51
|
Rosas-Murrieta NH, Rodríguez-Enríquez A, Herrera-Camacho I, Millán-Pérez-Peña L, Santos-López G, Rivera-Benítez JF. Comparative Review of the State of the Art in Research on the Porcine Epidemic Diarrhea Virus and SARS-CoV-2, Scope of Knowledge between Coronaviruses. Viruses 2024; 16:238. [PMID: 38400014 PMCID: PMC10892376 DOI: 10.3390/v16020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review presents comparative information corresponding to the progress in knowledge of some aspects of infection by the porcine epidemic diarrhea virus (PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronaviruses. PEDV is an alphacoronavirus of great economic importance due to the million-dollar losses it generates in the pig industry. PEDV has many similarities to the SARS-CoV-2 betacoronavirus that causes COVID-19 disease. This review presents possible scenarios for SARS-CoV-2 based on the collected literature on PEDV and the tools or strategies currently developed for SARS-CoV-2 that would be useful in PEDV research. The speed of the study of SARS-CoV-2 and the generation of strategies to control the pandemic was possible due to the knowledge derived from infections caused by other human coronaviruses such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). Therefore, from the information obtained from several coronaviruses, the current and future behavior of SARS-CoV-2 could be inferred and, with the large amount of information on the virus that causes COVID-19, the study of PEDV could be improved and probably that of new emerging and re-emerging coronaviruses.
Collapse
Affiliation(s)
- Nora H. Rosas-Murrieta
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Alan Rodríguez-Enríquez
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Irma Herrera-Camacho
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Lourdes Millán-Pérez-Peña
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Gerardo Santos-López
- Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular y Virología, Instituto Mexicano del Seguro Social (IMSS), Metepec 74360, Mexico;
| | - José F. Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México 38110, Mexico;
| |
Collapse
|
52
|
Gabrielli R, Siani A, Smedile G, Rizzo AR, De Vivo G, Accrocca F, Bartoli S. Isolated popliteal artery lesion due to giant cell vasculitis post COVID-19 mRNA vaccine and COVID-19 asymptomatic infection. Vascular 2024; 32:226-230. [PMID: 36200437 PMCID: PMC9535462 DOI: 10.1177/17085381221126234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Giant cell arteritis (GCA) is a rare granulomatous vasculitis, affecting medium and large vessels, usually in old patients. The incidence of GCA has been higher during current COVID-19 pandemia and COVID-19 is recognized for its immune dysregulation. Lower limbs involvement is uncommon but can be limb threatening, resulting in limb loss. METHOD A 43-year-old man presented with a sudden pain in his right calf and foot associated with pallor and hypothermia, and there was objective evidence of ischemia. Symptoms began few days after he received the first dose of a COVID-19 mRNA vaccine and COVID-19 asymptomatic infection 20 days after vaccination. He had no history of any signs of claudication pre-COVID or limb trauma and was very fit.Enhanced computed tomography and magnetic resonance imaging (MRI)suggest diagnosis of popliteal artery cystic adventitial disease. We resected the affected popliteal artery with interposition using a right great saphenous vein graft, through a posterior approach. On the fourth postoperative day, he was discharged.Histopathological examination revealed patchy intramural inflammatory infiltrates composed of lymphocytes and rare multinucleated giant cells at the internal lamina and adventitia consistent with a diagnosis of GCA. CONCLUSION AND RESULT Our case represents the first reported case of isolated popliteal GCA following vaccination with a COVID-19 mRNA vaccine and COVID-19 infection. We propose that the upregulated immune response to the vaccine acted as a trigger for GCA in this patient with predisposing risk factors and recurrent and repetitive microtrauma in popliteal fossa (the patient is a professional runner). Our case suggests the need for further studies about real world incidence of GCA associated vaccination and COVID-19 infection. Currently, data is limited regarding this relationship. We continue to encourage COVID-19 vaccination, even in elderly patients because the benefits of vaccination far outweigh any theoretical risk of immune dysregulation following administration.
Collapse
Affiliation(s)
- Roberto Gabrielli
- Unit of Vascular, Endovascular and Emergency Vascular Surgery, “S. Eugenio” Hospital, Rome, Italy
| | - Andrea Siani
- Unit of Vascular, Endovascular and Emergency Vascular Surgery, “S. Eugenio” Hospital, Rome, Italy
| | - Gianluca Smedile
- Unit of Vascular, Endovascular and Emergency Vascular Surgery, “S. Eugenio” Hospital, Rome, Italy
| | - Anna Rita Rizzo
- Unit of Vascular, Endovascular and Emergency Vascular Surgery, “S. Eugenio” Hospital, Rome, Italy
| | - Gennaro De Vivo
- Unit of Vascular, Endovascular and Emergency Vascular Surgery, “S. Eugenio” Hospital, Rome, Italy
| | - Federico Accrocca
- Unit of Vascular, Endovascular and Emergency Vascular Surgery, “S. Eugenio” Hospital, Rome, Italy
| | - Stefano Bartoli
- Unit of Vascular, Endovascular and Emergency Vascular Surgery, “S. Eugenio” Hospital, Rome, Italy
| |
Collapse
|
53
|
Reinig S, Shih SR. Non-neutralizing functions in anti-SARS-CoV-2 IgG antibodies. Biomed J 2024; 47:100666. [PMID: 37778697 PMCID: PMC10825350 DOI: 10.1016/j.bj.2023.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Most individuals infected with or vaccinated against COVID-19 develop antigenic neutralizing immunoglobulin G (IgG) antibodies against the SARS-CoV-2 spike protein. Although neutralizing antibodies are biomarkers of the adaptive immune response, their mere presence is insufficient to explain the protection afforded against the disease or its pathology. IgG exhibits other secondary effector functions that activate innate immune components, including complement, natural killer cells, and macrophages. The affinity for effector cells depends on the isotypes and glycosylation of IgG antibodies. The anti-spike IgG titer should be sufficient to provide significant Fc-mediated effects in severe COVID-19, mRNA, and protein subunit vaccinations. In combination with aberrant effector cells, pro-inflammatory afucosylated IgG1 and IgG3 may be detrimental in severe COVID-19. The antibody response of mRNA vaccines leads to higher fucosylation and a less inflammatory IgG profile, with a long-term shift to IgG4, which is correlated with protection from disease.
Collapse
Affiliation(s)
- Sebastian Reinig
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
54
|
Sharma P, Hoorn D, Aitha A, Breier D, Peer D. The immunostimulatory nature of mRNA lipid nanoparticles. Adv Drug Deliv Rev 2024; 205:115175. [PMID: 38218350 DOI: 10.1016/j.addr.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
mRNA-Lipid nanoparticles (LNPs) are at the forefront of global medical research. With the development of mRNA-LNP vaccines to combat the COVID-19 pandemic, the clinical potential of this platform was unleashed. Upon administering 16 billion doses that protected billions of people, it became clear that a fraction of them witnessed mild and in some cases even severe adverse effects. Therefore, it is paramount to define the safety along with the therapeutic efficacy of the mRNA-LNP platform for the successful translation of new genetic medicines based on this technology. While mRNA was the effector molecule of this platform, the ionizable lipid component of the LNPs played an indispensable role in its success. However, both of these components possess the ability to induce undesired immunostimulation, which is an area that needs to be addressed systematically. The immune cell agitation caused by this platform is a two-edged sword as it may prove beneficial for vaccination but detrimental to other applications. Therefore, a key challenge in advancing the mRNA-LNP drug delivery platform from bench to bedside is understanding the immunostimulatory behavior of these components. Herein, we provide a detailed overview of the structural modifications and immunogenicity of synthetic mRNA. We discuss the effect of ionizable lipid structure on LNP functionality and offer a mechanistic overview of the ability of LNPs to elicit an immune response. Finally, we shed some light on the current status of this technology in clinical trials and discuss a few challenges to be addressed to advance the field.
Collapse
Affiliation(s)
- Preeti Sharma
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Daniek Hoorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anjaiah Aitha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dor Breier
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
55
|
Nguyen Thi YV, Ngo AD, Chu DT, Lin SC, Wu CC. RNA therapeutics for regenerative medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:163-176. [PMID: 38458737 DOI: 10.1016/bs.pmbts.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
It is estimated that millions of people around the world experience various types of tissue injuries every year. Regenerative medicine was born and developed for understanding and application with the aim of replacing affected organs or some cells. The research, manufacture, production, and distribution of RNA in cells have acted as a basic foundation for the development and testing of therapies and treatments that are widely applied in different fields of medicine. Vaccines against COVID-19 are considered one of the brilliant and outstanding successes of RNA therapeutics research. With the characteristics of bio-derived RNA therapeutics, the mechanism of rapid implementation, safe production, and flexibility to create proteins depending on actual requirements. Based on the advantages above in this review, we discuss RNA therapeutics for regenerative medicine, and the types of RNA therapies currently being used for regenerative medicine. The relationship between disease and regenerative medicine is currently being studied or tested in RNA therapeutics. We have also covered the mechanisms of action of RNA therapy for regenerative medicine and some of the limitations in our current understanding of the effects of RNA therapy in this area. Additionally, we have also covered developing RNA therapeutics for regenerative medicine, focusing on RNA therapeutics for regenerative medicine. As a final point, we discuss potential applications for therapeutics for regenerative medicine in the future, as well as their mechanisms.
Collapse
Affiliation(s)
- Yen Vy Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Anh Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Sheng-Che Lin
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Division of Plastic and Reconstructive Surgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan.
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
56
|
González-Sánchez ÓA, Zaldívar D, Cuevas E, González-Ortiz LJ. Mathematical Optimization Strategy for Effectiveness Profile Estimation in Two-Dose Vaccines and Its Use in Designing Improved Vaccination Strategies Focused on Pandemic Containment. Vaccines (Basel) 2024; 12:81. [PMID: 38250894 PMCID: PMC10819090 DOI: 10.3390/vaccines12010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Since late 2019, most efforts to control the COVID-19 pandemic have focused on developing vaccines. By mid-2020, some vaccines fulfilled international regulations for their application. However, these vaccines have shown a decline in effectiveness several weeks after the last dose, highlighting the need to optimize vaccine administration due to supply chain limitations. While methods exist to prioritize population groups for vaccination, there is a lack of research on how to optimally define the time between doses when two-dose vaccines are administrated to such groups. Under such conditions, modeling the real effect of each vaccine on the population is critical. Even though several efforts have been made to characterize vaccine effectiveness profiles, none of these initiatives enable characterization of the individual effect of each dose. Thus, this paper presents a novel methodology for estimating the vaccine effectiveness profile. It addresses the vaccine characterization problem by considering a deconvolution of relevant data profiles, treating them as an optimization process. The results of this approach enabled the independent estimation of the effectiveness profiles for the first and second vaccine doses and their use to find sweet spots for designing efficient vaccination strategies. Our methodology can enable a more effective and efficient contemporary response against the COVID-19 pandemic, as well as for any other disease in the future.
Collapse
Affiliation(s)
- Óscar A. González-Sánchez
- Division of Technologies for the Cyber-Human Integration, University Center of Exact Sciences and Engineering (CUCEI), University of Guadalajara, Marcelino García Barragán 1421, Col. Olímpica, Guadalajara CP 44430, Jalisco, Mexico; (D.Z.); (E.C.)
| | - Daniel Zaldívar
- Division of Technologies for the Cyber-Human Integration, University Center of Exact Sciences and Engineering (CUCEI), University of Guadalajara, Marcelino García Barragán 1421, Col. Olímpica, Guadalajara CP 44430, Jalisco, Mexico; (D.Z.); (E.C.)
| | - Erik Cuevas
- Division of Technologies for the Cyber-Human Integration, University Center of Exact Sciences and Engineering (CUCEI), University of Guadalajara, Marcelino García Barragán 1421, Col. Olímpica, Guadalajara CP 44430, Jalisco, Mexico; (D.Z.); (E.C.)
| | - L. Javier González-Ortiz
- Department of Chemistry, University Center of Exact Sciences and Engineering (CUCEI), University of Guadalajara, Marcelino García Barragán 1421, Col. Olímpica, Guadalajara CP 44430, Jalisco, Mexico;
| |
Collapse
|
57
|
Gao S, Guan H, Bloomer H, Wich D, Song D, Khirallah J, Ye Z, Zhao Y, Chen M, Xu C, Liu L, Xu Q. Harnessing non-Watson-Crick's base pairing to enhance CRISPR effectors cleavage activities and enable gene editing in mammalian cells. Proc Natl Acad Sci U S A 2024; 121:e2308415120. [PMID: 38150477 PMCID: PMC10786293 DOI: 10.1073/pnas.2308415120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023] Open
Abstract
Genomic DNA of the cyanophage S-2L virus is composed of 2-aminoadenine (Z), thymine (T), guanine (G), and cytosine (C), forming the genetic alphabet ZTGC, which violates Watson-Crick base pairing rules. The Z-base has an extra amino group on the two position that allows the formation of a third hydrogen bond with thymine in DNA strands. Here, we explored and expanded applications of this non-Watson-Crick base pairing in protein expression and gene editing. Both ZTGC-DNA (Z-DNA) and ZUGC-RNA (Z-RNA) produced in vitro show detectable compatibility and can be decoded in mammalian cells, including Homo sapiens cells. Z-crRNA can guide CRISPR-effectors SpCas9 and LbCas12a to cleave specific DNA through non-Watson-Crick base pairing and boost cleavage activities compared to A-crRNA. Z-crRNA can also allow for efficient gene and base editing in human cells. Together, our results help pave the way for potential strategies for optimizing DNA or RNA payloads for gene editing therapeutics and give insights to understanding the natural Z-DNA genome.
Collapse
Affiliation(s)
- Shuliang Gao
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Huiwen Guan
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Hanan Bloomer
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Douglas Wich
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Donghui Song
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Jennifer Khirallah
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Yu Zhao
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Mengting Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Chutian Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Lihan Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| |
Collapse
|
58
|
Yao J, Atasheva S, Wagner N, Di Paolo NC, Stewart PL, Shayakhmetov DM. Targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells in vivo using the engineered AVID adenovirus vector platform. Mol Ther 2024; 32:103-123. [PMID: 37919899 PMCID: PMC10787117 DOI: 10.1016/j.ymthe.2023.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Targeted delivery and cell-type-specific expression of gene-editing proteins in various cell types in vivo represent major challenges for all viral and non-viral delivery platforms developed to date. Here, we describe the development and analysis of artificial vectors for intravascular delivery (AVIDs), an engineered adenovirus-based gene delivery platform that allows for highly targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells (HSPCs) in vivo after intravenous vector administration. Due to a set of refined structural modifications, intravenous administration of AVIDs did not trigger cytokine storm, hepatotoxicity, or thrombocytopenia. Single intravenous administration of AVIDs to humanized mice, grafted with human CD34+ cells, led to up to 20% transduction of CD34+CD38-CD45RA- HSPC subsets in the bone marrow. Importantly, targeted in vivo transduction of CD34+CD38-CD45RA-CD90-CD49f+ subsets, highly enriched for human hematopoietic stem cells (HSCs), reached up to 19%, which represented a 1,900-fold selectivity in gene delivery to HSC-enriched over lineage-committed CD34-negative cell populations. Because the AVID platform allows for regulated, cell-type-specific expression of gene-editing technologies as well as expression of immunomodulatory proteins to ensure persistence of corrected HSCs in vivo, the HSC-targeted AVID platform may enable development of curative therapies through in vivo gene correction in human HSCs after a single intravenous administration.
