51
|
Abstract
Organoids are 3D cell culture systems derived from human pluripotent stem cells that contain tissue resident cell types and reflect features of early tissue organization. Neural organoids are a particularly innovative scientific advance given the lack of accessibility of developing human brain tissue and intractability of neurological diseases. Neural organoids have become an invaluable approach to model features of human brain development that are not well reflected in animal models. Organoids also hold promise for the study of atypical cellular, molecular, and genetic features that underscore neurological diseases. Additionally, organoids may provide a platform for testing therapeutics in human cells and are a potential source for cell replacement approaches to brain injury or disease. Despite the promising features of organoids, their broad utility is tempered by a variety of limitations yet to be overcome, including lack of high-fidelity cell types, limited maturation, atypical physiology, and lack of arealization, features that may limit their reliability for certain applications.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA;
| | - Arnold R Kriegstein
- Department of Neurology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA;
| |
Collapse
|
52
|
Zhang SY, Zhao J, Ni JJ, Li H, Quan ZZ, Qing H. Application and prospects of high-throughput screening for in vitro neurogenesis. World J Stem Cells 2022; 14:393-419. [PMID: 35949394 PMCID: PMC9244953 DOI: 10.4252/wjsc.v14.i6.393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, high-throughput screening (HTS) has made great contributions to new drug discovery. HTS technology is equipped with higher throughput, minimized platforms, more automated and computerized operating systems, more efficient and sensitive detection devices, and rapid data processing systems. At the same time, in vitro neurogenesis is gradually becoming important in establishing models to investigate the mechanisms of neural disease or developmental processes. However, challenges remain in generating more mature and functional neurons with specific subtypes and in establishing robust and standardized three-dimensional (3D) in vitro models with neural cells cultured in 3D matrices or organoids representing specific brain regions. Here, we review the applications of HTS technologies on in vitro neurogenesis, especially aiming at identifying the essential genes, chemical small molecules and adaptive microenvironments that hold great prospects for generating functional neurons or more reproductive and homogeneous 3D organoids. We also discuss the developmental tendency of HTS technology, e.g., so-called next-generation screening, which utilizes 3D organoid-based screening combined with microfluidic devices to narrow the gap between in vitro models and in vivo situations both physiologically and pathologically.
Collapse
Affiliation(s)
- Shu-Yuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China
| | - Jun-Jun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen-Zhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
53
|
Zhang Z, O'Laughlin R, Song H, Ming GL. Patterning of brain organoids derived from human pluripotent stem cells. Curr Opin Neurobiol 2022; 74:102536. [PMID: 35405627 PMCID: PMC9167774 DOI: 10.1016/j.conb.2022.102536] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
Abstract
The emerging technology of brain organoids deriving from human pluripotent stem cells provides unprecedented opportunities to study human brain development and associated disorders. Various brain organoid protocols have been developed that can recapitulate some key features of cell type diversity, cytoarchitectural organization, developmental processes, functions, and pathologies of the developing human brain. In this review, we focus on patterning of human stem cell-derived brain organoids. We start with an overview of general procedures to generate brain organoids. We then highlight some recently developed brain organoid protocols and chemical cues involved in modeling development of specific human brain regions, subregions, and multiple regions together. We also discuss limitations and potential future improvements of human brain organoid technology.
Collapse
Affiliation(s)
- Zhijian Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA
| | - Richard O'Laughlin
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Philadelphia, PA 19104, USA; The Epigenetics Institute, Philadelphia, PA 19104, USA. https://twitter.com/UPenn_SongMing
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
54
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
55
|
Landucci E, Pellegrini-Giampietro DE, Facchinetti F. Experimental Models for Testing the Efficacy of Pharmacological Treatments for Neonatal Hypoxic-Ischemic Encephalopathy. Biomedicines 2022; 10:937. [PMID: 35625674 PMCID: PMC9138693 DOI: 10.3390/biomedicines10050937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Representing an important cause of long-term disability, term neonatal hypoxic-ischemic encephalopathy (HIE) urgently needs further research aimed at repurposing existing drug as well as developing new therapeutics. Since various experimental in vitro and in vivo models of HIE have been developed with distinct characteristics, it becomes important to select the appropriate preclinical screening cascade for testing the efficacy of novel pharmacological treatments. As therapeutic hypothermia is already a routine therapy for neonatal encephalopathy, it is essential that hypothermia be administered to the experimental model selected to allow translational testing of novel or repurposed drugs on top of the standard of care. Moreover, a translational approach requires that therapeutic interventions must be initiated after the induction of the insult, and the time window for intervention should be evaluated to translate to real world clinical practice. Hippocampal organotypic slice cultures, in particular, are an invaluable intermediate between simpler cell lines and in vivo models, as they largely maintain structural complexity of the original tissue and can be subjected to transient oxygen-glucose deprivation (OGD) and subsequent reoxygenation to simulate ischemic neuronal injury and reperfusion. Progressing to in vivo models, generally, rodent (mouse and rat) models could offer more flexibility and be more cost-effective for testing the efficacy of pharmacological agents with a dose-response approach. Large animal models, including piglets, sheep, and non-human primates, may be utilized as a third step for more focused and accurate translational studies, including also pharmacokinetic and safety pharmacology assessments. Thus, a preclinical proof of concept of efficacy of an emerging pharmacological treatment should be obtained firstly in vitro, including organotypic models, and, subsequently, in at least two different animal models, also in combination with hypothermia, before initiating clinical trials.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | | | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy;
| |
Collapse
|
56
|
Ejlersen M, Ilieva M, Michel TM. Superoxide dismutase isozymes in cerebral organoids from autism spectrum disorder patients. J Neural Transm (Vienna) 2022; 129:617-626. [PMID: 35266053 DOI: 10.1007/s00702-022-02472-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder is a pervasive neurodevelopmental disorder with a substantial contribution to the global disease burden. Despite intensive research efforts, the aetiopathogenesis remains unclear. The Janus-faced antioxidant enzymes superoxide dismutase 1-3 have been implicated in initiating oxidative stress and as such may constitute a potential therapeutic target. However, no measurement has been taken in human autistic brain samples. The aim of this study is to measure superoxide dismutase 1-3 in autistic cerebral organoids as an in vitro model of human foetal neurodevelopment. Whole brain organoids were created from induced pluripotent stem cells from healthy individuals (n = 5) and individuals suffering from autism (n = 4). Using Pierce bicinchoninic acid and enzyme-linked immunosorbent assays, the protein and superoxide dismutase 1, 2, and 3 concentrations were quantified in the cerebral organoids at days 22, 32, and 42. Measurements were normalized to the protein concentration. Results represented using medians and interquartile ranges. Using Wilcoxon matched-pairs signed-rank test, an abrupt rise in the superoxide dismutase concentration was observed at day 32 and onwards. Using Wilcoxon rank-sum test, no differences were observed between healthy (SOD1: 35.56 ng/mL ± 3.46; SOD2: 2435.80 ng/mL ± 1327.00; SOD3: 1854.88 ng/mL ± 867.94) and autistic (SOD1: 32.85 ng/mL ± 5.26; SOD2: 2717.80 ng/mL ± 1889.10; SOD3: 1690.18 ng/mL ± 615.49) organoids. Cerebral organoids recapitulate many aspects of human neurodevelopment, but the diffusion restriction may render efforts in modelling differences in oxidative stress futile due to the intrinsic hypoxia and central necrosis.
Collapse
Affiliation(s)
- Morten Ejlersen
- Faculty of Health Sciences, University of Southern Denmark, J.B. Winsløws Vej 19.3, 5000, Odense, Denmark
| | - Mirolyuba Ilieva
- Research Unit of the Department of Psychiatry, University Hospital of Southern Denmark, J.B. Winsløws Vej 20, 5000, Odense, Denmark
| | - Tanja Maria Michel
- Faculty of Health Sciences, University of Southern Denmark, J.B. Winsløws Vej 19.3, 5000, Odense, Denmark.
- Research Unit of the Department of Psychiatry, University Hospital of Southern Denmark, J.B. Winsløws Vej 20, 5000, Odense, Denmark.
| |
Collapse
|
57
|
Liu Z, Zhang Z, Liu Y, Mei Y, Feng E, Liu Y, Zheng T, Chen J, Zhang S, Tian Y. Raman Fiber Photometry for Understanding Mitochondrial Superoxide Burst and Extracellular Calcium Ion Influx upon Acute Hypoxia in the Brain of Freely Moving Animals. Angew Chem Int Ed Engl 2022; 61:e202111630. [PMID: 35224847 DOI: 10.1002/anie.202111630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/06/2022]
Abstract
Developing a novel tool capable of real-time monitoring and simultaneous quantitation of multiple molecules in mitochondria across the whole brain of freely moving animals is the key bottleneck for understanding the physiological and pathological roles that mitochondria play in the brain events. Here we built a Raman fiber photometry, and created a highly selective non-metallic Raman probe based on the triple-recognition strategies of chemical reaction, charge transfer, and characteristic fingerprint peaks, for tracking and simultaneous quantitation of mitochondrial O2 .- , Ca2+ and pH at the same location in six brain regions of free-moving animal upon hypoxia. It was found that mitochondrial O2 .- , Ca2+ and pH changed from superficial to deep brain regions upon hypoxia. It was discovered that hypoxia-induced mitochondrial O2 .- burst was regulated by ASIC1a, leading to mitochondrial Ca2+ overload and acidification. Furthermore, we found the overload of mitochondrial Ca2+ was mostly attributed to the influx of extracellular Ca2+ .
