51
|
Schaefers AT. Environmental enrichment and working memory tasks decrease hippocampal cell proliferation after wheel running – A role for the prefrontal cortex in hippocampal plasticity? Brain Res 2015. [DOI: 10.1016/j.brainres.2015.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
52
|
Abstract
Of the neurogenic zones in the adult brain, adult hippocampal neurogenesis attracts the most attention, because it is involved in higher cognitive function, most notably memory processes, and certain affective behaviors. Adult hippocampal neurogenesis is also found in humans at a considerable level and appears to contribute significantly to hippocampal plasticity across the life span, because it is regulated by activity. Adult hippocampal neurogenesis generates new excitatory granule cells in the dentate gyrus, whose axons form the mossy fiber tract that links the dentate gyrus to CA3. It originates from a population of radial glia-like precursor cells (type 1 cells) that have astrocytic properties, express markers of neural stem cells and divide rarely. They give rise to intermediate progenitor cells with first glial (type 2a) and then neuronal (type 2b) phenotype. Through a migratory neuroblast-like stage (type 3), the newborn, lineage-committed cells exit the cell cycle and enter a maturation stage, during which they extend their dendrites into a the molecular layer and their axon to CA3. They go through a period of several weeks, during which they show increased synaptic plasticity, before finally becoming indistinguishable from the older granule cells.
Collapse
Affiliation(s)
- Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden and CRTD-Center for Regenerative Therapies Dresden at Technische Universität Dresden, 01307 Dresden, Germany
| | - Hongjun Song
- Institute for Cell Engineering, Stem Cell Program at ICW, The John Hopkins University, Baltimore, Maryland 21205
| | - Fred H Gage
- Laboratory of Genetics LOG-G, The Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
53
|
Huckleberry KA, Kane GA, Mathis RJ, Cook SG, Clutton JE, Drew MR. Behavioral experience induces zif268 expression in mature granule cells but suppresses its expression in immature granule cells. Front Syst Neurosci 2015; 9:118. [PMID: 26347620 PMCID: PMC4543859 DOI: 10.3389/fnsys.2015.00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/05/2015] [Indexed: 01/10/2023] Open
Abstract
Thousands of neurons are born each day in the dentate gyrus (DG), but many of these cells die before reaching maturity. Both death and survival of adult-born neurons are regulated by neuronal activity in the DG. The immediate-early gene (IEG) zif268 appears to be an important mediator of these effects, as its expression can be induced by neural activity and knockout of zif268 impairs survival of adult-born neurons (Richardson et al., 1992; Veyrac et al., 2013). Despite the apparent importance of zif268 for adult neurogenesis, its behavior-induced expression has not been fully characterized in adult-born neurons. Here we characterize behavior-evoked expression of zif268 in mature and newborn dentate granule cells (DGCs). We first quantified zif268 expression in doublecortin-positive (DCX+) immature neurons and in the general granule cell population after brief exposure to a novel environment (NE). In the general granule cell population, zif268 expression peaked 1 h after NE exposure and returned to baseline by 8 h post-exposure. However, in the DCX+ cells, zif268 expression was suppressed relative to home cage for at least 8 h post-exposure. We next asked whether suppression of zif268 in DCX+ immature cells occurs in other behavioral paradigms that recruit the hippocampus. Exposure to Morris water maze (MWM) training, an enriched environment, or a NE caused approximately equal suppression of zif268 expression in DCX+ cells and approximately equal activation of zif268 expression among the general granule cell population. The same behavioral procedures activated zif268 expression in 6-week-old BrdU-labeled adult-born neurons, indicating that zif268 suppression is specific to immature neurons. Finally, we asked whether zif268 suppression varied as a function of age within the DCX+ population, which ranges in age from 0 to approximately 4 weeks. NE exposure had no significant effect on zif268 expression in 2- or 4-week-old BrdU-labeled neurons, but it significantly suppressed zif268 expression in 3-week-old neurons. In summary, behavioral experience transiently activated expression of zif268 in mature granule cells but caused a more long-lasting suppression of zif268 expression in immature, adult-born granule cells. We hypothesize that zif268 suppression inhibits memory-related synaptic plasticity in immature neurons or mediates learning-induced apoptosis of immature adult-born neurons.
Collapse
Affiliation(s)
- Kylie A Huckleberry
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin Austin, TX, USA
| | - Gary A Kane
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin Austin, TX, USA
| | - Rita J Mathis
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin Austin, TX, USA
| | - Sarah G Cook
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin Austin, TX, USA
| | - Jonathan E Clutton
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin Austin, TX, USA
| | - Michael R Drew
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin Austin, TX, USA
| |
Collapse
|
54
|
Abrous DN, Wojtowicz JM. Interaction between Neurogenesis and Hippocampal Memory System: New Vistas. Cold Spring Harb Perspect Biol 2015; 7:7/6/a018952. [PMID: 26032718 DOI: 10.1101/cshperspect.a018952] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
During the last decade, the questions on the functionality of adult neurogenesis have changed their emphasis from if to how the adult-born neurons participate in a variety of memory processes. The emerging answers are complex because we are overwhelmed by a variety of behavioral tasks that apparently require new neurons to be performed optimally. With few exceptions, the hippocampal memory system seems to use the newly generated neurons for multiple roles. Adult neurogenesis has given the dentate gyrus new capabilities not previously thought possible within the scope of traditional synaptic plasticity. Looking at these new developments from the perspective of past discoveries, the science of adult neurogenesis has emerged from its initial phase of being, first, a surprising oddity and, later, exciting possibility, to the present state of being an integral part of mainstream neuroscience. The answers to many remaining questions regarding adult neurogenesis will come along only with our growing understanding of the functionality of the brain as a whole. This, in turn, will require integration of multiple levels of organization from molecules and cells to circuits and systems, ultimately resulting in comprehension of behavioral outcomes.
Collapse
Affiliation(s)
- Djoher Nora Abrous
- Inserm U862, Bordeaux-F33077, France Université de Bordeaux, Bordeaux-F33077, France
| | - Jan Martin Wojtowicz
- Department of Physiology, University of Toronto, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
55
|
Fernandes C, Rocha NBF, Rocha S, Herrera-Solís A, Salas-Pacheco J, García-García F, Murillo-Rodríguez E, Yuan TF, Machado S, Arias-Carrión O. Detrimental role of prolonged sleep deprivation on adult neurogenesis. Front Cell Neurosci 2015; 9:140. [PMID: 25926773 PMCID: PMC4396387 DOI: 10.3389/fncel.2015.00140] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/24/2015] [Indexed: 01/17/2023] Open
Abstract
Adult mammalian brains continuously generate new neurons, a phenomenon called adult neurogenesis. Both environmental stimuli and endogenous factors are important regulators of adult neurogenesis. Sleep has an important role in normal brain physiology and its disturbance causes very stressful conditions, which disrupt normal brain physiology. Recently, an influence of sleep in adult neurogenesis has been established, mainly based on sleep deprivation studies. This review provides an overview on how rhythms and sleep cycles regulate hippocampal and subventricular zone neurogenesis, discussing some potential underlying mechanisms. In addition, our review highlights some interacting points between sleep and adult neurogenesis in brain function, such as learning, memory, and mood states, and provides some insights on the effects of antidepressants and hypnotic drugs on adult neurogenesis.
Collapse
Affiliation(s)
- Carina Fernandes
- Faculty of Medicine, University of PortoPorto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of PortoPorto, Portugal
| | | | - Susana Rocha
- School of Accounting and Administration of Porto, Polytechnic Institute of PortoPorto, Portugal
| | - Andrea Herrera-Solís
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González/Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - José Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | - Fabio García-García
- Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad VeracruzanaXalapa, Mexico
| | - Eric Murillo-Rodríguez
- División Ciencias de la Salud, Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, Universidad Anáhuac MayabMérida, México
| | - Ti-Fei Yuan
- School of Psychology, Nanjing Normal UniversityNanjing, China
| | - Sergio Machado
- Panic and Respiration, Institute of Psychiatry of Federal University of Rio de JaneiroRio de Janeiro, Brazil
- Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira UniversityNiterói, Brazil
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González/Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| |
Collapse
|
56
|
Trinchero MF, Koehl M, Bechakra M, Delage P, Charrier V, Grosjean N, Ladeveze E, Schinder AF, Abrous DN. Effects of spaced learning in the water maze on development of dentate granule cells generated in adult mice. Hippocampus 2015; 25:1314-26. [DOI: 10.1002/hipo.22438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Mariela F. Trinchero
- Laboratory of Neuronal Plasticity; Leloir Institute, Consejo Nacional De Investigaciones Científicas Y Técnicas; Buenos Aires Argentina
| | - Muriel Koehl
- Inserm U862; Bordeaux France
- Université De Bordeaux; Bordeaux France
| | - Malik Bechakra
- Inserm U862; Bordeaux France
- Université De Bordeaux; Bordeaux France
| | - Pauline Delage
- Inserm U862; Bordeaux France
- Université De Bordeaux; Bordeaux France
| | - Vanessa Charrier
- Inserm U862; Bordeaux France
- Université De Bordeaux; Bordeaux France
| | - Noelle Grosjean
- Inserm U862; Bordeaux France
- Université De Bordeaux; Bordeaux France
| | - Elodie Ladeveze
- Inserm U862; Bordeaux France
- Université De Bordeaux; Bordeaux France
| | - Alejandro F. Schinder
- Laboratory of Neuronal Plasticity; Leloir Institute, Consejo Nacional De Investigaciones Científicas Y Técnicas; Buenos Aires Argentina
| | - D. Nora Abrous
- Inserm U862; Bordeaux France
- Université De Bordeaux; Bordeaux France
| |
Collapse
|
57
|
Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH. Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 2014; 94:991-1026. [PMID: 25287858 DOI: 10.1152/physrev.00004.2014] [Citation(s) in RCA: 431] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. This review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. The increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.
