51
|
Yokoyama S, Hiramoto K, Koyama M, Ooi K. Chronic liver injury in mice promotes impairment of skin barrier function via tumor necrosis factor-alpha. Cutan Ocul Toxicol 2015; 35:194-203. [PMID: 26362357 DOI: 10.3109/15569527.2015.1076433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Alcohol is frequently used to induce chronic liver injury in laboratory animals. Alcohol causes oxidative stress in the liver and increases the expression of inflammatory mediators that cause hepatocellular damage. However, during chronic liver injury, it is unclear if/how these liver-derived factors affect distal tissues, such as the skin. OBJECTIVE The purpose of this study was to evaluate skin barrier function during chronic liver injury. MATERIALS AND METHODS Hairless mice were administered 5% or 10% ethanol for 8 weeks, and damages to the liver and skin were assessed using histological and protein-analysis methods, as well as by detecting inflammatory mediators in the plasma. RESULTS After alcohol administration, the plasma concentration of the aspartate and alanine aminotransferases increased, while albumin levels decreased. In mice with alcohol-induced liver injury, transepidermal water loss was significantly increased, and skin hydration decreased concurrent with ceramide and type I collagen degradation. The plasma concentrations of [Formula: see text]/[Formula: see text] and tumor necrosis factor-alpha (TNF-α) were significantly increased in mice with induced liver injury. TNF receptor (TNFR) 2 expression was upregulated in the skin of alcohol-administered mice, while TNFR1 levels remained constant. Interestingly, the impairment of skin barrier function in mice administered with 10% ethanol was ameliorated by administering an anti-TNF-α antibody. CONCLUSIONS We propose a novel mechanism whereby plasma TNF-α, via TNFR2 alone or with TNFR1, plays an important role in skin barrier function during chronic liver disease in these mouse models.
Collapse
Affiliation(s)
- Satoshi Yokoyama
- a Faculty of Pharmaceutical Sciences , Suzuka University of Medical Science , Suzuka , Japan
| | - Keiichi Hiramoto
- a Faculty of Pharmaceutical Sciences , Suzuka University of Medical Science , Suzuka , Japan
| | - Mayu Koyama
- a Faculty of Pharmaceutical Sciences , Suzuka University of Medical Science , Suzuka , Japan
| | - Kazuya Ooi
- a Faculty of Pharmaceutical Sciences , Suzuka University of Medical Science , Suzuka , Japan
| |
Collapse
|
52
|
Gruber R, Börnchen C, Rose K, Daubmann A, Volksdorf T, Wladykowski E, Vidal-Y-Sy S, Peters EM, Danso M, Bouwstra JA, Hennies HC, Moll I, Schmuth M, Brandner JM. Diverse regulation of claudin-1 and claudin-4 in atopic dermatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2777-89. [PMID: 26319240 DOI: 10.1016/j.ajpath.2015.06.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/28/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Tight junctions are important for skin barrier function. The tight junction protein claudin 1 (Cldn-1) has been reported to be down-regulated in nonlesional skin of atopic dermatitis (AD) patients. In contrast, we did not observe a significant down-regulation of Cldn-1 in nonlesional skin of the AD cohort used in this study. However, for the first time, a significant down-regulation of Cldn-1 in the upper and lower epidermal layers of lesional skin was detected. In addition, there was a significant up-regulation of Cldn-4 in nonlesional, but not lesional, AD skin. For occludin, no significant alterations were observed. In an AD-like allergic dermatitis mouse model, Cldn-1 down-regulation in eczema was significantly influenced by dermal inflammation, and significantly correlated with hallmarks of eczema (ie, increased keratinocyte proliferation, altered keratinocyte differentiation, increased epidermal thickness, and impaired barrier function). In human epidermal equivalents, the addition of IL-4, IL-13, and IL-31 resulted in a down-regulation of Cldn-1, and Cldn1 knockdown in keratinocytes resulted in abnormal differentiation. In summary, we provide the first evidence that Cldn-1 and Cldn-4 are differentially involved in AD pathogenesis. Our data suggest a role of Cldn-1 in AD eczema formation triggered by inflammation.
Collapse
Affiliation(s)
- Robert Gruber
- Department of Dermatology, Venerology, and Allergology, Medical University of Innsbruck, Innsbruck, Austria; Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.
| | - Christian Börnchen
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Rose
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Daubmann
- Department of Medical Biometry and Epidemiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Volksdorf
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ewa Wladykowski
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Vidal-Y-Sy
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Eva M Peters
- Department of Psychosomatic Medicine, Psychoneuroimmunology Laboratory, Justus-Liebig University, Giessen, Germany; Center for Internal Medicine and Dermatology, Charité-University Medicine, Berlin, Germany
| | - Mogbekeloluwa Danso
- Department of Drug Delivery Technology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Joke A Bouwstra
- Department of Drug Delivery Technology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Hans C Hennies
- Department of Dermatology, Venerology, and Allergology, Medical University of Innsbruck, Innsbruck, Austria; Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria; Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Ingrid Moll
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Schmuth
- Department of Dermatology, Venerology, and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna M Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
53
|
Li J, Fung I, Glessner JT, Pandey R, Wei Z, Bakay M, Mentch FD, Pellegrino R, Wang T, Kim C, Hou C, Wang F, Chiavacci RM, Thomas KA, Spergel JM, Hakonarson H, Sleiman PMA. Copy Number Variations in CTNNA3 and RBFOX1 Associate with Pediatric Food Allergy. THE JOURNAL OF IMMUNOLOGY 2015; 195:1599-607. [PMID: 26188062 DOI: 10.4049/jimmunol.1402310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 05/20/2015] [Indexed: 11/19/2022]
Abstract
Food allergy is a significant public health concern, especially among children. Previous candidate gene studies suggested a few susceptibility loci for food allergy, but no study investigated the contribution of copy number variations (CNVs) to food allergy on a genome-wide scale. To investigate the genetics of food allergy, we performed CNV assessment using high-resolution genome-wide single nucleotide polymorphism arrays. CNV calls from a total of 357 cases with confirmed food allergy and 3980 controls were analyzed within a discovery cohort, followed by a replication analysis composed of 167 cases and 1573 controls. We identified that CNVs in CTNNA3 were significantly associated with food allergy in both the discovery cohort and the replication cohort. Of particular interest, CTNNA3 CNVs hit exons or intron regions rich in histone marker H3K4Me1. CNVs in a second gene (RBFOX1) showed a significant association (p = 7.35 × 10(-5)) with food allergy at the genome-wide level in our meta-analysis of the European ancestry cohorts. The presence of these CNVs was confirmed by quantitative PCR. Furthermore, knockdown of CTNNA3 resulted in upregulation of CD63 and CD203c in mononuclear cells upon PMA stimulation, suggesting a role in sensitization to allergen. We uncovered at least two plausible genes harboring CNV loci that are enriched in pediatric patients with food allergies. The novel gene candidates discovered in this study by genome-wide CNV analysis are compelling drug and diagnostic targets for food allergy.
Collapse
Affiliation(s)
- Jin Li
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Irene Fung
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Joseph T Glessner
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Rahul Pandey
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 08540
| | - Marina Bakay
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Frank D Mentch
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Renata Pellegrino
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Tiancheng Wang
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Cecilia Kim
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Cuiping Hou
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Fengxiang Wang
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Rosetta M Chiavacci
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Kelly A Thomas
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Jonathan M Spergel
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Center for Pediatric Eosinophilic Disorders, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Hakon Hakonarson
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Patrick M A Sleiman
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
54
|
Abstract
Neuropeptides (NPs) and neurotransmitters are a heterogeneous group of soluble factors that make connections within the neuroendocrine and immune systems. NPs, including substance P (SP), vasoactive intestinal peptide (VIP), α melanocyte-stimulating hormone (α-MSH), and calcitonin gene-related peptide (CGRP), released by nerves that innervate the skin, can modulate the action of innate and adaptive skin immunity as well as the skin cells functions. Their role in several inflammatory skin diseases, such as atopic dermatitis, psoriasis, and vitiligo, and in the isotopic response has been reported. Further progress in understanding the various processes that modulate the interactions of the nervous and the skin immune system is essential to develop effective treatment for inflammatory skin conditions with neurogenic components and for understanding signs and symptoms in the isotopic response and, in general, in the control of global and regional immunity.