Collapse
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Zhonghui Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yuxiao Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Enduo Feng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yangyi Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Tingting Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
58
|
Van Breedam E, Nijak A, Buyle-Huybrecht T, Di Stefano J, Boeren M, Govaerts J, Quarta A, Swartenbroekx T, Jacobs EZ, Menten B, Gijsbers R, Delputte P, Alaerts M, Hassannia B, Loeys B, Berneman Z, Timmermans JP, Jorens PG, Vanden Berghe T, Fransen E, Wouters A, De Vos WH, Ponsaerts P. Luminescent Human iPSC-Derived Neurospheroids Enable Modeling of Neurotoxicity After Oxygen-glucose Deprivation. Neurotherapeutics 2022; 19:550-569. [PMID: 35289376 PMCID: PMC9226265 DOI: 10.1007/s13311-022-01212-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 12/26/2022] Open
Abstract
Despite the considerable impact of stroke on both the individual and on society, a neuroprotective therapy for stroke patients is missing. This is partially due to the current lack of a physiologically relevant human in vitro stroke model. To address this problem, we have developed a luminescent human iPSC-derived neurospheroid model that enables real-time read-out of neural viability after ischemia-like conditions. We subjected 1- and 4-week-old neurospheroids, generated from iPSC-derived neural stem cells, to 6 h of oxygen-glucose deprivation (OGD) and measured neurospheroid luminescence. For both, we detected a decrease in luminescent signal due to ensuing neurotoxicity, as confirmed by conventional LDH assay and flow cytometric viability analysis. Remarkably, 1-week-old, but not 4-week-old neurospheroids recovered from OGD-induced injury, as evidenced by their reduced but overall increasing luminescence over time. This underscores the need for more mature neurospheroids, more faithfully recapitulating the in vivo situation. Furthermore, treatment of oxygen- and glucose-deprived neurospheroids with the pan-caspase inhibitor Z-VAD-FMK did not increase overall neural survival, despite its successful attenuation of apoptosis, in a human-based 3D environment. Nevertheless, owing to its three-dimensional organization and real-time viability reporting potential, the luminescent neurospheroids may become readily adopted in high-throughput screens aimed at identification of new therapeutic agents to treat acute ischemic stroke patients.
Collapse
Affiliation(s)
- Elise Van Breedam
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Aleksandra Nijak
- Cardiogenomics Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650, Edegem, Belgium
| | - Tamariche Buyle-Huybrecht
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, 2610, Wilrijk, Belgium
| | - Julia Di Stefano
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Marlies Boeren
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, 2610, Wilrijk, Belgium
| | - Jonas Govaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, 2610, Wilrijk, Belgium
| | - Alessandra Quarta
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Tine Swartenbroekx
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Eva Z Jacobs
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, 3000, Leuven, Belgium
- Leuven Viral Vector Core (LVVC), KU Leuven, 3000, Leuven, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, 2610, Wilrijk, Belgium
| | - Maaike Alaerts
- Cardiogenomics Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650, Edegem, Belgium
| | - Behrouz Hassannia
- Center for Inflammation Research (IRC), VIB-UGent, 9052, Zwijnaarde, Belgium
- Laboratory of Pathophysiology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Bart Loeys
- Cardiogenomics Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650, Edegem, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | | | - Philippe G Jorens
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610, Wilrijk, Belgium
- Department of Intensive Care Medicine, Antwerp University Hospital, 2650, Edegem, Belgium
| | - Tom Vanden Berghe
- Center for Inflammation Research (IRC), VIB-UGent, 9052, Zwijnaarde, Belgium
- Laboratory of Pathophysiology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, 2000, Antwerp, Belgium
- Human Molecular Genetics group, Center of Medical Genetics, University of Antwerp, 2610, Wilrijk, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium.
| |
Collapse
|
59
|
Martini P, Sales G, Diamante L, Perrera V, Colantuono C, Riccardo S, Cacchiarelli D, Romualdi C, Martello G. BrewerIX enables allelic expression analysis of imprinted and X-linked genes from bulk and single-cell transcriptomes. Commun Biol 2022; 5:146. [PMID: 35177756 PMCID: PMC8854590 DOI: 10.1038/s42003-022-03087-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Genomic imprinting and X chromosome inactivation (XCI) are two prototypical epigenetic mechanisms whereby a set of genes is expressed mono-allelically in order to fine-tune their expression levels. Defects in genomic imprinting have been observed in several neurodevelopmental disorders, in a wide range of tumours and in induced pluripotent stem cells (iPSCs). Single Nucleotide Variants (SNVs) are readily detectable by RNA-sequencing allowing the determination of whether imprinted or X-linked genes are aberrantly expressed from both alleles, although standardised analysis methods are still missing. We have developed a tool, named BrewerIX, that provides comprehensive information about the allelic expression of a large, manually-curated set of imprinted and X-linked genes. BrewerIX does not require programming skills, runs on a standard personal computer, and can analyze both bulk and single-cell transcriptomes of human and mouse cells directly from raw sequencing data. BrewerIX confirmed previous observations regarding the bi-allelic expression of some imprinted genes in naive pluripotent cells and extended them to preimplantation embryos. BrewerIX also identified misregulated imprinted genes in breast cancer cells and in human organoids and identified genes escaping XCI in human somatic cells. We believe BrewerIX will be useful for the study of genomic imprinting and XCI during development and reprogramming, and for detecting aberrations in cancer, iPSCs and organoids. Due to its ease of use to non-computational biologists, its implementation could become standard practice during sample assessment, thus raising the robustness and reproducibility of future studies.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Biology, University of Padova, Padua, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Padua, Italy
| | - Linda Diamante
- Department of Molecular Medicine, Medical School, University of Padova, Padua, Italy
| | - Valentina Perrera
- Department of Molecular Medicine, Medical School, University of Padova, Padua, Italy
- International School for Advanced Studies (SISSA/ISAS), Trieste, 34136, Italy
| | - Chiara Colantuono
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Sara Riccardo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | | | | |
Collapse
|
60
|
Lacaille H, Vacher CM, Penn AA. Preterm Birth Alters the Maturation of the GABAergic System in the Human Prefrontal Cortex. Front Mol Neurosci 2022; 14:827370. [PMID: 35185465 PMCID: PMC8852329 DOI: 10.3389/fnmol.2021.827370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Developmental changes in GABAergic and glutamatergic systems during frontal lobe development have been hypothesized to play a key role in neurodevelopmental disorders seen in children born very preterm or at/with low birth weight, but the associated cellular changes have not yet been identified. Here we studied the molecular development of the GABAergic system specifically in the dorsolateral prefrontal cortex, a region that has been implicated in neurodevelopmental and psychiatric disorders. The maturation state of the GABAergic system in this region was assessed in human post-mortem brain samples, from term infants ranging in age from 0 to 8 months (n = 17 male, 9 female). Gene expression was measured for 47 GABAergic genes and used to calculate a maturation index. This maturation index was significantly more dynamic in male than female infants. To evaluate the impact of premature birth on the GABAergic system development, samples from 1-month-old term (n = 9 male, 4 female) and 1-month corrected-age very preterm (n = 8 male, 6 female) infants, were compared using the same gene list and methodology. The maturation index for the GABAergic system was significantly lower (−50%, p < 0.05) in male preterm infants, with major alterations in genes linked to GABAergic function in astrocytes, suggesting astrocytic GABAergic developmental changes as a new cellular mechanism underlying preterm brain injury.
Collapse
|
61
|
Liu Z, Zhang Z, Liu Y, Mei Y, Feng E, Liu Y, Zheng T, Chen J, Zhang S, Tian Y. Raman Fiber Photometry for Understanding Mitochondrial Superoxide Burst and Extracellular Calcium Ion Influx upon Acute Hypoxia in the Brain of Freely Moving Animals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Zhonghui Zhang
- State Key Laboratory of Precision Spectroscopy East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yuxiao Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Enduo Feng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yangyi Liu
- State Key Laboratory of Precision Spectroscopy East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Tingting Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
- State Key Laboratory of Precision Spectroscopy East China Normal University Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
62
|
Borges AC, Broersen K, Leandro P, Fernandes TG. Engineering Organoids for in vitro Modeling of Phenylketonuria. Front Mol Neurosci 2022; 14:787242. [PMID: 35082602 PMCID: PMC8784555 DOI: 10.3389/fnmol.2021.787242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Phenylketonuria is a recessive genetic disorder of amino-acid metabolism, where impaired phenylalanine hydroxylase function leads to the accumulation of neurotoxic phenylalanine levels in the brain. Severe cognitive and neuronal impairment are observed in untreated/late-diagnosed patients, and even early treated ones are not safe from life-long sequelae. Despite the wealth of knowledge acquired from available disease models, the chronic effect of Phenylketonuria in the brain is still poorly understood and the consequences to the aging brain remain an open question. Thus, there is the need for better predictive models, able to recapitulate specific mechanisms of this disease. Human induced pluripotent stem cells (hiPSCs), with their ability to differentiate and self-organize in multiple tissues, might provide a new exciting in vitro platform to model specific PKU-derived neuronal impairment. In this review, we gather what is known about the impact of phenylalanine in the brain of patients and highlight where hiPSC-derived organoids could contribute to the understanding of this disease.
Collapse
Affiliation(s)
- Alice C. Borges
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Kerensa Broersen
- Department of Applied Stem Cell Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, Netherlands
| | - Paula Leandro
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Tiago G. Fernandes,
| |
Collapse
|
63
|
Feyaerts D, Urbschat C, Gaudillière B, Stelzer IA. Establishment of tissue-resident immune populations in the fetus. Semin Immunopathol 2022; 44:747-766. [PMID: 35508672 PMCID: PMC9067556 DOI: 10.1007/s00281-022-00931-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
The immune system establishes during the prenatal period from distinct waves of stem and progenitor cells and continuously adapts to the needs and challenges of early postnatal and adult life. Fetal immune development not only lays the foundation for postnatal immunity but establishes functional populations of tissue-resident immune cells that are instrumental for fetal immune responses amidst organ growth and maturation. This review aims to discuss current knowledge about the development and function of tissue-resident immune populations during fetal life, focusing on the brain, lung, and gastrointestinal tract as sites with distinct developmental trajectories. While recent progress using system-level approaches has shed light on the fetal immune landscape, further work is required to describe precise roles of prenatal immune populations and their migration and adaptation to respective organ environments. Defining points of prenatal susceptibility to environmental challenges will support the search for potential therapeutic targets to positively impact postnatal health.
