51
|
Fuller KNZ, McCoin CS, Von Schulze AT, Houchen CJ, Choi MA, Thyfault JP. Estradiol treatment or modest exercise improves hepatic health and mitochondrial outcomes in female mice following ovariectomy. Am J Physiol Endocrinol Metab 2021; 320:E1020-E1031. [PMID: 33870713 PMCID: PMC8285602 DOI: 10.1152/ajpendo.00013.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/16/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
We recently reported that compared with males, female mice have increased hepatic mitochondrial respiratory capacity and are protected against high-fat diet-induced steatosis. Here, we sought to determine the role of estrogen in hepatic mitochondrial function, steatosis, and bile acid metabolism in female mice and investigate potential benefits of exercise in the absence or presence of estrogen via ovariectomy (OVX). Female C57BL mice (n = 6 per group) were randomly assigned to sham surgery (sham), ovariectomy (OVX), or OVX plus estradiol replacement therapy (OVX + Est). Half of the mice in each treatment group were sedentary (SED) or had access to voluntary wheel running (VWR). All mice were fed a high-fat diet (HFD) and were housed at thermoneutral temperatures. We assessed isolated hepatic mitochondrial respiratory capacity using the Oroboros O2k with both pyruvate and palmitoylcarnitine as substrates. As expected, OVX mice presented with greater hepatic steatosis, weight gain, and fat mass gain compared with sham and OVX + Est animals. Hepatic mitochondrial coupling (basal/state 3 respiration) with pyruvate was impaired following OVX, but both VWR and estradiol treatment rescued coupling to levels greater than or equal to sham animals. Estradiol and exercise also had different effects on liver electron transport chain protein expression depending on OVX status. Markers of bile acid metabolism and excretion were also impaired by ovariectomy but rescued with estradiol add-back. Together our data suggest that estrogen depletion impairs hepatic mitochondrial function and liver health, and that estradiol replacement and modest exercise can aid in rescuing this phenotype.NEW & NOTEWORTHY OVX induces hepatic steatosis in sedentary mice which can be prevented by modest physical activity (VWR) and/or estradiol treatment. Estrogen impacts hepatic mitochondrial coupling in a substrate-specific manner. OVX mice have impaired fecal bile acid excretion, which was rescued with estradiol treatment.
Collapse
Affiliation(s)
- Kelly N Z Fuller
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, Kansas
| | - Colin S McCoin
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, Kansas
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri
| | - Alex T Von Schulze
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Claire J Houchen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael A Choi
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, Kansas
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, Kansas
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri
| |
Collapse
|
52
|
FXR in liver physiology: Multiple faces to regulate liver metabolism. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166133. [PMID: 33771667 DOI: 10.1016/j.bbadis.2021.166133] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
The liver is the central metabolic hub which coordinates nutritional inputs and metabolic outputs. Food intake releases bile acids which can be sensed by the bile acid receptor FXR in the liver and the intestine. Hepatic and intestinal FXR coordinately regulate postprandial nutrient disposal in a network of interacting metabolic nuclear receptors. In this review we summarize and update the "classical roles" of FXR as a central integrator of the feeding state response, which orchestrates the metabolic processing of carbohydrates, lipids, proteins and bile acids. We also discuss more recent and less well studied FXR effects on amino acid, protein metabolism, autophagic turnover and inflammation. In addition, we summarize the recent understanding of how FXR signaling is affected by posttranslational modifications and by different FXR isoforms. These modifications and variations in FXR signaling might be considered when FXR is targeted pharmaceutically in clinical applications.
Collapse
|
53
|
Chary S, Amrein K, Lasky-Su JA, Dobnig H, Christopher KB. Metabolomic differences between critically Ill women and men. Sci Rep 2021; 11:3951. [PMID: 33597589 PMCID: PMC7889607 DOI: 10.1038/s41598-021-83602-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolism differs in women and men at homeostasis. Critically ill patients have profound dysregulation of homeostasis and metabolism. It is not clear if the metabolic response to critical illness differs in women compared to men. Such sex-specific differences in illness response would have consequences for personalized medicine. Our aim was to determine the sex-specific metabolomic response to early critical illness. We performed a post-hoc metabolomics study of the VITdAL-ICU trial where subjects received high dose vitamin D3 or placebo. Using mixed-effects modeling, we studied sex-specific changes in metabolites over time adjusted for age, Simplified Acute Physiology Score II, admission diagnosis, day 0 25-hydroxyvitamin D level, and 25-hydroxyvitamin D response to intervention. In women, multiple members of the sphingomyelin and lysophospholipid metabolite classes had significantly positive Bonferroni corrected associations over time compared to men. Further, multiple representatives of the acylcarnitine, androgenic steroid, bile acid, nucleotide and amino acid metabolite classes had significantly negative Bonferroni corrected associations over time compared to men. Gaussian graphical model analyses revealed sex-specific functional modules. Our findings show that robust and coordinated sex-specific metabolite differences exist early in critical illness.
Collapse
Affiliation(s)
- Sowmya Chary
- Biogen, Inc., 225 Binney St, Cambridge, MA, 02142, USA
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, USA
| | - Harald Dobnig
- Thyroid Endocrinology Osteoporosis Institute Dobnig, Jakob-Redtenbachergasse 10, 8010, Graz, Austria
| | - Kenneth B Christopher
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, USA.
- Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, 02115, USA.
| |
Collapse
|
54
|
di Mauro G, Zinzi A, Scavone C, Mascolo A, Gaio M, Sportiello L, Ferrajolo C, Rafaniello C, Rossi F, Capuano A. PCSK9 Inhibitors and Neurocognitive Adverse Drug Reactions: Analysis of Individual Case Safety Reports from the Eudravigilance Database. Drug Saf 2020; 44:337-349. [PMID: 33351170 PMCID: PMC7892743 DOI: 10.1007/s40264-020-01021-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Introduction Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9Is) were associated with a risk of neurocognitive adverse drug reactions (ADRs). Objective We aimed to investigate the occurrence of neuropsychiatric ADRs related to PCSK9Is. Methods We analyzed Individual Case Safety Reports (ICSRs) sent through the European pharmacovigilance database that reported alirocumab or evolocumab as the suspected drug and at least one neurological or psychiatric ADR. The reporting odds ratio (ROR) was computed to compare the probability of reporting ICSRs with neuropsychiatric ADRs between alirocumab, evolocumab and statins. Results Overall, 2041 ICSRs with alirocumab and/or evolocumab as the suspected drug described the occurrence of neuropsychiatric ADRs. The most reported preferred terms for both drugs were headache, insomnia and depression. No difference between alirocumab and evolocumab was observed for the RORs of ICSRs with ADRs belonging to the System Organ Classes (SOCs) ‘Nervous system disorders’ or ‘Psychiatric disorders’ (ROR 1.02, 95% confidence interval 0.91–1.14; and 1.12, 95% CI 0.94–1.34, respectively), while evolocumab and alirocumab had a higher reporting probability of ICSRs with ADRs belonging to the SOC ‘Nervous system disorders’ compared with atorvastatin and fluvastatin. A lower reporting probability was instead found for ICSRs with ADRs belonging to the SOC ‘Psychiatric disorders’ for evolocumab and alirocumab versus simvastatin, pravastatin and rosuvastatin. Conclusion Our results demonstrated that 22.7% of all ICSRs reporting alirocumab or evolocumab as suspect drugs described the occurrence of neuropsychiatric ADRs. The ROR showed that evolocumab and alirocumab had a higher reporting probability of neurological ADRs compared with statins. Further data from real-life contexts are needed. Electronic supplementary material The online version of this article (10.1007/s40264-020-01021-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriella di Mauro
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Regional Centre for Pharmacovigilance, Campania Region, Naples, Italy
| | - Alessia Zinzi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Regional Centre for Pharmacovigilance, Campania Region, Naples, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy. .,Regional Centre for Pharmacovigilance, Campania Region, Naples, Italy.
| | - Annamaria Mascolo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Regional Centre for Pharmacovigilance, Campania Region, Naples, Italy
| | - Mario Gaio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Regional Centre for Pharmacovigilance, Campania Region, Naples, Italy
| | - Liberata Sportiello
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Regional Centre for Pharmacovigilance, Campania Region, Naples, Italy
| | - Carmen Ferrajolo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Regional Centre for Pharmacovigilance, Campania Region, Naples, Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Regional Centre for Pharmacovigilance, Campania Region, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Regional Centre for Pharmacovigilance, Campania Region, Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Regional Centre for Pharmacovigilance, Campania Region, Naples, Italy
| |
Collapse
|
55
|
The Gut Microbiota and Inflammation: An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207618. [PMID: 33086688 PMCID: PMC7589951 DOI: 10.3390/ijerph17207618] [Citation(s) in RCA: 373] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
The gut microbiota encompasses a diverse community of bacteria that carry out various functions influencing the overall health of the host. These comprise nutrient metabolism, immune system regulation and natural defence against infection. The presence of certain bacteria is associated with inflammatory molecules that may bring about inflammation in various body tissues. Inflammation underlies many chronic multisystem conditions including obesity, atherosclerosis, type 2 diabetes mellitus and inflammatory bowel disease. Inflammation may be triggered by structural components of the bacteria which can result in a cascade of inflammatory pathways involving interleukins and other cytokines. Similarly, by-products of metabolic processes in bacteria, including some short-chain fatty acids, can play a role in inhibiting inflammatory processes. In this review, we aimed to provide an overview of the relationship between the gut microbiota and inflammatory molecules and to highlight relevant knowledge gaps in this field. Based on the current literature, it appears that as the gut microbiota composition differs between individuals and is contingent on a variety of factors like diet and genetics, some individuals may possess bacteria associated with pro-inflammatory effects whilst others may harbour those with anti-inflammatory effects. Recent technological advancements have allowed for better methods of characterising the gut microbiota. Further research to continually improve our understanding of the inflammatory pathways that interact with bacteria may elucidate reasons behind varying presentations of the same disease and varied responses to the same treatment in different individuals. Furthermore, it can inform clinical practice as anti-inflammatory microbes can be employed in probiotic therapies or used to identify suitable prebiotic therapies.