Collapse
Affiliation(s)
- Jia Yao
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Svetlana Atasheva
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicole Wagner
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nelson C Di Paolo
- AdCure Bio, LLC, Century Spring West, 6000 Lake Forrest Drive, Atlanta, GA 30328, USA
| | - Phoebe L Stewart
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dmitry M Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Discovery and Developmental Therapeutics Program, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
59
|
Poria R, Kala D, Nagraik R, Dhir Y, Dhir S, Singh B, Kaushik NK, Noorani MS, Kaushal A, Gupta S. Vaccine development: Current trends and technologies. Life Sci 2024; 336:122331. [PMID: 38070863 DOI: 10.1016/j.lfs.2023.122331] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Despite the effectiveness of vaccination in reducing or eradicating diseases caused by pathogens, there remain certain diseases and emerging infections for which developing effective vaccines is inherently challenging. Additionally, developing vaccines for individuals with compromised immune systems or underlying medical conditions presents significant difficulties. As well as traditional vaccine different methods such as inactivated or live attenuated vaccines, viral vector vaccines, and subunit vaccines, emerging non-viral vaccine technologies, including viral-like particle and nanoparticle vaccines, DNA/RNA vaccines, and rational vaccine design, offer new strategies to address the existing challenges in vaccine development. These advancements have also greatly enhanced our understanding of vaccine immunology, which will guide future vaccine development for a broad range of diseases, including rapidly emerging infectious diseases like COVID-19 and diseases that have historically proven resistant to vaccination. This review provides a comprehensive assessment of emerging non-viral vaccine production methods and their application in addressing the fundamental and current challenges in vaccine development.
Collapse
Affiliation(s)
- Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Deepak Kala
- Centera Laboratories, Institute of High Pressure Physics PAS, 01-142 Warsaw, Poland
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Yashika Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Sunny Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Bharat Singh
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India.
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India.
| |
Collapse
|
60
|
Batmunkh T, Moore KA, Thomson H, Altangerel B, Amraa O, Avaa N, Batbayar L, Batsukh K, Bright K, Burentogtokh T, Ha Do LA, Dorj G, Hart JD, Javkhlantugs K, Jigjidsuren S, Justice F, Li S, Licciardi PV, Mashbaatar K, Mazarakis N, Neal EF, Nguyen CD, Ochirbat B, Tsolmon B, Tuya A, Surenjav U, von Mollendorf C, Mulholland K. Immunogenicity, safety, and reactogenicity of a half- versus full-dose BNT162b2 (Pfizer-BioNTech) booster following a two-dose ChAdOx1 nCoV-19, BBIBP-CorV, or Gam-COVID-Vac priming schedule in Mongolia: a randomised, controlled, non-inferiority trial. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 42:100953. [PMID: 38357398 PMCID: PMC10865044 DOI: 10.1016/j.lanwpc.2023.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 02/16/2024]
Abstract
Background COVID-19 vaccine booster doses restore vaccine effectiveness lost from waning immunity and emerging variants. Fractional dosing may improve COVID-19 booster acceptability and uptake and will reduce the per-dose cost of COVID-19 booster programmes. We sought to quantify the immunogenicity, reactogenicity, and safety of a half-dose BNT162b2 (Pfizer-BioNTech) booster relative to the standard formulation. Methods This randomised, controlled, non-inferiority trial recruited adults in Mongolia primed with a two-dose homologous ChAdOx1 nCov-19 (Oxford-AstraZeneca, n = 129 participants), BBIBP-CorV (Sinopharm (Beijing), n = 399), or Gam-COVID-Vac (Gamaleya, n = 70) schedule. Participants were randomised (1:1) to receive a 15 μg (half-dose) or 30 μg (full-dose) BNT162b2 booster. Participants and study staff assessing reactogenicity were blinded up to day 28. Co-primary endpoints were Wuhan-Hu-1 anti-spike S1 IgG seroresponse 28 days post-boosting and reactogenicity within 7 days of boosting. The non-inferiority margin for the absolute difference in seroresponse was -10%. Differences in seroresponse were estimated from logistic regression with marginal standardisation. Geometric mean ratios of IgG were also estimated. ClinicalTrials.gov Identifier: NCT05265065. Findings Between May 27th and September 30th, 2022, 601 participants were randomized to full-dose BNT162b2 (n = 300) or half-dose (n = 301). 598 were included in safety analyses, and 587 in immunological analyses. The frequency of grade 3-4 reactions was similar between arms (half-dose: 4/299 [1.3%]; full-dose: 6/299 [2.0%]). Across all severity grades, half-dose recipients reported fewer local and systemic reactions (60% versus 72% and 25% versus 32%, respectively). Seroresponse was 84.7% (250/295) and 86.6% (253/292) in the half-dose and full-dose arms, respectively (Difference: -2.8%; 95% CI -7.7, 2.1). Geometric mean IgG titres were similar in those receiving full and half-dose boosters for the ChAdOx1 and BBIBP-CorV primed groups, but lower in the half-dose arm in Gam-COVID-Vac-primed participants (GMR: 0.71; 95% CI 0.54, 0.93). Interpretation Half-dose BNT162b2 boosting elicited an immune response that was non-inferior to a full-dose, with fewer reactions, in adults primed with ChAdOx1 nCov-19 or BBIBP-CorV. Half-dose boosting may not be suitable in adults primed with Gam-COVID-Vac. Half-dose BNT162b2 boosting may be considered in populations primed with ChAdOx1 nCov-19 or BBIBP-CorV. Funding Coalition for Epidemic Preparedness Innovations (CEPI).
Collapse
Affiliation(s)
| | - Kerryn A. Moore
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Helen Thomson
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | | | | | | | | | - Khishigjargal Batsukh
- General Laboratory of Clinical Pathology, First Central Hospital of Mongolia, Ulaanbaatar, Mongolia
| | - Kathryn Bright
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Tsogjargal Burentogtokh
- General Laboratory of Clinical Pathology, First Central Hospital of Mongolia, Ulaanbaatar, Mongolia
| | - Lien Anh Ha Do
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Gantuya Dorj
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - John D. Hart
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | | | - Sarantsetseg Jigjidsuren
- General Laboratory of Clinical Pathology, First Central Hospital of Mongolia, Ulaanbaatar, Mongolia
| | - Frances Justice
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Shuo Li
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Paul V. Licciardi
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | | | - Nadia Mazarakis
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Eleanor F.G. Neal
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Cattram Duong Nguyen
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Batbayar Ochirbat
- Mongolia Ministry of Health, Sukhbaatar District, Ulaanbaatar, Mongolia
| | - Bilegtsaikhan Tsolmon
- National Centre for Communicable Diseases, Ulaanbaatar, Mongolia
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Alimaa Tuya
- Onoshmed Laboratory, Sukhbaatar District, Ulaanbaatar, Mongolia
| | | | - Claire von Mollendorf
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Kim Mulholland
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| |
Collapse
|
61
|
Huang S, Li Y, Zhang S, Chen Y, Su W, Sanchez DJ, Mai JDH, Zhi X, Chen H, Ding X. A self-assembled graphene oxide adjuvant induces both enhanced humoral and cellular immune responses in influenza vaccine. J Control Release 2024; 365:716-728. [PMID: 38036004 DOI: 10.1016/j.jconrel.2023.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Antiviral vaccine is essential for preventing and controlling virus spreading, along with declining morbidity and mortality. A major challenge in effective vaccination lies in the ability to enhance both the humoral and cellular immune responses by adjuvants. Herein, self-assembled nanoparticles based on graphene oxide quantum dots with components of carnosine, resiquimod and Zn2+ ions, namely ZnGC-R, are designed as a new adjuvant for influenza vaccine. With its high capability for antigen-loading, ZnGC-R enhances antigen utilization, improves DC recruitment, and activates antigen-presenting cells. Single cell analysis of lymphocytes after intramuscular vaccination revealed that ZnGC-R generated multifaceted immune responses. ZnGC-R stimulated robust CD4+CCR7loPD-1hi Tfh and durable CD8+CD44hiCD62L- TEM immune responses, and simultaneously promoted the proliferation of CD26+ germinal center B cells. Besides, ZnGC-R elicited 2.53-fold higher hemagglutination-inhibiting antibody than commercial-licensed aluminum salt adjuvant. ZnGC-R based vaccine induced 342% stronger IgG antibody responses compared with vaccines with inactivated virus alone, leading to 100% in vivo protection efficacy against the H1N1 influenza virus challenge.
Collapse
Affiliation(s)
- Shiyi Huang
- Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province 317500, China; Institute for Personalized Medicine, School of Biomedical Engineering, State Key laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yiyang Li
- Institute for Personalized Medicine, School of Biomedical Engineering, State Key laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shuang Zhang
- Institute for Personalized Medicine, School of Biomedical Engineering, State Key laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Youming Chen
- Institute for Personalized Medicine, School of Biomedical Engineering, State Key laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenqiong Su
- Institute for Personalized Medicine, School of Biomedical Engineering, State Key laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - David J Sanchez
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, CA, USA
| | - John D H Mai
- Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Xiao Zhi
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Xianting Ding
- Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province 317500, China; Institute for Personalized Medicine, School of Biomedical Engineering, State Key laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
62
|
Delehedde C, Ciganek I, Laroui N, Rameix N, Perche F, Pichon C. Messenger RNA Lipid-Based Nanoparticles: Optimization of Formulations in the Lab. Methods Mol Biol 2024; 2786:255-287. [PMID: 38814399 DOI: 10.1007/978-1-0716-3770-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Among the large variety of messenger RNA (mRNA) delivery systems, those developed with lipid-based formulations were the most widely used and efficient. In our lab, we produced different mRNA formulations made with liposomes, hybrid lipid polymer, and lipid nanoparticles. Our formulations were made with lipids bearing imidazole groups that trigger the endosomal escape of nanoparticles once protonated inside the mild acidic milieu of endosomes upon their cell uptake. Herein, we describe protocols that we used to produce, optimize, and characterize those formulations. The transfection efficiency is influenced by various factors including the physicochemical parameters of the nanoparticles, their efficiency to be internalized in cells, and their intracellular routing as well as their capacity to induce immune system sensors. We provide details on how to quantify the amount of mRNA nanoparticles uptake by cells and evaluate the acidity of the intracellular compartments where they are located, to investigate the endosomal escape, and to assess the activation of innate immune sensors as phosphorylation of PKR hampering mRNA translation.
Collapse
Affiliation(s)
- Christophe Delehedde
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR01, Orléans, France
- Sanofi R&D, Integrated Drug Discovery, Chilly-Mazarin, France
| | - Ivan Ciganek
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR01, Orléans, France
- Inserm, ART-ARNm Inserm US55, Orléans, France
| | - Nabila Laroui
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR01, Orléans, France
- Inserm, ART-ARNm Inserm US55, Orléans, France
| | - Nathalie Rameix
- Sanofi R&D, Integrated Drug Discovery, Chilly-Mazarin, France
| | - Federico Perche
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR01, Orléans, France
| | - Chantal Pichon
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR01, Orléans, France.
- Orléans University, Château de la Source, Orleans, France.
- Institut Universitaire de France, Paris, France.
- Inserm, ART-ARNm Inserm US55, Orléans, France.
| |
Collapse
|
63
|
Wang X, Shi L, Wang Y, Chen J, Yang Z, Liu C, Liu X, Li Y, Zhang C, Sun A, Yan H, Sun H. Effects of the glycosylation of the receptor binding domain (RBD dimer)-based Covid-19 vaccine (ZF2001) on its humoral immunogenicity and immunoreactivity. Int J Biol Macromol 2023; 253:126874. [PMID: 37709229 DOI: 10.1016/j.ijbiomac.2023.126874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/25/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
The SARS-CoV-2 spike protein receptor-binding domain (RBD), which is a key target for the development of SARS-CoV-2 neutralizing antibodies and vaccines, mediates the binding of the host receptor angiotensin-converting enzyme 2 (ACE2). However, the high heterogeneity of RBD glycoforms may lead to an incomplete neutralization effect and impact the immunogenicity of RBD-based vaccines (Ye et al., 2021). Here, our data suggested that the glycosylation significantly affected the humoral immunogenicity and immunoreactivity of the RBD-dimer-based Covid-19 vaccine (ZF2001) (Yang et al., 2021). Several deglycosylated types of ZF2001 (with sialic acid removed (ZF2001-ΔSA), sialic acid & O-glycans removed (ZF2001-ΔSA&O), N-glycans removed (ZF2001-ΔN), N- & O-glycans removed (ZF2001-ΔN&O)) were obtained by treatment with glycosidases. The binding affinity between deglycosylated types of ZF2001 and ACE2 was slightly weakened and that between deglycosylated types of ZF2001 and several monoclonal antibodies (mAbs) were also changed compared with ZF2001. The results of pseudovirus neutralization assay and binding affinity assay of all ZF2001 types revealed that the antigens with complex glycosylation had better humoral immunogenicity and immunoreactivity. Molecular dynamics simulation indicated that the more complex glycosylation of RBD corresponded to more hydrogen bonds formed between helper T-cell epitopes of RBD and major histocompatibility complex II (MHC-II). In summary, these results demonstrated that the glycosylation of RBD affects antigen presentation, humoral immunogenicity and immunoreactivity, which may be an important consideration for vaccine design and production technology.