Collapse
Affiliation(s)
- Dorien Feyaerts
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA
| | - Christopher Urbschat
- grid.13648.380000 0001 2180 3484Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Brice Gaudillière
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA ,grid.168010.e0000000419368956Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA USA
| | - Ina A. Stelzer
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA
| |
Collapse
|
64
|
Zhang C, Liu C, Zhao H. Mechanical properties of brain tissue based on microstructure. J Mech Behav Biomed Mater 2021; 126:104924. [PMID: 34998069 DOI: 10.1016/j.jmbbm.2021.104924] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/04/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022]
Abstract
Research on the mechanical properties of brain tissue has gradually deepened recently. Two indentation protocols were used here to characterize the mechanical properties of cortical tissues. Further, histological staining was used to explore the correlation between the mechanical properties and microstructure on the basis of the density of cell nuclei and proteoglycan content. No significant difference was observed in transient contact stiffness between the cerebral cortex and cerebellar cortex at the depth interval of 0-600 μm under the cortical surface; however, the average shear modulus of the cerebral cortex was higher than that of the cerebellar cortex. The cerebral cortex responded more quickly to the change in load and released stress more thoroughly than the cerebellar cortex. In addition, the density of cell nuclei was related to both the transient contact stiffness and second time constant of cortical tissues. Proteoglycan content had a more significant impact on the shear modulus, second time constant, and stress relaxation rate of cortical tissues. Exploring mechanical properties thoroughly will provide more detailed mechanical information for future brain chip implantation. Alternatively, linking the mechanical properties of cortical tissues to the microstructure can provide basic data for the design and manufacture of substitute materials for brain tissue.
Collapse
Affiliation(s)
- Chi Zhang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, PR China; Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025, PR China
| | - Changyi Liu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, PR China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, PR China.
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, PR China; Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025, PR China.
| |
Collapse
|
65
|
Fiorenzano A, Sozzi E, Birtele M, Kajtez J, Giacomoni J, Nilsson F, Bruzelius A, Sharma Y, Zhang Y, Mattsson B, Emnéus J, Ottosson DR, Storm P, Parmar M. Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nat Commun 2021; 12:7302. [PMID: 34911939 PMCID: PMC8674361 DOI: 10.1038/s41467-021-27464-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 11/09/2021] [Indexed: 12/25/2022] Open
Abstract
Three-dimensional brain organoids have emerged as a valuable model system for studies of human brain development and pathology. Here we establish a midbrain organoid culture system to study the developmental trajectory from pluripotent stem cells to mature dopamine neurons. Using single cell RNA sequencing, we identify the presence of three molecularly distinct subtypes of human dopamine neurons with high similarity to those in developing and adult human midbrain. However, despite significant advancements in the field, the use of brain organoids can be limited by issues of reproducibility and incomplete maturation which was also observed in this study. We therefore designed bioengineered ventral midbrain organoids supported by recombinant spider-silk microfibers functionalized with full-length human laminin. We show that silk organoids reproduce key molecular aspects of dopamine neurogenesis and reduce inter-organoid variability in terms of cell type composition and dopamine neuron formation.
Collapse
Affiliation(s)
- Alessandro Fiorenzano
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Edoardo Sozzi
- grid.4514.40000 0001 0930 2361Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marcella Birtele
- grid.4514.40000 0001 0930 2361Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Janko Kajtez
- grid.4514.40000 0001 0930 2361Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jessica Giacomoni
- grid.4514.40000 0001 0930 2361Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Fredrik Nilsson
- grid.4514.40000 0001 0930 2361Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Andreas Bruzelius
- grid.4514.40000 0001 0930 2361Regenerative Neurophysiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yogita Sharma
- grid.4514.40000 0001 0930 2361Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yu Zhang
- grid.4514.40000 0001 0930 2361Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt Mattsson
- grid.4514.40000 0001 0930 2361Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny Emnéus
- grid.5170.30000 0001 2181 8870Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Lyngby, Denmark
| | - Daniella Rylander Ottosson
- grid.4514.40000 0001 0930 2361Regenerative Neurophysiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Petter Storm
- grid.4514.40000 0001 0930 2361Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Malin Parmar
- grid.4514.40000 0001 0930 2361Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
66
|
Bhattacharya A, Choi WWY, Muffat J, Li Y. Modeling Developmental Brain Diseases Using Human Pluripotent Stem Cells-Derived Brain Organoids - Progress and Perspective. J Mol Biol 2021; 434:167386. [PMID: 34883115 DOI: 10.1016/j.jmb.2021.167386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Developmental brain diseases encompass a group of conditions resulting from genetic or environmental perturbations during early development. Despite the increased research attention in recent years following recognition of the prevalence of these diseases, there is still a significant lack of knowledge of their etiology and treatment options. The genetic and clinical heterogeneity of these diseases, in addition to the limitations of experimental animal models, contribute to this difficulty. In this regard, the advent of brain organoid technology has provided a new means to study the cause and progression of developmental brain diseases in vitro. Derived from human pluripotent stem cells, brain organoids have been shown to recapitulate key developmental milestones of the early human brain. Combined with technological advancements in genome editing, tissue engineering, electrophysiology, and multi-omics analysis, brain organoids have expanded the frontiers of human neurobiology, providing valuable insight into the cellular and molecular mechanisms of normal and pathological brain development. This review will summarize the current progress of applying brain organoids to model human developmental brain diseases and discuss the challenges that need to be overcome to further advance their utility.
Collapse
Affiliation(s)
- Afrin Bhattacharya
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Wendy W Y Choi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Julien Muffat
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
67
|
Goldberg M, Islam MR, Kerimoglu C, Lancelin C, Gisa V, Burkhardt S, Krüger DM, Marquardt T, Malchow B, Schmitt A, Falkai P, Sananbenesi F, Fischer A. Exercise as a model to identify microRNAs linked to human cognition: a role for microRNA-409 and microRNA-501. Transl Psychiatry 2021; 11:514. [PMID: 34625536 PMCID: PMC8501071 DOI: 10.1038/s41398-021-01627-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs have been linked to synaptic plasticity and memory function and are emerging as potential biomarkers and therapeutic targets for cognitive diseases. Most of these data stem from the analysis of model systems or postmortem tissue from patients which mainly represents an advanced stage of pathology. Due to the in-accessibility of human brain tissue upon experimental manipulation, it is still challenging to identify microRNAs relevant to human cognition, which is however a key step for future translational studies. Here, we employ exercise as an experimental model for memory enhancement in healthy humans with the aim to identify microRNAs linked to memory function. By analyzing the circulating smallRNAome we find a cluster of 18 microRNAs that are highly correlated to cognition. MicroRNA-409-5p and microRNA-501-3p were the most significantly regulated candidates. Functional analysis revealed that the two microRNAs are important for neuronal integrity, synaptic plasticity, and morphology. In conclusion, we provide a novel approach to identify microRNAs linked to human memory function.
Collapse
Affiliation(s)
- Maria Goldberg
- German Center for Neurodegenerative Diseases, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Von Siebold Str 3A, 37075, Goettingen, Germany
| | - Md Rezaul Islam
- German Center for Neurodegenerative Diseases, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Von Siebold Str 3A, 37075, Goettingen, Germany.
| | - Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Von Siebold Str 3A, 37075, Goettingen, Germany
| | - Camille Lancelin
- Developmental Neurobiology Laboratory, European Neuroscience Institute, Grisebachstrasse 5, 37077, Goettingen, Germany
| | - Verena Gisa
- German Center for Neurodegenerative Diseases, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Von Siebold Str 3A, 37075, Goettingen, Germany
| | - Susanne Burkhardt
- German Center for Neurodegenerative Diseases, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Von Siebold Str 3A, 37075, Goettingen, Germany
| | - Dennis M Krüger
- German Center for Neurodegenerative Diseases, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Von Siebold Str 3A, 37075, Goettingen, Germany
| | - Till Marquardt
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty, Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Worringer Weg 3, 52074, Aachen, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Nußbaumstr. 7, 80336, München, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Nußbaumstr. 7, 80336, München, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, 05403-010, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Nußbaumstr. 7, 80336, München, Germany
| | - Farahnaz Sananbenesi
- German Center for Neurodegenerative Diseases, Research Group for Genome Dynamics in Brain Diseases, Von Siebold Str. 3A, 37075, Göttingen, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Von Siebold Str 3A, 37075, Goettingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center, Von-Siebold-Str. 5, 37075, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
68
|
Xu J, Wen Z. Brain Organoids: Studying Human Brain Development and Diseases in a Dish. Stem Cells Int 2021; 2021:5902824. [PMID: 34539790 PMCID: PMC8448601 DOI: 10.1155/2021/5902824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
With the rapid development of stem cell technology, the advent of three-dimensional (3D) cultured brain organoids has opened a new avenue for studying human neurodevelopment and neurological disorders. Brain organoids are stem-cell-derived 3D suspension cultures that self-assemble into an organized structure with cell types and cytoarchitectures recapitulating the developing brain. In recent years, brain organoids have been utilized in various aspects, ranging from basic biology studies, to disease modeling, and high-throughput screening of pharmaceutical compounds. In this review, we overview the establishment and development of brain organoid technology, its recent progress, and translational applications, as well as existing limitations and future directions.