Collapse
Affiliation(s)
- James B Aimone
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Yan Li
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Star W Lee
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Gregory D Clemenson
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Wei Deng
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Fred H Gage
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
58
|
Mukuda T, Koyama Y, Hamasaki S, Kaidoh T, Furukawa Y. Systemic angiotensin II and exercise-induced neurogenesis in adult rat hippocampus. Brain Res 2014; 1588:92-103. [PMID: 25223907 DOI: 10.1016/j.brainres.2014.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 07/27/2014] [Accepted: 09/08/2014] [Indexed: 01/19/2023]
Abstract
Physical exercise is a robust stimulus that enhances hippocampal neurogenesis via cell proliferation in rodents. We examined the role of systemic angiotensin (Ang) peptides in exercise-dependent enhancement of neurogenesis in the adult rat hippocampus. Plasma angiotensin peptide concentration increased rapidly in response to 30 min of treadmill exercise. After undertaking this exercise once daily for a week, the number of proliferating cells in the hippocampus, identified by 5-bromo-2'-deoxyuridine (BrdU) incorporation, had increased compared with controls. To mimic the increase in plasma Ang peptide concentrations brought about by exercise, rats were injected with 10(-5)M Ang II once daily for a week. The number of BrdU-incorporating cells and of doublecortin (DCX)-expressing immature neurons in the hippocampus rose approximately 1.5 and 1.9-fold compared with controls, respectively. The effects were completely abolished by an Ang II receptor subtype 1 antagonist losartan. These findings, taken together, suggest that an increased concentrations of Ang peptides in the systemic circulation during exercise may promote neurogenesis in the adult rat hippocampus.
Collapse
Affiliation(s)
- Takao Mukuda
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Japan; Department of Anatomy, Faculty of Medicine, Tottori University, Yonago, Japan.
| | - Yuka Koyama
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Japan; Department of Anatomy, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Sawako Hamasaki
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Japan; Laboratory of Fish Physiology, Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Japan
| | - Toshiyuki Kaidoh
- Department of Anatomy, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yasuo Furukawa
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Japan
| |
Collapse
|
59
|
Loss of the mu opioid receptor induces strain-specific alterations in hippocampal neurogenesis and spatial learning. Neuroscience 2014; 278:11-9. [PMID: 25086317 DOI: 10.1016/j.neuroscience.2014.07.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 12/27/2022]
Abstract
Alterations in hippocampal neurogenesis affect spatial learning, though, the relative contributions of cell proliferation and cell survival on this process are poorly understood. The current study utilized mu opioid receptor (MOR-1) knockout (KO) mice on two background strains, C57BL/6 and 129S6, to assess cell survival as well as determine the impact on spatial learning using the Morris water maze. These experiments were designed to extend prior work showing that both C57BL/6 and 129S6 MOR-1 KO mice have an increased number of proliferating cells in the dentate gyrus (DG) when compared to wild-type (WT) mice. The current study indicates that newly born neurons in the DG of C57BL/6 MOR-1 KO mice exhibit enhanced survival when compared to WT mice, while new neurons in the DG of 129S6 MOR-1 KO mice do not. In addition, C57BL/6 MOR-1 KO mice have a lower number of apoptotic cells in the DG compared to WT mice while, in contrast, 129S6 MOR-1 KO mice have a higher number of apoptotic cells in this region. These alterations collectively contribute to an increase in the granule cell number in the DG of C57BL/6 MOR-1 KO mice, while the total number of granule cells in 129S6 MOR-1 KO mice is unchanged. Thus, although C57BL/6 and 129S6 MOR-1 KO mice both exhibit increased cell proliferation in the DG, the impact of the MOR-1 mutation on cell survival differs between strains. Furthermore, the decrease in DG cell survival displayed by 129S6 MOR-1 KO mice is correlated with functional deficits in spatial learning, suggesting that MOR-1-dependent alterations in the survival of new neurons in the DG, and not MOR-1-dependent changes in proliferation of progenitor cells in the DG, is important for spatial learning.
Collapse
|
60
|
Manrique C, Migliorati M, Gilbert V, Brezun JM, Chaillan FA, Truchet B, Khrestchatisky M, Guiraudie-Capraz G, Roman FS. Dynamic expression of the polysialyltransferase in adult rat hippocampus performing an olfactory associative task. Hippocampus 2014; 24:979-89. [DOI: 10.1002/hipo.22284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - Valérie Gilbert
- Aix Marseille Université, CNRS; FR 3512 13331 Marseille France
| | | | | | - Bruno Truchet
- Aix Marseille Université, CNRS; UMR 7291 13331 Marseille France
| | | | | | - François S. Roman
- Aix Marseille Université, CNRS, NICN; UMR 7259 13344 Marseille France
| |
Collapse
|
61
|
Modulation of hippocampal neuroplasticity by Fas/CD95 regulatory protein 2 (Faim2) in the course of bacterial meningitis. J Neuropathol Exp Neurol 2014; 73:2-13. [PMID: 24335530 PMCID: PMC3978830 DOI: 10.1097/nen.0000000000000020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Supplemental digital content is available in the text. Fas-apoptotic inhibitory molecule 2 (Faim2) is a neuron-specific membrane protein and a member of the evolutionary conserved lifeguard apoptosis regulatory gene family. Its neuroprotective effect in acute neurological diseases has been demonstrated in an in vivo model of focal cerebral ischemia. Here we show that Faim2 is physiologically expressed in the human brain with a changing pattern in cases of infectious meningoencephalitis.In Faim2-deficient mice, there was increased caspase-associated hippocampal apoptotic cell death and an increased extracellular signal-regulated kinase pattern during acute bacterial meningitis induced by subarachnoid infection with Streptococcus pneumoniae type 3 strain. However, after rescuing the animals by antibiotic treatment, Faim2 deficiency led to increased hippocampal neurogenesis at 7 weeks after infection. This was associated with improved performance of Faim2-deficient mice compared to wild-type littermates in the Morris water maze, a paradigm for hippocampal spatial learning and memory. Thus, Faim2 deficiency aggravated degenerative processes in the acute phase but induced regenerative processes in the repair phase of a mouse model of pneumococcal meningitis. Hence, time-dependent modulation of neuroplasticity by Faim2 may offer a new therapeutic approach for reducing hippocampal neuronal cell death and improving cognitive deficits after bacterial meningitis.
Collapse
|
62
|
Varela-Nallar L, Rojas-Abalos M, Abbott AC, Moya EA, Iturriaga R, Inestrosa NC. Chronic hypoxia induces the activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1ΔE9 transgenic mice in vivo. Front Cell Neurosci 2014; 8:17. [PMID: 24574965 PMCID: PMC3918655 DOI: 10.3389/fncel.2014.00017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/10/2014] [Indexed: 01/01/2023] Open
Abstract
Hypoxia modulates proliferation and differentiation of cultured embryonic and adult stem cells, an effect that includes β-catenin, a key component of the canonical Wnt signaling pathway. Here we studied the effect of mild hypoxia on the activity of the Wnt/β-catenin signaling pathway in the hippocampus of adult mice in vivo. The hypoxia-inducible transcription factor-1α (HIF-1α) was analyzed as a molecular control of the physiological hypoxic response. Exposure to chronic hypoxia (10% oxygen for 6–72 h) stimulated the activation of the Wnt/β-catenin signaling pathway. Because the Wnt/β-catenin pathway is a positive modulator of adult neurogenesis, we evaluated whether chronic hypoxia was able to stimulate neurogenesis in the subgranular zone (SGZ) of the hippocampal dentate gyrus. Results indicate that hypoxia increased cell proliferation and neurogenesis in adult wild-type mice as determined by Ki67 staining, Bromodeoxyuridine (BrdU) incorporation and double labeling with doublecortin (DCX). Chronic hypoxia also induced neurogenesis in a double transgenic APPswe-PS1ΔE9 mouse model of Alzheimer’s disease (AD), which shows decreased levels of neurogenesis in the SGZ. Our results show for the first time that exposure to hypoxia in vivo can induce the activation of the Wnt/β-catenin signaling cascade in the hippocampus, suggesting that mild hypoxia may have a therapeutic value in neurodegenerative disorders associated with altered Wnt signaling in the brain and also in pathological conditions in which hippocampal neurogenesis is impaired.
Collapse
Affiliation(s)
- Lorena Varela-Nallar
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile Santiago, Chile ; Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| | - Macarena Rojas-Abalos
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Ana C Abbott
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Esteban A Moya
- Laboratorio de Neurobiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
63
|
Yau SY, So KF. Adult neurogenesis and dendritic remodeling in hippocampal plasticity: which one is more important? Cell Transplant 2014; 23:471-9. [PMID: 24636187 DOI: 10.3727/096368914x678283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Accumulating knowledge has shown that a decrease in hippocampal neurogenesis is linked to the pathophysiology of mood disorders and some hippocampal-dependent learning and memory tasks. The role of adult neurogenesis has initially been proposed based on correlations between decreases or increases in neurogenesis and impairments or improvements, respectively, in animal behaviors following interventions. Its role has been further elucidated through the ablation of neurogenesis. However, the functional roles of neurogenesis in hippocampal-dependent behaviors have been challenged by inconsistent findings between different studies. Despite the fact that factors affecting neurogenesis also induce dendritic or synaptic changes in newborn or existing neurons, these two aspects of structural changes within the hippocampus have always been examined separately. Thus, it is difficult to interpret the functional role of adult neurogenesis or dendritic remodification in hippocampal-dependent behaviors. This review discusses the relative contribution of adult neurogenesis and dendritic/synaptic remodeling of existing neurons to hippocampal plasticity.
