. Int J Mol Sci 2023; 24:ijms24087356. [PMID: 37108518 PMCID: PMC10138654 DOI: 10.3390/ijms24087356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The selectivity of drugs for G protein-coupled receptor (GPCR) signaling pathways is crucial for their therapeutic efficacy. Different agonists can cause receptors to recruit effector proteins at varying levels, thus inducing different signaling responses, called signaling bias. Although several GPCR-biased drugs are currently being developed, only a limited number of biased ligands have been identified regarding their signaling bias for the M1 muscarinic acetylcholine receptor (M1mAChR), and the mechanism is not yet well understood. In this study, we utilized bioluminescence resonance energy transfer (BRET) assays to compare the efficacy of six agonists in inducing Gαq and β-arrestin2 binding to M1mAChR. Our findings reveal notable variations in agonist efficacy in the recruitment of Gαq and β-arrestin2. Pilocarpine preferentially promoted the recruitment of β-arrestin2 (∆∆RAi = -0.5), while McN-A-343 (∆∆RAi = 1.5), Xanomeline (∆∆RAi = 0.6), and Iperoxo (∆∆RAi = 0.3) exhibited a preference for the recruitment of Gαq. We also used commercial methods to verify the agonists and obtained consistent results. Molecular docking revealed that certain residues (e.g., Y404, located in TM7 of M1mAChR) could play crucial roles in Gαq signaling bias by interacting with McN-A-343, Xanomeline, and Iperoxo, whereas other residues (e.g., W378 and Y381, located in TM6) contributed to β-arrestin recruitment by interacting with Pilocarpine. The preference of activated M1mAChR for different effectors may be due to significant conformational changes induced by biased agonists. By characterizing bias towards Gαq and β-arrestin2 recruitment, our study provides insights into M1mAChR signaling bias.
Collapse
Affiliation(s)
- Dongxue Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yunjin Yao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiqi Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Hou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianrong Xu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
68
|
Fan H, Huang X, Zhang Z, Wang T, Wang L, Zhang Y. Immobilization of M3 Muscarinic Receptor to Rapidly Analyze Drug-Protein Interactions and Bioactive Components in a Natural Plant. Int J Mol Sci 2023; 24:ijms24087171. [PMID: 37108332 PMCID: PMC10139132 DOI: 10.3390/ijms24087171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Despite its increasing application in pursing potential ligands, the capacity of receptor affinity chromatography is greatly challenged as most current research studies lack a comprehensive characterization of the ligand-receptor interaction, particularly when simultaneously determining their binding thermodynamics and kinetics. This work developed an immobilized M3 muscarinic receptor (M3R) affinity column by fixing M3R on amino polystyrene microspheres via the interaction of a 6-chlorohexanoic acid linker with haloalkane dehalogenase. The efficiency of the immobilized M3R was tested by characterizing the binding thermodynamics and kinetics of three known drugs to immobilized M3R using a frontal analysis and the peak profiling method, as well as by analyzing the bioactive compounds in Daturae Flos (DF) extract. The data showed that the immobilized M3R demonstrated good specificity, stability, and competence for analyzing drug-protein interactions. The association constants of (-)-scopolamine hydrochloride, atropine sulfate, and pilocarpine to M3R were determined to be (2.39 ± 0.03) × 104, (3.71 ± 0.03) × 104, and (2.73 ± 0.04) × 104 M-1, respectively, with dissociation rate constants of 27.47 ± 0.65, 14.28 ± 0.17, and 10.70 ± 0.35 min-1, respectively. Hyoscyamine and scopolamine were verified as the bioactive compounds that bind to M3R in the DF extract. Our results suggest that the immobilized M3R method was capable of determining drug-protein binding parameters and probing specific ligands in a natural plant, thus enhancing the effectiveness of receptor affinity chromatography in diverse stages of drug discovery.
Collapse
Affiliation(s)
- Hushuai Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaomin Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ziru Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ting Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ludan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yajun Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
69
|
He L, Zhao Q, Qi J, Wang Y, Han W, Chen Z, Cong Y, Wang S. Structural insights into constitutive activity of 5-HT 6 receptor. Proc Natl Acad Sci U S A 2023; 120:e2209917120. [PMID: 36989299 PMCID: PMC10083584 DOI: 10.1073/pnas.2209917120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/16/2023] [Indexed: 03/30/2023] Open
Abstract
While most therapeutic research on G-protein-coupled receptors (GPCRs) focuses on receptor activation by (endogenous) agonists, significant therapeutic potential exists through agonist-independent intrinsic constitutive activity that can occur in various physiological and pathophysiological settings. For example, inhibiting the constitutive activity of 5-HT6R-a receptor that is found almost exclusively in the brain and mediates excitatory neurotransmission-has demonstrated a therapeutic effect on cognitive/memory impairment associated with several neuropsychiatric disorders. However, the structural basis of such constitutive activity remains unclear. Here, we present a cryo-EM structure of serotonin-bound human 5-HT6R-Gs heterotrimer at 3.0-Å resolution. Detailed analyses of the structure complemented by comprehensive interrogation of signaling illuminate key structural determinants essential for constitutive 5-HT6R activity. Additional structure-guided mutagenesis leads to a nanobody mimic Gαs for 5-HT6R that can reduce its constitutive activity. Given the importance of 5-HT6R for a large number of neuropsychiatric disorders, insights derived from these studies will accelerate the design of more effective medications, and shed light on the molecular basis of constitutive activity.