Collapse
Affiliation(s)
- Torello Lotti
- Chair of Department of Dermatology and Venereology, University of Rome "G. Marconi," Rome, Italy
| | - Angelo Massimiliano D'Erme
- Division of Dermatology, Department of Surgery and Translational Medicine, University of Florence, Italy.
| | - Jana Hercogová
- Department of Dermatology and Venereology, Second Faculty of Medicine, Charles University in Prague and Bulovka University Hospital, Prague, Czech Republic
| |
Collapse
|
55
|
Leal EC, Carvalho E, Tellechea A, Kafanas A, Tecilazich F, Kearney C, Kuchibhotla S, Auster ME, Kokkotou E, Mooney DJ, LoGerfo FW, Pradhan-Nabzdyk L, Veves A. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1638-48. [PMID: 25871534 DOI: 10.1016/j.ajpath.2015.02.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/04/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022]
Abstract
Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds.
Collapse
Affiliation(s)
- Ermelindo C Leal
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Eugénia Carvalho
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Tellechea
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Antonios Kafanas
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Francesco Tecilazich
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Cathal Kearney
- Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts; Department of Anatomy, Royal College of Surgeon's in Ireland, Dublin, Ireland
| | - Sarada Kuchibhotla
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Michael E Auster
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Efi Kokkotou
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - David J Mooney
- Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Frank W LoGerfo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | - Aristidis Veves
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
56
|
Chen Y, Lyga J. Brain-skin connection: stress, inflammation and skin aging. ACTA ACUST UNITED AC 2015; 13:177-90. [PMID: 24853682 PMCID: PMC4082169 DOI: 10.2174/1871528113666140522104422] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/07/2014] [Accepted: 05/20/2014] [Indexed: 02/06/2023]
Abstract
The intricate relationship between stress and skin conditions has been documented since ancient times. Recent clinical observations also link psychological stress to the onset or aggravation of multiple skin diseases. However, the exact underlying mechanisms have only been studied and partially revealed in the past 20 years or so. In this review, the authors will discuss the recent discoveries in the field of “Brain-Skin Connection”, summarizing findings from the overlapping fields of psychology, endocrinology, skin neurobiology, skin inflammation, immunology, and pharmacology.
Collapse
Affiliation(s)
| | - John Lyga
- Global R&D, Avon Products. 1 Avon Place, Suffern, NY 10901, USA.
| |
Collapse
|
57
|
Abstract
Substance P (SP) is an important mediator of pro-inflammatory mechanisms in the skin. It targets multiple cells such as keratinocytes, mast cells, and fibroblasts which are involved in the cutaneous generation of pruritus. This suggests that SP is an interesting target for therapy. In fact, in recent case reports and case series, SP antagonists demonstrated a significant antipruritic effect in acute and chronic pruritus such as drug-induced pruritus, paraneoplastic pruritus, prurigo nodularis, cutaneous T-cell lymphoma, and brachioradial pruritus.
Collapse
Affiliation(s)
- Sonja Ständer
- Department of Dermatology, Competence Center Chronic Pruritus, University Hospital of Münster, Von-Esmarch-Strasse 58, 48149, Münster, Germany,
| | | |
Collapse
|
58
|
Peters EMJ, Michenko A, Kupfer J, Kummer W, Wiegand S, Niemeier V, Potekaev N, Lvov A, Gieler U. Mental stress in atopic dermatitis--neuronal plasticity and the cholinergic system are affected in atopic dermatitis and in response to acute experimental mental stress in a randomized controlled pilot study. PLoS One 2014; 9:e113552. [PMID: 25464511 PMCID: PMC4252053 DOI: 10.1371/journal.pone.0113552] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022] Open
Abstract
Rationale In mouse models for atopic dermatitis (AD) hypothalamus pituitary adrenal axis (HPA) dysfunction and neuropeptide-dependent neurogenic inflammation explain stress-aggravated flares to some extent. Lately, cholinergic signaling has emerged as a link between innate and adaptive immunity as well as stress responses in chronic inflammatory diseases. Here we aim to determine in humans the impact of acute stress on neuro-immune interaction as well as on the non-neuronal cholinergic system (NNCS). Methods Skin biopsies were obtained from 22 individuals (AD patients and matched healthy control subjects) before and after the Trier social stress test (TSST). To assess neuro-immune interaction, nerve fiber (NF)-density, NF-mast cell contacts and mast cell activation were determined by immunohistomorphometry. To evaluate NNCS effects, expression of secreted mammal Ly-6/urokinase-type plasminogen activator receptor-related protein (SLURP) 1 and 2 (endogenous nicotinic acetylcholine receptor ligands) and their main corresponding receptors were assessed by quantitative RT-PCR. Results With respect to neuro-immune interaction we found higher numbers of NGF+ dermal NF in lesional compared to non-lesional AD but lower numbers of Gap43+ growing NF at baseline. Mast cell-NF contacts correlated with SCORAD and itch in lesional skin. With respect to the NNCS, nicotinic acetylcholine receptor α7 (α7nAChR) mRNA was significantly lower in lesional AD skin at baseline. After TSST, PGP 9.5+ NF numbers dropped in lesional AD as did their contacts with mast cells. NGF+ NF now correlated with SCORAD and mast cell-NF contacts with itch in non-lesional skin. At the same time, SLURP-2 levels increased in lesional AD skin. Conclusions In humans chronic inflammatory and highly acute psycho-emotional stress interact to modulate cutaneous neuro-immune communication and NNCS marker expression. These findings may have consequences for understanding and treatment of chronic inflammatory diseases in the future.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Antigens, Ly/biosynthesis
- Antigens, Ly/metabolism
- Biopsy
- Dermatitis, Atopic/complications
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/physiopathology
- Humans
- Immunity, Innate
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/physiopathology
- Mast Cells/metabolism
- Mast Cells/pathology
- Mice
- Middle Aged
- Nerve Fibers/metabolism
- Nerve Fibers/pathology
- Neuronal Plasticity/immunology
- Receptors, Nicotinic/biosynthesis
- Receptors, Nicotinic/metabolism
- Stress, Psychological/complications
- Stress, Psychological/immunology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Urokinase-Type Plasminogen Activator/biosynthesis
- Urokinase-Type Plasminogen Activator/metabolism
Collapse
Affiliation(s)
- Eva Milena Johanne Peters
- Psychoneuroimmunology Laboratory, Joint appointment a) Center for Internal Medicine and Dermatology, Universitätsmedizin-Charité, Berlin, and b) Department of Psychosomatic Medicine, Justus-Liebig-University, Giessen, Germany
- * E-mail:
| | - Anna Michenko
- Psychoneuroimmunology Laboratory, Joint appointment a) Center for Internal Medicine and Dermatology, Universitätsmedizin-Charité, Berlin, and b) Department of Psychosomatic Medicine, Justus-Liebig-University, Giessen, Germany
- Department of Dermatology, I. M. Sechenov Moscow Medical University, Moscow, Russia
| | - Jörg Kupfer
- Institute of Medical Psychology, Justus-Liebig University, Giessen, Germany
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Silke Wiegand
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Volker Niemeier
- Department of Dermatology, University Hospital Giessen, Giessen, Germany
| | - Nikolay Potekaev
- Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology, Moscow, Russia
| | - Andrey Lvov
- Department of Dermatology, I. M. Sechenov Moscow Medical University, Moscow, Russia
| | - Uwe Gieler
- Department of Psychosomatics and Psychotherapy, Justus-Liebig-University, Giessen, Germany
- Department of Dermatology, University Hospital Giessen, Giessen, Germany
| |
Collapse
|
59
|
Binker MG, Cosen-Binker LI. Acute pancreatitis: The stress factor. World J Gastroenterol 2014; 20:5801-5807. [PMID: 24914340 PMCID: PMC4024789 DOI: 10.3748/wjg.v20.i19.5801] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/12/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis is an inflammatory disorder of the pancreas that may cause life-threatening complications. Etiologies of pancreatitis vary, with gallstones accounting for the majority of all cases, followed by alcohol. Other causes of pancreatitis include trauma, ischemia, mechanical obstruction, infections, autoimmune, hereditary, and drugs. The main events occurring in the pancreatic acinar cell that initiate and propagate acute pancreatitis include inhibition of secretion, intracellular activation of proteases, and generation of inflammatory mediators. Small cytokines known as chemokines are released from damaged pancreatic cells and attract inflammatory cells, whose systemic action ultimately determined the severity of the disease. Indeed, severe forms of pancreatitis may result in systemic inflammatory response syndrome and multiorgan dysfunction syndrome, characterized by a progressive physiologic failure of several interdependent organ systems. Stress occurs when homeostasis is threatened, and stressors can include physical or mental forces, or combinations of both. Depending on the timing and duration, stress can result in beneficial or harmful consequences. While it is well established that a previous acute-short-term stress decreases the severity of experimentally-induced pancreatitis, the worsening effects of chronic stress on the exocrine pancreas have received relatively little attention. This review will focus on the influence of both prior acute-short-term and chronic stress in acute pancreatitis.