Collapse
Affiliation(s)
- Suk-Yu Yau
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
| | | |
Collapse
|
64
|
Abstract
One of the landmark events of the past 25 years in neuroscience research was the establishment of neural stem cells (NSCs) as a life-long source of neurons and glia, a concept that shattered the dogma that the nervous system lacked regenerative power. Stem cells afford the plasticity to generate, repair, and change nervous system function. Combined with reprogramming technology, human somatic cell-derived NSCs and their progeny can model neurological diseases with improved accuracy. As technology advances, we anticipate further important discoveries and novel therapies based on the knowledge and application of these powerful cells.
Collapse
Affiliation(s)
- Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
65
|
Chorna NE, Santos-Soto IJ, Carballeira NM, Morales JL, de la Nuez J, Cátala-Valentin A, Chornyy AP, Vázquez-Montes A, De Ortiz SP. Fatty acid synthase as a factor required for exercise-induced cognitive enhancement and dentate gyrus cellular proliferation. PLoS One 2013; 8:e77845. [PMID: 24223732 PMCID: PMC3818398 DOI: 10.1371/journal.pone.0077845] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
Voluntary running is a robust inducer of adult hippocampal neurogenesis. Given that fatty acid synthase (FASN), the key enzyme for de novo fatty acid biosynthesis, is critically involved in proliferation of embryonic and adult neural stem cells, we hypothesized that FASN could mediate both exercise-induced cell proliferation in the subgranular zone (SGZ) of the dentate gyrus (DG) and enhancement of spatial learning and memory. In 20 week-old male mice, voluntary running-induced hippocampal-specific upregulation of FASN was accompanied also by hippocampal-specific accumulation of palmitate and stearate saturated fatty acids. In experiments addressing the functional role of FASN in our experimental model, chronic intracerebroventricular (i.c.v.) microinfusions of C75, an irreversible FASN inhibitor, and significantly impaired exercise-mediated improvements in spatial learning and memory in the Barnes maze. Unlike the vehicle-injected mice, the C75 group adopted a non-spatial serial escape strategy and displayed delayed escape latencies during acquisition and memory tests. Furthermore, pharmacologic blockade of FASN function with C75 resulted in a significant reduction, compared to vehicle treated controls, of the number of proliferative cells in the DG of running mice as measured by immunoreactive to Ki-67 in the SGZ. Taken together, our data suggest that FASN plays an important role in exercise-mediated cognitive enhancement, which might be associated to its role in modulating exercise-induced stimulation of neurogenesis.
Collapse
Affiliation(s)
- Nataliya E. Chorna
- Department of Biology, Metabolomics Research Center, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
- Department of Biology, Functional Genomics Research Core, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
| | - Iván J. Santos-Soto
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
| | - Nestor M. Carballeira
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
| | - Joan L. Morales
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
| | - Janneliz de la Nuez
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
| | - Alma Cátala-Valentin
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
| | - Anatoliy P. Chornyy
- High Performance Computing Facility, University of Puerto Rico, Central Administration, San Juan, Puerto Rico, United States of America
| | - Adrinel Vázquez-Montes
- Department of Biology, Functional Genomics Research Core, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
| | - Sandra Peña De Ortiz
- Department of Biology, Functional Genomics Research Core, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
| |
Collapse
|
66
|
Abstract
Hippocampus-dependent learning and memory relies on synaptic plasticity as well as network adaptations provided by the addition of adult-born neurons. We have previously shown that activity-induced intracellular signaling through the Rho family small GTPase Rac1 is necessary in forebrain projection neurons for normal synaptic plasticity in vivo, and here we show that selective loss of neuronal Rac1 also impairs the learning-evoked increase in neurogenesis in the adult mouse hippocampus. Earlier work has indicated that experience elevates the abundance of adult-born neurons in the hippocampus primarily by enhancing the survival of neurons produced just before the learning event. Loss of Rac1 in mature projection neurons did reduce learning-evoked neurogenesis but, contrary to our expectations, these effects were not mediated by altering the survival of young neurons in the hippocampus. Instead, loss of neuronal Rac1 activation selectively impaired a learning-evoked increase in the proliferation and accumulation of neural precursors generated during the learning event itself. This indicates that experience-induced alterations in neurogenesis can be mechanistically resolved into two effects: (1) the well documented but Rac1-independent signaling cascade that enhances the survival of young postmitotic neurons; and (2) a previously unrecognized Rac1-dependent signaling cascade that stimulates the proliferative production and retention of new neurons generated during learning itself.
Collapse
|
67
|
Pan Y, Li M, Yi X, Zhao Q, Lieberwirth C, Wang Z, Zhang Z. Scatter hoarding and hippocampal cell proliferation in Siberian chipmunks. Neuroscience 2013; 255:76-85. [PMID: 24121131 DOI: 10.1016/j.neuroscience.2013.09.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/10/2013] [Accepted: 09/26/2013] [Indexed: 01/02/2023]
Abstract
Food hoarding, especially scatter hoarding and retrieving food caches, requires spatial learning and memory and is an adaptive behavior important for an animal's survival and reproductive success. In the present study, we examined the effects of hoarding behavior on cell proliferation and survival in the hippocampus of male and female Siberian chipmunks (Tamias sibiricus). We found that chipmunks in a semi-natural enclosure displayed hoarding behavior with large individual variations. Males ate more scatter-hoarded seeds than females. In addition, the display of hoarding behavior was associated with increased cell proliferation in the hippocampus and this increase occurred in a brain region-specific manner. These data provide further evidence to support the notion that new cells in the adult hippocampus are affected by learning and memory tasks and may play an important role in adaptive behavior.
Collapse
Affiliation(s)
- Y Pan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China
| | | | | | | | | | | | | |
Collapse
|
68
|
Varela-Nallar L, Inestrosa NC. Wnt signaling in the regulation of adult hippocampal neurogenesis. Front Cell Neurosci 2013; 7:100. [PMID: 23805076 PMCID: PMC3693081 DOI: 10.3389/fncel.2013.00100] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/07/2013] [Indexed: 01/06/2023] Open
Abstract
In the adult brain new neurons are continuously generated mainly in two regions, the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the hippocampal dentate gyrus. In the SGZ, radial neural stem cells (NSCs) give rise to granule cells that integrate into the hippocampal circuitry and are relevant for the plasticity of the hippocampus. Loss of neurogenesis impairs learning and memory, suggesting that this process is important for adult hippocampal function. Adult neurogenesis is tightly regulated by multiple signaling pathways, including the canonical Wnt/β-catenin pathway. This pathway plays important roles during the development of neuronal circuits and in the adult brain it modulates synaptic transmission and plasticity. Here, we review current knowledge on the regulation of adult hippocampal neurogenesis by the Wnt/β-catenin signaling cascade and the potential mechanisms involved in this regulation. Also we discuss the evidence supporting that the canonical Wnt pathway is part of the signaling mechanisms involved in the regulation of neurogenesis in different physiological conditions. Finally, some unsolved questions regarding the Wnt-mediated regulation of neurogenesis are discussed.
Collapse
Affiliation(s)
- Lorena Varela-Nallar
- Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| | | |
Collapse
|
69
|
Tirone F, Farioli-Vecchioli S, Micheli L, Ceccarelli M, Leonardi L. Genetic control of adult neurogenesis: interplay of differentiation, proliferation and survival modulates new neurons function, and memory circuits. Front Cell Neurosci 2013; 7:59. [PMID: 23734097 PMCID: PMC3653098 DOI: 10.3389/fncel.2013.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/15/2013] [Indexed: 01/23/2023] Open
Abstract
Within the hippocampal circuitry, the basic function of the dentate gyrus is to transform the memory input coming from the enthorinal cortex into sparse and categorized outputs to CA3, in this way separating related memory information. New neurons generated in the dentate gyrus during adulthood appear to facilitate this process, allowing a better separation between closely spaced memories (pattern separation). The evidence underlying this model has been gathered essentially by ablating the newly adult-generated neurons. This approach, however, does not allow monitoring of the integration of new neurons into memory circuits and is likely to set in motion compensatory circuits, possibly leading to an underestimation of the role of new neurons. Here we review the background of the basic function of the hippocampus and of the known properties of new adult-generated neurons. In this context, we analyze the cognitive performance in mouse models generated by us and others, with modified expression of the genes Btg2 (PC3/Tis21), Btg1, Pten, BMP4, etc., where new neurons underwent a change in their differentiation rate or a partial decrease of their proliferation or survival rate rather than ablation. The effects of these modifications are equal or greater than full ablation, suggesting that the architecture of circuits, as it unfolds from the interaction between existing and new neurons, can have a greater functional impact than the sheer number of new neurons. We propose a model which attempts to measure and correlate the set of cellular changes in the process of neurogenesis with the memory function.
