51
|
Rowntree LC, Audsley J, Allen LF, McQuilten HA, Hagen RR, Chaurasia P, Petersen J, Littler DR, Tan HX, Murdiyarso L, Habel JR, Foo IJH, Zhang W, Ten Berge ERV, Ganesh H, Kaewpreedee P, Lee KWK, Cheng SMS, Kwok JSY, Jayasinghe D, Gras S, Juno JA, Wheatley AK, Kent SJ, Rossjohn J, Cheng AC, Kotsimbos TC, Trubiano JA, Holmes NE, Pang Chan KK, Hui DSC, Peiris M, Poon LLM, Lewin SR, Doherty PC, Thevarajan I, Valkenburg SA, Kedzierska K, Nguyen THO. SARS-CoV-2-specific CD8 + T cells from people with long COVID establish and maintain effector phenotype and key TCR signatures over 2 years. Proc Natl Acad Sci U S A 2024; 121:e2411428121. [PMID: 39284068 PMCID: PMC11441481 DOI: 10.1073/pnas.2411428121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 10/02/2024] Open
Abstract
Long COVID occurs in a small but important minority of patients following COVID-19, reducing quality of life and contributing to healthcare burden. Although research into underlying mechanisms is evolving, immunity is understudied. SARS-CoV-2-specific T cell responses are of key importance for viral clearance and COVID-19 recovery. However, in long COVID, the establishment and persistence of SARS-CoV-2-specific T cells are far from clear, especially beyond 12 mo postinfection and postvaccination. We defined ex vivo antigen-specific B cell and T cell responses and their T cell receptors (TCR) repertoires across 2 y postinfection in people with long COVID. Using 13 SARS-CoV-2 peptide-HLA tetramers, spanning 11 HLA allotypes, as well as spike and nucleocapsid probes, we tracked SARS-CoV-2-specific CD8+ and CD4+ T cells and B-cells in individuals from their first SARS-CoV-2 infection through primary vaccination over 24 mo. The frequencies of ORF1a- and nucleocapsid-specific T cells and B cells remained stable over 24 mo. Spike-specific CD8+ and CD4+ T cells and B cells were boosted by SARS-CoV-2 vaccination, indicating immunization, in fully recovered and people with long COVID, altered the immunodominance hierarchy of SARS-CoV-2 T cell epitopes. Meanwhile, influenza-specific CD8+ T cells were stable across 24 mo, suggesting no bystander-activation. Compared to total T cell populations, SARS-CoV-2-specific T cells were enriched for central memory phenotype, although the proportion of central memory T cells decreased following acute illness. Importantly, TCR repertoire composition was maintained throughout long COVID, including postvaccination, to 2 y postinfection. Overall, we defined ex vivo SARS-CoV-2-specific B cells and T cells to understand primary and recall responses, providing key insights into antigen-specific responses in people with long COVID.
Collapse
Affiliation(s)
- Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ruth R Hagen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lydia Murdiyarso
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Isabelle J H Foo
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Elizabeth R V Ten Berge
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hanujah Ganesh
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Prathanporn Kaewpreedee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kelly W K Lee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Samuel M S Cheng
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Janette S Y Kwok
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Dhilshan Jayasinghe
- Infection & Immunity Program, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3083, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Infection & Immunity Program, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3083, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
- Monash Infectious Diseases, Monash Health and School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Tom C Kotsimbos
- Department of Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Medicine, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC 3004, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, VIC 3084, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Natasha E Holmes
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Critical Care, University of Melbourne, Parkville, VIC 3000, Australia
- Data Analytics Research and Evaluation Centre, Austin Health and University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Ken Ka Pang Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - David S C Hui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Sharon R Lewin
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Disease, Alfred Hospital and Monash University, Melbourne, VIC 3000, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Irani Thevarajan
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| |
Collapse
|
52
|
Gupta MK, Gouda G, Vadde R. Deciphering the role of FOXP4 in long COVID: exploring genetic associations, evolutionary conservation, and drug identification through bioinformatics analysis. Funct Integr Genomics 2024; 24:167. [PMID: 39298002 DOI: 10.1007/s10142-024-01451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Long COVID (LC) refers to a condition characterized by a variety of lingering symptoms that persist for more than 4 to 12 weeks following the initial acute SARS-CoV-2 infection. Recent research has suggested that the FOXP4 gene could potentially be a significant factor contributing to LC. Owing to that, this study investigates FOXP4's role in LC by analyzing public datasets to understand its evolution and expression in diverse human populations and searching for drugs to reduce LC symptoms. Population genetic analysis of FOXP4 across human populations unmasks distinct genetic diversity patterns and positive selection signatures, suggesting potential population-specific susceptibilities to conditions like LC. Further, we also observed that FOXP4 experiences high expression during LC. To identify potential inhibitors, drug screening analysis identifies synthetic drugs like Glisoxepide, and natural compounds Kapurimycin A3 produced from Streptomyces sp, and Cucurbitacin B from Begonia nantoensis as promising candidates. Overall, our research contributes to understanding how FOXP4 may serve as a therapeutic target for mitigating the impact of LC.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India.
| | - Gayatri Gouda
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India.
| |
Collapse
|
53
|
Pasculli P, Zingaropoli MA, Dominelli F, Solimini AG, Masci GM, Birtolo LI, Pasquariello L, Paribeni F, Iafrate F, Panebianco V, Galardo G, Mancone M, Catalano C, Pugliese F, Palange P, Mastroianni CM, Ciardi MR. Insights into Long COVID: Unraveling Risk Factors, Clinical Features, Radiological Findings, Functional Sequelae and Correlations: A Retrospective Cohort Study. Am J Med 2024:S0002-9343(24)00569-2. [PMID: 39299642 DOI: 10.1016/j.amjmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The long-term symptomatology of COVID-19 has yet to be comprehensively described. The aim of the study was to describe persistent COVID-19 symptoms in a cohort of hospitalized and home-isolated patients. METHODS A retrospective cohort study was conducted on long COVID patients. Long COVID symptoms were identified, and patients were divided into hospitalized (in-patients) and home-isolated (out-patients), as well as according to the number of symptoms. Patients were examined by a multidisciplinary medical team. Blood tests, high resolution chest computed tomography (CT), and physical and infectious examinations were performed. Finally, in-patients were evaluated at 2 time-points: on hospital admission (T0) and 3 months after discharge (Tpost). RESULTS There were 364 COVID-19 patients enrolled; 82% of patients reported one or more symptoms. The most reported symptom was fatigue. Chest CT showed alteration in 76% of patients, and pulmonary function alterations were observed in 44.7% of patients. A higher risk of presenting at least one symptom was seen in patients treated with corticosteroid, and a higher risk of presenting chest CT residual lesion was observed in hospitalized patients and in patients that received hydroxychloroquine treatment. Moreover, a higher risk of altered pulmonary function was observed in older patients. CONCLUSION Long-term sequelae are present in a remarkable number of long COVID patients and pose a new challenge to the health care system to identify long-lasting effects and improve patients' well-being. Multidisciplinary teams are crucial to develop preventive measures, and clinical management strategies.
Collapse
Affiliation(s)
| | | | | | | | - Giorgio Maria Masci
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Rome, Italy
| | - Lucia Ilaria Birtolo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Lara Pasquariello
- Department of Public Health and Infectious Diseases, Division of Pulmonary Medicine, Policlinico Umberto I Hospital, Rome, Italy
| | - Filippo Paribeni
- Department of Specialist Surgery and Organ Transplantation "Paride Stefanini", Policlinico Umberto I, Rome, Italy
| | - Franco Iafrate
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Rome, Italy
| | - Valeria Panebianco
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Rome, Italy
| | - Gioacchino Galardo
- Medical Emergency Unit, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Massimo Mancone
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Rome, Italy
| | - Francesco Pugliese
- Department of Specialist Surgery and Organ Transplantation "Paride Stefanini", Policlinico Umberto I, Rome, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Division of Pulmonary Medicine, Policlinico Umberto I Hospital, Rome, Italy
| | | | | |
Collapse
|
54
|
Griffin DO. Postacute Sequelae of COVID (PASC or Long COVID): An Evidenced-Based Approach. Open Forum Infect Dis 2024; 11:ofae462. [PMID: 39220656 PMCID: PMC11363684 DOI: 10.1093/ofid/ofae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
While the acute manifestations of infectious diseases are well known, in some individuals, symptoms can either persist or appear after the acute period. Postviral fatigue syndromes are recognized with other viral infections and are described after coronavirus disease 2019 (COVID-19). We have a growing number of individuals with symptoms that persist for weeks, months, and years. Here, we share the evidence regarding the abnormalities associated with postacute sequelae of COVID-19 (PASC) and therapeutics. We describe physiological and biochemical abnormalities seen in individuals reporting PASC. We describe the several evidence-based interventions to offer patients. It is expected that this growing understanding of the mechanisms driving PASC and the benefits seen with certain therapeutics may not only lead to better outcomes for those with PASC but may also have the potential for understanding and treating other postinfectious sequelae.