Collapse
|
56
|
Melo L, Tilmant K, Hagar A, Klaunig JE. Effect of endurance exercise training on liver gene expression in male and female mice. Appl Physiol Nutr Metab 2020; 46:356-367. [PMID: 33052711 DOI: 10.1139/apnm-2020-0379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic endurance exercise is a therapeutic strategy in the treatment of many chronic diseases in humans, including the prevention and treatment of metabolic diseases such as diabetes mellitus. Metabolic, cardiorespiratory, and endocrine pathways targeted by chronic endurance exercise have been identified. In the liver, however, the cellular and molecular pathways that are modified by exercise and have preventive or therapeutic relevance to metabolic disease need to be elucidated. The mouse model used in the current study allows for the quantification of a human-relevant exercise "dosage". In this study we show hepatic gene expression differences between sedentary female and sedentary male mice and that chronic exercise modifies the transcription of hepatic genes related to metabolic disease and steatosis in both male and female mice. Chronic exercise induces molecular pathways involved in glucose tolerance, glycolysis, and gluconeogenesis while producing a decrease in pathways related to insulin resistance, steatosis, fibrosis, and inflammation. Given these findings, this mouse exercise model has potential to dissect the cellular and molecular hepatic changes following chronic exercise with application to understanding the role that chronic exercise plays in preventing human diseases. Novelty: Exercise modifies the hepatic gene expression and hepatic pathways related to metabolic disease in male and female mice. Sex differences were seen in hepatic gene expression between sedentary and exercised mice. The mouse exercise model used in this study allows for application and evaluation of exercise effects in human disease.
Collapse
Affiliation(s)
- Luma Melo
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Karen Tilmant
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Amit Hagar
- History & Philosophy of Science & Medicine Department, Indiana University, Bloomington, IN 47405, USA.,Intelligent Systems Engineering Department, Indiana University, Bloomington, IN, USA
| | - James E Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
57
|
Liu H, Tian R, Wang H, Feng S, Li H, Xiao Y, Luan X, Zhang Z, Shi N, Niu H, Zhang S. Gut microbiota from coronary artery disease patients contributes to vascular dysfunction in mice by regulating bile acid metabolism and immune activation. J Transl Med 2020; 18:382. [PMID: 33036625 PMCID: PMC7547479 DOI: 10.1186/s12967-020-02539-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The gut microbiota was shown to play a crucial role in the development of vascular dysfunction, and the bacterial composition differed between healthy controls and coronary artery disease patients. The goal of this study was to investigate how the gut microbiota affects host metabolic homeostasis at the organism scale. METHODS We colonized germ-free C57BL/6 J mice with faeces from healthy control donors (Con) and coronary artery disease (CAD) patients and fed both groups a high fat diet for 12 weeks. We monitored cholesterol and vascular function in the transplanted mice. We analysed bile acids profiles and gut microbiota composition. Transcriptome sequencing and flow cytometry were performed to evaluate inflammatory and immune response. RESULTS CAD mice showed increased reactive oxygen species generation and intensive arterial stiffness. Microbiota profiles in recipient mice clustered according to the microbiota structure of the human donors. Clostridium symbiosum and Eggerthella colonization from CAD patients modulated the secondary bile acids pool, leading to an increase in lithocholic acid and keto-derivatives. Subsequently, bile acids imbalance in the CAD mice inhibited hepatic bile acids synthesis and resulted in elevated circulatory cholesterol. Moreover, the faecal microbiota from the CAD patients caused a significant induction of abnormal immune responses at both the transcriptome level and through the enhanced secretion of cytokines. In addition, microbes belonging to CAD promoted intestinal inflammation by contributing to lamina propria Th17/Treg imbalance and worsened gut barrier permeability. CONCLUSIONS In summary, our findings elucidated that the gut microbiota impacts cholesterol homeostasis by modulating bile acids. In addition, the CAD-associated bacterial community was shown to function as an important regulator of systemic inflammation and to influence arterial stiffness.
Collapse
Affiliation(s)
- Honghong Liu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Ran Tian
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Hui Wang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Siqin Feng
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Hanyu Li
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Ying Xiao
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xiaodong Luan
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Zhiyu Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Na Shi
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical Collage, Beijing, 100021, China
| | - Haitao Niu
- School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
58
|
He YJ, You CG. The Potential Role of Gut Microbiota in the Prevention and Treatment of Lipid Metabolism Disorders. Int J Endocrinol 2020; 2020:8601796. [PMID: 33005189 PMCID: PMC7509545 DOI: 10.1155/2020/8601796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Due to changes in lifestyle, diet structure, and aging worldwide, the incidence of metabolic syndromes such as hyperlipidemia, hypertension, diabetes, and obesity is increasing. Metabolic syndrome is considered to be closely related to cardiovascular disease and severely affects human health. In recent years, researchers have revealed that the gut microbiota, through its own or interacting metabolites, has a positive role in regulating metabolic syndrome. Therefore, the gut microbiota has been a new "organ" for the treatment of metabolic syndrome. The role has not been clarified, and more research is necessary to prove the specific role of specific strains. Probiotics are also believed to regulate metabolic syndromes by regulating the gut microbiota and are expected to become a new preparation for treating metabolic syndromes. This review focuses on the regulation of lipid metabolism disorders by the gut microbiota through the effects of bile acids (BA), short-chain fatty acids (SCFAs), bile salt hydrolase (BSH), and genes such as ABCG5 and ABCG8, FXR, NPC1L, and LDL-R.
