51
|
Gupta A, Mirarab S, Turakhia Y. Accurate, scalable, and fully automated inference of species trees from raw genome assemblies using ROADIES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596098. [PMID: 38854139 PMCID: PMC11160643 DOI: 10.1101/2024.05.27.596098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Inference of species trees plays a crucial role in advancing our understanding of evolutionary relationships and has immense significance for diverse biological and medical applications. Extensive genome sequencing efforts are currently in progress across a broad spectrum of life forms, holding the potential to unravel the intricate branching patterns within the tree of life. However, estimating species trees starting from raw genome sequences is quite challenging, and the current cutting-edge methodologies require a series of error-prone steps that are neither entirely automated nor standardized. In this paper, we present ROADIES, a novel pipeline for species tree inference from raw genome assemblies that is fully automated, easy to use, scalable, free from reference bias, and provides flexibility to adjust the tradeoff between accuracy and runtime. The ROADIES pipeline eliminates the need to align whole genomes, choose a single reference species, or pre-select loci such as functional genes found using cumbersome annotation steps. Moreover, it leverages recent advances in phylogenetic inference to allow multi-copy genes, eliminating the need to detect orthology. Using the genomic datasets released from large-scale sequencing consortia across three diverse life forms (placental mammals, pomace flies, and birds), we show that ROADIES infers species trees that are comparable in quality with the state-of-the-art approaches but in a fraction of the time. By incorporating optimal approaches and automating all steps from assembled genomes to species and gene trees, ROADIES is poised to improve the accuracy, scalability, and reproducibility of phylogenomic analyses.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Computer Science and Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| |
Collapse
|
52
|
Wanders K, Chen G, Feng S, Székely T, Urrutia AO. Role-reversed polyandry is associated with faster fast-Z in shorebirds. Proc Biol Sci 2024; 291:20240397. [PMID: 38864333 DOI: 10.1098/rspb.2024.0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
In birds, males are homogametic and carry two copies of the Z chromosome ('ZZ'), while females are heterogametic and exhibit a 'ZW' genotype. The Z chromosome evolves at a faster rate than similarly sized autosomes, a phenomenon termed 'fast-Z evolution'. This is thought to be caused by two independent processes-greater Z chromosome genetic drift owing to a reduced effective population size, and stronger Z chromosome positive selection owing to the exposure of partially recessive alleles to selection. Here, we investigate the relative contributions of these processes by considering the effect of role-reversed polyandry on fast-Z in shorebirds, a paraphyletic group of wading birds that exhibit unusually diverse mating systems. We find stronger fast-Z effects under role-reversed polyandry, which is consistent with particularly strong selection on polyandrous females driving the fixation of recessive beneficial alleles. This result contrasts with previous research in birds, which has tended to implicate a primary role of genetic drift in driving fast-Z variation. We suggest that this discrepancy can be interpreted in two ways-stronger sexual selection acting on polyandrous females overwhelms an otherwise central role of genetic drift, and/or sexual antagonism is also contributing significantly to fast-Z and is exacerbated in sexually dimorphic species.
Collapse
Affiliation(s)
- Kees Wanders
- Department of Life Sciences, Milner Centre for Evolution, University of Bath , Bath, UK
- Department of Evolutionary Zoology and Human Biology, HUN-REN-DE Reproductive strategies Research Group, University of Debrecen , Debrecen, Hungary
- Natural History Museum of Denmark, University of Copenhagen , Copenhagen, Denmark
| | - Guangji Chen
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
- BGI Research , Wuhan, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences , Beijing, People's Republic of China
| | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
| | - Tamás Székely
- Department of Life Sciences, Milner Centre for Evolution, University of Bath , Bath, UK
- Department of Evolutionary Zoology and Human Biology, HUN-REN-DE Reproductive strategies Research Group, University of Debrecen , Debrecen, Hungary
- Debrecen Biodiversity Centre, University of Debrecen , Debrecen, Hungary
| | - Arraxi O Urrutia
- Department of Life Sciences, Milner Centre for Evolution, University of Bath , Bath, UK
- Instituto de Ecologia, UNAM , Mexico City, Mexico
| |
Collapse
|
53
|
Cornman RS. A genomic hotspot of diversifying selection and structural change in the hoary bat ( Lasiurus cinereus). PeerJ 2024; 12:e17482. [PMID: 38832043 PMCID: PMC11146322 DOI: 10.7717/peerj.17482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Background Previous work found that numerous genes positively selected within the hoary bat (Lasiurus cinereus) lineage are physically clustered in regions of conserved synteny. Here I further validate and expand on those finding utilizing an updated L. cinereus genome assembly and additional bat species as well as other tetrapod outgroups. Methods A chromosome-level assembly was generated by chromatin-contact mapping and made available by DNAZoo (www.dnazoo.org). The genomic organization of orthologous genes was extracted from annotation data for multiple additional bat species as well as other tetrapod clades for which chromosome-level assemblies were available from the National Center for Biotechnology Information (NCBI). Tests of branch-specific positive selection were performed for L. cinereus using PAML as well as with the HyPhy package for comparison. Results Twelve genes exhibiting significant diversifying selection in the L. cinereus lineage were clustered within a 12-Mb genomic window; one of these (Trpc4) also exhibited diversifying selection in bats generally. Ten of the 12 genes are landmarks of two distinct blocks of ancient synteny that are not linked in other tetrapod clades. Bats are further distinguished by frequent structural rearrangements within these synteny blocks, which are rarely observed in other Tetrapoda. Patterns of gene order and orientation among bat taxa are incompatible with phylogeny as presently understood, implying parallel evolution or subsequent reversals. Inferences of positive selection were found to be robust to alternative phylogenetic topologies as well as a strong shift in background nucleotide composition in some taxa. Discussion This study confirms and further localizes a genomic hotspot of protein-coding divergence in the hoary bat, one that also exhibits an increased tempo of structural change in bats compared with other mammals. Most genes in the two synteny blocks have elevated expression in brain tissue in humans and model organisms, and genetic studies implicate the selected genes in cranial and neurological development, among other functions.
Collapse
Affiliation(s)
- Robert S. Cornman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States
| |
Collapse
|
54
|
Rick JA, Brock CD, Lewanski AL, Golcher-Benavides J, Wagner CE. Reference Genome Choice and Filtering Thresholds Jointly Influence Phylogenomic Analyses. Syst Biol 2024; 73:76-101. [PMID: 37881861 DOI: 10.1093/sysbio/syad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Molecular phylogenies are a cornerstone of modern comparative biology and are commonly employed to investigate a range of biological phenomena, such as diversification rates, patterns in trait evolution, biogeography, and community assembly. Recent work has demonstrated that significant biases may be introduced into downstream phylogenetic analyses from processing genomic data; however, it remains unclear whether there are interactions among bioinformatic parameters or biases introduced through the choice of reference genome for sequence alignment and variant calling. We address these knowledge gaps by employing a combination of simulated and empirical data sets to investigate the extent to which the choice of reference genome in upstream bioinformatic processing of genomic data influences phylogenetic inference, as well as the way that reference genome choice interacts with bioinformatic filtering choices and phylogenetic inference method. We demonstrate that more stringent minor allele filters bias inferred trees away from the true species tree topology, and that these biased trees tend to be more imbalanced and have a higher center of gravity than the true trees. We find the greatest topological accuracy when filtering sites for minor allele count (MAC) >3-4 in our 51-taxa data sets, while tree center of gravity was closest to the true value when filtering for sites with MAC >1-2. In contrast, filtering for missing data increased accuracy in the inferred topologies; however, this effect was small in comparison to the effect of minor allele filters and may be undesirable due to a subsequent mutation spectrum distortion. The bias introduced by these filters differs based on the reference genome used in short read alignment, providing further support that choosing a reference genome for alignment is an important bioinformatic decision with implications for downstream analyses. These results demonstrate that attributes of the study system and dataset (and their interaction) add important nuance for how best to assemble and filter short-read genomic data for phylogenetic inference.
Collapse
Affiliation(s)
- Jessica A Rick
- School of Natural Resources & the Environment, University of Arizona, Tucson, AZ 85719, USA
| | - Chad D Brock
- Department of Biological Sciences, Tarleton State University, Stephenville, TX 76401, USA
| | - Alexander L Lewanski
- Department of Integrative Biology and W.K. Kellogg Biological Station, Michigan State University, East Lansing, MI 48824, USA
| | - Jimena Golcher-Benavides
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA 50011, USA
| | - Catherine E Wagner
- Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82071, USA
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
55
|
Williamson JL, Gyllenhaal EF, Bauernfeind SM, Bautista E, Baumann MJ, Gadek CR, Marra PP, Ricote N, Valqui T, Bozinovic F, Singh ND, Witt CC. Extreme elevational migration spurred cryptic speciation in giant hummingbirds. Proc Natl Acad Sci U S A 2024; 121:e2313599121. [PMID: 38739790 PMCID: PMC11126955 DOI: 10.1073/pnas.2313599121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/19/2024] [Indexed: 05/16/2024] Open
Abstract
The ecoevolutionary drivers of species niche expansion or contraction are critical for biodiversity but challenging to infer. Niche expansion may be promoted by local adaptation or constrained by physiological performance trade-offs. For birds, evolutionary shifts in migratory behavior permit the broadening of the climatic niche by expansion into varied, seasonal environments. Broader niches can be short-lived if diversifying selection and geography promote speciation and niche subdivision across climatic gradients. To illuminate niche breadth dynamics, we can ask how "outlier" species defy constraints. Of the 363 hummingbird species, the giant hummingbird (Patagona gigas) has the broadest climatic niche by a large margin. To test the roles of migratory behavior, performance trade-offs, and genetic structure in maintaining its exceptional niche breadth, we studied its movements, respiratory traits, and population genomics. Satellite and light-level geolocator tracks revealed an >8,300-km loop migration over the Central Andean Plateau. This migration included a 3-wk, ~4,100-m ascent punctuated by upward bursts and pauses, resembling the acclimatization routines of human mountain climbers, and accompanied by surging blood-hemoglobin concentrations. Extreme migration was accompanied by deep genomic divergence from high-elevation resident populations, with decisive postzygotic barriers to gene flow. The two forms occur side-by-side but differ almost imperceptibly in size, plumage, and respiratory traits. The high-elevation resident taxon is the world's largest hummingbird, a previously undiscovered species that we describe and name here. The giant hummingbirds demonstrate evolutionary limits on niche breadth: when the ancestral niche expanded due to evolution (or loss) of an extreme migratory behavior, speciation followed.
Collapse
Affiliation(s)
- Jessie L. Williamson
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM87131
- Department of Biology, University of New Mexico, Albuquerque, NM87131
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY14850
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14850
| | - Ethan F. Gyllenhaal
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM87131
- Department of Biology, University of New Mexico, Albuquerque, NM87131
| | | | - Emil Bautista
- Centro de Ornitología y Biodiversidad, Lima15064, Peru
| | - Matthew J. Baumann
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM87131
| | - Chauncey R. Gadek
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM87131
- Department of Biology, University of New Mexico, Albuquerque, NM87131
- Environmental Stewardship, Los Alamos National Laboratory, Los Alamos, NM87545
| | - Peter P. Marra
- The Earth Commons Institute, Department of Biology, McCourt School of Public Policy, Georgetown University, Washington, DC20057
| | - Natalia Ricote
- Facultad de Artes Liberales, Departamento de Ciencias, Universidad Adolfo Ibáñez, Santiago7941169, Chile
| | - Thomas Valqui
- Centro de Ornitología y Biodiversidad, Lima15064, Peru
- Facultad de Ciencias Forestales, Universidad Nacional Agraria La Molina, Lima15024, Peru
| | - Francisco Bozinovic
- Departamento de Ecología, Center of Applied Ecology and Sustainability, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago3542000, Chile
| | - Nadia D. Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR97403
| | - Christopher C. Witt
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM87131
- Department of Biology, University of New Mexico, Albuquerque, NM87131
| |
Collapse
|
56
|
Tsai WLE, Escalona M, Garrett KL, Terrill RS, Sahasrabudhe R, Nguyen O, Beraut E, Seligmann W, Fairbairn CW, Harrigan RJ, McCormack JE, Alfaro ME, Smith TB, Bay RA. A highly contiguous genome assembly for the Yellow Warbler (Setophaga petechia). J Hered 2024; 115:317-325. [PMID: 38401156 PMCID: PMC11081134 DOI: 10.1093/jhered/esae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/16/2024] [Indexed: 02/26/2024] Open
Abstract
The Yellow Warbler (Setophaga petechia) is a small songbird in the wood-warbler family (Parulidae) that exhibits phenotypic and ecological differences across a widespread distribution and is important to California's riparian habitat conservation. Here, we present a high-quality de novo genome assembly of a vouchered female Yellow Warbler from southern California. Using HiFi long-read and Omni-C proximity sequencing technologies, we generated a 1.22 Gb assembly including 687 scaffolds with a contig N50 of 6.80 Mb, scaffold N50 of 21.18 Mb, and a BUSCO completeness score of 96.0%. This highly contiguous genome assembly provides an essential resource for understanding the history of gene flow, divergence, and local adaptation in Yellow Warblers and can inform conservation management of this charismatic bird species.