Collapse
Affiliation(s)
- Daniel O Griffin
- Division of Infectious Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
55
|
Zapatero-Belinchón FJ, Kumar P, Ott M, Schwartz O, Sigal A. Understanding emerging and re-emerging viruses to facilitate pandemic preparedness. Nat Microbiol 2024; 9:2208-2211. [PMID: 39198691 DOI: 10.1038/s41564-024-01789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Affiliation(s)
| | - Priti Kumar
- Yale University School of Medicine, New Haven, CT, USA.
| | - Melanie Ott
- Gladstone Institute of Virology, University of California, San Francisco, San Francisco, CA, USA.
| | | | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa.
| |
Collapse
|
56
|
Choi YJ, Kim HN, Lee J, Nham E, Seong H, Yoon JG, Noh JY, Song JY, Cheong HJ, Kim WJ. Erythema nodosum as an unusual skin manifestation of long COVID: A case report. Int J Infect Dis 2024; 146:107152. [PMID: 38936655 DOI: 10.1016/j.ijid.2024.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Erythema nodosum (EN) is a skin manifestation of panniculitis characterized by symmetric, painful, tender nodules, and most cases are self-limiting. Few cases of EN following Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination have been reported, and they are generally self-limiting. We reported the challenging case of a 63-year-old Asian woman with EN that persisted for more than three months after a coronavirus disease-19 (COVID-19). There was no improvement despite topical steroid and NSAIDs treatment, and the patient was successfully treated with combination of high-dose steroid and NSAIDs. There were long-lasting symptoms involving various organ symptoms persisting over three months after COVID-19, which is known as Long COVID. As part of Long COVID, there are limited cases of skin manifestations. Given that immune dysregulation due to persistent coronaviruses may contribute to refractory EN, Erythema nodosum related to COVID-19 is rare, but can occur; clinicians should be aware of the occurrence of EN following COVID-19 infection.
Collapse
Affiliation(s)
- Yu Jung Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Han-Na Kim
- Division of Dermatology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jiyeon Lee
- Division of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eliel Nham
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye Seong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
57
|
Schlegel B, Morikone M, Mu F, Tang WY, Kohanbash G, Rajasundaram D. bcRflow: a Nextflow pipeline for characterizing B cell receptor repertoires from non-targeted transcriptomic data. NAR Genom Bioinform 2024; 6:lqae137. [PMID: 39411512 PMCID: PMC11474772 DOI: 10.1093/nargab/lqae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
B cells play a critical role in the adaptive recognition of foreign antigens through diverse receptor generation. While targeted immune sequencing methods are commonly used to profile B cell receptors (BCRs), they have limitations in cost and tissue availability. Analyzing B cell receptor profiling from non-targeted transcriptomics data is a promising alternative, but a systematic pipeline integrating tools for accurate immune repertoire extraction is lacking. Here, we present bcRflow, a Nextflow pipeline designed to characterize BCR repertoires from non-targeted transcriptomics data, with functional modules for alignment, processing, and visualization. bcRflow is a comprehensive, reproducible, and scalable pipeline that can run on high-performance computing clusters, cloud-based computing resources like Amazon Web Services (AWS), the Open OnDemand framework, or even local desktops. bcRflow utilizes institutional configurations provided by nf-core to ensure maximum portability and accessibility. To demonstrate the functionality of the bcRflow pipeline, we analyzed a public dataset of bulk transcriptomic samples from COVID-19 patients and healthy controls. We have shown that bcRflow streamlines the analysis of BCR repertoires from non-targeted transcriptomics data, providing valuable insights into the B cell immune response for biological and clinical research. bcRflow is available at https://github.com/Bioinformatics-Core-at-Childrens/bcRflow.
Collapse
Affiliation(s)
- Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, John G. Rangos Sr. Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Michael Morikone
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, John G. Rangos Sr. Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Fangping Mu
- Center for Research Computing, University of Pittsburgh, 312 Schenley Place, 4420 Bayard Street, Pittsburgh, PA 15260, USA
| | - Wan-Yee Tang
- Department of Environmental and Occupational Health, University of Pittsburgh, School of Public Health, 130 DeSoto Street, Pittsburgh, PA 15261, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, John G. Rangos Sr. Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, John G. Rangos Sr. Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
58
|
Braun A, Rowntree LC, Huang Z, Pandey K, Thuesen N, Li C, Petersen J, Littler DR, Raji S, Nguyen THO, Jappe Lange E, Persson G, Schantz Klausen M, Kringelum J, Chung S, Croft NP, Faridi P, Ayala R, Rossjohn J, Illing PT, Scull KE, Ramarathinam S, Mifsud NA, Kedzierska K, Sørensen AB, Purcell AW. Mapping the immunopeptidome of seven SARS-CoV-2 antigens across common HLA haplotypes. Nat Commun 2024; 15:7547. [PMID: 39214998 PMCID: PMC11364864 DOI: 10.1038/s41467-024-51959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Most COVID-19 vaccines elicit immunity against the SARS-CoV-2 Spike protein. However, Spike protein mutations in emerging strains and immune evasion by the SARS-CoV-2 virus demonstrates the need to develop more broadly targeting vaccines. To facilitate this, we use mass spectrometry to identify immunopeptides derived from seven relatively conserved structural and non-structural SARS-CoV-2 proteins (N, E, Nsp1/4/5/8/9). We use two different B-lymphoblastoid cell lines to map Human Leukocyte Antigen (HLA) class I and class II immunopeptidomes covering some of the prevalent HLA types across the global human population. We employ DNA plasmid transfection and direct antigen delivery approaches to sample different antigens and find 248 unique HLA class I and HLA class II bound peptides with 71 derived from N, 12 from E, 28 from Nsp1, 19 from Nsp4, 73 from Nsp8 and 45 peptides derived from Nsp9. Over half of the viral peptides are unpublished. T cell reactivity tested against 56 of the detected peptides shows CD8+ and CD4+ T cell responses against several peptides from the N, E, and Nsp9 proteins. Results from this study will aid the development of next-generation COVID vaccines targeting epitopes from across a number of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Asolina Braun
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ziyi Huang
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Chen Li
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jan Petersen
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dene R Littler
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Shabana Raji
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | | | | | | | - Shanzou Chung
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pouya Faridi
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rochelle Ayala
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK
| | - Patricia T Illing
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine E Scull
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sri Ramarathinam
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicole A Mifsud
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
59
|
Xu D, Qin X. Type I Interferonopathy among Non-Elderly Female Patients with Post-Acute Sequelae of COVID-19. Viruses 2024; 16:1369. [PMID: 39339845 PMCID: PMC11435747 DOI: 10.3390/v16091369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The pathophysiological mechanisms of the post-acute sequelae of COVID-19 (PASC) remain unclear. Sex differences not only exist in the disease severity of acute SARS-CoV-2 infection but also in the risk of suffering from PASC. Women have a higher risk of suffering from PASC and a longer time to resolution than men. To explore the possible immune mechanisms of PASC among non-elderly females, we mined single-cell transcriptome data from peripheral blood samples of non-elderly female patients with PASC and acute SARS-CoV-2 infection, together with age- and gender-matched non-PASC and healthy controls available from the Gene Expression Omnibus database. By comparing the differences, we found that a CD14+ monocyte subset characterized by higher expression of signal transducers and activators of transcription 2 (STAT2) (CD14+STAT2high) was notably increased in the PASC patients compared with the non-PASC individuals. The transcriptional factor (TF) activity analysis revealed that STAT2 and IRF9 were the key TFs determining the function of CD14+STAT2high monocytes. STAT2 and IRF9 are TFs exclusively involving type I and III interferon (IFN) signaling pathways, resulting in uncontrolled IFN-I signaling activation and type I interferonopathy. Furthermore, increased expression of common interferon-stimulated genes (ISGs) has also been identified in most monocyte subsets among the non-elderly female PASC patients, including IFI6, IFITM3, IFI44L, IFI44, EPSTI1, ISG15, and MX1. This study reveals a featured CD14+STAT2high monocyte associated with uncontrolled IFN-I signaling activation, which is indicative of a possible type I interferonopathy in the non-elderly female patients with PASC.
Collapse
Affiliation(s)
- Donghua Xu
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
60
|
Roberts NJ. Long-Term SARS-CoV-2 Findings Related to Persisting Viral Antigen and Inflammation Resemble Those Reported for Influenza Virus and Respiratory Syncytial Virus. Viruses 2024; 16:1353. [PMID: 39339830 PMCID: PMC11436236 DOI: 10.3390/v16091353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Recent studies have documented prolonged expression of viral antigens and RNA and associated inflammation after infection with SARS-CoV-2 in a substantial proportion of infected patients. The persisting SARS-CoV-2 effects and findings, with inflammation associated with continued detection of viral antigens, especially resemble those previously reported for influenza virus, as well as respiratory syncytial virus (RSV). The reports indicate the need for improved insight into the mechanisms whereby post-SARS-CoV-2 infection-related illness is apparently more common and perhaps even more persistent after infection than observed for other respiratory viruses.