Collapse
|
60
|
Stress-induced mast cell activation in glabrous and hairy skin. Mediators Inflamm 2014; 2014:105950. [PMID: 24904196 PMCID: PMC4034722 DOI: 10.1155/2014/105950] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 11/28/2022] Open
Abstract
Mast cells play a key role in modulation of stress-induced cutaneous inflammation. In this study we investigate the impact of repeated exposure to stress on mast cell degranulation, in both hairy and glabrous skin. Adult male Wistar rats were randomly divided into four groups: Stress 1 day (n = 8), Stress 10 days (n = 7), Stress 21 days (n = 6), and Control (n = 8). Rats in the stress groups were subjected to 2 h/day restraint stress. Subsequently, glabrous and hairy skin samples from animals of all groups were collected to assess mast cell degranulation by histochemistry and transmission electron microscopy. The impact of stress on mast cell degranulation was different depending on the type of skin and duration of stress exposure. Short-term stress exposure induced an amplification of mast cell degranulation in hairy skin that was maintained after prolonged exposure to stress. In glabrous skin, even though acute stress exposure had a profound stimulating effect on mast cell degranulation, it diminished progressively with long-term exposure to stress. The results of our study reinforce the view that mast cells are active players in modulating skin responses to stress and contribute to further understanding of pathophysiological mechanisms involved in stress-induced initiation or exacerbation of cutaneous inflammatory processes.
Collapse
|
61
|
Hall JMF, Witter AR, Racine RR, Berg RE, Podawiltz A, Jones H, Mummert ME. Chronic psychological stress suppresses contact hypersensitivity: potential roles of dysregulated cell trafficking and decreased IFN-γ production. Brain Behav Immun 2014; 36:156-64. [PMID: 24184400 DOI: 10.1016/j.bbi.2013.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 11/29/2022] Open
Abstract
Increasing evidence shows that psychological stress can have dramatic impacts on the immune system, particularly the cutaneous immune response in dermatological disorders. While there have been many studies examining the impact of acute psychological stress on contact hypersensitivity there are relatively few studies concerning the impact of chronic psychological stress. Furthermore, the local immunological mechanisms by which chronic psychological stress impacts contact hypersensitivity still remain to be explored. Here we show that restraint-induced chronic psychological stress stimulates activation of the hypothalamus-pituitary-adrenal axis and delays weight gain in female BALB/c mice. We observed that chronic psychological stress reduces the cutaneous immune response as evidence by reduced ear swelling. This correlated with a significant decrease in the inflammatory cell infiltrate. On the other hand, chronic psychological stress does not influence T cell proliferation, activation, or sensitivity to corticosterone but does increase CD4(+) and CD8(+) T cell percentages in draining lymph nodes during a contact hypersensitivity reaction. Chronic psychological stress induces a decrease in overall circulating white blood cells, lymphocytes, and monocytes during a contact hypersensitivity reaction suggesting extravasation from the circulation. Finally, we found markedly reduced local IFN-γ production in chronically stressed animals. Based on these findings we propose that chronic psychological stress reduces contact hypersensitivity due to dysregulated cell trafficking and reduced production of IFN-γ.
Collapse
Affiliation(s)
- Jessica M F Hall
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Alexandra R Witter
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ronny R Racine
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rance E Berg
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Alan Podawiltz
- Department of Psychiatry and Behavioral Health, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Harlan Jones
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Mark E Mummert
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States; Department of Psychiatry and Behavioral Health, University of North Texas Health Science Center, Fort Worth, TX, United States; Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
62
|
Harvima IT, Nilsson G. Stress, the neuroendocrine system and mast cells: current understanding of their role in psoriasis. Expert Rev Clin Immunol 2014; 8:235-41. [DOI: 10.1586/eci.12.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
63
|
Sölle A, Bartholomäus T, Worm M, Klinger R. How to Psychologically Minimize Scratching Impulses. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2014. [DOI: 10.1027/2151-2604/a000183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research in recent years, especially in the analgesic field, has intensively studied the placebo effect and its mechanisms. It has been shown that physical complaints can be efficiently reduced via learning and cognitive processes (conditioning and expectancies). However, despite evidence demonstrating a large variety of physiological similarities between pain and itch, the possible transfer of the analgesic placebo model to itch has not yet been widely discussed in research. This review therefore aims at highlighting potential transfers of placebo mechanisms to itch processes by demonstrating the therapeutic issues in pharmacological treatments for pruritus on a physiological basis and by discussing the impact of psychological mechanisms and psychological factors influencing itch sensations.
Collapse
Affiliation(s)
- Ariane Sölle
- Outpatient Clinic of Behavior Therapy, Department of Psychology, University of Hamburg, Germany
| | - Theresa Bartholomäus
- Hospital for Dermatology, Venereology und Allergology, Allergy Center, Charité University Medicine, Berlin, Germany
| | - Margitta Worm
- Hospital for Dermatology, Venereology und Allergology, Allergy Center, Charité University Medicine, Berlin, Germany
| | - Regine Klinger
- Outpatient Clinic of Behavior Therapy, Department of Psychology, University of Hamburg, Germany
| |
Collapse
|
64
|
Nerve-derived transmitters including peptides influence cutaneous immunology. Brain Behav Immun 2013; 34:1-10. [PMID: 23517710 PMCID: PMC3750093 DOI: 10.1016/j.bbi.2013.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/27/2013] [Accepted: 03/10/2013] [Indexed: 01/01/2023] Open
Abstract
Clinical observations suggest that the nervous and immune systems are closely related. For example, inflammatory skin disorders; such as psoriasis, atopic dermatitis, rosacea and acne; are widely believed to be exacerbated by stress. A growing body of research now suggests that neuropeptides and neurotransmitters serve as a link between these two systems. Neuropeptides and neurotransmitters are released by nerves innervating the skin to influence important actors of the immune system, such as Langerhans cells and mast cells, which are located within close anatomic proximity. Catecholamines and other sympathetic transmitters that are released in response to activation of the sympathetic nervous system are also able to reach the skin and affect immune cells. Neuropeptides appear to direct the outcome of Langerhans cell antigen presentation with regard to the subtypes of Th cells generated and neuropeptides induce the degranulation of mast cells, among other effects. Additionally, endothelial cells, which release many inflammatory mediators and express cell surface molecules that allow leukocytes to exit the bloodstream, appear to be regulated by certain neuropeptides and transmitters. This review focuses on the evidence that products of nerves have important regulatory activities on antigen presentation, mast cell function and endothelial cell biology. These activities are highly likely to have clinical and therapeutic relevance.
Collapse
|
65
|
Stohl LL, Zang JB, Ding W, Manni M, Zhou XK, Granstein RD. Norepinephrine and adenosine-5'-triphosphate synergize in inducing IL-6 production by human dermal microvascular endothelial cells. Cytokine 2013; 64:605-12. [PMID: 24026137 PMCID: PMC3835662 DOI: 10.1016/j.cyto.2013.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022]
Abstract
Endothelial cells (ECs) play important roles in cutaneous inflammation, in part, by release of inflammatory chemokines/cytokines. Because dermal blood vessels are innervated by sympathetic nerves, the sympathetic neurotransmitter norepinephrine (NE) and the co-transmitter adenosine-5'-triphosphate (ATP) may regulate expression of EC inflammatory factors. We focused on IL-6 regulation because it has many inflammatory and immune functions, including participation in Th17 cell differentiation. Strikingly, NE and ATP synergistically induced release of IL-6 by a human dermal microvascular endothelial cell line (HMEC-1). Adrenergic antagonist and agonist studies indicated that the effect of NE on induced IL-6 release is primarily mediated by β2-adrenergic receptors (ARs). By real-time PCR IL-6 mRNA was also synergistically induced in HMEC-1 cells. This synergistic effect of NE and ATP was reproduced in primary human dermal endothelial cells (pHDMECs) and is also primarily mediated by β2-ARs. Under conditions of stress, activation of the symphathetic nervous system may lead to release of ATP and NE by sympathetic nerves surrounding dermal blood vessels with induction of IL-6 production by ECs. IL-6 may then participate in immune and inflammatory processes including generation of Th17 cells. Production of IL-6 in this manner might explain stress-induced exacerbation of psoriasis, and perhaps, other skin disorders involving Th17-type immunity.