Collapse
Affiliation(s)
- Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa LuciaRome, Italy
| | | | | | | | | |
Collapse
|
70
|
Functional implications of hippocampal adult neurogenesis in intellectual disabilities. Amino Acids 2013; 45:113-31. [DOI: 10.1007/s00726-013-1489-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/19/2022]
|
71
|
Epp JR, Chow C, Galea LAM. Hippocampus-dependent learning influences hippocampal neurogenesis. Front Neurosci 2013; 7:57. [PMID: 23596385 PMCID: PMC3627134 DOI: 10.3389/fnins.2013.00057] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/28/2013] [Indexed: 12/26/2022] Open
Abstract
The structure of the mammalian hippocampus continues to be modified throughout life by continuous addition of neurons in the dentate gyrus. Although the existence of adult neurogenesis is now widely accepted the function that adult generated granule cells play is a topic of intense debate. Many studies have argued that adult generated neurons, due to unique physiological characteristics, play a unique role in hippocampus-dependent learning and memory. However, it is not currently clear whether this is the case or what specific capability adult generated neurons may confer that developmentally generated neurons do not. These questions have been addressed in numerous ways, from examining the effects of increasing or decreasing neurogenesis to computational modeling. One particular area of research has examined the effects of hippocampus dependent learning on proliferation, survival, integration and activation of immature neurons in response to memory retrieval. Within this subfield there remains a range of data showing that hippocampus dependent learning may increase, decrease or alternatively may not alter these components of neurogenesis in the hippocampus. Determining how and when hippocampus-dependent learning alters adult neurogenesis will help to further clarify the role of adult generated neurons. There are many variables (such as age of immature neurons, species, strain, sex, stress, task difficulty, and type of learning) as well as numerous methodological differences (such as marker type, quantification techniques, apparatus size etc.) that could all be crucial for a clear understanding of the interaction between learning and neurogenesis. Here, we review these findings and discuss the different conditions under which hippocampus-dependent learning impacts adult neurogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Jonathan R. Epp
- *Correspondence: Jonathan R. Epp, Neurosciences and Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada. e-mail: ;
| | | | - Liisa A. M. Galea
- Department of Psychology, Program in Neuroscience, Brain Research Centre, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
72
|
Curlik DM, Maeng LY, Agarwal PR, Shors TJ. Physical skill training increases the number of surviving new cells in the adult hippocampus. PLoS One 2013; 8:e55850. [PMID: 23437067 PMCID: PMC3577803 DOI: 10.1371/journal.pone.0055850] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 01/04/2013] [Indexed: 02/05/2023] Open
Abstract
The dentate gyrus is a major site of plasticity in the adult brain, giving rise to thousands of new neurons every day, through the process of adult neurogenesis. Although the majority of these cells die within two weeks of their birth, they can be rescued from death by various forms of learning. Successful acquisition of select types of associative and spatial memories increases the number of these cells that survive. Here, we investigated the possibility that an entirely different form of learning, physical skill learning, could rescue new hippocampal cells from death. To test this possibility, rats were trained with a physically-demanding and technically-difficult version of a rotarod procedure. Acquisition of the physical skill greatly increased the number of new hippocampal cells that survived. The number of surviving cells positively correlated with performance on the task. Only animals that successfully mastered the task retained the cells that would have otherwise died. Animals that failed to learn, and those that did not learn well did not retain any more cells than those that were untrained. Importantly, acute voluntary exercise in activity wheels did not increase the number of surviving cells. These data suggest that acquisition of a physical skill can increase the number of surviving hippocampal cells. Moreover, learning an easier version of the task did not increase cell survival. These results are consistent with previous reports revealing that learning only rescues new neurons from death when acquisition is sufficiently difficult to achieve. Finally, complete hippocampal lesions did not disrupt acquisition of this physical skill. Therefore, physical skill training that does not depend on the hippocampus can effectively increase the number of surviving cells in the adult hippocampus, the vast majority of which become mature neurons.
Collapse
Affiliation(s)
- Daniel M. Curlik
- Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Lisa Y. Maeng
- Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Prateek R. Agarwal
- Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Tracey J. Shors
- Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
73
|
Sørensen C, Johansen IB, Øverli Ø. Neural plasticity and stress coping in teleost fishes. Gen Comp Endocrinol 2013; 181:25-34. [PMID: 23274407 DOI: 10.1016/j.ygcen.2012.12.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 12/25/2022]
Abstract
Physiological and behavioural responses to environmental change are individually variable traits, which manifest phenotypically and are subject to natural selection as correlated trait-clusters (coping styles, behavioural syndromes, or personality traits). Comparative research has revealed a range of neuroendocrine-behavioural associations which are conserved throughout the vertebrate subphylum. Regulatory mechanisms universally mediate a switch between proactive (e.g. active/aggressive) and reactive (e.g. conservation/withdrawal) behaviour in response to unpredictable and uncontrollable events. Thresholds for switching from active coping to behavioural inhibition are individually variable, and depend on experience and genetic factors. Such factors affect physiological stress responses as well as perception, learning, and memory. Here we review the role of an important contributor to neural processing, the set of biochemical, molecular, and structural processes collectively referred to as neural plasticity. We will concentrate on work in teleost fishes, while also elucidating conserved aspects. In fishes, environmental and physiological control of brain cell proliferation and neurogenesis has received recent attention. This work has revealed that the expression of genes involved in CNS plasticity is affected by heritable variation in stress coping style, and is also differentially affected by short- and long-term stress. Chronic stress experienced by subordinate fish in social hierarchies leads to a marked suppression of brain cell proliferation. Interestingly, typically routine dependent and inflexible behaviour in proactive individuals is also associated with low transcription of neurogenesis related genes. The potential for these findings to illuminate stress-related neurobiological disorders in other vertebrates is also discussed.
Collapse
Affiliation(s)
- Christina Sørensen
- Department of Molecular Biosciences, University of Oslo, PO Box 1041, N-0316 Oslo, Norway
| | | | | |
Collapse
|
74
|
McClure RES, Barha CK, Galea LAM. 17β-Estradiol, but not estrone, increases the survival and activation of new neurons in the hippocampus in response to spatial memory in adult female rats. Horm Behav 2013; 63:144-57. [PMID: 23063473 DOI: 10.1016/j.yhbeh.2012.09.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/18/2012] [Accepted: 09/22/2012] [Indexed: 10/27/2022]
Abstract
Estrogens fluctuate across the lifespan in women, with circulating 17β-estradiol levels higher pre-menopause than estrone and circulating estrone levels higher postmenopause than 17β-estradiol. Estrone is a common component of hormone replacement therapies, but research shows that 17β-estradiol may have a greater positive impact on cognition. Previous studies show that acute estrone and 17β-estradiol impact hippocampus-dependent learning and cell proliferation in the dentate gyrus in a dose-dependent manner in adult female rats. The current study explores how chronic treatment with estrone and 17β-estradiol differentially influences spatial learning, hippocampal neurogenesis and activation of new neurons in response to spatial memory. Adult female rats received daily injections of vehicle (sesame oil), or a 10 μg dose of either 17β-estradiol or estrone for 20 days. One day following the first hormone injection all rats were injected with the DNA synthesis marker, bromodeoxyuridine. On days 11-15 after BrdU injection rats were trained on a spatial reference version of the Morris water maze, and five days later (day 20 of estrogens treatment) were given a probe trial to assess memory retention. Cell proliferation was assessed by the endogenous cell cycle marker, Ki67, cell survival was assessed by counting the number and density of BrdU-ir cells in the dentate gyrus and cell activation was assessed by the percentage of BrdU-ir cells that were co-labelled with the immediate early gene product zif268. There were no significant differences between groups in acquisition or retention of Morris water maze. However, the 17β-estradiol group had significantly higher, while the estrone group had significantly lower, levels of cell survival (BrdU-ir cells) in the dentate gyrus compared to controls. Furthermore, rats injected with 17β-estradiol showed significantly higher levels of activation of new neurons in response to spatial memory compared to controls. These results provide insight into how estrogens differentially influence the brain and behavior, and may provide insight into the development of hormone replacement therapies for women.
Collapse
Affiliation(s)
- Robyn E S McClure
- Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
75
|
Ohkawa N, Saitoh Y, Tokunaga E, Nihonmatsu I, Ozawa F, Murayama A, Shibata F, Kitamura T, Inokuchi K. Spine formation pattern of adult-born neurons is differentially modulated by the induction timing and location of hippocampal plasticity. PLoS One 2012; 7:e45270. [PMID: 23024813 PMCID: PMC3443223 DOI: 10.1371/journal.pone.0045270] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/14/2012] [Indexed: 12/13/2022] Open
Abstract
In the adult hippocampus dentate gyrus (DG), newly born neurons are functionally integrated into existing circuits and play important roles in hippocampus-dependent memory. However, it remains unclear how neural plasticity regulates the integration pattern of new neurons into preexisting circuits. Because dendritic spines are major postsynaptic sites for excitatory inputs, spines of new neurons were visualized by retrovirus-mediated labeling to evaluate integration. Long-term potentiation (LTP) was induced at 12, 16, or 21 days postinfection (dpi), at which time new neurons have no, few, or many spines, respectively. The spine expression patterns were investigated at one or two weeks after LTP induction. Induction at 12 dpi increased later spinogenesis, although the new neurons at 12 dpi didn't respond to the stimulus for LTP induction. Induction at 21 dpi transiently mediated spine enlargement. Surprisingly, LTP induction at 16 dpi reduced the spine density of new neurons. All LTP-mediated changes specifically appeared within the LTP-induced layer. Therefore, neural plasticity differentially regulates the integration of new neurons into the activated circuit, dependent on their developmental stage. Consequently, new neurons at different developmental stages may play distinct roles in processing the acquired information by modulating the connectivity of activated circuits via their integration.