Collapse
Affiliation(s)
- Xueqing Wang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Lulu Shi
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Yirong Wang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Jia Chen
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Zelan Yang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Chenglong Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Xiaomei Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Yang Li
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Can Zhang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Anhui Sun
- Anhui Zhifei Longcom Biopharmaceutical, Hefei, China
| | - Huan Yan
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China.
| | - Hui Sun
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China; Hubei Province key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430072, Hubei Province, China.
| |
Collapse
|
64
|
Baboo S, Diedrich JK, Torres JL, Copps J, Singh B, Garrett PT, Ward AB, Paulson JC, Yates JR. Evolving spike-protein N-glycosylation in SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539897. [PMID: 37214937 PMCID: PMC10197516 DOI: 10.1101/2023.05.08.539897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Since >3 years, SARS-CoV-2 has plunged humans into a colossal pandemic. Henceforth, multiple waves of infection have swept through the human population, led by variants that were able to partially evade acquired immunity. The co-evolution of SARS-CoV-2 variants with human immunity provides an excellent opportunity to study the interaction between viral pathogens and their human hosts. The heavily N-glycosylated spike-protein of SARS-CoV-2 plays a pivotal role in initiating infection and is the target for host immune-response, both of which are impacted by host-installed N-glycans. Using highly-sensitive DeGlyPHER approach, we compared the N-glycan landscape on spikes of the SARS-CoV-2 Wuhan-Hu-1 strain to seven WHO-defined variants of concern/interest, using recombinantly expressed, soluble spike-protein trimers, sharing same stabilizing-mutations. We found that N-glycan processing is conserved at most sites. However, in multiple variants, processing of N-glycans from high mannose- to complex-type is reduced at sites N165, N343 and N616, implicated in spike-protein function.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Bhavya Singh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Patrick T. Garrett
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
65
|
Guo M, Li J, Wang Y, Chen G, Chen R, Wang L. The association between influenza vaccination and the perception of COVID-19 as well as COVID-19 vaccination behavior among community residents in Anhui province, China. Hum Vaccin Immunother 2023; 19:2275464. [PMID: 37941303 PMCID: PMC10653700 DOI: 10.1080/21645515.2023.2275464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Influenza is a significant public health threat associated with high morbidity and mortality globally. This study investigated the influenza vaccination rate (IVR) among community residents in Anhui province, China, and explored the association between participants' influenza vaccination and their key sociodemographic characteristics, perception of COVID-19 as well as COVID-19 vaccination behavior. We found that the IVR among respondents in Anhui province was 27.85% in 2020. Regression analyses revealed that males (OR = 1.41, 95% CI: 1.01 ~ 1.96), residents with above middle school education (OR = 1.88, 95% CI: 1.04 ~ 3.39), considered themselves likely to be infected with COVID-19 (OR = 1.53, 95% CI: 1.04 ~ 2.24), had received the COVID-19 vaccine (OR = 9.85, 95% CI: 3.49 ~ 27.78), did not plan to receive COVID-19 vaccine in the future (OR = 1.70, 95% CI: 1.17 ~ 2.47), and had no adverse reactions after COVID-19 vaccination (OR = 1.54, 95% CI: 1.04 ~ 2.27) were associated with a higher IVR. The acceptance of influenza vaccination was mainly associated with respondents' gender, education, perception of COVID-19, history of COVID-19 vaccination in city and countryside community residents in Anhui province.
Collapse
Affiliation(s)
- Mengjie Guo
- School of Health Service Management, Anhui Medical University, Hefei, Anhui Province, China
| | - Jian’an Li
- School of Health Service Management, Anhui Medical University, Hefei, Anhui Province, China
| | - Yan Wang
- School of Health Service Management, Anhui Medical University, Hefei, Anhui Province, China
| | - Guimei Chen
- School of Health Service Management, Anhui Medical University, Hefei, Anhui Province, China
| | - Ren Chen
- School of Health Service Management, Anhui Medical University, Hefei, Anhui Province, China
| | - Li Wang
- School of Health Service Management, Anhui Medical University, Hefei, Anhui Province, China
- Key Laboratory of Health Economics and Policy Research, National Health and Wellness Commission, Jinan, Shandong Province, China
| |
Collapse
|
66
|
Chen GL, Qiu YZ, Wu KQ, Wu Y, Wang YH, Zou YY, Peng CG, Zhao J, Su C, Ma JH, Ni SN, Wang X, Jin TH, Jiang Q, Guo T, Xu Y, Huang CC, Zhang Q, Liu KL, Ji L, Yang HY, Li CL, Su YW, Lu X, Li LJ. Safety and immunogenicity of primary vaccination with a SARS-CoV-2 mRNA vaccine (SYS6006) in Chinese participants aged 18 years or more: Two randomized, observer-blinded, placebo-controlled and dose-escalation phase 1 clinical trials. Hum Vaccin Immunother 2023; 19:2285089. [PMID: 38111106 PMCID: PMC10760391 DOI: 10.1080/21645515.2023.2285089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Vaccination plays a key role in preventing morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We aimed to evaluate the safety and immunogenicity of a SARS-CoV-2 messenger ribonucleic acid (mRNA) vaccine SYS6006. In the two randomized, observer-blinded, placebo-controlled phase 1 trials, 40 adult participants aged 18-59 years and 40 elderly participants aged 60 years or more were randomized to receive two doses of SYS6006 or placebo (saline). Adverse events (AEs) were collected through 30 days post the second vaccination. Immunogenicity was assessed by live-virus neutralizing antibody (Nab), spike protein (S1) binding antibody (S1-IgG), and cellular immunity. The result showed that 7/15, 9/15 and 4/10 adult participants, and 9/15, 8/15 and 4/10 elderly participants reported at least one AE in the 20-µg, 30-µg and placebo groups, respectively. Most AEs were grade 1. Injection-site pain was the most common AE. Two adults and one elder reported fever. No vaccination-related serious AE was reported. SYS6006 elicited wild-type Nab response with a peak geometric mean titer of 232.1 and 130.6 (adults), and 48.7 and 66.7 (elders), in the 20-µg and 30-µg groups, respectively. SYS6006 induced moderate-to-robust Nab response against Delta, and slight Nab response against Omicron BA.2 and BA.5. Robust IgG response against wild type and BA.2 was observed. Cellular immune response was induced. In conclusion, two-dose primary vaccination with SYS6006 demonstrated good safety and immunogenicity during a follow-up period of 51 days in immunologically naive population aged 18 years or more. (Trial registry: Chictr.org.cn ChiCTR2200059103 and ChiCTR2200059104).
Collapse
Affiliation(s)
- Gui-Ling Chen
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuan-Zheng Qiu
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Kai-Qi Wu
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Ying Wu
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuan-Hui Wang
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yu-Ying Zou
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Cong-Gao Peng
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jie Zhao
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Chang Su
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jun-Heng Ma
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Shao-Nan Ni
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Xing Wang
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Ting-Han Jin
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Qi Jiang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Tong Guo
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Xu
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Chao-Chao Huang
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Qing Zhang
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Kai-Li Liu
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Li Ji
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Han-Yu Yang
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Chun-Lei Li
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, Hebei, People’s Republic of China
| | - Yu-Wen Su
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xiang Lu
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
67
|
Begga A, Garibo-i-Orts Ò, de María-García S, Escolano F, Lozano MA, Oliver N, Conejero JA. Predicting COVID-19 pandemic waves including vaccination data with deep learning. Front Public Health 2023; 11:1279364. [PMID: 38162619 PMCID: PMC10757845 DOI: 10.3389/fpubh.2023.1279364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction During the recent COVID-19 pandemics, many models were developed to predict the number of new infections. After almost a year, models had also the challenge to include information about the waning effect of vaccines and by infection, and also how this effect start to disappear. Methods We present a deep learning-based approach to predict the number of daily COVID-19 cases in 30 countries, considering the non-pharmaceutical interventions (NPIs) applied in those countries and including vaccination data of the most used vaccines. Results We empirically validate the proposed approach for 4 months between January and April 2021, once vaccination was available and applied to the population and the COVID-19 variants were closer to the one considered for developing the vaccines. With the predictions of new cases, we can prescribe NPIs plans that present the best trade-off between the expected number of COVID-19 cases and the social and economic cost of applying such interventions. Discussion Whereas, mathematical models which include the effect of vaccines in the spread of the SARS-COV-2 pandemic are available, to the best of our knowledge we are the first to propose a data driven method based on recurrent neural networks that considers the waning effect of the immunization acquired either by vaccine administration or by recovering from the illness. This work contributes with an accurate, scalable, data-driven approach to modeling the pandemic curves of cases when vaccination data is available.
Collapse
Affiliation(s)
- Ahmed Begga
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politécnica de València, València, Spain
| | - Òscar Garibo-i-Orts
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politécnica de València, València, Spain
| | - Sergi de María-García
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politécnica de València, València, Spain
| | - Francisco Escolano
- Departamento de Ciencia de la Computación e I.A., Universidad de Alicante, Alicante, Spain
| | - Miguel A. Lozano
- Departamento de Ciencia de la Computación e I.A., Universidad de Alicante, Alicante, Spain
| | | | - J. Alberto Conejero
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politécnica de València, València, Spain
| |
Collapse
|
68
|
Kaiser JA, Liu X, Luongo C, Matsuoka Y, Santos C, Yang L, Herbert R, Castens A, Dorward DW, Johnson RF, Park HS, Afroz S, Munir S, Le Nouën C, Buchholz UJ. Intranasal murine pneumonia virus-vectored SARS-CoV-2 vaccine induces mucosal and serum antibodies in macaques. iScience 2023; 26:108490. [PMID: 38144450 PMCID: PMC10746510 DOI: 10.1016/j.isci.2023.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/13/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Next-generation SARS-CoV-2 vaccines are needed that induce systemic and mucosal immunity. Murine pneumonia virus (MPV), a murine homolog of respiratory syncytial virus, is attenuated by host-range restriction in nonhuman primates and has a tropism for the respiratory tract. We generated MPV vectors expressing the wild-type SARS-CoV-2 spike protein (MPV/S) or its prefusion-stabilized form (MPV/S-2P). Both vectors replicated similarly in cell culture and stably expressed S. However, only S-2P was associated with MPV particles. After intranasal/intratracheal immunization of rhesus macaques, MPV/S and MPV/S-2P replicated to low levels in the airways. Despite its low-level replication, MPV/S-2P induced high levels of mucosal and serum IgG and IgA to SARS-CoV-2 S or its receptor-binding domain. Serum antibodies from MPV/S-2P-immunized animals efficiently inhibited ACE2 receptor binding to S proteins of variants of concern. Based on its attenuation and immunogenicity in macaques, MPV/S-2P will be further evaluated as a live-attenuated vaccine for intranasal immunization against SARS-CoV-2.
Collapse
Affiliation(s)
- Jaclyn A. Kaiser
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cindy Luongo
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yumiko Matsuoka
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Celia Santos
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijuan Yang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Herbert
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, MD 20837, USA
| | - Ashley Castens
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, MD 20837, USA
| | - David W. Dorward
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong-Su Park
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharmin Afroz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ursula J. Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
69
|
Yoshida T, Yamasaki K, Tadagaki K. Caspase inhibition improves viability and efficiency of liposomal transfection. Sci Rep 2023; 13:21868. [PMID: 38072861 PMCID: PMC10711006 DOI: 10.1038/s41598-023-49027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
High transfection efficiency is the most important point for experiments of DNA and RNA introduction into cells. Decrease of cell viability during the transfection procedure is a crucial issue, resulting in transfection failure. However, the mechanism underlying cell growth inhibition has not been fully elucidated. Lipofection is frequently used for transfection experiments, whereases, depending on cell type, it causes a decrease in cell viability. The present study demonstrates here that a potent pan-caspase inhibitor Q-VD-OPh blocked cell death during the lipofection, indicating apoptosis was induced in lipofection. Moreover, Q-VD-OPh drastically increased transfected cells. This method provides easier and more effective transfection system of lipofection and may be useful for transfection of not only cell lines but also clinical uses such as gene therapy and nucleic acids vaccine.
Collapse
Affiliation(s)
- Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Kenta Yamasaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenjiro Tadagaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
70
|
Valdes Angues R, Perea Bustos Y. SARS-CoV-2 Vaccination and the Multi-Hit Hypothesis of Oncogenesis. Cureus 2023; 15:e50703. [PMID: 38234925 PMCID: PMC10792266 DOI: 10.7759/cureus.50703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex and dynamic disease. The "hallmarks of cancer" were proposed by Hanahan and Weinberg (2000) as a group of biological competencies that human cells attain as they progress from normalcy to neoplastic transformation. These competencies include self-sufficiency in proliferative signaling, insensitivity to growth-suppressive signals and immune surveillance, the ability to evade cell death, enabling replicative immortality, reprogramming energy metabolism, inducing angiogenesis, and activating tissue invasion and metastasis. Underlying these competencies are genome instability, which expedites their acquisition, and inflammation, which fosters their function(s). Additionally, cancer exhibits another dimension of complexity: a heterogeneous repertoire of infiltrating and resident host cells, secreted factors, and extracellular matrix, known as the tumor microenvironment, that through a dynamic and reciprocal relationship with cancer cells supports immortality, local invasion, and metastatic dissemination. This staggering intricacy calls for caution when advising all people with cancer (or a previous history of cancer) to receive the COVID-19 primary vaccine series plus additional booster doses. Moreover, because these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, safety, and the risk of interactions with anticancer therapies, which could reduce the value and innocuity of either medical treatment. After reviewing the available literature, we are particularly concerned that certain COVID-19 vaccines may generate a pro-tumorigenic milieu (i.e., a specific environment that could lead to neoplastic transformation) that predisposes some (stable) oncologic patients and survivors to cancer progression, recurrence, and/or metastasis. This hypothesis is based on biological plausibility and fulfillment of the multi-hit hypothesis of oncogenesis (i.e., induction of lymphopenia and inflammation, downregulation of angiotensin-converting enzyme 2 (ACE2) expression, activation of oncogenic cascades, sequestration of tumor suppressor proteins, dysregulation of the RNA-G quadruplex-protein binding system, alteration of type I interferon responses, unsilencing of retrotransposable elements, etc.) together with growing evidence and safety reports filed to Vaccine Adverse Effects Report System (VAERS) suggesting that some cancer patients experienced disease exacerbation or recurrence following COVID-19 vaccination. In light of the above and because some of these concerns (i.e., alteration of oncogenic pathways, promotion of inflammatory cascades, and dysregulation of the renin-angiotensin system) also apply to cancer patients infected with SARS-CoV-2, we encourage the scientific and medical community to urgently evaluate the impact of both COVID-19 and COVID-19 vaccination on cancer biology and tumor registries, adjusting public health recommendations accordingly.