Collapse
Affiliation(s)
- Whitney L E Tsai
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States
- Moore Laboratory of Zoology, Biology Department, Occidental College, Los Angeles, CA 90041, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, United States
| | - Kimball L Garrett
- Ornithology Department, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, United States
| | - Ryan S Terrill
- Moore Laboratory of Zoology, Biology Department, Occidental College, Los Angeles, CA 90041, United States
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, United States
| | - William Seligmann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, United States
| | - Colin W Fairbairn
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, United States
| | - Ryan J Harrigan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States
| | - John E McCormack
- Moore Laboratory of Zoology, Biology Department, Occidental College, Los Angeles, CA 90041, United States
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States
| | - Thomas B Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States
| | - Rachael A Bay
- Department of Evolution and Ecology, University of California, Davis, CA 95616, United States
| |
Collapse
|
57
|
Anchundia DJ, Lam AW, Henderson JB, Van Dam MH, Dumbacher JP. Genome Assembly of Pyrocephalus nanus: A Step Toward the Genetic Conservation of the Endangered Little Vermilion Flycatcher of the Galapagos Islands. Genome Biol Evol 2024; 16:evae083. [PMID: 38652799 PMCID: PMC11077314 DOI: 10.1093/gbe/evae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024] Open
Abstract
Incredibly powerful whole genome studies of conservation genetics, evolution, and biogeography become possible for non-model organisms when reference genomes are available. Here, we report the sequence and assembly of the whole genome of the little vermilion flycatcher (Pyrocephalus nanus; family Tyrannidae), which is an endemic, endangered, and declining species of the Galapagos Islands. Using PacBio HiFi reads to assemble long contigs and Hi-C reads for scaffolding, we assembled a genome of 1.07 Gb comprising 267 contigs in 152 scaffolds, scaffold N50 74 M, contig N50 17.8 M, with 98.9% assigned to candidate chromosomal sequences and 99.72% of the BUSCO passeriformes 10,844 single-copy orthologs present. In addition, we used the novel HiFiMiTie pipeline to fully assemble and verify all portions of the mitochondrial genome from HiFi reads, obtaining a mitogenome of 17,151 bases, containing 13 protein-coding genes, 22 tRNAs, 2 rRNAs, two control regions, and a unique structure of control region duplication and repeats. These genomes will be a critical tool for much-needed studies of phylogenetics, population genetics, biogeography, and conservation genetics of Pyrocephalus and related genera. This genome and other studies that use it will be able to provide recommendations for conservation management, taxonomic improvement, and to understand the evolution and diversification of this genus within the Galapagos Islands.
Collapse
Affiliation(s)
- David J Anchundia
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna 1030, Austria
- Charles Darwin Research Station, Charles Darwin Foundation, Santa Cruz, Galapagos, Ecuador
- Institute for Biodiversity Sciences and Sustainability, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Athena W Lam
- Institute for Biodiversity Sciences and Sustainability, California Academy of Sciences, San Francisco, CA 94118, USA
| | - James B Henderson
- Institute for Biodiversity Sciences and Sustainability, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Matthew H Van Dam
- Institute for Biodiversity Sciences and Sustainability, California Academy of Sciences, San Francisco, CA 94118, USA
| | - John P Dumbacher
- Institute for Biodiversity Sciences and Sustainability, California Academy of Sciences, San Francisco, CA 94118, USA
| |
Collapse
|
58
|
Rattner BA, Bean TG, Beasley VR, Berny P, Eisenreich KM, Elliott JE, Eng ML, Fuchsman PC, King MD, Mateo R, Meyer CB, O'Brien JM, Salice CJ. Wildlife ecological risk assessment in the 21st century: Promising technologies to assess toxicological effects. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:725-748. [PMID: 37417421 DOI: 10.1002/ieam.4806] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Despite advances in toxicity testing and the development of new approach methodologies (NAMs) for hazard assessment, the ecological risk assessment (ERA) framework for terrestrial wildlife (i.e., air-breathing amphibians, reptiles, birds, and mammals) has remained unchanged for decades. While survival, growth, and reproductive endpoints derived from whole-animal toxicity tests are central to hazard assessment, nonstandard measures of biological effects at multiple levels of biological organization (e.g., molecular, cellular, tissue, organ, organism, population, community, ecosystem) have the potential to enhance the relevance of prospective and retrospective wildlife ERAs. Other factors (e.g., indirect effects of contaminants on food supplies and infectious disease processes) are influenced by toxicants at individual, population, and community levels, and need to be factored into chemically based risk assessments to enhance the "eco" component of ERAs. Regulatory and logistical challenges often relegate such nonstandard endpoints and indirect effects to postregistration evaluations of pesticides and industrial chemicals and contaminated site evaluations. While NAMs are being developed, to date, their applications in ERAs focused on wildlife have been limited. No single magic tool or model will address all uncertainties in hazard assessment. Modernizing wildlife ERAs will likely entail combinations of laboratory- and field-derived data at multiple levels of biological organization, knowledge collection solutions (e.g., systematic review, adverse outcome pathway frameworks), and inferential methods that facilitate integrations and risk estimations focused on species, populations, interspecific extrapolations, and ecosystem services modeling, with less dependence on whole-animal data and simple hazard ratios. Integr Environ Assess Manag 2024;20:725-748. © 2023 His Majesty the King in Right of Canada and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Barnett A Rattner
- US Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, USA
| | | | - Val R Beasley
- College of Veterinary Medicine, University of Illinois at Urbana, Champaign, Illinois, USA
| | | | - Karen M Eisenreich
- US Environmental Protection Agency, Washington, District of Columbia, USA
| | - John E Elliott
- Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Margaret L Eng
- Environment and Climate Change Canada, Dartmouth, Nova Scotia, Canada
| | | | - Mason D King
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | - Jason M O'Brien
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | | |
Collapse
|
59
|
Stiller J, Feng S, Chowdhury AA, Rivas-González I, Duchêne DA, Fang Q, Deng Y, Kozlov A, Stamatakis A, Claramunt S, Nguyen JMT, Ho SYW, Faircloth BC, Haag J, Houde P, Cracraft J, Balaban M, Mai U, Chen G, Gao R, Zhou C, Xie Y, Huang Z, Cao Z, Yan Z, Ogilvie HA, Nakhleh L, Lindow B, Morel B, Fjeldså J, Hosner PA, da Fonseca RR, Petersen B, Tobias JA, Székely T, Kennedy JD, Reeve AH, Liker A, Stervander M, Antunes A, Tietze DT, Bertelsen MF, Lei F, Rahbek C, Graves GR, Schierup MH, Warnow T, Braun EL, Gilbert MTP, Jarvis ED, Mirarab S, Zhang G. Complexity of avian evolution revealed by family-level genomes. Nature 2024; 629:851-860. [PMID: 38560995 PMCID: PMC11111414 DOI: 10.1038/s41586-024-07323-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.
Collapse
Affiliation(s)
- Josefin Stiller
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Al-Aabid Chowdhury
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | | | - David A Duchêne
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Qi Fang
- BGI Research, Shenzhen, China
| | - Yuan Deng
- BGI Research, Shenzhen, China
- BGI Research, Wuhan, China
| | - Alexey Kozlov
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Greece
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Santiago Claramunt
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Jacqueline M T Nguyen
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Museum Research Institute, Sydney, New South Wales, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Julia Haag
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Peter Houde
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Joel Cracraft
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| | - Metin Balaban
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Uyen Mai
- Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Guangji Chen
- BGI Research, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongsheng Gao
- BGI Research, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Yulong Xie
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zijian Huang
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Cao
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Zhi Yan
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Huw A Ogilvie
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Bent Lindow
- Natural History Museum Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Jon Fjeldså
- Natural History Museum Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Peter A Hosner
- Natural History Museum Denmark, University of Copenhagen, Copenhagen, Denmark
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rute R da Fonseca
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Bent Petersen
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, Faculty of Applied Sciences, AIMST University, Bedong, Malaysia
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Tamás Székely
- Milner Centre for Evolution, University of Bath, Bath, UK
- ELKH-DE Reproductive Strategies Research Group, University of Debrecen, Debrecen, Hungary
| | - Jonathan David Kennedy
- Center for Macroecology, Evolution, and Climate, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andrew Hart Reeve
- Natural History Museum Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Andras Liker
- HUN-REN-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém, Hungary
- Behavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, Hungary
| | | | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | | | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Carsten Rahbek
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution, and Climate, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Institute of Ecology, Peking University, Beijing, China
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Gary R Graves
- Center for Macroecology, Evolution, and Climate, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Tandy Warnow
- University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Durham, NC, USA
| | | | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China.
- BGI Research, Wuhan, China.
- Villum Center for Biodiversity Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
60
|
Galià-Camps C, Pegueroles C, Turon X, Carreras C, Pascual M. Genome composition and GC content influence loci distribution in reduced representation genomic studies. BMC Genomics 2024; 25:410. [PMID: 38664648 PMCID: PMC11046876 DOI: 10.1186/s12864-024-10312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Genomic architecture is a key evolutionary trait for living organisms. Due to multiple complex adaptive and neutral forces which impose evolutionary pressures on genomes, there is a huge variability of genomic features. However, their variability and the extent to which genomic content determines the distribution of recovered loci in reduced representation sequencing studies is largely unexplored. RESULTS Here, by using 80 genome assemblies, we observed that whereas plants primarily increase their genome size by expanding their intergenic regions, animals expand both intergenic and intronic regions, although the expansion patterns differ between deuterostomes and protostomes. Loci mapping in introns, exons, and intergenic categories obtained by in silico digestion using 2b-enzymes are positively correlated with the percentage of these regions in the corresponding genomes, suggesting that loci distribution mostly mirrors genomic architecture of the selected taxon. However, exonic regions showed a significant enrichment of loci in all groups regardless of the used enzyme. Moreover, when using selective adaptors to obtain a secondarily reduced loci dataset, the percentage and distribution of retained loci also varied. Adaptors with G/C terminals recovered a lower percentage of selected loci, with a further enrichment of exonic regions, while adaptors with A/T terminals retained a higher percentage of loci and slightly selected more intronic regions than expected. CONCLUSIONS Our results highlight how genome composition, genome GC content, RAD enzyme choice and use of base-selective adaptors influence reduced genome representation techniques. This is important to acknowledge in population and conservation genomic studies, as it determines the abundance and distribution of loci.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, 08028, Spain.
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, Blanes, 17300, Spain.
| | - Cinta Pegueroles
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Xavier Turon
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, Blanes, 17300, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
61
|
Chen G, Yu D, Yang Y, Li X, Wang X, Sun D, Lu Y, Ke R, Zhang G, Cui J, Feng S. Adaptive expansion of ERVK solo-LTRs is associated with Passeriformes speciation events. Nat Commun 2024; 15:3151. [PMID: 38605055 PMCID: PMC11009239 DOI: 10.1038/s41467-024-47501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Endogenous retroviruses (ERVs) are ancient retroviral remnants integrated in host genomes, and commonly deleted through unequal homologous recombination, leaving solitary long terminal repeats (solo-LTRs). This study, analysing the genomes of 362 bird species and their reptilian and mammalian outgroups, reveals an unusually higher level of solo-LTRs formation in birds, indicating evolutionary forces might have purged ERVs during evolution. Strikingly in the order Passeriformes, and especially the parvorder Passerida, endogenous retrovirus K (ERVK) solo-LTRs showed bursts of formation and recurrent accumulations coinciding with speciation events over past 22 million years. Moreover, our results indicate that the ongoing expansion of ERVK solo-LTRs in these bird species, marked by high transcriptional activity of ERVK retroviral genes in reproductive organs, caused variation of solo-LTRs between individual zebra finches. We experimentally demonstrated that cis-regulatory activity of recently evolved ERVK solo-LTRs may significantly increase the expression level of ITGA2 in the brain of zebra finches compared to chickens. These findings suggest that ERVK solo-LTRs expansion may introduce novel genomic sequences acting as cis-regulatory elements and contribute to adaptive evolution. Overall, our results underscore that the residual sequences of ancient retroviruses could influence the adaptive diversification of species by regulating host gene expression.
Collapse
Affiliation(s)
- Guangji Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- BGI Research, Wuhan, China
| | - Dan Yu
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Yang
- School of Medicine, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xiang Li
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Danyang Sun
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yanlin Lu
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Jie Cui
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Institute of Infection and Health Research, Fudan University, Shanghai, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China.