Collapse
Affiliation(s)
- Norbert J. Roberts
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
61
|
Al-Aly Z, Davis H, McCorkell L, Soares L, Wulf-Hanson S, Iwasaki A, Topol EJ. Long COVID science, research and policy. Nat Med 2024; 30:2148-2164. [PMID: 39122965 DOI: 10.1038/s41591-024-03173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/02/2024] [Indexed: 08/12/2024]
Abstract
Long COVID represents the constellation of post-acute and long-term health effects caused by SARS-CoV-2 infection; it is a complex, multisystem disorder that can affect nearly every organ system and can be severely disabling. The cumulative global incidence of long COVID is around 400 million individuals, which is estimated to have an annual economic impact of approximately $1 trillion-equivalent to about 1% of the global economy. Several mechanistic pathways are implicated in long COVID, including viral persistence, immune dysregulation, mitochondrial dysfunction, complement dysregulation, endothelial inflammation and microbiome dysbiosis. Long COVID can have devastating impacts on individual lives and, due to its complexity and prevalence, it also has major ramifications for health systems and economies, even threatening progress toward achieving the Sustainable Development Goals. Addressing the challenge of long COVID requires an ambitious and coordinated-but so far absent-global research and policy response strategy. In this interdisciplinary review, we provide a synthesis of the state of scientific evidence on long COVID, assess the impacts of long COVID on human health, health systems, the economy and global health metrics, and provide a forward-looking research and policy roadmap.
Collapse
Affiliation(s)
- Ziyad Al-Aly
- VA St. Louis Health Care System, Saint Louis, MO, USA.
- Washington University in St. Louis, Saint Louis, MO, USA.
| | - Hannah Davis
- Patient-led Research Collaborative, Calabasas, CA, USA
| | | | | | | | - Akiko Iwasaki
- Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Eric J Topol
- Scripps Institute, San Diego, California, CA, USA
| |
Collapse
|
62
|
Li P, Liu M, He WM. Integrated Transcriptomic Analysis Reveals Reciprocal Interactions between SARS-CoV-2 Infection and Multi-Organ Dysfunction, Especially the Correlation of Renal Failure and COVID-19. Life (Basel) 2024; 14:960. [PMID: 39202702 PMCID: PMC11355357 DOI: 10.3390/life14080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
The COVID-19 pandemic, which is caused by the SARS-CoV-2 virus, has resulted in extensive health challenges globally. While SARS-CoV-2 primarily targets the respiratory system, clinical studies have revealed that it could also affect multiple organs, including the heart, kidneys, liver, and brain, leading to severe complications. To unravel the intricate molecular interactions between the virus and host tissues, we performed an integrated transcriptomic analysis to investigate the effects of SARS-CoV-2 on various organs, with a particular focus on the relationship between renal failure and COVID-19. A comparative analysis showed that SARS-CoV-2 triggers a systemic immune response in the brain, heart, and kidney tissues, characterized by significant upregulation of cytokine and chemokine secretion, along with enhanced migration of lymphocytes and leukocytes. A weighted gene co-expression network analysis demonstrated that SARS-CoV-2 could also induce tissue-specific transcriptional profiling. More importantly, single-cell sequencing revealed that COVID-19 patients with renal failure exhibited lower metabolic activity in lung epithelial and B cells, with reduced ligand-receptor interactions, especially CD226 and ICAM, suggesting a compromised immune response. A trajectory analysis revealed that COVID-19 patients with renal failure exhibited less mature alveolar type 1 cells. Furthermore, these patients showed potential fibrosis in the hearts, liver, and lung increased extracellular matrix remodeling activities. However, there was no significant metabolic dysregulation in the liver of COVID-19 patients with renal failure. Candidate drugs prediction by Drug Signatures database and LINCS L1000 Antibody Perturbations Database underscored the importance of considering multi-organ effects in COVID-19 management and highlight potential therapeutic strategies, including targeting viral entry and replication, controlling tissue fibrosis, and alleviating inflammation.
Collapse
Affiliation(s)
- Pai Li
- Capricorn Partner, 3000 Leuven, Belgium
| | - Meng Liu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Wei-Ming He
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
63
|
Davenport TE, Blitshteyn S, Clague-Baker N, Davies-Payne D, Treisman GJ, Tyson SF. Long COVID Is Not a Functional Neurologic Disorder. J Pers Med 2024; 14:799. [PMID: 39201991 PMCID: PMC11355889 DOI: 10.3390/jpm14080799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Long COVID is a common sequela of SARS-CoV-2 infection. Data from numerous scientific studies indicate that long COVID involves a complex interaction between pathophysiological processes. Long COVID may involve the development of new diagnosable health conditions and exacerbation of pre-existing health conditions. However, despite this rapidly accumulating body of evidence regarding the pathobiology of long COVID, psychogenic and functional interpretations of the illness presentation continue to be endorsed by some healthcare professionals, creating confusion and inappropriate diagnostic and therapeutic pathways for people living with long COVID. The purpose of this perspective is to present a clinical and scientific rationale for why long COVID should not be considered as a functional neurologic disorder. It will begin by discussing the parallel historical development of pathobiological and psychosomatic/sociogenic diagnostic constructs arising from a common root in neurasthenia, which has resulted in the collective understandings of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and functional neurologic disorder (FND), respectively. We will also review the case definition criteria for FND and the distinguishing clinical and neuroimaging findings in FND vs. long COVID. We conclude that considering long COVID as FND is inappropriate based on differentiating pathophysiologic mechanisms and distinguishing clinical findings.
Collapse
Affiliation(s)
- Todd E. Davenport
- Department of Physical Therapy, University of the Pacific, Stockton, CA 95211, USA
- Workwell Foundation, Santa Rosa, CA 95403, USA
| | - Svetlana Blitshteyn
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14203, USA
- Dysautonomia Clinic, Williamsville, NY 14221, USA
| | - Nicola Clague-Baker
- School of Allied Health Professions and Nursing, Institute of Population Health, University of Liverpool, Liverpool L69 7ZX, UK
| | - David Davies-Payne
- Department of Radiology, Starship Children’s Hospital, Auckland 1023, New Zealand
| | - Glenn J. Treisman
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Sarah F. Tyson
- School of Health Sciences, University of Manchester, Manchester M14 4PX, UK;
| |
Collapse
|
64
|
Askarian M, Taherifard E, Jazzabi F, Shayan Z, Assadian O, Groot G, Hatam N, Askarian A, Faghihi SM, Taherifard E. Epidemiological and clinical characteristics of long COVID-19 among Iranians: A community-based study in southern Iran. BMC Public Health 2024; 24:2007. [PMID: 39061051 PMCID: PMC11282730 DOI: 10.1186/s12889-024-19543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The study aimed to evaluate the prevalence and pattern of long COVID-19 (LC) symptoms among individuals who had contracted COVID-19, to calculate the incidence of LC, and to provide insights into risk factors associated with developing LC in this population. METHODS This population-based cross-sectional survey was conducted in Fars province in 2023. Adult participants with a history of COVID-19 were recruited using a cluster random sampling method, alongside a control group with similar characteristics through the same methodology. Data were collected through in-person interviews using two researcher-developed data collection forms focused on demographic and clinical information. RESULTS A total of 2010 participants, comprising 1561 (77.7%) and 449 (22.3%) individuals with and without a previous history of COVID-19 were included. Among those with COVID-19 history, the prevalence of experiencing any symptoms was 93.7% (95% CI of 92.3%-94.8%) during the disease acute phase and 36.4% (95% CI of 34.0%-38.8%) after recovery. The incidence of symptoms specifically related to COVID-19, calculated by comparing the symptom rates between participants with and without a history of COVID-19, was found to be 13%. Factors such as older age, previous hospitalization for COVID-19, presence of cardiovascular disease, and use of steroids/chemotherapy were associated with LC symptoms. CONCLUSIONS Our investigation sheds light on long-term aspects of COVID-19, demonstrating a significant prevalence of LC with diverse manifestations. It also underscores the importance of establishing standardized criteria and control groups in research on LC to address challenges related to heterogeneity and potential overestimation of symptoms.
Collapse
Affiliation(s)
- Mehrdad Askarian
- Department of Community Medicine, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Erfan Taherifard
- MD-MPH Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Jazzabi
- Student Research Committee, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shayan
- Department of Biostatistics, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ojan Assadian
- Institute for Skin Integrity and Prevention, Regional Hospital Wiener Neustadt, Wiener Neustadt, Lower Austria, Austria
- Institute for Skin Integrity and Prevention, University of Huddersfield, Huddersfield, West Yorkshire, UK
| | - Gary Groot
- Department of Community Health and Epidemiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Nahid Hatam
- Department of Community Medicine, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardalan Askarian
- College of Arts & Science, University of Saskatchewan, Saskatoon, Canada
| | | | - Ehsan Taherifard
- Student Research Committee, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
65
|
Schwabenland M, Hasavci D, Frase S, Wolf K, Deigendesch N, Buescher JM, Mertz KD, Ondruschka B, Altmeppen H, Matschke J, Glatzel M, Frank S, Thimme R, Beck J, Hosp JA, Blank T, Bengsch B, Prinz M. High throughput spatial immune mapping reveals an innate immune scar in post-COVID-19 brains. Acta Neuropathol 2024; 148:11. [PMID: 39060438 PMCID: PMC11281987 DOI: 10.1007/s00401-024-02770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The underlying pathogenesis of neurological sequelae in post-COVID-19 patients remains unclear. Here, we used multidimensional spatial immune phenotyping and machine learning methods on brains from initial COVID-19 survivors to identify the biological correlate associated with previous SARS-CoV-2 challenge. Compared to healthy controls, individuals with post-COVID-19 revealed a high percentage of TMEM119+P2RY12+CD68+Iba1+HLA-DR+CD11c+SCAMP2+ microglia assembled in prototypical cellular nodules. In contrast to acute SARS-CoV-2 cases, the frequency of CD8+ parenchymal T cells was reduced, suggesting an immune shift toward innate immune activation that may contribute to neurological alterations in post-COVID-19 patients.