Collapse
Affiliation(s)
- Raquel Valdes Angues
- Neurology, Oregon Health and Science University School of Medicine, Portland, USA
| | | |
Collapse
|
71
|
Tandon A, Kumar N, Aggarwal S, Anjana Y, Sachdeva MP, Gupta V, Trilok-Kumar G. Assessing Menstrual Changes Among Young Indian Females Post-SARS-CoV-2 Vaccination. Cureus 2023; 15:e50025. [PMID: 38186546 PMCID: PMC10767692 DOI: 10.7759/cureus.50025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 01/09/2024] Open
Abstract
Background The rollout of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines has significantly enhanced immunity against coronavirus disease 2019 (COVID-19), leading to a reduction in the severity of illness, hospitalizations, and deaths. While various side effects of the vaccine have been reported, its impact on the menstrual cycle remains unclear. Methods We conducted a cross-sectional study involving university students who had received either partial or full vaccination against SARS-CoV-2. Data was gathered through a questionnaire designed to assess the relationship between menstrual changes and the SARS-CoV-2 vaccination. Results A total of 773 participants, with a mean age of 20.6 ± 1.7 years, were included in this study. The participants reported a significant increase in the irregularity of the menstrual cycle. We observed a slight increase in the length of the menstrual cycle, from 30.0 ± 4.0 days (pre-vaccination) to 30.5 ± 5.6 days (post-vaccination), which was statistically significant (p<0.001). The duration of menstruation also increased, from 4.9 ± 1.7 days (pre-vaccination) to 5.0 ± 1.7 days (post-vaccination). However, this increase in menstrual length due to vaccination was not statistically significant (p = 0.898). Notably, there was a significant increase in pain reported by the participants after receiving the SARS-CoV-2 vaccine (p = 0.004). Conclusion The SARS-CoV-2 vaccination significantly impacted the regularity of the menstrual cycle, length of the menstrual cycle, and pain during menstruation, though temporarily. Our study found no significant differences in menstrual changes or the type of vaccine administered (Covishield and Covaxin).
Collapse
Affiliation(s)
| | - Naveen Kumar
- Anthropology, University of Delhi, New Delhi, IND
- Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi, IND
| | - Sunita Aggarwal
- Microbiology, Institute of Home Economics, University of Delhi, New Delhi, IND
| | - Yogita Anjana
- Food and Nutrition, Institute of Home Economics, University of Delhi, New Delhi, IND
| | | | - Vipin Gupta
- Anthropology, University of Delhi, New Delhi, IND
| | - Geeta Trilok-Kumar
- Epidemiology and Public Health, Institute of Home Economics, University of Delhi, New Delhi, IND
- Nutrition, Trivedi School of BioSciences, Ashoka University, Haryana, IND
| |
Collapse
|
72
|
Koletzko S, Le Thi TG, Zhelyazkova A, Osterman A, Wichert SP, Breiteneicher S, Koletzko L, Schwerd T, Völk S, Jebrini T, Horak J, Tuschen M, Choukér A, Hornung V, Keppler OT, Koletzko B, Török HP, Adorjan K. A prospective longitudinal cohort study on risk factors for COVID-19 vaccination failure (RisCoin): methods, procedures and characterization of the cohort. Clin Exp Med 2023; 23:4901-4917. [PMID: 37659994 PMCID: PMC10725370 DOI: 10.1007/s10238-023-01170-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/11/2023] [Indexed: 09/04/2023]
Abstract
The primary objective of the RisCoin study was to investigate the interplay of genetic, metabolic, and lifestyle factors as well as stress levels on influencing the humoral immune response after at least two COVID-19 vaccinations, primarily with mRNAs, and the risk of SARS-CoV-2 breakthrough infections during follow-up. Here, we describe the study design, procedures, and study population. RisCoin is a prospective, monocentric, longitudinal, observational cohort study. Between October and December 2021, 4515 participants with at least two COVID-19 vaccinations, primarily BNT162b2 and mRNA-1273, were enrolled at the LMU University Hospital of Munich, thereof > 4000 healthcare workers (HCW), 180 patients with inflammatory bowel disease under immunosuppression, and 119 patients with mental disorders. At enrollment, blood and saliva samples were collected to measure anti-SARS-CoV-2 antibodies, their neutralizing capacity against Omicron-BA.1, stress markers, metabolomics, and genetics. To ensure the confidential handling of sensitive data of study participants, we developed a data protection concept and a mobile application for two-way communication. The application allowed continuous data reporting, including breakthrough infections by the participants, despite irreversible anonymization. Up to 1500 participants attended follow-up visits every two to six months after enrollment. The study gathered comprehensive data and bio-samples of a large representative HCW cohort and two patient groups allowing analyses of complex interactions. Our data protection concept combined with the mobile application proves the feasibility of longitudinal assessment of anonymized participants. Our concept may serve as a blueprint for other studies handling sensitive data on HCW.
Collapse
Affiliation(s)
- Sibylle Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany.
- Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium, Medicum University of Warmia and Mazury, Olsztyn, Poland.
| | - Thu Giang Le Thi
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Ana Zhelyazkova
- Institut für Notfallmedizin und Medizinmanagement (INM), Klinikum der Universität München, LMU München, Munich, Germany
| | - Andreas Osterman
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Sven P Wichert
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | | | - Leandra Koletzko
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Stefanie Völk
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Tarek Jebrini
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | - Jeannie Horak
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Marina Tuschen
- Department of Anesthesiology, Laboratory of Translational Research Stress and Immunity, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexander Choukér
- Department of Anesthesiology, Laboratory of Translational Research Stress and Immunity, LMU University Hospital, LMU Munich, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, LMU Munich, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Berthold Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Helga P Török
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany.
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany.
- Center for International Health (CIH), LMU Munich, Munich, Germany.
| |
Collapse
|
73
|
Jin Z, Wu J, Wang Y, Huang T, Zhao K, Liu J, Wang H, Zhu T, Gou J, Huang H, Wu X, Yin H, Song J, Li R, Zhang J, Li L, Chen J, Li X, Zhang M, Li J, Hou M, Song Y, Wang B, Gao Q, Wu L, Kong Y, Dong R. Safety and immunogenicity of the COVID-19 mRNA vaccine CS-2034: A randomized, double-blind, dose-exploration, placebo-controlled multicenter Phase I clinical trial in healthy Chinese adults. J Infect 2023; 87:556-570. [PMID: 37898410 DOI: 10.1016/j.jinf.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND The novel coronavirus pneumonia (COVID-19) is an infectious disease caused by the infection of a novel coronavirus known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has resulted in millions of deaths. We aimed to evaluate the safety and immunogenicity of the COVID-19 mRNA vaccine (CS-2034, CanSino, Shanghai, China) in adults without COVID-19 infection from China. METHOD This is a multicenter Phase I clinical trial with a randomized, double-blinded, dose-exploration, placebo-controlled design. The trial recruited 40 seronegative participants aged 18-59 years who had neither received any COVID-19 vaccine nor been infected before. They were divided into a low-dose group (administered with either the CS-2034 vaccine containing 30 μg of mRNA or a placebo of 0.3 ml type 5 adenovirus vector) and a high-dose group (administered with either the CS-2034 vaccine containing 50 μg of mRNA or a placebo of 0.5 ml type 5 adenovirus vector). Participants were randomly assigned in a 3:1 ratio to receive either the mRNA vaccine or a placebo on days 0 and 21 according to a two-dose immunization schedule. The first six participants in each dosage group were assigned as sentinel subjects. Participants were sequentially enrolled in a dose-escalation manner from low to high dose and from sentinel to non-sentinel subjects. Blood samples were collected from all participants on the day before the first dose (Day 0), the day before the second dose (day 21), 14 days after the second dose (day 35), and 28 days after the second dose (day 49) to evaluate the immunogenicity of the CS-2034 vaccine. Participants were monitored for safety throughout the 28-day follow-up period, including solicited adverse events, unsolicited adverse events, adverse events of special interest (AESI), and medically attended adverse events (MAE). This report focuses solely on the safety and immunogenicity analysis of adult participants aged 18-59 years, while the long-term phase of the study is still ongoing. This study is registered at ClinicalTrials.gov, NCT05373485. FINDINGS During the period from May 17, 2022, to August 8, 2022, a total of 155 participants aged 18-59 years were screened for this study. Among them, 115 participants failed the screening process, and 40 participants were randomly enrolled (15 in the low-dose group, 15 in the high-dose group, and 10 in the placebo group). Throughout the 28-day follow-up period, the overall incidence of adverse reactions (related to vaccine administration) in the low-dose group, high-dose group, and placebo group was 93.33% (14/15), 100.00% (15/15), and 80.00% (8/10), respectively. There was a statistically significant difference in the incidence of local adverse reactions (soreness, pruritus, swelling at the injection site) among the low-dose group, high-dose group, and placebo group (P = 0.002). All adverse reactions were mainly of severity grade 1 (mild) or 2 (moderate), and no adverse events of severity grade 4 or higher occurred. Based on the analysis of Spike protein Receptor Binding Domain (S-RBD) IgG antibodies against the BA.1 strain, the seroconversion rates of antibodies at day 21 after the first dose were 86.67%, 93.33%, and 0.00% in the low-dose group, high-dose group, and placebo group, respectively. The geometric mean titer (GMT) of antibodies was 61.2(95%CI 35.3-106.2), 55.4(95%CI 36.3-84.4), and 15.0(95%CI 15.0-15.0), and the geometric mean fold increase (GMI) was 4.08(95%CI 2.35-7.08), 3.69(95%CI 2.42-5.63), and 1.00(95%CI 1.00-1.00) for each group. At day 28 after the full vaccination, the seroconversion rates of antibodies were 100.00%, 93.33%, and 0.00%, and the GMT of antibodies was 810.0(95%CI 511.4-1283.0), 832.2(95%CI 368.1-1881.6), and 15.0(95%CI 15.0-15.0), and the GMI was 54.00(95%CI 34.09-85.53), 55.48(95%CI 24.54-125.44), and 1.00(95%CI 1.00-1.00) for each group, respectively. Based on the analysis of CD3+/CD4+ cell cytokine response, the percentages of IL-2+, IL-4+, IFN-γ+, and TNF-α+ cells increased after 14 days and 28 days of full vaccination in both the low-dose group and high-dose group. The increase was most pronounced in the high-dose group. INTERPRETATION At day 28 after the full vaccination, both the low-dose and the high-dose CS-2034 vaccine were able to induce the production of high titers of S-RBD IgG antibodies against the BA.1 strain. Adverse reactions in the low-dose and high-dose groups were mainly of severity grade 1 or 2, and no trial-limiting safety concerns were identified. These findings support further development of this vaccine.
Collapse
Affiliation(s)
- Zhili Jin
- Beijing Friendship Hospital, Capital Medical University, China
| | - Jingxuan Wu
- Beijing Friendship Hospital, Capital Medical University, China
| | - Ying Wang
- Beijing Friendship Hospital, Capital Medical University, China
| | - Tao Huang
- Hunan Provincial Center for Disease Control and Prevention, China
| | - Kexin Zhao
- Hebei Petrochina Central Hospital, China
| | - Jian Liu
- CanSino (Shanghai) Biotechnologies Co., Ltd, China; CanSino (Shanghai) Biological Research Co., Ltd, China; CanSino Biologics Inc (Tianjin), China
| | - Haomeng Wang
- CanSino (Shanghai) Biotechnologies Co., Ltd, China; CanSino (Shanghai) Biological Research Co., Ltd, China; CanSino Biologics Inc (Tianjin), China
| | - Tao Zhu
- CanSino (Shanghai) Biological Research Co., Ltd, China; CanSino Biologics Inc (Tianjin), China
| | - Jinbo Gou
- CanSino Biologics Inc (Tianjin), China
| | | | - Xiaofang Wu
- Beijing Friendship Hospital, Capital Medical University, China
| | - Hang Yin
- Beijing Friendship Hospital, Capital Medical University, China
| | - Jian Song
- Beijing Friendship Hospital, Capital Medical University, China
| | - Ran Li
- Beijing Friendship Hospital, Capital Medical University, China
| | - Jianxiong Zhang
- Beijing Friendship Hospital, Capital Medical University, China
| | - Lijun Li
- Beijing Friendship Hospital, Capital Medical University, China
| | - Jingcheng Chen
- Beijing Friendship Hospital, Capital Medical University, China
| | - Xiao Li
- Beijing Friendship Hospital, Capital Medical University, China
| | - Meijuan Zhang
- Beijing Friendship Hospital, Capital Medical University, China
| | - JiangShuo Li
- Beijing Friendship Hospital, Capital Medical University, China
| | - Mengyu Hou
- Beijing Friendship Hospital, Capital Medical University, China
| | - Yuqin Song
- Beijing Friendship Hospital, Capital Medical University, China
| | - Bingyan Wang
- Beijing Friendship Hospital, Capital Medical University, China
| | - Qiannan Gao
- Beijing Friendship Hospital, Capital Medical University, China
| | - Le Wu
- Beijing Friendship Hospital, Capital Medical University, China
| | - Yanhong Kong
- Beijing Friendship Hospital, Capital Medical University, China
| | - Ruihua Dong
- Beijing Friendship Hospital, Capital Medical University, China.
| |
Collapse
|
74
|
Aleman A, van Kesteren M, Zajdman AK, Srivastava K, Cognigni C, Mischka J, Chen LY, Upadhyaya B, Serebryakova K, Nardulli JR, Lyttle N, Kappes K, Jackson H, Gleason CR, Oostenink A, Cai GY, Van Oekelen O, van Bakel H, Sordillo EM, Cordon-Cardo C, Merad M, Jagannath S, Wajnberg A, Simon V, Parekh S. Cellular mechanisms associated with sub-optimal immune responses to SARS-CoV-2 bivalent booster vaccination in patients with Multiple Myeloma. EBioMedicine 2023; 98:104886. [PMID: 37995467 PMCID: PMC10708991 DOI: 10.1016/j.ebiom.2023.104886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND The real-world impact of bivalent vaccines for wild type (WA.1) and Omicron variant (BA.5) is largely unknown in immunocompromised patients with Multiple Myeloma (MM). We characterize the humoral and cellular immune responses in patients with MM before and after receiving the bivalent booster, including neutralizing assays to identify patterns associated with continuing vulnerability to current variants (XBB1.16, EG5) in the current post-pandemic era. METHODS We studied the humoral and cellular immune responses before and after bivalent booster immunization in 48 MM patients. Spike binding IgG antibody levels were measured by SARS-CoV-2 spike binding ELISA and neutralization capacity was assessed by a SARS-CoV-2 multi-cycle microneutralization assays to assess inhibition of live virus. We measured spike specific T-cell function using the QuantiFERON SARS-CoV-2 (Qiagen) assay as well as flow-cytometry based T-cell. In a subset of 38 patients, high-dimensional flow cytometry was performed to identify immune cell subsets associated with lack of humoral antibodies. FINDINGS We find that bivalent vaccination provides significant boost in protection to the omicron variant in our MM patients, in a treatment specific manner. MM patients remain vulnerable to newer variants with mutations in the spike portion. Anti-CD38 and anti-BCMA therapies affect the immune machinery needed to produce antibodies. INTERPRETATION Our study highlights varying immune responses observed in MM patients after receiving bivalent COVID-19 vaccination. Specifically, a subgroup of MM patients undergoing anti-CD38 and anti-BCMA therapy experience impairment in immune cells such DCs, B cells, NK cells and TFH cells, leading to an inability to generate adequate humoral and cellular responses to vaccination. FUNDING National Cancer Institute (National Institutes of Health), National Institute of Allergy and Infectious Diseases (National Institutes of Health), NCI Serological Sciences Network for COVID-19 (SeroNet) and The Icahn School of Medicine at Mount Sinai.