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China.
| | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China.
- Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
62
|
Li Y, Ru B, Zhang Y, Wan D. The complete mitochondrial genome of Hypsipetes amaurotis (Passeriformes: Pycnonotidae). Mitochondrial DNA B Resour 2024; 9:483-487. [PMID: 38617815 PMCID: PMC11011232 DOI: 10.1080/23802359.2024.2338266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
The brown-eared bulbul (Hypsipetes amaurotis) is a medium-sized songbird native to East Asia and characterized by its prominent reddish-brown ear-coverts. Previous studies on it have primarily been from the taxonomic and morphological aspects, with limited research in the realm of molecular biology. In this study, we sequenced and annotated the complete mitochondrial genome of H. amaurotis, which was the first reported complete mitogenome of the genus Hypsipetes. The mitogenome of H. amaurotis is 17,871 bp in length and was predicted to encode 37 typical mitochondrial genes, including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs). Specifically, this mitogenome contains two D-loop control regions that are of similar length and sequencing pattern. A total of 8 Pycnonotidae and six outgroup taxa were used to determine the phylogenetic placement with two methods: Maximum Likelihood Approximation (IQ-TREE) and Bayesian inference (MrBayes). Our findings reveal that H. amaurotis is phylogenetically closely related to Ixos mcclellandii. The outcomes are generally consistent with the phylogenetic trees constructed in previous studies. The data gathered from this research provides valuable insights for future genomic investigations into the evolution, ecology, and conservation of this species.
Collapse
Affiliation(s)
- Yanze Li
- School of Life Sciences, Liaoning University, Liaoning, China
| | - Bingyi Ru
- School of Life Sciences, Liaoning University, Liaoning, China
| | - Yuan Zhang
- School of Life Sciences, Liaoning University, Liaoning, China
| | - Dongmei Wan
- School of Life Sciences, Liaoning University, Liaoning, China
| |
Collapse
|
63
|
Benham PM, Cicero C, Escalona M, Beraut E, Fairbairn C, Marimuthu MPA, Nguyen O, Sahasrabudhe R, King BL, Thomas WK, Kovach AI, Nachman MW, Bowie RCK. Remarkably High Repeat Content in the Genomes of Sparrows: The Importance of Genome Assembly Completeness for Transposable Element Discovery. Genome Biol Evol 2024; 16:evae067. [PMID: 38566597 PMCID: PMC11088854 DOI: 10.1093/gbe/evae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Transposable elements (TE) play critical roles in shaping genome evolution. Highly repetitive TE sequences are also a major source of assembly gaps making it difficult to fully understand the impact of these elements on host genomes. The increased capacity of long-read sequencing technologies to span highly repetitive regions promises to provide new insights into patterns of TE activity across diverse taxa. Here we report the generation of highly contiguous reference genomes using PacBio long-read and Omni-C technologies for three species of Passerellidae sparrow. We compared these assemblies to three chromosome-level sparrow assemblies and nine other sparrow assemblies generated using a variety of short- and long-read technologies. All long-read based assemblies were longer (range: 1.12 to 1.41 Gb) than short-read assemblies (0.91 to 1.08 Gb) and assembly length was strongly correlated with the amount of repeat content. Repeat content for Bell's sparrow (31.2% of genome) was the highest level ever reported within the order Passeriformes, which comprises over half of avian diversity. The highest levels of repeat content (79.2% to 93.7%) were found on the W chromosome relative to other regions of the genome. Finally, we show that proliferation of different TE classes varied even among species with similar levels of repeat content. These patterns support a dynamic model of TE expansion and contraction even in a clade where TEs were once thought to be fairly depauperate and static. Our work highlights how the resolution of difficult-to-assemble regions of the genome with new sequencing technologies promises to transform our understanding of avian genome evolution.
Collapse
Affiliation(s)
- Phred M Benham
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Carla Cicero
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Colin Fairbairn
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - W Kelley Thomas
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Adrienne I Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
64
|
Duncan AG, Mitchell JA, Moses AM. Improving the performance of supervised deep learning for regulatory genomics using phylogenetic augmentation. Bioinformatics 2024; 40:btae190. [PMID: 38588559 PMCID: PMC11042905 DOI: 10.1093/bioinformatics/btae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024] Open
Abstract
MOTIVATION Supervised deep learning is used to model the complex relationship between genomic sequence and regulatory function. Understanding how these models make predictions can provide biological insight into regulatory functions. Given the complexity of the sequence to regulatory function mapping (the cis-regulatory code), it has been suggested that the genome contains insufficient sequence variation to train models with suitable complexity. Data augmentation is a widely used approach to increase the data variation available for model training, however current data augmentation methods for genomic sequence data are limited. RESULTS Inspired by the success of comparative genomics, we show that augmenting genomic sequences with evolutionarily related sequences from other species, which we term phylogenetic augmentation, improves the performance of deep learning models trained on regulatory genomic sequences to predict high-throughput functional assay measurements. Additionally, we show that phylogenetic augmentation can rescue model performance when the training set is down-sampled and permits deep learning on a real-world small dataset, demonstrating that this approach improves data efficiency. Overall, this data augmentation method represents a solution for improving model performance that is applicable to many supervised deep-learning problems in genomics. AVAILABILITY AND IMPLEMENTATION The open-source GitHub repository agduncan94/phylogenetic_augmentation_paper includes the code for rerunning the analyses here and recreating the figures.
Collapse
Affiliation(s)
- Andrew G Duncan
- Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | | | - Alan M Moses
- Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
65
|
Sakamoto F, Kanamori S, Díaz LM, Cádiz A, Ishii Y, Yamaguchi K, Shigenobu S, Nakayama T, Makino T, Kawata M. Detection of evolutionary conserved and accelerated genomic regions related to adaptation to thermal niches in Anolis lizards. Ecol Evol 2024; 14:e11117. [PMID: 38455144 PMCID: PMC10920033 DOI: 10.1002/ece3.11117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Understanding the genetic basis for adapting to thermal environments is important due to serious effects of global warming on ectothermic species. Various genes associated with thermal adaptation in lizards have been identified mainly focusing on changes in gene expression or the detection of positively selected genes using coding regions. Only a few comprehensive genome-wide analyses have included noncoding regions. This study aimed to identify evolutionarily conserved and accelerated genomic regions using whole genomes of eight Anolis lizard species that have repeatedly adapted to similar thermal environments in multiple lineages. Evolutionarily conserved genomic regions were extracted as regions with overall sequence conservation (regions with fewer base substitutions) across all lineages compared with the neutral model. Genomic regions that underwent accelerated evolution in the lineage of interest were identified as those with more base substitutions in the target branch than in the entire background branch. Conserved elements across all branches were relatively abundant in "intergenic" genomic regions among noncoding regions. Accelerated regions (ARs) of each lineage contained a significantly greater proportion of noncoding RNA genes than the entire multiple alignment. Common genes containing ARs within 5 kb of their vicinity in lineages with similar thermal habitats were identified. Many genes associated with circadian rhythms and behavior were found in hot-open and cool-shaded habitat lineages. These genes might play a role in contributing to thermal adaptation and assist future studies examining the function of genes involved in thermal adaptation via genome editing.
Collapse
Affiliation(s)
- Fuku Sakamoto
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | | | - Luis M. Díaz
- National Museum of Natural History of CubaHavanaCuba
| | - Antonio Cádiz
- Faculty of BiologyUniversity of HavanaHavanaCuba
- Present address:
Department of BiologyUniversity of MiamiCoral GablesFloridaUSA
| | - Yuu Ishii
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | | | - Shuji Shigenobu
- Trans‐Omics FacilityNational Institute for Basic BiologyOkazakiJapan
- Department of Basic Biology, School of Life ScienceThe Graduate University for Advanced Studies, SOKENDAIOkazakiJapan
| | - Takuro Nakayama
- Division of Life Sciences, Center for Computational SciencesUniversity of TsukubaTsukubaJapan
| | - Takashi Makino
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Masakado Kawata
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
66
|
Jiao X, Wu L, Zhang D, Wang H, Dong F, Yang L, Wang S, Amano HE, Zhang W, Jia C, Rheindt FE, Lei F, Song G. Landscape Heterogeneity Explains the Genetic Differentiation of a Forest Bird across the Sino-Himalayan Mountains. Mol Biol Evol 2024; 41:msae027. [PMID: 38318973 PMCID: PMC10919924 DOI: 10.1093/molbev/msae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
Mountains are the world's most important centers of biodiversity. The Sino-Himalayan Mountains are global biodiversity hotspot due to their extremely high species richness and endemicity. Ample research investigated the impact of the Qinghai-Tibet Plateau uplift and Quaternary glaciations in driving species diversification in plants and animals across the Sino-Himalayan Mountains. However, little is known about the role of landscape heterogeneity and other environmental features in driving diversification in this region. We utilized whole genomes and phenotypic data in combination with landscape genetic approaches to investigate population structure, demography, and genetic diversity in a forest songbird species native to the Sino-Himalayan Mountains, the red-billed leiothrix (Leiothrix lutea). We identified 5 phylogeographic clades, including 1 in the East of China, 1 in Yunnan, and 3 in Tibet, roughly consistent with differences in song and plumage coloration but incongruent with traditional subspecies boundaries. Isolation-by-resistance model best explained population differentiation within L. lutea, with extensive secondary contact after allopatric isolation leading to admixture among clades. Ecological niche modeling indicated relative stability in the extent of suitable distribution areas of the species across Quaternary glacial cycles. Our results underscore the importance of mountains in the diversification of this species, given that most of the distinct genetic clades are concentrated in a relatively small area in the Sino-Himalayan Mountain region, while a single shallow clade populates vast lower-lying areas to the east. This study highlights the crucial role of landscape heterogeneity in promoting differentiation and provides a deep genomic perspective on the mechanisms through which diversity hotspots form.
Collapse
Affiliation(s)
- Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Le Yang
- Tibet Plateau Institute of Biology, Lhasa 850000, China
| | - Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Weiwei Zhang
- Center for Wildlife Resources Conservation Research, Jiangxi Agricultural University, Nanchang, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
67
|
Wollenberg Valero KC. Brief Communication: The Predictable Network Topology of Evolutionary Genomic Constraint. Mol Biol Evol 2024; 41:msae033. [PMID: 38366776 PMCID: PMC10906983 DOI: 10.1093/molbev/msae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/03/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
Large-scale comparative genomics studies offer valuable resources for understanding both functional and evolutionary rate constraints. It is suggested that constraint aligns with the topology of genomic networks, increasing toward the center, with intermediate nodes combining relaxed constraint with higher contributions to the phenotype due to pleiotropy. However, this pattern has yet to be demonstrated in vertebrates. This study shows that constraint intensifies toward the network's center in placental mammals. Genes with rate changes associated with emergence of hibernation cluster mostly toward intermediate positions, with higher constraint in faster-evolving genes, which is indicative of a "sweet spot" for adaptation. If this trend holds universally, network node metrics could predict high-constraint regions even in clades lacking empirical constraint data.
Collapse
|
68
|
Gu Z, Dixon A, Zhan X. Genetics and Evolution of Bird Migration. Annu Rev Anim Biosci 2024; 12:21-43. [PMID: 37906839 DOI: 10.1146/annurev-animal-021122-092239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Bird migration has long been a subject of fascination for humankind and is a behavior that is both intricate and multifaceted. In recent years, advances in technology, particularly in the fields of genomics and animal tracking, have enabled significant progress in our understanding of this phenomenon. In this review, we provide an overview of the latest advancements in the genetics of bird migration, with a particular focus on genomics, and examine various factors that contribute to the evolution of this behavior, including climate change. Integration of research from the fields of genomics, ecology, and evolution can enhance our comprehension of the complex mechanisms involved in bird migration and inform conservation efforts in a rapidly changing world.
Collapse
Affiliation(s)
- Zhongru Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
- Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
| | - Andrew Dixon
- Mohamed Bin Zayed Raptor Conservation Fund, Abu Dhabi, United Arab Emirates
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
- Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
69
|
Langebrake C, Manthey G, Frederiksen A, Lugo Ramos JS, Dutheil JY, Chetverikova R, Solov'yov IA, Mouritsen H, Liedvogel M. Adaptive evolution and loss of a putative magnetoreceptor in passerines. Proc Biol Sci 2024; 291:20232308. [PMID: 38320616 PMCID: PMC10846946 DOI: 10.1098/rspb.2023.2308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Migratory birds possess remarkable accuracy in orientation and navigation, which involves various compass systems including the magnetic compass. Identifying the primary magnetosensor remains a fundamental open question. Cryptochromes (Cry) have been shown to be magnetically sensitive, and Cry4a from a migratory songbird seems to show enhanced magnetic sensitivity in vitro compared to Cry4a from resident species. We investigate Cry and their potential involvement in magnetoreception in a phylogenetic framework, integrating molecular evolutionary analyses with protein dynamics modelling. Our analysis is based on 363 bird genomes and identifies different selection regimes in passerines. We show that Cry4a is characterized by strong positive selection and high variability, typical characteristics of sensor proteins. We identify key sites that are likely to have facilitated the evolution of an optimized sensory protein for night-time orientation in songbirds. Additionally, we show that Cry4 was lost in hummingbirds, parrots and Tyranni (Suboscines), and thus identified a gene deletion, which might facilitate testing the function of Cry4a in birds. In contrast, the other avian Cry (Cry1 and Cry2) were highly conserved across all species, indicating basal, non-sensory functions. Our results support a specialization or functional differentiation of Cry4 in songbirds which could be magnetosensation.