Collapse
Affiliation(s)
- Jie Xu
- The Graduate Program in Genetics and Molecular Biology, Laney Graduate School, Emory University, GA 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
69
|
Wörsdörfer P, Ergün S. The Impact of Oxygen Availability and Multilineage Communication on Organoid Maturation. Antioxid Redox Signal 2021; 35:217-233. [PMID: 33334234 DOI: 10.1089/ars.2020.8195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: An optimal supply with oxygen is of high importance during embryogenesis and a prerequisite for proper organ development. Different tissues require varying amounts of oxygen, and even within single organs, different phases of development go alongside with either physiological hypoxia or the need for sufficient oxygen supply. Recent Advances: Human induced pluripotent stem cell-derived organoid models are state of the art cell culture platforms for the investigation of developmental processes, disease modeling, and drug testing. Organoids modeling the development of multiple tissues were developed within the past years. Critical Issues: Until now, optimization of oxygen supply and its role during organoid growth, differentiation, and maturation have only rarely been addressed. Recent publications indicate that hypoxia-induced processes play an important role in three-dimensional tissue cultures, triggering multilineage communication between mesenchymal cells, the endothelium, as well as organotypic cells. Later in culture, a sufficient supply with oxygen is of high importance to allow larger organoid sizes. Moreover, cellular stress is reduced and tissue maturation is improved. Therefore, a functional blood vessel network is required. Future Directions: In this review, we will briefly summarize aspects of the role of oxygen during embryonic development and organogenesis, present an update on novel organoid models with a special focus on organoid vascularization, and discuss the importance of complex organoids involving parenchymal cells, mesenchymal cells, inflammatory cells, and functional blood vessels for the generation of mature and fully functional tissues in vitro. Antioxid. Redox Signal. 35, 217-233.
Collapse
Affiliation(s)
- Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
70
|
Huang Y, Dai Y, Li M, Guo L, Cao C, Huang Y, Ma R, Qiu S, Su X, Zhong K, Huang Y, Gao H, Bu Q. Exposure to cadmium induces neuroinflammation and impairs ciliogenesis in hESC-derived 3D cerebral organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149043. [PMID: 34303983 DOI: 10.1016/j.scitotenv.2021.149043] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 02/08/2023]
Abstract
Cadmium (Cd) is an environmental heavy metal toxicant with central nervous system toxicity and has a greater negative impact on fetal neurodevelopment. However, the causative mechanisms for the neurodevelopmental toxicity of Cd have remained unclear. The human cerebral organoids can better mimic the three-dimensional structure of the early fetal nerve tissue, which can be used to study the developmental neurotoxicity under the condition of maternal exposure to Cd. Our study identified that Cd exposure specifically induced apoptosis in neurons and inhibited the proliferation of neural progenitor cells, but neural differentiation was not significantly affected in cerebral organoids. Cd exposure also elicited overexpression of GFAP, a marker of astrocytes and resulted in IL-6 release. This study revealed that mineral absorption was significantly disturbed with metallothioneins expression up-regulation. Moreover, we found Cd exposure inhibited cilium-related gene expression and reduced ciliary length with increasing dose. In conclusion, our study has shown that Cd exposure regulated neural cell proliferation and death, induced neuroinflammation, enhanced metal ion absorption, and impaired ciliogenesis, which hinder the normal development of the fetal brain.
Collapse
Affiliation(s)
- Yan Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Min Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lulu Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Chulin Cao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yuting Huang
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Rui Ma
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Shengyue Qiu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyi Su
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Zhong
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yina Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Gao
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qian Bu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
71
|
Ao Z, Cai H, Wu Z, Song S, Karahan H, Kim B, Lu HC, Kim J, Mackie K, Guo F. Tubular human brain organoids to model microglia-mediated neuroinflammation. LAB ON A CHIP 2021; 21:2751-2762. [PMID: 34021557 PMCID: PMC8493632 DOI: 10.1039/d1lc00030f] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Human brain organoids, 3D brain tissue cultures derived from human pluripotent stem cells, hold promising potential in modeling neuroinflammation for a variety of neurological diseases. However, challenges remain in generating standardized human brain organoids that can recapitulate key physiological features of a human brain. Here, we present tubular organoid-on-a-chip devices to generate better organoids and model neuroinflammation. By employing 3D printed hollow mesh scaffolds, our device can be easily incorporated into multiwell-plates for reliable, scalable, and reproducible generation of tubular organoids. By introducing rocking flows through the tubular device channel, our device can perfuse nutrients and oxygen to minimize organoid necrosis and hypoxia, and incorporate immune cells into organoids to model neuro-immune interactions. Compared with conventional protocols, our method increased neural progenitor proliferation and reduced heterogeneity of human brain organoids. As a proof-of-concept application, we applied this method to model the microglia-mediated neuroinflammation after exposure to an opioid receptor agonist. We found isogenic microglia were activated after exposure to an opioid receptor agonist (DAMGO) and transformed back to the homeostatic status with further treatment by a cannabinoid receptor 2 (CB2) agonist (LY2828360). Importantly, the activated microglia in tubular organoids had stronger cytokine responses compared to those in 2D microglial cultures. Our tubular organoid device is simple, versatile, inexpensive, easy-to-use, and compatible with multiwell-plates, so it can be widely used in common research and clinical laboratory settings. This technology can be broadly used for basic and translational applications in inflammatory diseases including substance use disorders, neural diseases, autoimmune disorders, and infectious diseases.
Collapse
Affiliation(s)
- Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, USA.
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, USA.
| | - Zhuhao Wu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, USA.
| | - Sunghwa Song
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, USA.
| | - Hande Karahan
- Stark Neurosciences Research Institute, and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Byungwook Kim
- Stark Neurosciences Research Institute, and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hui-Chen Lu
- Gill Center for Biomolecular Science, and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science, and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
72
|
Sarieva K, Mayer S. The Effects of Environmental Adversities on Human Neocortical Neurogenesis Modeled in Brain Organoids. Front Mol Biosci 2021; 8:686410. [PMID: 34250020 PMCID: PMC8264783 DOI: 10.3389/fmolb.2021.686410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, a growing body of evidence has demonstrated the impact of prenatal environmental adversity on the development of the human embryonic and fetal brain. Prenatal environmental adversity includes infectious agents, medication, and substances of use as well as inherently maternal factors, such as diabetes and stress. These adversities may cause long-lasting effects if occurring in sensitive time windows and, therefore, have high clinical relevance. However, our knowledge of their influence on specific cellular and molecular processes of in utero brain development remains scarce. This gap of knowledge can be partially explained by the restricted experimental access to the human embryonic and fetal brain and limited recapitulation of human-specific neurodevelopmental events in model organisms. In the past years, novel 3D human stem cell-based in vitro modeling systems, so-called brain organoids, have proven their applicability for modeling early events of human brain development in health and disease. Since their emergence, brain organoids have been successfully employed to study molecular mechanisms of Zika and Herpes simplex virus-associated microcephaly, as well as more subtle events happening upon maternal alcohol and nicotine consumption. These studies converge on pathological mechanisms targeting neural stem cells. In this review, we discuss how brain organoids have recently revealed commonalities and differences in the effects of environmental adversities on human neurogenesis. We highlight both the breakthroughs in understanding the molecular consequences of environmental exposures achieved using organoids as well as the on-going challenges in the field related to variability in protocols and a lack of benchmarking, which make cross-study comparisons difficult.
Collapse
Affiliation(s)
- Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
73
|
Song G, Zhao M, Chen H, Zhou X, Lenahan C, Ou Y, He Y. The Application of Brain Organoid Technology in Stroke Research: Challenges and Prospects. Front Cell Neurosci 2021; 15:646921. [PMID: 34234646 PMCID: PMC8257041 DOI: 10.3389/fncel.2021.646921] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a neurological disease responsible for significant morbidity and disability worldwide. However, there remains a dearth of effective therapies. The failure of many therapies for stroke in clinical trials has promoted the development of human cell-based models, such as brain organoids. Brain organoids differ from pluripotent stem cells in that they recapitulate various key features of the human central nervous system (CNS) in three-dimensional (3D) space. Recent studies have demonstrated that brain organoids could serve as a new platform to study various neurological diseases. However, there are several limitations, such as the scarcity of glia and vasculature in organoids, which are important for studying stroke. Herein, we have summarized the application of brain organoid technology in stroke research, such as for modeling and transplantation purposes. We also discuss methods to overcome the limitations of brain organoid technology, as well as future prospects for its application in stroke research. Although there are many difficulties and challenges associated with brain organoid technology, it is clear that this approach will play a critical role in the future exploration of stroke treatment.
Collapse
Affiliation(s)
- Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
74
|
Tang XY, Xu L, Wang J, Hong Y, Wang Y, Zhu Q, Wang D, Zhang XY, Liu CY, Fang KH, Han X, Wang S, Wang X, Xu M, Bhattacharyya A, Guo X, Lin M, Liu Y. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. J Clin Invest 2021; 131:135763. [PMID: 33945512 DOI: 10.1172/jci135763] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, occurs in 1 of every 800 live births. Early defects in cortical development likely account for the cognitive impairments in DS, although the underlying molecular mechanism remains elusive. Here, we performed histological assays and unbiased single-cell RNA-Seq (scRNA-Seq) analysis on cerebral organoids derived from 4 euploid cell lines and from induced pluripotent stem cells (iPSCs) from 3 individuals with trisomy 21 to explore cell-type-specific abnormalities associated with DS during early brain development. We found that neurogenesis was significantly affected, given the diminished proliferation and decreased expression of layer II and IV markers in cortical neurons in the subcortical regions; this may have been responsible for the reduced size of the organoids. Furthermore, suppression of the DSCAM/PAK1 pathway, which showed enhanced activity in DS, using CRISPR/Cas9, CRISPR interference (CRISPRi), or small-molecule inhibitor treatment reversed abnormal neurogenesis, thereby increasing the size of organoids derived from DS iPSCs. Our study demonstrates that 3D cortical organoids developed in vitro are a valuable model of DS and provide a direct link between dysregulation of the DSCAM/PAK1 pathway and developmental brain defects in DS.