Collapse
Affiliation(s)
- Licong He
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Qiaoyu Zhao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Jianzhong Qi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Wenyu Han
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Zhangcheng Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Yao Cong
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| |
Collapse
|
70
|
El Daibani A, Paggi JM, Kim K, Laloudakis YD, Popov P, Bernhard SM, Krumm BE, Olsen RHJ, Diberto J, Carroll FI, Katritch V, Wünsch B, Dror RO, Che T. Molecular mechanism of biased signaling at the kappa opioid receptor. Nat Commun 2023; 14:1338. [PMID: 36906681 PMCID: PMC10008561 DOI: 10.1038/s41467-023-37041-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
The κ-opioid receptor (KOR) has emerged as an attractive drug target for pain management without addiction, and biased signaling through particular pathways of KOR may be key to maintaining this benefit while minimizing side-effect liabilities. As for most G protein-coupled receptors (GPCRs), however, the molecular mechanisms of ligand-specific signaling at KOR have remained unclear. To better understand the molecular determinants of KOR signaling bias, we apply structure determination, atomic-level molecular dynamics (MD) simulations, and functional assays. We determine a crystal structure of KOR bound to the G protein-biased agonist nalfurafine, the first approved KOR-targeting drug. We also identify an arrestin-biased KOR agonist, WMS-X600. Using MD simulations of KOR bound to nalfurafine, WMS-X600, and a balanced agonist U50,488, we identify three active-state receptor conformations, including one that appears to favor arrestin signaling over G protein signaling and another that appears to favor G protein signaling over arrestin signaling. These results, combined with mutagenesis validation, provide a molecular explanation of how agonists achieve biased signaling at KOR.
Collapse
Affiliation(s)
- Amal El Daibani
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, Saint Louis, MO, USA
| | - Joseph M Paggi
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Kuglae Kim
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | | | - Petr Popov
- iMolecule, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sarah M Bernhard
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, Saint Louis, MO, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Reid H J Olsen
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jeffrey Diberto
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - F Ivy Carroll
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Vsevolod Katritch
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA.
- Departments of Molecular and Cellular Physiology and of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Tao Che
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
71
|
Aydin Y, Böttke T, Lam JH, Ernicke S, Fortmann A, Tretbar M, Zarzycka B, Gurevich VV, Katritch V, Coin I. Structural details of a Class B GPCR-arrestin complex revealed by genetically encoded crosslinkers in living cells. Nat Commun 2023; 14:1151. [PMID: 36859440 PMCID: PMC9977954 DOI: 10.1038/s41467-023-36797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Understanding the molecular basis of arrestin-mediated regulation of GPCRs is critical for deciphering signaling mechanisms and designing functional selectivity. However, structural studies of GPCR-arrestin complexes are hampered by their highly dynamic nature. Here, we dissect the interaction of arrestin-2 (arr2) with the secretin-like parathyroid hormone 1 receptor PTH1R using genetically encoded crosslinking amino acids in live cells. We identify 136 intermolecular proximity points that guide the construction of energy-optimized molecular models for the PTH1R-arr2 complex. Our data reveal flexible receptor elements missing in existing structures, including intracellular loop 3 and the proximal C-tail, and suggest a functional role of a hitherto overlooked positively charged region at the arrestin N-edge. Unbiased MD simulations highlight the stability and dynamic nature of the complex. Our integrative approach yields structural insights into protein-protein complexes in a biologically relevant live-cell environment and provides information inaccessible to classical structural methods, while also revealing the dynamics of the system.
Collapse
Affiliation(s)
- Yasmin Aydin
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Thore Böttke
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Jordy Homing Lam
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stefan Ernicke
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Anna Fortmann
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Maik Tretbar
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany
| | - Barbara Zarzycka
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Vsevolod V Gurevich
- Department of Phar-macology, Vanderbilt University, Nashville, TN, 37232-0146, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA. .,Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
| | - Irene Coin
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103, Leipzig, Germany.
| |
Collapse
|
72
|
Wang Y, Zhu CL, Li P, Liu Q, Li HR, Yu CM, Deng XM, Wang JF. The role of G protein-coupled receptor in neutrophil dysfunction during sepsis-induced acute respiratory distress syndrome. Front Immunol 2023; 14:1112196. [PMID: 36891309 PMCID: PMC9986442 DOI: 10.3389/fimmu.2023.1112196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sepsis is defined as a life-threatening dysfunction due to a dysregulated host response to infection. It is a common and complex syndrome and is the leading cause of death in intensive care units. The lungs are most vulnerable to the challenge of sepsis, and the incidence of respiratory dysfunction has been reported to be up to 70%, in which neutrophils play a major role. Neutrophils are the first line of defense against infection, and they are regarded as the most responsive cells in sepsis. Normally, neutrophils recognize chemokines including the bacterial product N-formyl-methionyl-leucyl-phenylalanine (fMLP), complement 5a (C5a), and lipid molecules Leukotriene B4 (LTB4) and C-X-C motif chemokine ligand 8 (CXCL8), and enter the site of infection through mobilization, rolling, adhesion, migration, and chemotaxis. However, numerous studies have confirmed that despite the high levels of chemokines in septic patients and mice at the site of infection, the neutrophils cannot migrate to the proper target location, but instead they accumulate in the lungs, releasing histones, DNA, and proteases that mediate tissue damage and induce acute respiratory distress syndrome (ARDS). This is closely related to impaired neutrophil migration in sepsis, but the mechanism involved is still unclear. Many studies have shown that chemokine receptor dysregulation is an important cause of impaired neutrophil migration, and the vast majority of these chemokine receptors belong to the G protein-coupled receptors (GPCRs). In this review, we summarize the signaling pathways by which neutrophil GPCR regulates chemotaxis and the mechanisms by which abnormal GPCR function in sepsis leads to impaired neutrophil chemotaxis, which can further cause ARDS. Several potential targets for intervention are proposed to improve neutrophil chemotaxis, and we hope that this review may provide insights for clinical practitioners.
Collapse
Affiliation(s)
- Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Cheng-long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Peng Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui-ru Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Chang-meng Yu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-ming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Jia-feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
73
|
Biophysical investigations of class A GPCRs. Biochimie 2023; 205:86-94. [PMID: 36220484 DOI: 10.1016/j.biochi.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/29/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
Abstract
G protein-coupled receptors (GPCRs) play a central role in cellular communication, converting external stimuli into intracellular responses. GPCRs bind a very broad panel of ligands, such as hormones, neurotransmitters, peptides and lipids. Ligand binding triggers a series of receptor conformational rearrangements, enabling the coupling to intracellular partners and the activation of signaling cascades. The major breakthrough in GPCRs structural biology of the past decade has considerably advanced our understanding of GPCR activation. However, structural information cannot fully explain the molecular details of GPCRs pharmacology. Biophysical investigations reveal that GPCRs are very dynamic proteins, capable of exploring a wide range of conformational states. Binding to ligands of various pharmacological classes, as well as intracellular effectors and allosteric modulators, can shift the equilibrium between these states and the kinetic of interconversions among the different conformers. Investigation of GPCR dynamic interplay is therefore important to better understand the complex pharmacology and signaling profile of these receptors.