Collapse
Affiliation(s)
- Corinna Langebrake
- Institute of Avian Research ‘Vogelwarte Helgoland’, 26386 Wilhelmshaven, Germany
- MPRG Behavioural Genomics, MPI Evolutionary Biology, 24306 Plön, Germany
| | - Georg Manthey
- Institute of Avian Research ‘Vogelwarte Helgoland’, 26386 Wilhelmshaven, Germany
- Department of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
| | - Anders Frederiksen
- Department of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
| | - Juan S. Lugo Ramos
- MPRG Behavioural Genomics, MPI Evolutionary Biology, 24306 Plön, Germany
- The Francis Crick Institute, London NW1 1AT, UK
| | - Julien Y. Dutheil
- Research Group Molecular Systems Evolution, MPI Evolutionary Biology, 24306 Plön, Germany
| | - Raisa Chetverikova
- Biology and Environmental Sciences Department, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
| | - Ilia A. Solov'yov
- Department of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
- Research Centre for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
| | - Henrik Mouritsen
- Biology and Environmental Sciences Department, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
- Research Centre for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
| | - Miriam Liedvogel
- Institute of Avian Research ‘Vogelwarte Helgoland’, 26386 Wilhelmshaven, Germany
- MPRG Behavioural Genomics, MPI Evolutionary Biology, 24306 Plön, Germany
- Biology and Environmental Sciences Department, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
| |
Collapse
|
70
|
Matsushima W, Planet E, Trono D. Ancestral genome reconstruction enhances transposable element annotation by identifying degenerate integrants. CELL GENOMICS 2024; 4:100497. [PMID: 38295789 PMCID: PMC10879028 DOI: 10.1016/j.xgen.2024.100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 01/06/2024] [Indexed: 02/17/2024]
Abstract
Growing evidence indicates that transposable elements (TEs) play important roles in evolution by providing genomes with coding and non-coding sequences. Identification of TE-derived functional elements, however, has relied on TE annotations in individual species, which limits its scope to relatively intact TE sequences. Here, we report a novel approach to uncover previously unannotated degenerate TEs (degTEs) by probing multiple ancestral genomes reconstructed from hundreds of species. We applied this method to the human genome and achieved a 10.8% increase in coverage over the most recent annotation. Further, we discovered that degTEs contribute to various cis-regulatory elements and transcription factor binding sites, including those of a known TE-controlling family, the KRAB zinc-finger proteins. We also report unannotated chimeric transcripts between degTEs and human genes expressed in embryos. This study provides a novel methodology and a freely available resource that will facilitate the investigation of TE co-option events on a full scale.
Collapse
Affiliation(s)
- Wayo Matsushima
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Evarist Planet
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
71
|
Teixeira H, Le Corre M, Michon L, Nicoll MAC, Jaeger A, Nikolic N, Pinet P, Couzi FX, Humeau L. Past volcanic activity predisposes an endemic threatened seabird to negative anthropogenic impacts. Sci Rep 2024; 14:1960. [PMID: 38263429 PMCID: PMC10805739 DOI: 10.1038/s41598-024-52556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024] Open
Abstract
Humans are regularly cited as the main driver of current biodiversity extinction, but the impact of historic volcanic activity is often overlooked. Pre-human evidence of wildlife abundance and diversity are essential for disentangling anthropogenic impacts from natural events. Réunion Island, with its intense and well-documented volcanic activity, endemic biodiversity, long history of isolation and recent human colonization, provides an opportunity to disentangle these processes. We track past demographic changes of a critically endangered seabird, the Mascarene petrel Pseudobulweria aterrima, using genome-wide SNPs. Coalescent modeling suggested that a large ancestral population underwent a substantial population decline in two distinct phases, ca. 125,000 and 37,000 years ago, coinciding with periods of major eruptions of Piton des Neiges. Subsequently, the ancestral population was fragmented into the two known colonies, ca. 1500 years ago, following eruptions of Piton de la Fournaise. In the last century, both colonies declined significantly due to anthropogenic activities, and although the species was initially considered extinct, it was rediscovered in the 1970s. Our findings suggest that the current conservation status of wildlife on volcanic islands should be firstly assessed as a legacy of historic volcanic activity, and thereafter by the increasing anthropogenic impacts, which may ultimately drive species towards extinction.
Collapse
Affiliation(s)
- Helena Teixeira
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS, IFREMER, Université de Nouvelle-Calédonie), 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, Ile de La Réunion, France.
| | - Matthieu Le Corre
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS, IFREMER, Université de Nouvelle-Calédonie), 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, Ile de La Réunion, France
| | - Laurent Michon
- Université de La Réunion, Laboratoire Géosciences Réunion, 97744, Saint Denis, France
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, 75005, Paris, France
| | - Malcolm A C Nicoll
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Audrey Jaeger
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS, IFREMER, Université de Nouvelle-Calédonie), 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, Ile de La Réunion, France
| | | | - Patrick Pinet
- Parc National de La Réunion, Life+ Pétrels, 258 Rue de la République, 97431, Plaine des Palmistes, Réunion Island, France
| | - François-Xavier Couzi
- Société d'Etudes Ornithologiques de La Réunion (SEOR), 13 ruelle des Orchidées, 97440, Saint André, Réunion Island, France
| | - Laurence Humeau
- UMR PVBMT (Université de La Réunion, CIRAD), 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, Ile de La Réunion, France
| |
Collapse
|
72
|
Wu Z, Miedzinska K, Krause JS, Pérez JH, Wingfield JC, Meddle SL, Smith J. A chromosome-level genome assembly of a free-living white-crowned sparrow (Zonotrichia leucophrys gambelii). Sci Data 2024; 11:86. [PMID: 38238322 PMCID: PMC10796373 DOI: 10.1038/s41597-024-02929-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
The white-crowned sparrow, Zonotrichia leucophrys, is a passerine bird with a wide distribution and it is extensively adapted to environmental changes. It has historically acted as a model species in studies on avian ecology, physiology and behaviour. Here, we present a high-quality chromosome-level genome of Zonotrichia leucophrys using PacBio and OmniC sequencing data. Gene models were constructed by combining RNA-seq and Iso-seq data from liver, hypothalamus, and ovary. In total a 1,123,996,003 bp genome was generated, including 31 chromosomes assembled in complete scaffolds along with other, unplaced scaffolds. This high-quality genome assembly offers an important genomic resource for the research community using the white-crowned sparrow as a model for understanding avian genome biology and development, and provides a genomic basis for future studies, both fundamental and applied.
Collapse
Affiliation(s)
- Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Katarzyna Miedzinska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jesse S Krause
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA
- Department of Biology, University of Nevada Reno, Reno, NV, 89557, USA
| | - Jonathan H Pérez
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA
| | - Simone L Meddle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
73
|
Wang S, Zhang P, Fei F, Tong T, Zhou X, Zhou Y, Zhang J, Wei M, Zhang Y, Zhang L, Huang Y, Zhang L, Zhang X, Cai T, Xie C. Unexpected divergence in magnetoreceptor MagR from robin and pigeon linked to two sequence variations. Zool Res 2024; 45:69-78. [PMID: 38114434 PMCID: PMC10839668 DOI: 10.24272/j.issn.2095-8137.2023.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
Birds exhibit extraordinary mobility and remarkable navigational skills, obtaining guidance cues from the Earth's magnetic field for orientation and long-distance movement. Bird species also show tremendous diversity in navigation strategies, with considerable differences even within the same taxa and among individuals from the same population. The highly conserved iron and iron-sulfur cluster binding magnetoreceptor (MagR) protein is suggested to enable animals, including birds, to detect the geomagnetic field and navigate accordingly. Notably, MagR is also implicated in other functions, such as electron transfer and biogenesis of iron-sulfur clusters, raising the question of whether variability exists in its biochemical and biophysical features among species, particularly birds. In the current study, we conducted a comparative analysis of MagR from two different bird species, including the migratory European robin and the homing pigeon. Sequence alignment revealed an extremely high degree of similarity between the MagRs of these species, with only three sequence variations. Nevertheless, two of these variations underpinned significant differences in metal binding capacity, oligomeric state, and magnetic properties. These findings offer compelling evidence for the marked differences in MagR between the two avian species, potentially explaining how a highly conserved protein can mediate such diverse functions.
Collapse
Affiliation(s)
- Shun Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Peng Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Fan Fei
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Tianyang Tong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiujuan Zhou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Yajie Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Jing Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Mengke Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Yanqi Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Yulong Huang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Lin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Xin Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
| | - Tiantian Cai
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China. E-mail:
| | - Can Xie
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China. E-mail:
| |
Collapse
|
74
|
Holthaus KB, Eckhart L. Development-Associated Genes of the Epidermal Differentiation Complex (EDC). J Dev Biol 2024; 12:4. [PMID: 38248869 PMCID: PMC10801484 DOI: 10.3390/jdb12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The epidermal differentiation complex (EDC) is a cluster of genes that encode protein components of the outermost layers of the epidermis in mammals, reptiles and birds. The development of the stratified epidermis from a single-layered ectoderm involves an embryo-specific superficial cell layer, the periderm. An additional layer, the subperiderm, develops in crocodilians and over scutate scales of birds. Here, we review the expression of EDC genes during embryonic development. Several EDC genes are expressed predominantly or exclusively in embryo-specific cell layers, whereas others are confined to the epidermal layers that are maintained in postnatal skin. The S100 fused-type proteins scaffoldin and trichohyalin are expressed in the avian and mammalian periderm, respectively. Scaffoldin forms the so-called periderm granules, which are histological markers of the periderm in birds. Epidermal differentiation cysteine-rich protein (EDCRP) and epidermal differentiation protein containing DPCC motifs (EDDM) are expressed in the avian subperiderm where they are supposed to undergo cross-linking via disulfide bonds. Furthermore, a histidine-rich epidermal differentiation protein and feather-type corneous beta-proteins, also known as beta-keratins, are expressed in the subperiderm. The accumulating evidence for roles of EDC genes in the development of the epidermis has implications on the evolutionary diversification of the skin in amniotes.
Collapse
Affiliation(s)
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
75
|
Hu T, Chen J, Lin X, He W, Liang H, Wang M, Li W, Wu Z, Han M, Jin X, Kristiansen K, Xiao L, Zou Y. Comparison of the DNBSEQ platform and Illumina HiSeq 2000 for bacterial genome assembly. Sci Rep 2024; 14:1292. [PMID: 38221534 PMCID: PMC10788345 DOI: 10.1038/s41598-024-51725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
The Illumina HiSeq platform has been a commonly used option for bacterial genome sequencing. Now the BGI DNA nanoball (DNB) nanoarrays platform may provide an alternative platform for sequencing of bacterial genomes. To explore the impact of sequencing platforms on bacterial genome assembly, quality assessment, sequence alignment, functional annotation, mutation detection, and metagenome mapping, we compared genome assemblies based on sequencing of cultured bacterial species using the HiSeq 2000 and BGISEQ-500 platforms. In addition, simulated reads were used to evaluate the impact of insert size on genome assembly. Genome assemblies based on BGISEQ-500 sequencing exhibited higher completeness and fewer N bases in high GC genomes, whereas HiSeq 2000 assemblies exhibited higher N50. The majority of assembly assessment parameters, sequences of 16S rRNA genes and genomes, numbers of single nucleotide variants (SNV), and mapping to metagenome data did not differ significantly between platforms. More insertions were detected in HiSeq 2000 genome assemblies, whereas more deletions were detected in BGISEQ-500 genome assemblies. Insert size had no significant impact on genome assembly. Taken together, our results suggest that DNBSEQ platforms would be a valid substitute for HiSeq 2000 for bacterial genome sequencing.