Collapse
Affiliation(s)
- Xiao-Yan Tang
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Lei Xu
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Jingshen Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Hong
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Yuanyuan Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Zhu
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Da Wang
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Xin-Yue Zhang
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Chun-Yue Liu
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai-Heng Fang
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Xiao Han
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Shihua Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Min Xu
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Anita Bhattacharyya
- Waisman Center and.,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Xing Guo
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Liu
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| |
Collapse
|
75
|
Fiorenzano A, Sozzi E, Parmar M, Storm P. Dopamine Neuron Diversity: Recent Advances and Current Challenges in Human Stem Cell Models and Single Cell Sequencing. Cells 2021; 10:cells10061366. [PMID: 34206038 PMCID: PMC8226961 DOI: 10.3390/cells10061366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Human midbrain dopamine (DA) neurons are a heterogeneous group of cells that share a common neurotransmitter phenotype and are in close anatomical proximity but display different functions, sensitivity to degeneration, and axonal innervation targets. The A9 DA neuron subtype controls motor function and is primarily degenerated in Parkinson’s disease (PD), whereas A10 neurons are largely unaffected by the condition, and their dysfunction is associated with neuropsychiatric disorders. Currently, DA neurons can only be reliably classified on the basis of topographical features, including anatomical location in the midbrain and projection targets in the forebrain. No systematic molecular classification at the genome-wide level has been proposed to date. Although many years of scientific efforts in embryonic and adult mouse brain have positioned us to better understand the complexity of DA neuron biology, many biological phenomena specific to humans are not amenable to being reproduced in animal models. The establishment of human cell-based systems combined with advanced computational single-cell transcriptomics holds great promise for decoding the mechanisms underlying maturation and diversification of human DA neurons, and linking their molecular heterogeneity to functions in the midbrain. Human pluripotent stem cells have emerged as a useful tool to recapitulate key molecular features of mature DA neuron subtypes. Here, we review some of the most recent advances and discuss the current challenges in using stem cells, to model human DA biology. We also describe how single cell RNA sequencing may provide key insights into the molecular programs driving DA progenitor specification into mature DA neuron subtypes. Exploiting the state-of-the-art approaches will lead to a better understanding of stem cell-derived DA neurons and their use in disease modeling and regenerative medicine.
Collapse
|
76
|
Shankaran A, Prasad K, Chaudhari S, Brand A, Satyamoorthy K. Advances in development and application of human organoids. 3 Biotech 2021; 11:257. [PMID: 33977021 PMCID: PMC8105691 DOI: 10.1007/s13205-021-02815-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Innumerable studies associated with cellular differentiation, tissue response and disease modeling have been conducted in two-dimensional (2D) culture systems or animal models. This has been invaluable in deciphering the normal and disease states in cell biology; the key shortcomings of it being suitability for translational or clinical correlations. The past decade has seen several major advances in organoid culture technologies and this has enhanced our understanding of mimicking organ reconstruction. The term organoid has generally been used to describe cellular aggregates derived from primary tissues or stem cells that can self-organize into organotypic structures. Organoids mimic the cellular microenvironment of tissues better than 2D cell culture systems and represent the tissue physiology. Human organoids of brain, thyroid, gastrointestinal, lung, cardiac, liver, pancreatic and kidney have been established from various diseases, healthy tissues and from pluripotent stem cells (PSCs). Advances in patient-derived organoid culture further provides a unique perspective from which treatment modalities can be personalized. In this review article, we have discussed the current strategies for establishing various types of organoids of ectodermal, endodermal and mesodermal origin. We have also discussed their applications in modeling human health and diseases (such as cancer, genetic, neurodegenerative and infectious diseases), applications in regenerative medicine and evolutionary studies.
Collapse
Affiliation(s)
- Abhijith Shankaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Angela Brand
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
- Department International Health, Faculty of Medicine, Health and Life Sciences, Maastricht University, Duboisdomein 30, 6229 GT Maastricht, The Netherlands
- United Nations University- Maastricht Economic and Social Research Institute On Innovation and Technology (UNU-MERIT), Boschstraat 24, 6211 AX Maastricht, The Netherlands
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| |
Collapse
|
77
|
Oyefeso FA, Muotri AR, Wilson CG, Pecaut MJ. Brain organoids: A promising model to assess oxidative stress-induced central nervous system damage. Dev Neurobiol 2021; 81:653-670. [PMID: 33942547 DOI: 10.1002/dneu.22828] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Oxidative stress (OS) is one of the most significant propagators of systemic damage with implications for widespread pathologies such as vascular disease, accelerated aging, degenerative disease, inflammation, and traumatic injury. OS can be induced by numerous factors such as environmental conditions, lifestyle choices, disease states, and genetic susceptibility. It is tied to the accumulation of free radicals, mitochondrial dysfunction, and insufficient antioxidant protection, which leads to cell aging and tissue degeneration over time. Unregulated systemic increase in reactive species, which contain harmful free radicals, can lead to diverse tissue-specific OS responses and disease. Studies of OS in the brain, for example, have demonstrated how this state contributes to neurodegeneration and altered neural plasticity. As the worldwide life expectancy has increased over the last few decades, the prevalence of OS-related diseases resulting from age-associated progressive tissue degeneration. Unfortunately, vital translational research studies designed to identify and target disease biomarkers in human patients have been impeded by many factors (e.g., limited access to human brain tissue for research purposes and poor translation of experimental models). In recent years, stem cell-derived three-dimensional tissue cultures known as "brain organoids" have taken the spotlight as a novel model for studying central nervous system (CNS) diseases. In this review, we discuss the potential of brain organoids to model the responses of human neural cells to OS, noting current and prospective limitations. Overall, brain organoids show promise as an innovative translational model to study CNS susceptibility to OS and elucidate the pathophysiology of the aging brain.
Collapse
Affiliation(s)
- Foluwasomi A Oyefeso
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Alysson R Muotri
- Department of Pediatrics/Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Christopher G Wilson
- Lawrence D. Longo, MD, Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Michael J Pecaut
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
78
|
Automated Functional Screening for Modulators of Optogenetically Activated Neural Responses in Living Organisms. Methods Mol Biol 2021. [PMID: 32865748 DOI: 10.1007/978-1-0716-0830-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
All-optical methods of probing in vivo brain function are advantageous for their compatibility with automated microscopy and fast spatial targeting of neural circuit excitation and response. Recent advances in optogenetic technologies allow simultaneous light activation of specific neurons and optical readout of neural activity via fluorescent calcium reporters, providing an attractive opportunity for high-throughput screening assays that directly assess dynamic neural function in vivo. Here we describe a method to automatically record optogenetically activated neural responses in living, hydrogel-embedded organisms over many hours in a multiwell plate format. This method is suitable for screening the neural effects of hundreds of chemical compounds and assessing the time course of bioactivity over 12 h or more. As examples, we show the suppression of neural responses over time with various concentrations of two voltage-gated calcium channel blockers and a full-plate screen of 320 chemicals with positive and negative controls in a single experiment.
Collapse
|
79
|
Khuu MA, Nallamothu T, Castro-Rivera CI, Arias-Cavieres A, Szujewski CC, Garcia Iii AJ. Stage-dependent effects of intermittent hypoxia influence the outcome of hippocampal adult neurogenesis. Sci Rep 2021; 11:6005. [PMID: 33727588 PMCID: PMC7966401 DOI: 10.1038/s41598-021-85357-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Over one billion adults worldwide are estimated to suffer from sleep apnea, a condition with wide-reaching effects on brain health. Sleep apnea causes cognitive decline and is a risk factor for neurodegenerative conditions such as Alzheimer’s disease. Rodents exposed to intermittent hypoxia (IH), a hallmark of sleep apnea, exhibit spatial memory deficits associated with impaired hippocampal neurophysiology and dysregulated adult neurogenesis. We demonstrate that IH creates a pro-oxidant condition that reduces the Tbr2+ neural progenitor pool early in the process, while also suppressing terminal differentiation of adult born neurons during late adult neurogenesis. We further show that IH-dependent cell-autonomous hypoxia inducible factor 1-alpha (HIF1a) signaling is activated in early neuroprogenitors and enhances the generation of adult born neurons upon termination of IH. Our findings indicate that oscillations in oxygen homeostasis, such as those found in sleep apnea, have complex stage-dependent influence over hippocampal adult neurogenesis.
Collapse
Affiliation(s)
- Maggie A Khuu
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Thara Nallamothu
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Carolina I Castro-Rivera
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.,Committee On Neurobiology, The University of Chicago, Chicago, IL, 60307, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| | - Alejandra Arias-Cavieres
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Caroline C Szujewski
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.,Committee On Neurobiology, The University of Chicago, Chicago, IL, 60307, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| | - Alfredo J Garcia Iii
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA. .,Committee On Neurobiology, The University of Chicago, Chicago, IL, 60307, USA. .,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
80
|
Costamagna G, Comi GP, Corti S. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids. Int J Mol Sci 2021; 22:ijms22052659. [PMID: 33800815 PMCID: PMC7961877 DOI: 10.3390/ijms22052659] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
In the last decade, different research groups in the academic setting have developed induced pluripotent stem cell-based protocols to generate three-dimensional, multicellular, neural organoids. Their use to model brain biology, early neural development, and human diseases has provided new insights into the pathophysiology of neuropsychiatric and neurological disorders, including microcephaly, autism, Parkinson’s disease, and Alzheimer’s disease. However, the adoption of organoid technology for large-scale drug screening in the industry has been hampered by challenges with reproducibility, scalability, and translatability to human disease. Potential technical solutions to expand their use in drug discovery pipelines include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to create isogenic models, single-cell RNA sequencing to characterize the model at a cellular level, and machine learning to analyze complex data sets. In addition, high-content imaging, automated liquid handling, and standardized assays represent other valuable tools toward this goal. Though several open issues still hamper the full implementation of the organoid technology outside academia, rapid progress in this field will help to prompt its translation toward large-scale drug screening for neurological disorders.