Collapse
Affiliation(s)
- Lori L. Stohl
- Department of Dermatology, Weill Cornell Medical College, 1305 York Avenue, 9 Floor, New York, New York, 10021, United States
| | - Julie B. Zang
- Department of Dermatology, Weill Cornell Medical College, 1305 York Avenue, 9 Floor, New York, New York, 10021, United States
| | - Wanhong Ding
- Department of Dermatology, Weill Cornell Medical College, 1305 York Avenue, 9 Floor, New York, New York, 10021, United States
| | - Michela Manni
- Department of Dermatology, Weill Cornell Medical College, 1305 York Avenue, 9 Floor, New York, New York, 10021, United States
| | - Xi K. Zhou
- Department of Public Health, Weill Cornell Medical College, 402 E. 67 Street, New York, New York, 10065, United States
| | - Richard D. Granstein
- Department of Dermatology, Weill Cornell Medical College, 1305 York Avenue, 9 Floor, New York, New York, 10021, United States
| |
Collapse
|
66
|
Kim HS, Yosipovitch G. An aberrant parasympathetic response: a new perspective linking chronic stress and itch. Exp Dermatol 2013; 22:239-44. [PMID: 23528208 DOI: 10.1111/exd.12070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2012] [Indexed: 12/23/2022]
Abstract
Perceived stress has long been known to alter the dynamic equilibrium established between the nervous, endocrine and immune system and is widely recognised to trigger or enhance pruritus. However, the exact mechanism of how the major stress response systems, such as the hypothalamus-pituitary adrenal (HPA) axis and the autonomic nervous system induce or aggravate chronic itch, has not been elucidated. The limbic regions of the brain such as the prefrontal cortex and hippocampus are deeply involved in the regulation of the stress response and intersect with circuits that are responsible for memory and reward. According to the 'Polyvagal Theory', certain limbic structures that serve as a 'higher brain equivalent of the parasympathetic nervous system' play a foremost role in maintaining body homoeostasis by functioning as an active vagal brake. In addition, the limbic system has been postulated to regulate two distinct, yet related aspects of itch: (i) the sensory-discriminative aspect; and (ii) the affective-cognitive aspect. Chronic stress-induced itch is hypothesised to be caused by stress-related changes in limbic structure with subsequent rewiring of both the peripheral and central pruriceptive circuits. Herein, we review data suggesting that a dysfunctional parasympathetic nervous system associated with chronic stress may play a critical role in the regulatory control of key candidate molecules, receptors and brain structures involved in chronic itch.
Collapse
Affiliation(s)
- Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Korea
| | | |
Collapse
|
67
|
|
68
|
Expression of neuropeptides and cytokines in a rabbit model of diabetic neuroischemic wound healing. J Vasc Surg 2013; 58:766-75.e12. [PMID: 23755976 DOI: 10.1016/j.jvs.2012.11.095] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/21/2012] [Accepted: 11/23/2012] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The present study is designed to understand the contribution of peripheral vascular disease and peripheral neuropathy to the wound-healing impairment associated with diabetes. Using a rabbit model of diabetic neuroischemic wound healing, we investigated rate of healing, leukocyte infiltration, and expression of cytokines, interleukin-8 and interleukin-6, and neuropeptides, substance P, and neuropeptide Y. METHODS Diabetes was induced in New Zealand White rabbits by administering alloxan while control rabbits received saline. Ten days later, animals in both groups underwent surgery. One ear served as a sham, and the other was made ischemic (ligation of central+rostral arteries) or neuroischemic (ischemia+ resection of central+rostral nerves). Four 6-mm punch biopsy wounds were created in both ears and wound healing was followed for 10 days using computerized planimetry. RESULTS Nondiabetic sham and ischemic wounds healed significantly more rapidly than diabetic sham and ischemic wounds. Healing was slowest in neuroischemic wounds, irrespective of diabetic status. A high M1/M2 macrophage ratio and a high proinflammatory cytokine expression, both indicators of chronic proinflammatory state, and low neuropeptide expression were seen in preinjury diabetic skin. Postinjury, in diabetic wounds, the M1/M2 ratio remained high, the reactive increase in cytokine expression was low, and neuropeptide expression was further decreased in neuroischemic wounds. CONCLUSIONS This rabbit model illustrates how a combination of a high M1/M2 ratio, a failure to mount postinjury cytokine response as well as a diminished neuropeptide expression, contribute to wound-healing impairment in diabetes. The addition of neuropathy to ischemia leads to equivalently severe impaired wound-healing irrespective of diabetes status, suggesting that in the presence of ischemia, loss of neuropeptide function contributes to the impaired healing associated with diabetes.
Collapse
|
69
|
Langan EA, Vidali S, Pigat N, Funk W, Lisztes E, Bíró T, Goffin V, Griffiths CEM, Paus R. Tumour necrosis factor alpha, interferon gamma and substance P are novel modulators of extrapituitary prolactin expression in human skin. PLoS One 2013; 8:e60819. [PMID: 23626671 PMCID: PMC3634033 DOI: 10.1371/journal.pone.0060819] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/03/2013] [Indexed: 12/31/2022] Open
Abstract
Human scalp skin and hair follicles (HFs) are extra-pituitary sources of prolactin (PRL). However, the intracutaneous regulation of PRL remains poorly understood. Therefore we investigated whether well-recognized regulators of pituitary PRL expression, which also impact on human skin physiology and pathology, regulate expression of PRL and its receptor (PRLR) in situ. This was studied in serum-free organ cultures of microdissected human scalp HFs and skin, i.e. excluding pituitary, neural and vascular inputs. Prolactin expression was confirmed at the gene and protein level in human truncal skin, where its expression significantly increased (p = 0.049) during organ culture. There was, however, no evidence of PRL secretion into the culture medium as measured by ELISA. PRL immunoreactivity (IR) in female human epidermis was decreased by substance P (p = 0.009), while neither the classical pituitary PRL inhibitor, dopamine, nor corticotropin-releasing hormone significantly modulated PRL IR in HFs or skin respectively. Interferon (IFN) γ increased PRL IR in the epithelium of human HFs (p = 0.044) while tumour necrosis factor (TNF) α decreased both PRL and PRLR IR. This study identifies substance P, TNFα and IFNγ as novel modulators of PRL and PRLR expression in human skin, and suggests that intracutaneous PRL expression is not under dopaminergic control. Given the importance of PRL in human hair growth regulation and its possible role in the pathogenesis of several common skin diseases, targeting intracutaneous PRL production via these newly identified regulatory pathways may point towards novel therapeutic options for inflammatory dermatoses.
Collapse
Affiliation(s)
- Ewan A. Langan
- Dermatology Research Centre, Manchester Academic Health Science Centre, and Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Silvia Vidali
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Natascha Pigat
- Inserm U845/Centre de Recherche Croissance et Signalisation, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Erika Lisztes
- DE-MTA “Lendület” Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- DE-MTA “Lendület” Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Vincent Goffin
- Inserm U845/Centre de Recherche Croissance et Signalisation, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christopher E. M. Griffiths
- Dermatology Research Centre, Manchester Academic Health Science Centre, and Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Ralf Paus
- Dermatology Research Centre, Manchester Academic Health Science Centre, and Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
70
|
Liezmann C, Stock D, Peters EMJ. Stress induced neuroendocrine-immune plasticity: A role for the spleen in peripheral inflammatory disease and inflammaging? DERMATO-ENDOCRINOLOGY 2013; 4:271-9. [PMID: 23467333 PMCID: PMC3583888 DOI: 10.4161/derm.22023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Research over the past decade has revealed close interaction between the nervous and immune systems in regulation of peripheral inflammation linking psychosocial stress with chronic somatic disease and aging. Moreover emerging data suggests that chronic inflammations lead to a pro-inflammatory status underlying premature aging called inflammaging. In this context, the spleen can be seen as a switch board monitoring peripherally derived neuroendocrine-immune mediators in the blood and keeping up a close communication with the central stress response via its mainly sympathetic innervation. The effect aims at balanced and well-timed stress axis activation and immune adaptation in acute peripheral inflammatory events. Constant adjustment to the needs generated by environmental and endogenous challenges is provided by neuroendocrine-immune plasticity. However, maladaptive plasticity induced e.g., by chronic stress-axis activation and excessive non-neuronal derived neuroendocrine mediators may be at the heart of the observed stress sensitivity promote inflammaging under chronic inflammatory conditions. We here review the role of neurotransmitters, neuropeptides and neurotrophins as stress mediators modulating the immune response in the spleen and their potential role in inflammaging.