Collapse
Affiliation(s)
- Yan-Jun He
- Laboratory Medicine Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen Lanzhou, Lanzhou 730030, Gansu, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen Lanzhou, Lanzhou 730030, Gansu, China
| |
Collapse
|
59
|
Yang FY, Saqib HSA, Chen JH, Ruan QQ, Vasseur L, He WY, You MS. Differential Profiles of Gut Microbiota and Metabolites Associated with Host Shift of Plutella xylostella. Int J Mol Sci 2020; 21:E6283. [PMID: 32872681 PMCID: PMC7504026 DOI: 10.3390/ijms21176283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/01/2023] Open
Abstract
Evolutionary and ecological forces are important factors that shape gut microbial profiles in hosts, which can help insects adapt to different environments through modulating their metabolites. However, little is known about how gut microbes and metabolites are altered when lepidopteran pest species switch hosts. In the present study, using 16S-rDNA sequencing and mass spectrometry-based metabolomics, we analyzed the gut microbiota and metabolites of three populations of Plutella xylostella: one feeding on radish (PxR) and two feeding on peas (PxP; with PxP-1 and PxP-17 being the first and 17th generations after host shift from radish to peas, respectively). We found that the diversity of gut microbes in PxP-17 was significantly lower than those in PxR and PxP-1, which indicates a distinct change in gut microbiota after host shift. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the functions of energy metabolism, signal transduction, and xenobiotics biodegradation and metabolism were increased in PxP-17, suggesting their potential roles in host adaptation. Metabolic profiling showed a significant difference in the abundance of gut metabolites between PxR and PxP-17, and significant correlations of gut bacteria with gut metabolites. These findings shed light on the interaction among plants, herbivores, and symbionts, and advance our understanding of host adaptation associated with gut bacteria and metabolic activities in P. xylostella.
Collapse
Affiliation(s)
- Fei-Ying Yang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Hafiz Sohaib Ahmed Saqib
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Jun-Hui Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Qian-Qian Ruan
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Biological Sciences, Faculty/School, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Wei-Yi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Min-Sheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| |
Collapse
|
60
|
Li C, Yang J, Wang Y, Qi Y, Yang W, Li Y. Farnesoid X Receptor Agonists as Therapeutic Target for Cardiometabolic Diseases. Front Pharmacol 2020; 11:1247. [PMID: 32982723 PMCID: PMC7479173 DOI: 10.3389/fphar.2020.01247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiometabolic diseases are characterized as a combination of multiple risk factors for cardiovascular disease (CVD) and metabolic diseases including diabetes mellitus and dyslipidemia. Cardiometabolic diseases are closely associated with cell glucose and lipid metabolism, inflammatory response and mitochondrial function. Farnesoid X Receptor (FXR), a metabolic nuclear receptor, are found to be activated by primary BAs such as chenodeoxycholic acid (CDCA), cholic acid (CA) and synthetic agonists such as obeticholic acid (OCA). FXR plays crucial roles in regulating cholesterol homeostasis, lipid metabolism, glucose metabolism, and intestinal microorganism. Recently, emerging evidence suggests that FXR agonists are functional for metabolic syndrome and cardiovascular diseases and are considered as a potential therapeutic agent. This review will discuss the pathological mechanism of cardiometabolic disease and reviews the potential mechanisms of FXR agonists in the treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Chao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Wang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingzi Qi
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqing Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
61
|
Yuan X, Chen R, Zhang Y, Lin X, Yang X. Sexual dimorphism of gut microbiota at different pubertal status. Microb Cell Fact 2020; 19:152. [PMID: 32723385 PMCID: PMC7390191 DOI: 10.1186/s12934-020-01412-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background Accumulating evidence infer that gut microbiome-host relations are key mediators or modulators driving the observed sexual dimorphism in some disease onset and progression. To date, the sex-differences of gut microbiota at different pubertal status have not been reported. Objective To determine the characteristics of gut microbiota of both genders at different pubertal status. Methods Gut microbiota was analyzed in 89 Chinese participants aged 5–15 years. Participants were divided into pre-puberty and puberty groups for both male and female. The composition of gut microbiota was investigated by 16S rRNA-based metagenomics. Ecological representations of microbial communities were computed. The prediction of metagenomic functional content from 16S rRNA gene surveys was conducted. Results There were 49 males (9.76 ± 2.15 years) and 40 females (9.74 ± 1.63 years); 21 males and 26 females were at puberty. At genus level, Alistipes, Megamonas, Oscillospira and Parabacteroides were more prevalent in girls than in boys (p < 0.05). There were no significantly differences of alpha-diversity between genders, which was independent of pubertal status. The beta-diversity was significantly different in pubertal subjects between genders. Using statistical analyses, we assigned genera Dorea, Megamonas, Bilophila, Parabacteroides and Phascolarctobacterium as microbial markers for pubertal subjects. The predicted metabolic profiles differ in both pubertal and pre-pubertal groups between genders. Conclusion This cross-sectional study revealed that sex differences in the gut microbiota composition and predicted metabolic profiles exist before puberty, which become more significant at puberty. The identification of novel puberty bacterial markers may disclose a potential effects of gender-related microbiota profiles on puberty onset.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Ruimin Chen
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China.
| | - Ying Zhang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Xiangquan Lin
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Xiaohong Yang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Medical University, NO. 145, 817 Middle Road, Fuzhou, 350005, China
| |
Collapse
|
62
|
Kim M, Benayoun BA. The microbiome: an emerging key player in aging and longevity. TRANSLATIONAL MEDICINE OF AGING 2020; 4:103-116. [PMID: 32832742 PMCID: PMC7437988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023] Open
Abstract
Revolutionary advancements of high-throughput sequencing and metagenomic tools have provided new insights to microbiome function, including a bidirectional relationship between the microbiome and host aging. The intestinal tract is the largest surface in the human body that directly interacts with foreign antigens - it is covered with extremely complex and diverse community of microorganisms, known as the gut microbiome. In a healthy gut, microbial communities maintain a homeostatic metabolism and reside within the host in a state of immune tolerance. Abnormal shifts in the gut microbiome, however, have been implicated in the pathogenesis of age-related chronic diseases, including obesity, cardiovascular diseases and neurodegenerative diseases. The gut microbiome is emerging as a key factor in the aging process. In this review, we describe studies of humans and model organisms that suggest a direct causal role of the gut microbiome on host aging. Additionally, we also discuss sex-dimorphism in the gut microbiome and its possible roles in age-related sex-dimorphic phenotypes. We also provide an overview of widely used microbiome analysis methods and tools which could be used to explore the impact of microbiome remodeling on aging.