Collapse
Affiliation(s)
- Noriaki Ohkawa
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Yoshito Saitoh
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Eri Tokunaga
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Itsuko Nihonmatsu
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Fumiko Ozawa
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Akiko Murayama
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Fumi Shibata
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
- * E-mail:
| |
Collapse
|
76
|
Tang SW, Helmeste D, Leonard B. Is neurogenesis relevant in depression and in the mechanism of antidepressant drug action? A critical review. World J Biol Psychiatry 2012; 13:402-12. [PMID: 22175526 DOI: 10.3109/15622975.2011.639800] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Major depression is a complex disorder that involves genetic, epigenetic and environmental factors in its aetiology. Recent research has suggested that hippocampal neurogenesis may play a role in antidepressant action. However, careful examination of the literature suggests that the complex biological and psychological changes associated with depression cannot be attributed to disturbance in hippocampal neurogenesis alone. While antidepressants may induce hippocampal neurogenesis in non-human primates, there is a paucity of evidence that such effects are sufficient for full therapeutic action in humans. METHODS This review examines the literature on neurogenesis and discusses the stress-induced cortisol neurotoxicity and antidepressant-induced neurogenesis rescue model of depression. The disparity between a simple antidepressant-induced neurogenesis rescue model in the hippocampus and the complexity of clinical depression is analyzed through critical evaluation of recent research data. RESULTS AND CONCLUSIONS Major depression is a complex brain disorder with multiple symptoms and disturbances reflecting dysfunction in more than one single brain area. Initial research suggesting a model of hippocampal degeneration as basis of depression, and reversal by antidepressants through neurogenesis seems to be over-simplified given the emergence of new data. Synaptogenesis and re-organization or re-integration of new neurons rather than simple addition of new neurons may underlie the role of antidepressant drugs in the reversal of some but not all symptoms in depression. The importance of the neurogenesis hypothesis of depression and antidepressant action lies in stimulating further research into the possible roles played by the new neurons and synapses generated.
Collapse
Affiliation(s)
- Siu W Tang
- Department of Psychiatry, University of California, Irvine, CA 92697-1681, USA.
| | | | | |
Collapse
|
77
|
Liebetanz D, Gerber J, Schiffner C, Schütze S, Klinker F, Jarry H, Nau R, Tauber SC. Pre-infection physical exercise decreases mortality and stimulates neurogenesis in bacterial meningitis. J Neuroinflammation 2012; 9:168. [PMID: 22781194 PMCID: PMC3419614 DOI: 10.1186/1742-2094-9-168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 07/10/2012] [Indexed: 01/22/2023] Open
Abstract
Physical exercise has been shown to increase neurogenesis, to decrease neuronal injury and to improve memory in animal models of stroke and head trauma. Therefore, we investigated the effect of voluntary wheel running on survival, neuronal damage and cell proliferation in a mouse model of pneumococcal meningitis. Mice were housed in cages equipped with voluntary running wheels or in standard cages before induction of bacterial meningitis by a subarachnoid injection of a Streptococcus pneumoniae type 3 strain. 24 hours later antibiotic treatment was initiated with ceftriaxone (100 mg/kg twice daily). Experiments were terminated either 30 hours or 4 days (short-term) or 7 weeks (long-term) after infection, and the survival time, inflammatory cytokines and corticosterone levels, neurogenesis in the dentate gyrus of the hippocampal formation and the cognitive function were evaluated in surviving mice. Survival time was significantly increased in running mice compared to control animals (p = 0.0087 in short-term and p = 0.016 in long-term experiments, log-rank test). At the end of the long-term experiment, mortality was lower in trained than in sedentary animals (p = 0.031, Fisher's Exact test). Hippocampal neurogenesis--assessed by the density of doublecortin-, TUC-4- and BrdU + NeuN-colabeled cells--was significantly increased in running mice in comparison to the sedentary group after meningitis. However, Morris water maze performance of both groups 6 weeks after bacterial meningitis did not reveal differences in learning ability. In conclusion, physical exercise prior to infection increased survival in a mouse model of bacterial meningitis and stimulated neurogenesis in the dentate gyrus of the hippocampal formation.
Collapse
Affiliation(s)
- David Liebetanz
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Inhibition of adult neurogenesis by inducible and targeted deletion of ERK5 mitogen-activated protein kinase specifically in adult neurogenic regions impairs contextual fear extinction and remote fear memory. J Neurosci 2012; 32:6444-55. [PMID: 22573667 DOI: 10.1523/jneurosci.6076-11.2012] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although there is evidence suggesting that adult neurogenesis may contribute to hippocampus-dependent memory, signaling mechanisms responsible for adult hippocampal neurogenesis are not well characterized. Here we report that ERK5 mitogen-activated protein kinase is specifically expressed in the neurogenic regions of the adult mouse brain. The inducible and conditional knock-out (icKO) of erk5 specifically in neural progenitors of the adult mouse brain attenuated adult hippocampal neurogenesis. It also caused deficits in several forms of hippocampus-dependent memory, including contextual fear conditioning generated by a weak footshock. The ERK5 icKO mice were also deficient in contextual fear extinction and reversal of Morris water maze spatial learning and memory, suggesting that adult neurogenesis plays an important role in hippocampus-dependent learning flexibility. Furthermore, our data suggest a critical role for ERK5-mediated adult neurogenesis in pattern separation, a form of dentate gyrus-dependent spatial learning and memory. Moreover, ERK5 icKO mice have no memory 21 d after training in the passive avoidance test, suggesting a pivotal role for adult hippocampal neurogenesis in the expression of remote memory. Together, our results implicate ERK5 as a novel signaling molecule regulating adult neurogenesis and provide strong evidence that adult neurogenesis is critical for several forms of hippocampus-dependent memory formation, including fear extinction, and for the expression of remote memory.
Collapse
|
79
|
Abstract
Cerebral palsy is caused by injury or developmental disturbances to the immature brain and leads to substantial motor, cognitive, and learning deficits. In addition to developmental disruption associated with the initial insult to the immature brain, injury processes can persist for many months or years. We suggest that these tertiary mechanisms of damage might include persistent inflammation and epigenetic changes. We propose that these processes are implicit in prevention of endogenous repair and regeneration and predispose patients to development of future cognitive dysfunction and sensitisation to further injury. We suggest that treatment of tertiary mechanisms of damage might be possible by various means, including preventing the repressive effects of microglia and astrocyte over-activation, recapitulating developmentally permissive epigenetic conditions, and using cell therapies to stimulate repair and regeneration Recognition of tertiary mechanisms of damage might be the first step in a complex translational task to tailor safe and effective therapies that can be used to treat the already developmentally disrupted brain long after an insult.
Collapse
|
80
|
Nuclear factor of activated T cells (NFATc4) is required for BDNF-dependent survival of adult-born neurons and spatial memory formation in the hippocampus. Proc Natl Acad Sci U S A 2012; 109:E1499-508. [PMID: 22586092 DOI: 10.1073/pnas.1202068109] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New neurons generated in the adult dentate gyrus are constantly integrated into the hippocampal circuitry and activated during encoding and recall of new memories. Despite identification of extracellular signals that regulate survival and integration of adult-born neurons such as neurotrophins and neurotransmitters, the nature of the intracellular modulators required to transduce those signals remains elusive. Here, we provide evidence of the expression and transcriptional activity of nuclear factor of activated T cell c4 (NFATc4) in hippocampal progenitor cells. We show that NFATc4 calcineurin-dependent activity is required selectively for survival of adult-born neurons in response to BDNF signaling. Indeed, cyclosporin A injection and stereotaxic delivery of the BDNF scavenger TrkB-Fc in the mouse dentate gyrus reduce the survival of hippocampal adult-born neurons in wild-type but not in NFATc4(-/-) mice and do not affect the net rate of neural precursor proliferation and their fate commitment. Furthermore, associated with the reduced survival of adult-born neurons, the absence of NFATc4 leads to selective defects in LTP and in the encoding of hippocampal-dependent spatial memories. Thus, our data demonstrate that NFATc4 is essential in the regulation of adult hippocampal neurogenesis and identify NFATc4 as a central player of BDNF-driven prosurvival signaling in hippocampal adult-born neurons.
Collapse
|
81
|
Abstract
Adult neurogenesis occurs in the dentate gyrus of the hippocampus, which is a key structure in learning and memory. It is believed that adult-born neurons exert their unique role in information processing due to their high plasticity during immature stage that renders them malleable in response to environmental demands. Here, we demonstrate that, in rats, there is no critical time window for experience-induced dendritic plasticity of adult-born neurons as spatial learning in the water maze sculpts the dendritic arbor of adult-born neurons even when they are several months of age. By ablating neurogenesis within a specific period of time, we found that learning was disrupted when the delay between ablation and learning was extended to several months. Together, these results show that mature adult-born neurons are still plastic when they are functionally integrated into dentate network. Our results suggest a new perspective with regard to the role of neo-neurons by highlighting that even mature ones can provide an additional source of plasticity to the brain to process memory information.
Collapse
|
82
|
Clark PJ, Bhattacharya TK, Miller DS, Kohman RA, DeYoung EK, Rhodes JS. New neurons generated from running are broadly recruited into neuronal activation associated with three different hippocampus-involved tasks. Hippocampus 2012; 22:1860-7. [PMID: 22467337 DOI: 10.1002/hipo.22020] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2012] [Indexed: 11/07/2022]
Abstract
Running increases the formation of new neurons in the adult rodent hippocampus. However, the function of new neurons generated from running is currently unknown. One hypothesis is that new neurons from running contribute to enhanced cognitive function by increasing plasticity in the adult hippocampus. An alternative hypothesis is that new neurons generated from running incorporate into experience-specific hippocampal networks that only become active during running. The purpose of this experiment was to determine if new neurons generated from running are selectively activated by running, or can become recruited into granule cell activity occurring during performance on other behavioral tasks that engage the hippocampus. Therefore, the activation of new 5-6 week neurons was detected using BrdU, NeuN, and Zif268 triple-label immunohistochemistry in cohorts of female running and sedentary adult C57BL/6J mice following participation in one of three different tasks: the Morris water maze, novel environment exploration, or wheel running. Results showed that running and sedentary mice displayed a nearly equivalent proportion of new neurons that expressed Zif268 following each task. Since running approximately doubled the number of new neurons, the results demonstrated that running mice had a greater number of new neurons recruited into the Zif268 induction in the granule cell layer following each task than sedentary mice. The results suggest that new neurons incorporated into hippocampal circuitry from running are not just activated by wheel running itself, but rather become broadly recruited into granule cell layer activity during distinct behavioral experiences.