Collapse
Affiliation(s)
- Christiane Liezmann
- Department of Psychosomatic Medicine; Psychoneuroimmunology Laboratory; Justus-Liebig University; Giessen, Germany
| | | | | |
Collapse
|
71
|
Roggenkamp D, Köpnick S, Stäb F, Wenck H, Schmelz M, Neufang G. Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model. J Invest Dermatol 2013; 133:1620-8. [PMID: 23283070 DOI: 10.1038/jid.2012.464] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Atopic eczema is a chronic inflammatory skin disease characterized by cutaneous nerve fiber sprouting and epidermal hyperplasia, pointing to an involvement of the peripheral nervous system in cutaneous homeostasis. However, the interaction of sensory neurons and skin cells is poorly understood. Using an innervated skin model, we investigated the influence of sensory neurons on epidermal morphogenesis. Neurons induced the proliferation of keratinocytes, resulting in an increase in the epidermal thickness. Inhibition of calcitonin gene-related peptide (CGRP), but not substance P (SP) signaling, reversed this effect. Human CGRP enhanced keratinocyte proliferation and epidermal thickness in skin models, demonstrating a key role of CGRP in modulating epidermal morphogenesis, whereas SP had only a moderate effect. Innervated skin models composed of atopic skin cells showed increased neurite outgrowth, accompanied by elevated CGRP release. As atopic keratinocytes were sensitized to CGRP owing to higher expression levels of the CGRP receptor components, receptor activity-modifying protein 1 (RAMP1) and receptor component protein (RCP), atopic innervated skin models displayed a thicker epidermis than did healthy controls. We conclude that neural CGRP controls local keratinocyte growth. Our results show that the crosstalk of the cutaneous peripheral nervous system and skin cells significantly influences epidermal morphogenesis and homeostasis in healthy and atopic skin.
Collapse
|
72
|
Rosenkranz MA, Davidson RJ, Maccoon DG, Sheridan JF, Kalin NH, Lutz A. A comparison of mindfulness-based stress reduction and an active control in modulation of neurogenic inflammation. Brain Behav Immun 2013; 27:174-84. [PMID: 23092711 PMCID: PMC3518553 DOI: 10.1016/j.bbi.2012.10.013] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 12/27/2022] Open
Abstract
Psychological stress is a major provocative factor of symptoms in chronic inflammatory conditions. In recent years, interest in addressing stress responsivity through meditation training in health-related domains has increased astoundingly, despite a paucity of evidence that reported benefits are specific to meditation practice. We designed the present study to rigorously compare an 8-week Mindfulness-Based Stress Reduction (MBSR) intervention to a well-matched active control intervention, the Health Enhancement Program (HEP) in ability to reduce psychological stress and experimentally-induced inflammation. The Trier Social Stress Test (TSST) was used to induce psychological stress and inflammation was produced using topical application of capsaicin cream to forearm skin. Immune and endocrine measures of inflammation and stress were collected both before and after MBSR training. Results show those randomized to MBSR and HEP training had comparable post-training stress-evoked cortisol responses, as well as equivalent reductions in self-reported psychological distress and physical symptoms. However, MBSR training resulted in a significantly smaller post-stress inflammatory response compared to HEP, despite equivalent levels of stress hormones. These results suggest behavioral interventions designed to reduce emotional reactivity may be of therapeutic benefit in chronic inflammatory conditions. Moreover, mindfulness practice, in particular, may be more efficacious in symptom relief than the well-being promoting activities cultivated in the HEP program.
Collapse
Affiliation(s)
- Melissa A Rosenkranz
- Waisman Laboratory for Brain Imaging & Behavior and Center for Investigating Healthy Minds, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, United States.
| | | | | | | | | | | |
Collapse
|
73
|
Furuno T, Hagiyama M, Sekimura M, Okamoto K, Suzuki R, Ito A, Hirashima N, Nakanishi M. Cell adhesion molecule 1 (CADM1) on mast cells promotes interaction with dorsal root ganglion neurites by heterophilic binding to nectin-3. J Neuroimmunol 2012; 250:50-8. [DOI: 10.1016/j.jneuroim.2012.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 01/07/2023]
|
74
|
Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis. Dermatol Res Pract 2012; 2012:403908. [PMID: 22969795 PMCID: PMC3437281 DOI: 10.1155/2012/403908] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 01/17/2023] Open
Abstract
Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.
Collapse
|
75
|
|
76
|
Peters EM, Liezmann C, Klapp BF, Kruse J. The neuroimmune connection interferes with tissue regeneration and chronic inflammatory disease in the skin. Ann N Y Acad Sci 2012; 1262:118-26. [DOI: 10.1111/j.1749-6632.2012.06647.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
77
|
LVOV AN, KATUNINA OR, ZNAMENSKAYA LF, MICHENKO AV, EGOROVA YY, INOYATOVA LA, HAIRULLIN RF, VOLKOV IA. Study of the genetic factors predisposing to the development of psoriasis. VESTNIK DERMATOLOGII I VENEROLOGII 2012. [DOI: 10.25208/vdv680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Many findings confirm the influence of neuropsychic factors on the manifestation and exacerbation of the atopic dermatitis and psoriasis. Nowadays it is assumed that by means of neurotransmitters’ secretion the nervous system can influence different processes, including the immune mediated inflammation, which has the key role in the pathogenesis of such dermatosis. The article hereunder contains comprehensive data on prospective trends of following studies of the nervous regulation participation in the pathogenesis of such dermatosis.
Collapse
|
78
|
Characterization of the first coculture between human primary keratinocytes and the dorsal root ganglion-derived neuronal cell line F-11. Neuroscience 2012; 210:47-57. [DOI: 10.1016/j.neuroscience.2012.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 11/23/2022]
|
79
|
Grip L, Lonne-Rahm SB, Holst M, Johansson B, Nordlind K, Theodorsson E, El-Nour H. Substance P alterations in skin and brain of chronically stressed atopic-like mice. J Eur Acad Dermatol Venereol 2012; 27:199-205. [PMID: 22251186 DOI: 10.1111/j.1468-3083.2011.04443.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Stress is known to worsen the symptoms of atopic eczema (AE). Substance P is likely to play an important role in the development and pathogenesis of AE. OBJECTIVE To examine a possible connection between chronic mild stress and changes in the expression of substance P and its receptor (R) neurokinin (NK) 1 in the skin and stress-related brain regions in NC/Nga atopic-like mice. METHODS The mice were divided into three groups (eight animals per group): SE (stressed eczematous), NSE (non-stressed eczematous) and SC (stressed control). Ears and brains of the mice were investigated using immunohistochemistry and RT-PCR. RESULTS In the skin, there was a decrease in the number of substance P immunoreactive nerve fibres in SE compared with SC group. RT-PCR showed a strong tendency to an increase in mRNA for NK1R in the skin of SE compared with NSE mice. There was an increase in the number of mast cells and the degree of their degranulation in the SE compared with both other groups. A decrease in substance P immunoreactivity in medial hippocampus was found in SE compared with NSE animals. In prefrontal cortex and central amygdala, there were no significant differences in substance P immunoreactivity between the three groups. CONCLUSION Exposure to chronic mild stress in NC/Nga atopic-like mice may result in altered expression patterns of substance P in the skin and hippocampus.
Collapse
Affiliation(s)
- L Grip
- Department of Medicine, Dermatology and Venereology Unit, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
80
|
Suárez AL, Feramisco JD, Koo J, Steinhoff M. Psychoneuroimmunology of psychological stress and atopic dermatitis: pathophysiologic and therapeutic updates. Acta Derm Venereol 2012; 92:7-15. [PMID: 22101513 DOI: 10.2340/00015555-1188] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disease characterized by impaired epidermal barrier function, inflammatory infiltration, extensive pruritus and a clinical course defined by symptomatic flares and remissions. The mechanisms of disease exacerbation are still poorly understood. Clinical occurrence of atopic dermatitis is often associated with psychological stress. In response to stress, upregulation of neuropeptide mediators in the brain, endocrine organs, and peripheral nervous system directly affect immune and resident cells in the skin. Lesional and non-lesional skin of patients with atopic dermatitis demonstrates increased mast cells and mast cell-nerve fiber contacts. In the setting of stress, sensory nerves release neuromediators that regulate inflammatory and immune responses, as well as barrier function. Progress towards elucidating these neuroimmune connections will refine our understanding of how emotional stress influences atopic dermatitis. Moreover, psychopharmacologic agents that modulate neuronal receptors or the amplification circuits of inflammation are attractive options for the treatment of not only atopic dermatitis, but also other stress-mediated inflammatory skin diseases.