Collapse
|
74
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
75
|
Hu J, Sun X, Kang Z, Cheng J. Computational investigation of functional water molecules in GPCRs bound to G protein or arrestin. J Comput Aided Mol Des 2023; 37:91-105. [PMID: 36459325 DOI: 10.1007/s10822-022-00492-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins constituting the largest family of drug targets. The activated GPCR binds either the heterotrimeric G proteins or arrestin through its activation cycle. Water molecules have been reported to play a role in GPCR activation. Nevertheless, reported studies are focused on the hydrophobic helical bundle region. How water molecules function in GPCR bound either G protein or arrestin is rarely studied. To address this issue, we carried out computational studies on water molecules in both GPCR/G protein complexes and GPCR/arrestin complexes. Using inhomogeneous fluid theory (IFT), we locate all possible hydration sites in GPCRs binding either to G protein or arrestin. We observe that the number of water molecules on the interaction surface between GPCRs and signal proteins are correlated with the insertion depths of the α5-helix from G-protein or "finger loop" from arrestin in GPCRs. In three out of the four simulation pairs, the interfaces of Rhodopsin, M2R and NTSR1 in the G protein-associated systems show more water-mediated hydrogen-bond networks when compared to these in arrestin-associated systems. This reflects that more functionally relevant water molecules may probably be attracted in G protein-associated structures than that in arrestin-associated structures. Moreover, we find the water-mediated interaction networks throughout the NPxxY region and the orthosteric pocket, which may be a key for GPCR activation. Reported studies show that non-biased agonist, which can trigger both GPCR-G protein and GPCR-arrestin activation signal, can result in pharmacologically toxicities. Our comprehensive studies of the hydration sites in GPCR/G protein complexes and GPCR/arrestin complexes may provide important insights in the design of G-protein biased agonists.
Collapse
Affiliation(s)
- Jiaqi Hu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Xianqiang Sun
- AutoDrug Biotech Co. Ltd, No. 58 XiangKe Rd., Pudong New Area, Shanghai, China
| | - Zhengzhong Kang
- AutoDrug Biotech Co. Ltd, No. 58 XiangKe Rd., Pudong New Area, Shanghai, China.
| | - Jianxin Cheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China.
| |
Collapse
|
76
|
Xu J, Wang Q, Hübner H, Hu Y, Niu X, Wang H, Maeda S, Inoue A, Tao Y, Gmeiner P, Du Y, Jin C, Kobilka BK. Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor. Nat Commun 2023; 14:376. [PMID: 36690613 PMCID: PMC9870890 DOI: 10.1038/s41467-022-35726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
The M2 muscarinic receptor (M2R) is a prototypical G-protein-coupled receptor (GPCR) that serves as a model system for understanding GPCR regulation by both orthosteric and allosteric ligands. Here, we investigate the mechanisms governing M2R signaling versatility using cryo-electron microscopy (cryo-EM) and NMR spectroscopy, focusing on the physiological agonist acetylcholine and a supra-physiological agonist iperoxo, as well as a positive allosteric modulator LY2119620. These studies reveal that acetylcholine stabilizes a more heterogeneous M2R-G-protein complex than iperoxo, where two conformers with distinctive G-protein orientations were determined. We find that LY2119620 increases the affinity for both agonists, but differentially modulates agonists efficacy in G-protein and β-arrestin pathways. Structural and spectroscopic analysis suggest that LY211620 stabilizes distinct intracellular conformational ensembles from agonist-bound M2R, which may enhance β-arrestin recruitment while impairing G-protein activation. These results highlight the role of conformational dynamics in the complex signaling behavior of GPCRs, and could facilitate design of better drugs.
Collapse
Affiliation(s)
- Jun Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Qinggong Wang
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, 518172, Shenzhen, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, 91058, Erlangen, Germany
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China
- Innovation Academy for Precision Measurement Science and Technology, CAS, 430071, Wuhan, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shoji Maeda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pharmacology, Medical School, University of Michigan 1150 Medical Center Dr., 1315 Medical Science Research Bldg III, Ann Arbor, MI, 48109, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuyong Tao
- Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, 91058, Erlangen, Germany
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, 518172, Shenzhen, China.
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
77
|
Bous J, Fouillen A, Orcel H, Granier S, Bron P, Mouillac B. Structures of the arginine-vasopressin and oxytocin receptor signaling complexes. VITAMINS AND HORMONES 2023; 123:67-107. [PMID: 37718002 DOI: 10.1016/bs.vh.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Arginine-vasopressin (AVP) and oxytocin (OT) are neurohypophysial hormones which share a high sequence and structure homology. These are two cyclic C-terminally amidated nonapeptides with different residues at position 3 and 8. In mammals, AVP and OT exert their multiple biological functions through a specific G protein-coupled receptor family: four receptors are identified, the V1a, V1b, V2 receptors (V1aR, V1bR and V2R) and the OT receptor (OTR). The chemical structure of AVP and OT was elucidated in the early 1950s. Thanks to X-ray crystallography and cryo-electron microscopy, it took however 70 additional years to determine the three-dimensional structures of the OTR and the V2R in complex with their natural agonist ligands and with different signaling partners, G proteins and β-arrestins. Today, the comparison of the different AVP/OT receptor structures gives structural insights into their orthosteric ligand binding pocket, their molecular mechanisms of activation, and their interfaces with canonical Gs, Gq and β-arrestin proteins. It also paves the way to future rational drug design and therapeutic compound development. Indeed, agonist, antagonist, biased agonist, or pharmacological chaperone analogues of AVP and OT are promising candidates to regulate different physiological functions and treat several pathologies.