Collapse
Affiliation(s)
- Adolfo Aleman
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgan van Kesteren
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariel Kogan Zajdman
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Cognigni
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacob Mischka
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lucia Y Chen
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bhaskar Upadhyaya
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kseniya Serebryakova
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica R Nardulli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neko Lyttle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katerina Kappes
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hayley Jackson
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles R Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annika Oostenink
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gianna Y Cai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oliver Van Oekelen
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harm van Bakel
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sundar Jagannath
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ania Wajnberg
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Samir Parekh
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
75
|
Karofi DH, Lawal N, Bello MB, Imam MU. Immunogenicity and Protective Efficacy of Nucleic Acid-Based Vaccines Against COVID-19: A Systematic Review. Mol Biotechnol 2023:10.1007/s12033-023-00965-y. [PMID: 38006520 DOI: 10.1007/s12033-023-00965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/25/2023] [Indexed: 11/27/2023]
Abstract
To overcome the COVID-19 pandemic, the development of safe and effective vaccines is crucial. With the enormous information available on vaccine development for COVID-19, there are still grey areas to be considered when designing a potential vaccine. The rapid regulatory approval of nucleic acid-based vaccines was unique to the COVID-19; these vaccines were rapidly produced cost-effectively and with lesser risk of infectivity. Additionally, they demonstrated relative stability at room temperature (DNA). However, a comparative understanding of the immunogenic impact and efficacy of these vaccines is lacking. Immunogenicity is essential for developing and maintaining effective and long-lasting post-vaccination immunity to pathogenic microorganisms. This systematic review aims to assess and summarize the immunogenicity and protective efficacy of the nucleic acid-based vaccines against COVID-19. The Preferred Reporting Items for Systematic Reviews (PRISMA) recommendations were followed in this review. CASP tool was used for quality assessment of randomized controlled trials. All included studies employed a randomized control method, and the results demonstrated promising immune responses and effectiveness that provided high-level protection against COVID-19 infection. This study offers vital insights for advancing vaccine technology. Furthermore, it guides formulation, informs personalized vaccination strategies, and enhances global health preparedness, particularly in regions with limited vaccine access.
Collapse
Affiliation(s)
- Dahiru Hafiz Karofi
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Nafi'u Lawal
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Nigeria.
| |
Collapse
|
76
|
Paramithiotis E, Varaklis C, Pillet S, Shafiani S, Lancelotta MP, Steinhubl S, Sugden S, Clutter M, Montamat-Sicotte D, Chermak T, Crawford SY, Lambert BL, Mattison J, Murphy RL. Integrated antibody and cellular immunity monitoring are required for assessment of the long term protection that will be essential for effective next generation vaccine development. Front Immunol 2023; 14:1166059. [PMID: 38077383 PMCID: PMC10701527 DOI: 10.3389/fimmu.2023.1166059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
The COVID pandemic exposed the critical role T cells play in initial immunity, the establishment and maintenance of long term protection, and of durable responsiveness against novel viral variants. A growing body of evidence indicates that adding measures of cellular immunity will fill an important knowledge gap in vaccine clinical trials, likely leading to improvements in the effectiveness of the next generation vaccines against current and emerging variants. In depth cellular immune monitoring in Phase II trials, particularly for high risk populations such as the elderly or immune compromised, should result in better understanding of the dynamics and requirements for establishing effective long term protection. Such analyses can result in cellular immunity correlates that can then be deployed in Phase III studies using appropriate, scalable technologies. Measures of cellular immunity are less established than antibodies as correlates of clinical immunity, and some misconceptions persist about cellular immune monitoring usefulness, cost, complexity, feasibility, and scalability. We outline the currently available cellular immunity assays, review their readiness for use in clinical trials, their logistical requirements, and the type of information each assay generates. The objective is to provide a reliable source of information that could be leveraged to develop a rational approach for comprehensive immune monitoring during vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Steve Steinhubl
- Purdue University, West Lafayette, IN, United States
- PhysIQ, Chicago, IL, United States
| | - Scott Sugden
- Medical and Scientific Affairs, Infectious Diseases, Cepheid, Sunnyvale, CA, United States
| | - Matt Clutter
- Research and Development, CellCarta, Montreal, QC, Canada
| | | | - Todd Chermak
- Regulatory and Government Affairs, CellCarta, Montreal, QC, Canada
| | - Stephanie Y. Crawford
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois Chicago, Chicago, IL, United States
| | - Bruce L. Lambert
- Department of Communication Studies, Institute for Global Health, Northwestern University, Evanston, IL, United States
| | - John Mattison
- Health Technology Advisory Board, Arsenal Capital, New York, NY, United States
| | - Robert L. Murphy
- Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| |
Collapse
|
77
|
Nguyen TTA, Demeestere I. A Journey to Reach the Ovary Using Next-Generation Technologies. Int J Mol Sci 2023; 24:16593. [PMID: 38068916 PMCID: PMC10705884 DOI: 10.3390/ijms242316593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Although effective in terms of the chances of future live birth, the current methods for fertility preservation, such as oocyte, embryo, or ovarian tissue cryopreservation, cannot be offered to all cancer patients in all clinical contexts. Expanding options for fertility preservation is crucial to addressing the need to encompass all situations. One emerging strategy is pharmacoprotection, a non-invasive approach that has the potential to fill existing gaps in fertility preservation. In addition to the identification of the most effective therapeutic agents, the potential for off-target effects remains one of the main limitations of this strategy for clinical application, particularly when healthy ovarian tissue is targeted. This review focuses on the advances in pharmacoprotective approaches and the challenge of targeting the ovaries to deliver these agents. The unique properties of gold nanoparticles (AuNPs) make them an attractive candidate for this purpose. We discuss how AuNPs meet many of the requirements for an ideal drug delivery system, as well as the existing limitations that have hindered the progression of AuNP research into more clinical trials. Additionally, the review highlights microRNA (miRNA) therapy as a next-generation approach to address the issues of fertility preservation and discusses the obstacles that currently impede its clinical availability.
Collapse
Affiliation(s)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| |
Collapse
|
78
|
Chen GL, Yu XY, Luo LP, Zhang F, Dai XH, Li N, Shen ZW, Wu KQ, Lou DF, Peng CG, Jin TH, Huang YM, Shao X, Liu Q, Jiang Q, Guo T, Cao F, Zhu JR, Wu XH, Pei RJ, Deng F, Jiang GP, Li YH, Gao HN, He JX, Zhong-Chen, Peng YC, Li LJ. Phase I study of a non-S2P SARS-CoV-2 mRNA vaccine LVRNA009 in Chinese adults. Vaccine 2023; 41:7297-7306. [PMID: 37925316 DOI: 10.1016/j.vaccine.2023.10.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND COVID-19 caused by SARS-CoV-2 is a great threat to public health. We present the safety and immunogenicity data from a phase I trial in China of an mRNA vaccine (LVRNA009). METHODS In the single-centre, double-blind, placebo-controlled and dose-escalation study, 72 healthy unvaccinated adults aged 18-59 years were randomized (3:1) to receive LVRNA009 with one of three vaccine dosage (25, 50 and 100 μg) or placebo, to evaluate for the safety, tolerability and immunogenicity of LVRNA009. RESULTS All these participants received two injections 28 days apart. No adverse events higher than grade 2 were reported during the study. A total of 30 participants (42 %) reported solicited adverse reactions during the first 14 days after vaccinations. Of the events reported, fever (n = 11, 15 %) was the most common systemic adverse reaction, and pain at the injection site (n = 17, 24 %) was the most frequent solicited local adverse reaction. Anti-S-protein IgG and neutralising antibodies were observed to have been induced 14 days after the first dose, significantly increased 7 days after the second dose, and remained at a high level 28 days after the second dose. Specific T-cell responses peaked 7 days and persisted 28 days after second vaccination. CONCLUSION LVRNA009 has demonstrated promising results in safety and tolerability at all three dose levels among Chinese adults. LVRNA009 at three dose levels could rapidly induce strong humoral and cellular immune responses, including binding and neutralising antibody production and IFN- γ secretion, which showed good immunogenicity. CLINICAL TRIAL REGISTRATION NUMBER Clinicaltrials.gov NCT05364047; Chictr.org.cn ChiCTR2100049349.
Collapse
Affiliation(s)
- Gui-Ling Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, China; Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, China
| | - Xu-Ya Yu
- AIM Vaccine Co. Ltd., Beijing, China
| | | | - Fan Zhang
- AIM Vaccine Co. Ltd., Beijing, China
| | - Xia-Hong Dai
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, China
| | - Nan Li
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, China
| | - Zhen-Wei Shen
- Zhejiang Shuren University, Shulan International Medical College, China
| | - Kai-Qi Wu
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, China
| | - Dan-Feng Lou
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, China
| | - Cong-Gao Peng
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, China
| | - Ting-Han Jin
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, China
| | | | - Xi Shao
- AIM Vaccine Co. Ltd., Beijing, China
| | - Qi Liu
- Liverna Therapeutics Inc, Zhuhai, China
| | - Qi Jiang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, China
| | - Tong Guo
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, China
| | - Fang Cao
- AIM Vaccine Co. Ltd., Beijing, China
| | | | - Xiao-Hong Wu
- National Institutes for Food and Drug Control, Beijing, China
| | - Rong-Juan Pei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Guo-Ping Jiang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, China.
| | - Yu-Hua Li
- National Institutes for Food and Drug Control, Beijing, China.
| | - Hai-Nv Gao
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, China.
| | - Jian-Xing He
- Guangzhou Institute of Respiratory Health, Guangzhou, China.
| | - Zhong-Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, China.
| | | | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
79
|
Shah M, Jaan S, Shehroz M, Sarfraz A, Asad K, Wara TU, Zaman A, Ullah R, Ali EA, Nishan U, Ojha SC. Deciphering the Immunogenicity of Monkeypox Proteins for Designing the Potential mRNA Vaccine. ACS OMEGA 2023; 8:43341-43355. [PMID: 38024731 PMCID: PMC10652822 DOI: 10.1021/acsomega.3c07866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
The Monkeypox virus (MPXV), an orthopox virus, is responsible for monkeypox in humans, a zoonotic disease similar to smallpox. This infection first appeared in the 1970s in humans and then in 2003, after which it kept on spreading all around the world. To date, various antivirals have been used to cure this disease, but now, MPXV has developed resistance against these, thus increasing the need for an alternative cure for this deadly disease. In this study, we devised a reverse vaccinology approach against MPXV using a messenger RNA (mRNA) vaccine by pinning down the antigenic proteins of this virus. By using bioinformatic tools, we predicted prospective immunogenic B and T lymphocyte epitopes. Based on cytokine inducibility score, nonallergenicity, nontoxicity, antigenicity, and conservancy, the final epitopes were selected. Our analysis revealed the stable structure of the mRNA vaccine and its efficient expression in host cells. Furthermore, strong interactions were demonstrated with toll-like receptors 2 (TLR2) and 4 (TLR4) according to the molecular dynamic simulation studies. The in silico immune simulation analyses revealed an overall increase in the immune responses following repeated exposure to the designed vaccine. Based on our findings, the vaccine candidate designed in this study has the potential to be tested as a promising novel mRNA therapeutic vaccine against MPXV infection.
Collapse
Affiliation(s)
- Mohibullah Shah
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Samavia Jaan
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
- School
of Biochemistry and Biotechnology, University
of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Shehroz
- Department
of Bioinformatics, Kohsar University Murree, Murree 47150 Pakistan
| | - Asifa Sarfraz
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Khamna Asad
- School
of Biochemistry and Biotechnology, University
of the Punjab, Lahore 54590, Pakistan
| | - Tehreem Ul Wara
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Aqal Zaman
- Department
of Microbiology & Molecular Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University Riyadh 11451, Saudi Arabia
| | - Essam A. Ali
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Umar Nishan
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Pakistan
| | - Suvash Chandra Ojha
- Department
of Infectious Diseases, The Affiliated Hospital
of Southwest Medical University, 646000 Luzhou, China
| |
Collapse
|
80
|
Zhou X, Song S, Zhang Y, Hou Z. Deep Learning Analysis of COVID-19 Vaccine Hesitancy and Confidence Expressed on Twitter in 6 High-Income Countries: Longitudinal Observational Study. J Med Internet Res 2023; 25:e49753. [PMID: 37930788 PMCID: PMC10629504 DOI: 10.2196/49753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND An ongoing monitoring of national and subnational trajectory of COVID-19 vaccine hesitancy could offer support in designing tailored policies on improving vaccine uptake. OBJECTIVE We aim to track the temporal and spatial distribution of COVID-19 vaccine hesitancy and confidence expressed on Twitter during the entire pandemic period in major English-speaking countries. METHODS We collected 5,257,385 English-language tweets regarding COVID-19 vaccination between January 1, 2020, and June 30, 2022, in 6 countries-the United States, the United Kingdom, Australia, New Zealand, Canada, and Ireland. Transformer-based deep learning models were developed to classify each tweet as intent to accept or reject COVID-19 vaccination and the belief that COVID-19 vaccine is effective or unsafe. Sociodemographic factors associated with COVID-19 vaccine hesitancy and confidence in the United States were analyzed using bivariate and multivariable linear regressions. RESULTS The 6 countries experienced similar evolving trends of COVID-19 vaccine hesitancy and confidence. On average, the prevalence of intent to accept COVID-19 vaccination decreased from 71.38% of 44,944 tweets in March 2020 to 34.85% of 48,167 tweets in June 2022 with fluctuations. The prevalence of believing COVID-19 vaccines to be unsafe continuously rose by 7.49 times from March 2020 (2.84% of 44,944 tweets) to June 2022 (21.27% of 48,167 tweets). COVID-19 vaccine hesitancy and confidence varied by country, vaccine manufacturer, and states within a country. The democrat party and higher vaccine confidence were significantly associated with lower vaccine hesitancy across US states. CONCLUSIONS COVID-19 vaccine hesitancy and confidence evolved and were influenced by the development of vaccines and viruses during the pandemic. Large-scale self-generated discourses on social media and deep learning models provide a cost-efficient approach to monitoring routine vaccine hesitancy.