Collapse
Affiliation(s)
- Tongyuan Hu
- BGI Research, Shenzhen, 518083, China
- BGI Research, Wuhan, 430074, China
| | | | - Xiaoqian Lin
- BGI Research, Shenzhen, 518083, China
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China
| | - Wenxin He
- BGI Research, Shenzhen, 518083, China
| | - Hewei Liang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Wuhan, 430074, China
| | | | - Wenxi Li
- BGI Research, Shenzhen, 518083, China
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China
| | - Zhinan Wu
- BGI Research, Shenzhen, 518083, China
| | - Mo Han
- BGI Research, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Karsten Kristiansen
- BGI Research, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China
| | - Yuanqiang Zou
- BGI Research, Shenzhen, 518083, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
76
|
Lan G, Yu J, Liu J, Zhang Y, Ma R, Zhou Y, Zhu B, Wei W, Liu J, Qi G. Complete Mitochondrial Genome and Phylogenetic Analysis of Tarsiger indicus (Aves: Passeriformes: Muscicapidae). Genes (Basel) 2024; 15:90. [PMID: 38254979 PMCID: PMC10815732 DOI: 10.3390/genes15010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Tarsiger indicus (Vieillot, 1817), the White-browed Bush Robin, is a small passerine bird widely distributed in Asian countries. Here, we successfully sequenced its mitogenome using the Illumina Novaseq 6000 platform (Illumina, San Diego, CA, USA) for PE 2 × 150 bp sequencing. Combined with other published mitogenomes, we conducted the first comprehensive comparative mitogenome analysis of Muscicapidae birds and reconstructed the phylogenetic relationships between Muscicapidae and related groups. The T. indicus mitogenome was 16,723 bp in size, and it possessed the typical avian mitogenome structure and organization. Most PCGs of T. indicus were initiated strictly with the typical start codon ATG, while COX1 and ND2 were started with GTG. RSCU statistics showed that CUA, CGA, and GCC were relatively high frequency in the T. indicus mitogenome. T. cyanurus and T. indicus shared very similar mitogenomic features. All 13 PCGs of Muscicapidae mitogenomes had experienced purifying selection. Specifically, ATP8 had the highest rate of evolution (0.13296), whereas COX1 had the lowest (0.01373). The monophylies of Muscicapidae, Turdidae, and Paradoxornithidae were strongly supported. The clade of ((Muscicapidae + Turdidae) + Sturnidae) in Passeriformes was supported by both Bayesian Inference and Maximum likelihood analyses. The latest taxonomic status of many passerine birds with complex taxonomic histories were also supported. For example, Monticola gularis, T. indicus, and T. cyanurus were allocated to Turdidae in other literature; our phylogenetic topologies clearly supported their membership in Muscicapidae; Paradoxornis heudei, Suthora webbiana, S. nipalensis, and S. fulvifrons were formerly classified into Muscicapidae; we supported their membership in Paradoxornithidae; Culicicapa ceylonensis was originally classified as a member of Muscicapidae; our results are consistent with a position in Stenostiridae. Our study enriches the genetic data of T. indicus and provides new insights into the molecular phylogeny and evolution of passerine birds.
Collapse
Affiliation(s)
- Guanwei Lan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (G.L.); (W.W.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (J.Y.); (R.M.); (Y.Z.)
| | - Jiaojiao Yu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (J.Y.); (R.M.); (Y.Z.)
| | - Juan Liu
- Administrative Bureau of Baihe National Nature Reserve, Ngawa 623400, China; (J.L.); (Y.Z.); (B.Z.)
| | - Yue Zhang
- Administrative Bureau of Baihe National Nature Reserve, Ngawa 623400, China; (J.L.); (Y.Z.); (B.Z.)
| | - Rui Ma
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (J.Y.); (R.M.); (Y.Z.)
| | - Yanshan Zhou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (J.Y.); (R.M.); (Y.Z.)
| | - Biqing Zhu
- Administrative Bureau of Baihe National Nature Reserve, Ngawa 623400, China; (J.L.); (Y.Z.); (B.Z.)
| | - Wei Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (G.L.); (W.W.)
| | - Jiabin Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (J.Y.); (R.M.); (Y.Z.)
- Institute of Wildlife Conservation, Central South University of Forestry and Technology, Changsha 410004, China
| | - Guilan Qi
- Animal Husbandry Institute, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| |
Collapse
|
77
|
Thom G, Moreira LR, Batista R, Gehara M, Aleixo A, Smith BT. Genomic Architecture Predicts Tree Topology, Population Structuring, and Demographic History in Amazonian Birds. Genome Biol Evol 2024; 16:evae002. [PMID: 38236173 PMCID: PMC10823491 DOI: 10.1093/gbe/evae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Geographic barriers are frequently invoked to explain genetic structuring across the landscape. However, inferences on the spatial and temporal origins of population variation have been largely limited to evolutionary neutral models, ignoring the potential role of natural selection and intrinsic genomic processes known as genomic architecture in producing heterogeneity in differentiation across the genome. To test how variation in genomic characteristics (e.g. recombination rate) impacts our ability to reconstruct general patterns of differentiation between species that cooccur across geographic barriers, we sequenced the whole genomes of multiple bird populations that are distributed across rivers in southeastern Amazonia. We found that phylogenetic relationships within species and demographic parameters varied across the genome in predictable ways. Genetic diversity was positively associated with recombination rate and negatively associated with species tree support. Gene flow was less pervasive in genomic regions of low recombination, making these windows more likely to retain patterns of population structuring that matched the species tree. We further found that approximately a third of the genome showed evidence of selective sweeps and linked selection, skewing genome-wide estimates of effective population sizes and gene flow between populations toward lower values. In sum, we showed that the effects of intrinsic genomic characteristics and selection can be disentangled from neutral processes to elucidate spatial patterns of population differentiation.
Collapse
Affiliation(s)
- Gregory Thom
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Lucas Rocha Moreira
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Romina Batista
- Programa de Coleções Biológicas, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
- School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Marcelo Gehara
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA
| | - Alexandre Aleixo
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Department of Environmental Genomics, Instituto Tecnológico Vale, Belém, Brazil
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
78
|
Mirchandani CD, Shultz AJ, Thomas GWC, Smith SJ, Baylis M, Arnold B, Corbett-Detig R, Enbody E, Sackton TB. A Fast, Reproducible, High-throughput Variant Calling Workflow for Population Genomics. Mol Biol Evol 2024; 41:msad270. [PMID: 38069903 PMCID: PMC10764099 DOI: 10.1093/molbev/msad270] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
The increasing availability of genomic resequencing data sets and high-quality reference genomes across the tree of life present exciting opportunities for comparative population genomic studies. However, substantial challenges prevent the simple reuse of data across different studies and species, arising from variability in variant calling pipelines, data quality, and the need for computationally intensive reanalysis. Here, we present snpArcher, a flexible and highly efficient workflow designed for the analysis of genomic resequencing data in nonmodel organisms. snpArcher provides a standardized variant calling pipeline and includes modules for variant quality control, data visualization, variant filtering, and other downstream analyses. Implemented in Snakemake, snpArcher is user-friendly, reproducible, and designed to be compatible with high-performance computing clusters and cloud environments. To demonstrate the flexibility of this pipeline, we applied snpArcher to 26 public resequencing data sets from nonmammalian vertebrates. These variant data sets are hosted publicly to enable future comparative population genomic analyses. With its extensibility and the availability of public data sets, snpArcher will contribute to a broader understanding of genetic variation across species by facilitating the rapid use and reuse of large genomic data sets.
Collapse
Affiliation(s)
- Cade D Mirchandani
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | | | - Sara J Smith
- Informatics Group, Harvard University, Cambridge, MA, USA
- Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Mara Baylis
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Brian Arnold
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| | - Russ Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Erik Enbody
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
79
|
Louder MIM, Justen H, Kimmitt AA, Lawley KS, Turner LM, Dickman JD, Delmore KE. Gene regulation and speciation in a migratory divide between songbirds. Nat Commun 2024; 15:98. [PMID: 38167733 PMCID: PMC10761872 DOI: 10.1038/s41467-023-44352-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Behavioral variation abounds in nature. This variation is important for adaptation and speciation, but its molecular basis remains elusive. Here, we use a hybrid zone between two subspecies of songbirds that differ in migration - an ecologically important and taxonomically widespread behavior---to gain insight into this topic. We measure gene expression in five brain regions. Differential expression between migratory states was dominated by circadian genes in all brain regions. The remaining patterns were largely brain-region specific. For example, expression differences between the subspecies that interact with migratory state likely help maintain reproductive isolation in this system and were documented in only three brain regions. Contrary to existing work on regulatory mechanisms underlying species-specific traits, two lines of evidence suggest that trans- (vs. cis) regulatory changes underlie these patterns - no evidence for allele-specific expression in hybrids and minimal associations between genomic differentiation and expression differences. Additional work with hybrids shows expression levels were often distinct (transgressive) from parental forms. Behavioral contrasts and functional enrichment analyses allowed us to connect these patterns to mitonuclear incompatibilities and compensatory responses to stress that could exacerbate selection on hybrids and contribute to speciation.
Collapse
Affiliation(s)
| | - Hannah Justen
- Biology Department, Texas A&M University, College Station, TX, USA
| | | | - Koedi S Lawley
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Leslie M Turner
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Bath, UK
| | - J David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kira E Delmore
- Biology Department, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
80
|
Collins G, Schneider C, Boštjančić LL, Burkhardt U, Christian A, Decker P, Ebersberger I, Hohberg K, Lecompte O, Merges D, Muelbaier H, Romahn J, Römbke J, Rutz C, Schmelz R, Schmidt A, Theissinger K, Veres R, Lehmitz R, Pfenninger M, Bálint M. The MetaInvert soil invertebrate genome resource provides insights into below-ground biodiversity and evolution. Commun Biol 2023; 6:1241. [PMID: 38066075 PMCID: PMC10709333 DOI: 10.1038/s42003-023-05621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Soil invertebrates are among the least understood metazoans on Earth. Thus far, the lack of taxonomically broad and dense genomic resources has made it hard to thoroughly investigate their evolution and ecology. With MetaInvert we provide draft genome assemblies for 232 soil invertebrate species, representing 14 common groups and 94 families. We show that this data substantially extends the taxonomic scope of DNA- or RNA-based taxonomic identification. Moreover, we confirm that theories of genome evolution cannot be generalised across evolutionarily distinct invertebrate groups. The soil invertebrate genomes presented here will support the management of soil biodiversity through molecular monitoring of community composition and function, and the discovery of evolutionary adaptations to the challenges of soil conditions.
Collapse
Affiliation(s)
- Gemma Collins
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
| | - Clément Schneider
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Ljudevit Luka Boštjančić
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
- Department of Molecular Ecology, Institute for Environmental Sciences, Rhineland-Palatinate Technical University Kaiserslautern Landau, Landau, Germany
| | | | - Axel Christian
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Peter Decker
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Ingo Ebersberger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Karin Hohberg
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Odile Lecompte
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Dominik Merges
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hannah Muelbaier
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Juliane Romahn
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
| | - Jörg Römbke
- ECT Oekotoxikologie GmbH, Flörsheim, Germany
| | - Christelle Rutz
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | | | - Alexandra Schmidt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Kathrin Theissinger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Department of Molecular Ecology, Institute for Environmental Sciences, Rhineland-Palatinate Technical University Kaiserslautern Landau, Landau, Germany
| | - Robert Veres
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Institute of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ricarda Lehmitz
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Johannes Gutenberg University, Mainz, Germany
| | - Miklós Bálint
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany.
- Department of Insect Biotechnology, Justus-Liebig University, Gießen, Germany.
| |
Collapse
|
81
|
Li X, Wang X, Yu X, Yang C, Lin L, Huang Y. The draft genome of the Temminck's tragopan (Tragopan temminckii) with evolutionary implications. BMC Genomics 2023; 24:751. [PMID: 38062370 PMCID: PMC10702090 DOI: 10.1186/s12864-023-09857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND High-quality genome data of birds play a significant role in the systematic study of their origin and adaptive evolution. The Temminck's tragopan (Tragopan temminckii) (Galliformes, Phasianidae), a larger pheasant, is one of the most abundant and widely distributed species of the genus Tragopan, and was defined as class II of the list of national key protected wild animals in China. The absence of a sequenced genome has restricted previous evolutionary trait studies of this taxa. RESULTS The whole genome of the Temminck's tragopan was sequenced using Illumina and PacBio platform, and then de novo assembled and annotated. The genome size was 1.06 Gb, with a contig N50 of 4.17 Mb. A total of 117.22 Mb (11.00%) repeat sequences were identified. 16,414 genes were predicted using three methods, with 16,099 (98.08%) annotated as functional genes based on five databases. In addition, comparative genome analyses were conducted across 12 Galliformes species. The results indicated that T. temminckii was the first species to branch off from the clade containing Lophura nycthemera, Phasianus colchicus, Chrysolophus pictus, Syrmaticus mikado, Perdix hodgsoniae, and Meleagris gallopavo, with a corresponding divergence time of 31.43 million years ago (MYA). Expanded gene families associated with immune response and energy metabolism were identified. Genes and pathways associated with plumage color and feather development, immune response, and energy metabolism were found in the list of positively selected genes (PSGs). CONCLUSIONS A genome draft of the Temminck's tragopan was reported, genome feature and comparative genome analysis were described, and genes and pathways related to plumage color and feather development, immune response, and energy metabolism were identified. The genomic data of the Temminck's tragopan considerably contribute to the genome evolution and phylogeny of the genus Tragopan and the whole Galliformes species underlying ecological adaptation strategies.