Collapse
Affiliation(s)
- Julien Bous
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France; CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Aurélien Fouillen
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France; CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Hélène Orcel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
78
|
Yadav MK, Singh V, Saha S, Shukla AK. A streamlined protocol for expression and purification of wild-type β-arrestins. Methods Enzymol 2023; 682:465-475. [PMID: 36948711 DOI: 10.1016/bs.mie.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The two isoforms of β-arrestins namely β-arrestin 1 and 2 interact with, and regulate a broad repertoire of G protein-coupled receptors (GPCRs). While several protocols have been described in the literature for purification of β-arrestins for biochemical and biophysical studies, some of these protocols involve multiple complicated steps that prolong the process and yield relatively smaller amounts of purified proteins. Here, we describe a simplified and streamlined protocol for expression and purification of β-arrestins using E. coli as an expression host. This protocol is based on N-terminal fusion of GST tag and involves a two-step protocol involving GST-based affinity chromatography and size exclusion chromatography. The protocol described here yields sufficient amounts of high-quality purified β-arrestins suitable for biochemical and structural studies.
Collapse
Affiliation(s)
- Manish K Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Vinay Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Sayantan Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.
| |
Collapse
|
79
|
Seckler JM, Robinson EN, Lewis SJ, Grossfield A. Surveying nonvisual arrestins reveals allosteric interactions between functional sites. Proteins 2023; 91:99-107. [PMID: 35988049 PMCID: PMC9771995 DOI: 10.1002/prot.26413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
Arrestins are important scaffolding proteins that are expressed in all vertebrate animals. They regulate cell-signaling events upon binding to active G-protein coupled receptors (GPCR) and trigger endocytosis of active GPCRs. While many of the functional sites on arrestins have been characterized, the question of how these sites interact is unanswered. We used anisotropic network modeling (ANM) together with our covariance compliment techniques to survey all the available structures of the nonvisual arrestins to map how structural changes and protein-binding affect their structural dynamics. We found that activation and clathrin binding have a marked effect on arrestin dynamics, and that these dynamics changes are localized to a small number of distant functional sites. These sites include α-helix 1, the lariat loop, nuclear localization domain, and the C-domain β-sheets on the C-loop side. Our techniques suggest that clathrin binding and/or GPCR activation of arrestin perturb the dynamics of these sites independent of structural changes.
Collapse
Affiliation(s)
- James M. Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Emily N. Robinson
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| |
Collapse
|
80
|
Dmitrieva DA, Kotova TV, Safronova NA, Sadova AA, Dashevskii DE, Mishin AV. Protein Design Strategies for the Structural–Functional Studies of G Protein-Coupled Receptors. BIOCHEMISTRY (MOSCOW) 2023; 88:S192-S226. [PMID: 37069121 DOI: 10.1134/s0006297923140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are an important family of membrane proteins responsible for many physiological functions in human body. High resolution GPCR structures are required to understand their molecular mechanisms and perform rational drug design, as GPCRs play a crucial role in a variety of diseases. That is difficult to obtain for the wild-type proteins because of their low stability. In this review, we discuss how this problem can be solved by using protein design strategies developed to obtain homogeneous stabilized GPCR samples for crystallization and cryoelectron microscopy.
Collapse
Affiliation(s)
- Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Tatiana V Kotova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Nadezda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexandra A Sadova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
81
|
Gurevich VV. Do arrestin oligomers have specific functions? CELL SIGNALING 2023; 1:42-46. [PMID: 37664541 PMCID: PMC10473880 DOI: 10.46439/signaling.1.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Arrestins are a small family of versatile regulators of cell signaling. Arrestins regulate signaling and trafficking of G protein-coupled receptors, regulate and direct to particular subcellular compartments numerous protein kinases, ubiquitin ligases, etc. Three out of four arrestin subtypes expressed in vertebrates self-associate, each forming oligomers of a distinct size and shape. While the structures of the solution oligomers of arrestin-1, -2, and -3 have been elucidated, no function specific for the oligomeric form of either of these three subtypes has been identified thus far. Considering how multi-functional average-sized (~45 kDa) arrestin proteins were found to be, it appears likely that certain functions are predominantly or exclusively fulfilled by monomeric and oligomeric forms of each subtype.
Collapse
|
82
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
83
|
The Role of Arrestin-1 Middle Loop in Rhodopsin Binding. Int J Mol Sci 2022; 23:ijms232213887. [PMID: 36430370 PMCID: PMC9694801 DOI: 10.3390/ijms232213887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Arrestins preferentially bind active phosphorylated G protein-coupled receptors (GPCRs). The middle loop, highly conserved in all arrestin subtypes, is localized in the central crest on the GPCR-binding side. Upon receptor binding, it directly interacts with bound GPCR and demonstrates the largest movement of any arrestin element in the structures of the complexes. Comprehensive mutagenesis of the middle loop of rhodopsin-specific arrestin-1 suggests that it primarily serves as a suppressor of binding to non-preferred forms of the receptor. Several mutations in the middle loop increase the binding to unphosphorylated light-activated rhodopsin severalfold, which makes them candidates for improving enhanced phosphorylation-independent arrestins. The data also suggest that enhanced forms of arrestin do not bind GPCRs exactly like the wild-type protein. Thus, the structures of the arrestin-receptor complexes, in all of which different enhanced arrestin mutants and reengineered receptors were used, must be interpreted with caution.
Collapse
|
84
|
Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell 2022; 185:4361-4375.e19. [PMID: 36368306 DOI: 10.1016/j.cell.2022.09.041] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
Morphine and fentanyl are among the most used opioid drugs that confer analgesia and unwanted side effects through both G protein and arrestin signaling pathways of μ-opioid receptor (μOR). Here, we report structures of the human μOR-G protein complexes bound to morphine and fentanyl, which uncover key differences in how they bind the receptor. We also report structures of μOR bound to TRV130, PZM21, and SR17018, which reveal preferential interactions of these agonists with TM3 side of the ligand-binding pocket rather than TM6/7 side. In contrast, morphine and fentanyl form dual interactions with both TM3 and TM6/7 regions. Mutations at the TM6/7 interface abolish arrestin recruitment of μOR promoted by morphine and fentanyl. Ligands designed to reduce TM6/7 interactions display preferential G protein signaling. Our results provide crucial insights into fentanyl recognition and signaling of μOR, which may facilitate rational design of next-generation analgesics.