Collapse
Affiliation(s)
- Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
63
|
Nutrition and Gastrointestinal Microbiota, Microbial-Derived Secondary Bile Acids, and Cardiovascular Disease. Curr Atheroscler Rep 2020; 22:47. [PMID: 32681421 DOI: 10.1007/s11883-020-00863-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The goal is to review the connection between gut microbiota and cardiovascular disease, with specific emphasis on bile acids, and the influence of diet in modulating this relationship. RECENT FINDINGS Bile acids exert a much broader range of biological functions than initially recognized, including regulation of cardiovascular function through direct and indirect mechanisms. There is a bi-directional relationship between gut microbiota modulation of bile acid-signaling properties, and their effects on gut microbiota composition. Evidence, primarily from rodent models and limited human trials, suggest that dietary modulation of the gut microbiome significantly impacts bile acid metabolism and subsequently host physiological response(s). Available evidence suggests that the link between diet, gut microbiota, and CVD risk is potentially mediated via bile acid effects on diverse metabolic pathways. However, further studies are needed to confirm/expand and translate these findings in a clinical setting.
Collapse
|
64
|
The Impact of Dietary Supplementation of Whole Foods and Polyphenols on Atherosclerosis. Nutrients 2020; 12:nu12072069. [PMID: 32664664 PMCID: PMC7400924 DOI: 10.3390/nu12072069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The purpose of this review is to highlight current research on the benefits of supplementation with foods with a diverse polyphenol composition, including fruits, vegetables, nuts, grains, oils, spices, and teas in blunting atherosclerosis. We searched PubMed for publications utilizing whole food or polyphenols prepared from whole foods in Apolipoprotein E (ApoE) or Low-Density Lipoprotein Receptor (LDLR) knockout mice, and identified 73 studies in which plaque was measured. The majority of the studies reported a reduction in plaque. Nine interventions showed no effect, while three using Agaricus blazei mushroom, HYJA-ri-4 rice variety, and safrole-2', 3'-oxide (SFO) increased plaque. The mechanisms by which atherosclerosis was reduced include improved lipid profile, antioxidant status, and cholesterol clearance, and reduced inflammation. Importantly, not all dietary interventions that reduce plaque showed an improvement in lipid profile. Additionally, we found that, out of 73 studies, only 9 used female mice and only 6 compared both sexes. Only one study compared the two models (LDLR vs. ApoE), showing that the treatment worked in one but not the other. Not all supplementations work in both male and female animals, suggesting that increasing the variety of foods with different polyphenol compositions may be more effective in mitigating atherosclerosis.
Collapse
|
65
|
Wang SZ, Yu YJ, Adeli K. Role of Gut Microbiota in Neuroendocrine Regulation of Carbohydrate and Lipid Metabolism via the Microbiota-Gut-Brain-Liver Axis. Microorganisms 2020; 8:microorganisms8040527. [PMID: 32272588 PMCID: PMC7232453 DOI: 10.3390/microorganisms8040527] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota play an important role in maintaining intestinal health and are involved in the metabolism of carbohydrates, lipids, and amino acids. Recent studies have shown that the central nervous system (CNS) and enteric nervous system (ENS) can interact with gut microbiota to regulate nutrient metabolism. The vagal nerve system communicates between the CNS and ENS to control gastrointestinal tract functions and feeding behavior. Vagal afferent neurons also express receptors for gut peptides that are secreted from enteroendocrine cells (EECs), such as cholecystokinin (CCK), ghrelin, leptin, peptide tyrosine tyrosine (PYY), glucagon-like peptide-1 (GLP-1), and 5-hydroxytryptamine (5-HT; serotonin). Gut microbiota can regulate levels of these gut peptides to influence the vagal afferent pathway and thus regulate intestinal metabolism via the microbiota-gut-brain axis. In addition, bile acids, short-chain fatty acids (SCFAs), trimethylamine-N-oxide (TMAO), and Immunoglobulin A (IgA) can also exert metabolic control through the microbiota-gut-liver axis. This review is mainly focused on the role of gut microbiota in neuroendocrine regulation of nutrient metabolism via the microbiota-gut-brain-liver axis.