Collapse
Affiliation(s)
- Xuejuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoyang Wang
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China
| | - Xiaoping Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Chao Yang
- Shaanxi Institute of Zoology, Xi'an, China
| | - Liliang Lin
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
82
|
Singleton M, Eisen M. Leveraging genomic redundancy to improve inference and alignment of orthologous proteins. G3 (BETHESDA, MD.) 2023; 13:jkad222. [PMID: 37770067 PMCID: PMC10700111 DOI: 10.1093/g3journal/jkad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Identifying protein sequences with common ancestry is a core task in bioinformatics and evolutionary biology. However, methods for inferring and aligning such sequences in annotated genomes have not kept pace with the increasing scale and complexity of the available data. Thus, in this work, we implemented several improvements to the traditional methodology that more fully leverage the redundancy of closely related genomes and the organization of their annotations. Two highlights include the application of the more flexible k-clique percolation algorithm for identifying clusters of orthologous proteins and the development of a novel technique for removing poorly supported regions of alignments with a phylogenetic hidden Markov model (phylo-HMM). In making the latter, we wrote a fully documented Python package Homomorph that implements standard HMM algorithms and created a set of tutorials to promote its use by a wide audience. We applied the resulting pipeline to a set of 33 annotated Drosophila genomes, generating 22,813 orthologous groups and 8,566 high-quality alignments.
Collapse
Affiliation(s)
- Marc Singleton
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Michael Eisen
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
83
|
Hill J, Enbody ED, Bi H, Lamichhaney S, Lei W, Chen J, Wei C, Liu Y, Schwochow D, Younis S, Widemo F, Andersson L. Low Mutation Load in a Supergene Underpinning Alternative Male Mating Strategies in Ruff (Calidris pugnax). Mol Biol Evol 2023; 40:msad224. [PMID: 37804117 DOI: 10.1093/molbev/msad224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
A paradox in evolutionary biology is how supergenes can maintain high fitness despite reduced effective population size, the suppression of recombination, and the expected accumulation of mutational load. The ruff supergene involves 2 rare inversion haplotypes (satellite and faeder). These are recessive lethals but with dominant effects on male mating strategies, plumage, and body size. Sequence divergence to the wild-type (independent) haplotype indicates that the inversion could be as old as 4 million years. Here, we have constructed a highly contiguous genome assembly of the inversion region for both the independent and satellite haplotypes. Based on the new data, we estimate that the recombination event(s) creating the satellite haplotype occurred only about 70,000 yr ago. Contrary to expectations for supergenes, we find no substantial expansion of repeats and only a modest mutation load on the satellite and faeder haplotypes despite high sequence divergence to the non-inverted haplotype (1.46%). The essential centromere protein N (CENPN) gene is disrupted by the inversion and is as well conserved on the inversion haplotypes as on the noninversion haplotype. These results suggest that the inversion may be much younger than previously thought. The low mutation load, despite recessive lethality, may be explained by the introgression of the inversion from a now extinct lineage.
Collapse
Affiliation(s)
- Jason Hill
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Huijuan Bi
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Sangeet Lamichhaney
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
- Department of Biological Sciences, Kent State University, Kent, OH 44241, USA
| | - Weipan Lei
- Key Laboratory for Biodiversity Science and Ecological Engineering, National Demonstration Center for Experimental Life Sciences and Biotechnology Education, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Juexin Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, 510275 Guangzhou, China
| | - Chentao Wei
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, 510275 Guangzhou, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, 510275 Guangzhou, China
| | - Doreen Schwochow
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Shady Younis
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
- Division of Immunology and Rheumatology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Fredrik Widemo
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
84
|
Askelson KK, Spellman GM, Irwin D. Genomic divergence and introgression between cryptic species of a widespread North American songbird. Mol Ecol 2023; 32:6839-6853. [PMID: 37916530 DOI: 10.1111/mec.17169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/20/2023] [Indexed: 11/03/2023]
Abstract
Analysis of genomic variation among related populations can sometimes reveal distinct species that were previously undescribed due to similar morphological appearances, and close examination of such cases can provide much insight regarding speciation. Genomic data can also reveal the role of reticulate evolution in differentiation and speciation. White-breasted nuthatches (Sitta carolinensis) are widely distributed North American songbirds that are currently classified as a single species but have been suspected to represent a case of cryptic speciation. Previous genetic analyses suggested four divergent groups, but it was unclear whether these represented multiple reproductively isolated species. Using extensive genomic sampling of over 350 white-breasted nuthatches from across North America and a new chromosome-level reference genome, we asked if white-breasted nuthatches are comprised of multiple species and whether introgression has occurred between divergent populations. Genomic variation of over 300,000 loci revealed four highly differentiated populations (Pacific, n = 45; Eastern, n = 23; Rocky Mountains North, n = 138; and Rocky Mountains South, n = 150) with geographic ranges that are adjacent. We observed a moderate degree of admixture between Rocky Mountain populations but only a small number of hybrids between the Rockies and the Eastern population. The rarity of hybrids together with high levels of differentiation between populations is supportive of populations having some level of reproductive isolation. Between populations, we show evidence for introgression from a divergent ghost lineage of white-breasted nuthatches into the Rocky Mountains South population, which is otherwise closely related to Rocky Mountains North. We conclude that white-breasted nuthatches are best considered at least three species and that ghost lineage introgression has contributed to differentiation between the two Rocky Mountain populations. White-breasted nuthatches provide a dramatic case of morphological similarity despite high genomic differentiation, and the varying levels of reproductive isolation among the four groups provide an example of the speciation continuum.
Collapse
Affiliation(s)
- Kenneth K Askelson
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Garth M Spellman
- Department of Zoology, Denver Museum of Nature & Science, Denver, Colorado, USA
| | - Darren Irwin
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
85
|
Femerling G, van Oosterhout C, Feng S, Bristol RM, Zhang G, Groombridge J, P Gilbert MT, Morales HE. Genetic Load and Adaptive Potential of a Recovered Avian Species that Narrowly Avoided Extinction. Mol Biol Evol 2023; 40:msad256. [PMID: 37995319 DOI: 10.1093/molbev/msad256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
High genetic diversity is a good predictor of long-term population viability, yet some species persevere despite having low genetic diversity. Here we study the genomic erosion of the Seychelles paradise flycatcher (Terpsiphone corvina), a species that narrowly avoided extinction after having declined to 28 individuals in the 1960s. The species recovered unassisted to over 250 individuals in the 1990s and was downlisted from Critically Endangered to Vulnerable in the International Union for the Conservation of Nature Red List in 2020. By comparing historical, prebottleneck (130+ years old) and modern genomes, we uncovered a 10-fold loss of genetic diversity. Highly deleterious mutations were partly purged during the bottleneck, but mildly deleterious mutations accumulated. The genome shows signs of historical inbreeding during the bottleneck in the 1960s, but low levels of recent inbreeding after demographic recovery. Computer simulations suggest that the species long-term small Ne reduced the masked genetic load and made the species more resilient to inbreeding and extinction. However, the reduction in genetic diversity due to the chronically small Ne and the severe bottleneck is likely to have reduced the species adaptive potential to face environmental change, which together with a higher load, compromises its long-term population viability. Thus, small ancestral Ne offers short-term bottleneck resilience but hampers long-term adaptability to environmental shifts. In light of rapid global rates of population decline, our work shows that species can continue to suffer the effect of their decline even after recovery, highlighting the importance of considering genomic erosion and computer modeling in conservation assessments.
Collapse
Affiliation(s)
- Georgette Femerling
- Section for Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Rachel M Bristol
- Mahe, Seychelles
- Division of Human and Social Sciences, Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Jim Groombridge
- Division of Human and Social Sciences, Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK
| | - M Thomas P Gilbert
- Section for Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Hernán E Morales
- Section for Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
86
|
DeRaad DA, Escalona M, Benham PM, Marimuthu MPA, Sahasrabudhe RM, Nguyen O, Chumchim N, Beraut E, Fairbairn CW, Seligmann W, Bowie RCK, Cicero C, McCormack JE, Wayne RK. De novo assembly of a chromosome-level reference genome for the California Scrub-Jay, Aphelocoma californica. J Hered 2023; 114:669-680. [PMID: 37589384 PMCID: PMC10650945 DOI: 10.1093/jhered/esad047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
We announce the assembly of the first de novo reference genome for the California Scrub-Jay (Aphelocoma californica). The genus Aphelocoma comprises four currently recognized species including many locally adapted populations across Mesoamerica and North America. Intensive study of Aphelocoma has revealed novel insights into the evolutionary mechanisms driving diversification in natural systems. Additional insights into the evolutionary history of this group will require continued development of high-quality, publicly available genomic resources. We extracted high molecular weight genomic DNA from a female California Scrub-Jay from northern California and generated PacBio HiFi long-read data and Omni-C chromatin conformation capture data. We used these data to generate a de novo partially phased diploid genome assembly, consisting of two pseudo-haplotypes, and scaffolded them using inferred physical proximity information from the Omni-C data. The more complete pseudo-haplotype assembly (arbitrarily designated "Haplotype 1") is 1.35 Gb in total length, highly contiguous (contig N50 = 11.53 Mb), and highly complete (BUSCO completeness score = 97%), with comparable scaffold sizes to chromosome-level avian reference genomes (scaffold N50 = 66.14 Mb). Our California Scrub-Jay assembly is highly syntenic with the New Caledonian Crow reference genome despite ~10 million years of divergence, highlighting the temporal stability of the avian genome. This high-quality reference genome represents a leap forward in publicly available genomic resources for Aphelocoma, and the family Corvidae more broadly. Future work using Aphelocoma as a model for understanding the evolutionary forces generating and maintaining biodiversity across phylogenetic scales can now benefit from a highly contiguous, in-group reference genome.
Collapse
Affiliation(s)
- Devon A DeRaad
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Phred M Benham
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
| | - Ruta M Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
| | - Noravit Chumchim
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Colin W Fairbairn
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - William Seligmann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Carla Cicero
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | - John E McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, United States
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States
| |
Collapse
|
87
|
Carbeck K, Arcese P, Lovette I, Pruett C, Winker K, Walsh J. Candidate genes under selection in song sparrows co-vary with climate and body mass in support of Bergmann's Rule. Nat Commun 2023; 14:6974. [PMID: 37935683 PMCID: PMC10630373 DOI: 10.1038/s41467-023-42786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
Ecogeographic rules denote spatial patterns in phenotype and environment that may reflect local adaptation as well as a species' capacity to adapt to change. To identify genes underlying Bergmann's Rule, which posits that spatial correlations of body mass and temperature reflect natural selection and local adaptation in endotherms, we compare 79 genomes from nine song sparrow (Melospiza melodia) subspecies that vary ~300% in body mass (17 - 50 g). Comparing large- and smaller-bodied subspecies revealed 9 candidate genes in three genomic regions associated with body mass. Further comparisons to the five smallest subspecies endemic to California revealed eight SNPs within four of the candidate genes (GARNL3, RALGPS1, ANGPTL2, and COL15A1) associated with body mass and varying as predicted by Bergmann's Rule. Our results support the hypothesis that co-variation in environment, body mass and genotype reflect the influence of natural selection on local adaptation and a capacity for contemporary evolution in this diverse species.
Collapse
Affiliation(s)
- Katherine Carbeck
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, T6T 1Z4, Canada.
| | - Peter Arcese
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, T6T 1Z4, Canada
| | - Irby Lovette
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Christin Pruett
- Department of Biology, Ouachita Baptist University, Arkadelphia, AR, 71998, USA
| | - Kevin Winker
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Jennifer Walsh
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
88
|
Intarapat S, Sukparangsi W, Gusev O, Sheng G. A Bird's-Eye View of Endangered Species Conservation: Avian Genomics and Stem Cell Approaches for Green Peafowl ( Pavo muticus). Genes (Basel) 2023; 14:2040. [PMID: 38002983 PMCID: PMC10671381 DOI: 10.3390/genes14112040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Aves ranks among the top two classes for the highest number of endangered and extinct species in the kingdom Animalia. Notably, the IUCN Red List classified the green peafowl as endangered. This highlights promising strategies using genetics and reproductive technologies for avian wildlife conservation. These platforms provide the capacity to predict population trends and enable the practical breeding of such species. The conservation of endangered avian species is facilitated through the application of genomic data storage and analysis. Storing the sequence is a form of biobanking. An analysis of sequence can identify genetically distinct individuals for breeding. Here, we reviewed avian genomics and stem cell approaches which not only offer hope for saving endangered species, such as the green peafowl but also for other birds threatened with extinction.