Collapse
|
85
|
Liu J, Tang H, Xu C, Zhou S, Zhu X, Li Y, Prézeau L, Xu T, Pin JP, Rondard P, Ji W, Liu J. Biased signaling due to oligomerization of the G protein-coupled platelet-activating factor receptor. Nat Commun 2022; 13:6365. [PMID: 36289206 PMCID: PMC9606269 DOI: 10.1038/s41467-022-34056-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important drug targets that mediate various signaling pathways by activating G proteins and engaging β-arrestin proteins. Despite its importance for the development of therapeutics with fewer side effects, the underlying mechanism that controls the balance between these signaling modes of GPCRs remains largely unclear. Here, we show that assembly into dimers and oligomers can largely influence the signaling mode of the platelet-activating factor receptor (PAFR). Single-particle analysis results show that PAFR can form oligomers at low densities through two possible dimer interfaces. Stabilization of PAFR oligomers through cross-linking increases G protein activity, and decreases β-arrestin recruitment and agonist-induced internalization significantly. Reciprocally, β-arrestin prevents PAFR oligomerization. Our results highlight a mechanism involved in the control of receptor signaling, and thereby provide important insights into the relationship between GPCR oligomerization and downstream signaling.
Collapse
Affiliation(s)
- Junke Liu
- grid.33199.310000 0004 0368 7223Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China ,grid.121334.60000 0001 2097 0141Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, Cedex France
| | - Hengmin Tang
- grid.33199.310000 0004 0368 7223Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China
| | - Chanjuan Xu
- grid.33199.310000 0004 0368 7223Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China
| | - Shengnan Zhou
- grid.33199.310000 0004 0368 7223Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China
| | - Xunying Zhu
- grid.33199.310000 0004 0368 7223Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China
| | - Yuanyuan Li
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Laurent Prézeau
- grid.121334.60000 0001 2097 0141Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, Cedex France
| | - Tao Xu
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Chinese Academy of Sciences, 510005 Guangzhou, China
| | - Jean-Philippe Pin
- grid.121334.60000 0001 2097 0141Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, Cedex France
| | - Philippe Rondard
- grid.121334.60000 0001 2097 0141Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, Cedex France
| | - Wei Ji
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Chinese Academy of Sciences, 510005 Guangzhou, China
| | - Jianfeng Liu
- grid.33199.310000 0004 0368 7223Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China ,grid.9227.e0000000119573309Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Chinese Academy of Sciences, 510005 Guangzhou, China
| |
Collapse
|
86
|
Cao C, Barros-Álvarez X, Zhang S, Kim K, Dämgen MA, Panova O, Suomivuori CM, Fay JF, Zhong X, Krumm BE, Gumpper RH, Seven AB, Robertson MJ, Krogan NJ, Hüttenhain R, Nichols DE, Dror RO, Skiniotis G, Roth BL. Signaling snapshots of a serotonin receptor activated by the prototypical psychedelic LSD. Neuron 2022; 110:3154-3167.e7. [PMID: 36087581 PMCID: PMC9583076 DOI: 10.1016/j.neuron.2022.08.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/13/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Serotonin (5-hydroxytryptamine [5-HT]) 5-HT2-family receptors represent essential targets for lysergic acid diethylamide (LSD) and all other psychedelic drugs. Although the primary psychedelic drug effects are mediated by the 5-HT2A serotonin receptor (HTR2A), the 5-HT2B serotonin receptor (HTR2B) has been used as a model receptor to study the activation mechanisms of psychedelic drugs due to its high expression and similarity to HTR2A. In this study, we determined the cryo-EM structures of LSD-bound HTR2B in the transducer-free, Gq-protein-coupled, and β-arrestin-1-coupled states. These structures provide distinct signaling snapshots of LSD's action, ranging from the transducer-free, partially active state to the transducer-coupled, fully active states. Insights from this study will both provide comprehensive molecular insights into the signaling mechanisms of the prototypical psychedelic LSD and accelerate the discovery of novel psychedelic drugs.
Collapse
Affiliation(s)
- Can Cao
- Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7365, USA
| | - Ximena Barros-Álvarez
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Shicheng Zhang
- Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7365, USA
| | - Kuglae Kim
- Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7365, USA
| | - Marc A Dämgen
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ouliana Panova
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Carl-Mikael Suomivuori
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jonathan F Fay
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 7599-7365, USA
| | - Xiaofang Zhong
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; J. David Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7365, USA
| | - Ryan H Gumpper
- Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7365, USA
| | - Alpay B Seven
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; J. David Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; J. David Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - David E Nichols
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7365, USA
| | - Ron O Dror
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7365, USA; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7365, USA.
| |
Collapse
|
87
|
Haider RS, Matthees ESF, Drube J, Reichel M, Zabel U, Inoue A, Chevigné A, Krasel C, Deupi X, Hoffmann C. β-arrestin1 and 2 exhibit distinct phosphorylation-dependent conformations when coupling to the same GPCR in living cells. Nat Commun 2022; 13:5638. [PMID: 36163356 PMCID: PMC9512828 DOI: 10.1038/s41467-022-33307-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
β-arrestins mediate regulatory processes for over 800 different G protein-coupled receptors (GPCRs) by adopting specific conformations that result from the geometry of the GPCR–β-arrestin complex. However, whether β-arrestin1 and 2 respond differently for binding to the same GPCR is still unknown. Employing GRK knockout cells and β-arrestins lacking the finger-loop-region, we show that the two isoforms prefer to associate with the active parathyroid hormone 1 receptor (PTH1R) in different complex configurations (“hanging” and “core”). Furthermore, the utilisation of advanced NanoLuc/FlAsH-based biosensors reveals distinct conformational signatures of β-arrestin1 and 2 when bound to active PTH1R (P-R*). Moreover, we assess β-arrestin conformational changes that are induced specifically by proximal and distal C-terminal phosphorylation and in the absence of GPCR kinases (GRKs) (R*). Here, we show differences between conformational changes that are induced by P-R* or R* receptor states and further disclose the impact of site-specific GPCR phosphorylation on arrestin-coupling and function. Here the authors present improved intramolecular sensors for β-arrestin2 and 1, which enable assessment of conformational changes of both isoforms in living cells. These reveal that the same GPCR induces differential conformational rearrangements that determine the functional diversity between the two β-arrestins.