Collapse
Affiliation(s)
- Gianluca Costamagna
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
81
|
Jacob F, Schnoll JG, Song H, Ming GL. Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Curr Top Dev Biol 2021; 142:477-530. [PMID: 33706925 PMCID: PMC8363060 DOI: 10.1016/bs.ctdb.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human brain development is an intricate process that involves precisely timed coordination of cell proliferation, fate specification, neuronal differentiation, migration, and integration of diverse cell types. Understanding of these fundamental processes, however, has been largely constrained by limited access to fetal brain tissue and the inability to prospectively study neurodevelopment in humans at the molecular, cellular and system levels. Although non-human model organisms have provided important insights into mechanisms underlying brain development, these systems do not fully recapitulate many human-specific features that often relate to disease. To address these challenges, human brain organoids, self-assembled three-dimensional neural aggregates, have been engineered from human pluripotent stem cells to model the architecture and cellular diversity of the developing human brain. Recent advancements in neural induction and regional patterning using small molecules and growth factors have yielded protocols for generating brain organoids that recapitulate the structure and neuronal composition of distinct brain regions. Here, we first provide an overview of early mammalian brain development with an emphasis on molecular cues that guide region specification. We then focus on recent efforts in generating human brain organoids that model the development of specific brain regions and highlight endeavors to enhance the cellular complexity to better mimic the in vivo developing human brain. We also provide examples of how organoid models have enhanced our understanding of human neurological diseases and conclude by discussing limitations of brain organoids with our perspectives on future advancements to maximize their potential.
Collapse
Affiliation(s)
- Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jordan G Schnoll
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
82
|
Kim MS, Kim DH, Kang HK, Kook MG, Choi SW, Kang KS. Modeling of Hypoxic Brain Injury through 3D Human Neural Organoids. Cells 2021; 10:cells10020234. [PMID: 33504071 PMCID: PMC7911731 DOI: 10.3390/cells10020234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/04/2023] Open
Abstract
Brain organoids have emerged as a novel model system for neural development, neurodegenerative diseases, and human-based drug screening. However, the heterogeneous nature and immature neuronal development of brain organoids generated from pluripotent stem cells pose challenges. Moreover, there are no previous reports of a three-dimensional (3D) hypoxic brain injury model generated from neural stem cells. Here, we generated self-organized 3D human neural organoids from adult dermal fibroblast-derived neural stem cells. Radial glial cells in these human neural organoids exhibited characteristics of the human cerebral cortex trend, including an inner (ventricular zone) and an outer layer (early and late cortical plate zones). These data suggest that neural organoids reflect the distinctive radial organization of the human cerebral cortex and allow for the study of neuronal proliferation and maturation. To utilize this 3D model, we subjected our neural organoids to hypoxic injury. We investigated neuronal damage and regeneration after hypoxic injury and reoxygenation. Interestingly, after hypoxic injury, reoxygenation restored neuronal cell proliferation but not neuronal maturation. This study suggests that human neural organoids generated from neural stem cells provide new opportunities for the development of drug screening platforms and personalized modeling of neurodegenerative diseases, including hypoxic brain injury.
Collapse
Affiliation(s)
| | | | | | | | - Soon Won Choi
- Correspondence: (S.W.C.); (K.-S.K.); Tel.: +82-2-880-1298 (S.W.C.); +82-2-880-1246 (K.-S.K.)
| | - Kyung-Sun Kang
- Correspondence: (S.W.C.); (K.-S.K.); Tel.: +82-2-880-1298 (S.W.C.); +82-2-880-1246 (K.-S.K.)
| |
Collapse
|
83
|
Islam MR, Lbik D, Sakib MS, Maximilian Hofmann R, Berulava T, Jiménez Mausbach M, Cha J, Goldberg M, Vakhtang E, Schiffmann C, Zieseniss A, Katschinski DM, Sananbenesi F, Toischer K, Fischer A. Epigenetic gene expression links heart failure to memory impairment. EMBO Mol Med 2021; 13:e11900. [PMID: 33471428 PMCID: PMC7933944 DOI: 10.15252/emmm.201911900] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
In current clinical practice, care of diseased patients is often restricted to separated disciplines. However, such an organ-centered approach is not always suitable. For example, cognitive dysfunction is a severe burden in heart failure patients. Moreover, these patients have an increased risk for age-associated dementias. The underlying molecular mechanisms are presently unknown, and thus, corresponding therapeutic strategies to improve cognition in heart failure patients are missing. Using mice as model organisms, we show that heart failure leads to specific changes in hippocampal gene expression, a brain region intimately linked to cognition. These changes reflect increased cellular stress pathways which eventually lead to loss of neuronal euchromatin and reduced expression of a hippocampal gene cluster essential for cognition. Consequently, mice suffering from heart failure exhibit impaired memory function. These pathological changes are ameliorated via the administration of a drug that promotes neuronal euchromatin formation. Our study provides first insight to the molecular processes by which heart failure contributes to neuronal dysfunction and point to novel therapeutic avenues to treat cognitive defects in heart failure patients.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Dawid Lbik
- Clinic of Cardiology and Pneumology, Georg-August-University, Göttingen, Germany
| | - M Sadman Sakib
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | | | - Tea Berulava
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Martí Jiménez Mausbach
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Julia Cha
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Maria Goldberg
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Elerdashvili Vakhtang
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Christian Schiffmann
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Anke Zieseniss
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany.,Institute for Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, Göttingen, Germany
| | - Dörthe Magdalena Katschinski
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany.,Institute for Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, Göttingen, Germany
| | - Farahnaz Sananbenesi
- Genome Dynamics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Karl Toischer
- Clinic of Cardiology and Pneumology, Georg-August-University, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Andre Fischer
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
84
|
Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nat Neurosci 2021; 24:1542-1554. [PMID: 34675437 PMCID: PMC8553627 DOI: 10.1038/s41593-021-00923-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/16/2021] [Indexed: 12/09/2022]
Abstract
Amyotrophic lateral sclerosis overlapping with frontotemporal dementia (ALS/FTD) is a fatal and currently untreatable disease characterized by rapid cognitive decline and paralysis. Elucidating initial cellular pathologies is central to therapeutic target development, but obtaining samples from presymptomatic patients is not feasible. Here, we report the development of a cerebral organoid slice model derived from human induced pluripotent stem cells (iPSCs) that recapitulates mature cortical architecture and displays early molecular pathology of C9ORF72 ALS/FTD. Using a combination of single-cell RNA sequencing and biological assays, we reveal distinct transcriptional, proteostasis and DNA repair disturbances in astroglia and neurons. We show that astroglia display increased levels of the autophagy signaling protein P62 and that deep layer neurons accumulate dipeptide repeat protein poly(GA), DNA damage and undergo nuclear pyknosis that could be pharmacologically rescued by GSK2606414. Thus, patient-specific iPSC-derived cortical organoid slice cultures are a reproducible translational platform to investigate preclinical ALS/FTD mechanisms as well as novel therapeutic approaches.
Collapse
|
85
|
Sidhaye J, Knoblich JA. Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease. Cell Death Differ 2021; 28:52-67. [PMID: 32483384 PMCID: PMC7853143 DOI: 10.1038/s41418-020-0566-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding etiology of human neurological and psychiatric diseases is challenging. Genomic changes, protracted development, and histological features unique to human brain development limit the disease aspects that can be investigated using model organisms. Hence, in order to study phenotypes associated with human brain development, function, and disease, it is necessary to use alternative experimental systems that are accessible, ethically justified, and replicate human context. Human pluripotent stem cell (hPSC)-derived brain organoids offer such a system, which recapitulates features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation of neural progenitors into neurons and glial cells and the complex interactions among the diverse, emergent cell types of the developing brain in three-dimensions (3-D). In recent years, numerous brain organoid protocols and related techniques have been developed to recapitulate aspects of embryonic and fetal brain development in a reproducible and predictable manner. Altogether, these different organoid technologies provide distinct bioassays to unravel novel, disease-associated phenotypes and mechanisms. In this review, we summarize how the diverse brain organoid methods can be utilized to enhance our understanding of brain disorders. FACTS: Brain organoids offer an in vitro approach to study aspects of human brain development and disease. Diverse brain organoid techniques offer bioassays to investigate new phenotypes associated with human brain disorders that are difficult to study in monolayer cultures. Brain organoids have been particularly useful to study phenomena and diseases associated with neural progenitor morphology, survival, proliferation, and differentiation. OPEN QUESTION: Future brain organoid research needs to aim at later stages of neurodevelopment, linked with neuronal activity and connections, to unravel further disease-associated phenotypes. Continued improvement of existing organoid protocols is required to generate standardized methods that recapitulate in vivo-like spatial diversity and complexity.
Collapse
Affiliation(s)
- Jaydeep Sidhaye
- Institute of Molecular Biotechnology of Austrian academy of sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of Austrian academy of sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
86
|
Matsui TK, Tsuru Y, Kuwako KI. Challenges in Modeling Human Neural Circuit Formation via Brain Organoid Technology. Front Cell Neurosci 2020; 14:607399. [PMID: 33362473 PMCID: PMC7756199 DOI: 10.3389/fncel.2020.607399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 01/12/2023] Open
Abstract
Human brain organoids are three-dimensional self-organizing tissues induced from pluripotent cells that recapitulate some aspects of early development and some of the early structure of the human brain in vitro. Brain organoids consist of neural lineage cells, such as neural stem/precursor cells, neurons, astrocytes and oligodendrocytes. Additionally, brain organoids contain fluid-filled ventricle-like structures surrounded by a ventricular/subventricular (VZ/SVZ) zone-like layer of neural stem cells (NSCs). These NSCs give rise to neurons, which form multiple outer layers. Since these structures resemble some aspects of structural arrangements in the developing human brain, organoid technology has attracted great interest in the research fields of human brain development and disease modeling. Developmental brain disorders have been intensely studied through the use of human brain organoids. Relatively early steps in human brain development, such as differentiation and migration, have also been studied. However, research on neural circuit formation with brain organoids has just recently began. In this review, we summarize the current challenges in studying neural circuit formation with organoids and discuss future perspectives.