Collapse
Affiliation(s)
- Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China;
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
- Molecular Medicine, Research Institute, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Yi-Jing Yu
- Molecular Medicine, Research Institute, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
- Correspondence: ; Tel.: +1-416-813-8682; Fax: +1-416-813-6257
| |
Collapse
|
66
|
Tam A, Filho FSL, Ra SW, Yang J, Leung JM, Churg A, Wright JL, Sin DD. Effects of sex and chronic cigarette smoke exposure on the mouse cecal microbiome. PLoS One 2020; 15:e0230932. [PMID: 32251484 PMCID: PMC7135149 DOI: 10.1371/journal.pone.0230932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Chronic smoke exposure is associated with weight loss in patients with Chronic Obstructive Pulmonary Disease (COPD). However, the biological contribution of chronic smoking and sex on the cecal microbiome has not been previously investigated. METHODS Adult male, female and ovariectomized mice were exposed to air (control group) or smoke for six months using a standard nose-only smoke exposure system. DNA was extracted from the cecal content using the QIAGEN QIAamp® DNA Mini Kit. Droplet digital PCR was used to generate total 16S bacterial counts, followed by Illumina MiSeq® analysis to determine microbial community composition. The sequencing data were resolved into Amplicon Sequence Variants and analyzed with the use of QIIME2®. Alpha diversity measures (Richness, Shannon Index, Evenness and Faith's Phylogenetic Diversity) and beta diversity (based on Bray-Curtis distances) were assessed and compared according to smoke exposure and sex. RESULTS The microbial community was different between male and female mice, while ovariectomy made the cecal microbiome similar to that of male mice. Chronic smoke exposure led to significant changes in the cecal microbial community in both male and female mice. The organism, Alistipes, was the most consistent bacteria identified at the genus level in the cecal content that was reduced with chronic cigarette exposure and its expression was positively related to the whole-body weight of these mice. CONCLUSION Chronic smoke exposure is associated with changes in the cecal content microbiome; these changes may play a role in the weight changes that are observed in cigarette smokers.
Collapse
Affiliation(s)
- Anthony Tam
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Fernando Sergio Leitao Filho
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Seung Won Ra
- Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Julia Yang
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Janice M Leung
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Andrew Churg
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne L Wright
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Don D Sin
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
67
|
Characterisation of the dynamic nature of lipids throughout the lifespan of genetically identical female and male Daphnia magna. Sci Rep 2020; 10:5576. [PMID: 32221338 PMCID: PMC7101400 DOI: 10.1038/s41598-020-62476-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Lipids play a significant role in regulation of health and disease. To enhance our understanding of the role of lipids in regulation of lifespan and healthspan additional studies are required. Here, UHPLC-MS/MS lipidomics was used to measure dynamic changes in lipid composition as a function of age and gender in genetically identical male and female Daphnia magna with different average lifespans. We demonstrate statistically significant age-related changes in triglycerides (TG), diglycerides (DG), phosphatidylcholine, phosphatidylethanolamine, ceramide and sphingomyelin lipid groups, for example, in males, 17.04% of TG lipid species decline with age whilst 37.86% increase in relative intensity with age. In females, 23.16% decrease and 25.31% increase in relative intensity with age. Most interestingly, the rate and direction of change can differ between genetically identical female and male Daphnia magna, which could be the cause and/or the consequence of the different average lifespans between the two genetically identical genders. This study provides a benchmark dataset to understand how lipids alter as a function of age in genetically identical female and male species with different average lifespan and ageing rate.
Collapse
|
68
|
Kim M, Benayoun BA. The microbiome: An emerging key player in aging and longevity. TRANSLATIONAL MEDICINE OF AGING 2020. [DOI: 10.1016/j.tma.2020.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
69
|
Jaggar M, Rea K, Spichak S, Dinan TG, Cryan JF. You've got male: Sex and the microbiota-gut-brain axis across the lifespan. Front Neuroendocrinol 2020; 56:100815. [PMID: 31805290 DOI: 10.1016/j.yfrne.2019.100815] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Sex is a critical factor in the diagnosis and development of a number of mental health disorders including autism, schizophrenia, depression, anxiety, Parkinson's disease, multiple sclerosis, anorexia nervosa and others; likely due to differences in sex steroid hormones and genetics. Recent evidence suggests that sex can also influence the complexity and diversity of microbes that we harbour in our gut; and reciprocally that our gut microbes can directly and indirectly influence sex steroid hormones and central gene activation. There is a growing emphasis on the role of gastrointestinal microbiota in the maintenance of mental health and their role in the pathogenesis of disease. In this review, we introduce mechanisms by which gastrointestinal microbiota are thought to mediate positive health benefits along the gut-brain axis, we report how they may be modulated by sex, the role they play in sex steroid hormone regulation, and their sex-specific effects in various disorders relating to mental health.
Collapse
Affiliation(s)
- Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
70
|
Donati Zeppa S, Agostini D, Gervasi M, Annibalini G, Amatori S, Ferrini F, Sisti D, Piccoli G, Barbieri E, Sestili P, Stocchi V. Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients 2019; 12:nu12010017. [PMID: 31861755 PMCID: PMC7019274 DOI: 10.3390/nu12010017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
The adult gut microbiota contains trillions of microorganisms of thousands of different species. Only one third of gut microbiota are common to most people; the rest are specific and contribute to enhancing genetic variation. Gut microorganisms significantly affect host nutrition, metabolic function, immune system, and redox levels, and may be modulated by several environmental conditions, including physical activity and exercise. Microbiota also act like an endocrine organ and is sensitive to the homeostatic and physiological changes associated with training; in turn, exercise has been demonstrated to increase microbiota diversity, consequently improving the metabolic profile and immunological responses. On the other side, adaptation to exercise might be influenced by the individual gut microbiota that regulates the energetic balance and participates to the control of inflammatory, redox, and hydration status. Intense endurance exercise causes physiological and biochemical demands, and requires adequate measures to counteract oxidative stress, intestinal permeability, electrolyte imbalance, glycogen depletion, frequent upper respiratory tract infections, systemic inflammation and immune responses. Microbiota could be an important tool to improve overall general health, performance, and energy availability while controlling inflammation and redox levels in endurance athletes. The relationship among gut microbiota, general health, training adaptation and performance, along with a focus on sport supplements which are known to exert some influence on the microbiota, will be discussed.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Correspondence: (D.A.); (S.D.Z.); Tel.: +39-0722-303-423 (D.A.); +39-0722-303-422 (S.D.Z.); Fax: +39-0722-303-401 (D.A. & S.D.Z.)