Collapse
Affiliation(s)
- Peter J Clark
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | | | | | | | | | |
Collapse
|
83
|
Chow SF, Wick SD, Riecke H. Neurogenesis drives stimulus decorrelation in a model of the olfactory bulb. PLoS Comput Biol 2012; 8:e1002398. [PMID: 22442645 PMCID: PMC3305347 DOI: 10.1371/journal.pcbi.1002398] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/09/2012] [Indexed: 01/25/2023] Open
Abstract
The reshaping and decorrelation of similar activity patterns by neuronal networks can enhance their discriminability, storage, and retrieval. How can such networks learn to decorrelate new complex patterns, as they arise in the olfactory system? Using a computational network model for the dominant neural populations of the olfactory bulb we show that fundamental aspects of the adult neurogenesis observed in the olfactory bulb--the persistent addition of new inhibitory granule cells to the network, their activity-dependent survival, and the reciprocal character of their synapses with the principal mitral cells--are sufficient to restructure the network and to alter its encoding of odor stimuli adaptively so as to reduce the correlations between the bulbar representations of similar stimuli. The decorrelation is quite robust with respect to various types of perturbations of the reciprocity. The model parsimoniously captures the experimentally observed role of neurogenesis in perceptual learning and the enhanced response of young granule cells to novel stimuli. Moreover, it makes specific predictions for the type of odor enrichment that should be effective in enhancing the ability of animals to discriminate similar odor mixtures.
Collapse
Affiliation(s)
- Siu-Fai Chow
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
| | - Stuart D. Wick
- Department of Physics, North Central College, Naperville, Illinois, United States of America
| | - Hermann Riecke
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
84
|
Environmental enrichment alters glial antigen expression and neuroimmune function in the adult rat hippocampus. Brain Behav Immun 2012; 26:500-10. [PMID: 22281279 PMCID: PMC3294275 DOI: 10.1016/j.bbi.2012.01.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 11/23/2022] Open
Abstract
Neurogenesis is a well-characterized phenomenon within the dentate gyrus (DG) of the adult hippocampus. Environmental enrichment (EE) in rodents increases neurogenesis, enhances cognition, and promotes recovery from injury. However, little is known about the effects of EE on glia (astrocytes and microglia). Given their importance in neural repair, we predicted that EE would modulate glial phenotype and/or function within the hippocampus. Adult male rats were housed either 12 h/day in an enriched environment or in a standard home cage. Rats were injected with BrdU at 1 week, and after 7 weeks, half of the rats from each housing group were injected with lipopolysaccharide (LPS), and cytokine and chemokine expression was assessed within the periphery, hippocampus and cortex. Enriched rats had a markedly blunted pro-inflammatory response to LPS within the hippocampus. Specifically, expression of the chemokines Ccl2, Ccl3 and Cxcl2, several members of the tumor necrosis factor (TNF) family, and the pro-inflammatory cytokine IL-1β were all significantly decreased following LPS administration in EE rats compared to controls. EE did not impact the inflammatory response to LPS in the cortex. Moreover, EE significantly increased both astrocyte (GFAP+) and microglia (Iba1+) antigen expression within the DG, but not in the CA1, CA3, or cortex. Measures of neurogenesis were not impacted by EE (BrdU and DCX staining), although hippocampal BDNF mRNA was significantly increased by EE. This study demonstrates the importance of environmental factors on the function of the immune system specifically within the brain, which can have profound effects on neural function.
Collapse
|
85
|
Cominski TP, Turchin CE, Hsu MS, Ansonoff MA, Pintar JE. Loss of the mu opioid receptor on different genetic backgrounds leads to increased bromodeoxyuridine labeling in the dentate gyrus only after repeated injection. Neuroscience 2012; 206:49-59. [PMID: 22280973 DOI: 10.1016/j.neuroscience.2011.12.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 01/14/2023]
Abstract
The endogenous opioid system is involved in various physiological processes, including neurogenesis in the dentate gyrus (DG) of the hippocampus. In the current study, we investigated the role of the mu opioid receptor (MOR-1) on DG neurogenesis and measured glucocorticoid levels following several injection paradigms to supplement the neurogenesis experiments. MOR-1 knockout (KO) mice on C57BL/6 and 129S6 backgrounds were injected with bromodeoxyuridine (BrdU) using either a single injection or two different repeated injection protocols and then sacrificed at different time points. The total number of BrdU and proliferating cell nuclear antigen (PCNA) positive cells in the DG is significantly increased in MOR-1 KO mice compared with wild type (WT) on both strains after repeated injection, but not after a single injection. Plasma corticosterone (CORT) levels increased similarly in MOR-1 KO and WT mice following both single and repeated injection, indicating that the stress response is activated following any injection protocol, but that the mechanism responsible for the increase in BrdU labeling in MOR-1 KO mice is CORT-level independent. Finally, WT 129S6 mice, independent of genotype, showed higher levels of plasma CORT compared with WT C57BL/6 mice in both noninjected controls and following injection at two separate time points; these levels were inversely correlated with low numbers of BrdU cells in the DG in 129S6 mice compared with C57BL/6 mice. In summary, these data demonstrate that loss of MOR-1 increases BrdU labeling in the DG independent of CORT levels, but only following a repeated injection, illustrating the capability of injection paradigms to influence cell-proliferative responses in a genotype-dependent manner.
Collapse
Affiliation(s)
- T P Cominski
- Department of Neuroscience, Cell Biology, University of Medicine and Dentistry of New Jersey-Robert, Wood Johnson Medical School (UMDNJ/RWJMS) 675 Hoes Lane, RWJMS-SPH, Room 352, Piscataway, NJ, USA
| | | | | | | | | |
Collapse
|
86
|
Chancellor LV, Roth TC, LaDage LD, Pravosudov VV. The effect of environmental harshness on neurogenesis: a large-scale comparison. Dev Neurobiol 2011; 71:246-52. [PMID: 20949526 DOI: 10.1002/dneu.20847] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Harsh environmental conditions may produce strong selection pressure on traits, such as memory, that may enhance fitness. Enhanced memory may be crucial for survival in animals that use memory to find food and, thus, particularly important in environments where food sources may be unpredictable. For example, animals that cache and later retrieve their food may exhibit enhanced spatial memory in harsh environments compared with those in mild environments. One way that selection may enhance memory is via the hippocampus, a brain region involved in spatial memory. In a previous study, we established a positive relationship between environmental severity and hippocampal morphology in food-caching black-capped chickadees (Poecile atricapillus). Here, we expanded upon this previous work to investigate the relationship between environmental harshness and neurogenesis, a process that may support hippocampal cytoarchitecture. We report a significant and positive relationship between the degree of environmental harshness across several populations over a large geographic area and (1) the total number of immature hippocampal neurons, (2) the number of immature neurons relative to the hippocampal volume, and (3) the number of immature neurons relative to the total number of hippocampal neurons. Our results suggest that hippocampal neurogenesis may play an important role in environments where increased reliance on memory for cache recovery is critical.