Collapse
Affiliation(s)
- Xinyu Zhou
- School of Public Health, Fudan University, Shanghai, China
- Global Health Institute, Fudan University, Shanghai, China
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Suhang Song
- Department of Health Policy and Management, College of Public Health, University of Georgia, Athens, GA, United States
| | - Ying Zhang
- School of Public Health, Fudan University, Shanghai, China
- Global Health Institute, Fudan University, Shanghai, China
| | - Zhiyuan Hou
- School of Public Health, Fudan University, Shanghai, China
- Global Health Institute, Fudan University, Shanghai, China
| |
Collapse
|
81
|
Priyanka, Abusalah MAH, Chopra H, Sharma A, Mustafa SA, Choudhary OP, Sharma M, Dhawan M, Khosla R, Loshali A, Sundriyal A, Saini J. Nanovaccines: A game changing approach in the fight against infectious diseases. Biomed Pharmacother 2023; 167:115597. [PMID: 37783148 DOI: 10.1016/j.biopha.2023.115597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
The field of nanotechnology has revolutionised global attempts to prevent, treat, and eradicate infectious diseases in the foreseen future. Nanovaccines have proven to be a valuable pawn in this novel technology. Nanovaccines are made up of nanoparticles that are associated with or prepared with components that can stimulate the host's immune system. In addition to their delivery capabilities, the nanocarriers have been demonstrated to possess intrinsic adjuvant properties, working as immune cell stimulators. Thus, nanovaccines have the potential to promote rapid as well as long-lasting humoral and cellular immunity. The nanovaccines have several possible benefits, including site-specific antigen delivery, increased antigen bioavailability, and a diminished adverse effect profile. To avail these benefits, several nanoparticle-based vaccines are being developed, including virus-like particles, liposomes, polymeric nanoparticles, nanogels, lipid nanoparticles, emulsion vaccines, exomes, and inorganic nanoparticles. Inspired by their distinctive properties, researchers are working on the development of nanovaccines for a variety of applications, such as cancer immunotherapy and infectious diseases. Although a few challenges still need to be overcome, such as modulation of the nanoparticle pharmacokinetics to avoid rapid elimination from the bloodstream by the reticuloendothelial system, The future prospects of this technology are also assuring, with multiple options such as personalised vaccines, needle-free formulations, and combination nanovaccines with several promising candidates.
Collapse
Affiliation(s)
- Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| | - Mai Abdel Haleem Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Abhilasha Sharma
- Department of Life Science, Gujarat University, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Suhad Asad Mustafa
- Scientific Research Center/ Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| | - Rajiv Khosla
- Department of Biotechnology, Doaba College, Jalandhar 144004, Punjab, India
| | - Aanchal Loshali
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ankush Sundriyal
- School of Pharmaceutical Sciences and Research, Sardar Bhagwan Singh University, Balawala, Dehradun 248001, India
| | - Jyoti Saini
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| |
Collapse
|
82
|
Meadows AJ, Stephenson N, Madhav NK, Oppenheim B. Historical trends demonstrate a pattern of increasingly frequent and severe spillover events of high-consequence zoonotic viruses. BMJ Glob Health 2023; 8:e012026. [PMID: 37918874 PMCID: PMC10626885 DOI: 10.1136/bmjgh-2023-012026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/20/2023] [Indexed: 11/04/2023] Open
Abstract
The COVID-19 pandemic has focused attention on patterns of infectious disease spillover. Climate and land-use changes are predicted to increase the frequency of zoonotic spillover events, which have been the cause of most modern epidemics. Characterising historical trends in zoonotic spillover can provide insights into the expected frequency and severity of future epidemics, but historical epidemiological data remains largely fragmented and difficult to analyse. We utilised our extensive epidemiological database to analyse a specific subset of high-consequence zoonotic spillover events for trends in the annual frequency and severity of outbreaks. Our analysis, which excludes the ongoing SARS-CoV-2 pandemic, shows that the number of spillover events and reported deaths have been increasing by 4.98% (confidence interval [CI]95% [3.22%; 6.76%]) and 8.7% (CI 95% [4.06%; 13.62%]) annually, respectively. This trend can be altered by concerted global efforts to improve our capacity to prevent and contain outbreaks. Such efforts are needed to address this large and growing risk to global health.
Collapse
|
83
|
Reynolds L, Dewey C, Asfour G, Little M. Vaccine efficacy against SARS-CoV-2 for Pfizer BioNTech, Moderna, and AstraZeneca vaccines: a systematic review. Front Public Health 2023; 11:1229716. [PMID: 37942238 PMCID: PMC10628441 DOI: 10.3389/fpubh.2023.1229716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/15/2023] [Indexed: 11/10/2023] Open
Abstract
The purpose of this systematic review was to report on the vaccine efficacy (VE) of three SARS-CoV-2 vaccines approved by Health Canada: Pfizer BioNTech, Moderna, and AstraZeneca. Four databases were searched for primary publications on population-level VE. Ninety-two publications matched the inclusion criteria, and the extracted data were separated by vaccine type: mRNA vaccines (Pfizer and Moderna) and the AstraZeneca vaccine. The median VE for PCR-positive patients and various levels of clinical disease was determined for the first and second doses of both vaccine types against multiple SARS-CoV-2 variants. The median VE for PCR-positive infections against unidentified variants from an mRNA vaccine was 64.5 and 89%, respectively, after one or two doses. The median VE for PCR-positive infections against unidentified variants from the AstraZeneca vaccine was 53.4 and 69.6%, respectively, after one or two doses. The median VE for two doses of mRNA for asymptomatic, symptomatic, and severe infection against unidentified variants was 85.5, 93.2, and 92.2%, respectively. The median VE for two doses of AstraZeneca for asymptomatic, symptomatic, and severe infection against unidentified variants was 69.7, 71, and 90.2%, respectively. Vaccine efficacy numerically increased from the first to the second dose, increased from the first 2 weeks to the second 2 weeks post-vaccination for both doses, but decreased after 4 months from the second dose. Vaccine efficacy did not differ by person's age.
Collapse
Affiliation(s)
- Lia Reynolds
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Cate Dewey
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ghaid Asfour
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Matthew Little
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- School of Public Health and Social Policy, Faculty of Human and Social Development, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
84
|
Zheng Z, Wu X, Wang Y, Yang X, Chen H, Shen Y, Yang Y, Xia Q. Attenuating RNA Viruses with Expanded Genetic Codes to Evoke Adjustable Immune Response in PylRS-tRNACUAPyl Transgenic Mice. Vaccines (Basel) 2023; 11:1606. [PMID: 37897007 PMCID: PMC10610612 DOI: 10.3390/vaccines11101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/03/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
Ribonucleic acid (RNA) viruses pose heavy burdens on public-health systems. Synthetic biology holds great potential for artificially controlling their replication, a strategy that could be used to attenuate infectious viruses but is still in the exploratory stage. Herein, we used the genetic-code expansion technique to convert Enterovirus 71 (EV71), a prototypical RNA virus, into a controllable EV71 strain carrying the unnatural amino acid (UAA) Nε-2-azidoethyloxycarbonyl-L-lysine (NAEK), which we termed an EV71-NAEK virus. After NAEK supplementation, EV71-NAEK could recapitulate an authentic NAEK time- and dose-dependent infection in vitro, which could serve as a novel method to manipulate virulent viruses in conventional laboratories. We further validated the prophylactic effect of EV71-NAEK in two mouse models. In susceptible parent mice, vaccination with EV71-NAEK elicited a strong immune response and protected their neonatal offspring from lethal challenges similar to that of commercial vaccines. Meanwhile, in transgenic mice harboring a PylRS-tRNACUAPyl pair, substantial elements of genetic-code expansion technology, EV71-NAEK evoked an adjustable neutralizing-antibody response in a strictly external NAEK dose-dependent manner. These findings suggested that EV71-NAEK could be the basis of a feasible immunization program for populations with different levels of immunity. Moreover, we expanded the strategy to generate controllable coxsackieviruses for conceptual verification. In combination, these results could underlie a competent strategy for attenuating viruses and priming the immune system via artificial control, which might be a promising direction for the development of amenable vaccine candidates and be broadly applied to other RNA viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Z.Z.); (X.W.); (Y.W.); (X.Y.); (H.C.); (Y.S.); (Y.Y.)
| |
Collapse
|
85
|
Kackos CM, DeBeauchamp J, Davitt CJH, Lonzaric J, Sealy RE, Hurwitz JL, Samsa MM, Webby RJ. Seasonal quadrivalent mRNA vaccine prevents and mitigates influenza infection. NPJ Vaccines 2023; 8:157. [PMID: 37828126 PMCID: PMC10570305 DOI: 10.1038/s41541-023-00752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Annually, seasonal influenza is responsible for millions of infections and hundreds of thousands of deaths. The current method for managing influenza is vaccination using a standardized amount of the influenza virus' primary surface antigen, hemagglutinin (HA), as the intended target of the immune response. This vaccination strategy results in vaccines with variable efficacy year to year due to antigenic drift of HA, which can be further exacerbated by manufacturing processes optimizing growth of vaccine virus in eggs. Due to these limitations, alternative vaccine platforms are actively being explored to improve influenza vaccine efficacy, including cell-based, recombinant protein, and mRNA vaccines. mRNA's rapid, in vitro production makes it an appealing platform for influenza vaccination, and the success of SARS-CoV-2 mRNA vaccines in the clinic has encouraged the development of mRNA vaccines for other pathogens. Here, the immunogenicity and protective efficacy of a quadrivalent mRNA vaccine encoding HA from four seasonal influenza viruses, A/California/07/2009 (H1N1), A/Hong Kong/4801/2014 (H3N2), B/Brisbane/60/2008 (B-Victoria lineage), and B/Phuket/3073/2013 (B-Yamagata lineage), was evaluated. In mice, a 120 μg total dose of this quadrivalent mRNA vaccine induced robust antibody titers against each subtype that were commensurate with titers when each antigen was administered alone. Following A/California/04/2009 challenge, mice were fully protected from morbidity and mortality, even at doses as low as 1 μg of each antigen. Additionally, a single administration of 10 μg of quadrivalent mRNA was sufficient to prevent weight loss caused by A/California/04/2009. These results support the promise of this mRNA vaccine for prevention and mitigation of influenza vaccine.
Collapse
Affiliation(s)
- Christina M Kackos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Children's Research Hospital Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Jennifer DeBeauchamp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Robert E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
86
|
Yao Y, Zhang Z, Yang Z. The combination of vaccines and adjuvants to prevent the occurrence of high incidence of infectious diseases in bovine. Front Vet Sci 2023; 10:1243835. [PMID: 37885619 PMCID: PMC10598632 DOI: 10.3389/fvets.2023.1243835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
As the global population grows, the demand for beef and dairy products is also increasing. The cattle industry is facing tremendous pressures and challenges. The expanding cattle industry has led to an increased risk of disease in cattle. These diseases not only cause economic losses but also pose threats to public health and safety. Hence, ensuring the health of cattle is crucial. Vaccination is one of the most economical and effective methods of preventing bovine infectious diseases. However, there are fewer comprehensive reviews of bovine vaccines available. In addition, the variable nature of bovine infectious diseases will result in weakened or even ineffective immune protection from existing vaccines. This shows that it is crucial to improve overall awareness of bovine vaccines. Adjuvants, which are crucial constituents of vaccines, have a significant role in enhancing vaccine response. This review aims to present the latest advances in bovine vaccines mainly including types of bovine vaccines, current status of development of commonly used vaccines, and vaccine adjuvants. In addition, this review highlights the main challenges and outstanding problems of bovine vaccines and adjuvants in the field of research and applications. This review provides a theoretical and practical basis for the eradication of global bovine infectious diseases.
Collapse
Affiliation(s)
- Yiyang Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
87
|
Zhang W, Jiang Y, He Y, Boucetta H, Wu J, Chen Z, He W. Lipid carriers for mRNA delivery. Acta Pharm Sin B 2023; 13:4105-4126. [PMID: 37799378 PMCID: PMC10547918 DOI: 10.1016/j.apsb.2022.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Messenger RNA (mRNA) is the template for protein biosynthesis and is emerging as an essential active molecule to combat various diseases, including viral infection and cancer. Especially, mRNA-based vaccines, as a new type of vaccine, have played a leading role in fighting against the current global pandemic of COVID-19. However, the inherent drawbacks, including large size, negative charge, and instability, hinder its use as a therapeutic agent. Lipid carriers are distinguishable and promising vehicles for mRNA delivery, owning the capacity to encapsulate and deliver negatively charged drugs to the targeted tissues and release cargoes at the desired time. Here, we first summarized the structure and properties of different lipid carriers, such as liposomes, liposome-like nanoparticles, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanoemulsions, exosomes and lipoprotein particles, and their applications in delivering mRNA. Then, the development of lipid-based formulations as vaccine delivery systems was discussed and highlighted. Recent advancements in the mRNA vaccine of COVID-19 were emphasized. Finally, we described our future vision and perspectives in this field.
Collapse
Affiliation(s)
- Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxin Jiang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yonglong He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Wu
- Department of Geriatric Cardiology, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
88
|
Abdulkader MA, Merza MA. Immediate and Long-Term Adverse Events of COVID-19 Vaccines: A One-Year Follow-Up Study From the Kurdistan Region of Iraq. Cureus 2023; 15:e47670. [PMID: 38021955 PMCID: PMC10671599 DOI: 10.7759/cureus.47670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background The administration of COVID-19 vaccines has been critical in controlling the spread of the virus. However, understanding the potential adverse events (AEs) associated with these vaccines is crucial for public health. While most previous studies observed only short-term AEs, this study aimed to investigate the immediate and long-term AEs following the first and second doses of Pfizer, AstraZeneca, and Sinopharm vaccines, providing valuable long-term insights. Methodology A prospective, one-year, follow-up study was conducted by tracking 922 vaccinated individuals to assess short-term and long-term AEs. Demographics, clinical characteristics, vaccine types, and dose effects were taken into consideration. AEs were classified based on severity and duration. Statistical analyses were performed to compare differences among the vaccine groups, with p-values <0.05 considered significant. Bowker's and chi-square tests were performed using JMP Pro 14.3.0. Results Of the 922 participants, 55.53% (n = 512) were vaccinated with Pfizer, and 23.32% (n = 215) and 21.15% (n = 195) were vaccinated with Sinopharm and AstraZeneca, respectively. Overall, 72.34% of participants (n = 667) were suffering from AEs after the first dose, with a lower prevalence of AEs after the second dose (52.71%, n = 486). Pfizer exhibited the highest percentage and severity of AEs, followed by AstraZeneca and Sinopharm. Most AEs reported in this study were mild and resolved within 72 hours, with females experiencing more frequent AEs. The common short-term AEs observed were fever, injection-site pain, myalgia, fatigue, and headache. Notably, there were no chronic AEs, and only one case of myocarditis was associated with AstraZeneca. Conclusions Despite the variation in the prevalence of AEs among the three vaccines, the vaccination process proved to be safe with no serious short-term AEs. However, the long-term AEs associated with AstraZeneca and the decrease in the prevalence of AEs after the second dose of the COVID-19 vaccines warrant further investigations and priority for future research.