Collapse
Affiliation(s)
- Raphael S Haider
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena; Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Edda S F Matthees
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena; Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Julia Drube
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena; Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Mona Reichel
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena; Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Ulrike Zabel
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacherstraße 9, D-97078, Würzburg, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama, 332-0012, Japan
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Cornelius Krasel
- Philipps-Universität Marburg; Fachbereich Pharmazie; Institut für Pharmakologie und Klinische Pharmazie, Karl-von-Frisch-Str. 1, 35043, Marburg, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232, Villigen, Switzerland.,Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena; Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany.
| |
Collapse
|
88
|
Piper SJ, Johnson RM, Wootten D, Sexton PM. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chem Rev 2022; 122:13989-14017. [PMID: 35849490 PMCID: PMC9480104 DOI: 10.1021/acs.chemrev.1c00837] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Membrane proteins are highly diverse in both structure and function and can, therefore, present different challenges for structure determination. They are biologically important for cells and organisms as gatekeepers for information and molecule transfer across membranes, but each class of membrane proteins can present unique obstacles to structure determination. Historically, many membrane protein structures have been investigated using highly engineered constructs or using larger fusion proteins to improve solubility and/or increase particle size. Other strategies included the deconstruction of the full-length protein to target smaller soluble domains. These manipulations were often required for crystal formation to support X-ray crystallography or to circumvent lower resolution due to high noise and dynamic motions of protein subdomains. However, recent revolutions in membrane protein biochemistry and cryo-electron microscopy now provide an opportunity to solve high resolution structures of both large, >1 megadalton (MDa), and small, <100 kDa (kDa), drug targets in near-native conditions, routinely reaching resolutions around or below 3 Å. This review provides insights into how the recent advances in membrane biology and biochemistry, as well as technical advances in cryo-electron microscopy, help us to solve structures of a large variety of membrane protein groups, from small receptors to large transporters and more complex machineries.
Collapse
Affiliation(s)
- Sarah J. Piper
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Rachel M. Johnson
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Denise Wootten
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
89
|
Bous J, Fouillen A, Orcel H, Trapani S, Cong X, Fontanel S, Saint-Paul J, Lai-Kee-Him J, Urbach S, Sibille N, Sounier R, Granier S, Mouillac B, Bron P. Structure of the vasopressin hormone-V2 receptor-β-arrestin1 ternary complex. SCIENCE ADVANCES 2022; 8:eabo7761. [PMID: 36054364 PMCID: PMC10866553 DOI: 10.1126/sciadv.abo7761] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Arrestins interact with G protein-coupled receptors (GPCRs) to stop G protein activation and to initiate key signaling pathways. Recent structural studies shed light on the molecular mechanisms involved in GPCR-arrestin coupling, but whether this process is conserved among GPCRs is poorly understood. Here, we report the cryo-electron microscopy active structure of the wild-type arginine-vasopressin V2 receptor (V2R) in complex with β-arrestin1. It reveals an atypical position of β-arrestin1 compared to previously described GPCR-arrestin assemblies, associated with an original V2R/β-arrestin1 interface involving all receptor intracellular loops. Phosphorylated sites of the V2R carboxyl terminus are clearly identified and interact extensively with the β-arrestin1 N-lobe, in agreement with structural data obtained with chimeric or synthetic systems. Overall, these findings highlight a notable structural variability among GPCR-arrestin signaling complexes.
Collapse
Affiliation(s)
- Julien Bous
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Aurélien Fouillen
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Hélène Orcel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Stefano Trapani
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Xiaojing Cong
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Simon Fontanel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Julie Saint-Paul
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Joséphine Lai-Kee-Him
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Nathalie Sibille
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Rémy Sounier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
90
|
Jiang H, Galtes D, Wang J, Rockman HA. G protein-coupled receptor signaling: transducers and effectors. Am J Physiol Cell Physiol 2022; 323:C731-C748. [PMID: 35816644 PMCID: PMC9448338 DOI: 10.1152/ajpcell.00210.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are of considerable interest due to their importance in a wide range of physiological functions and in a large number of Food and Drug Administration (FDA)-approved drugs as therapeutic entities. With continued study of their function and mechanism of action, there is a greater understanding of how effector molecules interact with a receptor to initiate downstream effector signaling. This review aims to explore the signaling pathways, dynamic structures, and physiological relevance in the cardiovascular system of the three most important GPCR signaling effectors: heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. We will first summarize their prominent roles in GPCR pharmacology before transitioning into less well-explored areas. As new technologies are developed and applied to studying GPCR structure and their downstream effectors, there is increasing appreciation for the elegance of the regulatory mechanisms that mediate intracellular signaling and function.