Collapse
Affiliation(s)
- Takeshi K Matsui
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Japan
| | - Yuichiro Tsuru
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Japan
| | - Ken-Ichiro Kuwako
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
87
|
Miura Y, Li MY, Birey F, Ikeda K, Revah O, Thete MV, Park JY, Puno A, Lee SH, Porteus MH, Pașca SP. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nat Biotechnol 2020; 38:1421-1430. [PMID: 33273741 PMCID: PMC9042317 DOI: 10.1038/s41587-020-00763-w] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Cortico-striatal projections are critical components of forebrain circuitry that regulate motivated behaviors. To enable the study of the human cortico-striatal pathway and how its dysfunction leads to neuropsychiatric disease, we developed a method to convert human pluripotent stem cells into region-specific brain organoids that resemble the developing human striatum and include electrically active medium spiny neurons. We then assembled these organoids with cerebral cortical organoids in three-dimensional cultures to form cortico-striatal assembloids. Using viral tracing and functional assays in intact or sliced assembloids, we show that cortical neurons send axonal projections into striatal organoids and form synaptic connections. Medium spiny neurons mature electrophysiologically following assembly and display calcium activity after optogenetic stimulation of cortical neurons. Moreover, we derive cortico-striatal assembloids from patients with a neurodevelopmental disorder caused by a deletion on chromosome 22q13.3 and capture disease-associated defects in calcium activity, showing that this approach will allow investigation of the development and functional assembly of cortico-striatal connectivity using patient-derived cells.
Collapse
Affiliation(s)
- Yuki Miura
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Min-Yin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Fikri Birey
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Kazuya Ikeda
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Mayuri Vijay Thete
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Jin-Young Park
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Alyssa Puno
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Samuel H Lee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
88
|
Learning about cell lineage, cellular diversity and evolution of the human brain through stem cell models. Curr Opin Neurobiol 2020; 66:166-177. [PMID: 33246264 DOI: 10.1016/j.conb.2020.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Here, we summarize the current knowledge on cell diversity in the cortex and other brain regions from in vivo mouse models and in vitro models based on pluripotent stem cells. We discuss the mechanisms underlying cell proliferation and temporal progression that leads to the sequential generation of neurons dedicated to different layers of the cortex. We highlight models of corticogenesis from stem cells that recapitulate specific transcriptional and connectivity patterns from different cortical areas. We overview state-of-the art of human brain organoids modeling different brain regions, and we discuss insights into human cortical evolution from stem cells. Finally, we interrogate human brain organoid models for their competence to recapitulate the essence of human brain development.
Collapse
|
89
|
Shi Y, Wu Q, Wang X. Modeling brain development and diseases with human cerebral organoids. Curr Opin Neurobiol 2020; 66:103-115. [PMID: 33130409 DOI: 10.1016/j.conb.2020.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
Understanding the mechanisms that underlie human brain development and neurological and neuropsychiatric disorders is one of the key topics of neurobiology. Because of the poor accessibility of human and non-human primate brain tissues, the current perception and understanding of human brain development have been mainly derived from studies of rodents. However, some human-specific features of neural development cannot be well characterized by these animal models. Thanks to the advances in stem cell technologies, brain organoids are being under rapid development, showing the promising applications in decoding the human brain development and uncovering the pathology of brain diseases. In this review, we mainly summarized the recent advances in the development of brain organoid technology and discussed the limitations, applications and future prospects of this promising field.
Collapse
Affiliation(s)
- Yingchao Shi
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
90
|
Esk C, Lindenhofer D, Haendeler S, Wester RA, Pflug F, Schroeder B, Bagley JA, Elling U, Zuber J, von Haeseler A, Knoblich JA. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science 2020; 370:935-941. [PMID: 33122427 DOI: 10.1126/science.abb5390] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022]
Abstract
Loss-of-function (LOF) screens provide a powerful approach to identify regulators in biological processes. Pioneered in laboratory animals, LOF screens of human genes are currently restricted to two-dimensional cell cultures, which hinders the testing of gene functions requiring tissue context. Here, we present CRISPR-lineage tracing at cellular resolution in heterogeneous tissue (CRISPR-LICHT), which enables parallel LOF studies in human cerebral organoid tissue. We used CRISPR-LICHT to test 173 microcephaly candidate genes, revealing 25 to be involved in known and uncharacterized microcephaly-associated pathways. We characterized IER3IP1, which regulates the endoplasmic reticulum (ER) function and extracellular matrix protein secretion crucial for tissue integrity, the dysregulation of which results in microcephaly. Our human tissue screening technology identifies microcephaly genes and mechanisms involved in brain-size control.
Collapse
Affiliation(s)
- Christopher Esk
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Dominik Lindenhofer
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Simon Haendeler
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.,Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, VBC, Vienna, Austria
| | - Roelof A Wester
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Florian Pflug
- Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, VBC, Vienna, Austria
| | - Benoit Schroeder
- Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, VBC, Vienna, Austria
| | - Joshua A Bagley
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), VBC, Vienna, Austria.,Medical University of Vienna, VBC, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, VBC, Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria. .,Medical University of Vienna, VBC, Vienna, Austria
| |
Collapse
|
91
|
Lovett ML, Nieland TJ, Dingle YTL, Kaplan DL. Innovations in 3-Dimensional Tissue Models of Human Brain Physiology and Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909146. [PMID: 34211358 PMCID: PMC8240470 DOI: 10.1002/adfm.201909146] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 05/04/2023]
Abstract
3-dimensional (3D) laboratory tissue cultures have emerged as an alternative to traditional 2-dimensional (2D) culture systems that do not recapitulate native cell behavior. The discrepancy between in vivo and in vitro tissue-cell-molecular responses impedes understanding of human physiology in general and creates roadblocks for the discovery of therapeutic solutions. Two parallel approaches have emerged for the design of 3D culture systems. The first is biomedical engineering methodology, including bioengineered materials, bioprinting, microfluidics and bioreactors, used alone or in combination, to mimic the microenvironments of native tissues. The second approach is organoid technology, in which stem cells are exposed to chemical and/or biological cues to activate differentiation programs that are reminiscent of human (prenatal) development. This review article describes recent technological advances in engineering 3D cultures that more closely resemble the human brain. The contributions of in vitro 3D tissue culture systems to new insights in neurophysiology, neurological diseases and regenerative medicine are highlighted. Perspectives on designing improved tissue models of the human brain are offered, focusing on an integrative approach merging biomedical engineering tools with organoid biology.
Collapse
Affiliation(s)
- Michael L. Lovett
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Thomas J.F. Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Yu-Ting L. Dingle
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| |
Collapse
|
92
|
Cavallero S, Neves Granito R, Stockholm D, Azzolin P, Martin MT, Fortunel NO. Exposure of Human Skin Organoids to Low Genotoxic Stress Can Promote Epithelial-to-Mesenchymal Transition in Regenerating Keratinocyte Precursor Cells. Cells 2020; 9:cells9081912. [PMID: 32824646 PMCID: PMC7466070 DOI: 10.3390/cells9081912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/26/2023] Open
Abstract
For the general population, medical diagnosis is a major cause of exposure to low genotoxic stress, as various imaging techniques deliver low doses of ionizing radiation. Our study investigated the consequences of low genotoxic stress on a keratinocyte precursor fraction that includes stem and progenitor cells, which are at risk for carcinoma development. Human skin organoids were bioengineered according to a clinically-relevant model, exposed to a single 50 mGy dose of γ rays, and then xeno-transplanted in nude mice to follow full epidermis generation in an in vivo context. Twenty days post-xenografting, mature skin grafts were sampled and analyzed by semi-quantitative immuno-histochemical methods. Pre-transplantation exposure to 50 mGy of immature human skin organoids did not compromise engraftment, but half of xenografts generated from irradiated precursors exhibited areas displaying focal dysplasia, originating from the basal layer of the epidermis. Characteristics of epithelial-to-mesenchymal transition (EMT) were documented in these dysplastic areas, including loss of basal cell polarity and cohesiveness, epithelial marker decreases, ectopic expression of the mesenchymal marker α-SMA and expression of the EMT promoter ZEB1. Taken together, these data show that a very low level of radiative stress in regenerating keratinocyte stem and precursor cells can induce a micro-environment that may constitute a favorable context for long-term carcinogenesis.
Collapse
Affiliation(s)
- Sophie Cavallero
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France; (S.C.); (R.N.G.); (P.A.)
- INSERM U967, 92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, 75013 Paris 11, France
- Université Paris-Diderot, 78140 Paris 7, France
| | - Renata Neves Granito
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France; (S.C.); (R.N.G.); (P.A.)
- INSERM U967, 92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, 75013 Paris 11, France
- Université Paris-Diderot, 78140 Paris 7, France
| | - Daniel Stockholm
- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS 951, Genethon, 91002 Evry, France;
| | - Peggy Azzolin
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France; (S.C.); (R.N.G.); (P.A.)
- INSERM U967, 92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, 75013 Paris 11, France
- Université Paris-Diderot, 78140 Paris 7, France
| | - Michèle T. Martin
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France; (S.C.); (R.N.G.); (P.A.)
- INSERM U967, 92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, 75013 Paris 11, France
- Université Paris-Diderot, 78140 Paris 7, France
- Correspondence: (M.T.M.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-60-87-34-92 (N.O.F.); Fax: +33-1-60-87-34-98 (M.T.M. & N.O.F.)
| | - Nicolas O. Fortunel
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France; (S.C.); (R.N.G.); (P.A.)