Collapse
Affiliation(s)
- Sittipon Intarapat
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, Chonburi 20131, Thailand;
| | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia;
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan;
| |
Collapse
|
89
|
Widrig KE, Bhullar BS, Field DJ. 3D atlas of tinamou (Neornithes: Tinamidae) pectoral morphology: Implications for reconstructing the ancestral neornithine flight apparatus. J Anat 2023; 243:729-757. [PMID: 37358291 PMCID: PMC10557402 DOI: 10.1111/joa.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
Palaeognathae, the extant avian clade comprising the flightless ratites and flight-capable tinamous (Tinamidae), is the sister group to all other living birds, and recent phylogenetic studies illustrate that tinamous are phylogenetically nested within a paraphyletic assemblage of ratites. As the only extant palaeognaths that have retained the ability to fly, tinamous may provide key information on the nature of the flight apparatus of ancestral crown palaeognaths-and, in turn, crown birds-as well as insight into convergent modifications to the wing apparatus among extant ratite lineages. To reveal new information about the musculoskeletal anatomy of tinamous and facilitate development of computational biomechanical models of tinamou wing function, we generated a three-dimensional musculoskeletal model of the flight apparatus of the extant Andean tinamou (Nothoprocta pentlandii) using diffusible iodine-based contrast-enhanced computed tomography (diceCT). Origins and insertions of the pectoral flight musculature of N. pentlandii are generally consistent with those of other extant volant birds specialized for burst flight, and the entire suite of presumed ancestral neornithine flight muscles are present in N. pentlandii with the exception of the biceps slip. The pectoralis and supracoracoideus muscles are robust, similar to the condition in other extant burst-flying birds such as many extant Galliformes. Contrary to the condition in most extant Neognathae (the sister clade to Palaeognathae), the insertion of the pronator superficialis has a greater distal extent than the pronator profundus, although most other anatomical observations are broadly consistent with the conditions observed in extant neognaths. This work will help form a basis for future comparative studies of the avian musculoskeletal system, with implications for reconstructing the flight apparatus of ancestral crown birds and clarifying musculoskeletal modifications underlying the convergent origins of ratite flightlessness.
Collapse
Affiliation(s)
- Klara E. Widrig
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
| | - Bhart‐Anjan S. Bhullar
- Department of Earth and Planetary SciencesYale UniversityNew HavenConnecticutUSA
- Peabody Museum of Natural HistoryYale UniversityNew HavenConnecticutUSA
| | - Daniel J. Field
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- Museum of ZoologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
90
|
Zinevich L, Prommer M, Laczkó L, Rozhkova D, Sorokin A, Karyakin I, Bagyura J, Cserkész T, Sramkó G. Phylogenomic insights into the polyphyletic nature of Altai falcons within eastern sakers (Falco cherrug) and the origins of gyrfalcons (Falco rusticolus). Sci Rep 2023; 13:17800. [PMID: 37853004 PMCID: PMC10584951 DOI: 10.1038/s41598-023-44534-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
The Altai falcon from Central Asia always attracted the attention of humans. Long considered a totemic bird in its native area, modern falconers still much appreciated this large-bodied and mighty bird of prey due to its rarity and unique look. The peculiar body characteristics halfway between the saker falcon (Falco cherrug) and the gyrfalcon (F. rusticolus) triggered debates about its contentious taxonomy. The weak phylogenetic signal associated with traditional genetic methods could not resolve this uncertainty. Here, we address the controversial evolutionary origin of Altai falcons by means of a genome-wide approach, Restriction-site Associated DNA sequencing, using sympatric eastern sakers falcons, allopatric western saker falcons and gyrfalcons as outgroup. This approach provided an unprecedented insight into the phylogenetic relationships of the studied populations by delivering 17,095 unlinked SNPs shedding light on the polyphyletic nature of Altai falcons within eastern sakers. Thus we concluded that the former must correspond to a low taxonomic rank, probably an ecotype or form of the latter. Also, we found that eastern sakers are paraphyletic without gyrfalcons, thus, these latter birds are best regarded as the direct sister lineage of the eastern sakers. This evolutionary relationship, corroborated also by re-analyzing the dataset with the inclusion of outgroup samples (F. biarmicus and F. peregrinus), put eastern sakers into a new light as the potential ancestral genetic source of high latitude and altitude adaptation in descendent populations. Finally, conservation genomic values hint at the stable genetic background of the studied saker populations.
Collapse
Affiliation(s)
- Liudmila Zinevich
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow, Russian Federation
- All-Russian Research Institute for Environmental Protection, Moscow, Russian Federation
| | | | - Levente Laczkó
- HUN-REN-UD Conservation Biology Research Group, Egyetem tér 1, Debrecen, 4032, Hungary
- Evolutionary Genomics Research Group, Department of Botany, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Daria Rozhkova
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow, Russian Federation
- All-Russian Research Institute for Environmental Protection, Moscow, Russian Federation
| | - Alexander Sorokin
- All-Russian Research Institute for Environmental Protection, Moscow, Russian Federation
| | | | - János Bagyura
- MME - BirdLife Hungary, Költő utca 21, Budapest, 1121, Hungary
| | - Tamás Cserkész
- Hungarian Natural History Museum, Baross utca 13, Budapest, 1088, Hungary
| | - Gábor Sramkó
- HUN-REN-UD Conservation Biology Research Group, Egyetem tér 1, Debrecen, 4032, Hungary.
- Evolutionary Genomics Research Group, Department of Botany, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
| |
Collapse
|
91
|
Xiong Z, He D, Guang X, Li Q. Novel tRNA Gene Rearrangements in the Mitochondrial Genomes of Poneroid Ants and Phylogenetic Implication of Paraponerinae (Hymenoptera: Formicidae). Life (Basel) 2023; 13:2068. [PMID: 37895449 PMCID: PMC10608118 DOI: 10.3390/life13102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Ants (Formicidae) are the most diverse eusocial insects in Hymenoptera, distributed across 17 extant subfamilies grouped into 3 major clades, the Formicoid, Leptanilloid, and Poneroid. While the mitogenomes of Formicoid ants have been well studied, there is a lack of published data on the mitogenomes of Poneroid ants, which requires further characterization. In this study, we first present three complete mitogenomes of Poneroid ants: Paraponera clavata, the only extant species from the subfamily Paraponerinae, and two species (Harpegnathos venator and Buniapone amblyops) from the Ponerinae subfamily. Notable novel gene rearrangements were observed in the new mitogenomes, located in the gene blocks CR-trnM-trnI-trnQ-ND2, COX1-trnK-trnD-ATP8, and ND3-trnA-trnR-trnN-trnS1-trnE-trnF-ND5. We reported the duplication of tRNA genes for the first time in Formicidae. An extra trnQ gene was identified in H. venator. These gene rearrangements could be explained by the tandem duplication/random loss (TDRL) model and the slipped-strand mispairing model. Additionally, one large duplicated region containing tandem repeats was identified in the control region of P. clavata. Phylogenetic analyses based on protein-coding genes and rRNA genes via maximum likelihood and Bayes methods supported the monophyly of the Poneroid clade and the sister group relationship between the subfamilies Paraponerinae and Amblyoponinae. However, caution is advised in interpreting the positions of Paraponerinae due to the potential artifact of long-branch attraction.
Collapse
Affiliation(s)
- Zijun Xiong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- BGI Research, Wuhan 430074, China
| | - Ding He
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark;
| | | | - Qiye Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- BGI Research, Wuhan 430074, China
- BGI Research, Shenzhen 518083, China;
| |
Collapse
|
92
|
Rader JA, Pivovarnik MA, Vantilburg ME, Whitehouse LS. PhyloMatcher: a tool for resolving conflicts in taxonomic nomenclature. BIOINFORMATICS ADVANCES 2023; 3:vbad144. [PMID: 37840907 PMCID: PMC10576170 DOI: 10.1093/bioadv/vbad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Summary Large-scale comparative studies rely on the application of both phylogenetic trees and phenotypic data, both of which come from a variety of sources, but due to the changing nature of phylogenetic classification over time, many taxon names in comparative datasets do not match the nomenclature in phylogenetic trees. Manual curation of taxonomic synonyms in large comparative datasets can be daunting. To address this issue, we introduce PhyloMatcher, a tool which allows for programmatic querying of the National Center for Biotechnology Information Taxonomy and Global Biodiversity Information Facility databases to find associated synonyms with given target species names. Availability and implementation PhyloMatcher is easily installed as a Python package with pip, or as a standalone GUI application. PhyloMatcher source code and documentation are freely available at https://github.com/Lswhiteh/PhyloMatcher, the GUI application can be downloaded from the Releases page.
Collapse
Affiliation(s)
- Jonathan A Rader
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, United States
| | - Madelyn A Pivovarnik
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, United States
| | - Matias E Vantilburg
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, United States
| | - Logan S Whitehouse
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, United States
| |
Collapse
|
93
|
Niknafs S, Navarro M, Schneider ER, Roura E. The avian taste system. Front Physiol 2023; 14:1235377. [PMID: 37745254 PMCID: PMC10516129 DOI: 10.3389/fphys.2023.1235377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Taste or gustation is the sense evolving from the chemo-sensory system present in the oral cavity of avian species, which evolved to evaluate the nutritional value of foods by detecting relevant compounds including amino acids and peptides, carbohydrates, lipids, calcium, salts, and toxic or anti-nutritional compounds. In birds compared to mammals, due to the relatively low retention time of food in the oral cavity, the lack of taste papillae in the tongue, and an extremely limited secretion of saliva, the relevance of the avian taste system has been historically undermined. However, in recent years, novel data has emerged, facilitated partially by the advent of the genomic era, evidencing that the taste system is as crucial to avian species as is to mammals. Despite many similarities, there are also fundamental differences between avian and mammalian taste systems in terms of anatomy, distribution of taste buds, and the nature and molecular structure of taste receptors. Generally, birds have smaller oral cavities and a lower number of taste buds compared to mammals, and their distribution in the oral cavity appears to follow the swallowing pattern of foods. In addition, differences between bird species in the size, structure and distribution of taste buds seem to be associated with diet type and other ecological adaptations. Birds also seem to have a smaller repertoire of bitter taste receptors (T2Rs) and lack some taste receptors such as the T1R2 involved in sweet taste perception. This has opened new areas of research focusing on taste perception mechanisms independent of GPCR taste receptors and the discovery of evolutionary shifts in the molecular function of taste receptors adapting to ecological niches in birds. For example, recent discoveries have shown that the amino acid taste receptor dimer T1R1-T1R3 have mutated to sense simple sugars in almost half of the living bird species, or SGLT1 has been proposed as a part of a T1R2-independent sweet taste sensing in chicken. The aim of this review is to present the scientific data known to date related to the avian taste system across species and its impact on dietary choices including domestic and wild species.
Collapse
Affiliation(s)
- Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Marta Navarro
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eve R. Schneider
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
94
|
Jackson LR, Lopez MS, Alward B. Breaking Through the Bottleneck: Krogh's Principle in Behavioral Neuroendocrinology and the Potential of Gene Editing. Integr Comp Biol 2023; 63:428-443. [PMID: 37312279 PMCID: PMC10445420 DOI: 10.1093/icb/icad068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
In 1929, August Krogh wrote that for every question in biology, there is a species or collection of species in which pursuing such questions is the most appropriate for achieving the deepest insights. Referred to as "Krogh's Principle," these words are a guiding force for many biologists. In practice, Krogh's principle might guide a biologist interested in studying bi-parental care to choose not to use lab mice, in which the female does most of the parenting, but instead study species in which bi-parental care is present and clearly observable, such as in certain poison dart frogs. This approach to pursuing biological questions has been fruitful, with more in-depth insights achievable with new technologies. However, up until recently, an important limitation of Krogh's principle for biologists interested in the functions of certain genes, was certain techniques were only available for a few traditional model organisms such as lab mice, fruit flies (Drosophila melanogaster), zebrafish (Danio rerio) and C. elegans (Caenorhabditis elegans), in which testing the functions of molecular systems on biological processes can be achieved using genetic knockout (KO) and transgenic technology. These methods are typically more precise than other approaches (e.g., pharmacology) commonly used in nontraditional model organisms to address similar questions. Therefore, some of the most in-depth insights into our understanding of the molecular control of these mechanisms have come from a small number of genetically tractable species. Recent advances in gene editing technology such as CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats)/Cas9 gene editing as a laboratory tool has changed the insights achievable for biologists applying Krogh's principle. In this review, we will provide a brief summary on how some researchers of nontraditional model organisms have been able to achieve different levels of experimental precision with limited genetic tractability in their non-traditional model organism in the field of behavioral neuroendocrinology, a field in which understanding tissue and brain-region specific actions of molecules of interest has been a major goal. Then, we will highlight the exciting potential of Krogh's principle using discoveries made in a popular model species of social behavior, the African cichlid fish Astatotilapia burtoni. Specifically, we will focus on insights gained from studies of the control of social status by sex steroid hormones (androgens and estrogens) in A. burtoni that originated during field observations during the 1970s, and have recently culminated in novel insights from CRISPR/Cas9 gene editing in laboratory studies. Our review highlighting discoveries in A. burtoni may function as a roadmap for others using Krogh's principle aiming to incorporate gene editing into their research program. Gene editing is thus a powerful complimentary laboratory tool researchers can use to yield novel insights into understanding the molecular mechanisms of physiology and behavior in non-traditional model organisms.