Collapse
Affiliation(s)
- Haoran Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniella Galtes
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
91
|
Chen Q, Tesmer JJG. G protein-coupled receptor interactions with arrestins and GPCR kinases: The unresolved issue of signal bias. J Biol Chem 2022; 298:102279. [PMID: 35863432 PMCID: PMC9418498 DOI: 10.1016/j.jbc.2022.102279] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/25/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) and arrestins interact with agonist-bound GPCRs to promote receptor desensitization and downregulation. They also trigger signaling cascades distinct from those of heterotrimeric G proteins. Biased agonists for GPCRs that favor either heterotrimeric G protein or GRK/arrestin signaling are of profound pharmacological interest because they could usher in a new generation of drugs with greatly reduced side effects. One mechanism by which biased agonism might occur is by stabilizing receptor conformations that preferentially bind to GRKs and/or arrestins. In this review, we explore this idea by comparing structures of GPCRs bound to heterotrimeric G proteins with those of the same GPCRs in complex with arrestins and GRKs. The arrestin and GRK complexes all exhibit high conformational heterogeneity, which is likely a consequence of their unusual ability to adapt and bind to hundreds of different GPCRs. This dynamic behavior, along with the experimental tactics required to stabilize GPCR complexes for biophysical analysis, confounds these comparisons, but some possible molecular mechanisms of bias are beginning to emerge. We also examine if and how the recent structures advance our understanding of how arrestins parse the "phosphorylation barcodes" installed in the intracellular loops and tails of GPCRs by GRKs. In the future, structural analyses of arrestins in complex with intact receptors that have well-defined native phosphorylation barcodes, such as those installed by the two nonvisual subfamilies of GRKs, will be particularly illuminating.
Collapse
Affiliation(s)
- Qiuyan Chen
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - John J G Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
92
|
Kleist AB, Jenjak S, Sente A, Laskowski LJ, Szpakowska M, Calkins MM, Anderson EI, McNally LM, Heukers R, Bobkov V, Peterson FC, Thomas MA, Chevigné A, Smit MJ, McCorvy JD, Babu MM, Volkman BF. Conformational selection guides β-arrestin recruitment at a biased G protein-coupled receptor. Science 2022; 377:222-228. [PMID: 35857540 PMCID: PMC9574477 DOI: 10.1126/science.abj4922] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors (GPCRs) recruit β-arrestins to coordinate diverse cellular processes, but the structural dynamics driving this process are poorly understood. Atypical chemokine receptors (ACKRs) are intrinsically biased GPCRs that engage β-arrestins but not G proteins, making them a model system for investigating the structural basis of β-arrestin recruitment. Here, we performed nuclear magnetic resonance (NMR) experiments on 13CH3-ε-methionine-labeled ACKR3, revealing that β-arrestin recruitment is associated with conformational exchange at key regions of the extracellular ligand-binding pocket and intracellular β-arrestin-coupling region. NMR studies of ACKR3 mutants defective in β-arrestin recruitment identified an allosteric hub in the receptor core that coordinates transitions among heterogeneously populated and selected conformational states. Our data suggest that conformational selection guides β-arrestin recruitment by tuning receptor dynamics at intracellular and extracellular regions.
Collapse
Affiliation(s)
- Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shawn Jenjak
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andrija Sente
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Lauren J Laskowski
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg
| | - Maggie M Calkins
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Emilie I Anderson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lisa M McNally
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Raimond Heukers
- Amsterdam Institute for Molecular and Life Sciences, Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, 1081 HZ Amsterdam, Netherlands
| | - Vladimir Bobkov
- Amsterdam Institute for Molecular and Life Sciences, Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, 1081 HZ Amsterdam, Netherlands
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monica A Thomas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg
| | - Martine J Smit
- Amsterdam Institute for Molecular and Life Sciences, Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, 1081 HZ Amsterdam, Netherlands
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - M Madan Babu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
93
|
Notti RQ, Walz T. Native-like environments afford novel mechanistic insights into membrane proteins. Trends Biochem Sci 2022; 47:561-569. [PMID: 35331611 PMCID: PMC9847468 DOI: 10.1016/j.tibs.2022.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 01/21/2023]
Abstract
Advances in cryogenic electron microscopy (cryo-EM) enabled routine near-atomic structure determination of membrane proteins, while nanodisc technology has provided a way to provide membrane proteins with a native or native-like lipid environment. After giving a brief history of membrane mimetics, we present example structures of membrane proteins in nanodiscs that revealed information not provided by structures obtained in detergent. We describe how the lipid environment surrounding the membrane protein can be custom designed during nanodisc assembly and how it can be modified after assembly to test functional hypotheses. Because nanodiscs most closely replicate the physiologic environment of membrane proteins and often afford novel mechanistic insights, we propose that nanodiscs ought to become the standard for structural studies on membrane proteins.
Collapse
Affiliation(s)
- Ryan Q. Notti
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, New York, NY 10065,Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, New York, NY 10065,Correspondence: (Walz, T.)
| |
Collapse
|
94
|
Gurevich VV, Gurevich EV. Solo vs. Chorus: Monomers and Oligomers of Arrestin Proteins. Int J Mol Sci 2022; 23:ijms23137253. [PMID: 35806256 PMCID: PMC9266314 DOI: 10.3390/ijms23137253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
Three out of four subtypes of arrestin proteins expressed in mammals self-associate, each forming oligomers of a distinct kind. Monomers and oligomers have different subcellular localization and distinct biological functions. Here we summarize existing evidence regarding arrestin oligomerization and discuss specific functions of monomeric and oligomeric forms, although too few of the latter are known. The data on arrestins highlight biological importance of oligomerization of signaling proteins. Distinct modes of oligomerization might be an important contributing factor to the functional differences among highly homologous members of the arrestin protein family.
Collapse
|
95
|
Emerging structural insights into GPCR-β-arrestin interaction and functional outcomes. Curr Opin Struct Biol 2022; 75:102406. [PMID: 35738165 PMCID: PMC7614528 DOI: 10.1016/j.sbi.2022.102406] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022]
Abstract
Agonist-induced recruitment of β-arrestins (βarrs) to G protein-coupled receptors (GPCRs) plays a central role in regulating the spatio-temporal aspects of GPCR signaling. Several recent studies have provided novel structural and functional insights into our understanding of GPCR-βarr interaction, subsequent βarr activation and resulting functional outcomes. In this review, we discuss these recent advances with a particular emphasis on recognition of receptor-bound phosphates by βarrs, the emerging concept of spatial positioning of key phosphorylation sites, the conformational transition in βarrs during partial to full-engagement, and structural differences driving functional outcomes of βarr isoforms. We also highlight the key directions that require further investigation going forward to fully understand the structural mechanisms driving βarr activation and functional responses.