- INSERM U967, 92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, 75013 Paris 11, France
- Université Paris-Diderot, 78140 Paris 7, France
- Correspondence: (M.T.M.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-60-87-34-92 (N.O.F.); Fax: +33-1-60-87-34-98 (M.T.M. & N.O.F.)
| |
Collapse
|
93
|
El-Nachef D, Shi K, Beussman KM, Martinez R, Regier MC, Everett GW, Murry CE, Stevens KR, Young JE, Sniadecki NJ, Davis J. A Rainbow Reporter Tracks Single Cells and Reveals Heterogeneous Cellular Dynamics among Pluripotent Stem Cells and Their Differentiated Derivatives. Stem Cell Reports 2020; 15:226-241. [PMID: 32619493 PMCID: PMC7363961 DOI: 10.1016/j.stemcr.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 01/03/2023] Open
Abstract
Single-cell transcriptomic approaches have found molecular heterogeneities within populations of pluripotent stem cells (PSCs). A tool that tracks single-cell lineages and their phenotypes longitudinally would reveal whether heterogeneity extends beyond molecular identity. Hence, we generated a stable Cre-inducible rainbow reporter human PSC line that provides up to 18 unique membrane-targeted fluorescent barcodes. These barcodes enable repeated assessments of single cells as they clonally expand, change morphology, and migrate. Owing to the cellular resolution of this reporter, we identified subsets of PSCs with enhanced clonal expansion, synchronized cell divisions, and persistent localization to colony edges. Reporter expression was stably maintained throughout directed differentiation into cardiac myocytes, cortical neurons, and hepatoblasts. Repeated examination of neural differentiation revealed self-assembled cortical tissues derive from clonally dominant progenitors. Collectively, these findings demonstrate the broad utility and easy implementation of this reporter line for tracking single-cell behavior.
Collapse
Affiliation(s)
- Danny El-Nachef
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Kevin Shi
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| | - Kevin M Beussman
- The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Refugio Martinez
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Mary C Regier
- The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Guy W Everett
- The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Charles E Murry
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Medicine, Cardiology, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Kelly R Stevens
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Jessica E Young
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nathan J Sniadecki
- The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Jennifer Davis
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
94
|
Cui K, Wang Y, Zhu Y, Tao T, Yin F, Guo Y, Liu H, Li F, Wang P, Chen Y, Qin J. Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. MICROSYSTEMS & NANOENGINEERING 2020; 6:49. [PMID: 34567661 PMCID: PMC8433196 DOI: 10.1038/s41378-020-0165-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 05/05/2023]
Abstract
Prenatal exposure to environmental insults can increase the risk of developing neurodevelopmental disorders. Administration of the antiepileptic drug valproic acid (VPA) during pregnancy is tightly associated with a high risk of neurological disorders in offspring. However, the lack of an ideal human model hinders our comprehensive understanding of the impact of VPA exposure on fetal brain development, especially in early gestation. Herein, we present the first report indicating the effects of VPA on brain development at early stages using engineered cortical organoids from human induced pluripotent stem cells (hiPSCs). Cortical organoids were generated on micropillar arrays in a controlled manner, recapitulating the critical features of human brain development during early gestation. With VPA exposure, cortical organoids exhibited neurodevelopmental dysfunction characterized by increased neuron progenitors, inhibited neuronal differentiation and altered forebrain regionalization. Transcriptome analysis showed new markedly altered genes (e.g., KLHL1, LHX9, and MGARP) and a large number of differential expression genes (DEGs), some of which are related to autism. In particular, comparison of transcriptome data via GSEA and correlation analysis revealed the high similarity between VPA-exposed organoids with the postmortem ASD brain and autism patient-derived organoids, implying the high risk of autism with prenatal VPA exposure, even in early gestation. These new findings facilitate a better understanding of the cellular and molecular mechanisms underlying postnatal brain disorders (such as autism) with prenatal VPA exposure. This established cortical organoid-on-a-chip platform is valuable for probing neurodevelopmental disorders under environmental exposure and can be extended to applications in the study of diseases and drug testing.
Collapse
Affiliation(s)
- Kangli Cui
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yaqing Wang
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yujuan Zhu
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tingting Tao
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fangchao Yin
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yaqiong Guo
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Haitao Liu
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fei Li
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Peng Wang
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
| | - Yuejun Chen
- University of Chinese Academy of Sciences, Beijing, 100049 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Jianhua Qin
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
95
|
Abstract
Many biomaterials have been developed which aim to match the elastic modulus of the brain for improved interfacing. However, other properties such as ultimate toughness, tensile strength, poroviscoelastic responses, energy dissipation, conductivity, and mass diffusivity also need to be considered.
Collapse
|
96
|
Zhang DY, Song H, Ming GL. Modeling neurological disorders using brain organoids. Semin Cell Dev Biol 2020; 111:4-14. [PMID: 32561297 DOI: 10.1016/j.semcdb.2020.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Neurological disorders are challenging to study given the complexity and species-specific features of the organ system. Brain organoids are three dimensional structured aggregates of neural tissue that are generated by self-organization and differentiation from pluripotent stem cells under optimized culture conditions. These brain organoids exhibit similar features of structural organization and cell type diversity as the developing human brain, creating opportunities to recapitulate disease phenotypes that are not otherwise accessible. Here we review the initial attempt in the field to apply brain organoid models for the study of many different types of human neurological disorders across a wide range of etiologies and pathophysiologies. Forthcoming advancements in both brain organoid technology as well as analytical methods have significant potentials to advance the understanding of neurological disorders and to uncover opportunities for meaningful therapeutic intervention.
Collapse
Affiliation(s)
- Daniel Y Zhang
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
97
|
Xiang Y, Cakir B, Park IH. Deconstructing and reconstructing the human brain with regionally specified brain organoids. Semin Cell Dev Biol 2020; 111:40-51. [PMID: 32553582 DOI: 10.1016/j.semcdb.2020.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022]
Abstract
Brain organoids, three-dimensional neural cultures recapitulating the spatiotemporal organization and function of the brain in a dish, offer unique opportunities for investigating the human brain development and diseases. To model distinct parts of the brain, various region-specific human brain organoids have been developed. In this article, we review current approaches to produce human region-specific brain organoids, developed through the endeavor of many researchers. We highlight the applications of human region-specific brain organoids, especially in reconstructing regional interactions in the brain through organoid fusion. We also outline the existing challenges to drive forward further the brain organoid technology and its applications for future studies.
Collapse
Affiliation(s)
- Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
98
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
99
|
Hamilton KA, Santhakumar V. Current ex Vivo and in Vitro Approaches to Uncovering Mechanisms of Neurological Dysfunction after Traumatic Brain Injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 14:18-24. [PMID: 32548365 PMCID: PMC7297186 DOI: 10.1016/j.cobme.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury often leads to progressive alterations at the molecular to circuit levels resulting in epilepsy and memory impairments. Ex vivo and in vitro models have provided a powerful platform for investigating the multimodal alteration after trauma. Recent ex vivo analyses using voltage sensitive dye imaging, optogenetics, and glutamate uncaging have revealed circuit abnormalities following in vivo brain injury. In vitro injury models have enabled examination of early and progressive changes in activity while development of three-dimensional organoids derived from human induced pluripotent stem cells have opened novel avenues for injury research. Here, we highlight recent advances in ex vivo and in vitro systems, focusing on their potential for advancing mechanistic understandings, possible limitations, and implications for therapeutics.
Collapse
Affiliation(s)
- Kelly Andrew Hamilton
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Vijayalakshmi Santhakumar
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
100
|
Fiock KL, Smalley ME, Crary JF, Pasca AM, Hefti MM. Increased Tau Expression Correlates with Neuronal Maturation in the Developing Human Cerebral Cortex. eNeuro 2020; 7:ENEURO.0058-20.2020. [PMID: 32393582 PMCID: PMC7262004 DOI: 10.1523/eneuro.0058-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/02/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023] Open
Abstract
Although best known for its role in Alzheimer's disease (AD), tau is expressed throughout brain development, although it remains unclear when and which cell types this expression occurs and how it affects disease states in both fetal and neonatal periods. We thus sought to map tau mRNA and protein expression in the developing human brain at the cellular level using a combination of existing single-cell RNA sequencing (sc-RNAseq) data, RNA in situ hybridization (RNAscope), and immunohistochemistry (IHC). Using sc-RNAseq, we found that tau mRNA expression begins in radial glia but increases dramatically as migrating neuronal precursors mature. Specifically, TBR1+ maturing neurons and SYN+ mature neurons showed significantly higher mRNA expression than GFAP+/NES+ radial glia or TBR2+ intermediate progenitors. By RNAscope, we found low levels of tau mRNA in subventricular zone (SVZ) radial glia and deep white matter intermediate progenitors, with an increase in more superficially located maturing and mature neurons. By total-tau IHC, the germinal matrix and SVZ showed little protein expression, although both RNAscope and sc-RNAseq showed mRNA, and Western blotting revealed significantly less protein in those areas compared with more mature regions. Induced pluripotent stem cell (iPSC)-derived cortical organoids showed a similar tau expression pattern by sc-RNAseq and RNAscope. Our results indicate that tau increases with neuronal maturation in both the developing fetal brain and iPSC-derived organoids and forms a basis for future research on regulatory mechanisms triggering the onset of tau gene transcription and translation, which may represent potential therapeutic targets for neurodegenerative tauopathies and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kimberly L Fiock
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Martin E Smalley
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
- Friedmann Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Anca M Pasca
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Marco M Hefti
- Department of Pathology, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Neuroscience Graduate Program, University of Iowa, Iowa City, IA 52242
| |
Collapse
|