| | - Deborah Agostini
- Correspondence: (D.A.); (S.D.Z.); Tel.: +39-0722-303-423 (D.A.); +39-0722-303-422 (S.D.Z.); Fax: +39-0722-303-401 (D.A. & S.D.Z.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Razavi AC, Potts KS, Kelly TN, Bazzano LA. Sex, gut microbiome, and cardiovascular disease risk. Biol Sex Differ 2019; 10:29. [PMID: 31182162 PMCID: PMC6558780 DOI: 10.1186/s13293-019-0240-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Key differences exist between men and women in the determinants and manifestations of cardiovascular and cardiometabolic diseases. Recently, gut microbiome-host relations have been implicated in cardiovascular disease and associated metabolic conditions; therefore, gut microbiota may be key mediators or modulators driving the observed sexual dimorphism in disease onset and progression. While current evidence regarding pure physiological sex differences in gut microbiome composition is modest, robust research suggests that gut microbiome-dependent metabolites may interact with important biological pathways under sex hormone control, including toll-like receptor and flavin monooxygenase signaling. Here, we review key sex differences in gut microbiome interactions with four primary determinants of cardiovascular disease, impaired glucose regulation, dyslipidemia, hypertension, and obesity. Through this process, we propose important sex differences in downstream metabolic pathways that may be at the interface of the gut microbiome and cardiovascular disease.
Collapse
Affiliation(s)
- Alexander C. Razavi
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA USA
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2000, New Orleans, LA 70112 USA
| | - Kaitlin S. Potts
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2000, New Orleans, LA 70112 USA
| | - Tanika N. Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2000, New Orleans, LA 70112 USA
| | - Lydia A. Bazzano
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA USA
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2000, New Orleans, LA 70112 USA
| |
Collapse
|
72
|
Antibiotic Exposure Has Sex-Dependent Effects on the Gut Microbiota and Metabolism of Short-Chain Fatty Acids and Amino Acids in Mice. mSystems 2019; 4:4/4/e00048-19. [PMID: 31164448 PMCID: PMC6550365 DOI: 10.1128/msystems.00048-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence shows that the gut microbiota regulates host metabolism by producing a series of metabolites, such as amino acids, bile acids, fatty acids, and others. These metabolites have a positive or negative effect on host health. Antibiotic exposure can disrupt the gut microbiota and thereby affect host metabolism and physiology. However, there are a limited number of studies addressing whether antibiotic effects on the gut microbiota and host metabolism are sex dependent. In this study, we uncovered a sex-dependent difference in antibiotic effects on the gut microbiota and metabolome in colonic contents and tissues in mice. These findings reveal that sex-dependent effects need to be considered for antibiotic use in scientific research or clinical practice. Moreover, this study will also give an important direction for future use of antibiotics to modify the gut microbiome and host metabolism in a sex-specific manner. The gut microbiota has the capability to regulate homeostasis of the host metabolism. Since antibiotic exposure can adversely affect the microbiome, we hypothesized that antibiotic effects on the gut microbiota and host metabolism are sex dependent. In this study, we examined the effects of antibiotic treatments, including vancomycin (Vanc) and ciprofloxacin-metronidazole (CiMe), on the gut microbiome and metabolome in colonic contents and tissues in both male and female mice. We found that the relative abundances and structural composition of Firmicutes were significantly reduced in female mice after both Vanc and CiMe treatments but in male mice only after treatment with Vanc. However, Vanc exposure considerably altered the relative abundances and structural composition of representatives of the Proteobacteria especially in male mice. The levels of short-chain fatty acids (SCFAs; acetate, butyrate, and propionate) in colonic contents and tissues were significantly decreased in female mice after both antibiotic treatments, while these reductions were detected in male mice only after Vanc treatment. However, another SCFA, formate, exhibited the opposite tendency in colonic tissues. Both antibiotic exposures significantly decreased the levels of alanine, branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) and aromatic amino acids (AAAs; phenylalanine and tyrosine) in colonic contents of female mice but not in male mice. Additionally, female mice had much greater correlations between microbe and metabolite than male mice. These findings suggest that sex-dependent effects should be considered for antibiotic-induced modifications of the gut microbiota and host metabolism. IMPORTANCE Accumulating evidence shows that the gut microbiota regulates host metabolism by producing a series of metabolites, such as amino acids, bile acids, fatty acids, and others. These metabolites have a positive or negative effect on host health. Antibiotic exposure can disrupt the gut microbiota and thereby affect host metabolism and physiology. However, there are a limited number of studies addressing whether antibiotic effects on the gut microbiota and host metabolism are sex dependent. In this study, we uncovered a sex-dependent difference in antibiotic effects on the gut microbiota and metabolome in colonic contents and tissues in mice. These findings reveal that sex-dependent effects need to be considered for antibiotic use in scientific research or clinical practice. Moreover, this study will also give an important direction for future use of antibiotics to modify the gut microbiome and host metabolism in a sex-specific manner.