Collapse
|
96
|
Robertson MJ, Skiniotis G. Development of OPLS-AA/M Parameters for Simulations of G Protein-Coupled Receptors and Other Membrane Proteins. J Chem Theory Comput 2022; 18:4482-4489. [PMID: 35687850 DOI: 10.1021/acs.jctc.2c00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) and other membrane proteins are valuable drug targets, and their dynamic nature makes them attractive systems for study with molecular dynamics (MD) simulations and free energy approaches. Here, we report the development, implementation, and validation of OPLS-AA/M force field parameters to enable simulations of these systems. These efforts include the introduction of post-translational modifications including lipidations and phosphorylation. We also modify previously reported parameters for lipids to be more consistent with the OPLS-AA force field standard and extend their coverage. These new parameters are validated on a variety of test systems, with the results compared to high-level quantum mechanics calculations, experimental data, and simulations with other force fields. The results demonstrate that the new parameters reliably reproduce the behavior of membrane protein systems.
Collapse
Affiliation(s)
- Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States.,Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
97
|
Abstract
Agonist-induced interaction of β-arrestins with GPCRs is critically involved in downstream signaling and regulation. This interaction is associated with activation and major conformational changes in β-arrestins. Although there are some assays available to monitor the conformational changes in β-arrestins in cellular context, additional sensors to report β-arrestin activation, preferably with high-throughput capability, are likely to be useful considering the structural and functional diversity in GPCR-β-arrestin complexes. We have recently developed an intrabody-based sensor as an integrated approach to monitor GPCR-β-arrestin interaction and conformational change, and generated a luminescence-based reporter using NanoBiT complementation technology. This sensor is derived from a synthetic antibody fragment referred to as Fab30 that selectively recognizes activated and receptor-bound conformation of β-arrestin1. Here, we present a step-by-step protocol to employ this intrabody sensor to measure the interaction and conformational activation of β-arrestin1 upon agonist-stimulation of a prototypical GPCR, the complement C5a receptor (C5aR1). This protocol is potentially applicable to other GPCRs and may also be leveraged to deduce qualitative differences in β-arrestin1 conformations induced by different ligands and receptor mutants.
Collapse
|
98
|
Asher WB, Terry DS, Gregorio GGA, Kahsai AW, Borgia A, Xie B, Modak A, Zhu Y, Jang W, Govindaraju A, Huang LY, Inoue A, Lambert NA, Gurevich VV, Shi L, Lefkowitz RJ, Blanchard SC, Javitch JA. GPCR-mediated β-arrestin activation deconvoluted with single-molecule precision. Cell 2022; 185:1661-1675.e16. [PMID: 35483373 PMCID: PMC9191627 DOI: 10.1016/j.cell.2022.03.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023]
Abstract
β-arrestins bind G protein-coupled receptors to terminate G protein signaling and to facilitate other downstream signaling pathways. Using single-molecule fluorescence resonance energy transfer imaging, we show that β-arrestin is strongly autoinhibited in its basal state. Its engagement with a phosphopeptide mimicking phosphorylated receptor tail efficiently releases the β-arrestin tail from its N domain to assume distinct conformations. Unexpectedly, we find that β-arrestin binding to phosphorylated receptor, with a phosphorylation barcode identical to the isolated phosphopeptide, is highly inefficient and that agonist-promoted receptor activation is required for β-arrestin activation, consistent with the release of a sequestered receptor C tail. These findings, together with focused cellular investigations, reveal that agonism and receptor C-tail release are specific determinants of the rate and efficiency of β-arrestin activation by phosphorylated receptor. We infer that receptor phosphorylation patterns, in combination with receptor agonism, synergistically establish the strength and specificity with which diverse, downstream β-arrestin-mediated events are directed.
Collapse
Affiliation(s)
- Wesley B Asher
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - G Glenn A Gregorio
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alem W Kahsai
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bing Xie
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arnab Modak
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ying Zhu
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Wonjo Jang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alekhya Govindaraju
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Li-Yin Huang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Jonathan A Javitch
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
99
|
Structural Insights into the Intrinsically Disordered GPCR C-Terminal Region, Major Actor in Arrestin-GPCR Interaction. Biomolecules 2022; 12:biom12050617. [PMID: 35625550 PMCID: PMC9138321 DOI: 10.3390/biom12050617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Arrestin-dependent pathways are a central component of G protein-coupled receptor (GPCRs) signaling. However, the molecular processes regulating arrestin binding are to be further illuminated, in particular with regard to the structural impact of GPCR C-terminal disordered regions. Here, we used an integrated biophysical strategy to describe the basal conformations of the C-terminal domains of three class A GPCRs, the vasopressin V2 receptor (V2R), the growth hormone secretagogue or ghrelin receptor type 1a (GHSR) and the β2-adernergic receptor (β2AR). By doing so, we revealed the presence of transient secondary structures in these regions that are potentially involved in the interaction with arrestin. These secondary structure elements differ from those described in the literature in interaction with arrestin. This suggests a mechanism where the secondary structure conformational preferences in the C-terminal regions of GPCRs could be a central feature for optimizing arrestins recognition.
Collapse
|
100
|
Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Structural basis of GPCR coupling to distinct signal transducers: implications for biased signaling. Trends Biochem Sci 2022; 47:570-581. [PMID: 35396120 DOI: 10.1016/j.tibs.2022.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
Three classes of G-protein-coupled receptor (GPCR) partners - G proteins, GPCR kinases, and arrestins - preferentially bind active GPCRs. Our analysis suggests that the structures of GPCRs bound to these interaction partners available today do not reveal a clear conformational basis for signaling bias, which would have enabled the rational design of biased GRCR ligands. In view of this, three possibilities are conceivable: (i) there are no generalizable GPCR conformations conducive to binding a particular type of partner; (ii) subtle differences in the orientation of individual residues and/or their interactions not easily detectable in the receptor-transducer structures determine partner preference; or (iii) the dynamics of GPCR binding to different types of partners rather than the structures of the final complexes might underlie transducer bias.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | | |
Collapse
|