Collapse
Affiliation(s)
- Andrea L Suárez
- Department of Dermatology, University of Colorado Denver, School of Medicine, Aurora, USA
| | | | | | | |
Collapse
|
81
|
Ponarovsky B, Amital D, Lazarov A, Kotler M, Amital H. Anxiety and depression in patients with allergic and non-allergic cutaneous disorders. Int J Dermatol 2011; 50:1217-22. [DOI: 10.1111/j.1365-4632.2011.04910.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
82
|
Liezmann C, Klapp B, Peters EM. Stress, atopy and allergy: A re-evaluation from a psychoneuroimmunologic persepective. DERMATO-ENDOCRINOLOGY 2011; 3:37-40. [PMID: 21519408 DOI: 10.4161/derm.3.1.14618] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 12/10/2010] [Accepted: 12/21/2010] [Indexed: 01/08/2023]
Abstract
Since the early days of psychosomatic thinking, atopic disease was considered exemplary. In the 70s and 80s numerous reports stated increased anxiety, depression or ill stresscoping in atopics in correlation with enhanced disease activity. Employed patient groups however were small and diverse and controls rare. Therefore, the question remained, whether psychopathological findings in atopics were of pathogenetic relevance or an epiphenomenon of chronic inflammatory disease. Recently, the discussion has been revived and refocused by psychoneuroimmunological findings. We now know that atopic disease is characterized by an imbalance of the classical stress-axis response along the hypothalamus-pituitary-adrenal axis (HPA) and the sympathetic axis (SA). This imbalance can be found shoulder-to-shoulder with enhanced expression of newly emerging neuroendocrine stress mediators such as substance P (SP) and nerve growth factor that form up to a third stress axis (neurotrophin neuropeptide axis: NNA). Together they can alter the inflammatory as well as the neuroendocrine stress-response on several levels. In skin, the immediate inflammatory response to stress involves neuropeptide release and mast cell degranulation, in short neurogenic inflammation. Systemically, antigen-presentation and TH2 cytokine bias are promoted under the influence of cortisol and neuropeptides. Imbalanced stress-responsiveness may therefore be at the core of exacerbated allergic disease and deserves re-evaluation of therapeutic options such as neutralization of SP-signaling by antagonists against its receptor NK1, cortisol treatment as supplementation and relaxation techniques to balance the stress-response.
Collapse
Affiliation(s)
- Christiane Liezmann
- University-Medicine Charité; Internal Medicine and Dermatology; Department of Psychosomatic Medicine and Psychotherapy; Berlin
| | | | | |
Collapse
|
83
|
Ostrowski SM, Belkadi A, Loyd CM, Diaconu D, Ward NL. Cutaneous denervation of psoriasiform mouse skin improves acanthosis and inflammation in a sensory neuropeptide-dependent manner. J Invest Dermatol 2011; 131:1530-8. [PMID: 21471984 PMCID: PMC3116081 DOI: 10.1038/jid.2011.60] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nervous system involvement in psoriasis pathogenesis is supported by increases in nerve fiber numbers and neuropeptides in psoriatic skin and by reports detailing spontaneous plaque remission following nerve injury. Using the KC-Tie2 psoriasiform mouse model, we investigated the mechanisms by which nerve injury leads to inflammatory skin disease remission. Cutaneous nerves innervating dorsal skin of KC-Tie2 animals were surgically axotomized and beginning 1 day after denervation, CD11c(+) cell numbers decreased by 40% followed by a 30% improvement in acanthosis at 7 days and a 30% decrease in CD4(+) T-cell numbers by 10 days. Restoration of substance P (SP) signaling in denervated KC-Tie2 skin prevented decreases in CD11c(+) and CD4(+) cells, but had no effect on acanthosis; restoration of calcitonin gene-related peptide (CGRP) signaling reversed the improvement in acanthosis and prevented denervated-mediated decreases in CD4(+) cells. Under innervated conditions, small-molecule inhibition of SP in KC-Tie2 animals resulted in similar decreases to those observed following surgical denervation for cutaneous CD11c(+) and CD4(+) cell numbers; whereas small-molecule inhibition of CGRP resulted in significant reductions in CD4(+) cell numbers and acanthosis. These data demonstrate that sensory nerve-derived peptides mediate psoriasiform dendritic cell and T-cell infiltration and acanthosis and introduce targeting nerve-immunocyte/KC interactions as potential psoriasis therapeutic treatment strategies.
Collapse
Affiliation(s)
- Stephen M Ostrowski
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
84
|
Huang J, Stohl LL, Zhou X, Ding W, Granstein RD. Calcitonin gene-related peptide inhibits chemokine production by human dermal microvascular endothelial cells. Brain Behav Immun 2011; 25:787-99. [PMID: 21334428 PMCID: PMC3081395 DOI: 10.1016/j.bbi.2011.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 02/09/2011] [Accepted: 02/14/2011] [Indexed: 02/08/2023] Open
Abstract
This study examined whether the sensory neuropeptide calcitonin gene-related peptide (CGRP) inhibits release of chemokines by dermal microvascular endothelial cells. Dermal blood vessels are associated with nerves containing CGRP, suggesting that CGRP-containing nerves may regulate cutaneous inflammation through effects on vessels. We examined CGRP effects on stimulated chemokine production by a human dermal microvascular endothelial cell line (HMEC-1) and primary human dermal microvascular endothelial cells (pHDMECs). HMEC-1 cells and pHDMECs expressed mRNA for components of the CGRP and adrenomedullin receptors and CGRP inhibited LPS-induced production of the chemokines CXCL8, CCL2, and CXCL1 by both HMEC-1 cells and pHDMECs. The receptor activity-modifying protein (RAMP)1/calcitonin receptor-like receptor (CL)-specific antagonists CGRP₈-₃₇ and BIBN4096BS, blocked this effect of CGRP in a dose-dependent manner. CGRP prevented LPS-induced IκBα degradation and NF-κB binding to the promoters of CXCL1, CXCL8 and CCL2 in HMEC-1 cells and Bay 11-7085, an inhibitor of NF-κB activation, suppressed LPS-induced production of CXCL1, CXCL8 and CCL2. Thus, the NF-κB pathway appears to be involved in CGRP-mediated suppression of chemokine production. Accordingly, CGRP treatment of LPS-stimulated HMEC-1 cells inhibited their ability to chemoattract human neutrophils and mononuclear cells. Elucidation of this pathway may suggest new avenues for therapeutic manipulation of cutaneous inflammation.
Collapse
Affiliation(s)
- Jing Huang
- Department of Dermatology, Weill Cornell Medical College, New York, New York, 10021 USA
| | - Lori L. Stohl
- Department of Dermatology, Weill Cornell Medical College, New York, New York, 10021 USA
| | - Xi Zhou
- Department of Public Health, Weill Cornell Medical College, New York, New York, 10021 USA
| | - Wanhong Ding
- Department of Dermatology, Weill Cornell Medical College, New York, New York, 10021 USA
| | - Richard D. Granstein
- Department of Dermatology, Weill Cornell Medical College, New York, New York, 10021 USA
| |
Collapse
|
85
|
Peters EM, Liezmann C, Spatz K, Daniltchenko M, Joachim R, Gimenez-Rivera A, Hendrix S, Botchkarev VA, Brandner JM, Klapp BF. Nerve Growth Factor Partially Recovers Inflamed Skin from Stress-Induced Worsening in Allergic Inflammation. J Invest Dermatol 2011; 131:735-43. [DOI: 10.1038/jid.2010.317] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
86
|
|
87
|
Pavlovic S, Liezmann C, Blois SM, Joachim R, Kruse J, Romani N, Klapp BF, Peters EMJ. Substance P Is a Key Mediator of Stress-Induced Protection from Allergic Sensitization via Modified Antigen Presentation. THE JOURNAL OF IMMUNOLOGY 2010; 186:848-55. [DOI: 10.4049/jimmunol.0903878] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
88
|
Binker MG, Binker-Cosen AA, Richards D, Gaisano HY, de Cosen RH, Cosen-Binker LI. Chronic stress sensitizes rats to pancreatitis induced by cerulein: Role of TNF-α. World J Gastroenterol 2010; 16:5565-81. [PMID: 21105189 PMCID: PMC2992674 DOI: 10.3748/wjg.v16.i44.5565] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate chronic stress as a susceptibility factor for developing pancreatitis, as well as tumor necrosis factor-α (TNF-α) as a putative sensitizer.