Collapse
|
73
|
García-Ríos A, Camargo Garcia A, Perez-Jimenez F, Perez-Martinez P. Gut microbiota: A new protagonist in the risk of cardiovascular disease? CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2019; 31:178-185. [PMID: 30737071 DOI: 10.1016/j.arteri.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/12/2018] [Accepted: 11/23/2018] [Indexed: 11/26/2022]
Abstract
Cardiovascular disease remains the first cause of mortality in Western countries. New strategies for prevention and control of cardiovascular disease are needed. At the same time, the incidence of risk factors that lead to the development of this disease, such as obesity, hypertension and diabetes, continues to rise. Therefore, the search for new markers or mediators is a priority in most cardiovascular prevention programs. The study of the intestinal microbiota is emerging because it is known that intestinal microorganisms act collectively as an integrated organ, regulating multiple biological functions that can modulate cardiovascular risk factors and the pathogenic mechanisms of this process. This review considers the current situation regarding the influence of gut microbiota on cardiovascular disease and particularly, its influence on the main traditional risk factors that lead to cardiovascular disease, such as obesity, diabetes, hypertension and lipids.
Collapse
Affiliation(s)
- Antonio García-Ríos
- Unidad de Lípidos y Arteriosclerosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, España.
| | - Antonio Camargo Garcia
- Unidad de Lípidos y Arteriosclerosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, España
| | - Francisco Perez-Jimenez
- Unidad de Lípidos y Arteriosclerosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, España
| | - Pablo Perez-Martinez
- Unidad de Lípidos y Arteriosclerosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, España
| |
Collapse
|
74
|
Sex-Specific Changes in Gut Microbiome Composition following Blueberry Consumption in C57BL/6J Mice. Nutrients 2019; 11:nu11020313. [PMID: 30717265 PMCID: PMC6412574 DOI: 10.3390/nu11020313] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/19/2022] Open
Abstract
The antioxidant and anti-inflammatory properties of blueberries improve vascular function and insulin sensitivity. However, the bioavailability of the active compounds in blueberries is largely dependent on the gut microbiota, which may themselves be altered by blueberry components. The objective of the current study was to explore a possible sex-dependent modulation of the gut microbiota following supplementation with blueberries in adult mice. Eight-week-old C57BL/6J mice (n = 7⁻10/group) were provided with control or blueberry-containing diets (5% freeze-dried powder) for 4 weeks. Body weight, composition, and food intake were measured weekly. Genomic DNA was isolated from the cecal contents for 16S rRNA sequencing. Blueberry feeding decreased a-diversity (operational taxonomical unit abundance) and altered b-diversity (p < 0.05). At the phylum level, the Firmicutes to Bacteroidetes ratio was significantly lower in the blueberry-fed groups (p < 0.001), along with increased Tenericutes and decreased Deferribacteres. At the genus level, blueberry feeding led to sexually-dimorphic differences, which were associated with predicted metabolic pathways. Pathways such as fatty acid and lipid metabolism were significantly different and demonstrated a stronger association with microbes in the male. To summarize, blueberry supplementation led to sexually-dimorphic global changes in the gut microbiome, which could possibly contribute to physiological changes in mice.
Collapse
|
75
|
Li Y, Zhong S, Yu J, Sun Y, Zhu J, Ji D, Wu C. The mulberry-derived 1-deoxynojirimycin (DNJ) inhibits high-fat diet (HFD)-induced hypercholesteremia and modulates the gut microbiota in a gender-specific manner. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
76
|
Li T, Teng H, An F, Huang Q, Chen L, Song H. The beneficial effects of purple yam (Dioscorea alata L.) resistant starch on hyperlipidemia in high-fat-fed hamsters. Food Funct 2019; 10:2642-2650. [DOI: 10.1039/c8fo02502a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, we investigated the interventional effect of resistant starch (RS) obtained from purple yam (Dioscorea alata L.) on regulating lipid metabolism and gut microbiota in hyperlipidemic hamsters.
Collapse
Affiliation(s)
- Tao Li
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- China
- College of Food Science and Nutritional Engineering
| | - Hui Teng
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- China
| | - Fengping An
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- China
| | - Qun Huang
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- China
| | - Lei Chen
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- China
| | - Hongbo Song
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch
| |
Collapse
|
77
|
Wang XQ, Zhang AH, Miao JH, Sun H, Yan GL, Wu FF, Wang XJ. Gut microbiota as important modulator of metabolism in health and disease. RSC Adv 2018; 8:42380-42389. [PMID: 35558413 PMCID: PMC9092240 DOI: 10.1039/c8ra08094a] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/02/2018] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract colonizes a large number of microbial microflora, forms a host-microbiota co-metabolism structure with the host to participate in various metabolic processes in the human body, and plays a major role in the host immune response. In addition, the dysbiosis of intestinal microbial homeostasis is closely related to many diseases. Thus, an in-depth understanding of the relationship between them is of importance for disease pathogenesis, prevention and treatment. The combined use of metagenomics, transcriptomics, proteomics and metabolomics techniques for the analysis of gut microbiota can reveal the relationship between microbiota and the host in many ways, which has become a hot topic of analysis in recent years. This review describes the mechanism of co-metabolites in host health, including short-chain fatty acids (SCFA) and bile acid metabolism. The metabolic role of gut microbiota in obesity, liver diseases, gastrointestinal diseases and other diseases is also summarized, and the research methods for multi-omics combined application on gut microbiota are summarized. According to the studies of the interaction mechanism between gut microbiota and the host, we have a better understanding of the use of intestinal microflora in the treatment of related diseases. It is hoped that the gut microbiota can be utilized to maintain human health, providing a reference for future research.
Collapse
Affiliation(s)
- Xiang-Qian Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Jian-Hua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
| | - Xi-Jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| |
Collapse
|