Collapse
Affiliation(s)
- Manhal A Abdulkader
- Department of Clinical Pharmacy, College of Pharmacy, University of Duhok, Duhok, IRQ
| | - Muayad A Merza
- Department of Internal Medicine, University of Duhok, Duhok, IRQ
| |
Collapse
|
89
|
Lv T, Meng Y, Liu Y, Han Y, Xin H, Peng X, Huang J. RNA nanotechnology: A new chapter in targeted therapy. Colloids Surf B Biointerfaces 2023; 230:113533. [PMID: 37713955 DOI: 10.1016/j.colsurfb.2023.113533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Nanoparticles have been widely studied in the fields of biotechnology, pharmacy, optics and medicine and have broad application prospects. Numerous studies have shown significant interest in utilizing nanoparticles for chemically coating or coupling drugs, aiming to address the challenges of drug delivery, including degradability and uncertainty. Furthermore, the utilization of lipid nanoparticles loaded with novel coronavirus antigen mRNA to control the COVID-19 pandemic has led to a notable surge in research on nanoparticle vaccines. Hence, nanoparticles have emerged as a crucial delivery system for disease prevention and treatment, bearing immense significance. Current research highlights that nanoparticles offer superior efficacy and potential compared to conventional drug treatment and prevention methods. Notably, for drug delivery applications, it is imperative to utilize biodegradable nanoparticles. This paper reviews the structures and characteristics of various biodegradable nanoparticles and their applications in biomedicine in order to inspire more researchers to further explore the functions of nanoparticles. RNA plays a pivotal role in regulating the occurrence and progression of diseases, but its inherent susceptibility to degradation poses a challenge. In light of this, we conducted a comprehensive review of the research advancements concerning RNA-containing biodegradable nanoparticles in the realm of disease prevention and treatment, focusing on cancer, inflammatory diseases, and viral infections.
Collapse
Affiliation(s)
- Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yingying Meng
- Department of Gastroenterology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yifan Liu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Oncology, Jingzhou Hospital Affifiliated to Yangtze University, Jingzhou, Hubei, China
| | - Yukun Han
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affifiliated Hospital, Yangtze University, Jingzhou, Hubei, China
| | - Hongwu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| | - Jinbai Huang
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affifiliated Hospital, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
90
|
Alamri T, Anwer F, Butt NS, Alganmi AH, Alotaibi SA, Alzibali KF, Hawsawi HA, Bakarman M, Malik AA. Analyzing COVID-19 Vaccination Side Effects Among the Adult Population in Jeddah, Saudi Arabia. Cureus 2023; 15:e47136. [PMID: 37854474 PMCID: PMC10579840 DOI: 10.7759/cureus.47136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2023] [Indexed: 10/20/2023] Open
Abstract
The COVID-19 pandemic has brought vaccination to the forefront of global attention. The Pfizer-BioNTech vaccine, an mRNA vaccine that encodes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) glycoprotein spike, has emerged as a significant player in global vaccination efforts. It is generated from lipid nanoparticles and has been subject to various regulatory approvals and authorizations. The United Kingdom became the first country to approve the Pfizer vaccine on December 2, 2020. The World Health Organization (WHO) authorized the emergency use of the Pfizer vaccine on December 31, 2020, facilitating its production and distribution worldwide. In Saudi Arabia, as well as globally, concerns about the safety and effectiveness of vaccines have been raised. Several studies have reported side effects of the Pfizer vaccine, including rare conditions such as myocarditis. In our study, we aimed to systematically investigate the symptoms experienced after vaccination, considering the administration of three doses. We also explored the duration of these symptoms and whether they necessitated hospital visits, primary healthcare interventions, or resolved on their own. Our study employed an online cross-sectional design conducted in Jeddah, Saudi Arabia, utilizing an online self-reported survey. A total of 332 participants who met the predefined criteria were recruited for the study. The rate of COVID-19 infection after 1st and 2nd doses of Pfizer and AstraZeneca vaccines was significantly lower in middle-age subgroups (31-45 years), in comparison to young (18-30 years) and upper middle-age subgroups (46-60 years). For the AstraZeneca vaccine, the infection rate in the middle-aged group was higher after 2nd dose as compared to its 1st dose. Overall, greater infection rates were observed in upper-middle-aged subgroups with all doses of Pfizer and AstraZeneca vaccines. Fatigue and fever were the most common generalized side effects while redness/swelling/pain at the injection site, muscle pain, and joint pain were the most important local side-effects. Fatigue, fever, muscle pain, and joint pain were significantly common after 1st dose of Pfizer and fever was a significant side effect after 2nd dose of Pfizer in comparison to AstraZeneca doses. Understanding the spectrum of side effects associated with the vaccine is crucial for healthcare professionals and individuals receiving the vaccine, as it enables informed decision-making and appropriate management of potential adverse reactions.
Collapse
Affiliation(s)
- Turki Alamri
- Department of Family and Community Medicine, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, SAU
| | - Fahad Anwer
- Department of Family and Community Medicine, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, SAU
| | - Nadeem S Butt
- Department of Family and Community Medicine, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, SAU
| | - Ahmed H Alganmi
- Department of Medicine, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, SAU
| | - Sultan A Alotaibi
- Department of Medicine, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, SAU
| | - Khalid F Alzibali
- Department of Medicine, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, SAU
| | - Hassan A Hawsawi
- Department of Medicine, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, SAU
| | - Marwan Bakarman
- Department of Family and Community Medicine, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, SAU
| | - Ahmad Azam Malik
- Department of Family and Community Medicine, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
91
|
Taş BG, Demir İ, Basanmay M, Öztürk GZ, Akyol BÇ, Tektaş MH, Özdemir HM. Frequency And Factors Associated With Adverse Reactions After Administration of Inactivated COVID-19 Vaccine Among Health Workers. Rev Soc Bras Med Trop 2023; 56:e01522023. [PMID: 37792828 PMCID: PMC10550098 DOI: 10.1590/0037-8682-0152-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The 2019 coronavirus (COVID-19) has precipitated a significant public health crisis. Our study aimed to evaluate the prevalence and risk factors associated with adverse reactions to the inactivated CoronaVac vaccine. METHODS The study involved voluntary health workers who received CoronaVac vaccine. We documented the sociodemographic information of 2,019 participants who volunteered for our study. Of these, 1,964 and 1,702 participants were interviewed by phone 1 month after the first and second dose, respectively, during which they were queried about any adverse reactions. RESULTS Within the first week after the first dose, adverse reactions were observed in 856 (43.3%) participants, with 133 (6.7%) experiencing them during the second week, and 96 (4.9%) people at the end of the first month. For the second dose, 276 individuals (16.2%) reported adverse reactions. The prevalence of both local and systemic adverse events ranged from 9.5-11.2% overall. Fatigue was the most common adverse reaction overall, while pain at the injection site was the most frequent local adverse reaction. CONCLUSIONS The evaluation of both systemic and local side effects revealed no significant adverse reactions to the inactivated CoronaVac vaccine (Sinovac Life Sciences, Beijing, China). Our study found that the incidence of systemic and local adverse responses to the CoronaVac vaccination was lower than the rates reported in studies involving the recombinant adenovirus type-5, BNT162b1, and ChAdOx1nCoV-19 COVID-19 vaccines, all of which underwent the World Health Organization LULUC/PQ evaluation process.
Collapse
Affiliation(s)
- Beray Gelmez Taş
- University of Health Sciences, Sisli Hamidiye Etfal Research and Training Hospital, Department of Family Medicine, Istanbul, Turkey
| | - İlknur Demir
- University of Health Sciences, Sisli Hamidiye Etfal Research and Training Hospital, Department of Family Medicine, Istanbul, Turkey
| | - Muhammed Basanmay
- University of Health Sciences, Sisli Hamidiye Etfal Research and Training Hospital, Department of Family Medicine, Istanbul, Turkey
| | - Güzin Zeren Öztürk
- University of Health Sciences, Sisli Hamidiye Etfal Research and Training Hospital, Department of Family Medicine, Istanbul, Turkey
| | - Bestegül Çoruh Akyol
- Ordu University, Faculty of Medicine, Department of Family Medicine, Ordu, Turkey
| | | | - Hacı Mustafa Özdemir
- University of Health Sciences, Sisli Hamidiye Etfal Research and Training Hospital, Department of Orthopedics and Traumatology, Istanbul, Turkey
| |
Collapse
|
92
|
Mohraz M, Vahdat K, Ghamari SH, Abbasi-Kangevari M, Ghasemi E, Ghabdian Y, Rezaei N, Pouya MA, Abdoli A, Malekpour MR, Koohgir K, Saeedi Moghaddam S, Tabarsi P, Moghadami M, Khorvash F, Khodashahi R, Salehi M, Hosseini H. Efficacy and safety of an inactivated virus-particle vaccine for SARS-CoV-2, BIV1-CovIran: randomised, placebo controlled, double blind, multicentre, phase 3 clinical trial. BMJ 2023; 382:e070464. [PMID: 37734752 PMCID: PMC10520577 DOI: 10.1136/bmj-2023-070464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE To report the efficacy, safety, and exploratory immunogenicity findings of two 5 µg doses of the BIV1-CovIran vaccine. DESIGN Randomised, placebo controlled, double blind, multicentre, phase 3 clinical trial. SETTING In six cities of Iran, including Bushehr, Isfahan, Karaj, Mashhad, Shiraz, and Tehran. The first vaccine or placebo injection of the first participant was on 16 May 2021 in Tehran. The last vaccine or placebo injection of the last participant occurred on 15 July 2021 in Isfahan. PARTICIPANTS 20 000 participants aged 18-75 years were randomly assigned to the intervention or placebo groups with a ratio of 2:1. INTERVENTION 5 µg vaccine or placebo with the interval of 28 days. MAIN OUTCOME MEASURES Vaccine efficacy for a 90 day follow-up period, safety and explanatory immunogenicity assessment, and variant detection during the trial. RESULTS 20 000 participants were recruited and randomly assigned to receive BIV1-CovIran (n=13 335 (66.7%)) or placebo (n=6665 (33.3%)). Participants' mean age was 38.3 (standard deviation 11.2) years, and 6913 (34.6%) were female. Among vaccinated participants that had covid-19 reported during the follow-up (median 83 days), 758 (5.9%) had symptoms, 144 (1.1%) had severe infection, and seven (0.1%) were critical. Among participants who received placebo during the follow-up, 688 (10.7%) had symptoms, 221 (3.4%) had severe infection, and 19 (0.3%) were critical. Overall efficacy was 50.2% (95% confidence interval 44.7% to 55.0%) against symptomatic covid-19, 70.5% (63.7% to 76.1%) against severe disease, and 83.1% (61.2% to 93.5%) against critical cases. Two deaths were reported in the efficacy population in the placebo group, no deaths were from the intervention group. During follow-up, 41 922 adverse events were reported: 28 782 (68.7%) were adverse reactions, of which 19 363 (67.3%) were in the intervention group. Most adverse reactions were mild or moderate in severity (grade 1 or 2) and self-limiting. No serious adverse events were related to the injections. For variant investigation, of 119 participants positive for the SARS-CoV-2 variant, 106 (89.1%) were positive for the delta variant. CONCLUSIONS A two dose regimen of the BIV1-CovIran vaccine conferred efficacy of 50.2% against symptomatic covid-19, 70.5% against severe disease, and 83.1% against critical disease. Vaccination was well tolerated, with no safety concerns raised. TRIAL REGISTRATION Iranian Registry of Clinical Trials, IRCT20201202049567N3. FUNDING Shifa-Pharmed Industrial Group.
Collapse
Affiliation(s)
- Minoo Mohraz
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoun Vahdat
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyyed-Hadi Ghamari
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Abbasi-Kangevari
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Ghasemi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Ghabdian
- Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Rezaei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Amini Pouya
- Department of Pharmaceutics, Faculty of pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Amirabad Virology Laboratory, Vaccine Unit, Tehran, Iran
| | - Mohammad-Reza Malekpour
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyvan Koohgir
- School of Medicine, Shahroud University of Medical Sciences, Semnan, Iran
| | - Sahar Saeedi Moghaddam
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghadami
- Non-Communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzin Khorvash
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rozita Khodashahi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Salehi
- Department of Infectious Diseases and Tropical Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Hosseini
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Trial Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
93
|
Zhang G, Tang T, Chen Y, Huang X, Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:365. [PMID: 37726283 PMCID: PMC10509165 DOI: 10.1038/s41392-023-01579-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 09/21/2023] Open
Abstract
mRNA vaccines have emerged as highly effective strategies in the prophylaxis and treatment of diseases, thanks largely although not totally to their extraordinary performance in recent years against the worldwide plague COVID-19. The huge superiority of mRNA vaccines regarding their efficacy, safety, and large-scale manufacture encourages pharmaceutical industries and biotechnology companies to expand their application to a diverse array of diseases, despite the nonnegligible problems in design, fabrication, and mode of administration. This review delves into the technical underpinnings of mRNA vaccines, covering mRNA design, synthesis, delivery, and adjuvant technologies. Moreover, this review presents a systematic retrospective analysis in a logical and well-organized manner, shedding light on representative mRNA vaccines employed in various diseases. The scope extends across infectious diseases, cancers, immunological diseases, tissue damages, and rare diseases, showcasing the versatility and potential of mRNA vaccines in diverse therapeutic areas. Furthermore, this review engages in a prospective discussion regarding the current challenge and potential direction for the advancement and utilization of mRNA vaccines. Overall, this comprehensive review serves as a valuable resource for researchers, clinicians, and industry professionals, providing a comprehensive understanding of the technical aspects, historical context, and future prospects of mRNA vaccines in the fight against various diseases.