METHODS: Rat pancreatic acini were used to analyze the influence of TNF-α on submaximal (50 pmol/L) cholecystokinin (CCK) stimulation. Chronic restraint (4 h every day for 21 d) was used to evaluate the effects of submaximal (0.2 μg/kg per hour) cerulein stimulation on chronically stressed rats.
RESULTS: In vitro exposure of pancreatic acini to TNF-α disorganized the actin cytoskeleton. This was further increased by TNF-α/CCK treatment, which additionally reduced amylase secretion, and increased trypsin and nuclear factor-κB activities in a protein-kinase-C δ and ε-dependent manner. TNF-α/CCK also enhanced caspases’ activity and lactate dehydrogenase release, induced ATP loss, and augmented the ADP/ATP ratio. In vivo, rats under chronic restraint exhibited elevated serum and pancreatic TNF-α levels. Serum, pancreatic, and lung inflammatory parameters, as well as caspases’activity in pancreatic and lung tissue, were substantially enhanced in stressed/cerulein-treated rats, which also experienced tissues’ ATP loss and greater ADP/ATP ratios. Histological examination revealed that stressed/cerulein-treated animals developed abundant pancreatic and lung edema, hemorrhage and leukocyte infiltrate, and pancreatic necrosis. Pancreatitis severity was greatly decreased by treating animals with an anti-TNF-α-antibody, which diminished all inflammatory parameters, histopathological scores, and apoptotic/necrotic markers in stressed/cerulein-treated rats.
CONCLUSION: In rats, chronic stress increases susceptibility for developing pancreatitis, which involves TNF-α sensitization of pancreatic acinar cells to undergo injury by physiological cerulein stimulation.
Collapse
|
89
|
Kumagai M, Nagano M, Suzuki H, Kawana S. Effects of stress memory by fear conditioning on nerve-mast cell circuit in skin. J Dermatol 2010; 38:553-61. [PMID: 21352293 DOI: 10.1111/j.1346-8138.2010.01045.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inflammatory skin disorder aggravates when a horrific memory is evoked, but the mechanism of this effect is unclear. The objective of the present study was to examine the effects of evocation of a horrific memory on the skin and mast cells in an animal model. A sound stimulus linked to an electric shock was given to C57BL/6 mice (7-week old, males). One, 3 and 5 days later, the mice received the sound stimulus again. The reactions of mice that received the initial sound stimulus were compared with those of mice that did not receive the initial stimulus. A freezing phenomenon was observed when the sound stimulus was given to mice that received the initial stimulus, which indicated evocation of a past memory of fear. The degranulation rate of dermal mast cells and the length of substance P (SP)-positive nerve fibers of the skin significantly increased on days 1 and 3, the SP level decreased significantly, and the number of SP-expressing cells in the dorsal root ganglion significantly increased on day 1. These findings suggest that prior experience of severe stress linked to a stimulus subsequently evokes fear associated with the same stimulus and results in activation of dermal mast cells and skin nerves.
Collapse
Affiliation(s)
- Masayo Kumagai
- Departments of Dermatology, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
90
|
Sunyer J, Basagaña X, González JR, Júlvez J, Guerra S, Bustamante M, de Cid R, Antó JM, Torrent M. Early life environment, neurodevelopment and the interrelation with atopy. ENVIRONMENTAL RESEARCH 2010; 110:733-738. [PMID: 20701904 DOI: 10.1016/j.envres.2010.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 06/29/2010] [Accepted: 07/12/2010] [Indexed: 05/29/2023]
Abstract
Both neurological and immunological systems are vulnerable to early life exposures. Neurological disorders and atopy have been related in animals and humans. Our main objective was to assess whether multiple exposures to early life determinants remain associated with neurodevelopment after considering the potential intermediate role of atopy. A second objective was to assess whether genes associated with atopy may inform about the potential neurotoxical mechanisms. Children were members of the AMICS birth cohort in Menorca (n=418, 87% of the recruited). General cognition was measured with the McCarthy Scales at age 4 and atopy through specific IgE at age 4 and prick test at age 6; 85 single nucleotide polymorphisms (SNPs) in 16 atopy and detoxification genes were genotyped. Among the 27 risk factors assessed, lower maternal social class, maternal smoking during pregnancy, being first born, shorter breastfeeding, higher DDT levels in cord blood, and higher indoor levels of NO2 (among the non-detoxifiers by GSTP1 polymorphism) were independently associated with poorer cognition. These associations were apparently not mediated by the relation between atopy and general cognition. Among the candidate atopic genes, variants in NQ01 (a detoxification gene) and NPRS1 (related with affective disorders like anxiety and stress management) had a significant association with general cognition (p-value<0.001). However, adjustment for the corresponding SNPs did not change the association between the early life determinants and general cognition. Multiple environmental pre-natal exposures were associated with neurodevelopment independently of their role in the immunological system. Atopic genes related to neurodevelopment suggest some potential mechanisms.
Collapse
Affiliation(s)
- J Sunyer
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
An implication for post-transcriptional control: reciprocal changes of melanocortin receptor type 2 mRNA and protein expression in alopecia areata. Med Hypotheses 2010; 76:122-4. [PMID: 20884125 DOI: 10.1016/j.mehy.2010.08.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 11/23/2022]
Abstract
Alopecia areata (AA) is a hair follicle-specific autoimmune disease that is inherited genetically but triggered environmentally. Stress response is believed to play a role in the pathogenesis of AA. The hypothalamic-pituitary-adrenal axis (HPA axis), known as the stress axis, plays a cardinal role in the stress response. Growing evidence demonstrates that stress responses are under the control of both the central and peripheral nervous systems. Skin and hair follicles display peripheral HPA axis-like signaling systems. Some studies have revealed that a modified HPA axis, which is characterized by enhanced CRH/CRHR and insufficient glucocorticoid, is involved in the pathology of AA, suggesting that the paradoxical expression differs from that of normal control and should be further examined. Because adrenocorticotropic hormone (ACTH) is an intermediary in the HPA axis, MC2R, which specifically binds ACTH, may be important in the stress response of skin. Therefore, we investigated the gene and protein expression of MC2R in AA lesions and tried to elucidate the connection between HPA axis regulation, MC2R and AA. Reciprocal changes in MC2R mRNA and proteins in human AA were observed in our study; while mRNA levels were higher in lesions from AA patients compared with scalp tissues from normal controls, protein levels of MC2R were lower. The paradoxical expression of MC2R gene and protein levels coincided with evidence that over-responsive HPA activity coexists with a deficient HPA response in AA. We hypothesized that the HPA axis response in human AA may be the following: stressors first activate excess CRH/CRHR to produce increased ACTH, which up-regulates the expression of MC2R mRNA, but the stress response cannot create sufficient cortisol when the binding of ACTH/MC2R is deficient due to decreased MC2R protein. This hypothesis rationally clarifies the changed HPA axis in human AA and highlights the importance of MC2R in the pathogenesis of AA. The inconsistent expression of protein and mRNA implicates post-transcriptional control of human MC2R gene expression as found in murine MC2R gene.