Collapse
Affiliation(s)
- Marius Schwabenland
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Dilara Hasavci
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Sibylle Frase
- Department of Neurology and Neuroscience, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Wolf
- Department of Neurology and Neuroscience, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University Medical Center Freiburg, Freiburg, Germany
| | - Nikolaus Deigendesch
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Joerg M Buescher
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
- University of Basel, Basel, Switzerland
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Frank
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Robert Thimme
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Juergen Beck
- Department of Neurosurgery, University Medical Center Freiburg, Freiburg, Germany
| | - Jonas A Hosp
- Department of Neurology and Neuroscience, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Blank
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
66
|
Zheng HY, Song TZ, Zheng YT. Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models. Zool Res 2024; 45:747-766. [PMID: 38894519 PMCID: PMC11298684 DOI: 10.24272/j.issn.2095-8137.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| |
Collapse
|
67
|
Wynberg E, Han AX, van Willigen HDG, Verveen A, van Pul L, Maurer I, van Leeuwen EM, van den Aardweg JG, de Jong MD, Nieuwkerk P, Prins M, Kootstra NA, de Bree GJ. Inflammatory profiles are associated with long COVID up to 6 months after COVID-19 onset: A prospective cohort study of individuals with mild to critical COVID-19. PLoS One 2024; 19:e0304990. [PMID: 39008486 PMCID: PMC11249251 DOI: 10.1371/journal.pone.0304990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/17/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND After initial COVID-19, immune dysregulation may persist and drive post-acute sequelae of COVID-19 (PASC). We described longitudinal trajectories of cytokines in adults up to 6 months following SARS-CoV-2 infection and explored early predictors of PASC. METHODS RECoVERED is a prospective cohort of individuals with laboratory-confirmed SARS-CoV-2 infection between May 2020 and June 2021 in Amsterdam, the Netherlands. Serum was collected at weeks 4, 12 and 24 of follow-up. Monthly symptom questionnaires were completed from month 2 after COVID-19 onset onwards; lung diffusion capacity (DLCO) was tested at 6 months. Cytokine concentrations were analysed by human magnetic Luminex screening assay. We used a linear mixed-effects model to study log-concentrations of cytokines over time, assessing their association with socio-demographic and clinical characteristics that were included in the model as fixed effects. RESULTS 186/349 (53%) participants had ≥2 serum samples and were included in current analyses. Of these, 101/186 (54%: 45/101[45%] female, median age 55 years [IQR = 45-64]) reported PASC at 12 and 24 weeks after COVID-19 onset. We included 37 reference samples (17/37[46%] female, median age 49 years [IQR = 40-56]). In a multivariate model, PASC was associated with raised CRP and abnormal diffusion capacity with raised IL10, IL17, IL6, IP10 and TNFα at 24 weeks. Early (0-4 week) IL-1β and BMI at COVID-19 onset were predictive of PASC at 24 weeks. CONCLUSIONS Our findings indicate that immune dysregulation plays an important role in PASC pathogenesis, especially among individuals with reduced pulmonary function. Early IL-1β shows promise as a predictor of PASC.
Collapse
Affiliation(s)
- Elke Wynberg
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
| | - Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Hugo D G van Willigen
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Anouk Verveen
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Lisa van Pul
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Irma Maurer
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Ester M van Leeuwen
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Joost G van den Aardweg
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Pythia Nieuwkerk
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria Prins
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Department of Infectious Diseases, Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Neeltje A Kootstra
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Godelieve J de Bree
- Department of Infectious Diseases, Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
68
|
Peluso MJ, Ryder D, Flavell R, Wang Y, Levi J, LaFranchi BH, Deveau TM, Buck AM, Munter SE, Asare KA, Aslam M, Koch W, Szabo G, Hoh R, Deswal M, Rodriguez A, Buitrago M, Tai V, Shrestha U, Lu S, Goldberg SA, Dalhuisen T, Vasquez JJ, Durstenfeld MS, Hsue PY, Kelly JD, Kumar N, Martin JN, Gambhir A, Somsouk M, Seo Y, Deeks SG, Laszik ZG, VanBrocklin HF, Henrich TJ. Tissue-based T cell activation and viral RNA persist for up to 2 years after SARS-CoV-2 infection. Sci Transl Med 2024; 16:eadk3295. [PMID: 38959327 PMCID: PMC11337933 DOI: 10.1126/scitranslmed.adk3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
The mechanisms of postacute medical conditions and unexplained symptoms after SARS-CoV-2 infection [Long Covid (LC)] are incompletely understood. There is growing evidence that viral persistence, immune dysregulation, and T cell dysfunction may play major roles. We performed whole-body positron emission tomography imaging in a well-characterized cohort of 24 participants at time points ranging from 27 to 910 days after acute SARS-CoV-2 infection using the radiopharmaceutical agent [18F]F-AraG, a selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the postacute COVID-19 group, which included those with and without continuing symptoms, was higher compared with prepandemic controls in many regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. T cell activation in the spinal cord and gut wall was associated with the presence of LC symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms specifically. Increased T cell activation in these tissues was also observed in many individuals without LC. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization of SARS-CoV-2 RNA and immunohistochemical studies in a subset of five participants with LC symptoms. We identified intracellular SARS-CoV-2 single-stranded spike protein-encoding RNA in rectosigmoid lamina propria tissue in all five participants and double-stranded spike protein-encoding RNA in three participants up to 676 days after initial COVID-19, suggesting that tissue viral persistence could be associated with long-term immunologic perturbations.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Dylan Ryder
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Robert Flavell
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Yingbing Wang
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Jelena Levi
- CellSight Technologies, San Francisco, CA, USA, 94107
| | - Brian H. LaFranchi
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Amanda M. Buck
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Sadie E. Munter
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Kofi A. Asare
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Maya Aslam
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Walter Koch
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Gyula Szabo
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA, 94143
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Antonio Rodriguez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Melissa Buitrago
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Uttam Shrestha
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Thomas Dalhuisen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Joshua J. Vasquez
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Matthew S. Durstenfeld
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Priscilla Y. Hsue
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Nitasha Kumar
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Aruna Gambhir
- CellSight Technologies, San Francisco, CA, USA, 94107
| | - Ma Somsouk
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Youngho Seo
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Zoltan G. Laszik
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA, 94143
| | - Henry F. VanBrocklin
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| |
Collapse
|
69
|
Saito S, Shahbaz S, Osman M, Redmond D, Bozorgmehr N, Rosychuk RJ, Lam G, Sligl W, Cohen Tervaert JW, Elahi S. Diverse immunological dysregulation, chronic inflammation, and impaired erythropoiesis in long COVID patients with chronic fatigue syndrome. J Autoimmun 2024; 147:103267. [PMID: 38797051 DOI: 10.1016/j.jaut.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
A substantial number of patients recovering from acute SARS-CoV-2 infection present serious lingering symptoms, often referred to as long COVID (LC). However, a subset of these patients exhibits the most debilitating symptoms characterized by ongoing myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS). We specifically identified and studied ME/CFS patients from two independent LC cohorts, at least 12 months post the onset of acute disease, and compared them to the recovered group (R). ME/CFS patients had relatively increased neutrophils and monocytes but reduced lymphocytes. Selective T cell exhaustion with reduced naïve but increased terminal effector T cells was observed in these patients. LC was associated with elevated levels of plasma pro-inflammatory cytokines, chemokines, Galectin-9 (Gal-9), and artemin (ARTN). A defined threshold of Gal-9 and ARTN concentrations had a strong association with LC. The expansion of immunosuppressive CD71+ erythroid cells (CECs) was noted. These cells may modulate the immune response and contribute to increased ARTN concentration, which correlated with pain and cognitive impairment. Serology revealed an elevation in a variety of autoantibodies in LC. Intriguingly, we found that the frequency of 2B4+CD160+ and TIM3+CD160+ CD8+ T cells completely separated LC patients from the R group. Our further analyses using a multiple regression model revealed that the elevated frequency/levels of CD4 terminal effector, ARTN, CEC, Gal-9, CD8 terminal effector, and MCP1 but lower frequency/levels of TGF-β and MAIT cells can distinguish LC from the R group. Our findings provide a new paradigm in the pathogenesis of ME/CFS to identify strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Suguru Saito
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Desiree Redmond
- Department of Medicine, Division of Rheumatology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Rhonda J Rosychuk
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Grace Lam
- Department of Medicine, Division of Pulmonary Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Department of Medicine, Division of Infectious Diseases, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Jan Willem Cohen Tervaert
- Department of Medicine, Division of Rheumatology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada.