Collapse
Affiliation(s)
- Leia V Chancellor
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | | | | |
Collapse
|
87
|
Itou Y, Nochi R, Kuribayashi H, Saito Y, Hisatsune T. Cholinergic activation of hippocampal neural stem cells in aged dentate gyrus. Hippocampus 2011; 21:446-59. [PMID: 20054812 DOI: 10.1002/hipo.20761] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adult hippocampal neurogenesis contributes to the hippocampal circuit's role in cognitive functioning. New neurons are generated from hippocampal neural stem cells (NSCs) throughout life, but their generation is substantially diminished in aged animals due to a decrease in NSC proliferation. Because acetylcholine (ACh) is an important neurotransmitter released in the hippocampus during learning and exercise that is known to decrease with aging, we investigated whether aged NSCs can respond to ACh. In this study, we found that cholinergic stimulation has a positive effect on NSC proliferation in both young adult (8-12 weeks old) and aged mice (>2 years old). In fresh hippocampal slices, we observed a rapid calcium increase in NSCs in the dentate gyrus after muscarinic cholinergic stimulation, in both age groups. Furthermore, we found that the exercise-induced promotion of aged NSC proliferation was abrogated by the specific lesioning of the septal cholinergic system. In turn, cholinergic activation by either eserine (physostigmine) or donepezil treatment promoted the proliferation of NSCs in aged mice. These results indicate that NSCs respond to cholinergic stimulation by proliferating in aged animals. Physiological and/or pharmacological cholinergic stimulation(s) may ameliorate cognitive decline in aged animals, by supporting adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Yoshie Itou
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | |
Collapse
|
88
|
Petrik D, Lagace DC, Eisch AJ. The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building? Neuropharmacology 2011; 62:21-34. [PMID: 21945290 DOI: 10.1016/j.neuropharm.2011.09.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/03/2011] [Accepted: 09/06/2011] [Indexed: 01/22/2023]
Abstract
Hypotheses are scaffoldings erected in front of a building and then dismantled when the building is finished. They are indispensable for the workman; but you mustn't mistake the scaffolding for the building. Johann Wolfgang von Goethe. The neurogenesis hypothesis of affective disorders - in its simplest form - postulates that the generation of neurons in the postnatal hippocampal dentate gyrus is involved in the etiology and treatment efficacy of major depressive disorder (MDD). The hypothesis was established in the 1990s but was built on a broad foundation of earlier research on the hippocampus, serotonin and MDD. It has gone through several growth phases fueled by discoveries both correlative and causative in nature. Recently, the hypothesis has also been broadened to also include potential relevance for anxiety disorders, like post-traumatic stress disorder (PTSD). As any hypothesis should be, it has been tested and challenged, sometimes vigorously. Here we review the current standing of the neurogenesis hypothesis of affective and anxiety disorders, noting in particular how a central postulate - that decreased neurogenesis results in depression or anxiety - has, in general, been rejected. We also review the controversies on whether treatments for these disorders, like antidepressants, rely on intact neurogenesis for their efficacy, and the existence of neurogenesis-dependent and -independent effects of antidepressants. In addition, we review the implications that the hypothesis has for the response to stress, PTSD, and the neurobiology of resilience, and highlight our own work showing that adult-generated neurons are functionally important for the behavioral response to social stress. We conclude by emphasizing how advancements in transgenic mouse technology, rodent behavioral analyses, and our understanding of the neurogenesis process will allow us to refine our conclusions and perform ever more specific experiments. Such scrutiny is critical, since if we "mistake the scaffolding for the building" we could overlook opportunities for translational impact in the clinic. This article is part of a special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- David Petrik
- Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9070, USA
| | | | | |
Collapse
|
89
|
Issues to ponder when correlating hippocampal neurogenesis to a hippocampal-dependent memory function. Neurobiol Aging 2011; 31:2181-4. [PMID: 20817352 DOI: 10.1016/j.neurobiolaging.2010.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 05/31/2010] [Accepted: 06/05/2010] [Indexed: 11/23/2022]
Abstract
Simple correlations between the overall hippocampal neurogenesis and the hippocampal-dependent learning and memory functions are common in the neurogenesis field. There is considerable evidence in the literature to link hippocampal neurogenesis to the hippocampal-dependent memory function. However, simple correlations between neurogenesis and memory function, particularly in studies where neither the cause-effect relationship is established nor the other relevant variables are considered, can lead to erroneous conclusions. As reliable and selective neurogenesis ablation techniques are yet to be developed for rat and higher animal models, it is likely that correlative studies between the overall neurogenesis and the memory function will continue in different conditions in these animal models. Such correlations should be acceptable as long as the other variables are considered adequately. Furthermore, in correlative analyses of the learning and memory function with the newly born granule cells, one needs to consider the age of the newly born granule cells because the newly born granule cells will require at least a few weeks of time after their birth to participate in the learning and memory function in rodent models.
Collapse
|
90
|
McCormick CM, Thomas CM, Sheridan CS, Nixon F, Flynn JA, Mathews IZ. Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood. Hippocampus 2011; 22:1300-12. [PMID: 21805526 DOI: 10.1002/hipo.20966] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2011] [Indexed: 02/05/2023]
Abstract
The ongoing development of the hippocampus in adolescence may be vulnerable to stressors. The effects of social instability stress (SS) in adolescence (daily 1 h isolation and change of cage partner postnatal days 30-45) on cell proliferation in the dentate gyrus (DG) in adolescence (on days 33 and 46, experiment 1) and in adulthood (experiment 2) was examined in Long Evans male rats and compared to nonstressed controls (CTL). Additionally, in experiment 2, a separate group of SS and CTL rats was tested on either a spatial (hippocampal-dependent) or nonspatial (nonhippocampal dependent) version of an object memory test and also were used to investigate hippocampal expression of markers of synaptic plasticity. No memory impairment was evident until the SS rats were adults, and the impairment was only on the spatial test. SS rats initially (postnatal day 33) had increased cell proliferation based on counts of Ki67 immunoreactive (ir) cells and greater survival of immature neurons based on counts of doublecortin ir cells on day 46 and in adulthood, irrespective of behavioral testing. Counts of microglia in the DG did not differ by stress group, but behavioral testing was associated with reduced microglia counts compared to nontested rats. As adults, SS and CTL rats did not differ in hippocampal expression of synaptophysin, but compared to CTL rats, SS rats had higher expression of basal calcium/calmodulin-dependent kinase II (CamKII), and lower expression of the phosphorylated CamKII subunit threonine 286, signaling molecules related to synaptic plasticity. The results are contrasted with those from previous reports of chronic stress in adult rats, and we conclude that adolescent stress alters the ongoing development of the hippocampus leading to impaired spatial memory in adulthood, highlighting the heightened vulnerability to stressors in adolescence.
Collapse
Affiliation(s)
- Cheryl M McCormick
- Department of Psychology, Brock University, St Catharines, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
91
|
Complementary activation of hippocampal-cortical subregions and immature neurons following chronic training in single and multiple context versions of the water maze. Behav Brain Res 2011; 227:330-9. [PMID: 21736899 DOI: 10.1016/j.bbr.2011.06.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 05/31/2011] [Accepted: 06/20/2011] [Indexed: 11/22/2022]
Abstract
Neurobiological studies of memory typically involve single learning sessions that last minutes or days. In natural settings, however, animals are constantly learning. Here we investigated how several weeks of spatial water maze training influences subsequent activation of neocortical and hippocampal subregions, including adult-born neurons. Mice were either trained in a single context or in a variant of the task in which the spatial cues and platform location changed every 3 days, requiring constant new learning. On the final day, half of the mice in each training group were tested in a novel context and the other half were tested in their previous, familiar context. Two hours later mice were perfused to measure subregion-specific expression of the immediate-early gene zif268, a marker of neuronal activation. None of the training paradigms affected the magnitude of adult neurogenesis. However, different neuronal populations were activated depending on prior training history, final context novelty, or a combination of these 2 factors. The anterior cingulate cortex was more activated by novel context exposure, regardless of the type of prior training. The suprapyramidal blade of the dentate gyrus and region CA3 showed greater activation in mice trained in multiple contexts, primarily after exposure to a familiar context. In immature granule neurons, multiple context training enhanced activation regardless of final context novelty. CA1 showed no significant changes in zif268 expression across any training condition. In naïve control mice, training on the final day increased zif268 expression in CA3, CA1 and the anterior cingulate cortex, but not the dentate gyrus, relative to mice that remained in their cages (transport controls). Unexpectedly, immature granule cells showed a decrease in zif268 expression in naïve learners relative to transport controls. These findings suggest novel and complementary roles for hippocampal, neocortical, and immature neuronal populations in learning and memory.
Collapse
|
92
|
Aasebø IEJ, Blankvoort S, Tashiro A. Critical maturational period of new neurons in adult dentate gyrus for their involvement in memory formation. Eur J Neurosci 2011; 33:1094-100. [PMID: 21395853 DOI: 10.1111/j.1460-9568.2011.07608.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Adult dentate gyrus produces new neurons continuously throughout life. Multiple lines of evidence have pointed to the possibility that young neurons during a certain maturational stage mediate an important role in memory processing. In this review, we highlight the existing evidence of a 'critical period' for new neurons in their involvement in memory formation, describe the unique properties of young neurons as potential mechanisms underlying the critical period, and discuss the implications of the critical period for the function of adult neurogenesis.
Collapse
Affiliation(s)
- Ida E J Aasebø
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Faculty of Medicine, Norwegian University of Science and Technology and St. Olavs Hospital, 7030 Trondheim, Norway
| | | | | |
Collapse
|
93
|
Abstract
Understanding the cellular mechanisms underlying learning and memory is a major challenge in neurobiology. Structural and functional changes occurring in the hippocampus such as synaptic remodeling and long-term potentiation are key signatures of long-term memory processes. The discovery of a de novo hippocampal production of neurons in the adult brain has been a breakthrough in the field of plasticity and memory, introducing a new actor that could sustain memory processes. Here we will review our current knowledge on the role of these adult new neurons in memory. In particular we will provide evidence showing that they are required for learning and memory and that an alteration in their production rate or maturation leads to memory impairments. Through a thorough survey of the literature, we will also acknowledge that there are many controversies regarding the specific role played by newborn neurons. The emerging picture is that they are involved in the establishment of spatiotemporal relationships among multiple environmental cues for the flexible use of the acquired information. Indeed, newborn neurons have been found to be required for separating events based on their spatial and temporal characteristics, a process that preserves the uniqueness of a memory representation. Thus, adult-born neurons are required for allocentric space representation, for long-term memory retention and for flexible inferential memory expression. Finally, we will conclude by highlighting directions for future research, emphasizing that the exact participation of newborn neurons in memory processes will not be approached without considering the hippocampal network in general.
Collapse
Affiliation(s)
- Muriel Koehl
- Neurogenesis and Pathophysiology Laboratory, INSERM 862, Bordeaux, France
| | | |
Collapse
|
94
|
Macrophage migration inhibitory factor is critically involved in basal and fluoxetine-stimulated adult hippocampal cell proliferation and in anxiety, depression, and memory-related behaviors. Mol Psychiatry 2011; 16:533-47. [PMID: 20177408 DOI: 10.1038/mp.2010.15] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intensive research is devoted to unravel the neurobiological mechanisms mediating adult hippocampal neurogenesis, its regulation by antidepressants, and its behavioral consequences. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that is expressed in the CNS, where its function is unknown. Here, we show, for the first time, the relevance of MIF expression for adult hippocampal neurogenesis. We identify MIF expression in neurogenic cells (in stem cells, cells undergoing proliferation, and in newly proliferated cells undergoing maturation) in the subgranular zone of the rodent dentate gyrus. A causal function for MIF in cell proliferation was shown using genetic (MIF gene deletion) and pharmacological (treatment with the MIF antagonist Iso-1) approaches. Behaviorally, genetic deletion of MIF resulted in increased anxiety- and depression-like behaviors, as well as of impaired hippocampus-dependent memory. Together, our studies provide evidence supporting a pivotal function for MIF in both basal and antidepressant-stimulated adult hippocampal cell proliferation. Moreover, loss of MIF results in a behavioral phenotype that, to a large extent, corresponds with alterations predicted to arise from reduced hippocampal neurogenesis. These findings underscore MIF as a potentially relevant molecular target for the development of treatments linked to deficits in neurogenesis, as well as to problems related to anxiety, depression, and cognition.