Collapse
Affiliation(s)
- Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
94
|
Perrotta C, Fenizia C, Carnovale C, Pozzi M, Trabattoni D, Cervia D, Clementi E. Updated Considerations for the Immunopharmacological Aspects of the "Talented mRNA Vaccines". Vaccines (Basel) 2023; 11:1481. [PMID: 37766157 PMCID: PMC10534931 DOI: 10.3390/vaccines11091481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Messenger RNA (mRNA) vaccines belong to a new class of medications, RNA therapeutics, including both coding and non-coding RNAs. The use of mRNA as a therapy is based on the biological role of mRNA itself, namely its translation into a functional protein. The goal of mRNA vaccines is to produce a specific antigen in cells to elicit an immune response that might be prophylactic or therapeutic. The potential of mRNA as vaccine has been envisaged for years but its efficacy has been clearly demonstrated with the approval of COVID-19 vaccines in 2021. Since then, mRNA vaccines have been in the pipeline for diseases that are still untreatable. There are many advantages of mRNA vaccines over traditional vaccines, including easy and cost-effective production, high safety, and high-level antigen expression. However, the nature of mRNA itself and some technical issues pose challenges associated with the vaccines' development and use. Here we review the immunological and pharmacological features of mRNA vaccines by discussing their pharmacokinetics, mechanisms of action, and safety, with a particular attention on the advantages and challenges related to their administration. Furthermore, we present an overview of the areas of application and the clinical trials that utilize a mRNA vaccine as a treatment.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milano, Italy;
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy;
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| |
Collapse
|
95
|
Taubert O, von der Lehr F, Bazarova A, Faber C, Knechtges P, Weiel M, Debus C, Coquelin D, Basermann A, Streit A, Kesselheim S, Götz M, Schug A. RNA contact prediction by data efficient deep learning. Commun Biol 2023; 6:913. [PMID: 37674020 PMCID: PMC10482910 DOI: 10.1038/s42003-023-05244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
On the path to full understanding of the structure-function relationship or even design of RNA, structure prediction would offer an intriguing complement to experimental efforts. Any deep learning on RNA structure, however, is hampered by the sparsity of labeled training data. Utilizing the limited data available, we here focus on predicting spatial adjacencies ("contact maps") as a proxy for 3D structure. Our model, BARNACLE, combines the utilization of unlabeled data through self-supervised pre-training and efficient use of the sparse labeled data through an XGBoost classifier. BARNACLE shows a considerable improvement over both the established classical baseline and a deep neural network. In order to demonstrate that our approach can be applied to tasks with similar data constraints, we show that our findings generalize to the related setting of accessible surface area prediction.
Collapse
Affiliation(s)
- Oskar Taubert
- Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Fabrice von der Lehr
- Institute for Software Technology (SC), German Aerospace Centre (DLR), 51147, Köln, Germany
| | - Alina Bazarova
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428, Jülich, Germany
- Helmholtz AI, 81675, Munich, Germany
| | - Christian Faber
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Philipp Knechtges
- Institute for Software Technology (SC), German Aerospace Centre (DLR), 51147, Köln, Germany
- Helmholtz AI, 81675, Munich, Germany
| | - Marie Weiel
- Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
- Helmholtz AI, 81675, Munich, Germany
| | - Charlotte Debus
- Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
- Helmholtz AI, 81675, Munich, Germany
| | - Daniel Coquelin
- Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
- Helmholtz AI, 81675, Munich, Germany
| | - Achim Basermann
- Institute for Software Technology (SC), German Aerospace Centre (DLR), 51147, Köln, Germany
| | - Achim Streit
- Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Kesselheim
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428, Jülich, Germany
- Helmholtz AI, 81675, Munich, Germany
| | - Markus Götz
- Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany.
- Helmholtz AI, 81675, Munich, Germany.
| | - Alexander Schug
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428, Jülich, Germany.
- Faculty of Biology, University of Duisburg-Essen, 45117, Essen, Germany.
| |
Collapse
|
96
|
Kaur N, de la Ballina LR, Haukaas HS, Torgersen ML, Radulovic M, Munson MJ, Sabirsh A, Stenmark H, Simonsen A, Carlsson SR, Lystad AH. TECPR1 is activated by damage-induced sphingomyelin exposure to mediate noncanonical autophagy. EMBO J 2023; 42:e113105. [PMID: 37409525 PMCID: PMC10476171 DOI: 10.15252/embj.2022113105] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023] Open
Abstract
Cells use noncanonical autophagy, also called conjugation of ATG8 to single membranes (CASM), to label damaged intracellular compartments with ubiquitin-like ATG8 family proteins in order to signal danger caused by pathogens or toxic compounds. CASM relies on E3 complexes to sense membrane damage, but so far, only the mechanism to activate ATG16L1-containing E3 complexes, associated with proton gradient loss, has been described. Here, we show that TECPR1-containing E3 complexes are key mediators of CASM in cells treated with a variety of pharmacological drugs, including clinically relevant nanoparticles, transfection reagents, antihistamines, lysosomotropic compounds, and detergents. Interestingly, TECPR1 retains E3 activity when ATG16L1 CASM activity is obstructed by the Salmonella Typhimurium pathogenicity factor SopF. Mechanistically, TECPR1 is recruited by damage-induced sphingomyelin (SM) exposure using two DysF domains, resulting in its activation and ATG8 lipidation. In vitro assays using purified human TECPR1-ATG5-ATG12 complex show direct activation of its E3 activity by SM, whereas SM has no effect on ATG16L1-ATG5-ATG12. We conclude that TECPR1 is a key activator of CASM downstream of SM exposure.
Collapse
Affiliation(s)
- Namrita Kaur
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Laura Rodriguez de la Ballina
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Håvard Styrkestad Haukaas
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maria Lyngaas Torgersen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maja Radulovic
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Michael J Munson
- Advanced Drug Delivery, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anne Simonsen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sven R Carlsson
- Department of Medical Biochemistry and Biophysics, University of Umeå, Umeå, Sweden
| | - Alf Håkon Lystad
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
97
|
Wei HH, Zheng L, Wang Z. mRNA therapeutics: New vaccination and beyond. FUNDAMENTAL RESEARCH 2023; 3:749-759. [PMID: 38933291 PMCID: PMC10017382 DOI: 10.1016/j.fmre.2023.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The idea of mRNA therapy had been conceived for decades before it came into reality during the Covid-19 pandemic. The mRNA vaccine emerges as a powerful and general tool against new viral infections, largely due to its versatility and rapid development. In addition to prophylactic vaccines, mRNA technology also offers great promise for new applications as a versatile drug modality. However, realizing the conceptual potential faces considerable challenges, such as minimal immune stimulation, high and long-term expression, and efficient delivery to target cells and tissues. Here we review the applications of mRNA-based therapeutics, with emphasis on the innovative design and future challenges/solutions. In addition, we also discuss the next generation of mRNA therapy, including circular mRNA and self-amplifying RNAs. We aim to provide a conceptual overview and outlook on mRNA therapeutics beyond prophylactic vaccines.
Collapse
Affiliation(s)
- Huan-Huan Wei
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Shanghai Institute of Nutrition and Health, Shanghai 200032, China
| | | | - Zefeng Wang
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Shanghai Institute of Nutrition and Health, Shanghai 200032, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Beijing 100049, China
| |
Collapse
|
98
|
Elamin MY, Maslamani YA, Muaddi MA, Alameer AA, Alqassim AY, Doweri AA, Zaylaee MM, Rayani HY, Darraj AY, Hejri YM, Dahlan AA, Gosadi IM. Real-world effectiveness of COVID-19 vaccines: A retrospective cohort study of vaccinated individuals in Jazan, Saudi Arabia. J Infect Public Health 2023; 16:1512-1517. [PMID: 37349242 PMCID: PMC10268947 DOI: 10.1016/j.jiph.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND COVID-19 (Coronavirus Disease 2019) vaccinations are a critical control measure for the coronavirus pandemic that began in 2019. Several COVID-19 vaccines have been developed, and their effectiveness will almost certainly vary. OBJECTIVE This study aimed to assess how effective two doses of the Pfizer and Oxford-AstraZeneca vaccines were in preventing SARS-CoV-2 infection six months after administration. METHODS This is a retrospective cohort study of adult individuals from the Jazan Region of Saudi Arabia who received their second dose of the COVID-19 vaccine [Pfizer and Oxford-AstraZeneca (ASZ)] between April and June 2021. The monitoring and follow-up period continued until the end of January 2022. Data were retrieved from the Health Electronic Surveillance Network and National Vaccination Records. Logistic regression was performed to assess the risk of COVID-19 infection among the vaccinated subjects. RESULTS This study included randomly enrolled 4458 participants in Jazan who received two doses of the COVID-19 vaccine during the research period. The majority of them received the Pfizer vaccine (3136/4458; 70.3%), while the remaining received the ASZ vaccine (1322/4458; 29.7%). The study participants' mean age was 59.7 years, with a male-to-female ratio of 1.9:1.0 (2920:1538). The results showed that the Pfizer and ASZ vaccines' protection against infection decreased from 93.2% and 90.2%, respectively, during the first three months, to 68.5% and 68.1% after a six-month interval. In the current study population, being Saudi Arabian, younger as well as having longer intervals between vaccines or crossing a 6-month period after the second vaccine dose were factors linked to higher rates of breakthrough infections. CONCLUSION Our findings revealed variations in the efficacy of different COVID-19 vaccine types against COVID-19 breakthrough infections. The Pfizer (mRNA-based) vaccine was found to be relatively more effective than the ASZ (DNA-based) vaccine.
Collapse
Affiliation(s)
- Mohammed Y Elamin
- Public Health Administration; Jazan Health Directorate, Jazan, Saudi Arabia
| | - Yahya A Maslamani
- Public Health Administration; Jazan Health Directorate, Jazan, Saudi Arabia
| | - Mohammed A Muaddi
- Department of Family and Community Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Anwar A Alameer
- Public Health Administration; Jazan Health Directorate, Jazan, Saudi Arabia
| | - Ahmad Y Alqassim
- Department of Family and Community Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Abrar A Doweri
- Public Health Administration; Jazan Health Directorate, Jazan, Saudi Arabia
| | - Mutaz M Zaylaee
- Public Health Administration; Jazan Health Directorate, Jazan, Saudi Arabia
| | - Hussain Y Rayani
- Public Health Administration; Jazan Health Directorate, Jazan, Saudi Arabia
| | - Abdulaziz Y Darraj
- Public Health Administration; Jazan Health Directorate, Jazan, Saudi Arabia
| | - Yehya M Hejri
- Public Health Administration; Jazan Health Directorate, Jazan, Saudi Arabia
| | - Abdu A Dahlan
- Public Health Administration; Jazan Health Directorate, Jazan, Saudi Arabia
| | - Ibrahim M Gosadi
- Department of Family and Community Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
99
|
Donhauser LV, Veloso de Oliveira J, Schick C, Manlik W, Styblova S, Lutzenberger S, Aigner M, Philipp P, Robert S, Gandorfer B, Hempel D, Hempel L, Zehn D. Responses of patients with cancer to mRNA vaccines depend on the time interval between vaccination and last treatment. J Immunother Cancer 2023; 11:e007387. [PMID: 37730271 PMCID: PMC10510941 DOI: 10.1136/jitc-2023-007387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Personalized mRNA vaccines are promising new therapeutic options for patients with cancer. Because mRNA vaccines are not yet approved for first-line therapy, the vaccines are presently applied to individuals that received prior therapies that can have immunocompromising effects. There is a need to address how prior treatments impact mRNA vaccine outcomes. METHOD Therefore, we analyzed the response to BioNTech/Pfizer's anti-SARS-CoV-2 mRNA vaccine in 237 oncology outpatients, which cover a broad spectrum of hematologic malignancies and solid tumors and a variety of treatments. Patients were stratified by the time interval between the last treatment and first vaccination and by the presence or absence of florid tumors and IgG titers and T cell responses were analyzed 14 days after the second vaccination. RESULTS Regardless of the last treatment time point, our data indicate that vaccination responses in patients with checkpoint inhibition were comparable to healthy controls. In contrast, patients after chemotherapy or cortisone therapy did not develop an immune response until 6 months after the last systemic therapy and patients after Cht-immune checkpoint inhibitor and tyrosine kinase inhibitor therapy only after 12 months. CONCLUSION Accordingly, our data support that timing of mRNA-based therapy is critical and we suggest that at least a 6-months or 12-months waiting interval should be observed before mRNA vaccination in systemically treated patients.
Collapse
Affiliation(s)
- Lara Victoria Donhauser
- Division of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | | | | | - Wenzel Manlik
- Division of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Sabrina Styblova
- Division of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Sarah Lutzenberger
- Division of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Michael Aigner
- Division of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Patrick Philipp
- System Technologies and Image Exploitation IOSB, Fraunhofer Institute of Optronics, Karlsruhe, Germany
| | - Sebastian Robert
- Division of Applied Health and Social Sciences, Technical University of Applied Sciences, Rosenheim, Germany
| | | | - Dirk Hempel
- Oncological Center Donauwörth, Donauwörth, Germany
| | | | - Dietmar Zehn
- Division of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| |
Collapse
|
100
|
Yu L, Liu S, Jia S, Xu F. Emerging frontiers in drug delivery with special focus on novel techniques for targeted therapies. Biomed Pharmacother 2023; 165:115049. [PMID: 37364480 DOI: 10.1016/j.biopha.2023.115049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
The management and treatment of disease are achieved via the use of pharmacologically active substances or drugs. Drugs do not, however, have an intrinsic ability to be effective; rather, how well they work depends on how they are administered or supplied. Treatment of a variety of biological illnesses, such as autoimmune disorders, cancer, and bacterial infections, requires effective drug delivery. Drug absorption, distribution, metabolism, duration of therapeutic impact, pharmacokinetics, excretion, and toxicity can all be impacted by drug administration. Improved chemistry and materials are required for the delivery of therapeutic concentration of novel treatments to the specified targets within the body, as well as for the necessary duration of time. This requirement is accompanied by the development of new therapeutics. Formulating a medication as a DDS is a promising strategy for directly addressing numerous typical barriers to adherence, such as frequent dosage, such as frequent dosage, side effects, and a delayed beginning of the action. In the current review, we give a compendium of drug delivery and controlled release and subsequently highlight some of the newest developments in the realm, with a particular emphasis on cutting-edge methods for targeted therapy. In each instance, we outline the obstacles to efficient drug administration as well as the chemical and material developments that are allowing the sector to overcome these obstacles and have a positive clinical impact.
Collapse
Affiliation(s)
- Ling Yu
- Department of Pharmacy, the Second Hospital of Jilin University, Changchun 130041, China
| | - Shengmao Liu
- Department of Nephrology, the Second Hospital of Jilin University, Changchun 130041, China
| | - Shengnan Jia
- Digestive Diseases center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun 130041, China
| | - Feng Xu
- Department of Nephrology, the Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|