| |
Collapse
|
70
|
Martínez-Fleta P, Marcos MC, Jimenez-Carretero D, Galván-Román JM, Girón-Moreno RM, Calero-García AA, Arcos-García A, Martín-Gayo E, de la Fuente H, Esparcia-Pinedo L, Aspa J, Ancochea J, Alfranca A, Sánchez-Madrid F. Imbalance of SARS-CoV-2-specific CCR6+ and CXCR3+ CD4+ T cells and IFN-γ + CD8+ T cells in patients with Long-COVID. Clin Immunol 2024; 264:110267. [PMID: 38825071 DOI: 10.1016/j.clim.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Long-COVID (LC) is characterised by persistent symptoms for at least 3 months after acute infection. A dysregulation of the immune system and a persistent hyperinflammatory state may cause LC. LC patients present differences in activation and exhaustion states of innate and adaptive compartments. Different T CD4+ cell subsets can be identified by differential expression of chemokine receptors (CCR). However, changes in T cells with expression of CCRs such as CCR6 and CXCR3 and their relationship with CD8+ T cells remains unexplored in LC. Here, we performed unsupervised analysis and found CCR6+ CD4+ subpopulations enriched in COVID-19 convalescent individuals upon activation with SARS-CoV-2 peptides. SARS-CoV-2 specific CCR6+ CD4+ are decreased in LC patients, whereas CXCR3+ CCR6- and CCR4+ CCR6- CD4+ T cells are increased. LC patients showed lower IFN-γ-secreting CD8+ T cells after stimulation with SARS-CoV-2 Spike protein. This work underscores the role of CCR6 in the pathophysiology of LC.
Collapse
Affiliation(s)
- Pedro Martínez-Fleta
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - María Celeste Marcos
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | | | - José María Galván-Román
- Department of Internal Medicine, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Rosa María Girón-Moreno
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Ana Adela Calero-García
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Ana Arcos-García
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Enrique Martín-Gayo
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain; CIBER Infectious Diseases (CIBERINFECC) from Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain; CIBER Cardiovascular CIBERCV, Madrid, Spain
| | - Laura Esparcia-Pinedo
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Javier Aspa
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Julio Ancochea
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Arantzazu Alfranca
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain; CIBER Cardiovascular CIBERCV, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain; CIBER Cardiovascular CIBERCV, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
71
|
Ameratunga R, Jordan A, Lehnert K, Leung E, Mears ER, Snell R, Steele R, Woon ST. SARS-CoV-2 evolution has increased resistance to monoclonal antibodies and first-generation COVID-19 vaccines: Is there a future therapeutic role for soluble ACE2 receptors for COVID-19? Antiviral Res 2024; 227:105894. [PMID: 38677595 DOI: 10.1016/j.antiviral.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
COVID-19 has caused calamitous health, economic and societal consequences. Although several COVID-19 vaccines have received full authorization for use, global deployment has faced political, financial and logistical challenges. The efficacy of first-generation COVID-19 vaccines is waning and breakthrough infections are allowing ongoing transmission and evolution of SARS-CoV-2. Furthermore, COVID-19 vaccine efficacy relies on a functional immune system. Despite receiving three primary doses and three or more heterologous boosters, some immunocompromised patients may not be adequately protected by COVID-19 vaccines and remain vulnerable to severe disease. The evolution of new SARS-CoV-2 variants has also resulted in the rapid obsolescence of monoclonal antibodies. Convalescent plasma from COVID-19 survivors has produced inconsistent results. New drugs such as Paxlovid (nirmatrelvir/ritonavir) are beyond the reach of low- and middle-income countries. With widespread use of Paxlovid, it is likely nirmatrelvir-resistant clades of SARS-CoV-2 will emerge in the future. There is thus an urgent need for new effective anti-SARS-CoV-2 treatments. The in vitro efficacy of soluble ACE2 against multiple SARS-CoV-2 variants including omicron (B.1.1.529), was recently described using a competitive ELISA assay as a surrogate marker for virus neutralization. This indicates soluble wild-type ACE2 receptors are likely to be resistant to viral evolution. Nasal and inhaled treatment with soluble ACE2 receptors has abrogated severe disease in animal models of COVID-19. There is an urgent need for clinical trials of this new class of antiviral therapeutics, which could complement vaccines and Paxlovid.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Anthony Jordan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Emily R Mears
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Russell Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
72
|
Quan SF, Weaver MD, Czeisler MÉ, Barger LK, Booker LA, Howard ME, Jackson ML, Lane RI, McDonald CF, Ridgers A, Robbins R, Varma P, Wiley JF, Rajaratnam SM, Czeisler CA. Sleep and long COVID: Preexisting sleep issues and the risk of PASC in a large general population using 3 different model definitions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.20.24309263. [PMID: 38947041 PMCID: PMC11213061 DOI: 10.1101/2024.06.20.24309263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Study Objectives Insomnia, poor sleep quality and extremes of sleep duration are associated with COVID-19 infection. This study assessed whether these factors are related to Post-Acute Sequelae of SARS-CoV-2 infection (PASC). Methods Cross-sectional survey of a general population of 24,803 U.S. adults to determine the association of insomnia, poor sleep quality and sleep duration with PASC. Results Prevalence rates of PASC among previously COVID-19 infected participants for three definitions of PASC were COPE (21.9%), NICE (38.9%) and RECOVER PASC Score (15.3%). PASC was associated with insomnia in all 3 models in fully adjusted models with adjusted odds ratios (aORs) and 95% confidence intervals (CI) ranging from 1.30 (95% CI: 1.11-1.52, p≤0.05, PASC Score) to 1.52 (95% CI: 1.34-1.71, p≤0.001, (NICE). Poor sleep quality was related to PASC in all models with aORs ranging from 1.77 (95% CI: 1.60-1.97, p≤0.001, NICE) to 2.00 (95% CI: 1.77-2.26, p≤0.001, COPE). Sleep <6 hours was associated with PASC with aORs between 1.59 (95% CI: 1.40-1.80, p≤0.001, PASC Score) to 1.70 (95% CI: 1.53-1.89, p≤0.001, COPE). Sleep ≥ 9 hours was not associated with PASC in any model. Although vaccination with COVID-19 booster decreased the likelihood of developing PASC, it did not attenuate associations between insomnia, poor sleep quality and short sleep duration with PASC in any of the models. Conclusions Insomnia, poor sleep quality and short sleep duration are potential risk factors for PASC. Interventions to improve sleep may decrease the development of PASC.
Collapse
Affiliation(s)
- Stuart F. Quan
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Matthew D. Weaver
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Mark É. Czeisler
- Francis Weld Peabody Society, Harvard Medical School, Boston, MA
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Laura K. Barger
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Lauren A. Booker
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
- University Department of Rural Health, La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia
| | - Mark E. Howard
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melinda L. Jackson
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Rashon I. Lane
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
| | - Christine F. McDonald
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
- Faculty of Medicine, Monash University, Melbourne Australia
| | - Anna Ridgers
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
| | - Rebecca Robbins
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Prerna Varma
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Joshua F. Wiley
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Shantha M.W. Rajaratnam
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
73
|
Joung JY, Lee JS, Choi Y, Kim YJ, Oh HM, Seo HS, Son CG. Evaluating myelophil, a 30% ethanol extract of Astragalus membranaceus and Salvia miltiorrhiza, for alleviating fatigue in long COVID: a real-world observational study. Front Pharmacol 2024; 15:1394810. [PMID: 38966550 PMCID: PMC11222562 DOI: 10.3389/fphar.2024.1394810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Background Persistent post-infectious symptoms, predominantly fatigue, characterize Long COVID. This study investigated the efficacy of Myelophil (MYP), which contains metabolites extracted from Astragalus membranaceus and Salvia miltiorrhiza using 30% ethanol, in alleviating fatigue among subjects with Long COVID. Methods In this prospective observational study, we enrolled subjects with significant fatigue related to Long COVID, using criteria of scores of 60 or higher on the modified Korean Chalder Fatigue scale (mKCFQ11), or five or higher on the Visual Analog Scale (VAS) for brain fog. Utilizing a single-arm design, participants were orally administered MYP (2,000 mg daily) for 4 weeks. Changes in fatigue severity were assessed using mKCFQ11, Multidimensional Fatigue Inventory (MFI-20), and VAS for fatigue and brain fog. In addition, changes in quality of life using the short form 12 (SF-12) were also assessed along with plasma cortisol levels. Results A total of 50 participants (18 males, 32 females) were enrolled; 49 were included in the intention-to-treat analysis with scores of 66.9 ± 11.7 on mKCFQ11 and 6.3 ± 1.5 on the brain fog VAS. After 4 weeks of MYP administration, there were statistically significant improvements in fatigue levels: mKCFQ11 was measured at 34.8 ± 17.1 and brain fog VAS at 3.0 ± 1.9. Additionally, MFI-20 decreased from 64.8 ± 9.8 to 49.3 ± 10.8, fatigue VAS dropped from 7.4 ± 1.0 to 3.4 ± 1.7, SF-12 scores rose from 53.3 ± 14.9 to 78.6 ± 14.3, and plasma cortisol levels also elevated from 138.8 ± 50.1 to 176.9 ± 62.0 /mL. No safety concerns emerged during the trial. Conclusion Current findings underline MYP's potential in managing Long COVID-induced fatigue. However, comprehensive studies remain imperative. Clinical Trial Registration https://cris.nih.go.kr, identifier KCT0008948.