Collapse
Affiliation(s)
- Lillian R Jackson
- Department of Psychology, University of Houston, Houston, TX 77204USA
| | - Mariana S Lopez
- Department of Psychology, University of Houston, Houston, TX 77204USA
| | - Beau Alward
- Department of Psychology, University of Houston, Houston, TX 77204USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004USA
| |
Collapse
|
95
|
Benham PM, Cicero C, DeRaad DA, McCormack JE, Wayne RK, Escalona M, Beraut E, Marimuthu MPA, Nguyen O, Nachman MW, Bowie RCK. A highly contiguous reference genome for the Steller's jay (Cyanocitta stelleri). J Hered 2023; 114:549-560. [PMID: 37395718 PMCID: PMC10445514 DOI: 10.1093/jhered/esad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023] Open
Abstract
The Steller's jay is a familiar bird of western forests from Alaska south to Nicaragua. Here, we report a draft reference assembly for the species generated from PacBio HiFi long-read and Omni-C chromatin-proximity sequencing data as part of the California Conservation Genomics Project (CCGP). Sequenced reads were assembled into 352 scaffolds totaling 1.16 Gb in length. Assembly metrics indicate a highly contiguous and complete assembly with a contig N50 of 7.8 Mb, scaffold N50 of 25.8 Mb, and BUSCO completeness score of 97.2%. Repetitive elements span 16.6% of the genome including nearly 90% of the W chromosome. Compared with high-quality assemblies from other members of the family Corvidae, the Steller's jay genome contains a larger proportion of repetitive elements than 4 crow species (Corvus), but a lower proportion of repetitive elements than the California scrub-jay (Aphelocoma californica). This reference genome will serve as an essential resource for future studies on speciation, local adaptation, phylogeography, and conservation genetics in this species of significant biological interest.
Collapse
Affiliation(s)
- Phred M Benham
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, United States
| | - Carla Cicero
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
| | - Devon A DeRaad
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| | - John E McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, United States
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
| | - Michael W Nachman
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, United States
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
96
|
Wang J, Han GZ. Genome mining shows that retroviruses are pervasively invading vertebrate genomes. Nat Commun 2023; 14:4968. [PMID: 37591904 PMCID: PMC10435555 DOI: 10.1038/s41467-023-40732-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023] Open
Abstract
Endogenous retroviruses (ERVs) record past retroviral infections, providing molecular archives for interrogating the evolution of retroviruses and retrovirus-host interaction. However, the vast majority of ERVs are not active anymore due to various disruptive mutations, and ongoing retroviral invasion of vertebrate genomes has been rarely documented. Here we analyze genomics data from 2004 vertebrates for mining invading ERVs (ERVi). We find that at least 412 ERVi elements representing 217 viral operational taxonomic units are invading the genomes of 123 vertebrates, 18 of which have been assessed to be threatened species. Our results reveal an unexpected prevalence of ongoing retroviral invasion in vertebrates and expand the diversity of retroviruses recently circulating in the wild. We characterize the pattern and nature of ERVi in the historical and biogeographical context of their hosts, for instance, the generation of model organisms, sympatric speciation, and domestication. We suspect that these ERVi are relevant to conservation of threatened species, zoonoses in the wild, and emerging infectious diseases in humans.
Collapse
Affiliation(s)
- Jianhua Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
97
|
Burbrink FT, Harrington SM, Bobo D, Myers EA. Considering admixture when producing draft genomes: an example in North American ratsnakes (Pantherophis alleghaniensis/Pantherophis obsoletus). G3 (BETHESDA, MD.) 2023; 13:jkad113. [PMID: 37228097 PMCID: PMC10411579 DOI: 10.1093/g3journal/jkad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
The number of reference genomes of snakes lags behind several other vertebrate groups (e.g. birds and mammals). However, in the last two years, a concerted effort by researchers from around the world has produced new genomes of snakes representing members from several new families. Here, we present a high-quality, annotated genome of the central ratsnake (Pantherophis alleghaniensis), a member of the most diverse snake lineage, Colubroidea. Pantherophis alleghaniensis is found in the central part of the Nearctic, east of the Mississippi River. This genome was sequenced using 10X Chromium synthetic long reads and polished using Illumina short reads. The final genome assembly had an N50 of 21.82 Mb and an L50 of 22 scaffolds with a maximum scaffold length of 82.078 Mb. The genome is composed of 49.24% repeat elements dominated by long interspersed elements. We annotated this genome using transcriptome assemblies from 14 tissue types and recovered 28,368 predicted proteins. Finally, we estimated admixture proportions between two species of ratsnakes and discovered that this specimen is an admixed individual containing genomes from the western (Pantherophis obsoletus) and central ratsnakes (P. alleghaniensis). We discuss the importance of considering interspecific admixture in downstream approaches for inferring demography and phylogeny.
Collapse
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology, American Museum of Natural History, New York, NY 10024, USA
| | - Sean M Harrington
- Department of Herpetology, American Museum of Natural History, New York, NY 10024, USA
- INBRE Data Science Core, University of Wyoming, Laramie, WY 82071, USA
| | - Dean Bobo
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Edward A Myers
- Department of Herpetology, American Museum of Natural History, New York, NY 10024, USA
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
98
|
Rader JA, Pivovarnik MA, Vantilburg ME, Whitehouse LS. PhyloMatcher: a tool for resolving conflicts in taxonomic nomenclature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552263. [PMID: 37609275 PMCID: PMC10441299 DOI: 10.1101/2023.08.07.552263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Summary Large-scale comparative studies rely on the application of both phylogenetic trees and phenotypic data, both of which come from a variety of sources, but due to the changing nature of phylogenetic classification over time, many taxon names in comparative datasets do not match the nomenclature in phylogenetic trees. Manual curation of taxonomic synonyms in large comparative datasets can be daunting. To address this issue, we introduce PhyloMatcher, a tool which allows for programmatic querying of two commonly used taxonomic databases to find associated synonyms with given target species names. Availability and implementation PhyloMatcher is easily installed as a Python package with pip, or as a standalone GUI application. PhyloMatcher source code and documentation are freely available at https://github.com/Lswhiteh/PhyloMatcher, the GUI application can be downloaded from the Releases page. Contact Lswhiteh@unc.edu. Supplemental Information We provide documentation for PhyloMatcher, including walkthrough instructions for the GUI application on the Releases page of https://github.com/Lswhiteh/PhyloMatcher.
Collapse
Affiliation(s)
- Jonathan A. Rader
- Dept. of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Matias E. Vantilburg
- Dept. of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Logan S. Whitehouse
- Dept. of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
99
|
Sozzoni M, Ferrer Obiol J, Formenti G, Tigano A, Paris JR, Balacco JR, Jain N, Tilley T, Collins J, Sims Y, Wood J, Benowitz-Fredericks ZM, Field KA, Seyoum E, Gatt MC, Léandri-Breton DJ, Nakajima C, Whelan S, Gianfranceschi L, Hatch SA, Elliott KH, Shoji A, Cecere JG, Jarvis ED, Pilastro A, Rubolini D. A Chromosome-Level Reference Genome for the Black-Legged Kittiwake (Rissa tridactyla), a Declining Circumpolar Seabird. Genome Biol Evol 2023; 15:evad153. [PMID: 37590950 PMCID: PMC10457150 DOI: 10.1093/gbe/evad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
Amidst the current biodiversity crisis, the availability of genomic resources for declining species can provide important insights into the factors driving population decline. In the early 1990s, the black-legged kittiwake (Rissa tridactyla), a pelagic gull widely distributed across the arctic, subarctic, and temperate zones, suffered a steep population decline following an abrupt warming of sea surface temperature across its distribution range and is currently listed as Vulnerable by the International Union for the Conservation of Nature. Kittiwakes have long been the focus for field studies of physiology, ecology, and ecotoxicology and are primary indicators of fluctuating ecological conditions in arctic and subarctic marine ecosystems. We present a high-quality chromosome-level reference genome and annotation for the black-legged kittiwake using a combination of Pacific Biosciences HiFi sequencing, Bionano optical maps, Hi-C reads, and RNA-Seq data. The final assembly spans 1.35 Gb across 32 chromosomes, with a scaffold N50 of 88.21 Mb and a BUSCO completeness of 97.4%. This genome assembly substantially improves the quality of a previous draft genome, showing an approximately 5× increase in contiguity and a more complete annotation. Using this new chromosome-level reference genome and three more chromosome-level assemblies of Charadriiformes, we uncover several lineage-specific chromosome fusions and fissions, but find no shared rearrangements, suggesting that interchromosomal rearrangements have been commonplace throughout the diversification of Charadriiformes. This new high-quality genome assembly will enable population genomic, transcriptomic, and phenotype-genotype association studies in a widely studied sentinel species, which may provide important insights into the impacts of global change on marine systems.
Collapse
Affiliation(s)
- Marcella Sozzoni
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Joan Ferrer Obiol
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
| | - Anna Tigano
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
- Department of Biology, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Josephine R Paris
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Jennifer R Balacco
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
| | - Nivesh Jain
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
| | - Tatiana Tilley
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
| | - Joanna Collins
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Ying Sims
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Jonathan Wood
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Kenneth A Field
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Eyuel Seyoum
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Marie Claire Gatt
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Don-Jean Léandri-Breton
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- Centre d’Études Biologiques de Chizé (CEBC), UMR 7372 - CNRS & Université de La Rochelle, Villiers-en-Bois, France
| | - Chinatsu Nakajima
- Department of Life and Environmental Science, University of Tsukuba, Tsukuba, Japan
| | - Shannon Whelan
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | | | - Scott A Hatch
- Institute for Seabird Research and Conservation, Anchorage, Alaska, USA
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Akiko Shoji
- Department of Life and Environmental Science, University of Tsukuba, Tsukuba, Japan
| | | | - Erich D Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Water Research Institute, IRSA-CNR, Brugherio, Monza and Brianza, Italy
| |
Collapse
|
100
|
Frederiksen A, Langebrake C, Hanić M, Manthey G, Mouritsen H, Liedvogel M, Solov’yov IA. Mutational Study of the Tryptophan Tetrad Important for Electron Transfer in European Robin Cryptochrome 4a. ACS OMEGA 2023; 8:26425-26436. [PMID: 37521624 PMCID: PMC10373462 DOI: 10.1021/acsomega.3c02963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
The ability of migratory birds to sense magnetic fields has been known for decades, although the understanding of the underlying mechanism is still elusive. Currently, the strongest magnetoreceptor candidate in birds is a protein called cryptochrome 4a. The cryptochrome 4a protein has changed through evolution, apparently endowing some birds with a more pronounced magnetic sensitivity than others. Using phylogenetic tools, we show that a specific tryptophan tetrad and a tyrosine residue predicted to be essential for cryptochrome activation are highly conserved in the avian clade. Through state-of-the-art molecular dynamics simulations and associated analyses, we also studied the role of these specific residues and the associated mutants on the overall dynamics of the protein. The analyses of the single residue mutations were used to judge how far a local change in the protein structure can impact specific dynamics of European robin cryptochrome 4a. We conclude that the replacements of each of the tryptophans one by one with a phenylalanine do not compromise the overall stability of the protein.
Collapse
Affiliation(s)
- Anders Frederiksen
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Corinna Langebrake
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Maja Hanić
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Georg Manthey
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Henrik Mouritsen
- Department
of Biology and Environmental Sciences, Carl
von Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Research
Centre for Neurosensory Sciences, Carl von
Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Miriam Liedvogel
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
- Department
of Biology and Environmental Sciences, Carl
von Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- MPRG
Behavioural Genomics, Max Planck Institute
for Evolutionary Biology, August-Thienemann-Str. 2, Plön 24306, Germany
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Research
Centre for Neurosensory Sciences, Carl von
Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Department
of Physics, Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky University of Oldenburg, Ammerländer Heerstr. 114-118, Oldenburg 26129, Germany
| |
Collapse
|