Collapse
|
95
|
Lepski G, Jannes CE, Wessolleck J, Kobayashi E, Nikkhah G. Equivalent neurogenic potential of wild-type and GFP-labeled fetal-derived neural progenitor cells before and after transplantation into the rodent hippocampus. Transplantation 2011; 91:390-7. [PMID: 21169879 DOI: 10.1097/tp.0b013e3182063083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The hippocampal formation is a specific structure in the brain where neurogenesis occurs throughout adulthood and in which the neuronal cell loss causes various demential states. The main goal of this study was to verify whether fetal neural progenitor cells (NPCs) from transgenic rats expressing green fluorescent protein (GFP) retain the ability to differentiate into neuronal cells and to integrate into the hippocampal circuitry after transplantation. METHODS NPCs were isolated from E14 (gestational age: 14 days postconception) transgenic-Lewis and wild-type Sprague-Dawley rat embryos. Wild-type and transgenic cells were expanded and induced to differentiate into a neuronal lineage in vitro. Immunocytochemical and electrophysiological analysis were performed in both groups. GFP-expressing cells were implanted into the hippocampus and recorded electrophysiologically 3 months thereafter. Immunohistochemical analysis confirmed neuronal differentiation, and the yield of neuronal cells was determined stereologically. RESULTS NPCs derived from wild-type and transgenic animals are similar regarding their ability to generate neuronal cells in vitro. Neuronal maturity was confirmed by immunocytochemistry and electrophysiology, with demonstration of voltage-gated ionic currents, firing activity, and spontaneous synaptic currents. GFP-NPCs were also able to differentiate into mature neurons after implantation into the hippocampus, where they formed functional synaptic contacts. CONCLUSIONS GFP-transgenic cells represent an important tool in transplantation studies. Herein, we demonstrate their ability to generate functional neurons both in vitro and in vivo conditions. Neurons derived from fetal NPCs were able to integrate into the normal hippocampal circuitry. The high yield of mature neurons generated render these cells important candidates for restorative approaches based on cell therapy.
Collapse
Affiliation(s)
- Guilherme Lepski
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
96
|
Dentate gyrus neurogenesis, integration and microRNAs. Behav Brain Res 2011; 227:348-55. [PMID: 21443907 DOI: 10.1016/j.bbr.2011.03.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/24/2011] [Accepted: 03/20/2011] [Indexed: 12/15/2022]
Abstract
Neurons are born and become a functional part of the synaptic circuitry in adult brains. The proliferative phase of neurogenesis has been extensively reviewed. We therefore focus this review on a few topics addressing the functional role of adult-generated newborn neurons in the dentate gyrus. We discuss the evidence for a link between neurogenesis and behavior. We then describe the steps in the integration of newborn neurons into a functioning mature synaptic circuit. Given the profound effects of neural activity on the differentiation and integration of newborn neurons, we discuss the role of activity-dependent gene expression in the birth and maturation of newborn neurons. The differentiation and maturation of newborn neurons likely involves the concerted action of many genes. Thus we focus on transcription factors that can direct large changes to the transcriptome, and microRNAs, a newly-discovered class of molecules that can effect the expression of hundreds of genes. How microRNAs affect the generation and integration of newborn neurons is just being explored, but there are compelling clues hinting at their involvement.
Collapse
|
97
|
Abstract
It has been well established that adult neurogenesis occurs throughout life in the subventricular (SVZ) and subgranular (SGZ) zones. However, the exact role of this type of brain plasticity is not yet clear. Many studies have shown that neurogenesis is involved in learning and memory. This has led to a hypothesis which suggests that impairment in memory during aging and neurodegenerative diseases such as Alzheimer's disease (AD) may involve abnormal neurogenesis. Indeed, during aging, there is an age-related decline in adult neurogenesis. This decline is mostly related to decreased proliferation, associated to decreased stimulation to proliferate in an aging brain. In AD, there is also evidence for decreased neurogenesis, that accompanies the neuronal loss characteristic of the disease. Interestingly in AD, there is increased proliferation, that may be caused by increasing amounts of soluble amyloid ß42-protein (Aβ₄₂). However, most of these new neurons die, and fibrillar Aβ₄₂ seems to be involved in generating an inappropriate environment for these neurons to mature. These findings open prospects for new strategies that can increase neurogenesis in normal or pathological processes in the aging brain, and by that decrease memory deficits.
Collapse
|
98
|
Working memory task decreases the survival of newly born neurons in hippocampus. Neurobiol Learn Mem 2011; 95:239-47. [DOI: 10.1016/j.nlm.2010.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 10/27/2010] [Accepted: 11/19/2010] [Indexed: 11/18/2022]
|
99
|
Rapanelli M, Frick LR, Zanutto BS. Learning an operant conditioning task differentially induces gliogenesis in the medial prefrontal cortex and neurogenesis in the hippocampus. PLoS One 2011; 6:e14713. [PMID: 21364751 PMCID: PMC3041768 DOI: 10.1371/journal.pone.0014713] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 01/31/2011] [Indexed: 11/18/2022] Open
Abstract
Circuit modification associated with learning and memory involves multiple events, including the addition and remotion of newborn cells trough adulthood. Adult neurogenesis and gliogenesis were mainly described in models of voluntary exercise, enriched environments, spatial learning and memory task; nevertheless, it is unknown whether it is a common mechanism among different learning paradigms, like reward dependent tasks. Therefore, we evaluated cell proliferation, neurogenesis, astrogliogenesis, survival and neuronal maturation in the medial prefrontal cortex (mPFC) and the hippocampus (HIPP) during learning an operant conditioning task. This was performed by using endogenous markers of cell proliferation, and a bromodeoxiuridine (BrdU) injection schedule in two different phases of learning. Learning an operant conditioning is divided in two phases: a first phase when animals were considered incompletely trained (IT, animals that were learning the task) when they performed between 50% and 65% of the responses, and a second phase when animals were considered trained (Tr, animals that completely learned the task) when they reached 100% of the responses with a latency time lower than 5 seconds. We found that learning an operant conditioning task promoted cell proliferation in both phases of learning in the mPFC and HIPP. Additionally, the results presented showed that astrogliogenesis was induced in the medial prefrontal cortex (mPFC) in both phases, however, the first phase promoted survival of these new born astrocytes. On the other hand, an increased number of new born immature neurons was observed in the HIPP only in the first phase of learning, whereas, decreased values were observed in the second phase. Finally, we found that neuronal maturation was induced only during the first phase. This study shows for the first time that learning a reward-dependent task, like the operant conditioning, promotes neurogenesis, astrogliogenesis, survival and neuronal maturation depending on the learning phase in the mPFC-HIPP circuit.
Collapse
Affiliation(s)
- Maximiliano Rapanelli
- Laboratorio de Biología del Comportamiento, IBYME-CONICET, Ciudad de Buenos Aires, Buenos Aires, Argentina.
| | | | | |
Collapse
|
100
|
Waddell J, Anderson ML, Shors TJ. Changing the rate and hippocampal dependence of trace eyeblink conditioning: slow learning enhances survival of new neurons. Neurobiol Learn Mem 2011; 95:159-65. [PMID: 20883805 PMCID: PMC3045636 DOI: 10.1016/j.nlm.2010.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/13/2010] [Accepted: 09/18/2010] [Indexed: 01/30/2023]
Abstract
Trace eyeblink conditioning in which a conditioned stimulus and unconditioned stimulus are separated by a gap, is hippocampal dependent and can rescue new neurons in the adult dentate gyrus from death (e.g., Beylin et al., 2001; Gould et al., 1999). Tasks requiring more training trials for reliable expression of the conditioned response are most effective in enhancing survival of neurons (Waddell & Shors, 2008). To dissociate hippocampal dependence from acquisition rate, we facilitated hippocampal-dependent trace eyeblink conditioning in two ways: a shorter trace interval and signaling the intertrial interval with a post-US cue. Trace conditioning with a shorter trace interval (250ms) requires an intact hippocampus, and acquisition is faster relative to rats trained with a 500ms trace interval (e.g., Weiss et al., 1999). Using excitotoxic hippocampal lesions, we confirmed that eyeblink conditioning with the 250 or 500ms trace interval is hippocampal dependent. However, training with the post-US cue was not hippocampal dependent. The majority of lesion rats in this condition reached criterion of conditioned responding. To determine whether hippocampal dependence is sufficient to rescue adult-generated neurons in the dentate gyrus, rats were injected with BrdU and trained in one of the three trace eyeblink arrangements one week later. Of these training procedures, only the 500ms trace interval enhanced survival of new cells; acquisition of this task proceeded slowly relative to the 250ms and post-US cue conditions. These data demonstrate that rate of acquisition and not hippocampal dependence determines the impact of learning on adult neurogenesis.
Collapse
Affiliation(s)
- Jaylyn Waddell
- University of Maryland, Baltimore, Department of Physiology, School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| | | | | |
Collapse
|