Collapse
Affiliation(s)
- Jin-Yong Joung
- Department of Internal Medicine, Daejeon Good-morning Korean Medicine Hospital, Daejeon, Republic of Korea
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Jin-Seok Lee
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Yujin Choi
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Yoon Jung Kim
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Hyeon-Muk Oh
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
- Department of Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Hyun-Sik Seo
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
- Department of Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
- Department of Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
74
|
Hamlin RE, Pienkos SM, Chan L, Stabile MA, Pinedo K, Rao M, Grant P, Bonilla H, Holubar M, Singh U, Jacobson KB, Jagannathan P, Maldonado Y, Holmes SP, Subramanian A, Blish CA. Sex differences and immune correlates of Long COVID development, persistence, and resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599612. [PMID: 38948732 PMCID: PMC11212991 DOI: 10.1101/2024.06.18.599612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Sex differences have been observed in acute COVID-19 and Long COVID (LC) outcomes, with greater disease severity and mortality during acute infection in males and a greater proportion of females developing LC. We hypothesized that sex-specific immune dysregulation contributes to the pathogenesis of LC. To investigate the immunologic underpinnings of LC development and persistence, we used single-cell transcriptomics, single-cell proteomics, and plasma proteomics on blood samples obtained during acute SARS-CoV-2 infection and at 3 and 12 months post-infection in a cohort of 45 patients who either developed LC or recovered. Several sex-specific immune pathways were associated with LC. Specifically, males who would develop LC at 3 months had widespread increases in TGF-β signaling during acute infection in proliferating NK cells. Females who would develop LC demonstrated increased expression of XIST, an RNA gene implicated in autoimmunity, and increased IL1 signaling in monocytes at 12 months post infection. Several immune features of LC were also conserved across sexes. Both males and females with LC had reduced co-stimulatory signaling from monocytes and broad upregulation of NF-κB transcription factors. In both sexes, those with persistent LC demonstrated increased LAG3, a marker of T cell exhaustion, reduced ETS1 transcription factor expression across lymphocyte subsets, and elevated intracellular IL-4 levels in T cell subsets, suggesting that ETS1 alterations may drive an aberrantly elevated Th2-like response in LC. Altogether, this study describes multiple innate and adaptive immune correlates of LC, some of which differ by sex, and offers insights toward the pursuit of tailored therapeutics.
Collapse
Affiliation(s)
- Rebecca E. Hamlin
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Shaun M. Pienkos
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Leslie Chan
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Stanford Immunology Program, Stanford University School of Medicine; Stanford, CA, USA
| | - Mikayla A. Stabile
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Kassandra Pinedo
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Mallika Rao
- Stanford Center for Clinical Research, Stanford University; Stanford, CA, USA
| | - Philip Grant
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Hector Bonilla
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Marisa Holubar
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Upinder Singh
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine; Stanford, CA, USA
| | - Karen B. Jacobson
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine; Stanford, CA, USA
| | - Yvonne Maldonado
- Department of Pediatrics, Stanford University School of Medicine; Stanford, CA, USA
| | - Susan P. Holmes
- Department of Statistics, Stanford University; Stanford, CA, USA
| | - Aruna Subramanian
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine; Stanford, CA, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| |
Collapse
|
75
|
Hamlin RE, Blish CA. Challenges and opportunities in long COVID research. Immunity 2024; 57:1195-1214. [PMID: 38865966 PMCID: PMC11210969 DOI: 10.1016/j.immuni.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
Long COVID (LC) is a condition in which patients do not fully recover from the initial SARS-CoV-2 infection but rather have persistent or new symptoms for months to years following the infection. Ongoing research efforts are investigating the pathophysiologic mechanisms of LC and exploring preventative and therapeutic treatment approaches for patients. As a burgeoning area of investigation, LC research can be structured to be more inclusive, innovative, and effective. In this perspective, we highlight opportunities for patient engagement and diverse research expertise, as well as the challenges of developing definitions and reproducible studies. Our intention is to provide a foundation for collaboration and progress in understanding the biomarkers and mechanisms driving LC.
Collapse
Affiliation(s)
| | - Catherine A Blish
- Department of Medicine, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
76
|
Hoenigsperger H, Sivarajan R, Sparrer KM. Differences and similarities between innate immune evasion strategies of human coronaviruses. Curr Opin Microbiol 2024; 79:102466. [PMID: 38555743 DOI: 10.1016/j.mib.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
So far, seven coronaviruses have emerged in humans. Four recurring endemic coronaviruses cause mild respiratory symptoms. Infections with epidemic Middle East respiratory syndrome-related coronavirus or severe acute respiratory syndrome coronavirus (SARS-CoV)-1 are associated with high mortality rates. SARS-CoV-2 is the causative agent of the coronavirus disease 2019 pandemic. To establish an infection, coronaviruses evade restriction by human innate immune defenses, such as the interferon system, autophagy and the inflammasome. Here, we review similar and distinct innate immune manipulation strategies employed by the seven human coronaviruses. We further discuss the impact on pathogenesis, zoonotic emergence and adaptation. Understanding the nature of the interplay between endemic/epidemic/pandemic coronaviruses and host defenses may help to better assess the pandemic potential of emerging coronaviruses.
Collapse
Affiliation(s)
- Helene Hoenigsperger
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Rinu Sivarajan
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | |
Collapse
|
77
|
Lupi L, Vitiello A, Parolin C, Calistri A, Garzino-Demo A. The Potential Role of Viral Persistence in the Post-Acute Sequelae of SARS-CoV-2 Infection (PASC). Pathogens 2024; 13:388. [PMID: 38787240 PMCID: PMC11123686 DOI: 10.3390/pathogens13050388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
The infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated not only with the development of acute disease but also with long-term symptoms or post-acute sequelae of SARS-CoV-2 (PASC). Multiple lines of evidence support that some viral antigens and RNA can persist for up to 15 months in multiple organs in the body, often after apparent clearance from the upper respiratory system, possibly leading to the persistence of symptoms. Activation of the immune system to viral antigens is observed for a prolonged time, providing indirect evidence of the persistence of viral elements after acute infection. In the gastrointestinal tract, the persistence of some antigens could stimulate the immune system, shaping the local microbiota with potential systemic effects. All of these interactions need to be investigated, taking into account predisposing factors, multiplicity of pathogenic mechanisms, and stratifying populations of vulnerable individuals, particularly women, children, and immunocompromised individuals, where SARS-CoV-2 may present additional challenges.
Collapse
Affiliation(s)
- Lorenzo Lupi
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (L.L.); (A.V.); (C.P.); (A.C.)
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (L.L.); (A.V.); (C.P.); (A.C.)
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (L.L.); (A.V.); (C.P.); (A.C.)
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (L.L.); (A.V.); (C.P.); (A.C.)
| | - Alfredo Garzino-Demo
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (L.L.); (A.V.); (C.P.); (A.C.)