Collapse
|
92
|
Schreml S, Kaiser E, Landthaler M, Szeimies RM, Babilas P. Amyloid in skin and brain: What′s the link? Exp Dermatol 2010; 19:953-7. [DOI: 10.1111/j.1600-0625.2010.01166.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
93
|
Radek KA. Antimicrobial anxiety: the impact of stress on antimicrobial immunity. J Leukoc Biol 2010; 88:263-77. [PMID: 20442225 PMCID: PMC2908944 DOI: 10.1189/jlb.1109740] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 04/11/2010] [Accepted: 04/13/2010] [Indexed: 01/08/2023] Open
Abstract
Leukocytes and epithelial cells are fundamental to antimicrobial immunity. Their antimicrobial responses are an evolutionarily conserved component of the innate immune system and are influenced by the host's response to external stimuli. The efficacy of host defense via antimicrobial responses derives from the ability of AMPs to rapidly identify and eradicate foreign microbes and activate proinflammatory pathways, and from the capacity of later innate and adaptive immune responses to amplify protection through distinct biochemical mechanisms. Recent advances in neuroimmunology have identified a direct link between the neuroendocrine and immune systems, where environmental stimuli are generally believed to promote a transient effect on the immune system in response to environmental challenges and are presumably brought back to baseline levels via neuroendocrine pathways. Stress is an environmental stimulus that flares from a variety of circumstances and has become engrained in human society. Small bouts of stress are believed to enhance the host's immune response; however, prolonged periods of stress can be detrimental through excess production of neuroendocrine-derived mediators that dampen immune responses to invasive pathogens. Elucidation of the mechanisms behind stress-induced immune modulation of antimicrobial responses will ultimately lead to the development of more effective therapeutic interventions for pathologic conditions. It is the intent of this review to broaden the existing paradigm of how stress-related molecules dampen immune responses through suppression of antimicrobial mechanisms, and to emphasize that bacteria can use these factors to enhance microbial pathogenesis during stress.
Collapse
Affiliation(s)
- Katherine A Radek
- Loyola University Medical Center, Surgery, 2160 S. First Ave., Maywood, IL 60153, USA.
| |
Collapse
|
94
|
IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc Natl Acad Sci U S A 2010; 107:4448-53. [PMID: 20160089 DOI: 10.1073/pnas.1000803107] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The peptide substance P (SP) has been implicated in inflammatory conditions, such as psoriasis, where mast cells and VEGF are increased. A relationship between SP and VEGF has not been well studied, nor has any interaction with the proinflammatory cytokines, especially IL-33. Here we report that SP (0.1-10 microM) induces gene expression and secretion of VEGF from human LAD2 mast cells and human umbilical core blood-derived cultured mast cells (hCBMCs). This effect is significantly increased by coadministration of IL-33 (5-100 ng/mL) in both cell types. The effect of SP on VEGF release is inhibited by treatment with the NK-1 receptor antagonist 733,060. SP rapidly increases cytosolic calcium, and so does IL-33 to a smaller extent; the addition of IL-33 augments the calcium increase. SP-induced VEGF production involves calcium-dependent PKC isoforms, as well as the ERK and JNK MAPKs. Gene expression of IL-33 and histidine decarboxylase (HDC), an indicator of mast cell presence/activation, is significantly increased in affected and unaffected (at least 15 cm away from the lesion) psoriatic skin, as compared with normal control skin. Immunohistochemistry indicates that IL-33 is associated with endothelial cells in both the unaffected and affected sites, but is stronger and also associated with immune cells in the affected site. These results imply that functional interactions among SP, IL-33, and mast cells leading to VEGF release contribute to inflammatory conditions, such as the psoriasis, a nonallergic hyperproliferative skin inflammatory disorder with a neurogenic component.
Collapse
|
95
|
El-Nour H, Santos A, Nordin M, Jonsson P, Svensson M, Nordlind K, Berg M. Neuronal changes in psoriasis exacerbation. J Eur Acad Dermatol Venereol 2009; 23:1240-5. [DOI: 10.1111/j.1468-3083.2009.03287.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
96
|
HOSOKAWA C, TAKEUCHI S, FURUE M. Severity scores, itch scores and plasma substance P levels in atopic dermatitis treated with standard topical therapy with oral olopatadine hydrochloride. J Dermatol 2009; 36:185-90. [DOI: 10.1111/j.1346-8138.2009.00621.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
97
|
Hu SS, Chen GS, Tsai KB, Chung JC, Lan CC. Dermal mucinosis with symptomatic intraneural mucin deposition: a new entity or reaction pattern? Br J Dermatol 2009; 160:200-2. [DOI: 10.1111/j.1365-2133.2008.08871.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
98
|
Fernandes ES, Schmidhuber SM, Brain SD. Sensory-nerve-derived neuropeptides: possible therapeutic targets. Handb Exp Pharmacol 2009:393-416. [PMID: 19655113 DOI: 10.1007/978-3-540-79090-7_11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review examines our developing understanding of the families and activities of some of the best known sensory-nerve-derived inflammatory neuropeptides, namely substance P, calcitonin gene-related peptide and galanin. Evidence to date shows involvement of these transmitters in a wide range of systems that includes roles as inflammatory modulators. There is an increasing understanding of the mechanisms involved in the release of the peptides from sensory nerves and these are key in understanding the potential of neuropeptides in modulating inflammatory responses and may also provide novel targets for anti-inflammatory therapy. The neuropeptides released act via specific G protein coupled receptors, most of which have now been cloned. There is knowledge of selective agonists and antagonists for many subtypes within these families. The study of neuropeptides in animal models has additionally revealed pathophysiological roles that in turn have led to the development of new drugs, based on selective receptor antagonism.
Collapse
Affiliation(s)
- Elizabeth S Fernandes
- Cardiovascular Division, King's College London, Franklin-Wilkins Building, Waterloo Campus, London SE1 9NH, UK
| | | | | |
Collapse
|
99
|
Oyoshi MK, He R, Kumar L, Yoon J, Geha RS. Cellular and molecular mechanisms in atopic dermatitis. Adv Immunol 2009; 102:135-226. [PMID: 19477321 DOI: 10.1016/s0065-2776(09)01203-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atopic dermatitis (AD) is a pruritic inflammatory skin disease associated with a personal or family history of allergy. The prevalence of AD is on the rise and estimated at approximately 17% in the USA. The fundamental lesion in AD is a defective skin barrier that results in dry itchy skin, and is aggravated by mechanical injury inflicted by scratching. This allows entry of antigens via the skin and creates a milieu that shapes the immune response to these antigens. This review discusses recent advances in our understanding of the abnormal skin barrier in AD, namely abnormalities in epidermal structural proteins, such as filaggrin, mutated in approximately 15% of patients with AD, epidermal lipids, and epidermal proteases and protease inhibitors. The review also dissects, based on information from mouse models of AD, the contributions of the innate and adaptive immune system to the pathogenesis of AD, including the effect of mechanical skin injury on the polarization of skin dendritic cells, mediated by keratinocyte-derived cytokines such as thymic stromal lymphopoietin (TSLP), IL-6, and IL-1, that results in a Th2-dominated immune response with a Th17 component in acute AD skin lesions and the progressive conversion to a Th1-dominated response in chronic AD skin lesions. Finally, we discuss the mechanisms of susceptibility of AD skin lesions to microbial infections and the role of microbial products in exacerbating skin inflammation in AD. Based on this information, we discuss current and future therapy of this common disease.
Collapse
Affiliation(s)
- Michiko K Oyoshi
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
100
|
Boettger MK, Bär KJ, Dohrmann A, Müller H, Mertins L, Brockmeyer NH, Agelink MW. Increased vagal modulation in atopic dermatitis. J Dermatol Sci 2008; 53:55-9. [PMID: 18790607 DOI: 10.1016/j.jdermsci.2008.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/18/2008] [Accepted: 08/01/2008] [Indexed: 11/18/2022]
Abstract
BACKGROUND Atopic dermatitis has been shown to be associated with neurogenic and psychosocial factors. In related atopic diseases such as rhinitis or asthma, a shift in autonomic balance towards a parasympathetic modulation has been described. On the other hand, the psychiatric symptoms known for atopic dermatitis are often associated with decreased vagal modulation. Furthermore, an increased parasympathetic activity has been shown to exhibit anti-inflammatory effects, thus rather alleviating dermatitis symptoms. OBJECTIVE In order to address these intriguing discrepancies, we aimed to assess the autonomic state in patients suffering from atopic dermatitis. METHODS Heart rate variability assessment was performed in 30 patients and data were compared to those obtained from matched controls. Furthermore, questionnaires for disease activity and psychosocial stressors were employed. RESULTS Patients showed higher values for parasympathetic modulation than controls. This was mainly reflected by an increase in the root mean square of successive differences (RMSSD). This parameter further correlated with dermatological symptoms and the time since the last severe exacerbation of the disease. In addition, subgroups of patients with dyshidrosis or photophobia showed significant differences in autonomic modulation under deep respiration. Moreover, cardiac autonomic modulation was hardly altered upon postural change, indicating that autonomic reactivity is only mildly influenced in these patients. CONCLUSION Patients with atopic dermatitis showed an autonomic dysbalance which is comparable to other diseases related to atopy or allergy. Our findings point to the question whether these alterations are disease-inherent or counter-regulatory, which should be addressed in future studies.
Collapse
|