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
78
|
Chakraborty C, Bhattacharya M, Alshammari A, Albekairi TH. Blueprint of differentially expressed genes reveals the dynamic gene expression landscape and the gender biases in long COVID. J Infect Public Health 2024; 17:748-766. [PMID: 38518681 DOI: 10.1016/j.jiph.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Long COVID has appeared as a significant global health issue and is an extra burden to the healthcare system. It affects a considerable number of people throughout the globe. However, substantial research gaps have been noted in understanding the mechanism and genomic landscape during the long COVID infection. A study has aimed to identify the differentially expressed genes (DEGs) in long COVID patients to fill the gap. METHODS We used the RNA-seq GEO dataset acquired through the GPL20301 Illumina HiSeq 4000 platform. The dataset contains 36 human samples derived from PBMC (Peripheral blood mononuclear cells). Thirty-six human samples contain 13 non-long COVID individuals' samples and 23 long COVID individuals' samples, considered the first direction analysis. Here, we performed two-direction analyses. In the second direction analysis, we divided the dataset gender-wise into four groups: the non-long COVID male group, the long COVID male group, the non-long COVID female group, and the long COVID female group. RESULTS In the first analysis, we found no gene expression. In the second analysis, we identified 250 DEGs. During the DEG profile analysis of the non-long COVID male group and the long COVID male group, we found three upregulated genes: IGHG2, IGHG4, and MIR8071-2. Similarly, the analysis of the non-long COVID female group and the long COVID female group reveals eight top-ranking genes. It also indicates the gender biases of differentially expressed genes among long COVID individuals. We found several DEGs involved in PPI and co-expression network formation. Similarly, cluster enrichment and gene list enrichment analysis were performed, suggesting several genes are involved in different biological pathways or processes. CONCLUSIONS This study will help better understand the gene expression landscape in long COVID. However, it might help the discovery and development of therapeutics for long COVID.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
79
|
Durstenfeld MS, Weiman S, Holtzman M, Blish C, Pretorius R, Deeks SG. Long COVID and post-acute sequelae of SARS-CoV-2 pathogenesis and treatment: A Keystone Symposia report. Ann N Y Acad Sci 2024; 1535:31-41. [PMID: 38593220 PMCID: PMC11500513 DOI: 10.1111/nyas.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In 2023, the Keystone Symposia held the first international scientific conference convening research leaders investigating the pathology of post-acute sequelae of COVID-19 (PASC) or Long COVID, a growing and urgent public health priority. In this report, we present insights from the talks and workshops presented during this meeting and highlight key themes regarding what researchers have discovered regarding the underlying biology of PASC and directions toward future treatment. Several themes have emerged in the biology, with inflammation and other immune alterations being the most common focus, potentially related to viral persistence, latent virus reactivation, and/or tissue damage and dysfunction, especially of the endothelium, nervous system, and mitochondria. In order to develop safe and effective treatments for people with PASC, critical next steps should focus on the replication of major findings regarding potential mechanisms, disentangling pathogenic mechanisms from downstream effects, development of cellular and animal models, mechanism-focused randomized, placebo-controlled trials, and closer collaboration between people with lived experience, scientists, and other stakeholders. Ultimately, by learning from other post-infectious syndromes, the knowledge gained may help not only those with PASC/Long COVID, but also those with other post-infectious syndromes.
Collapse
Affiliation(s)
| | | | - Michael Holtzman
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Catherine Blish
- Stanford Immunology Program and Department of Medicine, Stanford University, Stanford, California, USA
| | - Resia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
80
|
Rathod N, Kumar S, Chavhan R, Acharya S, Rathod S. Navigating the Long Haul: A Comprehensive Review of Long-COVID Sequelae, Patient Impact, Pathogenesis, and Management. Cureus 2024; 16:e60176. [PMID: 38868283 PMCID: PMC11167581 DOI: 10.7759/cureus.60176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/12/2024] [Indexed: 06/14/2024] Open
Abstract
Long COVID, characterized by persistent symptoms following a SARS-CoV-2 infection, presents a significant public health challenge with wide-ranging implications. This comprehensive review explores the epidemiology, clinical manifestations, pathogenesis, risk factors, diagnosis, patient impact, management strategies, and long-term prognosis of COVID. Despite a varied symptomatology that spans multiple organ systems, including respiratory, neurological, and cardiovascular systems, this condition is primarily associated with chronic inflammation and potential viral persistence. Prevalence varies, influenced by the initial infection severity, demographic factors, and pre-existing conditions. The review emphasizes the necessity for healthcare systems to adapt to the needs of long-COVID patients by developing standardized diagnostic criteria and personalized, multidisciplinary treatment approaches. Current research gaps and future directions are identified, highlighting the urgent need for further studies on pathophysiological mechanisms and effective therapeutic interventions. This review aims to inform healthcare providers, researchers, and policymakers, enhancing patient care and guiding ongoing and future research initiatives. The continuing global focus and collaborative efforts offer hope for improved outcomes for those affected by long COVID, marking an essential step towards addressing this emergent condition comprehensively.
Collapse
Affiliation(s)
- Nishant Rathod
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roma Chavhan
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sagar Rathod
- Neurosurgery, Trivandrum Medical College, Thiruvananthapuram, IND
| |
Collapse
|
81
|
Valcarcel Salamanca B, Cyr PR, Bentdal YE, Watle SV, Wester AL, Strand ÅMW, Bøås H. Increase in invasive group A streptococcal infections (iGAS) in children and older adults, Norway, 2022 to 2024. Euro Surveill 2024; 29:2400242. [PMID: 38757285 PMCID: PMC11100296 DOI: 10.2807/1560-7917.es.2024.29.20.2400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024] Open
Abstract
At the end of 2022 and most notably during the first half of 2023, the number of invasive group A streptococcus (iGAS) notifications increased in Norway, largely affecting children younger than 10 years, as observed in several other countries. Following this atypical season, a new surge in the number of iGAS notifications began in December 2023 and peaked between January and February 2024, now particularly affecting both children younger than 10 years and older adults (70 years and above).
Collapse
Affiliation(s)
- Beatriz Valcarcel Salamanca
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway
- ECDC Fellowship Programme, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Pascale Renée Cyr
- Department of Infectious Disease Registries, Norwegian Institute of Public Health, Oslo, Norway
| | - Yngvild Emblem Bentdal
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway
| | - Sara Viksmoen Watle
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Åse Marie Wikman Strand
- Department of Infectious Disease Registries, Norwegian Institute of Public Health, Oslo, Norway
| | - Håkon Bøås
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
82
|
Golzardi M, Hromić-Jahjefendić A, Šutković J, Aydin O, Ünal-Aydın P, Bećirević T, Redwan EM, Rubio-Casillas A, Uversky VN. The Aftermath of COVID-19: Exploring the Long-Term Effects on Organ Systems. Biomedicines 2024; 12:913. [PMID: 38672267 PMCID: PMC11048001 DOI: 10.3390/biomedicines12040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Post-acute sequelae of SARS-CoV-2 infection (PASC) is a complicated disease that affects millions of people all over the world. Previous studies have shown that PASC impacts 10% of SARS-CoV-2 infected patients of which 50-70% are hospitalised. It has also been shown that 10-12% of those vaccinated against COVID-19 were affected by PASC and its complications. The severity and the later development of PASC symptoms are positively associated with the early intensity of the infection. RESULTS The generated health complications caused by PASC involve a vast variety of organ systems. Patients affected by PASC have been diagnosed with neuropsychiatric and neurological symptoms. The cardiovascular system also has been involved and several diseases such as myocarditis, pericarditis, and coronary artery diseases were reported. Chronic hematological problems such as thrombotic endothelialitis and hypercoagulability were described as conditions that could increase the risk of clotting disorders and coagulopathy in PASC patients. Chest pain, breathlessness, and cough in PASC patients were associated with the respiratory system in long-COVID causing respiratory distress syndrome. The observed immune complications were notable, involving several diseases. The renal system also was impacted, which resulted in raising the risk of diseases such as thrombotic issues, fibrosis, and sepsis. Endocrine gland malfunction can lead to diabetes, thyroiditis, and male infertility. Symptoms such as diarrhea, nausea, loss of appetite, and taste were also among reported observations due to several gastrointestinal disorders. Skin abnormalities might be an indication of infection and long-term implications such as persistent cutaneous complaints linked to PASC. CONCLUSIONS Long-COVID is a multidimensional syndrome with considerable public health implications, affecting several physiological systems and demanding thorough medical therapy, and more study to address its underlying causes and long-term effects is needed.
Collapse
Affiliation(s)
- Maryam Golzardi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (M.G.); (J.Š.)
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (M.G.); (J.Š.)
| | - Jasmin Šutković
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (M.G.); (J.Š.)
| | - Orkun Aydin
- Department of Psychology, Faculty of Arts and Social Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (O.A.); (P.Ü.-A.)
| | - Pinar Ünal-Aydın
- Department of Psychology, Faculty of Arts and Social Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (O.A.); (P.Ü.-A.)
| | - Tea Bećirević
- Atrijum Polyclinic, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Elrashdy M. Redwan
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico;
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
83
|
Phetsouphanh C, Jacka B, Ballouz S, Jackson KJL, Wilson DB, Manandhar B, Klemm V, Tan HX, Wheatley A, Aggarwal A, Akerman A, Milogiannakis V, Starr M, Cunningham P, Turville SG, Kent SJ, Byrne A, Brew BJ, Darley DR, Dore GJ, Kelleher AD, Matthews GV. Improvement of immune dysregulation in individuals with long COVID at 24-months following SARS-CoV-2 infection. Nat Commun 2024; 15:3315. [PMID: 38632311 PMCID: PMC11024141 DOI: 10.1038/s41467-024-47720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
This study investigates the humoral and cellular immune responses and health-related quality of life measures in individuals with mild to moderate long COVID (LC) compared to age and gender matched recovered COVID-19 controls (MC) over 24 months. LC participants show elevated nucleocapsid IgG levels at 3 months, and higher neutralizing capacity up to 8 months post-infection. Increased spike-specific and nucleocapsid-specific CD4+ T cells, PD-1, and TIM-3 expression on CD4+ and CD8+ T cells were observed at 3 and 8 months, but these differences do not persist at 24 months. Some LC participants had detectable IFN-γ and IFN-β, that was attributed to reinfection and antigen re-exposure. Single-cell RNA sequencing at the 24 month timepoint shows similar immune cell proportions and reconstitution of naïve T and B cell subsets in LC and MC. No significant differences in exhaustion scores or antigen-specific T cell clones are observed. These findings suggest resolution of immune activation in LC and return to comparable immune responses between LC and MC over time. Improvement in self-reported health-related quality of life at 24 months was also evident in the majority of LC (62%). PTX3, CRP levels and platelet count are associated with improvements in health-related quality of life.
Collapse
Affiliation(s)
| | - Brendan Jacka
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Sara Ballouz
- Garvan Institute for Medical research, Sydney, NSW, Australia
- School of Computer Science and Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
| | | | - Daniel B Wilson
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Bikash Manandhar
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Vera Klemm
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Victoria, VIC, Australia
| | - Adam Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Victoria, VIC, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Anouschka Akerman
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | | | - Mitchell Starr
- NSW State Reference Laboratory for HIV, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Phillip Cunningham
- NSW State Reference Laboratory for HIV, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Victoria, VIC, Australia
| | - Anthony Byrne
- Heart Lung Clinic, St. Vincent's Hospital Sydney and Faculty of Medicine and Health (UNSW), Sydney, NSW, Australia
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit- St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | | | - Gregory J Dore
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
- St. Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Anthony D Kelleher
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
- St. Vincent's Hospital, Darlinghurst, NSW, Australia.
| | - Gail V Matthews
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
- St. Vincent's Hospital, Darlinghurst, NSW, Australia.
| |
Collapse
|
84
|
Canderan G, Muehling LM, Kadl A, Ladd S, Bonham C, Cross CE, Lima SM, Yin X, Sturek JM, Wilson JM, Keshavarz B, Bryant N, Murphy DD, Cheon IS, McNamara CA, Sun J, Utz PJ, Dolatshahi S, Irish JM, Woodfolk JA. Distinct Type 1 Immune Networks Underlie the Severity of Restrictive Lung Disease after COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587929. [PMID: 38617217 PMCID: PMC11014603 DOI: 10.1101/2024.04.03.587929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The variable etiology of persistent breathlessness after COVID-19 have confounded efforts to decipher the immunopathology of lung sequelae. Here, we analyzed hundreds of cellular and molecular features in the context of discrete pulmonary phenotypes to define the systemic immune landscape of post-COVID lung disease. Cluster analysis of lung physiology measures highlighted two phenotypes of restrictive lung disease that differed by their impaired diffusion and severity of fibrosis. Machine learning revealed marked CCR5+CD95+ CD8+ T-cell perturbations in mild-to-moderate lung disease, but attenuated T-cell responses hallmarked by elevated CXCL13 in more severe disease. Distinct sets of cells, mediators, and autoantibodies distinguished each restrictive phenotype, and differed from those of patients without significant lung involvement. These differences were reflected in divergent T-cell-based type 1 networks according to severity of lung disease. Our findings, which provide an immunological basis for active lung injury versus advanced disease after COVID-19, might offer new targets for treatment.
Collapse
|
85
|
Coulon PG, Prakash S, Dhanushkodi NR, Srivastava R, Zayou L, Tifrea DF, Edwards RA, Figueroa CJ, Schubl SD, Hsieh L, Nesburn AB, Kuppermann BD, Bahraoui E, Vahed H, Gil D, Jones TM, Ulmer JB, BenMohamed L. High frequencies of alpha common cold coronavirus/SARS-CoV-2 cross-reactive functional CD4 + and CD8 + memory T cells are associated with protection from symptomatic and fatal SARS-CoV-2 infections in unvaccinated COVID-19 patients. Front Immunol 2024; 15:1343716. [PMID: 38605956 PMCID: PMC11007208 DOI: 10.3389/fimmu.2024.1343716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Background Cross-reactive SARS-CoV-2-specific memory CD4+ and CD8+ T cells are present in up to 50% of unexposed, pre-pandemic, healthy individuals (UPPHIs). However, the characteristics of cross-reactive memory CD4+ and CD8+ T cells associated with subsequent protection of asymptomatic coronavirus disease 2019 (COVID-19) patients (i.e., unvaccinated individuals who never develop any COVID-19 symptoms despite being infected with SARS-CoV-2) remains to be fully elucidated. Methods This study compares the antigen specificity, frequency, phenotype, and function of cross-reactive memory CD4+ and CD8+ T cells between common cold coronaviruses (CCCs) and SARS-CoV-2. T-cell responses against genome-wide conserved epitopes were studied early in the disease course in a cohort of 147 unvaccinated COVID-19 patients who were divided into six groups based on the severity of their symptoms. Results Compared to severely ill COVID-19 patients and patients with fatal COVID-19 outcomes, the asymptomatic COVID-19 patients displayed significantly: (i) higher rates of co-infection with the 229E alpha species of CCCs (α-CCC-229E); (ii) higher frequencies of cross-reactive functional CD134+CD137+CD4+ and CD134+CD137+CD8+ T cells that cross-recognized conserved epitopes from α-CCCs and SARS-CoV-2 structural, non-structural, and accessory proteins; and (iii) lower frequencies of CCCs/SARS-CoV-2 cross-reactive exhausted PD-1+TIM3+TIGIT+CTLA4+CD4+ and PD-1+TIM3+TIGIT+CTLA4+CD8+ T cells, detected both ex vivo and in vitro. Conclusions These findings (i) support a crucial role of functional, poly-antigenic α-CCCs/SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T cells, induced following previous CCCs seasonal exposures, in protection against subsequent severe COVID-19 disease and (ii) provide critical insights into developing broadly protective, multi-antigen, CD4+, and CD8+ T-cell-based, universal pan-Coronavirus vaccines capable of conferring cross-species protection.
Collapse
Affiliation(s)
- Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Cesar J. Figueroa
- Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Sebastian D. Schubl
- Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Lanny Hsieh
- Department of Medicine, Division of Infectious Diseases and Hospitalist Program, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | | | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Université Paul Sabatier, Infinity, Inserm, Toulouse, France
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Institute for Immunology, The University of California Irvine, School of Medicine, Irvine, CA, United States
| |
Collapse
|
86
|
Peluso MJ, Abdel-Mohsen M, Henrich TJ, Roan NR. Systems analysis of innate and adaptive immunity in Long COVID. Semin Immunol 2024; 72:101873. [PMID: 38460395 DOI: 10.1016/j.smim.2024.101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/11/2024]
Abstract
Since the onset of the COVID-19 pandemic, significant progress has been made in developing effective preventive and therapeutic strategies against severe acute SARS-CoV-2 infection. However, the management of Long COVID (LC), an infection-associated chronic condition that has been estimated to affect 5-20% of individuals following SARS-CoV-2 infection, remains challenging due to our limited understanding of its mechanisms. Although LC is a heterogeneous disease that is likely to have several subtypes, immune system disturbances appear common across many cases. The extent to which these immune perturbations contribute to LC symptoms, however, is not entirely clear. Recent advancements in multi-omics technologies, capable of detailed, cell-level analysis, have provided valuable insights into the immune perturbations associated with LC. Although these studies are largely descriptive in nature, they are the crucial first step towards a deeper understanding of the condition and the immune system's role in its development, progression, and resolution. In this review, we summarize the current understanding of immune perturbations in LC, covering both innate and adaptive immune responses, and the cytokines and analytes involved. We explore whether these findings support or challenge the primary hypotheses about LC's underlying mechanisms. We also discuss the crosstalk between various immune system components and how it can be disrupted in LC. Finally, we emphasize the need for more tissue- and subtype-focused analyses of LC, and for enhanced collaborative efforts to analyze common specimens from large cohorts, including those undergoing therapeutic interventions. These collective efforts are vital to unravel the fundaments of this new disease, and could also shed light on the prevention and treatment of the larger family of chronic illnesses linked to other microbial infections.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | | | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Nadia R Roan
- Gladstone Institutes, University of California, San Francisco, USA; Department of Urology, University of California, San Francisco, USA.
| |
Collapse
|
87
|
van der Heide V, Davenport B, Cubitt B, Roudko V, Choo D, Humblin E, Jhun K, Angeliadis K, Dawson T, Furtado G, Kamphorst A, Ahmed R, de la Torre JC, Homann D. Functional impairment of "helpless" CD8 + memory T cells is transient and driven by prolonged but finite cognate antigen presentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576725. [PMID: 38328184 PMCID: PMC10849538 DOI: 10.1101/2024.01.22.576725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Generation of functional CD8 + T cell memory typically requires engagement of CD4 + T cells. However, in certain scenarios, such as acutely-resolving viral infections, effector (T E ) and subsequent memory (T M ) CD8 + T cell formation appear impervious to a lack of CD4 + T cell help during priming. Nonetheless, such "helpless" CD8 + T M respond poorly to pathogen rechallenge. At present, the origin and long-term evolution of helpless CD8 + T cell memory remain incompletely understood. Here, we demonstrate that helpless CD8 + T E differentiation is largely normal but a multiplicity of helpless CD8 T M defects, consistent with impaired memory maturation, emerge as a consequence of prolonged yet finite exposure to cognate antigen. Importantly, these defects resolve over time leading to full restoration of CD8 + T M potential and recall capacity. Our findings provide a unified explanation for helpless CD8 + T cell memory and emphasize an unexpected CD8 + T M plasticity with implications for vaccination strategies and beyond.
Collapse
|